WO2015080240A1 - 化合物又は樹脂の精製方法 - Google Patents
化合物又は樹脂の精製方法 Download PDFInfo
- Publication number
- WO2015080240A1 WO2015080240A1 PCT/JP2014/081508 JP2014081508W WO2015080240A1 WO 2015080240 A1 WO2015080240 A1 WO 2015080240A1 JP 2014081508 W JP2014081508 W JP 2014081508W WO 2015080240 A1 WO2015080240 A1 WO 2015080240A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- formula
- acid
- compound represented
- above formula
- group
- Prior art date
Links
- PBGVMIDTGGTBFS-UHFFFAOYSA-N C=CCCc1ccccc1 Chemical compound C=CCCc1ccccc1 PBGVMIDTGGTBFS-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D311/00—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
- C07D311/02—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
- C07D311/78—Ring systems having three or more relevant rings
- C07D311/92—Naphthopyrans; Hydrogenated naphthopyrans
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G61/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G61/12—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G85/00—General processes for preparing compounds provided for in this subclass
- C08G85/002—Post-polymerisation treatment
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J11/00—Recovery or working-up of waste materials
- C08J11/02—Recovery or working-up of waste materials of solvents, plasticisers or unreacted monomers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J11/00—Recovery or working-up of waste materials
- C08J11/04—Recovery or working-up of waste materials of polymers
- C08J11/06—Recovery or working-up of waste materials of polymers without chemical reactions
Definitions
- the present invention relates to a method for purifying a compound or resin having a specific structure.
- a compound or resin having a benzoxanthene skeleton is excellent in heat resistance, etching resistance, and solvent solubility, it is used as a coating agent for semiconductors, a resist material, and a semiconductor underlayer film forming material (for example, patent documents) (See 1-2).
- the metal content is an important performance item for improving the yield. That is, when a compound or resin having a benzoxanthene skeleton with a high metal content is used, the metal remains in the semiconductor, and the electrical characteristics of the semiconductor are deteriorated. Therefore, it is required to reduce the metal content. ing.
- a method for producing a compound or resin having a benzoxanthene skeleton with a reduced metal content a method of bringing a mixture containing the compound or resin and an organic solvent into contact with an ion exchange resin, a method of filtering with a filter, or the like can be considered.
- This invention is made
- a method for purifying a compound represented by the following formula (1) or a resin having a structure represented by the following formula (2) A purification method comprising a step of bringing a solution (A) containing an organic solvent not arbitrarily miscible with water and the compound or the resin into contact with an acidic aqueous solution.
- each X is independently an oxygen atom or a sulfur atom
- R 1 is a single bond or a 2n-valent hydrocarbon group having 1 to 30 carbon atoms
- the hydrocarbon group is , A cyclic hydrocarbon group, a double bond, a hetero atom, or an aromatic group having 6 to 30 carbon atoms
- each R 2 is independently a straight chain having 1 to 10 carbon atoms, A branched or cyclic alkyl group, an aryl group having 6 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, or a hydroxyl group, wherein at least one of R 2 is a hydroxyl group, and m is each independently And an integer of 1 to 6, p is independently 0 or 1, and n is an integer of 1 to 4.
- each X is independently an oxygen atom or a sulfur atom
- R 1 is a single bond or a 2n-valent hydrocarbon group having 1 to 30 carbon atoms
- the hydrocarbon group is , A
- an organic solvent arbitrarily mixed with water is 0.1 to 100 times by mass with respect to the compound represented by the formula (1) or the resin having the structure represented by the formula (2).
- the purification method according to [5], wherein the organic solvent arbitrarily mixed with water is N-methylpyrrolidone or propylene glycol monomethyl ether.
- the purification method according to any one of [1] to [6] further comprising a step of performing an extraction treatment by a step of bringing the solution (A) into contact with an acidic aqueous solution and further performing an extraction treatment with water.
- the content of various metals that can be contained as impurities in a compound or resin having a specific structure can be reduced.
- the purification method according to the present embodiment is a method for purifying a compound represented by the following formula (1) or a resin having a structure represented by the following formula (2). Furthermore, the purification method in the present embodiment includes a step of bringing an organic solvent that is not miscible with water and the solution (A) containing the compound or the resin into contact with an acidic aqueous solution. Since it is comprised as mentioned above, according to the purification method of this embodiment, content of the various metals which can be contained as an impurity in the compound or resin which has a specific structure can be reduced.
- the compound or the resin may be dissolved in an organic solvent that is not arbitrarily miscible with water, and the solution may be contacted with an acidic aqueous solution to perform the extraction treatment.
- the metal component contained in the solution (A) containing the compound represented by the formula (1) or the resin having the structure represented by the formula (2) and the organic solvent is transferred to the aqueous phase, and then the organic phase.
- the resin having the structure represented by the compound represented by the formula (1) or the formula (2) having a reduced metal content can be purified by separating the aqueous phase from the aqueous phase.
- the compound used in the present embodiment is a compound represented by the following formula (1).
- X is respectively independently an oxygen atom or a sulfur atom, and each naphthalene ring has couple
- R 1 is a single bond or a 2n-valent hydrocarbon group having 1 to 30 carbon atoms, and each naphthalene ring is bonded through R 1 .
- the 2n-valent hydrocarbon group may have a cyclic hydrocarbon group, a double bond, a hetero atom, or an aromatic group having 6 to 30 carbon atoms.
- R 2 is independently selected from the group consisting of a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms and a hydroxyl group. Is a selected monovalent substituent, and is bonded to the naphthalene ring m in number.
- at least one of R 2 is a hydroxyl group.
- M is each independently an integer of 1 to 6
- p is independently 0 or 1
- n is an integer of 1 to 4.
- Examples of the 2n-valent hydrocarbon group include those having a linear, branched, or cyclic structure.
- the 2n-valent hydrocarbon group may have a cyclic hydrocarbon group, a double bond, a hetero atom, or an aromatic group having 6 to 30 carbon atoms.
- the cyclic hydrocarbon group includes a bridged cyclic hydrocarbon group.
- the compound represented by the above formula (1) is preferably a compound represented by the following formula (1-1) from the viewpoint of easy availability of raw materials.
- R 1 , R 2 , m, and n are as defined in the above formula (1).
- the compound represented by the general formula (1-1) is more preferably a compound represented by the following formula (1-2) from the viewpoint of solubility in an organic solvent.
- R 1 and n have the same meaning as described in the above formula (1)
- R 4 has the same meaning as R 2 described in the above formula (1)
- m 3 Are each independently an integer of 1 to 6
- m 4 is each independently an integer of 0 to 5
- m 3 + m 4 is an integer of 1 to 6.
- the compound represented by the general formula (1-2) is more preferably a compound represented by the following formula (1-3) from the viewpoint of further solubility in an organic solvent.
- R 1 has the same meaning as described in the above formula (1)
- R 4 and m 4 have the same meaning as described in the above formula (1-2).
- the compound represented by the general formula (1-4) is an embodiment in which X ⁇ O (oxygen atom) in the above formula (1-4), that is, a compound represented by the following formula (1-5) It is more preferable that
- R 1 has the same meaning as described in the above formula (1)
- R 4 and m 4 have the same meaning as described in the above formula (1-2).
- R 2 , X, and m have the same meaning as described in the above formula (1).
- R 2 , X, and m have the same meaning as described in the above formula (1).
- R 2 , X, and m have the same meaning as described in the above formula (1).
- R 2 , X, and m have the same meaning as described in the above formula (1).
- R 2 , X, and m have the same meaning as described in the above formula (1).
- R 2 , X, and m have the same meaning as described in the above formula (1).
- R 2 , X, and m have the same meaning as described in the above formula (1).
- R 2 , X, and m have the same meaning as described in the above formula (1).
- X has the same meaning as described in the above formula (1).
- X has the same meaning as described in the above formula (1).
- X has the same meaning as described in the above formula (1).
- X has the same meaning as described in the above formula (1).
- X has the same meaning as described in the above formula (1).
- X has the same meaning as described in the above formula (1).
- X has the same meaning as described in the above formula (1).
- X has the same meaning as described in the above formula (1).
- X has the same meaning as described in the above formula (1).
- the compound represented by the formula (1) used in the present embodiment can be appropriately synthesized by applying a known technique, and the synthesis technique is not particularly limited.
- the synthesis technique is not particularly limited.
- it is represented by the above formula (1) by subjecting phenols, thiophenols, naphthols or thionaphthols and a corresponding aldehyde or ketone to a polycondensation reaction under an acid catalyst under normal pressure.
- a compound can be obtained.
- it can also carry out under pressure as needed.
- phenols include, but are not limited to, phenol, methylphenol, methoxybenzene, catechol, resorcinol, hydroquinone, trimethylhydroquinone, and the like. These can be used individually by 1 type or in combination of 2 or more types. Among these, it is preferable to use hydroquinone or trimethylhydroquinone because a xanthene structure can be easily formed.
- thiophenols examples include, but are not particularly limited to, benzenethiol, methylbenzenethiol, methoxybenzenethiol, benzenedithiol, trimethylbenzenedithiol, and the like. These can be used individually by 1 type or in combination of 2 or more types. Among these, it is preferable to use benzenedithiol or trimethylbenzenedithiol because a thioxanthene structure can be easily formed.
- naphthols examples include, but are not particularly limited to, naphthol, methyl naphthol, methoxy naphthol, naphthalene diol, and the like. These can be used alone or in combination of two or more. Among these, it is preferable to use naphthalenediol because a benzoxanthene structure can be easily formed.
- thionaphthols examples include, but are not particularly limited to, naphthalene thiol, methyl naphthalene thiol, methoxynaphthalene thiol, naphthalene dithiol, and the like. These can be used alone or in combination of two or more. Among these, it is preferable to use naphthalenedithiol because a thiobenzoxanthene structure can be easily formed.
- aldehydes include, but are not limited to, for example, formaldehyde, trioxane, paraformaldehyde, acetaldehyde, propylaldehyde, butyraldehyde, hexylaldehyde, decylaldehyde, undecylaldehyde, phenylacetaldehyde, phenylpropylaldehyde, furfural, benzaldehyde, hydroxy Benzaldehyde, fluorobenzaldehyde, chlorobenzaldehyde, nitrobenzaldehyde, methylbenzaldehyde, dimethylbenzaldehyde, ethylbenzaldehyde, propylbenzaldehyde, butylbenzaldehyde, cyclohexylbenzaldehyde, benzaldehyde, hydroxybenzaldehyde, fluorobenzaldehh,
- ketones examples include acetone, methyl ethyl ketone, cyclobutanone, cyclopentanone, cyclohexanone, norbornanone, tricyclohexanone, tricyclodecanone, adamantanone, fluorenone, benzofluorenone, acenaphthenequinone, acenaphthenone, anthraquinone, and the like. However, it is not particularly limited to these. These can be used alone or in combination of two or more.
- cyclopentanone cyclohexanone, norbornanone, tricyclohexanone, tricyclodecanone, adamantanone, fluorenone, benzofluorenone, acenaphthenequinone, acenaphthenone and anthraquinone from the viewpoint of giving high heat resistance.
- the acid catalyst used in the above reaction can be appropriately selected from known ones and is not particularly limited.
- inorganic acids and organic acids are widely known.
- inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, hydrobromic acid, hydrofluoric acid, oxalic acid, malonic acid, succinic acid, Adipic acid, sebacic acid, citric acid, fumaric acid, maleic acid, formic acid, p-toluenesulfonic acid, methanesulfonic acid, trifluoroacetic acid, dichloroacetic acid, trichloroacetic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, naphthalenesulfonic acid,
- organic acids such as naphthalenedisulfonic acid, Lewis acids such as zinc chloride, aluminum chloride, iron chloride, and boron trifluoride, and solid acids such as silicotungstic acid, phosphotungstic
- an organic acid and a solid acid are preferable from the viewpoint of production, and hydrochloric acid or sulfuric acid is preferably used from the viewpoint of production such as availability and ease of handling.
- an acid catalyst 1 type can be used individually or in combination of 2 or more types.
- the amount of the acid catalyst used can be appropriately set according to the raw material used, the type of catalyst used, and the reaction conditions, and is not particularly limited, but is 0.01 to 100 per 100 parts by mass of the reactive raw material. It is preferable that it is a mass part.
- a reaction solvent may be used.
- the reaction solvent is not particularly limited as long as the reaction of aldehydes or ketones to be used with phenols, thiophenols, naphthols, or thionaphthols proceeds, and is appropriately selected from known ones.
- water, methanol, ethanol, propanol, butanol, tetrahydrofuran, dioxane, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, or a mixed solvent thereof can be used.
- a solvent can be used individually by 1 type or in combination of 2 or more types.
- the amount of these solvents used can be appropriately set according to the raw material used, the type of catalyst used, and the reaction conditions, and is not particularly limited, but is 0 to 2000 parts by mass with respect to 100 parts by mass of the reaction raw material. It is preferable that it is the range of these.
- the reaction temperature in the above reaction can be appropriately selected according to the reactivity of the reaction raw material, and is not particularly limited, but is usually in the range of 10 to 200 ° C.
- reaction temperature is preferable, and specifically, a range of 60 to 200 ° C. is preferable.
- the reaction method can be appropriately selected from known methods and is not particularly limited, but is a method in which phenols, thiophenols, naphthols or thionaphthols, aldehydes or ketones, and a catalyst are charged all at once. And a method of dropping phenols, thiophenols, naphthols, thionaphthols, aldehydes or ketones in the presence of a catalyst. After completion of the polycondensation reaction, the obtained compound can be isolated according to a conventional method, and is not particularly limited.
- a general method such as raising the temperature of the reaction vessel to 130 to 230 ° C. and removing volatile components at about 1 to 50 mmHg is adopted.
- a compound as a raw material can be obtained.
- reaction conditions 1 mol to excess of phenols, thiophenols, naphthols or thionaphthols and 0.001 to 1 mol of an acid catalyst are used per 1 mol of aldehydes or ketones.
- the reaction proceeds at a pressure of 50 to 150 ° C. for about 20 minutes to 100 hours.
- the compound as a raw material can be isolated by a known method.
- the reaction solution is concentrated, pure water is added to precipitate the reaction product, cooled to room temperature, filtered and separated, and the resulting solid is filtered and dried, followed by column chromatography.
- the compound represented by the above general formula (1) as a raw material can be obtained by separating and purifying from a by-product, distilling off the solvent, filtering and drying.
- the resin used in this embodiment is a resin having a structure represented by the formula (2).
- X is respectively independently an oxygen atom or a sulfur atom.
- R 1 is a single bond or a 2n-valent hydrocarbon group having 1 to 30 carbon atoms, and the hydrocarbon group is a cyclic hydrocarbon group, a double bond, a hetero atom, or an aromatic group having 6 to 30 carbon atoms. You may have.
- Each R 2 independently represents a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, or a hydroxyl group, And at least one of R 2 is a hydroxyl group.
- Each R 3 is independently a single bond or a linear or branched alkylene group having 1 to 20 carbon atoms.
- m 2 is each independently an integer of 1 to 5, and n is an integer of 1 to 4.
- Each p is independently 0 or 1.
- the 2n-valent hydrocarbon group has the same meaning as described in the above formula (1).
- the resin having the structure represented by the formula (2) used in the present embodiment can be obtained, for example, by reacting the compound represented by the formula (1) with a monomer having a crosslinking reactivity.
- the crosslinking reactive monomer is not particularly limited as long as it can oligomerize or polymerize the compound represented by the above formula (1), and various known monomers can be used. Specific examples thereof include, but are not limited to, aldehydes, ketones, carboxylic acids, carboxylic acid halides, halogen-containing compounds, amino compounds, imino compounds, isocyanates, unsaturated hydrocarbon group-containing compounds.
- the resin having the structure represented by the formula (2) are not limited to the following, but the compound represented by the formula (1) may be subjected to a condensation reaction with an aldehyde that is a crosslinking-reactive monomer.
- a novolak resin can be mentioned.
- aldehyde for example, formaldehyde, trioxane, paraformaldehyde, benzaldehyde, acetaldehyde, propylaldehyde, phenylacetaldehyde, phenylpropylaldehyde, hydroxybenzaldehyde
- aldehyde for example, formaldehyde, trioxane, paraformaldehyde, benzaldehyde, acetaldehyde, propylaldehyde, phenylacetaldehyde, phenylpropylaldehyde, hydroxybenzaldehyde
- Examples include, but are not limited to, chlorobenzaldehyde, nitrobenzaldehyde, methylbenzaldehyde, ethylbenzaldehyde, butylbenzaldehyde, biphenylaldehyde, naphthaldehyde, anthracenecarbald
- aldehydes can be used individually by 1 type or in combination of 2 or more types.
- the amount of the aldehyde used is not particularly limited, but is preferably 0.2 to 5 mol, more preferably 0.5 to 2 mol, relative to 1 mol of the compound represented by the formula (1). is there.
- a catalyst may be used.
- the acid catalyst used here can be appropriately selected from known ones and is not particularly limited.
- inorganic acids and organic acids are widely known.
- inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, hydrobromic acid, hydrofluoric acid, oxalic acid, malonic acid, succinic acid, Adipic acid, sebacic acid, citric acid, fumaric acid, maleic acid, formic acid, p-toluenesulfonic acid, methanesulfonic acid, trifluoroacetic acid, dichloroacetic acid, trichloroacetic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, naphthalenesulfonic acid, Examples include organic acids such as naphthalenedisulfonic acid, Lewis acids such as zinc chloride, aluminum chloride, iron chloride,
- an acid catalyst 1 type can be used individually or in combination of 2 or more types.
- the amount of the acid catalyst used can be appropriately set according to the raw material used, the type of catalyst used, and the reaction conditions, and is not particularly limited, but is 0.01 to 100 per 100 parts by mass of the reactive raw material. It is preferable that it is a mass part.
- indene hydroxyindene, benzofuran, hydroxyanthracene, acenaphthylene, biphenyl, bisphenol, trisphenol, dicyclopentadiene, tetrahydroindene, 4-vinylcyclohexene, norbornadiene, 5-vinylnorborna-2-ene, ⁇ -pinene, ⁇ -pinene
- aldehydes are not necessarily required.
- a reaction solvent can also be used.
- the reaction solvent in this polycondensation can be appropriately selected from known solvents and is not particularly limited. Examples thereof include water, methanol, ethanol, propanol, butanol, tetrahydrofuran, dioxane, and mixed solvents thereof. Can be mentioned.
- a reaction solvent can be used individually by 1 type or in combination of 2 or more types. The amount of these reaction solvents used can be appropriately set according to the raw material used, the type of catalyst used, and the reaction conditions, and is not particularly limited, but is 0 to 2000 parts by mass with respect to 100 parts by mass of the reaction raw material. The range of parts is preferred.
- the reaction temperature can be appropriately selected according to the reactivity of the reaction raw material, and is not particularly limited, but is usually in the range of 10 to 200 ° C.
- the reaction method can be appropriately selected from known methods and is not particularly limited.
- the reaction method may be a method in which the compound represented by the general formula (1), the aldehydes, and the catalyst are charged all together, or the general formula ( There is a method in which the compound or aldehyde represented by 1) is dropped in the presence of a catalyst.
- the obtained compound can be isolated according to a conventional method, and is not particularly limited. For example, in order to remove unreacted raw materials, catalysts, etc.
- a general method such as raising the temperature of the reaction vessel to 130 to 230 ° C. and removing volatile components at about 1 to 50 mmHg is adopted.
- a novolac resin as a raw material can be obtained.
- the resin having the structure represented by the above formula (2) may be a homopolymer of the compound represented by the above formula (1), but the compound represented by the above formula (1) and It may be a copolymer with other phenols.
- copolymerizable phenols for example, phenol, cresol, dimethylphenol, trimethylphenol, butylphenol, phenylphenol, diphenylphenol, naphthylphenol, resorcinol, methylresorcinol, catechol, butylcatechol, methoxyphenol, methoxyphenol , Propylphenol, pyrogallol, thymol and the like, but are not limited thereto.
- the resin having the structure represented by the above formula (2) may be copolymerized with a polymerizable monomer other than the above-described phenols.
- the copolymerization monomer include naphthol, methylnaphthol, methoxynaphthol, dihydroxynaphthalene, indene, hydroxyindene, benzofuran, hydroxyanthracene, acenaphthylene, biphenyl, bisphenol, trisphenol, dicyclopentadiene, tetrahydroindene, 4-vinylcyclohexene.
- the resin having the structure represented by the general formula (2) is a binary or more (for example, 2-4 quaternary) copolymer of the compound represented by the general formula (1) and the above-described phenols.
- It may be a binary or more (for example, 2-4 quaternary) copolymer of the compound represented by the above general formula (1) and the above-mentioned copolymerization monomer, and the above general formula (1 ),
- a terpolymer for example, a ternary to quaternary copolymer of the above-described phenols and the above-mentioned copolymerization monomer.
- the compound represented by the formula (1) or the resin having the structure represented by the formula (2) used in the present embodiment may be used alone or in combination of two or more.
- the compound represented by the formula (1) or the resin having the structure represented by the formula (2) contains various surfactants, various crosslinking agents, various acid generators, various stabilizers and the like. May be.
- an organic solvent that is not arbitrarily miscible with water means an organic solvent having a solubility in water of less than 30% at room temperature.
- the organic solvent that is not arbitrarily miscible with water is not particularly limited, but an organic solvent that can be safely applied to a semiconductor manufacturing process is preferable.
- the solubility is preferably less than 20%, more preferably less than 10%.
- the amount of the organic solvent which is not arbitrarily miscible with water used is not particularly limited, but is usually 1 to 1 with respect to the compound represented by formula (1) or the resin having the structure represented by formula (2). It can be about 100 times the mass, preferably 1 to 10 times the mass, more preferably 1 to 9 times the mass, and even more preferably 2 to 5 times the mass.
- solvents include, but are not limited to, ethers such as diethyl ether and diisopropyl ether, esters such as ethyl acetate, n-butyl acetate, and isoamyl acetate, methyl ethyl ketone, methyl isobutyl ketone, and ethyl isobutyl ketone.
- Ketones such as cyclohexanone, cyclopentanone, 2-heptanone, 2-pentanone, glycols such as ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, propylene glycol monomethyl ether acetate (PGMEA), propylene glycol monoethyl ether acetate Ether acetates, aliphatic hydrocarbons such as n-hexane and n-heptane, aromatic hydrocarbons such as toluene and xylene, methylene chloride, chlorine Halogenated hydrocarbons such as Holm and the like.
- glycols such as ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, propylene glycol monomethyl ether acetate (PGMEA), propylene glycol monoethyl ether acetate Ether acetates
- aliphatic hydrocarbons such as
- toluene, 2-heptanone, cyclohexanone, cyclopentanone, methyl isobutyl ketone, propylene glycol monomethyl ether acetate, ethyl acetate and the like are preferable, methyl isobutyl ketone, ethyl acetate, cyclohexanone, propylene glycol monomethyl ether acetate are more preferable, More preferred are methyl isobutyl ketone and ethyl acetate. Methyl isobutyl ketone, ethyl acetate, etc.
- the acidic aqueous solution used in the present embodiment is appropriately selected from aqueous solutions in which generally known organic and inorganic compounds are dissolved in water.
- aqueous solutions in which generally known organic and inorganic compounds are dissolved in water.
- a mineral acid such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid or the like is dissolved in water, or acetic acid, propionic acid, succinic acid, malonic acid, succinic acid, fumaric acid, maleic acid, tartaric acid
- an organic acid such as citric acid, methanesulfonic acid, phenolsulfonic acid, p-toluenesulfonic acid or trifluoroacetic acid is dissolved in water.
- acidic aqueous solutions can be used alone or in combination of two or more.
- one or more mineral acid aqueous solutions selected from the group consisting of hydrochloric acid, sulfuric acid, nitric acid and phosphoric acid, or acetic acid, propionic acid, succinic acid, malonic acid, succinic acid, fumaric acid, maleic acid
- Aqueous solutions of carboxylic acids such as succinic acid, tartaric acid, and citric acid are more preferred
- aqueous solutions of sulfuric acid, succinic acid, tartaric acid, and citric acid are more preferred
- the pH of the acidic aqueous solution used in the present embodiment is not particularly limited, the acidity of the aqueous solution is considered in consideration of the influence on the compound represented by the formula (1) or the resin having the structure represented by the formula (2). Is preferably adjusted. Usually, the pH range is about 0 to 5, preferably about pH 0 to 3.
- the amount of acidic aqueous solution used in the present embodiment is not particularly limited, but from the viewpoint of reducing the number of extractions for metal removal and from the viewpoint of ensuring operability in consideration of the total amount of liquid, the amount used is It is preferable to adjust. From the above viewpoint, the amount of the aqueous solution used is usually 10 to 200% by mass with respect to the compound represented by the formula (1) or the resin solution having the structure represented by the formula (2) dissolved in an organic solvent. Yes, preferably 20 to 100% by mass.
- an acidic aqueous solution as described above a solution containing a compound represented by formula (1) or a resin having a structure represented by formula (2), and an organic solvent that is not arbitrarily miscible with water
- the metal component can be extracted by bringing the metal into contact.
- the contact mode is not particularly limited, and for example, a known mixing method such as stirring and ultrasonic dispersion can be employed.
- the solution (A) further contains an organic solvent that is arbitrarily mixed with water.
- the organic solvent arbitrarily mixed with water means an organic solvent having a solubility in water of 70% or more at room temperature.
- the solubility of the organic solvent arbitrarily mixed with water is preferably 80% or more, and more preferably 90% or more.
- any of a method of adding to a solution containing an organic solvent in advance, a method of adding to water or an acidic aqueous solution in advance, and a method of adding after bringing a solution containing an organic solvent into contact with water or an acidic aqueous solution may be used.
- the method of adding to the solution containing an organic solvent in advance is preferable from the viewpoint of the workability of operation and the ease of management of the amount charged.
- the organic solvent arbitrarily mixed with water used in the present embodiment is not particularly limited, but an organic solvent that can be safely applied to a semiconductor manufacturing process is preferable.
- the amount of the organic solvent arbitrarily mixed with the water to be used is not particularly limited as long as the solution phase and the aqueous phase are separated from each other, but is represented by the compound represented by the formula (1) or the formula (2).
- the resin having a structure as described above can usually be used in an amount of about 0.1 to 100 times by mass, preferably 0.1 to 10 times by mass, more preferably 0.1 to 2 times by mass, More preferably, it is 0.5 to 2 times by mass, and still more preferably 0.5 to 1.5 times by mass.
- the solvent arbitrarily mixed with water used in the present embodiment include, but are not limited to, ethers such as tetrahydrofuran and 1,3-dioxolane, alcohols such as methanol, ethanol and isopropanol, acetone, Examples thereof include ketones such as N-methylpyrrolidone, and aliphatic hydrocarbons such as ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether (PGME), and glycol ethers such as propylene glycol monoethyl ether.
- ethers such as tetrahydrofuran and 1,3-dioxolane
- alcohols such as methanol, ethanol and isopropanol
- acetone examples thereof include ketones such as N-methylpyrrolidone, and aliphatic hydrocarbons such as ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, propylene glycol mono
- N-methylpyrrolidone, propylene glycol monomethyl ether and the like are preferable, and N-methylpyrrolidone and propylene glycol monomethyl ether are more preferable.
- These solvents can be used alone or in combination of two or more.
- the temperature at the time of contacting the solution (A) with the acidic aqueous solution is usually 20 to 90 ° C., and preferably 30 to 80 ° C.
- extraction operation is not specifically limited, For example, after mixing well by stirring etc., it is performed by leaving still. Thereby, the metal component contained in the solution represented by the compound represented by the formula (1) or the resin having the structure represented by the formula (2) and the organic solvent is transferred to the aqueous phase. Moreover, the acidity of a solution falls by this operation, and the quality change of the resin which has the structure represented by the compound represented by Formula (1) or Formula (2) can be suppressed.
- the resulting mixture is separated into a solution phase and an aqueous phase containing a compound represented by formula (1) or a resin having a structure represented by formula (2) and an organic solvent, and an aqueous phase.
- a solution containing the compound represented by the formula or the resin represented by the formula (2) and an organic solvent is recovered.
- the standing time is not particularly limited, but it is preferable to adjust the standing time from the viewpoint of improving the separation between the solution phase containing the organic solvent and the aqueous phase.
- the time for standing is 1 minute or longer, preferably 10 minutes or longer, more preferably 30 minutes or longer.
- the extraction process may be performed only once, but it is also effective to repeat the operations of mixing, standing, and separation a plurality of times.
- the solution containing is further subjected to an extraction treatment with water.
- the extraction treatment with water is not particularly limited.
- the extraction treatment with water can be performed by mixing well by stirring and then allowing to stand.
- the solution obtained after the standing is separated into a solution phase containing a compound represented by the formula (1) or a resin having the structure represented by the formula (2) and an organic solvent, and an aqueous phase.
- a solution phase containing a compound represented by (1) or a resin having a structure represented by formula (2) and an organic solvent can be recovered.
- the water used here is a thing with little metal content, for example, ion-exchange water etc. according to the objective of this embodiment.
- the extraction process may be performed only once, but it is also effective to repeat the operations of mixing, standing, and separation a plurality of times. Further, the use ratio of both in the extraction process, conditions such as temperature and time are not particularly limited, but they may be the same as those in the contact process with the acidic aqueous solution.
- the method for isolating the resin having a structure is not particularly limited, and can be performed by a known method such as removal under reduced pressure, separation by reprecipitation, and a combination thereof. If necessary, known processes such as a concentration operation, a filtration operation, a centrifugal separation operation, and a drying operation can be performed.
- the obtained solid was filtered and dried, followed by separation and purification by column chromatography to obtain 7.2 g of a target resin (RBisN-1) having a structure represented by the following formula.
- a target resin (RBisN-1) having a structure represented by the following formula.
- they were Mn: 778, Mw: 1793, Mw / Mn: 2.30.
- the obtained resin was subjected to NMR measurement under the above measurement conditions, the following peaks were found and confirmed to have a chemical structure of the following formula. ⁇ (ppm) 9.7 (2H, OH), 7.2 to 8.5 (17H, Ph—H), 6.6 (1H, C—H), 4.1 (2H, —CH 2 )
- Example 2 Instead of charging 150 g of PGMEA solution (BisN-1 concentration: 2.5 wt%), 150 g of a solution using PGMEA (120 g) / propylene glycol monomethyl ether (PGME) (15 g) (BisN-1 concentration: 10 wt%) was used.
- a BisN-1 PGMEA / PGME solution with reduced metal content was obtained in the same manner as in Example 1 except that it was charged.
- Example 3 Instead of charging 37.5 g of an aqueous oxalic acid solution (pH 1.3), treatment with BisN-1 having a reduced metal content was conducted in the same manner as in Example 1 except that 130 g of an aqueous citric acid solution (pH 1.8) was charged. A PGMEA solution was obtained.
- Example 4 instead of charging BisN-1, the PGMEA solution of RBisN-1 was reduced in the metal content by the same treatment as in Example 1 except that RBisN-1 was charged (RBisN-1 concentration: 2.5 wt%) Got.
- Example 5 Similar to Example 1 except that 150 g of PGMEA solution (BisN-1 concentration: 2.5 wt%) was charged instead of a solution using methyl isobutyl ketone (150 g) (BisN-1 concentration: 30 wt%). To obtain a methyl isobutyl ketone solution of BisN-1 with a reduced metal content.
- Example 6 Instead of charging 150 g of PGMEA solution (BisN-1 concentration: 2.5 wt%), a solution using methyl isobutyl ketone (120 g) / propylene glycol monomethyl ether (PGME) (15 g) as a solvent (BisN-1 concentration: 30 wt%) A BisN-1 methylisobutylketone / PGME solution with reduced metal content was obtained in the same manner as in Example 1 except that was charged.
- PGMEA solution BisN-1 concentration: 2.5 wt%)
- PGME propylene glycol monomethyl ether
- Example 7 Instead of charging 150 g of PGMEA solution (BisN-1 concentration: 2.5 wt%), it was the same as in Example 1 except that a solution using ethyl acetate (150 g) (BisN-1 concentration: 20 wt%) was charged. Treatment gave an ethyl acetate solution of BisN-1 with reduced metal content.
- Example 8 Instead of charging 150 g of PGMEA solution (BisN-1 concentration: 2.5 wt%), a solution (BisN-1 concentration: 20 wt%) using ethyl acetate (120 g) / propylene glycol monomethyl ether (PGME) (15 g) as a solvent was used.
- PGME propylene glycol monomethyl ether
- Example 9 A methyl isobutyl ketone / PGME solution of RBisN-1 having a reduced metal content (RBisN-1 concentration: 30 wt.%) Treated in the same manner as in Example 6 except that RBisN-1 was charged instead of BisN-1. %).
- Example 10 An RBisN-1 ethyl acetate / PGME solution (RBisN-1 concentration: 20 wt%) treated in the same manner as in Example 8 except that RBisN-1 was used instead of BisN-1. )
- ⁇ Comparative Example> Production of cyclic compound with reduced metal content by ion exchange resin (Comparative Example 1) After 25 g of ion exchange resin (Mitsubishi Chemical Diaion: SMT100-mix resin) was swollen with cyclohexanone, it was packed in a Teflon (registered trademark) column, and the solvent was replaced by passing 500 mL of 1,3-dioxolane. Next, by passing 500 g of a solution (1.7 wt%) in which BisN-1 was dissolved in 1,3-dioxolane, a dioxolane solution of BisN-1 was obtained.
- ion exchange resin Mitsubishi Chemical Diaion: SMT100-mix resin
- a compound represented by the formula (1) with a reduced metal content or a resin having a structure represented by the formula (2) can be industrially advantageously produced.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Phenolic Resins Or Amino Resins (AREA)
- Pyrane Compounds (AREA)
- Materials For Photolithography (AREA)
Abstract
Description
金属含有量の低減されたベンゾキサンテン骨格を有する化合物又は樹脂の製造方法として、該化合物又は樹脂と有機溶媒を含む混合物を、イオン交換樹脂と接触させる方法、フィルターで濾過する方法等が考えられる。
しかし、イオン交換樹脂を用いる方法では、種々の金属イオンを含有する場合は、イオン交換樹脂の選択に難があり、金属の種類によっては除去が困難であるという問題、非イオン性の金属の除去が困難であるという問題、さらには、ランニングコストが大きいという問題が有る。
一方、フィルターで濾過する方法では、イオン性金属の除去が困難であるという問題がある。したがって、金属含有量の低減された環状化合物の工業的に有利な精製方法の確立が望まれている。
[1]
下記式(1)で表される化合物又は下記式(2)で表される構造を有する樹脂の精製方法であって、
水と任意に混和しない有機溶媒及び前記化合物又は前記樹脂を含む溶液(A)と、酸性の水溶液と、を接触させる工程を含む、精製方法。
[2]
前記酸性の水溶液が、塩酸、硫酸、硝酸及びリン酸からなる群より選ばれる1種以上の鉱酸水溶液である、又は、酢酸、プロピオン酸、蓚酸、マロン酸、コハク酸、フマル酸、マレイン酸、酒石酸、クエン酸、メタンスルホン酸、フェノールスルホン酸、p-トルエンスルホン酸及びトリフルオロ酢酸からなる群より選ばれる1種以上の有機酸水溶液である、[1]に記載の精製方法。
[3]
前記水と任意に混和しない有機溶媒が、トルエン、2-ヘプタノン、シクロヘキサノン、シクロペンタノン、メチルイソブチルケトン、プロピレングリコールモノメチルエーテルアセテート又は酢酸エチルである、[1]又は[2]に記載の精製方法。
[4]
前記水と任意に混和しない有機溶媒が、メチルイソブチルケトン又は酢酸エチルである、[1]又は[2]に記載の精製方法。
[5]
前記溶液(A)が、水と任意に混和する有機溶媒を前記式(1)で表される化合物又は前記式(2)で表される構造を有する樹脂に対して0.1~100質量倍含む、[1]~[4]のいずれかに記載の精製方法。
[6]
前記水と任意に混和する有機溶媒が、N-メチルピロリドン又はプロピレングリコールモノメチルエーテルである、[5]に記載の精製方法。
[7]
前記溶液(A)と酸性の水溶液とを接触させる工程による抽出処理を行ったのち、さらに水による抽出処理を行う工程を含む、[1]~[6]のいずれかに記載の精製方法。
[8]
前記式(1)で表される化合物が、下記式(1-1)で表される化合物である、[1]~[7]のいずれかに記載の精製方法。
[9]
前記式(1-1)で表される化合物が、下記式(1-2)で表される化合物である、[8]に記載の精製方法。
[10]
前記式(1-2)で表される化合物が、下記式(1-3)で表される化合物である、[9]に記載の精製方法。
[11]
前記式(1)で表される化合物が、下記式(1-4)で表される化合物である、[1]~[7]のいずれかに記載の精製方法。
[12]
前記式(1-4)で表される化合物が、下記式(1-5)で表される化合物である、[11]に記載の精製方法。
[13]
前記式(1-5)で表される化合物が、下記式(BisN-1)で表される化合物である、[12]に記載の精製方法。
より詳細には、本実施形態においては、上記化合物又は上記樹脂を水と任意に混和しない有機溶媒に溶解させ、さらにその溶液を酸性水溶液と接触させて抽出処理を行うものとすることができる。これにより、式(1)で表される化合物又は式(2)で表される構造を有する樹脂と有機溶媒を含む溶液(A)に含まれる金属分を水相に移行させたのち、有機相と水相を分離して金属含有量の低減された式(1)で表される化合物又は式(2)で表される構造を有する樹脂を精製することができる。
使用される溶媒の具体例としては、以下に限定されないが、ジエチルエーテル、ジイソプロピルエーテル等のエーテル類、酢酸エチル、酢酸n-ブチル、酢酸イソアミル等のエステル類、メチルエチルケトン、メチルイソブチルケトン、エチルイソブチルケトン、シクロヘキサノン、シクロペンタノン、2-ヘプタノン、2-ペンタノン等のケトン類、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、プロピレングリコールモノエチルエーテルアセテート等のグリコールエーテルアセテート類、n-ヘキサン、n-ヘプタン等の脂肪族炭化水素類、トルエン、キシレン等の芳香族炭化水素類、塩化メチレン、クロロホルム等のハロゲン化炭化水素類等が挙げられる。これらの中でも、トルエン、2-ヘプタノン、シクロヘキサノン、シクロペンタノン、メチルイソブチルケトン、プロピレングリコールモノメチルエーテルアセテート、酢酸エチル等が好ましく、メチルイソブチルケトン、酢酸エチル、シクロヘキサノン、プロピレングリコールモノメチルエーテルアセテートがより好ましく、メチルイソブチルケトン、酢酸エチルがさらに好ましい。メチルイソブチルケトン、酢酸エチル等は式(1)で表される化合物又は式(2)で表される構造を有する樹脂の飽和溶解度が比較的高く、沸点が比較的低いことから、これらを用いると、工業的に溶媒を留去する場合や乾燥により除去する工程での負荷がより低減される傾向にある。
これらの溶媒はそれぞれ単独で用いることもできるし、また2種以上を混合して用いることもできる。
これらの溶媒はそれぞれ単独で用いることもできるし、また2種以上を混合して用いることもできる。
また、抽出処理は1回だけでもかまわないが、混合、静置、分離という操作を複数回繰り返して行うのも有効である。
また、ここで用いる水は、本実施形態の目的に沿って、金属含有量の少ないもの、例えばイオン交換水等であることが好ましい。抽出処理は1回だけでもかまわないが、混合、静置、分離という操作を複数回繰り返して行うのも有効である。また、抽出処理における両者の使用割合や、温度、時間等の条件は特に限定されないが、先の酸性の水溶液との接触処理の場合と同様で構わない。
攪拌機、冷却管及びビュレットを備えた内容積100mLの容器に、2,6-ナフタレンジオール(シグマ-アルドリッチ社製試薬)1.60g(10mmol)と、4-ビフェニルアルデヒド(三菱瓦斯化学社製)1.82g(10mmol)と、メチルイソブチルケトン30mLとを仕込み、95%の硫酸5mLを加えて、反応液を100℃で6時間撹拌して反応を行った。次に、反応液を濃縮し、純水50gを加えて反応生成物を析出させ、室温まで冷却した後、濾過を行って分離した。得られた固形物を濾過し、乾燥させた後、カラムクロマトによる分離精製を行うことにより、下記式で表される目的化合物(BisN-1)3.05gを得た。
なお、400MHz-1H-NMRにより以下のピークが見出され、下記式の化学構造を有することを確認した。また、2,6-ジヒドロキシナフトールの置換位置が1位であることは、3位と4位のプロトンのシグナルがダブレットであることから確認した。
1H-NMR:(d-DMSO、内部標準TMS)
δ(ppm)9.7(2H,O-H)、7.2~8.5(19H,Ph-H)、6.6(1H,C-H)
攪拌機、冷却管及びビュレットを備えた内容積100mLの容器に、BisN-1 10g(21mmol)と、パラホルムアルデヒド0.7g(42mmol)、氷酢酸50mLとPGME50mLとを仕込み、95%の硫酸8mLを加えて、反応液を100℃で6時間撹拌して反応を行った。次に、反応液を濃縮し、メタノール1000mLを加えて反応生成物を析出させ、室温まで冷却した後、濾過を行って分離した。得られた固形物を濾過し、乾燥させた後、カラムクロマトによる分離精製を行うことにより、下記式で表される構造を有する目的樹脂(RBisN-1)7.2gを得た。
得られた樹脂について、前記方法によりポリスチレン換算分子量を測定した結果、Mn:778、Mw:1793、Mw/Mn:2.30であった。
得られた樹脂について、前記測定条件でNMR測定を行ったところ、以下のピークが見出され、下記式の化学構造を有することを確認した。
δ(ppm)9.7(2H,O-H)、7.2~8.5(17H,Ph-H)、6.6(1H,C-H)、4.1(2H,-CH2)
(実施例1)
1000mL容量の四つ口フラスコ(底抜き型)に、BisN-1をPGMEAに溶解させた溶液(BisN-1濃度:2.5wt%)を150g仕込み、攪拌しながら80℃まで加熱した。次いで、蓚酸水溶液(pH1.3)37.5gを加え、5分間攪拌後、30分静置した。これにより油相と水相に分離したので、水相を除去した。この操作を1回繰り返した後、得られた油相に、超純水37.5gを仕込み、5分間攪拌後、30分静置し、水相を除去した。この操作を3回繰り返すことにより、金属含有量の低減されたBisN-1のPGMEA溶液を得た。
PGMEA溶液(BisN-1濃度:2.5wt%)150gを仕込む代わりに、PGMEA(120g)/プロピレングリコールモノメチルエーテル(PGME)(15g)を溶媒とする溶液(BisN-1濃度:10wt%)150gを仕込んだこと以外は実施例1と同様に処理して金属含有量の低減されたBisN-1のPGMEA/PGME溶液を得た。
蓚酸水溶液(pH1.3)37.5gを仕込む代わりに、クエン酸水溶液(pH1.8)130gを仕込んだこと以外は実施例1と同様に処理して金属含有量の低減されたBisN-1のPGMEA溶液を得た。
BisN-1を仕込む代わりに、RBisN-1を仕込んだこと以外は実施例1と同様に処理して金属含有量の低減されたRBisN-1のPGMEA溶液(RBisN-1濃度:2.5wt%)を得た。
PGMEA溶液(BisN-1濃度:2.5wt%)150gを仕込む代わりに、メチルイソブチルケトン(150g)を溶媒とする溶液(BisN-1濃度:30wt%)を仕込んだこと以外は実施例1と同様に処理して金属含有量の低減されたBisN-1のメチルイソブチルケトン溶液を得た。
PGMEA溶液(BisN-1濃度:2.5wt%)150gを仕込む代わりに、メチルイソブチルケトン(120g)/プロピレングリコールモノメチルエーテル(PGME)(15g)を溶媒とする溶液(BisN-1濃度:30wt%)を仕込んだこと以外は実施例1と同様に処理して金属含有量の低減されたBisN-1のメチルイソブチルケトン/PGME溶液を得た。
PGMEA溶液(BisN-1濃度:2.5wt%)150gを仕込む代わりに、酢酸エチル(150g)を溶媒とする溶液(BisN-1濃度:20wt%)を仕込んだこと以外は実施例1と同様に処理して金属含有量の低減されたBisN-1の酢酸エチル溶液を得た。
PGMEA溶液(BisN-1濃度:2.5wt%)150gを仕込む代わりに、酢酸エチル(120g)/プロピレングリコールモノメチルエーテル(PGME)(15g)を溶媒とする溶液(BisN-1濃度:20wt%)を仕込んだこと以外は実施例1と同様に処理して金属含有量の低減されたBisN-1の酢酸エチル/PGME溶液を得た。
BisN-1を仕込む代わりに、RBisN-1を仕込んだこと以外は実施例6と同様に処理して金属含有量の低減されたRBisN-1のメチルイソブチルケトン/PGME溶液(RBisN-1濃度:30wt%)を得た。
BisN-1を仕込む代わりに、RBisN-1を仕込んだこと以外は実施例8と同様に処理して金属含有量の低減されたRBisN-1の酢酸エチル/PGME溶液(RBisN-1濃度:20wt%)を得た。
PGMEA溶液(BisN-1濃度:2.5wt%)150gを仕込む代わりに、PGMEA溶液(BisN-1濃度:10wt%)150gを仕込んだこと以外は実施例1と同様に操作を開始した。蓚酸水溶液(pH1.3)37.5gを加え、5分間攪拌を行ったところ、BisN-1の一部が析出した。次いで、80℃まで昇温後、さらに5分間攪拌を行い、金属含有量が低減されたBisN-1のPGMEA溶液(BisN-1濃度:10wt%)を得た。
(比較例1)
イオン交換樹脂(三菱化学ダイヤイオン:SMT100-ミックス樹脂)25gをシクロヘキサノンで膨潤後、テフロン(登録商標)カラムに充填し、1,3-ジオキソランを500mL通液することで溶媒置換した。次いでBisN-1を1,3-ジオキソランに溶解させた溶液(1.7wt%)500gを通液することでBisN-1のジオキソラン溶液を得た。
Claims (13)
- 下記式(1)で表される化合物又は下記式(2)で表される構造を有する樹脂の精製方法であって、
水と任意に混和しない有機溶媒及び前記化合物又は前記樹脂を含む溶液(A)と、酸性の水溶液と、を接触させる工程を含む、精製方法。
- 前記酸性の水溶液が、塩酸、硫酸、硝酸及びリン酸からなる群より選ばれる1種以上の鉱酸水溶液である、又は、酢酸、プロピオン酸、蓚酸、マロン酸、コハク酸、フマル酸、マレイン酸、酒石酸、クエン酸、メタンスルホン酸、フェノールスルホン酸、p-トルエンスルホン酸及びトリフルオロ酢酸からなる群より選ばれる1種以上の有機酸水溶液である、請求項1に記載の精製方法。
- 前記水と任意に混和しない有機溶媒が、トルエン、2-ヘプタノン、シクロヘキサノン、シクロペンタノン、メチルイソブチルケトン、プロピレングリコールモノメチルエーテルアセテート又は酢酸エチルである、請求項1又は2に記載の精製方法。
- 前記水と任意に混和しない有機溶媒が、メチルイソブチルケトン又は酢酸エチルである、請求項1又は2に記載の精製方法。
- 前記溶液(A)が、水と任意に混和する有機溶媒を前記式(1)で表される化合物又は前記式(2)で表される構造を有する樹脂に対して0.1~100質量倍含む、請求項1~4のいずれか1項に記載の精製方法。
- 前記水と任意に混和する有機溶媒が、N-メチルピロリドン又はプロピレングリコールモノメチルエーテルである、請求項5に記載の精製方法。
- 前記溶液(A)と酸性の水溶液とを接触させる工程による抽出処理を行ったのち、さらに水による抽出処理を行う工程を含む、請求項1~6のいずれか1項に記載の精製方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14866294.3A EP3075728B1 (en) | 2013-11-29 | 2014-11-28 | Purification method for compound or resin |
JP2015551008A JP6829936B2 (ja) | 2013-11-29 | 2014-11-28 | 化合物又は樹脂の精製方法 |
KR1020167014304A KR20160091342A (ko) | 2013-11-29 | 2014-11-28 | 화합물 또는 수지의 정제방법 |
CN201480064733.XA CN105764892B (zh) | 2013-11-29 | 2014-11-28 | 化合物或树脂的精制方法 |
US15/100,009 US9920024B2 (en) | 2013-11-29 | 2014-11-28 | Method for purifying compound or resin |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013248012 | 2013-11-29 | ||
JP2013-248012 | 2013-11-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015080240A1 true WO2015080240A1 (ja) | 2015-06-04 |
Family
ID=53199175
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/081508 WO2015080240A1 (ja) | 2013-11-29 | 2014-11-28 | 化合物又は樹脂の精製方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US9920024B2 (ja) |
EP (1) | EP3075728B1 (ja) |
JP (1) | JP6829936B2 (ja) |
KR (1) | KR20160091342A (ja) |
CN (1) | CN105764892B (ja) |
TW (1) | TWI633096B (ja) |
WO (1) | WO2015080240A1 (ja) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107848983A (zh) * | 2015-07-22 | 2018-03-27 | 三菱瓦斯化学株式会社 | 化合物、树脂、光刻用下层膜形成材料、光刻用下层膜形成用组合物、光刻用下层膜及抗蚀图案形成方法、电路图案形成方法、及纯化方法 |
CN107848946A (zh) * | 2015-07-23 | 2018-03-27 | 三菱瓦斯化学株式会社 | 新型(甲基)丙烯酰基化合物及其制造方法 |
WO2018101463A1 (ja) * | 2016-12-02 | 2018-06-07 | 三菱瓦斯化学株式会社 | 化合物、樹脂、組成物、パターン形成方法及び精製方法 |
WO2018155495A1 (ja) | 2017-02-23 | 2018-08-30 | 三菱瓦斯化学株式会社 | 化合物、樹脂、組成物、パターン形成方法及び精製方法 |
WO2018181872A1 (ja) | 2017-03-31 | 2018-10-04 | 学校法人関西大学 | 化合物、化合物を含むレジスト組成物及びそれを用いるパターン形成方法 |
WO2018181882A1 (ja) | 2017-03-31 | 2018-10-04 | 学校法人関西大学 | レジスト組成物及びそれを用いるパターン形成方法、並びに、化合物及び樹脂 |
JP2018154600A (ja) * | 2017-03-21 | 2018-10-04 | 三菱瓦斯化学株式会社 | 化合物、樹脂、組成物、パターン形成方法及び精製方法 |
WO2018212116A1 (ja) | 2017-05-15 | 2018-11-22 | 三菱瓦斯化学株式会社 | リソグラフィー用膜形成材料、リソグラフィー用膜形成用組成物、リソグラフィー用下層膜及びパターン形成方法 |
WO2019004142A1 (ja) | 2017-06-28 | 2019-01-03 | 三菱瓦斯化学株式会社 | 膜形成材料、リソグラフィー用膜形成用組成物、光学部品形成用材料、レジスト組成物、レジストパターン形成方法、レジスト用永久膜、感放射線性組成物、アモルファス膜の製造方法、リソグラフィー用下層膜形成材料、リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜の製造方法及び回路パターン形成方法 |
WO2019098338A1 (ja) | 2017-11-20 | 2019-05-23 | 三菱瓦斯化学株式会社 | リソグラフィー用膜形成用組成物、リソグラフィー用膜、レジストパターン形成方法、及び回路パターン形成方法 |
WO2019142897A1 (ja) | 2018-01-22 | 2019-07-25 | 三菱瓦斯化学株式会社 | 化合物、樹脂、組成物及びパターン形成方法 |
WO2019151400A1 (ja) | 2018-01-31 | 2019-08-08 | 三菱瓦斯化学株式会社 | 化合物、樹脂、組成物、レジストパターン形成方法、回路パターン形成方法及び樹脂の精製方法 |
WO2019167359A1 (ja) | 2018-02-28 | 2019-09-06 | 三菱瓦斯化学株式会社 | 化合物、樹脂、組成物及びそれを用いたリソグラフィー用膜形成材料 |
WO2019230639A1 (ja) | 2018-05-28 | 2019-12-05 | 三菱瓦斯化学株式会社 | 化合物、樹脂、組成物、レジストパターン形成方法、回路パターン形成方法及び樹脂の精製方法 |
WO2020004316A1 (ja) | 2018-06-26 | 2020-01-02 | 三菱瓦斯化学株式会社 | リソグラフィー用膜形成材料、リソグラフィー用膜形成用組成物、リソグラフィー用下層膜及びパターン形成方法 |
WO2020039966A1 (ja) | 2018-08-20 | 2020-02-27 | 三菱瓦斯化学株式会社 | リソグラフィー用膜形成材料、リソグラフィー用膜形成用組成物、リソグラフィー用下層膜及びパターン形成方法 |
US10577323B2 (en) * | 2015-03-13 | 2020-03-03 | Mitsubishi Gas Chemical Company, Inc. | Compound, resin, material for forming underlayer film for lithography, composition for forming underlayer film for lithography, underlayer film for lithography, pattern forming method, and method for purifying compound or resin |
JP2020189985A (ja) * | 2015-03-31 | 2020-11-26 | 三菱瓦斯化学株式会社 | レジスト組成物、レジストパターン形成方法、及びそれに用いるポリフェノール化合物 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20200053007A (ko) * | 2018-11-06 | 2020-05-18 | 삼성디스플레이 주식회사 | 유기 전계 발광 소자 및 유기 전계 발광 소자용 다환 화합물 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0519463A (ja) * | 1991-07-17 | 1993-01-29 | Sumitomo Chem Co Ltd | レジストの金属低減化方法 |
JP2002182402A (ja) * | 2000-12-18 | 2002-06-26 | Shin Etsu Chem Co Ltd | レジストのベースポリマーの精製方法 |
JP2012224793A (ja) * | 2011-04-21 | 2012-11-15 | Maruzen Petrochem Co Ltd | 金属不純物量の少ない半導体リソグラフィー用共重合体の製造方法及び該共重合体を製造するための重合開始剤の精製方法 |
WO2013024778A1 (ja) | 2011-08-12 | 2013-02-21 | 三菱瓦斯化学株式会社 | レジスト組成物、レジストパターン形成方法、それに用いるポリフェノール化合物及びそれから誘導され得るアルコール化合物 |
WO2013024779A1 (ja) | 2011-08-12 | 2013-02-21 | 三菱瓦斯化学株式会社 | リソグラフィー用下層膜形成材料、リソグラフィー用下層膜及びパターン形成方法 |
JP2013248012A (ja) | 2012-05-30 | 2013-12-12 | Daio Paper Corp | 吸収性物品用表面材の製造方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3923426A1 (de) * | 1989-07-15 | 1991-01-17 | Hoechst Ag | Verfahren zur herstellung von novolak-harzen mit geringem metallionengehalt |
US5618655A (en) | 1995-07-17 | 1997-04-08 | Olin Corporation | Process of reducing trace levels of metal impurities from resist components |
JP5776580B2 (ja) | 2011-02-25 | 2015-09-09 | 信越化学工業株式会社 | ポジ型レジスト材料及びこれを用いたパターン形成方法 |
-
2014
- 2014-11-28 US US15/100,009 patent/US9920024B2/en not_active Expired - Fee Related
- 2014-11-28 JP JP2015551008A patent/JP6829936B2/ja active Active
- 2014-11-28 TW TW103141407A patent/TWI633096B/zh not_active IP Right Cessation
- 2014-11-28 CN CN201480064733.XA patent/CN105764892B/zh active Active
- 2014-11-28 EP EP14866294.3A patent/EP3075728B1/en not_active Not-in-force
- 2014-11-28 WO PCT/JP2014/081508 patent/WO2015080240A1/ja active Application Filing
- 2014-11-28 KR KR1020167014304A patent/KR20160091342A/ko not_active Application Discontinuation
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0519463A (ja) * | 1991-07-17 | 1993-01-29 | Sumitomo Chem Co Ltd | レジストの金属低減化方法 |
JP2002182402A (ja) * | 2000-12-18 | 2002-06-26 | Shin Etsu Chem Co Ltd | レジストのベースポリマーの精製方法 |
JP2012224793A (ja) * | 2011-04-21 | 2012-11-15 | Maruzen Petrochem Co Ltd | 金属不純物量の少ない半導体リソグラフィー用共重合体の製造方法及び該共重合体を製造するための重合開始剤の精製方法 |
WO2013024778A1 (ja) | 2011-08-12 | 2013-02-21 | 三菱瓦斯化学株式会社 | レジスト組成物、レジストパターン形成方法、それに用いるポリフェノール化合物及びそれから誘導され得るアルコール化合物 |
WO2013024779A1 (ja) | 2011-08-12 | 2013-02-21 | 三菱瓦斯化学株式会社 | リソグラフィー用下層膜形成材料、リソグラフィー用下層膜及びパターン形成方法 |
JP2013248012A (ja) | 2012-05-30 | 2013-12-12 | Daio Paper Corp | 吸収性物品用表面材の製造方法 |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10577323B2 (en) * | 2015-03-13 | 2020-03-03 | Mitsubishi Gas Chemical Company, Inc. | Compound, resin, material for forming underlayer film for lithography, composition for forming underlayer film for lithography, underlayer film for lithography, pattern forming method, and method for purifying compound or resin |
JP2020189985A (ja) * | 2015-03-31 | 2020-11-26 | 三菱瓦斯化学株式会社 | レジスト組成物、レジストパターン形成方法、及びそれに用いるポリフェノール化合物 |
CN107848983A (zh) * | 2015-07-22 | 2018-03-27 | 三菱瓦斯化学株式会社 | 化合物、树脂、光刻用下层膜形成材料、光刻用下层膜形成用组合物、光刻用下层膜及抗蚀图案形成方法、电路图案形成方法、及纯化方法 |
EP3327005A4 (en) * | 2015-07-22 | 2019-09-25 | Mitsubishi Gas Chemical Company, Inc. | COMPOUND, RESIN, LITHOGRAPHY-BASED UNDERLAYER FILM FORMING MATERIAL, COMPOSITION FOR FORMING LITHOGRAPHY-BASED UNDERLAYER FILM, LITHOGRAPHY-BASED FILM FORMING, PHOTOSENSITIVE RESIN PATTERN FORMING METHOD, PATTERN FORMING METHOD CIRCUIT, AND PURIFICATION METHOD |
CN107848983B (zh) * | 2015-07-22 | 2021-07-09 | 三菱瓦斯化学株式会社 | 化合物、树脂、光刻用下层膜形成材料、抗蚀图案和电路图案形成方法及纯化方法 |
JPWO2017014191A1 (ja) * | 2015-07-22 | 2018-05-24 | 三菱瓦斯化学株式会社 | 化合物、樹脂、リソグラフィー用下層膜形成材料、リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜及びレジストパターン形成方法、回路パターン形成方法、及び、精製方法 |
US10364314B2 (en) | 2015-07-22 | 2019-07-30 | Mitsubishi Gas Chemical Company, Inc. | Compound, resin, material for forming underlayer film for lithography, composition for forming underlayer film for lithography, underlayer film for lithography, resist pattern forming method, circuit pattern forming method, and purification method |
CN107848946A (zh) * | 2015-07-23 | 2018-03-27 | 三菱瓦斯化学株式会社 | 新型(甲基)丙烯酰基化合物及其制造方法 |
WO2018101463A1 (ja) * | 2016-12-02 | 2018-06-07 | 三菱瓦斯化学株式会社 | 化合物、樹脂、組成物、パターン形成方法及び精製方法 |
JP7090843B2 (ja) | 2016-12-02 | 2022-06-27 | 三菱瓦斯化学株式会社 | 化合物、樹脂、組成物、パターン形成方法及び精製方法 |
JPWO2018101463A1 (ja) * | 2016-12-02 | 2019-10-24 | 三菱瓦斯化学株式会社 | 化合物、樹脂、組成物、パターン形成方法及び精製方法 |
WO2018155495A1 (ja) | 2017-02-23 | 2018-08-30 | 三菱瓦斯化学株式会社 | 化合物、樹脂、組成物、パターン形成方法及び精製方法 |
JP2018154600A (ja) * | 2017-03-21 | 2018-10-04 | 三菱瓦斯化学株式会社 | 化合物、樹脂、組成物、パターン形成方法及び精製方法 |
WO2018181882A1 (ja) | 2017-03-31 | 2018-10-04 | 学校法人関西大学 | レジスト組成物及びそれを用いるパターン形成方法、並びに、化合物及び樹脂 |
WO2018181872A1 (ja) | 2017-03-31 | 2018-10-04 | 学校法人関西大学 | 化合物、化合物を含むレジスト組成物及びそれを用いるパターン形成方法 |
WO2018212116A1 (ja) | 2017-05-15 | 2018-11-22 | 三菱瓦斯化学株式会社 | リソグラフィー用膜形成材料、リソグラフィー用膜形成用組成物、リソグラフィー用下層膜及びパターン形成方法 |
WO2019004142A1 (ja) | 2017-06-28 | 2019-01-03 | 三菱瓦斯化学株式会社 | 膜形成材料、リソグラフィー用膜形成用組成物、光学部品形成用材料、レジスト組成物、レジストパターン形成方法、レジスト用永久膜、感放射線性組成物、アモルファス膜の製造方法、リソグラフィー用下層膜形成材料、リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜の製造方法及び回路パターン形成方法 |
WO2019098338A1 (ja) | 2017-11-20 | 2019-05-23 | 三菱瓦斯化学株式会社 | リソグラフィー用膜形成用組成物、リソグラフィー用膜、レジストパターン形成方法、及び回路パターン形成方法 |
WO2019142897A1 (ja) | 2018-01-22 | 2019-07-25 | 三菱瓦斯化学株式会社 | 化合物、樹脂、組成物及びパターン形成方法 |
WO2019151400A1 (ja) | 2018-01-31 | 2019-08-08 | 三菱瓦斯化学株式会社 | 化合物、樹脂、組成物、レジストパターン形成方法、回路パターン形成方法及び樹脂の精製方法 |
US12134596B2 (en) | 2018-01-31 | 2024-11-05 | Mitsubishi Gas Chemical Company, Inc. | Compound, resin, composition, resist pattern formation method, circuit pattern formation method and method for purifying resin |
WO2019167359A1 (ja) | 2018-02-28 | 2019-09-06 | 三菱瓦斯化学株式会社 | 化合物、樹脂、組成物及びそれを用いたリソグラフィー用膜形成材料 |
WO2019230639A1 (ja) | 2018-05-28 | 2019-12-05 | 三菱瓦斯化学株式会社 | 化合物、樹脂、組成物、レジストパターン形成方法、回路パターン形成方法及び樹脂の精製方法 |
WO2020004316A1 (ja) | 2018-06-26 | 2020-01-02 | 三菱瓦斯化学株式会社 | リソグラフィー用膜形成材料、リソグラフィー用膜形成用組成物、リソグラフィー用下層膜及びパターン形成方法 |
WO2020039966A1 (ja) | 2018-08-20 | 2020-02-27 | 三菱瓦斯化学株式会社 | リソグラフィー用膜形成材料、リソグラフィー用膜形成用組成物、リソグラフィー用下層膜及びパターン形成方法 |
Also Published As
Publication number | Publication date |
---|---|
EP3075728B1 (en) | 2019-07-24 |
US9920024B2 (en) | 2018-03-20 |
CN105764892A (zh) | 2016-07-13 |
TW201538491A (zh) | 2015-10-16 |
EP3075728A1 (en) | 2016-10-05 |
JPWO2015080240A1 (ja) | 2017-03-16 |
KR20160091342A (ko) | 2016-08-02 |
TWI633096B (zh) | 2018-08-21 |
CN105764892B (zh) | 2018-09-25 |
EP3075728A4 (en) | 2017-05-03 |
JP6829936B2 (ja) | 2021-02-17 |
US20170001972A1 (en) | 2017-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015080240A1 (ja) | 化合物又は樹脂の精製方法 | |
JP4998271B2 (ja) | フェノール樹脂及び樹脂組成物 | |
KR20160023564A (ko) | 유기막 형성용 조성물의 제조방법 | |
JP6734645B2 (ja) | フルオレン縮合体組成物およびエポキシ化組成物ならびにこれらの製造方法 | |
JP5870918B2 (ja) | アルキルナフタレンホルムアルデヒド重合体の精製方法 | |
WO2011118147A1 (ja) | 固形レゾール型フェノール樹脂およびその製造方法 | |
JP5446260B2 (ja) | フェニレンエーテルオリゴマーの製造方法 | |
JP6349943B2 (ja) | 化合物の精製方法、及び高分子化合物の製造方法 | |
WO2020145407A1 (ja) | 多環ポリフェノール樹脂、及び多環ポリフェノール樹脂の製造方法 | |
CN110325500A (zh) | 化合物或树脂的纯化方法、及组合物的制造方法 | |
JP5239196B2 (ja) | 低粘度フェノール類変性芳香族炭化水素ホルムアルデヒド樹脂の製造方法 | |
JP6090675B2 (ja) | ナフタレンホルムアルデヒド樹脂、脱アセタール結合ナフタレンホルムアルデヒド樹脂及び変性ナフタレンホルムアルデヒド樹脂 | |
EP3309191B1 (en) | Dicyclopentadiene compound-modified phenolic resin production method | |
JP5087232B2 (ja) | レゾルシン−メチルエチルケトン−ホルマリン樹脂 | |
JP2010222373A (ja) | グリシジルオキシブチルアクリレートの製造方法 | |
JP7113665B2 (ja) | 組成物及びその製造方法 | |
JP2023121456A (ja) | ビスフェノール化合物の製造方法 | |
JP2010013600A (ja) | ノボラック樹脂の製造方法 | |
JPH05310624A (ja) | テルペンジフェノール樹脂の製造方法 | |
JPH06116370A (ja) | フェノールアラルキル樹脂の製法 | |
JP2010222372A (ja) | グリシジルオキシブチルアクリレートの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14866294 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015551008 Country of ref document: JP Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2014866294 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014866294 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20167014304 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15100009 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |