WO2015076574A1 - Separator and secondary battery using same - Google Patents
Separator and secondary battery using same Download PDFInfo
- Publication number
- WO2015076574A1 WO2015076574A1 PCT/KR2014/011179 KR2014011179W WO2015076574A1 WO 2015076574 A1 WO2015076574 A1 WO 2015076574A1 KR 2014011179 W KR2014011179 W KR 2014011179W WO 2015076574 A1 WO2015076574 A1 WO 2015076574A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- separator
- adhesive layer
- meth
- polyvinylidene fluoride
- acrylate
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
- H01M50/426—Fluorocarbon polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
- H01M50/42—Acrylic resins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/449—Separators, membranes or diaphragms characterised by the material having a layered structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/449—Separators, membranes or diaphragms characterised by the material having a layered structure
- H01M50/457—Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
- H01M50/494—Tensile strength
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a separator and a secondary battery using the same.
- a nickel-cadnium battery, a nickel-hydrogen battery, a nickel-zinc battery, a lithium secondary battery, etc. are used, for example.
- lithium secondary batteries have been used in many fields because of their advantages such as small size and large size, high operating voltage, and high energy density per unit weight.
- the separator wound between the electrode and the electrode is easily separated, so that the adhesion between the separator and the electrode is increased.
- it is required to have excellent shape stability of the secondary battery so as to prevent the shape from changing, such as distorting the battery due to continuous charging and discharging.
- it is known to form an organic / inorganic mixed coating layer on one or both sides of the base film of the separator in order to improve the adhesion between the separator and the electrode and the heat resistance of the separator (Korean Patent No. 10-0775310). It cannot be sufficiently secured, so it is difficult to apply to batches of various sizes and shapes.
- a secondary battery including a separator having an adhesive force applicable to a large-area secondary battery and capable of maintaining morphological stability and adhesion of the battery even after charging and discharging, which is an environment in which an actual battery is used.
- An object of the present invention is to provide a separator and an improved secondary battery using the same.
- an acrylic copolymer comprising a porous substrate and repeating units derived from (meth) acrylate monomers formed on one or both surfaces of the porous substrate, and a polyamide having a weight average molecular weight of 1,000,000 g / mol or more
- a separator comprising a vinylidene fluoride polymer containing adhesive layer.
- a separator comprising a porous substrate and a binder-containing adhesive layer formed on one or both sides of the porous substrate, the charge or discharge of the separator 1 after the charge and discharge of formula 1 to transfer the separator to the separator Separators are provided, the rates being at least 50% each.
- a 0 is the total area of the cathode or anode
- a 1 forms an electrode assembly in which the positive electrode, the separator, and the negative electrode are sequentially stacked, and at the temperature of 20 ° C. to 110 ° C. for 1 second to 5 seconds, with a force of 1 kgf / cm 2 to 30 kgf / cm 2 .
- the electrolyte solution is injected into the compressed electrode assembly, and the second electrode is pressed with a force of 1 kgf / cm 2 to 30 kgf / cm 2 for 60 ° C. to 110 ° C., 30 seconds to 180 seconds, and then charged, discharged and charged.
- the area of the positive electrode or negative electrode active material transferred to the separator.
- a secondary battery particularly a lithium secondary battery, including the separator according to the above example is provided.
- Separation membrane according to an embodiment of the present invention has the effect that the shape stability of the battery after the charge and discharge of the battery and the adhesion to the electrode is enhanced.
- the separator according to the present invention can maintain high efficiency charge and discharge characteristics due to improved shape stability.
- FIG. 1 is an exploded perspective view of a rechargeable battery according to an exemplary embodiment.
- FIG. 2 is an exploded perspective view of a secondary battery according to another embodiment.
- an acrylic copolymer comprising a porous substrate and repeating units derived from (meth) acrylate monomers formed on one or both surfaces of the porous substrate and polyvinylidene having a weight average molecular weight of 1,000,000 g / mol or more.
- a separator is provided that includes a fluoride-based polymer-containing adhesive layer.
- the porous substrate may use a porous substrate having a plurality of pores and can be used in an electrochemical device.
- Porous substrates include, but are not limited to, polyethylene, polypropylene, polyethylene terephthalate, polybutylene terephthalate, polyester, polyacetal, polyamide, polyimide, polycarbonate, polyetheretherketone, polyaryletherketone, polyetherimide , Polyamideimide, polybenzimidazole, polyethersulfone, polyphenylene oxide, cyclic olefin copolymer, polyphenylene sulfide, and any one polymer selected from the group consisting of polyethylene naphthalene or a polymer membrane formed of a mixture of two or more thereof Can be.
- the porous substrate may be a polyolefin-based substrate, the polyolefin-based substrate is excellent in the shutdown (shut down) function may contribute to the improvement of the safety of the battery.
- the polyolefin-based substrate may be selected from the group consisting of, for example, polyethylene monolayer, polypropylene monolayer, polyethylene / polypropylene double membrane, polypropylene / polyethylene / polypropylene triple membrane, and polyethylene / polypropylene / polyethylene triple membrane.
- the polyolefin resin may include a non-olefin resin in addition to the olefin resin, or may include a copolymer of an olefin and a non-olefin monomer.
- the porous substrate may have a thickness of 1 ⁇ m to 40 ⁇ m, more specifically 5 to 15 ⁇ m.
- a separator having a suitable thickness, thick enough to prevent a short circuit between the positive and negative electrodes of the battery, but not thick enough to increase the internal resistance of the battery.
- the adhesive layer may be formed of an adhesive layer composition
- the adhesive layer composition may include an acrylic copolymer including a (meth) acrylate monomer-derived repeating unit, a polyvinylidene fluoride polymer and a solvent having a weight average molecular weight of 1,000,000 g / mol or more. It may include.
- the adhesive layer composition may further include inorganic particles.
- an acrylic copolymer including a (meth) acrylate monomer-derived repeating unit as a binder of the adhesive layer and a weight average molecular weight By using the polyvinylidene fluoride-based polymer of 1,000,000 g / mol or more together, not only the adhesion to the electrode before charge and discharge, but also the adhesion to the electrode after charge and discharge, which is the environment in which the separator is actually used, can also be improved. After that, the shape stability of the battery can be improved.
- the acrylic copolymer may further include an acetate group-containing monomer-derived repeating unit in addition to the (meth) acrylate-based monomer-derived repeating unit.
- the weight ratio of the acrylic copolymer and the polyvinylidene fluoride polymer may be 5: 5 to 8: 2, specifically 6: 4 to 8: 2, and more specifically 7: 3 to 8: 2. Within the weight ratio range, it may be advantageous in view of good adhesion and electrolyte impregnation with the positive electrode or the negative electrode even after charging and discharging.
- polyvinylidene fluoride polymer for example, polyvinylidene fluoride (PVdF) homopolymer, polyvinylidene fluoride-hexaxapropoxy (PVDF-HFP) copolymer, Or modified polymers thereof, and specifically, polyvinylidene fluoride-hexafluoropropylene copolymer or polyvinylidene fluoride homopolymer may be used.
- the weight average molecular weight (Mw) of the polyvinylidene fluoride polymer may be in the range of 1,000,000 g / mol to 1,700,000 g / mol.
- the weight average molecular weight (Mw) may range from 1,000,000 g / mol to 1,500,000 g / mol.
- the use of the PVdF-based binder in the above molecular weight range has an advantage in that the adhesive force is enhanced after charge and discharge between the separator and the porous substrate, thereby producing a battery in which electrical output is efficiently generated.
- the glass transition temperature (Tg) of the acrylic copolymer may be 100 ° C. or less, for example, 20 ° C. to 60 ° C. Within this range, the separator may be positioned between the electrodes and formed to have good adhesion at a temperature at which the separator is pressed, thereby improving the shrinkage rate and improving heat resistance.
- the weight average molecular weight of the acrylic copolymer may be in the range of 100,000 g / mol to 1,000,000 g / mol, specifically 300,000 to 800,000 g / mol, or 400,000 to 700,000 g / mol.
- the acrylic copolymer including a (meth) acrylate-based monomer-derived repeat unit that can be used herein is not particularly limited as long as it can form a good adhesion between the positive electrode and the negative electrode as described above, for example, butyl (meth It may be a copolymer produced by polymerizing one or more (meth) acrylate monomers selected from the group consisting of) acrylate, propyl (meth) acrylate, ethyl (meth) acrylate and methyl (meth) acrylate.
- the acrylic copolymer is a (meth) acrylate monomer such as butyl (meth) acrylate, propyl (meth) acrylate, ethyl (meth) acrylate or methyl (meth) acrylate, and other monomers, for example, It may be a copolymer produced by polymerizing an acetate group-containing monomer such as vinyl acetate or allyl acetate.
- the acetate group-containing monomer-derived repeating unit may be a repeating unit of Formula 1:
- R 1 is a single bond, linear or branched alkyl having 1 to 6 carbon atoms
- R 2 is hydrogen or methyl
- l is an integer between 1 and 100, respectively.
- the acetate group-containing monomer-derived repeating unit may be a repeating unit derived from an acetate group-containing monomer selected from at least one selected from the group consisting of vinyl acetate and allyl acetate.
- the acryl-based copolymer is prepared by polymerizing a monomer other than the (meth) acrylate-based monomer and the (meth) acrylate-based monomer, for example, an acetate group-containing monomer, the (meth) acrylate-based monomer and the other monomer, specifically As such, the acetate group-containing monomer may be prepared by polymerization in a molar ratio of 3: 7 to 7: 3, specifically 4: 6 to 6: 4, and more specifically about 5: 5.
- the acrylic copolymer may be a butyl (meth) acrylate monomer, a methyl (meth) acrylate monomer, and a vinyl acetate and / or allyl acetate monomer, in a weight ratio of 3 to 5: 0.5 to 1.5: 3 to 7, specifically, It may be prepared by a polymerization reaction of 4: 1: 5.
- the inorganic particles used in the present invention are not particularly limited and may be inorganic particles commonly used in the art.
- Non-limiting examples of the inorganic particles usable in the present invention include Al 2 O 3 , SiO 2 , B 2 O 3 , Ga 2 O 3 , TiO 2 , SnO 2 , and the like. These can be used individually or in mixture of 2 or more types.
- As the inorganic particles used in the present invention for example, Al 2 O 3 (alumina) can be used.
- the size of the inorganic particles used in the present invention is not particularly limited, but the average particle diameter may be 1 nm to 2,000 nm, for example, 100 nm to 1,000 nm, or 400 nm to 600 nm.
- the inorganic particles When using the inorganic particles in the size range, it is possible to prevent the dispersibility of the inorganic particles in the adhesive layer composition and the fairness of the formation of the adhesive layer can be prevented from being lowered, and the thickness of the adhesive layer is appropriately adjusted to decrease the mechanical properties and increase the electrical resistance. Can be prevented. In addition, the size of the pores generated in the separator is appropriately adjusted, there is an advantage that can lower the probability of the internal short circuit occurs during the charge and discharge of the battery.
- the inorganic particles may be used in the form of an inorganic dispersion in which it is dispersed in a suitable solvent.
- the appropriate solvent is not particularly limited and may be a solvent commonly used in the art.
- Acetone can be used as a suitable solvent for dispersing the inorganic particles, for example.
- the inorganic dispersion may be prepared by a conventional method without any particular limitation. For example, Al 2 O 3 may be added to acetone in an appropriate amount, and the inorganic dispersion may be milled and dispersed using a bead mill. Dispersions can be prepared.
- the inorganic particles in the adhesive layer may be included in 50 to 99% by weight, specifically 75 to 95% by weight, more specifically 80 to 95% by weight based on the total weight of the adhesive layer.
- the heat dissipation characteristics of the inorganic particles may be sufficiently exhibited, and when the adhesive layer is formed on the porous substrate using the inorganic particles, thermal contraction of the separator may be effectively suppressed.
- Non-limiting examples of the solvent usable in the present invention include acetone, dimethyl formamide (DMF), dimethyl sulfoxide (DMSO), dimethylacetamide (dimethyl acetamide, DMAc), dimethyl carbonate , DMC) or N-methylpyrrolidone (N-methylpyrrolydone, NMP) and the like.
- the content of the solvent may be 20 to 99% by weight, specifically 50 to 95% by weight, and more specifically 70 to 95% by weight based on the weight of the adhesive layer composition. When the solvent is contained in the above range, the preparation of the adhesive layer composition may be facilitated, and the drying process of the adhesive layer may be performed smoothly.
- the adhesive layer or the adhesive layer composition according to another embodiment of the present invention may further include another binder in addition to the acrylic copolymer or the polyvinylidene fluoride polymer.
- binders that may be added include polymethylmethacrylate (PMMA), polyacrylonitrile (PAN), polyvinylpyrrolidone (PVP), polyvinylacetate (PVAc), polyethylene Oxides (PEO), cellulose acetate (CA), cellulose acetate butyrate (CAB), cellulose acetate propionate (CAP), cyanoethylpullulan (CANO) CYEPL), cyanoethylpolyvinylalcohol (CR-V), cyanoethylcellulose (CEC), cyanoethylsucrose, pullulan, carboxyl methyl cellulose CMC), and the group consisting of acrylonitrilestyrene-butadiene copolymer Or a mixture thereof.
- PMMA polymethylmethacryl
- the separator according to another embodiment of the present invention is a separator including a porous substrate and a binder-containing adhesive layer formed on one or both surfaces of the porous substrate, and after the charge and discharge of Equation 1 of the separator to the separator of the positive electrode or negative electrode active material
- the transcription rates may each be at least 50%.
- a 0 is the total area of the cathode or anode
- a 1 forms an electrode assembly in which the anode, separator and cathode are sequentially stacked, and at a temperature of 20 ° C. to 110 ° C., 1 kgf / cm 2 , for 1 second to 5 seconds. 1 to 30 kgf / cm 2 , the first crimp, the electrolyte is injected into the compressed electrode assembly and 60 °C to 110 °C, 30 seconds to 180 seconds, with a force of 1 kgf / cm 2 to 30 kgf / cm 2 It is the area of the positive electrode or negative electrode active material transferred to the separator when the secondary pressing is carried out, and when charging, discharging, and charging are sequentially performed.
- the method of measuring the area of the positive electrode or the negative electrode active material is not limited as long as the area of the active material can be measured.
- a known image analyzer eg, a lumenera high resolution camera
- a known image analyzer Example: Easy Measure converter 1.0.0.4
- Easy Measure converter 1.0.0.4 can be used to measure the transferred area of the positive or negative electrode active material.
- the transfer rate of the positive electrode or the negative electrode active material to the separator of 50% or more is related to the shape stability and adhesion of the battery after charge and discharge.
- the transcription rate may be specifically 55% or more, more specifically 60% or more, even more specifically 70% or more.
- an acrylic copolymer as described above and a polyvinylidene fluoride polymer having a weight average molecular weight of 1,000,000 g / mol or more may be used, and other inorganic particles, solvents, etc. may be used as described above. And in content.
- the thickness change rate of Equation 2 may be 7% or less. Specifically, the thickness change rate may be 5% or less, and more specifically 3% or less.
- Thickness Change (%) [(T 1 -T 2 ) / T 1 ] ⁇ 100 ⁇ 100
- T 1 is a separator between the positive electrode and the negative electrode, and the positive electrode, the separator and the negative electrode is laminated in sequence of 7 cm (length direction) ⁇ 6.5 cm (width direction)
- the thickness is measured by forming an electrode assembly
- T 2 is the thickness measured after pressing the formed electrode assembly at a pressure of 1 kgf / cm 2 to 30 kgf / cm 2 at 20 ° C. to 110 ° C. for 1 to 5 seconds.
- the shape stability of a battery is excellent in the said thickness change rate being the said range.
- Separation membrane according to embodiments of the present invention may be less than 500 sec / 100cc, specifically 50 to 400 sec / 100cc, more specifically 50 to 300 sec / 100cc.
- Tensile strength in the MD direction of the separator according to embodiments of the present invention may be 1750 kg / cm 2 or more, the tensile strength in the TD direction may be 1650 kg / cm 2 or more.
- the tensile strength in the MD direction of the separator may be 1750 kg / cm 2 to 2550 kg / cm 2
- the tensile strength in the TD direction may be 1700 kg / cm 2 to 2500 kg / cm 2 .
- the separator according to the examples of the present invention may not only have excellent shape stability and adhesion after charge and discharge, but also satisfy basic physical properties such as air permeability and mechanical strength required as the separator.
- Method for producing a separator according to an embodiment of the present invention comprises an acrylic copolymer containing a (meth) acrylate monomer-derived repeating unit, and a polyvinylidene fluoride polymer having a weight average molecular weight of 1,000,000 g / mol or more bookbinder; And forming an adhesive layer composition comprising a solvent, and forming the adhesive layer with the adhesive layer composition on one or both surfaces of the porous substrate.
- the acrylic copolymer may further include a repeating unit derived from an acetate group-containing monomer such as vinyl acetate or allyl acetate monomer.
- the adhesive layer composition is a binder comprising an acrylic copolymer and a polyvinylidene fluoride polymer having a weight average molecular weight of 1,000,000 g / mol or more, and a solvent and mixed at 10 to 40 °C for 30 minutes to 5 hours It may include stirring.
- the stirred solution may include inorganic particles.
- the content of the solid content may be 10 to 20 parts by weight based on the adhesive layer composition, the weight ratio of the binder and the inorganic particles in the solid content may be 5: 5 to 0.1: 9.9.
- the adhesive layer composition may be prepared by preparing an inorganic dispersion in which the inorganic particles are dispersed in a dispersion medium and mixing the mixture with a polymer solution containing a solvent and a binder including an acrylic copolymer and a polyvinylidene fluoride polymer.
- the inorganic dispersion is prepared separately as described above, the dispersibility and crude liquid stability of the inorganic particles and the binder may be improved. Therefore, in another embodiment, in preparing the adhesive layer composition of the present invention, the binder component and the inorganic particles may be prepared and mixed in a dissolved or dispersed state in a suitable solvent, respectively.
- an adhesive layer composition may be prepared by preparing a solution in which each of an acrylic copolymer and a polyvinylidene fluoride binder are dissolved in a suitable solvent, and an inorganic dispersion in which inorganic particles are dispersed, and then mixing them with an appropriate solvent. It can manufacture.
- a ball mill, a beads mill, a screw mixer, or the like may be used for the mixing.
- an adhesive layer is formed of the adhesive layer composition on one or both surfaces of the porous substrate.
- the method for forming the adhesive layer on the porous substrate is not particularly limited, and methods commonly used in the art, for example, a coating method, lamination, coextrusion, and the like may be used.
- Non-limiting examples of the coating method may include a dip coating method, a die coating method, a roll coating method, or a comma coating method. These may be applied alone or in combination of two or more methods.
- the adhesive layer of the separator of the present invention may be formed by, for example, a dip coating method.
- the adhesive layer of the present invention may have a thickness of 0.01 to 20 ⁇ m, specifically 1 to 10 ⁇ m, and more specifically 1 to 5 ⁇ m. Within the thickness range, it is possible to form an adhesive layer having an appropriate thickness to obtain excellent thermal stability and adhesion, and to prevent the thickness of the entire separator from becoming too thick, thereby suppressing an increase in the internal resistance of the battery.
- the adhesive layer may be dried by hot air, hot air, low humidity, vacuum drying or far infrared rays or electron beams.
- the drying temperature is different depending on the type of the solvent, it can be dried at a temperature of approximately 60 to 120 °C.
- the drying time also varies depending on the type of solvent, but may generally be dried for 1 minute to 1 hour. In embodiments, it may be dried for 1 minute to 30 minutes, or 1 minute to 10 minutes at a temperature of 70 to 120 °C.
- an anode positioned between the anode and the cathode; And it provides a secondary battery comprising an electrolyte.
- the type of the secondary battery is not particularly limited and may be a battery of a kind known in the art.
- the secondary battery of the present invention may be a lithium secondary battery such as a lithium metal secondary battery, a lithium ion secondary battery, a lithium polymer secondary battery or a lithium ion polymer secondary battery.
- the method of manufacturing the secondary battery of the present invention is not particularly limited, and a method commonly used in the technical field of the present invention may be used.
- a non-limiting example of a method of manufacturing the secondary battery is as follows: A porous separator comprising the adhesive layer of the present invention is placed between the positive electrode and the negative electrode of the battery, and then the battery is prepared by filling an electrolyte therein. Can be.
- FIG. 1 and 2 are exploded perspective views of a secondary battery according to one or another embodiment.
- the secondary battery according to the embodiment is described as an example of a rectangular or cylindrical battery, the present invention is not limited thereto, and may be applied to various types of batteries such as pouch-type batteries and lithium polymer batteries.
- the secondary batteries 100 and 200 may have a odor through the separators 30 and 30 'between the cathodes 10 and 10' and the anodes 20 and 20 '.
- the positive electrode 10, 10 ′, the negative electrode 20, 20 ′ and the separator 30, 30 ′ are impregnated with an electrolyte (not shown).
- the positive electrodes 10 and 10 ′ may include a positive electrode current collector and a positive electrode active material layer formed on the positive electrode current collector.
- the positive electrode active material layer may include a positive electrode active material, a binder, and optionally a conductive material.
- aluminum (Al), nickel (Ni), or the like may be used, but is not limited thereto.
- a compound capable of reversible intercalation and deintercalation of lithium may be used. Specifically, at least one of cobalt, manganese, nickel, aluminum, iron, or a combination of metal and lithium composite oxide or phosphoric acid may be used. More specifically, lithium cobalt oxide, lithium nickel oxide, lithium manganese oxide, lithium nickel cobalt manganese oxide, lithium nickel cobalt aluminum oxide, lithium iron phosphate or a combination thereof may be used.
- the binder not only adheres the positive electrode active material particles well to each other, but also serves to adhere the positive electrode active material to the positive electrode current collector, and specific examples thereof include polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, diacetyl cellulose, and polyvinyl chloride.
- Carboxylated polyvinylchloride polyvinylfluoride, ethylene oxide containing polymer, polyvinylpyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, styrene-butadiene rubber, Acrylated styrene-butadiene rubber, epoxy resin, nylon and the like, but is not limited thereto. These can be used individually or in mixture of 2 or more types.
- the conductive material provides conductivity to the electrode, and examples thereof include natural graphite, artificial graphite, carbon black, carbon fiber, metal powder, and metal fiber, but are not limited thereto. These can be used individually or in mixture of 2 or more types.
- metal powder and the metal fiber metals such as copper, nickel, aluminum, and silver may be used.
- the negative electrodes 20 and 20 ′ may include a negative electrode current collector and a negative electrode active material layer formed on the negative electrode current collector.
- the negative electrode current collector may include copper (Cu), gold (Au), nickel (Ni), a copper alloy, or the like, but is not limited thereto.
- the negative electrode active material layer may include a negative electrode active material, a binder, and optionally a conductive material.
- the negative electrode active material may be a material capable of reversibly intercalating and deintercalating lithium ions, a lithium metal, an alloy of lithium metal, a material capable of doping and undoping lithium, a transition metal oxide, or a combination thereof. Can be used.
- Examples of a material capable of reversibly intercalating and deintercalating the lithium ions include carbon-based materials, and examples thereof include crystalline carbon, amorphous carbon, or a combination thereof.
- Examples of the crystalline carbon may be amorphous, plate, flake, spherical or fibrous natural graphite or artificial graphite.
- Examples of the amorphous carbon include soft carbon or hard carbon, mesophase pitch carbide, calcined coke, and the like.
- Examples of the alloy of the lithium metal include lithium and Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al, and Sn. Alloys of the metals selected may be used.
- Examples of materials capable of doping and undoping lithium include Si, SiO x (0 ⁇ x ⁇ 2), Si-C composites, Si-Y alloys, Sn, SnO 2 , Sn-C composites, Sn-Y, and the like. And at least one of these and SiO 2 may be mixed and used.
- transition metal oxide examples include vanadium oxide and lithium vanadium oxide.
- Kinds of the binder and the conductive material used in the negative electrode are the same as the binder and the conductive material used in the above-described positive electrode.
- the positive electrode and the negative electrode may be prepared by mixing each active material, a binder, and optionally a conductive material in a solvent to prepare each active material composition, and applying the active material composition to each current collector.
- N-methylpyrrolidone may be used as the solvent, but is not limited thereto. Since such an electrode manufacturing method is well known in the art, detailed description thereof will be omitted.
- the electrolyte solution contains an organic solvent and a lithium salt.
- the organic solvent serves as a medium through which ions involved in the electrochemical reaction of the battery can move.
- Specific examples thereof may be selected from carbonate solvents, ester solvents, ether solvents, ketone solvents, alcohol solvents and aprotic solvents.
- the carbonate solvent examples include dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), methylpropyl carbonate (MPC), ethylpropyl carbonate (EPC), ethylmethyl carbonate (EMC), ethylene Carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), and the like.
- DMC dimethyl carbonate
- DEC diethyl carbonate
- DPC dipropyl carbonate
- MPC methylpropyl carbonate
- EPC ethylpropyl carbonate
- EMC ethylmethyl carbonate
- EMC ethylmethyl carbonate
- EC ethylene Carbonate
- PC propylene carbonate
- BC butylene carbonate
- ester solvents examples include methyl acetate, ethyl acetate, n-propyl acetate, dimethyl acetate, methyl propionate, ethyl propionate, ⁇ -butyrolactone, decanolide, valerolactone, and meronate. Melononolactone, caprolactone, and the like.
- ether solvent examples include dibutyl ether, tetraglyme, diglyme, dimethoxyethane, 2-methyltetrahydrofuran, tetrahydrofuran and the like. Cyclohexanone etc. are mentioned as said ketone solvent, Ethyl alcohol, isopropyl alcohol, etc. are mentioned as said alcohol solvent.
- the organic solvents may be used alone or in combination of two or more thereof, and the mixing ratio in the case of mixing two or more kinds may be appropriately adjusted according to the desired battery performance.
- the lithium salt is a substance that dissolves in an organic solvent and acts as a source of lithium ions in the battery to enable operation of a basic secondary battery and to promote the movement of lithium ions between the positive electrode and the negative electrode.
- lithium salt examples include LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiN (SO 3 C 2 F 5 ) 2 , LiN (CF 3 SO 2 ) 2 , LiC 4 F 9 SO 3 , LiClO 4 , LiAlO 2 , LiAlCl 4 , LiN (C x F 2x + 1 SO 2 ) (C y F 2y + 1 SO 2 ) (x and y are natural numbers), LiCl, LiI, LiB (C 2 O 4 ) 2 or a combination thereof Can be mentioned.
- the concentration of the lithium salt can be used within the range of 0.1M to 2.0M.
- concentration of the lithium salt is within the above range, since the electrolyte has an appropriate conductivity and viscosity, it can exhibit excellent electrolyte performance, and lithium ions can move effectively.
- Acetone is an acrylic copolymer binder in which butyl methacrylate (BMA), methyl methacrylate (MMA), and vinyl acetate (Vinyl Acetate, VAc) are polymerized at a 4/1/5 molar ratio.
- BMA butyl methacrylate
- MMA methyl methacrylate
- VAc vinyl acetate
- Dissolved in the first binder solution having a solid content of 5% by weight and a PVdF-based polymer (Kurehasa KF9300, Mw: 1,200,000 g / mol) in acetone and DMAc mixed solvents to dissolve a second binder solution which is a 7% by weight solid solution.
- Alumina dispersion was prepared by adding alumina (LS235, Nippon Light Metal) to acetone at 25% by weight and dispersing the beads for 3 hours.
- the first and second binder solutions and the alumina dispersion were mixed so that the weight ratio of the above-mentioned acrylic binder and the PVdF-based binder was 6: 4, so that the weight ratio of the binder solid and the alumina solid was 1/6, and the total solid was 12 wt.
- Acetone was added to make the coating solution.
- 7 ⁇ m thick polyethylene fabric (SK, Inc.) was coated on both sides of the coating solution with a thickness of 2 ⁇ m, respectively, to prepare a separator having a total thickness of about 11 ⁇ m.
- Example 2 The separation membrane of Example 2 was prepared in the same manner as in Example 1, except that the weight ratio of the acrylic binder and the PVdF binder was 7: 3 in Example 1.
- Example 3 The separator of Example 3 was prepared in the same manner as in Example 1, except that the weight ratio of the acrylic binder and the PVdF binder was 8: 2 in Example 1.
- a separator of Example 4 was prepared in the same manner as in Example 1, except that 5130 (Solva, Inc., weight average molecular weight: 1,000,000 to 1,200,000 g / mol) was used as the second binder in Example 1. .
- the separation membrane of Example 5 was prepared in the same manner as in Example 4, except that the weight ratio of the acrylic binder and the 5130 binder was 7: 3 in Example 4.
- the separator of Example 6 was prepared in the same manner as in Example 4, except that the weight ratio of the acrylic binder and the 5130 binder was 8: 2.
- Comparative Example 1 was carried out in the same manner as in Example 1 except that 21216 (Solva, Inc., weight average molecular weight: 570,000 to 700,000 g / mol, PVDF-HFP copolymer) was used instead of KF9300 in Example 1 A separator of 1 was prepared.
- 21216 Solva, Inc., weight average molecular weight: 570,000 to 700,000 g / mol, PVDF-HFP copolymer
- a separation membrane of Comparative Example 2 was prepared in the same manner as in Comparative Example 1 except that the weight ratio of the acrylic binder and the 21216 binder was 7: 3 in Comparative Example 1.
- the separation membrane of Comparative Example 3 was prepared in the same manner as in Comparative Example 1, except that the weight ratio of the acrylic binder and the 21216 binder was 8: 2 in Comparative Example 1.
- Example 1 except that 6020 (Solva, Inc., weight average molecular weight: 670,000 to 700,000 g / mol, PVDF homopolymer) was used as the second binder in a weight ratio of 7: 3 in the same manner as in Example 1, except that KF9300 was used.
- the separation membrane of Comparative Example 4 was prepared.
- Each of the separators prepared in the above Examples and Comparative Examples was prepared to cut 10 samples cut from 10 different points to a size of 1 inch (1 inch) in diameter, and then the air permeability measuring device (Asahi Seiko) G) was used to measure the time for passage of 100 cc of air in each sample. The time was measured five times each, and then the average value was calculated as air permeability.
- Each of the separators prepared in Examples and Comparative Examples was cut into five pieces in a rectangular shape of 50 mm long by 150 mm long by 150 mm long by MD, and by 150 mm long by 50 mm wide by 50 mm long.
- Ten samples were prepared, and each sample was mounted on a UTM (tension tester) to be bitten to a measurement length of 20 mm, and then the sample was pulled to measure average tensile strength in the MD and TD directions.
- the following method was performed to measure the thickness and rate of change of the electrode assembly having the separator prepared in Examples and Comparative Examples interposed between the positive electrode and the negative electrode.
- LCO LiCoO 2
- anode active material was coated on both sides of an aluminum foil having a thickness of 14 ⁇ m with a thickness of 94 ⁇ m, dried, and rolled to produce a cathode having a total thickness of 108 ⁇ m.
- Graphite 1: 1 was coated on both sides of copper foil having a thickness of 8 ⁇ m at 120 ⁇ m, dried, and rolled to prepare a negative electrode having a total thickness of 128 ⁇ m.
- the anode and the cathode were cut in 100 cm (length direction) ⁇ 6.3 cm (width direction), respectively, and the separators prepared in Examples and Comparative Examples were cut in 100 cm (length direction) ⁇ 6.5 cm (width direction). Thereafter, the electrode assembly was wound up to 7 cm (length direction) x 6.5 cm (width direction) between the positive electrode and the negative electrode to form an electrode assembly, and the thickness of the electrode assembly was measured using a 30 cm steel ruler (T 1 ).
- the electrode assembly was pressed at 100 ° C. at a pressure of 5 kgf / cm 2 for 3 seconds, and the thickness of the electrode assembly was measured using a 30 cm steel ruler (T 2 ), and the thickness change rate was calculated by the following Equation 2.
- Thickness Change (%) [(T 1 -T 2 ) / T 1 ] ⁇ 100
- LCO LiCoO 2
- a positive electrode active material LCO (LiCoO 2) was coated on both sides of an aluminum foil having a thickness of 14 ⁇ m with a thickness of 94 ⁇ m, dried, and rolled to prepare a positive electrode having a total thickness of 108 ⁇ m.
- a negative electrode active material natural graphite and artificial graphite (1: 1) were coated on both sides of a copper foil having a thickness of 8 ⁇ m at 120 ⁇ m, dried, and rolled to prepare a negative electrode having a total thickness of 128 ⁇ m.
- the separators prepared in Examples and Comparative Examples were wound between the anode and the cathode with an electrode assembly of 7 cm ⁇ 6.5 cm.
- the electrode assembly was first pressed at 100 ° C. for 3 seconds under a pressure of 5 kgf / cm 2 , placed in an aluminum coated pouch (8 cm ⁇ 12 cm), and the two adjacent corners were sealed at a temperature of 143 ° C., followed by 6.5 g of the electrolyte solution. Was added and sealed so that no air remained in the battery using a degassing machine for at least 3 minutes.
- the prepared battery was aged at 25 ° C. for 12 hours, and then pressed at 110 ° C. for 120 seconds under a pressure of 20 kgf / cm 2 .
- the cell was dismantled to photograph an area where an active material of a negative electrode or a positive electrode was transferred to a separator (lumenera high resolution camera), and the image was transferred using an image analyzer (Easy Measure converter 1.0.0.4) to calculate the transferred area. It was set as the transcription rate.
- the electrode assembly was continuously aged at 25 ° C.
- the battery was dismantled, and the area transferred from the active material of the negative electrode or the positive electrode to the separator was measured by the same method as the transfer rate before charge and discharge, and the transfer rate after charge and discharge was determined.
- the thickness change rate was greater than 7%, and the separator was formed before and after charge and discharge. The transfer rate could not be measured because it was separated from the negative electrode or the positive electrode.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Cell Separators (AREA)
Abstract
The present invention relates to a separator and a secondary battery comprising the separator, the separator comprising: a porous substrate; and an adhesive layer formed on one side or both sides of the porous substrate, the adhesive layer containing an acrylic copolymer comprising a (meth)acrylate-based monomer derived repeat unit, and a polyvinylidene fluoride-based polymer having a weight-average molecular weight of at least 1,000,000 g/mol.
Description
본 발명은 분리막 및 이를 이용한 이차 전지에 관한 것이다. The present invention relates to a separator and a secondary battery using the same.
일반적으로 비디오 카메라, 휴대 전화, 휴대 컴퓨터와 같은 휴대용 전자기기는 경량화 및 고기능화가 진행됨에 따라 그 구동 전원으로 사용되는 이차 전지에 관한 많은 연구가 이루어지고 있다. 이러한 이차 전지는, 예를 들어 니켈-카드늄 전지, 니켈-수소 전지, 니켈-아연 전지, 리튬 이차 전지 등이 사용되고 있다. 이중, 리튬 이차 전지는 소형 및 대형화가 가능하며, 작동 전압이 높고, 단위 중량당 에너지 밀도가 높다는 이점 때문에 많은 분야에서 사용되고 있다.BACKGROUND ART In general, portable electronic devices such as video cameras, mobile phones, and portable computers have been researched on secondary batteries used as driving power as light weights and high functionalities are advanced. As such a secondary battery, a nickel-cadnium battery, a nickel-hydrogen battery, a nickel-zinc battery, a lithium secondary battery, etc. are used, for example. Among these, lithium secondary batteries have been used in many fields because of their advantages such as small size and large size, high operating voltage, and high energy density per unit weight.
이차 전지 내의 환경에서 분리막의 대형화에 따른 면적 몇/또는 중량 증가로 인해 전극과 전극 사이에 권취된 분리막이 이탈되기 쉬어, 분리막과 전극 간의 접착력 증가가 요구된다. 또한, 지속적인 충방전에 의해 전지가 뒤틀리는 등, 형태가 변화하는 것을 방지할 수 있도록 이차 전지의 형태 안정성이 우수할 것이 요구된다. 이와 관련하여, 분리막과 전극 간의 접착력 및 분리막의 내열성 향상을 위하여 분리막의 기재 필름의 일면 또는 양면에 유/무기 혼합 코팅층을 형성하는 것이 알려져 있으나(대한민국 등록특허 제10-0775310호), 목적하는 접착력을 충분히 확보할 수 없어 다양한 사이즈와 형태를 지닌 분리막에 일괄적으로 적용되기 어렵다.Due to the increase in the area and / or weight due to the size of the separator in the environment in the secondary battery, the separator wound between the electrode and the electrode is easily separated, so that the adhesion between the separator and the electrode is increased. In addition, it is required to have excellent shape stability of the secondary battery so as to prevent the shape from changing, such as distorting the battery due to continuous charging and discharging. In this regard, it is known to form an organic / inorganic mixed coating layer on one or both sides of the base film of the separator in order to improve the adhesion between the separator and the electrode and the heat resistance of the separator (Korean Patent No. 10-0775310). It cannot be sufficiently secured, so it is difficult to apply to batches of various sizes and shapes.
따라서, 대면적화된 이차 전지에 적용이 가능한 접착력을 지닌 분리막을 포함하며, 실제 전지가 사용되는 환경인 충방전 후에도 전지의 형태 안정성 및 접착력이 유지될 수 있는 이차 전지의 개발이 필요하다.Therefore, it is necessary to develop a secondary battery including a separator having an adhesive force applicable to a large-area secondary battery and capable of maintaining morphological stability and adhesion of the battery even after charging and discharging, which is an environment in which an actual battery is used.
본 발명은 전지의 충방전 후 양극 혹은 음극과의 접착력 및 이차 전지의 형태 안정성이 개선된 분리막 및 이를 이용한 이차 전지를 제공하고자 한다. An object of the present invention is to provide a separator and an improved secondary battery using the same.
본 발명의 일 예에 따르면, 다공성 기재, 및 상기 다공성 기재의 일면 혹은 양면에 형성된, (메트)아크릴레이트계 단량체 유래 반복단위를 포함하는 아크릴계 공중합체, 및 중량 평균 분자량이 1,000,000 g/mol 이상인 폴리비닐리덴 플루오라이드계 폴리머 함유 접착층을 포함하는, 분리막이 제공된다. According to one embodiment of the present invention, an acrylic copolymer comprising a porous substrate and repeating units derived from (meth) acrylate monomers formed on one or both surfaces of the porous substrate, and a polyamide having a weight average molecular weight of 1,000,000 g / mol or more A separator is provided, comprising a vinylidene fluoride polymer containing adhesive layer.
본 발명의 다른 일 예에 따르면, 다공성 기재, 및 상기 다공성 기재의 일면 혹은 양면에 형성된, 바인더 함유 접착층을 포함하는 분리막으로, 상기 분리막의 식 1의 충방전 후 양극 혹은 음극 활물질의 분리막으로의 전사율이 각각 50% 이상인, 분리막이 제공된다.According to another embodiment of the present invention, a separator comprising a porous substrate and a binder-containing adhesive layer formed on one or both sides of the porous substrate, the charge or discharge of the separator 1 after the charge and discharge of formula 1 to transfer the separator to the separator Separators are provided, the rates being at least 50% each.
[식 1][Equation 1]
전사율 (%) = (A1 / A0) X 100Transfer rate (%) = (A 1 / A 0 ) X 100
상기 식 1에서, In Formula 1,
A0는 음극 또는 양극의 전체 면적이고,A 0 is the total area of the cathode or anode,
A1는 양극, 분리막 및 음극이 순차적으로 적층된 전극 조립체를 형성하고 이를 20℃ 내지 110℃의 온도에서, 1초 내지 5초간, 1 kgf/cm2 내지 30 kgf/cm2의 힘으로 1차 압착하고, 상기 압착된 전극조립체에 전해액을 주입하고 60 ℃ 내지 110 ℃, 30 초 내지 180초간, 1 kgf/cm2 내지 30 kgf/cm2 의 힘으로 2차 압착한 후, 충전, 방전 및 충전을 순차적으로 실시하였을 때 분리막에 전사된 양극 혹은 음극 활물질의 면적이다.A 1 forms an electrode assembly in which the positive electrode, the separator, and the negative electrode are sequentially stacked, and at the temperature of 20 ° C. to 110 ° C. for 1 second to 5 seconds, with a force of 1 kgf / cm 2 to 30 kgf / cm 2 . After pressing, the electrolyte solution is injected into the compressed electrode assembly, and the second electrode is pressed with a force of 1 kgf / cm 2 to 30 kgf / cm 2 for 60 ° C. to 110 ° C., 30 seconds to 180 seconds, and then charged, discharged and charged. When sequentially performed, the area of the positive electrode or negative electrode active material transferred to the separator.
본 발명의 다른 일 예에 따르면, 상기 일 예에 따른 분리막을 포함하는 이차 전지, 특히 리튬 이차 전지가 제공된다.According to another embodiment of the present invention, a secondary battery, particularly a lithium secondary battery, including the separator according to the above example is provided.
본 발명의 일 예들에 따른 분리막은 전지의 충방전 후 전지의 형태 안정성 및 전극과의 접착력이 증진된 효과가 있다. 또한, 본 발명에 따른 분리막은 개선된 형태 안정성으로 인해 고효율의 충방전 특성을 유지할 수 있다.Separation membrane according to an embodiment of the present invention has the effect that the shape stability of the battery after the charge and discharge of the battery and the adhesion to the electrode is enhanced. In addition, the separator according to the present invention can maintain high efficiency charge and discharge characteristics due to improved shape stability.
도 1은 일 구현예에 따른 이차 전지의 분해 사시도이다.1 is an exploded perspective view of a rechargeable battery according to an exemplary embodiment.
도 2는 다른 구현예에 다른 이차 전지의 분해 사시도이다.2 is an exploded perspective view of a secondary battery according to another embodiment.
도 3은 음극 활물질이 분리막(7cm × 7cm)에 전사된 것을 도시하는 사진으로, 백색의 분리막에 흑색의 활물질이 전사되어 있음을 확인할 수 있다. 3 is a photograph showing that the negative electrode active material is transferred to the separator (7cm × 7cm), it can be seen that the black active material is transferred to the white separator.
이하 본 발명에 대해 보다 상세히 설명한다. 본원 명세서에 기재되어 있지 않은 내용은 본 발명의 기술 분야 또는 유사 분야에서 숙련된 자이면 충분히 인식하고 유추할 수 있는 것이므로 그 설명을 생략한다.Hereinafter, the present invention will be described in more detail. The content not described in the present specification may be sufficiently recognized and inferred by those skilled in the art or similar fields of the present invention, and thus description thereof is omitted.
본 발명의 일 예에서, 다공성 기재, 및 상기 다공성 기재의 일면 혹은 양면에 형성된, (메트)아크릴레이트계 단량체 유래 반복단위를 포함하는 아크릴계 공중합체 및 중량 평균 분자량이 1,000,000 g/mol 이상인 폴리비닐리덴 플루오라이드계 폴리머 함유 접착층을 포함하는, 분리막이 제공된다. In one embodiment of the present invention, an acrylic copolymer comprising a porous substrate and repeating units derived from (meth) acrylate monomers formed on one or both surfaces of the porous substrate and polyvinylidene having a weight average molecular weight of 1,000,000 g / mol or more. A separator is provided that includes a fluoride-based polymer-containing adhesive layer.
상기 다공성 기재는 다수의 기공을 가지며 통상 전기화학소자에 사용될 수 있는 다공성 기재를 사용할 수 있다. 다공성 기재로는 비제한적으로 폴리에틸렌, 폴리프로필렌, 폴리에틸렌테레프탈레이트, 폴리부틸렌테레프탈레이트, 폴리에스테르, 폴리아세탈, 폴리아미드, 폴리이미드, 폴리카보네이트, 폴리에테르에테르케톤, 폴리아릴에테르케톤, 폴리에테르이미드, 폴리아미드이미드, 폴리벤즈이미다졸, 폴리에테르설폰, 폴리페닐렌옥사이드, 사이클릭 올레핀 코폴리머, 폴리페닐렌설파이드 및 폴리에틸렌나프탈렌으로 이루어진 군으로부터 선택된 어느 하나의 고분자 또는 이들 중 이종 이상의 혼합물로 형성된 고분자막일 수 있다. 일 예에서, 상기 다공성 기재는 폴리올레핀계 기재일 수 있으며, 폴리올레핀계 기재는 셧 다운(shut down) 기능이 우수하여 전지의 안전성 향상에 기여할 수 있다. 폴리올레핀계 기재는 예를 들어 폴리에틸렌 단일막, 폴리프로필렌 단일막, 폴리에틸렌/폴리프로필렌 이중막, 폴리프로필렌/폴리에틸렌/폴리프로필렌 삼중막 및 폴리에틸렌/폴리프로필렌/폴리에틸렌 삼중막으로 이루어진 군에서 선택될 수 있다. 다른 예에서, 폴리올레핀계 수지는 올레핀 수지 외에 비올레핀 수지를 포함하거나, 올레핀과 비올레핀 모노머의 공중합체를 포함할 수 있다. 상기 다공성 기재의 두께는 1 ㎛ 내지 40 ㎛일 수 있고, 보다 구체적으로는 5 내지 15 ㎛일 수 있다. 상기 두께 범위 내의 기재를 사용하는 경우, 전지의 양극과 음극의 단락을 방지할 수 있을 만큼 충분히 두꺼우면서도 전지의 내부 저항을 증가시킬 만큼 두껍지는 않은, 적절한 두께를 갖는 분리막을 제조할 수 있다.The porous substrate may use a porous substrate having a plurality of pores and can be used in an electrochemical device. Porous substrates include, but are not limited to, polyethylene, polypropylene, polyethylene terephthalate, polybutylene terephthalate, polyester, polyacetal, polyamide, polyimide, polycarbonate, polyetheretherketone, polyaryletherketone, polyetherimide , Polyamideimide, polybenzimidazole, polyethersulfone, polyphenylene oxide, cyclic olefin copolymer, polyphenylene sulfide, and any one polymer selected from the group consisting of polyethylene naphthalene or a polymer membrane formed of a mixture of two or more thereof Can be. In one example, the porous substrate may be a polyolefin-based substrate, the polyolefin-based substrate is excellent in the shutdown (shut down) function may contribute to the improvement of the safety of the battery. The polyolefin-based substrate may be selected from the group consisting of, for example, polyethylene monolayer, polypropylene monolayer, polyethylene / polypropylene double membrane, polypropylene / polyethylene / polypropylene triple membrane, and polyethylene / polypropylene / polyethylene triple membrane. In another example, the polyolefin resin may include a non-olefin resin in addition to the olefin resin, or may include a copolymer of an olefin and a non-olefin monomer. The porous substrate may have a thickness of 1 μm to 40 μm, more specifically 5 to 15 μm. When using the substrate within the thickness range, it is possible to produce a separator having a suitable thickness, thick enough to prevent a short circuit between the positive and negative electrodes of the battery, but not thick enough to increase the internal resistance of the battery.
상기 접착층은 접착층 조성물로 형성될 수 있으며, 접착층 조성물은 (메트)아크릴레이트계 단량체 유래 반복단위를 포함하는 아크릴계 공중합체, 중량 평균 분자량이 1,000,000 g/mol 이상인 폴리비닐리덴 플루오라이드계 폴리머 및 용매를 포함할 수 있다. 다른 예에서, 상기 접착층 조성물은 무기입자를 추가로 포함할 수 있다. 충방전 전 전극과 분리막의 접착력이 양호한 경우라도 충방전 후에는 접착력이 현저히 저하될 수 있으나, 본원에서는 접착층의 바인더로 (메트)아크릴레이트계 단량체 유래 반복단위를 포함하는 아크릴계 공중합체 및 중량 평균 분자량이 1,000,000 g/mol 이상인 폴리비닐리덴 플루오라이드계 폴리머를 함께 사용하여, 충방전 전 전극과의 접착력은 물론이고 분리막이 실제 사용되는 환경인 충방전 후 전극과의 접착력이 개선될 수 있고 또한 충방전 후 전지의 형태 안정성을 개선시킬 수 있다. 상기 아크릴계 공중합체는 (메트)아크릴레이트계 단량체 유래 반복단위 외에 아세테이트기 함유 단량체 유래 반복단위를 추가로 더 포함할 수 있다.The adhesive layer may be formed of an adhesive layer composition, and the adhesive layer composition may include an acrylic copolymer including a (meth) acrylate monomer-derived repeating unit, a polyvinylidene fluoride polymer and a solvent having a weight average molecular weight of 1,000,000 g / mol or more. It may include. In another example, the adhesive layer composition may further include inorganic particles. Although the adhesion between the electrode and the separator before the charge and discharge is good, the adhesion may be significantly reduced after the charge and discharge, but in the present application, an acrylic copolymer including a (meth) acrylate monomer-derived repeating unit as a binder of the adhesive layer and a weight average molecular weight By using the polyvinylidene fluoride-based polymer of 1,000,000 g / mol or more together, not only the adhesion to the electrode before charge and discharge, but also the adhesion to the electrode after charge and discharge, which is the environment in which the separator is actually used, can also be improved. After that, the shape stability of the battery can be improved. The acrylic copolymer may further include an acetate group-containing monomer-derived repeating unit in addition to the (meth) acrylate-based monomer-derived repeating unit.
상기 아크릴계 공중합체 및 상기 폴리비닐리덴 플루오라이드계 폴리머의 중량비는 5:5 내지 8:2, 구체적으로 6:4 내지 8:2, 보다 구체적으로 7:3 내지 8:2일 수 있다. 상기 중량비 범위 내인 것은 충방전 후에도 양극 혹은 음극과 양호한 접착력 및 전해액 함침성의 측면에서 유리할 수 있다. 아크릴계 공중합체의 중량비가 높을수록 충방전 후 음극과 분리막의 접착력이 증가되는 경향이 있으므로 아크릴계 공중합체의 중량비가 높을수록 접착력 측면에서 유리하나 중량비가 지나치게 높은 경우 접착층이 전해액에 녹을 수 있다. 상기 폴리비닐리덴 플루오라이드계 폴리머로는 예를 들어 폴리비닐리덴 플루오라이드(Polyvinylidene fluoride, PVdF) 호모폴리머, 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌(Polyvinylidene fluoride-Hexafluoroproplylene, PVdF-HFP) 코폴리머, 또는 이의 변형 폴리머를 들 수 있으며, 구체적으로는 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌 코폴리머 또는 폴리비닐리덴 플루오라이드 호모폴리머를 사용할 수 있다. 상기 폴리비닐리덴 플루오라이드계 폴리머의 중량평균분자량(Mw)은 1,000,000 g/mol 내지 1,700,000 g/mol의 범위일 수 있다. 보다 더욱 구체적으로는 중량 평균 분자량(Mw)이 1,000,000 g/mol 내지 1,500,000 g/mol의 범위일 수 있다. 상기 분자량 범위 내의 PVdF계 바인더를 사용하면 분리막과 다공성 기재 사이의 충방전 후 접착력이 강화되어 전기 출력이 효율적으로 일어나는 전지를 생산할 수 있는 이점이 있다. 상기 아크릴계 공중합체의 유리전이온도(Tg)는 100℃ 이하, 예를 들어, 20 ℃ 내지 60 ℃일 수 있다. 상기 범위이면 분리막을 전극 사이에 위치시키고 이를 압착하는 온도에서 양호한 접착을 형성하여 수축률 개선 및 내열도 증진에 유리할 수 있다. 상기 아크릴계 공중합체의 중량 평균 분자량은 100,000 g/mol 내지 1,000,000 g/mol이고, 구체적으로는 300,000 내지 800,000 g/mol, 또는 400,000 내지 700,000 g/mol 의 범위일 수 있다. 본원에서 사용될 수 있는 (메트)아크릴레이트계 단량체 유래 반복단위를 포함하는 아크릴계 공중합체는 상기와 같이 양극과 음극 사이에서 양호한 접착력을 형성할 수 있는 것이라면 특별히 제한되지 않으나, 예를 들어, 부틸 (메트)아크릴레이트, 프로필 (메트)아크릴레이트, 에틸 (메트)아크릴레이트 및 메틸 (메트)아크릴레이트로 이루어진 군으로부터 선택된 1종 이상의 (메트)아크릴레이트계 단량체를 중합시켜 생성된 공중합체일 수 있다. 또는 상기 아크릴계 공중합체는 부틸 (메트)아크릴레이트, 프로필 (메트)아크릴레이트, 에틸 (메트)아크릴레이트 또는 메틸 (메트)아크릴레이트과 같은 (메트)아크릴레이트계 단량체와, 기타 단량체, 예를 들어, 비닐 아세테이트 또는 알릴 아세테이트와 같은 아세테이트기 함유 단량체를 중합시켜 생성된 공중합체일 수 있다.The weight ratio of the acrylic copolymer and the polyvinylidene fluoride polymer may be 5: 5 to 8: 2, specifically 6: 4 to 8: 2, and more specifically 7: 3 to 8: 2. Within the weight ratio range, it may be advantageous in view of good adhesion and electrolyte impregnation with the positive electrode or the negative electrode even after charging and discharging. The higher the weight ratio of the acrylic copolymer tends to increase the adhesion between the negative electrode and the separator after charging and discharging, the higher the weight ratio of the acrylic copolymer is advantageous in terms of adhesive strength, but if the weight ratio is too high, the adhesive layer may be dissolved in the electrolyte. As the polyvinylidene fluoride polymer, for example, polyvinylidene fluoride (PVdF) homopolymer, polyvinylidene fluoride-hexaxapropoxy (PVDF-HFP) copolymer, Or modified polymers thereof, and specifically, polyvinylidene fluoride-hexafluoropropylene copolymer or polyvinylidene fluoride homopolymer may be used. The weight average molecular weight (Mw) of the polyvinylidene fluoride polymer may be in the range of 1,000,000 g / mol to 1,700,000 g / mol. More specifically, the weight average molecular weight (Mw) may range from 1,000,000 g / mol to 1,500,000 g / mol. The use of the PVdF-based binder in the above molecular weight range has an advantage in that the adhesive force is enhanced after charge and discharge between the separator and the porous substrate, thereby producing a battery in which electrical output is efficiently generated. The glass transition temperature (Tg) of the acrylic copolymer may be 100 ° C. or less, for example, 20 ° C. to 60 ° C. Within this range, the separator may be positioned between the electrodes and formed to have good adhesion at a temperature at which the separator is pressed, thereby improving the shrinkage rate and improving heat resistance. The weight average molecular weight of the acrylic copolymer may be in the range of 100,000 g / mol to 1,000,000 g / mol, specifically 300,000 to 800,000 g / mol, or 400,000 to 700,000 g / mol. The acrylic copolymer including a (meth) acrylate-based monomer-derived repeat unit that can be used herein is not particularly limited as long as it can form a good adhesion between the positive electrode and the negative electrode as described above, for example, butyl (meth It may be a copolymer produced by polymerizing one or more (meth) acrylate monomers selected from the group consisting of) acrylate, propyl (meth) acrylate, ethyl (meth) acrylate and methyl (meth) acrylate. Or the acrylic copolymer is a (meth) acrylate monomer such as butyl (meth) acrylate, propyl (meth) acrylate, ethyl (meth) acrylate or methyl (meth) acrylate, and other monomers, for example, It may be a copolymer produced by polymerizing an acetate group-containing monomer such as vinyl acetate or allyl acetate.
상기 아세테이트기 함유 단량체 유래 반복단위는 화학식 1의 반복단위일 수 있다:The acetate group-containing monomer-derived repeating unit may be a repeating unit of Formula 1:
[화학식 1] [Formula 1]
상기 화학식 1에서, R1은 단일 결합이거나, 직쇄 또는 분지된 탄소수 1 내지 6의 알킬이고, R2는 수소이거나 메틸이고, l은 각각 1 내지 100 사이의 정수이다. 예를 들어, 상기 아세테이트기 함유 단량체 유래 반복단위는 비닐 아세테이트 및 알릴 아세테이트로 이루어진 군으로부터 하나 이상 선택된 아세테이트기 함유 단량체 유래 반복단위일 수 있다. 상기 아크릴계 공중합체가 (메트)아크릴레이트계 단량체와 (메트)아크릴레이트계 외의 기타 단량체, 예를 들어, 아세테이트기 함유 단량체를 중합시켜 제조된 경우, (메트)아크릴레이트계 단량체와 기타 단량체, 구체적으로 아세테이트기 함유 단량체는 몰비 3:7 내지 7:3, 구체적으로 4:6 내지 6:4, 보다 구체적으로는 약 5:5의 비로 중합하여 제조될 수 있다. 상기 아크릴계 공중합체는 예를 들어, 부틸 (메트)아크릴레이트 단량체, 메틸 (메트)아크릴레이트 단량체, 및 비닐 아세테이트 및/또는 알릴 아세테이트 단량체를, 중량비 3 내지 5 : 0.5 내지 1.5 : 3 내지 7, 구체적으로, 4 : 1 : 5로 중합 반응시켜 제조될 수 있다.In Formula 1, R 1 is a single bond, linear or branched alkyl having 1 to 6 carbon atoms, R 2 is hydrogen or methyl, and l is an integer between 1 and 100, respectively. For example, the acetate group-containing monomer-derived repeating unit may be a repeating unit derived from an acetate group-containing monomer selected from at least one selected from the group consisting of vinyl acetate and allyl acetate. When the acryl-based copolymer is prepared by polymerizing a monomer other than the (meth) acrylate-based monomer and the (meth) acrylate-based monomer, for example, an acetate group-containing monomer, the (meth) acrylate-based monomer and the other monomer, specifically As such, the acetate group-containing monomer may be prepared by polymerization in a molar ratio of 3: 7 to 7: 3, specifically 4: 6 to 6: 4, and more specifically about 5: 5. For example, the acrylic copolymer may be a butyl (meth) acrylate monomer, a methyl (meth) acrylate monomer, and a vinyl acetate and / or allyl acetate monomer, in a weight ratio of 3 to 5: 0.5 to 1.5: 3 to 7, specifically, It may be prepared by a polymerization reaction of 4: 1: 5.
본 발명에서 사용되는 무기 입자는 특별히 제한되지 아니하며 당해 기술 분야에서 통상적으로 사용하는 무기 입자를 사용할 수 있다. 본 발명에서 사용 가능한 무기 입자의 비제한적인 예로는 Al2O3, SiO2, B2O3, Ga2O3, TiO2 또는 SnO2 등을 들 수 있다. 이들은 단독 또는 2종 이상을 혼합하여 사용할 수 있다. 본 발명에서 사용되는 무기 입자로는 예를 들어, Al2O3(알루미나)를 사용할 수 있다. 본 발명에서 사용되는 무기 입자의 크기는 특별히 제한되지 아니하나, 평균 입경이 1 nm 내지 2,000 nm일 수 있고, 예를 들어, 100 nm 내지 1,000 nm, 또는 400 nm 내지 600 nm일 수 있다. 상기 크기 범위의 무기 입자를 사용하는 경우, 접착층 조성물 내에서의 무기 입자의 분산성 및 접착층 형성의 공정성이 저하되는 것을 방지할 수 있고 접착층의 두께가 적절히 조절되어 기계적 물성의 저하 및 전기적 저항의 증가를 방지할 수 있다. 또한, 분리막에 생성되는 기공의 크기가 적절히 조절되어 전지의 충방전 시 내부 단락이 일어날 확률을 낮출 수 있는 이점이 있다. 접착층 조성물의 제조에 있어서 상기 무기 입자는 이를 적절한 용매에 분산시킨 무기 분산액 형태로 이용될 수 있다. 상기 적절한 용매는 특별히 제한되지 아니하며 당해 기술 분야에서 통상적으로 사용하는 용매를 사용할 수 있다. 상기 무기 입자를 분산시키는 적절한 용매로서 예를 들어, 아세톤을 사용할 수 있다. 상기 무기 분산액을 제조하는 방법은 특별한 제한없이 통상적인 방법에 의할 수 있으며, 예를 들어 Al2O3를 아세톤에 적정 함량으로 첨가하고 비즈 밀(Beads mill)을 이용해 밀링하여 분산시키는 방식으로 무기 분산액을 제조할 수 있다. 접착층 내에서 상기 무기입자는 접착층 전체 중량을 기준으로 50 내지 99 중량%, 구체적으로 75 내지 95중량%, 보다 구체적으로 80 내지 95중량%로 포함될 수 있다. 상기 범위 내로 무기 입자를 함유하는 경우, 무기 입자의 방열 특성이 충분히 발휘될 수 있으며 이를 이용하여 다공성 기재에 접착층을 형성할 경우 분리막의 열수축을 효과적으로 억제할 수 있다.The inorganic particles used in the present invention are not particularly limited and may be inorganic particles commonly used in the art. Non-limiting examples of the inorganic particles usable in the present invention include Al 2 O 3 , SiO 2 , B 2 O 3 , Ga 2 O 3 , TiO 2 , SnO 2 , and the like. These can be used individually or in mixture of 2 or more types. As the inorganic particles used in the present invention, for example, Al 2 O 3 (alumina) can be used. The size of the inorganic particles used in the present invention is not particularly limited, but the average particle diameter may be 1 nm to 2,000 nm, for example, 100 nm to 1,000 nm, or 400 nm to 600 nm. When using the inorganic particles in the size range, it is possible to prevent the dispersibility of the inorganic particles in the adhesive layer composition and the fairness of the formation of the adhesive layer can be prevented from being lowered, and the thickness of the adhesive layer is appropriately adjusted to decrease the mechanical properties and increase the electrical resistance. Can be prevented. In addition, the size of the pores generated in the separator is appropriately adjusted, there is an advantage that can lower the probability of the internal short circuit occurs during the charge and discharge of the battery. In preparing the adhesive layer composition, the inorganic particles may be used in the form of an inorganic dispersion in which it is dispersed in a suitable solvent. The appropriate solvent is not particularly limited and may be a solvent commonly used in the art. Acetone can be used as a suitable solvent for dispersing the inorganic particles, for example. The inorganic dispersion may be prepared by a conventional method without any particular limitation. For example, Al 2 O 3 may be added to acetone in an appropriate amount, and the inorganic dispersion may be milled and dispersed using a bead mill. Dispersions can be prepared. The inorganic particles in the adhesive layer may be included in 50 to 99% by weight, specifically 75 to 95% by weight, more specifically 80 to 95% by weight based on the total weight of the adhesive layer. When the inorganic particles are contained within the above range, the heat dissipation characteristics of the inorganic particles may be sufficiently exhibited, and when the adhesive layer is formed on the porous substrate using the inorganic particles, thermal contraction of the separator may be effectively suppressed.
본 발명에서 사용 가능한 상기 용매의 비제한적인 예로는 아세톤, 디메틸포름아미드(Dimethyl formamide, DMF), 디메틸설폭사이드(Dimethyl sulfoxide, DMSO), 디메틸아세트아미드(Dimethyl acetamide, DMAc), 디메틸카보네이트(Dimethyl carbonate, DMC) 또는 N-메틸피롤리돈(N-methylpyrrolydone, NMP) 등을 들 수 있다. 접착층 조성물의 중량을 기준으로 용매의 함량은 20 내지 99 중량%일 수 있고, 구체적으로 50 내지 95 중량%일 수 있으며, 보다 구체적으로 70 내지 95 중량%일 수 있다. 상기 범위의 용매를 함유하는 경우 접착층 조성물의 제조가 용이해지며 접착층의 건조 공정이 원활히 수행될 수 있다.Non-limiting examples of the solvent usable in the present invention include acetone, dimethyl formamide (DMF), dimethyl sulfoxide (DMSO), dimethylacetamide (dimethyl acetamide, DMAc), dimethyl carbonate , DMC) or N-methylpyrrolidone (N-methylpyrrolydone, NMP) and the like. The content of the solvent may be 20 to 99% by weight, specifically 50 to 95% by weight, and more specifically 70 to 95% by weight based on the weight of the adhesive layer composition. When the solvent is contained in the above range, the preparation of the adhesive layer composition may be facilitated, and the drying process of the adhesive layer may be performed smoothly.
본 발명의 또 다른 예에 따른 접착층 또는 접착층 조성물은 상기 아크릴계 공중합체나 폴리비닐리덴 플루오라이드계 폴리머 외에 다른 바인더를 추가로 포함할 수 있다. 추가될 수 있는 바인더의 예로, 폴리메틸메타크릴레이트(polymethylmethacrylate, PMMA), 폴리아크릴로니트릴 (polyacrylonitrile, PAN), 폴리비닐피롤리돈(polyvinylpyrrolidone, PVP), 폴리비닐아세테이트(polyvinylacetate, PVAc), 폴리에틸렌옥사이드(polyethylene oxide, PEO), 셀룰로오스 아세테이트 (cellulose acetate, CA), 셀룰로오스 아세테이트 부틸레이트(cellulose acetate butyrate, CAB), 셀룰로오스 아세테이트 프로피오네이트 (cellulose acetate propionate, CAP), 시아노에틸풀루란 (cyanoethylpullulan, CYEPL), 시아노에틸폴리비닐알콜 (cyanoethylpolyvinylalcohol, CR-V), 시아노에틸셀룰로오스 (cyanoethylcellulose, CEC), 시아노에틸수크로오스 (cyanoethylsucrose), 풀루란 (pullulan), 카르복실 메틸 셀룰로오스 (carboxyl methyl cellulose, CMC), 및 아크릴로니트릴스티렌부타디엔 공중합체 (acrylonitrilestyrene-butadiene copolymer)로 이루어진 군으로부터 선택된 단독 또는 이들의 혼합물을 들 수 있다. 일 예에서, 중량 평균 분자량이 1,000,000 g/mol 미만인 폴리비닐리덴 플루오라이드계 폴리머가 추가로 사용될 수 있다The adhesive layer or the adhesive layer composition according to another embodiment of the present invention may further include another binder in addition to the acrylic copolymer or the polyvinylidene fluoride polymer. Examples of binders that may be added include polymethylmethacrylate (PMMA), polyacrylonitrile (PAN), polyvinylpyrrolidone (PVP), polyvinylacetate (PVAc), polyethylene Oxides (PEO), cellulose acetate (CA), cellulose acetate butyrate (CAB), cellulose acetate propionate (CAP), cyanoethylpullulan (CANO) CYEPL), cyanoethylpolyvinylalcohol (CR-V), cyanoethylcellulose (CEC), cyanoethylsucrose, pullulan, carboxyl methyl cellulose CMC), and the group consisting of acrylonitrilestyrene-butadiene copolymer Or a mixture thereof. In one example, polyvinylidene fluoride based polymers having a weight average molecular weight of less than 1,000,000 g / mol may further be used.
본 발명의 다른 예에 따른 분리막은, 다공성 기재, 및 상기 다공성 기재의 일면 혹은 양면에 형성된, 바인더 함유 접착층을 포함하는 분리막으로, 상기 분리막의 식 1의 충방전 후 양극 혹은 음극 활물질의 분리막으로의 전사율이 각각 50% 이상일 수 있다.The separator according to another embodiment of the present invention is a separator including a porous substrate and a binder-containing adhesive layer formed on one or both surfaces of the porous substrate, and after the charge and discharge of Equation 1 of the separator to the separator of the positive electrode or negative electrode active material The transcription rates may each be at least 50%.
[식 1][Equation 1]
전사율 (%) = (A1 / A0) × 100Transfer rate (%) = (A 1 / A 0 ) × 100
상기 식 1에서, In Formula 1,
A0는 음극 또는 양극의 전체 면적이고, A1는 양극, 분리막 및 음극이 순차적으로 적층된 전극 조립체를 형성하고 이를 20℃ 내지 110℃의 온도에서, 1초 내지 5초간, 1 kgf/cm2 내지 30 kgf/cm2의 힘으로 1차 압착하고, 상기 압착된 전극조립체에 전해액을 주입하고 60 ℃ 내지 110 ℃, 30 초 내지 180초간, 1 kgf/cm2 내지 30 kgf/cm2 의 힘으로 2차 압착한 후, 충전, 방전 및 충전을 순차적으로 실시하였을 때 분리막에 전사된 양극 혹은 음극 활물질의 면적이다. 상기 양극 혹은 음극 활물질의 면적 측정 방법은 활물질 면적을 측정할 수 있는 것이라면 제한이 없으나, 예를 들어, 공지된 이미지 촬영기(예: lumenera 사 고해상도 카메라)로 분리막을 촬영한 후, 공지된 이미지 분석기(예: Easy Measure converter 1.0.0.4)를 사용하여 양극 혹은 음극 활물질의 전사된 면적을 측정할 수 있다.A 0 is the total area of the cathode or anode, and A 1 forms an electrode assembly in which the anode, separator and cathode are sequentially stacked, and at a temperature of 20 ° C. to 110 ° C., 1 kgf / cm 2 , for 1 second to 5 seconds. 1 to 30 kgf / cm 2 , the first crimp, the electrolyte is injected into the compressed electrode assembly and 60 ℃ to 110 ℃, 30 seconds to 180 seconds, with a force of 1 kgf / cm 2 to 30 kgf / cm 2 It is the area of the positive electrode or negative electrode active material transferred to the separator when the secondary pressing is carried out, and when charging, discharging, and charging are sequentially performed. The method of measuring the area of the positive electrode or the negative electrode active material is not limited as long as the area of the active material can be measured. For example, a known image analyzer (eg, a lumenera high resolution camera) is photographed and then a known image analyzer ( Example: Easy Measure converter 1.0.0.4) can be used to measure the transferred area of the positive or negative electrode active material.
상기 충전, 방전 및 충전의 조건의 예는 하기 표 1과 같다:Examples of the charging, discharging and charging conditions are shown in Table 1 below:
표 1
Table 1
충/방/충 | (충) 4.35V, 0.2C, 50 mA cut-off | 5 hrs |
(방) 0.2C, 3V cut-off | 5 hrs | |
(충) 0.5C, 4V cut-off | 2 hrs |
Chung / Bang / Chung | 4.35V, 0.2C, 50 mA cut-off | 5 hrs |
0.2C, 3V cut-off | 5 hrs | |
0.5C, 4V cut-off | 2 hrs |
상기 양극 혹은 음극 활물질의 분리막으로의 전사율이 50% 이상인 것은 충방전 후 전지의 형태 안정성 및 접착력과 관련이 있다. 상기 전사율은 구체적으로 55% 이상, 보다 구체적으로 60% 이상, 보다 더 구체적으로는 70% 이상일 수 있다. The transfer rate of the positive electrode or the negative electrode active material to the separator of 50% or more is related to the shape stability and adhesion of the battery after charge and discharge. The transcription rate may be specifically 55% or more, more specifically 60% or more, even more specifically 70% or more.
상기 예에서 접착층 내 바인더로 전술한 바와 같은 아크릴계 공중합체 및 중량 평균 분자량이 1,000,000 g/mol 이상인 폴리비닐리덴 플루오라이드계 폴리머가 사용될 수 있으며, 그 외 무기입자나 용매 등도 상술한 바와 같은 방법, 종류 및 함량으로 사용될 수 있다.In the above example, as the binder in the adhesive layer, an acrylic copolymer as described above and a polyvinylidene fluoride polymer having a weight average molecular weight of 1,000,000 g / mol or more may be used, and other inorganic particles, solvents, etc. may be used as described above. And in content.
상기 예에 따른 분리막은 추가적으로 하기 식 2의 두께 변화율이 7% 이하일 수 있다. 구체적으로 하기 두께 변화율은 5% 이하, 보다 구체적으로 3% 이하일 수 있다. In the separator according to the above example, the thickness change rate of Equation 2 may be 7% or less. Specifically, the thickness change rate may be 5% or less, and more specifically 3% or less.
[식 2][Equation 2]
두께 변화율(%)=[(T1-T2)/T1] ×100×100Thickness Change (%) = [(T 1 -T 2 ) / T 1 ] × 100 × 100
상기 식 2에서, T1은 양극 및 음극 사이에 분리막을 개재하고, 상기 양극, 분리막 및 음극이 순차적으로 적층된 적층물을 7 cm (길이방향) ×6.5 cm (폭방향)의 크기로 권취하여 전극 조립체를 형성하여 측정된 두께이고, 상기 T2는 상기 형성된 전극 조립체를 20℃ 내지 110℃에서 1 kgf/cm2 내지 30 kgf/cm2의 압력으로 1 내지 5초간 프레스한 후 측정된 두께이다. 상기 두께 변화율이 상기 범위이면 전지의 형태 안정성이 우수하다.In Equation 2, T 1 is a separator between the positive electrode and the negative electrode, and the positive electrode, the separator and the negative electrode is laminated in sequence of 7 cm (length direction) × 6.5 cm (width direction) The thickness is measured by forming an electrode assembly, and T 2 is the thickness measured after pressing the formed electrode assembly at a pressure of 1 kgf / cm 2 to 30 kgf / cm 2 at 20 ° C. to 110 ° C. for 1 to 5 seconds. . The shape stability of a battery is excellent in the said thickness change rate being the said range.
본 발명의 실시예들에 따른 분리막은 통기도가 500 sec/100cc 이하, 구체적으로 50 내지 400 sec/100cc, 보다 구체적으로 50 내지 300 sec/100cc일 수 있다. 본 발명의 실시예들에 따른 분리막의 MD 방향의 인장강도가 1750 kg/cm2 이상이고, TD 방향의 인장강도가 1650 kg/cm2 이상일 수 있다. 구체적으로 분리막의 MD 방향의 인장강도는 1750 kg/cm2 내지 2550 kg/cm2 이고, TD 방향의 인장강도가 1700 kg/cm2 내지 2500 kg/cm2 일 수 있다. 본 발명의 예들에 따른 분리막은 위와 같이 충방전 후 형태안정성 및 접착성이 우수할 뿐 아니라 분리막으로 요구되는 통기도 및 기계적 강도 등의 기본 물성도 만족할 수 있다. Separation membrane according to embodiments of the present invention may be less than 500 sec / 100cc, specifically 50 to 400 sec / 100cc, more specifically 50 to 300 sec / 100cc. Tensile strength in the MD direction of the separator according to embodiments of the present invention may be 1750 kg / cm 2 or more, the tensile strength in the TD direction may be 1650 kg / cm 2 or more. Specifically, the tensile strength in the MD direction of the separator may be 1750 kg / cm 2 to 2550 kg / cm 2, and the tensile strength in the TD direction may be 1700 kg / cm 2 to 2500 kg / cm 2 . The separator according to the examples of the present invention may not only have excellent shape stability and adhesion after charge and discharge, but also satisfy basic physical properties such as air permeability and mechanical strength required as the separator.
이하, 본 발명의 일 실시예에 따른 분리막의 제조방법에 대해 설명한다. 본 발명의 일 실시예에 따른 분리막의 제조 방법은 (메트)아크릴레이트계 단량체 유래 반복단위를 포함하는 아크릴계 공중합체, 및 중량 평균 분자량이 1,000,000 g/mol 이상인 폴리비닐리덴 플루오라이드계 폴리머를 포함하는 바인더; 및 용매를 포함하는 접착층 조성물을 형성하고, 이를 다공성 기재의 일면 또는 양면에 상기 접착층 조성물로 접착층을 형성하는 것을 포함한다. 상기 아크릴계 공중합체는 비닐 아세테이트 또는 알릴 아세테이트 단량체와 같은 아세테이트기 함유 단량체 유래 반복단위를 추가로 포함할 수 있다.Hereinafter, a method of manufacturing a separator according to an embodiment of the present invention will be described. Method for producing a separator according to an embodiment of the present invention comprises an acrylic copolymer containing a (meth) acrylate monomer-derived repeating unit, and a polyvinylidene fluoride polymer having a weight average molecular weight of 1,000,000 g / mol or more bookbinder; And forming an adhesive layer composition comprising a solvent, and forming the adhesive layer with the adhesive layer composition on one or both surfaces of the porous substrate. The acrylic copolymer may further include a repeating unit derived from an acetate group-containing monomer such as vinyl acetate or allyl acetate monomer.
우선, 상기 접착층 조성물을 형성하는 것은 아크릴계 공중합체 및 중량 평균 분자량이 1,000,000 g/mol 이상인 폴리비닐리덴 플루오라이드계 폴리머를 포함하는 바인더, 및 용매를 혼합하고 10 내지 40℃에서 30분 내지 5시간 동안 교반하는 것을 포함할 수 있다. 무기입자를 포함하는 경우, 상기 교반 용액에 무기입자가 포함될 수 있다. 이 때, 고형분의 함량은 접착층 조성물에 대해 10 내지 20 중량부일 수 있으며, 고형분에서 바인더와 무기입자의 중량비는 5:5 내지 0.1:9.9일 수 있다. First, forming the adhesive layer composition is a binder comprising an acrylic copolymer and a polyvinylidene fluoride polymer having a weight average molecular weight of 1,000,000 g / mol or more, and a solvent and mixed at 10 to 40 ℃ for 30 minutes to 5 hours It may include stirring. When the inorganic particles are included, the stirred solution may include inorganic particles. At this time, the content of the solid content may be 10 to 20 parts by weight based on the adhesive layer composition, the weight ratio of the binder and the inorganic particles in the solid content may be 5: 5 to 0.1: 9.9.
또는, 상기 무기 입자를 분산 매질에 분산시킨 무기 분산액을 제조하고, 이를 아크릴계 공중합체 및 폴리비닐리덴 플루오라이드계 폴리머를 포함하는 바인더 및 용매를 함유하는 고분자 용액과 혼합하여 접착층 조성물을 제조할 수 있다. 상기와 같이 무기 분산액을 별도로 제조하는 경우 무기입자 및 바인더의 분산성 및 조액 안정성을 향상시킬 수 있다. 따라서, 다른 양태에서, 본 발명의 접착층 조성물을 제조함에 있어서, 바인더 성분 및 무기 입자는 각각 적절한 용매 내에 용해 또는 분산된 상태로 제조되어 혼합될 수 있다. 예를 들어, 아크릴계 공중합체와 폴리비닐리덴 플루오라이드계 바인더 각각을 적절한 용매에 용해시킨 용액과, 무기 입자를 분산시킨 무기 분산액을 각각 제조한 다음, 이들을 적절한 용매와 함께 혼합하는 방식으로 접착층 조성물을 제조할 수 있다. 상기 혼합에는 볼 밀(Ball mill), 비즈 밀(Beads mill) 또는 스크류 믹서(Screw mixer) 등을 이용할 수 있다.Alternatively, the adhesive layer composition may be prepared by preparing an inorganic dispersion in which the inorganic particles are dispersed in a dispersion medium and mixing the mixture with a polymer solution containing a solvent and a binder including an acrylic copolymer and a polyvinylidene fluoride polymer. . When the inorganic dispersion is prepared separately as described above, the dispersibility and crude liquid stability of the inorganic particles and the binder may be improved. Therefore, in another embodiment, in preparing the adhesive layer composition of the present invention, the binder component and the inorganic particles may be prepared and mixed in a dissolved or dispersed state in a suitable solvent, respectively. For example, an adhesive layer composition may be prepared by preparing a solution in which each of an acrylic copolymer and a polyvinylidene fluoride binder are dissolved in a suitable solvent, and an inorganic dispersion in which inorganic particles are dispersed, and then mixing them with an appropriate solvent. It can manufacture. A ball mill, a beads mill, a screw mixer, or the like may be used for the mixing.
이어서, 다공성 기재의 일면 또는 양면에 상기 접착층 조성물로 접착층을 형성한다. 다공성 기재에 접착층을 형성시키는 방법은 특별히 제한되지 아니하며, 본 발명의 기술 분야에서 통상적으로 사용하는 방법, 예를 들어 코팅법, 라미네이션(lamination), 공압출(coextrusion) 등을 사용할 수 있다. 상기 코팅 방법의 비제한적인 예로는, 딥(Dip) 코팅법, 다이(Die) 코팅법, 롤(Roll) 코팅법 또는 콤마(Comma) 코팅법 등을 들 수 있다. 이들은 단독 또는 2 가지 이상의 방법을 혼합하여 적용될 수 있다. 본 발명의 분리막의 접착층은 예를 들어 딥 코팅법에 의해 형성된 것일 수 있다.Subsequently, an adhesive layer is formed of the adhesive layer composition on one or both surfaces of the porous substrate. The method for forming the adhesive layer on the porous substrate is not particularly limited, and methods commonly used in the art, for example, a coating method, lamination, coextrusion, and the like may be used. Non-limiting examples of the coating method may include a dip coating method, a die coating method, a roll coating method, or a comma coating method. These may be applied alone or in combination of two or more methods. The adhesive layer of the separator of the present invention may be formed by, for example, a dip coating method.
본 발명의 접착층의 두께는 0.01 내지 20 ㎛일 수 있으며, 구체적으로 1 내지 10 ㎛, 보다 구체적으로 1 내지 5 ㎛일 수 있다. 상기 두께 범위 내에서, 적절한 두께의 접착층을 형성하여 우수한 열적 안정성 및 접착력을 얻을 수 있으며, 전체 분리막의 두께가 지나치게 두꺼워지는 것을 방지하여 전지의 내부 저항이 증가하는 것을 억제할 수 있다.The adhesive layer of the present invention may have a thickness of 0.01 to 20 μm, specifically 1 to 10 μm, and more specifically 1 to 5 μm. Within the thickness range, it is possible to form an adhesive layer having an appropriate thickness to obtain excellent thermal stability and adhesion, and to prevent the thickness of the entire separator from becoming too thick, thereby suppressing an increase in the internal resistance of the battery.
본 발명에서 접착층을 건조하는 것은 온풍, 열풍, 저습풍에 의한 건조나 진공 건조 또는 원적외선이나 전자선 등을 조사하는 방법을 사용할 수 있다. 그리고 건조 온도는 용매의 종류에 따라 차이가 있으나 대체로 60 내지 120℃의 온도에서 건조할 수 있다. 건조 시간 역시 용매의 종류에 따라 차이가 있으나 대체로 1분 내지 1시간 건조할 수 있다. 구체예에서, 70 내지 120 ℃의 온도에서 1분 내지 30분, 또는 1분 내지 10분 건조할 수 있다.In the present invention, the adhesive layer may be dried by hot air, hot air, low humidity, vacuum drying or far infrared rays or electron beams. And the drying temperature is different depending on the type of the solvent, it can be dried at a temperature of approximately 60 to 120 ℃. The drying time also varies depending on the type of solvent, but may generally be dried for 1 minute to 1 hour. In embodiments, it may be dried for 1 minute to 30 minutes, or 1 minute to 10 minutes at a temperature of 70 to 120 ℃.
본 발명의 또 다른 일 예에 따르면, 양극; 음극; 상기 양극과 음극 사이에 위치한, 본원에 개시된 접착층을 포함하는 다공성 분리막; 및 전해질을 포함하는 이차 전지를 제공한다.According to another embodiment of the present invention, an anode; cathode; A porous separator comprising an adhesive layer disclosed herein, positioned between the anode and the cathode; And it provides a secondary battery comprising an electrolyte.
상기 이차 전지의 종류는 특별히 제한되지 아니하며, 본 발명의 기술 분야에서 알려진 종류의 전지일 수 있다.The type of the secondary battery is not particularly limited and may be a battery of a kind known in the art.
본 발명의 상기 이차 전지는 구체적으로는 리튬 금속 이차 전지, 리튬 이온 이차 전지, 리튬 폴리머 이차 전지 또는 리튬 이온 폴리머 이차 전지 등과 같은 리튬 이차 전지일 수 있다.Specifically, the secondary battery of the present invention may be a lithium secondary battery such as a lithium metal secondary battery, a lithium ion secondary battery, a lithium polymer secondary battery or a lithium ion polymer secondary battery.
본 발명의 이차 전지를 제조하는 방법은 특별히 제한되지 아니하며, 본 발명의 기술 분야에서 통상적으로 사용하는 방법을 사용할 수 있다.The method of manufacturing the secondary battery of the present invention is not particularly limited, and a method commonly used in the technical field of the present invention may be used.
상기 이차 전지를 제조하는 방법의 비제한적인 예는 다음과 같다: 본 발명의 상기 접착층을 포함하는 다공성 분리막을, 전지의 양극과 음극 사이에 위치시킨 후, 이에 전해액을 채우는 방식으로 전지를 제조할 수 있다.A non-limiting example of a method of manufacturing the secondary battery is as follows: A porous separator comprising the adhesive layer of the present invention is placed between the positive electrode and the negative electrode of the battery, and then the battery is prepared by filling an electrolyte therein. Can be.
도 1 및 도 2는 일 구현예 혹은 다른 구현예에 따른 이차 전지의 분해 사시도이다. 상기 구현예에 따른 이차 전지는 각형 혹은 원통형 전지인 것을 예로 설명하지만, 본 발명이 이에 제한되는 것은 아니며, 파우치형 전지, 리튬 폴리머 전지 등 다양한 형태의 전지에 적용될 수 있다.1 and 2 are exploded perspective views of a secondary battery according to one or another embodiment. Although the secondary battery according to the embodiment is described as an example of a rectangular or cylindrical battery, the present invention is not limited thereto, and may be applied to various types of batteries such as pouch-type batteries and lithium polymer batteries.
도 1 및 도 2을 참고하면, 일 구현예에 따른 이차 전지(100, 200)는 양극(10, 10')과 음극(20, 20') 사이에 분리막(30, 30')을 개재하여 귄취된 전극 조립체(40)와, 상기 전극 조립체(40)가 내장되는 케이스(50, 50')를 포함한다. 상기 양극(10, 10'), 상기 음극(20, 20') 및 상기 분리막(30, 30')은 전해액(미도시)에 함침된다.1 and 2, the secondary batteries 100 and 200 according to the exemplary embodiment may have a odor through the separators 30 and 30 'between the cathodes 10 and 10' and the anodes 20 and 20 '. The electrode assembly 40, and the cases 50 and 50 ′ in which the electrode assembly 40 is embedded. The positive electrode 10, 10 ′, the negative electrode 20, 20 ′ and the separator 30, 30 ′ are impregnated with an electrolyte (not shown).
상기 분리막(30, 30')은 전술한 바와 같다.The separators 30 and 30 'are as described above.
상기 양극(10, 10')은 양극 집전체 및 상기 양극 집전체 위에 형성되는 양극 활물질층을 포함할 수 있다. 상기 양극 활물질층은 양극 활물질, 바인더 및 선택적으로 도전재를 포함할 수 있다.The positive electrodes 10 and 10 ′ may include a positive electrode current collector and a positive electrode active material layer formed on the positive electrode current collector. The positive electrode active material layer may include a positive electrode active material, a binder, and optionally a conductive material.
상기 양극 집전체로는 알루미늄(Al), 니켈(Ni) 등을 사용할 수 있으나, 이에 한정되지 않는다.As the cathode current collector, aluminum (Al), nickel (Ni), or the like may be used, but is not limited thereto.
상기 양극 활물질로는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물을 사용할 수 있다. 구체적으로 코발트, 망간, 니켈, 알루미늄, 철 또는 이들의 조합의 금속과 리튬과의 복합 산화물 또는 복합 인산화물 중에서 1종 이상을 사용할 수 있다. 더욱 구체적으로, 리튬 코발트 산화물, 리튬 니켈 산화물, 리튬 망간 산화물, 리튬 니켈 코발트 망간 산화물, 리튬 니켈 코발트 알루미늄 산화물, 리튬 철 인산화물 또는 이들의 조합을 사용할 수 있다. As the cathode active material, a compound capable of reversible intercalation and deintercalation of lithium may be used. Specifically, at least one of cobalt, manganese, nickel, aluminum, iron, or a combination of metal and lithium composite oxide or phosphoric acid may be used. More specifically, lithium cobalt oxide, lithium nickel oxide, lithium manganese oxide, lithium nickel cobalt manganese oxide, lithium nickel cobalt aluminum oxide, lithium iron phosphate or a combination thereof may be used.
상기 바인더는 양극 활물질 입자들을 서로 잘 부착시킬 뿐 아니라 양극 활물질을 양극 집전체에 잘 부착시키는 역할을 하며, 구체적인 예로는 폴리비닐알코올, 카르복시메틸셀룰로오스, 히드록시프로필셀룰로오스, 디아세틸셀룰로오스, 폴리비닐클로라이드, 카르복실화된 폴리비닐클로라이드, 폴리비닐플루오라이드, 에틸렌 옥사이드 함유 폴리머, 폴리비닐피롤리돈, 폴리우레탄, 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오라이드, 폴리에틸렌, 폴리프로필렌, 스티렌-부타디엔 러버, 아크릴레이티드 스티렌-부타디엔 러버, 에폭시 수지, 나일론 등이 있으나, 이에 한정되지 않는다. 이들은 단독으로 또는 2종 이상 혼합하여 사용할 수 있다.The binder not only adheres the positive electrode active material particles well to each other, but also serves to adhere the positive electrode active material to the positive electrode current collector, and specific examples thereof include polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, diacetyl cellulose, and polyvinyl chloride. , Carboxylated polyvinylchloride, polyvinylfluoride, ethylene oxide containing polymer, polyvinylpyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, styrene-butadiene rubber, Acrylated styrene-butadiene rubber, epoxy resin, nylon and the like, but is not limited thereto. These can be used individually or in mixture of 2 or more types.
상기 도전재는 전극에 도전성을 부여하는 것으로, 그 예로 천연흑연, 인조흑연, 카본블랙, 탄소섬유, 금속 분말, 금속 섬유 등이 있으나, 이에 한정되지 않는다. 이들은 단독으로 또는 2종 이상 혼합하여 사용할 수 있다. 상기 금속 분말과 상기 금속 섬유는 구리, 니켈, 알루미늄, 은 등의 금속을 사용할 수 있다.The conductive material provides conductivity to the electrode, and examples thereof include natural graphite, artificial graphite, carbon black, carbon fiber, metal powder, and metal fiber, but are not limited thereto. These can be used individually or in mixture of 2 or more types. As the metal powder and the metal fiber, metals such as copper, nickel, aluminum, and silver may be used.
상기 음극(20, 20')은 음극 집전체 및 상기 음극 집전체 위에 형성되는 음극 활물질층을 포함할 수 있다.The negative electrodes 20 and 20 ′ may include a negative electrode current collector and a negative electrode active material layer formed on the negative electrode current collector.
상기 음극 집전체는 구리(Cu), 금(Au), 니켈(Ni), 구리 합금 등을 사용할 수 있으나, 이에 한정되지 않는다. The negative electrode current collector may include copper (Cu), gold (Au), nickel (Ni), a copper alloy, or the like, but is not limited thereto.
상기 음극 활물질층은 음극 활물질, 바인더 및 선택적으로 도전재를 포함할 수 있다.The negative electrode active material layer may include a negative electrode active material, a binder, and optionally a conductive material.
상기 음극 활물질로는 리튬 이온을 가역적으로 인터칼레이션 및 디인터칼레이션할 수 있는 물질, 리튬 금속, 리튬 금속의 합금, 리튬을 도프 및 탈도프할 수 있는 물질, 전이금속 산화물 또는 이들의 조합을 사용할 수 있다.The negative electrode active material may be a material capable of reversibly intercalating and deintercalating lithium ions, a lithium metal, an alloy of lithium metal, a material capable of doping and undoping lithium, a transition metal oxide, or a combination thereof. Can be used.
상기 리튬 이온을 가역적으로 인터칼레이션 및 디인터칼레이션할 수 있는 물질로는 탄소계 물질을 들 수 있으며, 그 예로는 결정질 탄소, 비정질 탄소 또는 이들의 조합을 들 수 있다. 상기 결정질 탄소의 예로는 무정형, 판상, 인편상(flake), 구형 또는 섬유형의 천연흑연 또는 인조흑연을 들 수 있다. 상기 비정질 탄소의 예로는 소프트 카본(soft carbon) 또는 하드 카본(hard carbon), 메조페이스 피치 탄화물, 소성된 코크스 등을 들 수 있다. 상기 리튬 금속의 합금으로는 리튬과 Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al 및 Sn으로 이루어진 군에서 선택되는 금속의 합금이 사용될 수 있다. 상기 리튬을 도프 및 탈도프할 수 있는 물질로는 Si, SiOx(0<x<2), Si-C 복합체, Si-Y 합금, Sn, SnO2, Sn-C 복합체, Sn-Y 등을 들 수 있고, 또한 이들 중 적어도 하나와 SiO2를 혼합하여 사용할 수도 있다. 상기 원소 Y로는 Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Tl, Ge, P, As, Sb, Bi, S, Se, Te, Po 및 이들의 조합으로 이루어진 군에서 선택될 수 있다. 상기 전이금속 산화물로는 바나듐 산화물, 리튬 바나듐 산화물 등을 들 수 있다. Examples of a material capable of reversibly intercalating and deintercalating the lithium ions include carbon-based materials, and examples thereof include crystalline carbon, amorphous carbon, or a combination thereof. Examples of the crystalline carbon may be amorphous, plate, flake, spherical or fibrous natural graphite or artificial graphite. Examples of the amorphous carbon include soft carbon or hard carbon, mesophase pitch carbide, calcined coke, and the like. Examples of the alloy of the lithium metal include lithium and Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al, and Sn. Alloys of the metals selected may be used. Examples of materials capable of doping and undoping lithium include Si, SiO x (0 <x <2), Si-C composites, Si-Y alloys, Sn, SnO 2 , Sn-C composites, Sn-Y, and the like. And at least one of these and SiO 2 may be mixed and used. As the element Y, Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Tl, Ge, P, As, Sb, Bi, S, Se, Te, Po and combinations thereof. Examples of the transition metal oxide include vanadium oxide and lithium vanadium oxide.
상기 음극에 사용되는 바인더와 도전재의 종류는 전술한 양극에서 사용되는 바인더와 도전재와 같다.Kinds of the binder and the conductive material used in the negative electrode are the same as the binder and the conductive material used in the above-described positive electrode.
상기 양극과 음극은 각각의 활물질 및 바인더와 선택적으로 도전재를 용매 중에 혼합하여 각 활물질 조성물을 제조하고, 상기 활물질 조성물을 각각의 집전체에 도포하여 제조할 수 있다. 이때 상기 용매는 N-메틸피롤리돈 등을 사용할 수 있으나, 이에 한정되지 않는다. 이와 같은 전극 제조 방법은 당해 분야에 널리 알려진 내용이므로 본 명세서에서 상세한 설명은 생략하기로 한다. The positive electrode and the negative electrode may be prepared by mixing each active material, a binder, and optionally a conductive material in a solvent to prepare each active material composition, and applying the active material composition to each current collector. In this case, N-methylpyrrolidone may be used as the solvent, but is not limited thereto. Since such an electrode manufacturing method is well known in the art, detailed description thereof will be omitted.
상기 전해액은 유기용매와 리튬염을 포함한다.The electrolyte solution contains an organic solvent and a lithium salt.
상기 유기용매는 전지의 전기화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 한다. 그 구체적인 예로는, 카보네이트계 용매, 에스테르계 용매, 에테르계 용매, 케톤계 용매, 알코올계 용매 및 비양성자성 용매에서 선택될 수 있다. The organic solvent serves as a medium through which ions involved in the electrochemical reaction of the battery can move. Specific examples thereof may be selected from carbonate solvents, ester solvents, ether solvents, ketone solvents, alcohol solvents and aprotic solvents.
상기 카보네이트계 용매의 예로는, 디메틸 카보네이트(DMC), 디에틸 카보네이트(DEC), 디프로필 카보네이트(DPC), 메틸프로필 카보네이트(MPC), 에틸프로필 카보네이트(EPC), 에틸메틸 카보네이트(EMC), 에틸렌 카보네이트(EC), 프로필렌 카보네이트(PC), 부틸렌 카보네이트(BC) 등을 들 수 있다. 구체적으로, 사슬형 카보네이트 화합물과 환형 카보네이트 화합물을 혼합하여 사용하는 경우 유전율을 높이는 동시에 점성이 작은 용매로 제조될 수 있다. 이때 환형 카보네이트 화합물 및 사슬형 카보네이트 화합물은 1:1 내지 1:9의 부피비로 혼합하여 사용할 수 있다. Examples of the carbonate solvent include dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), methylpropyl carbonate (MPC), ethylpropyl carbonate (EPC), ethylmethyl carbonate (EMC), ethylene Carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), and the like. Specifically, when a mixture of the chain carbonate compound and the cyclic carbonate compound is used, the dielectric constant may be increased, and the solvent may have a low viscosity. In this case, the cyclic carbonate compound and the chain carbonate compound may be mixed and used in a volume ratio of 1: 1 to 1: 9.
상기 에스테르계 용매의 예로는, 메틸아세테이트, 에틸아세테이트, n-프로필아세테이트, 디메틸아세테이트, 메틸프로피오네이트, 에틸프로피오네이트, γ-부티로락톤, 데카놀라이드(decanolide), 발레로락톤, 메발로노락톤(mevalonolactone), 카프로락톤(caprolactone) 등을 들 수 있다. 상기 에테르계 용매의 예로는, 디부틸에테르, 테트라글라임, 디글라임, 디메톡시에탄, 2-메틸테트라히드로퓨란, 테트라히드로퓨란 등을 들 수 있다. 상기 케톤계 용매로는 시클로헥사논 등을 들 수 있고, 상기 알코올계 용매로는 에틸알코올, 이소프로필 알코올 등을 들 수 있다.Examples of the ester solvents include methyl acetate, ethyl acetate, n-propyl acetate, dimethyl acetate, methyl propionate, ethyl propionate, γ-butyrolactone, decanolide, valerolactone, and meronate. Melononolactone, caprolactone, and the like. Examples of the ether solvent include dibutyl ether, tetraglyme, diglyme, dimethoxyethane, 2-methyltetrahydrofuran, tetrahydrofuran and the like. Cyclohexanone etc. are mentioned as said ketone solvent, Ethyl alcohol, isopropyl alcohol, etc. are mentioned as said alcohol solvent.
상기 유기용매는 단독으로 또는 2종 이상 혼합하여 사용할 수 있으며, 2종 이상 혼합하여 사용하는 경우의 혼합 비율은 목적하는 전지 성능에 따라 적절하게 조절할 수 있다.The organic solvents may be used alone or in combination of two or more thereof, and the mixing ratio in the case of mixing two or more kinds may be appropriately adjusted according to the desired battery performance.
상기 리튬염은 유기용매에 용해되어, 전지 내에서 리튬 이온의 공급원으로 작용하여 기본적인 이차 전지의 작동을 가능하게 하고, 양극과 음극 사이의 리튬 이온의 이동을 촉진시키는 물질이다.The lithium salt is a substance that dissolves in an organic solvent and acts as a source of lithium ions in the battery to enable operation of a basic secondary battery and to promote the movement of lithium ions between the positive electrode and the negative electrode.
상기 리튬염의 예로는, LiPF6, LiBF4, LiSbF6, LiAsF6, LiN(SO3C2F5)2, LiN(CF3SO2)2, LiC4F9SO3, LiClO4, LiAlO2, LiAlCl4, LiN(CxF2x+1SO2)(CyF2y+1SO2)(x 및 y는 자연수임), LiCl, LiI, LiB(C2O4)2 또는 이들의 조합을 들 수 있다.Examples of the lithium salt include LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiN (SO 3 C 2 F 5 ) 2 , LiN (CF 3 SO 2 ) 2 , LiC 4 F 9 SO 3 , LiClO 4 , LiAlO 2 , LiAlCl 4 , LiN (C x F 2x + 1 SO 2 ) (C y F 2y + 1 SO 2 ) (x and y are natural numbers), LiCl, LiI, LiB (C 2 O 4 ) 2 or a combination thereof Can be mentioned.
상기 리튬염의 농도는 0.1M 내지 2.0M 범위 내에서 사용할 수 있다. 리튬염의 농도가 상기 범위 내인 경우, 전해액이 적절한 전도도 및 점도를 가지므로 우수한 전해액 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.The concentration of the lithium salt can be used within the range of 0.1M to 2.0M. When the concentration of the lithium salt is within the above range, since the electrolyte has an appropriate conductivity and viscosity, it can exhibit excellent electrolyte performance, and lithium ions can move effectively.
이하, 실시예, 비교예 및 실험예를 기술함으로써 본 발명을 보다 상세히 설명한다. 다만, 하기의 실시예, 비교예 및 실험예는 본 발명의 일 예시에 불과하며 본 발명의 내용이 이에 한정되는 것으로 해석되어서는 아니된다.Hereinafter, the present invention will be described in more detail by describing Examples, Comparative Examples, and Experimental Examples. However, the following Examples, Comparative Examples and Experimental Examples are merely examples of the present invention and should not be construed as being limited thereto.
실시예 Example
실시예 1: 분리막의 제조Example 1 Preparation of Membrane
부틸 메타아크릴레이트(Buthyl Methacrylate, BMA), 메틸 메타크릴레이트(Methyl Methacrylate, MMA), 비닐 아세테이트(Vinyl Acetate, VAc) 가 4/1/5 몰비율로 중합된 아크릴계 공중합체 바인더를 아세톤(acetone)에 용해시켜 고형분 5 중량% 인 제1 바인더 용액과, PVdF계 폴리머 (쿠레하사 KF9300, Mw: 1,200,000 g/mol)을 아세톤, DMAc 혼합 용매에 용해시켜 고형분 7 중량% 용액인 제2 바인더 용액을 각각 제조하였다. 알루미나 (LS235, 일본경금속)를 아세톤에 25 중량%로 첨가 후 3시간 동안 비즈밀 분산을 하여 알루미나 분산액을 제조하였다. 위의 아크릴계 바인더와 PVdF계 바인더의 중량비가 6:4가 되도록, 바인더 고형분과 알루미나 고형분의 중량비가 1/6 비율이 되도록 제1, 제2 바인더 용액 및 알루미나 분산액을 혼합하였으며, 전체 고형분이 12 중량%가 되도록 아세톤을 첨가하여 코팅액을 제조하였다. 두께가 7 ㎛인 폴리에틸렌 원단(SK 社)의 양면에 상기 코팅액으로 각각 2㎛ 두께로 코팅하여 총 두께 11 ㎛ 정도의 분리막을 제작하였다.Acetone is an acrylic copolymer binder in which butyl methacrylate (BMA), methyl methacrylate (MMA), and vinyl acetate (Vinyl Acetate, VAc) are polymerized at a 4/1/5 molar ratio. Dissolved in the first binder solution having a solid content of 5% by weight, and a PVdF-based polymer (Kurehasa KF9300, Mw: 1,200,000 g / mol) in acetone and DMAc mixed solvents to dissolve a second binder solution which is a 7% by weight solid solution. Prepared. Alumina dispersion was prepared by adding alumina (LS235, Nippon Light Metal) to acetone at 25% by weight and dispersing the beads for 3 hours. The first and second binder solutions and the alumina dispersion were mixed so that the weight ratio of the above-mentioned acrylic binder and the PVdF-based binder was 6: 4, so that the weight ratio of the binder solid and the alumina solid was 1/6, and the total solid was 12 wt. Acetone was added to make the coating solution. 7 µm thick polyethylene fabric (SK, Inc.) was coated on both sides of the coating solution with a thickness of 2 μm, respectively, to prepare a separator having a total thickness of about 11 μm.
실시예 2: 분리막의 제조Example 2: Preparation of Separator
상기 실시예 1에서 아크릴계 바인더와 PVdF계 바인더의 중량비가 7:3이 되게 한 것을 제외하고는 상기 실시예 1과 동일하게 실시하여 실시예 2의 분리막을 제조하였다.The separation membrane of Example 2 was prepared in the same manner as in Example 1, except that the weight ratio of the acrylic binder and the PVdF binder was 7: 3 in Example 1.
실시예 3: 분리막의 제조Example 3: Preparation of Separator
상기 실시예 1에서 아크릴계 바인더와 PVdF계 바인더의 중량비가 8:2가 되게 한 것을 제외하고는 상기 실시예 1과 동일하게 실시하여 실시예 3의 분리막을 제조하였다.The separator of Example 3 was prepared in the same manner as in Example 1, except that the weight ratio of the acrylic binder and the PVdF binder was 8: 2 in Example 1.
실시예 4: 분리막의 제조Example 4 Preparation of Membrane
상기 실시예 1에서 제2 바인더로 KF9300 대신 5130(솔베이사, 중량 평균 분자량: 1,000,000 내지 1,200,000 g/mol)을 사용한 것을 제외하고는 상기 실시예 1과 동일하게 실시하여 실시예 4의 분리막을 제조하였다.A separator of Example 4 was prepared in the same manner as in Example 1, except that 5130 (Solva, Inc., weight average molecular weight: 1,000,000 to 1,200,000 g / mol) was used as the second binder in Example 1. .
실시예 5: 분리막의 제조Example 5: Preparation of Separator
상기 실시예 4에서 아크릴계 바인더와 5130 바인더의 중량비가 7:3이 되게 한 것을 제외하고는 상기 실시예 4과 동일하게 실시하여 실시예 5의 분리막을 제조하였다.The separation membrane of Example 5 was prepared in the same manner as in Example 4, except that the weight ratio of the acrylic binder and the 5130 binder was 7: 3 in Example 4.
실시예 6: 분리막의 제조Example 6: Preparation of Membrane
상기 실시예 4에서 아크릴계 바인더와 5130 바인더의 중량비가 8:2가 되게 한 것을 제외하고는 상기 실시예 4과 동일하게 실시하여 실시예 6의 분리막을 제조하였다.The separator of Example 6 was prepared in the same manner as in Example 4, except that the weight ratio of the acrylic binder and the 5130 binder was 8: 2.
비교예 1: 분리막의 제조Comparative Example 1: Preparation of Separator
상기 실시예 1에서 제2 바인더로 KF9300 대신 21216(솔베이사, 중량 평균 분자량: 570,000 내지 700,000 g/mol, PVDF-HFP 코폴리머)을 사용한 것을 제외하고는 상기 실시예 1과 동일하게 실시하여 비교예 1의 분리막을 제조하였다.Comparative Example 1 was carried out in the same manner as in Example 1 except that 21216 (Solva, Inc., weight average molecular weight: 570,000 to 700,000 g / mol, PVDF-HFP copolymer) was used instead of KF9300 in Example 1 A separator of 1 was prepared.
비교예 2: 분리막의 제조Comparative Example 2: Preparation of Separator
상기 비교예 1에서 아크릴계 바인더와 21216 바인더의 중량비가 7:3이 되게 한 것을 제외하고는 상기 비교예 1과 동일하게 실시하여 비교예 2의 분리막을 제조하였다.A separation membrane of Comparative Example 2 was prepared in the same manner as in Comparative Example 1 except that the weight ratio of the acrylic binder and the 21216 binder was 7: 3 in Comparative Example 1.
비교예 3: 분리막의 제조Comparative Example 3: Preparation of Separator
상기 비교예 1에서 아크릴계 바인더와 21216 바인더의 중량비가 8:2이 되게 한 것을 제외하고는 상기 비교예 1과 동일하게 실시하여 비교예 3의 분리막을 제조하였다.The separation membrane of Comparative Example 3 was prepared in the same manner as in Comparative Example 1, except that the weight ratio of the acrylic binder and the 21216 binder was 8: 2 in Comparative Example 1.
비교예 4: 분리막의 제조Comparative Example 4: Preparation of Separator
상기 실시예 1에서 제2 바인더로 KF9300 대신 6020(솔베이사, 중량 평균 분자량: 670,000 내지 700,000 g/mol, PVDF 호모폴리머)를 7:3의 중량비로 사용한 것을 제외하고는 상기 실시예 1과 동일하게 실시하여 비교예 4의 분리막을 제조하였다.In Example 1, except that 6020 (Solva, Inc., weight average molecular weight: 670,000 to 700,000 g / mol, PVDF homopolymer) was used as the second binder in a weight ratio of 7: 3 in the same manner as in Example 1, except that KF9300 was used. The separation membrane of Comparative Example 4 was prepared.
상기 실시예 1 내지 6 및 비교예 1 내지 4에 따른 각 분리막의 조성을 하기 표 2에 나타낸다.The composition of each separator according to Examples 1 to 6 and Comparative Examples 1 to 4 is shown in Table 2 below.
표 2
TABLE 2
원단/두께(㎛) | 바인더 조성 | 무기입자 함량(중량%) | ||
아크릴/PVdF계 중량비 | PVdF계 Mw(g/mol) | |||
실시예 1 | PE/7 | 6/4 | 120만 | 86 |
실시예 2 | PE/7 | 7/3 | 120만 | 86 |
실시예 3 | PE/7 | 8/2 | 120만 | 86 |
실시예 4 | PE/7 | 6/4 | 100만~120만 | 86 |
실시예 5 | PE/7 | 7/3 | 100만~120만 | 86 |
실시예 6 | PE/7 | 8/2 | 100만~120만 | 86 |
비교예 1 | PE/7 | 6/4 | 57만~70만 | 86 |
비교예 2 | PE/7 | 7/3 | 57만~70만 | 86 |
비교예 3 | PE/7 | 8/2 | 57만~70만 | 86 |
비교예 4 | PE/7 | 7/3 | 67만~70만 | 86 |
Fabric / thickness (㎛) | Binder composition | Inorganic Particle Content (wt%) | ||
Acrylic / PVdF-based weight ratio | PVdF-based Mw (g / mol) | |||
Example 1 | PE / 7 | 6/4 | 1.2 million | 86 |
Example 2 | PE / 7 | 7/3 | 1.2 million | 86 |
Example 3 | PE / 7 | 8/2 | 1.2 million | 86 |
Example 4 | PE / 7 | 6/4 | 1 to 1.2 million | 86 |
Example 5 | PE / 7 | 7/3 | 1 to 1.2 million | 86 |
Example 6 | PE / 7 | 8/2 | 1 to 1.2 million | 86 |
Comparative Example 1 | PE / 7 | 6/4 | 570,000-700,000 | 86 |
Comparative Example 2 | PE / 7 | 7/3 | 570,000-700,000 | 86 |
Comparative Example 3 | PE / 7 | 8/2 | 570,000-700,000 | 86 |
Comparative Example 4 | PE / 7 | 7/3 | 670,000-700,000 | 86 |
실험예 Experimental Example
상기 실시예 1 내지 6 및 비교예 1 내지 4에서 제조된 분리막에 대해 아래에 개시된 측정 방법으로 통기도; 인장강도; 충방전 전 및 충방전 후 활물질의 전사율; 전극 조립체의 두께 변화율을 측정하고 그 결과를 표 3에 나타내었다.Air permeability by the measurement method described below for the separator prepared in Examples 1 to 6 and Comparative Examples 1 to 4; The tensile strength; Transfer rate of the active material before and after charge and discharge; The rate of change of the thickness of the electrode assembly was measured and the results are shown in Table 3.
표 3
TABLE 3
실시예 1 | 실시예 2 | 실시예 3 | 실시예 4 | 실시예 5 | 실시예 6 | 비교예 1 | 비교예 2 | 비교예 3 | 비교예 4 | ||
통기도(sec/100cc) | 197 | 194 | 204 | 212 | 183 | 198 | 209 | 206 | 245 | 267 | |
인장강도(kgf/cm2) | MD | 1799 | 1795 | 1796 | 1803 | 1751 | 1776 | 1807 | 1792 | 1765 | 1777 |
TD | 1714 | 1704 | 1699 | 1717 | 1682 | 1689 | 1709 | 1713 | 1680 | 1687 | |
두께 변화율(%) | 3% 미만 | 3% 미만 | 3% 미만 | 3% 미만 | 3% 미만 | 3% 미만 | 3~7% | 3~7% | 3~7% | 7% 초과 | |
충방전 전 전사율(%) | 음극 | 95 | 90 | 95 | 70 | 70 | 70 | 93 | 93 | 95 | - |
양극 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | - | |
충방전 후 전사율(%) | 음극 | 90 | 90 | 99 | 64 | 80 | 80 | 0 | 0 | 0 | - |
양극 | 99 | 99 | 99 | 99 | 99 | 99 | 30 | 30 | 30 | - |
Example 1 | Example 2 | Example 3 | Example 4 | Example 5 | Example 6 | Comparative Example 1 | Comparative Example 2 | Comparative Example 3 | Comparative Example 4 | ||
Breathability (sec / 100cc) | 197 | 194 | 204 | 212 | 183 | 198 | 209 | 206 | 245 | 267 | |
Tensile strength (kgf / cm 2 ) | MD | 1799 | 1795 | 1796 | 1803 | 1751 | 1776 | 1807 | 1792 | 1765 | 1777 |
TD | 1714 | 1704 | 1699 | 1717 | 1682 | 1689 | 1709 | 1713 | 1680 | 1687 | |
Thickness change rate (%) | Less than 3% | Less than 3% | Less than 3% | Less than 3% | Less than 3% | Less than 3% | 3-7% | 3-7% | 3-7% | Greater than 7% | |
Transfer rate before charge and discharge (%) | cathode | 95 | 90 | 95 | 70 | 70 | 70 | 93 | 93 | 95 | - |
anode | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | - | |
Transfer rate after charge and discharge (%) | cathode | 90 | 90 | 99 | 64 | 80 | 80 | 0 | 0 | 0 | - |
anode | 99 | 99 | 99 | 99 | 99 | 99 | 30 | 30 | 30 | - |
1. 통기도1. Breathability
상기 실시예 및 비교예들에서 제조된 분리막 각각을 지름이 1 인치 (inch) 인 원이 들어갈 수 있는 크기로 서로 다른 10 개의 지점에서 재단한 10 개의 시료를 제작한 다음, 통기도 측정 장치 (아사히 세이코 사)를 사용하여 상기 각 시료에서 공기 100cc가 통과하는 시간을 측정하였다. 상기 시간을 각각 다섯 차례씩 측정한 다음 평균값을 계산하여 이를 통기도로 하였다.Each of the separators prepared in the above Examples and Comparative Examples was prepared to cut 10 samples cut from 10 different points to a size of 1 inch (1 inch) in diameter, and then the air permeability measuring device (Asahi Seiko) G) was used to measure the time for passage of 100 cc of air in each sample. The time was measured five times each, and then the average value was calculated as air permeability.
2. 인장강도2. Tensile Strength
상기 실시예 및 비교예들에서 제조된 분리막 각각을 가로(MD) 50 mm × 세로(TD) 150 mm, 그리고 가로(MD) 150 mm ×세로(TD) 50 mm의 직사각형 형태로 각각 5개씩 재단한 10 개의 시료를 제작한 다음, 상기 각 시료를 UTM (인장시험기)에 장착하여 측정 길이가 20 mm가 되도록 물린 후 상기 시료를 당겨 MD 방향 및 TD 방향의 평균 인장 강도를 측정하였다.Each of the separators prepared in Examples and Comparative Examples was cut into five pieces in a rectangular shape of 50 mm long by 150 mm long by 150 mm long by MD, and by 150 mm long by 50 mm wide by 50 mm long. Ten samples were prepared, and each sample was mounted on a UTM (tension tester) to be bitten to a measurement length of 20 mm, and then the sample was pulled to measure average tensile strength in the MD and TD directions.
3. 두께 변화율3. Thickness change rate
상기 실시예 및 비교예들에서 제조된 분리막을 양극 및 음극 사이에 개재한 전극 조립체의 두께 및 이의 변화율을 측정하기 위하여 하기의 방법을 수행하였다.The following method was performed to measure the thickness and rate of change of the electrode assembly having the separator prepared in Examples and Comparative Examples interposed between the positive electrode and the negative electrode.
양극 활물질로 LCO (LiCoO2)을 두께 14㎛의 알루미늄 호일에 두께 94μm 로 양면 코팅하고 건조, 압연하여 총 두께 108 ㎛의 양극을 제조하고, 음극 활물질로 천연 흑연(Natural Graphite): 인조 흑연(Artificial Graphite) = 1:1 을 두께 8㎛의 구리 호일에 120μm로 양면 코팅하고 건조, 압연하여 총 두께 128 ㎛의 음극을 제조하였다.LCO (LiCoO 2 ) as an anode active material was coated on both sides of an aluminum foil having a thickness of 14 μm with a thickness of 94 μm, dried, and rolled to produce a cathode having a total thickness of 108 μm. Graphite) = 1: 1 was coated on both sides of copper foil having a thickness of 8 μm at 120 μm, dried, and rolled to prepare a negative electrode having a total thickness of 128 μm.
상기 양극 및 음극을 100 cm(길이 방향) ×6.3 cm(폭 방향)으로 각각 재단하고, 실시예 및 비교예들에서 제조된 분리막을 100 cm(길이 방향) ×6.5 cm(폭 방향)으로 재단한 후, 양극 및 음극 사이에 개재시켜 7 cm(길이 방향) ×6.5 cm(폭방향)로 권취하여 전극 조립체를 형성하고 전극 조립체의 두께를 30cm 스틸 자를 이용해 측정하였다(T1). The anode and the cathode were cut in 100 cm (length direction) × 6.3 cm (width direction), respectively, and the separators prepared in Examples and Comparative Examples were cut in 100 cm (length direction) × 6.5 cm (width direction). Thereafter, the electrode assembly was wound up to 7 cm (length direction) x 6.5 cm (width direction) between the positive electrode and the negative electrode to form an electrode assembly, and the thickness of the electrode assembly was measured using a 30 cm steel ruler (T 1 ).
이후 상기 전극 조립체를 100℃에서 5 kgf/cm2의 압력으로 3초간 프레스한 후 30 cm 스틸 자를 이용하여 전극조립체의 두께를 측정하고(T2), 하기 식 2에 의해 두께 변화율을 계산하였다.Thereafter, the electrode assembly was pressed at 100 ° C. at a pressure of 5 kgf / cm 2 for 3 seconds, and the thickness of the electrode assembly was measured using a 30 cm steel ruler (T 2 ), and the thickness change rate was calculated by the following Equation 2.
[식 2][Equation 2]
두께 변화율(%)=[(T1-T2)/T1] ×100 Thickness Change (%) = [(T 1 -T 2 ) / T 1 ] × 100
4. 충방전 전 및 충방전 후 활물질의 전사율
4. Transfer rate of active material before and after charge and discharge
양극 활물질로 LCO (LiCoO2)를 두께 14 μm의 알루미늄 호일에 두께 94μm 로 양면 코팅하고 건조, 압연하여 총 두께 108 ㎛의 양극을 제조하였다. 음극 활물질로 천연 흑연과 인조 흑연(1:1)을 두께 8μm의 구리 호일에 120μm로 양면 코팅하고 건조, 압연하여 총 두께 128 ㎛의 음극을 제조하였다. 전해액으로는 EC/EMC/DEC + 0.2%LiBF4 + 5.0% FEC + 1.0% VC + 3.00%SN +1.0%PS + 1.0%SA 의 유기용매에 혼합된 1.5M LiPF6 (PANAX ETEC CO., LTD.)을 사용하였다.As a positive electrode active material, LCO (LiCoO 2) was coated on both sides of an aluminum foil having a thickness of 14 μm with a thickness of 94 μm, dried, and rolled to prepare a positive electrode having a total thickness of 108 μm. As a negative electrode active material, natural graphite and artificial graphite (1: 1) were coated on both sides of a copper foil having a thickness of 8 μm at 120 μm, dried, and rolled to prepare a negative electrode having a total thickness of 128 μm. As electrolyte, 1.5M LiPF6 mixed with organic solvent of EC / EMC / DEC + 0.2% LiBF4 + 5.0% FEC + 1.0% VC + 3.00% SN + 1.0% PS + 1.0% SA (PANAX ETEC CO., LTD.) Was used.
상기 실시예 및 비교예에서 제조된 분리막을 상기 양극 및 음극 사이에 개재시켜 7cm×6.5cm의 전극 조립체로 권취하였다. 상기 전극 조립체를 100℃에서 3초, 5kgf/cm2 의 압력하에 1차 압착하여 알루미늄 코팅 파우치 (8cm×12cm)에 넣고 인접한 두 모서리를 143℃의 온도로 실링(sealing)한 후 상기 전해액 6.5g을 투입, 3분 이상 degassing machine을 이용하여 전지 내 공기가 남아있지 않도록 실링하였다. 상기 제조된 전지를 12시간 25℃에서 에이징(aging)한 후 110℃에서 120초, 20kgf/cm2 의 압력하에 2차 압착하였다. 이어서, 전지를 해체하여 음극 혹은 양극의 활물질이 분리막에 전사된 면적을 촬영하고(lumenera 사 고해상도 카메라) 이를 이미지 분석기(Easy Measure converter 1.0.0.4)을 사용하여 전사된 면적을 계산하고 이를 충방전 전 전사율로 하였다. 또한, 상기 에이징 및 상기 2차 압착 후 계속해서 전극 조립체를 12시간 25℃에서 2차 에이징(aging)하고 4.35V, 0.2C, 1시간 동안 pre-charge후 전지 내 가스를 제거하고, 아래 충전, 방전 및 충전의 조건으로 충방전을 실시한 후 전지를 해체하고 음극 혹은 양극의 활물질이 분리막에 전사된 면적을 상기 충방전 전 전사율과 동일한 방법으로 측정하고 이를 충방전 후 전사율로 하였다. The separators prepared in Examples and Comparative Examples were wound between the anode and the cathode with an electrode assembly of 7 cm × 6.5 cm. The electrode assembly was first pressed at 100 ° C. for 3 seconds under a pressure of 5 kgf / cm 2 , placed in an aluminum coated pouch (8 cm × 12 cm), and the two adjacent corners were sealed at a temperature of 143 ° C., followed by 6.5 g of the electrolyte solution. Was added and sealed so that no air remained in the battery using a degassing machine for at least 3 minutes. The prepared battery was aged at 25 ° C. for 12 hours, and then pressed at 110 ° C. for 120 seconds under a pressure of 20 kgf / cm 2 . Subsequently, the cell was dismantled to photograph an area where an active material of a negative electrode or a positive electrode was transferred to a separator (lumenera high resolution camera), and the image was transferred using an image analyzer (Easy Measure converter 1.0.0.4) to calculate the transferred area. It was set as the transcription rate. In addition, after the aging and the secondary pressing, the electrode assembly was continuously aged at 25 ° C. for 12 hours and pre-charged for 4.35V, 0.2C, and 1 hour to remove gas in the cell, and the following charging, After charging and discharging under the conditions of discharging and charging, the battery was dismantled, and the area transferred from the active material of the negative electrode or the positive electrode to the separator was measured by the same method as the transfer rate before charge and discharge, and the transfer rate after charge and discharge was determined.
상기 표 3에서 확인할 수 있는 바와 같이, 본원 아크릴계 공중합체 및 중량 평균 분자량이 1,000,000 g/mol 이상인 폴리비닐리덴 플루오라이드계 폴리머를 포함하는 접착층이 형성된 실시예 1 내지 6의 분리막의 경우 충방전 전 및 충방전 후 전사율이 모두 50% 이상으로 양호한 반면, 중량 평균 분자량이 1,000,000 g/mol 미만인 폴리비닐리덴 플루오라이드계 코폴리머를 아크릴계 공중합체와 함께 사용한 비교예 1 내지 3의 경우 충방전 전 전사율은 50% 이상이었으나, 충방전 후 전사율이 50% 미만으로 현저히 저하되었다. 또한, 중량 평균 분자량이 1,000,000 g/mol 미만인 폴리비닐리덴 플루오라이드계 호모폴리머를 아크릴계 공중합체와 함께 사용한 비교예 4의 경우 두께 변화율이 7% 초과로 컸을 뿐 아니라 충방전 전, 후 모두에서 분리막이 음극 혹은 양극과 분리되어 전사율의 측정이 불가하였다. As can be seen in Table 3, before the charge and discharge of the separator of Examples 1 to 6 in which the adhesive layer comprising the present acrylic copolymer and a polyvinylidene fluoride-based polymer having a weight average molecular weight of 1,000,000 g / mol or more is formed. The transfer rate after charge and discharge was good at all 50% or more, while the transfer rate before charge and discharge for Comparative Examples 1 to 3 using a polyvinylidene fluoride copolymer having a weight average molecular weight of less than 1,000,000 g / mol together with an acrylic copolymer Was more than 50%, but the charge rate was significantly lowered to less than 50% after charging and discharging. In addition, in the case of Comparative Example 4 using a polyvinylidene fluoride homopolymer having a weight average molecular weight of less than 1,000,000 g / mol with an acrylic copolymer, the thickness change rate was greater than 7%, and the separator was formed before and after charge and discharge. The transfer rate could not be measured because it was separated from the negative electrode or the positive electrode.
[부호의 설명][Description of the code]
100, 200: 이차 전지 100, 200: secondary battery
10, 10': 양극10, 10 ': anode
20, 20': 음극20, 20 ': cathode
30, 30': 분리막30, 30 ': separator
40: 전극 조립체40: electrode assembly
50, 50': 케이스50, 50 ': case
140: 봉입 부재140: sealing member
Claims (16)
- 다공성 기재; 및Porous substrates; And상기 다공성 기재의 일면 혹은 양면에 형성된 접착층을 포함하고,It includes an adhesive layer formed on one side or both sides of the porous substrate,상기 접착층은, (메트)아크릴레이트계 단량체 유래 반복단위를 포함하는 아크릴계 공중합체, 및 중량 평균 분자량이 1,000,000 g/mol 이상인 폴리비닐리덴 플루오라이드계 폴리머 함유 접착층을 포함하는, 분리막.The adhesive layer comprises an acrylic copolymer comprising a repeating unit derived from a (meth) acrylate monomer, and a polyvinylidene fluoride polymer-containing adhesive layer having a weight average molecular weight of 1,000,000 g / mol or more.
- 제1항에 있어서, 상기 아크릴계 공중합체가 아세테이트기 함유 단량체 유래 반복단위를 추가로 포함하는, 분리막.The separation membrane according to claim 1, wherein the acrylic copolymer further comprises a repeating unit derived from an acetate group-containing monomer.
- 제2항에 있어서, 상기 아세테이트기 함유 단량체 유래 반복단위가 비닐 아세테이트 및 알릴 아세테이트 중 하나 이상의 단량체 유래 단복단위인, 분리막.The separation membrane according to claim 2, wherein the acetate group-containing monomer-derived repeating unit is a single unit derived from one or more monomers of vinyl acetate and allyl acetate.
- 제1항에 있어서, 상기 (메트)아크릴레이트계 단량체 유래 반복단위가, 부틸 (메트)아크릴레이트, 프로필 (메트)아크릴레이트, 에틸 (메트)아크릴레이트 및 메틸 (메트)아크릴레이트로 이루어진 군으로부터 선택된 1종 이상의 단량체로부터 유래된 반복단위인, 분리막. The repeating unit derived from the (meth) acrylate-based monomer according to claim 1, wherein the repeating unit derived from the (meth) acrylate monomer is selected from the group consisting of butyl (meth) acrylate, propyl (meth) acrylate, ethyl (meth) acrylate and methyl (meth) acrylate. A separator, which is a repeating unit derived from at least one monomer selected.
- 제1항에 있어서, 상기 폴리비닐리덴 플루오라이드계 폴리머가, 폴리비닐리덴 플루오라이드 호모폴리머, 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌 코폴리머, 및 이의 변형 폴리머 중 1종 이상인, 분리막.The separator according to claim 1, wherein the polyvinylidene fluoride polymer is at least one of polyvinylidene fluoride homopolymer, polyvinylidene fluoride-hexafluoropropylene copolymer, and modified polymer thereof.
- 제1항 내지 제5항 중 어느 하나의 항에 있어서, 상기 접착층이 무기입자를 추가로 포함하는, 분리막. Separation membrane according to any one of claims 1 to 5, wherein the adhesive layer further comprises inorganic particles.
- 제1항 내지 제6항 중 어느 하나의 항에 있어서, 상기 아크릴계 공중합체와 상기 폴리비닐리덴 플루오라이드계 폴리머의 중량비가 5:5 내지 8:2인, 분리막.The separation membrane according to any one of claims 1 to 6, wherein a weight ratio of the acrylic copolymer and the polyvinylidene fluoride polymer is 5: 5 to 8: 2.
- 제1항 내지 제7항 중 어느 하나의 항에 있어서, 상기 폴리비닐리덴 플루오라이드계 폴리머의 중량 평균 분자량이 1,000,000 g/mol 내지 1,700,000 g/mol의 범위인, 분리막.The separator according to claim 1, wherein the polyvinylidene fluoride polymer has a weight average molecular weight in the range of 1,000,000 g / mol to 1,700,000 g / mol.
- 다공성 기재, 및A porous substrate, and상기 다공성 기재의 일면 혹은 양면에 형성된, 바인더 함유 접착층을 포함하는 분리막으로,Separation membrane comprising a binder-containing adhesive layer, formed on one or both sides of the porous substrate,상기 분리막의 식 1의 충방전 후 양극 혹은 음극 활물질의 분리막으로의 전사율이 각각 50% 이상인, 분리막. Separator, wherein the rate of transfer of the positive electrode or negative electrode active material to the separator after charging and discharging of the formula 1 is 50% or more, respectively.[식 1][Equation 1]전사율 (%) = (A1 / A0) X 100Transfer rate (%) = (A 1 / A 0 ) X 100상기 식 1에서, In Formula 1,A0는 음극 또는 양극의 전체 면적이고,A 0 is the total area of the cathode or anode,A1는 양극, 분리막 및 음극이 순차적으로 적층된 전극 조립체를 형성하고 이를 20℃ 내지 110℃의 온도에서, 1초 내지 5초간, 1 kgf/cm2 내지 30 kgf/cm2의 힘으로 1차 압착하고, 상기 압착된 전극조립체에 전해액을 주입하고 60 ℃ 내지 110 ℃, 30 초 내지 180초간, 1 kgf/cm2 내지 30 kgf/cm2 의 힘으로 2차 압착한 후, 충전, 방전 및 충전을 순차적으로 실시하였을 때 분리막에 전사된 양극 혹은 음극 활물질의 면적이다.A 1 forms an electrode assembly in which the positive electrode, the separator, and the negative electrode are sequentially stacked, and at the temperature of 20 ° C. to 110 ° C. for 1 second to 5 seconds, with a force of 1 kgf / cm 2 to 30 kgf / cm 2 . After pressing, the electrolyte solution is injected into the compressed electrode assembly, and the second electrode is pressed with a force of 1 kgf / cm 2 to 30 kgf / cm 2 for 60 ° C. to 110 ° C., 30 seconds to 180 seconds, and then charged, discharged and charged. When sequentially performed, the area of the positive electrode or negative electrode active material transferred to the separator.
- 제9항에 있어서, 상기 분리막의 식 2의 두께 변화율이 7% 이하인 분리막. The separator according to claim 9, wherein the thickness change rate of Equation 2 of the separator is 7% or less.[식 2][Equation 2]두께 변화율(%)=[(T1-T2)/T1] ×100Thickness Change (%) = [(T 1 -T 2 ) / T 1 ] × 100상기 식 2에서, In Equation 2,T1은 양극 및 음극 사이에 분리막을 개재하고, 상기 양극, 분리막 및 음극이 순차적으로 적층된 적층물을 7 cm (길이방향) ×6.5 cm (폭방향)의 크기로 권취하여 전극 조립체를 형성한 측정된 두께이고,T 1 is interposed between the positive electrode and the negative electrode, and the positive electrode, the separator and the negative electrode is laminated to sequentially stacked to a size of 7 cm (length direction) × 6.5 cm (width direction) to form an electrode assembly Measured thickness,T2는 상기 형성된 전극 조립체를 20℃ 내지 110℃에서 1 kgf/cm2 내지 30 kgf/cm2의 압력으로 1 내지 5초간 프레스한 후 측정된 두께이다.T 2 is the thickness measured after pressing the formed electrode assembly at a pressure of 1 kgf / cm 2 to 30 kgf / cm 2 at 20 ° C. to 110 ° C. for 1 to 5 seconds.
- 제9항 또는 제10항에 있어서, 상기 접착층이 (메트)아크릴레이트계 단량체 유래 반복단위를 포함하는 아크릴계 공중합체 및 중량 평균 분자량이 1,000,000 g/mol 이상인 폴리비닐리덴 플루오라이드계 폴리머를 포함하는, 분리막.The method of claim 9 or 10, wherein the adhesive layer comprises an acrylic copolymer containing a (meth) acrylate monomer-derived repeating unit and a polyvinylidene fluoride polymer having a weight average molecular weight of 1,000,000 g / mol or more, Separator.
- 제11항에 있어서, 상기 아크릴계 공중합체가 아세테이트기 함유 단량체 유래 반복단위를 추가로 포함하는, 분리막.The separation membrane according to claim 11, wherein the acrylic copolymer further comprises a repeating unit derived from an acetate group-containing monomer.
- 제11항 또는 제12항에 있어서, 상기 아크릴계 공중합체와 상기 폴리비닐리덴 플루오라이드계 폴리머의 중량비가 5:5 내지 8:2인, 분리막. The separator according to claim 11 or 12, wherein a weight ratio of the acrylic copolymer and the polyvinylidene fluoride polymer is 5: 5 to 8: 2.
- 제9항 내지 제13항 중 어느 하나의 항에 있어서, 상기 접착층이 무기 입자를 추가로 포함하는, 분리막.The separation membrane according to any one of claims 9 to 13, wherein the adhesive layer further includes inorganic particles.
- 제1항 내지 제14항 중 어느 하나의 항에 따른 분리막을 포함하는 이차 전지.A secondary battery comprising the separator according to any one of claims 1 to 14.
- 제15항에 있어서, 상기 이차 전지는 리튬 이차 전지인 이차 전지.The secondary battery of claim 15, wherein the secondary battery is a lithium secondary battery.
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2013-0142324 | 2013-11-21 | ||
KR20130142324 | 2013-11-21 | ||
KR10-2014-0041124 | 2014-04-07 | ||
KR20140041124 | 2014-04-07 | ||
KR10-2014-0133340 | 2014-10-02 | ||
KR1020140133340A KR20150106810A (en) | 2013-11-21 | 2014-10-02 | Separators and secondary battery using the separator |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015076574A1 true WO2015076574A1 (en) | 2015-05-28 |
Family
ID=53179779
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2014/011179 WO2015076574A1 (en) | 2013-11-21 | 2014-11-20 | Separator and secondary battery using same |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2015076574A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108448032A (en) * | 2017-02-16 | 2018-08-24 | 帝人株式会社 | Diaphragm for non-water system secondary battery and non-aqueous secondary battery |
CN109565021A (en) * | 2016-09-21 | 2019-04-02 | 帝人株式会社 | Diaphragm for non-water system secondary battery and non-aqueous secondary battery |
CN111312971A (en) * | 2020-03-02 | 2020-06-19 | 荣盛盟固利新能源科技有限公司 | A kind of separator, secondary battery and preparation method thereof |
EP3734701A4 (en) * | 2018-09-21 | 2021-04-21 | Lg Chem, Ltd. | SEPARATOR AND ELECTROCHEMICAL DEVICE INCLUDING IT |
US20220294024A1 (en) * | 2019-11-19 | 2022-09-15 | Lg Energy Solution, Ltd. | Method for manufacturing secondary battery and equipment for manufacturing the secondary battery |
WO2024221854A1 (en) * | 2023-04-23 | 2024-10-31 | 宁德时代新能源科技股份有限公司 | Battery cell, battery and electric device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004063343A (en) * | 2002-07-30 | 2004-02-26 | Toshiba Corp | Lithium ion secondary battery |
KR100727248B1 (en) * | 2007-02-05 | 2007-06-11 | 주식회사 엘지화학 | Organic / inorganic composite membrane coated with porous active layer and electrochemical device |
KR20080101043A (en) * | 2007-05-15 | 2008-11-21 | 주식회사 엘지화학 | Separator with a porous coating layer and an electrochemical device having the same |
KR20110057079A (en) * | 2009-11-23 | 2011-05-31 | 주식회사 엘지화학 | Method for producing a separator having a porous coating layer, a separator formed therefrom and an electrochemical device having the same |
KR20130123568A (en) * | 2012-05-03 | 2013-11-13 | 주식회사 엘지화학 | Separator for electrochemical device, method of preparation thereof, and electrochemical device comprising the same |
-
2014
- 2014-11-20 WO PCT/KR2014/011179 patent/WO2015076574A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004063343A (en) * | 2002-07-30 | 2004-02-26 | Toshiba Corp | Lithium ion secondary battery |
KR100727248B1 (en) * | 2007-02-05 | 2007-06-11 | 주식회사 엘지화학 | Organic / inorganic composite membrane coated with porous active layer and electrochemical device |
KR20080101043A (en) * | 2007-05-15 | 2008-11-21 | 주식회사 엘지화학 | Separator with a porous coating layer and an electrochemical device having the same |
KR20110057079A (en) * | 2009-11-23 | 2011-05-31 | 주식회사 엘지화학 | Method for producing a separator having a porous coating layer, a separator formed therefrom and an electrochemical device having the same |
KR20130123568A (en) * | 2012-05-03 | 2013-11-13 | 주식회사 엘지화학 | Separator for electrochemical device, method of preparation thereof, and electrochemical device comprising the same |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109565021A (en) * | 2016-09-21 | 2019-04-02 | 帝人株式会社 | Diaphragm for non-water system secondary battery and non-aqueous secondary battery |
CN108448032A (en) * | 2017-02-16 | 2018-08-24 | 帝人株式会社 | Diaphragm for non-water system secondary battery and non-aqueous secondary battery |
EP3734701A4 (en) * | 2018-09-21 | 2021-04-21 | Lg Chem, Ltd. | SEPARATOR AND ELECTROCHEMICAL DEVICE INCLUDING IT |
US11784377B2 (en) | 2018-09-21 | 2023-10-10 | Lg Energy Solution, Ltd. | Separator including porous coating layer with amorphous adhesive binder polymer and fluorinated binder polymer and electrochemical device including the same |
US20220294024A1 (en) * | 2019-11-19 | 2022-09-15 | Lg Energy Solution, Ltd. | Method for manufacturing secondary battery and equipment for manufacturing the secondary battery |
CN111312971A (en) * | 2020-03-02 | 2020-06-19 | 荣盛盟固利新能源科技有限公司 | A kind of separator, secondary battery and preparation method thereof |
WO2024221854A1 (en) * | 2023-04-23 | 2024-10-31 | 宁德时代新能源科技股份有限公司 | Battery cell, battery and electric device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015076611A1 (en) | Separator comprising coating layer, and battery using same | |
KR100770105B1 (en) | Lithium secondary battery | |
KR100670483B1 (en) | Lithium secondary battery | |
WO2017188537A1 (en) | Separator comprising porous adhesive layer, and lithium secondary battery using same | |
WO2020185014A1 (en) | Negative electrode and secondary battery comprising same | |
WO2017039385A1 (en) | Separation membrane comprising adhesive coating parts with different adhesion forces, and electrode assembly comprising same | |
WO2020055183A1 (en) | Anode for lithium secondary battery and method for manufacturing lithium secondary battery | |
WO2015102139A1 (en) | Negative electrode for secondary battery and lithium secondary battery comprising same | |
WO2015102140A1 (en) | Anode for secondary battery and lithium secondary battery comprising same | |
WO2015076574A1 (en) | Separator and secondary battery using same | |
WO2015065102A1 (en) | Lithium secondary battery | |
WO2019216548A1 (en) | Separator for lithium secondary battery, manufacturing method therefor, and lithium secondary battery including same | |
WO2019156410A1 (en) | Separator for lithium secondary battery and lithium secondary battery comprising same | |
WO2021080052A1 (en) | Lithium metal anode structure, electrochemical device comprising same, and method for manufacturing lithium metal anode structure | |
WO2015076573A1 (en) | Secondary battery | |
KR100778975B1 (en) | Lithium secondary battery | |
WO2020071814A1 (en) | Multilayer-structured anode comprising silicon-based compound, and lithium secondary battery comprising same | |
WO2020153790A1 (en) | Method for manufacturing anode for secondary battery | |
WO2021010629A1 (en) | Manufacturing method for electrode binder and electrode assembly comprising same electrode binder | |
WO2019083332A2 (en) | Silicon-carbon composite and lithium secondary battery comprising same | |
WO2018212446A1 (en) | Lithium secondary battery | |
WO2021085946A1 (en) | Method for preparing anode active material, anode active material, anode comprising same, and secondary battery comprising the anode | |
WO2018062883A2 (en) | Anode for lithium secondary battery comprising mesh-shaped insulating layer, and lithium secondary battery comprising same | |
WO2017082680A1 (en) | Anode active material and lithium secondary battery comprising same | |
WO2019177402A1 (en) | Method for producing positive electrode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14864411 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14864411 Country of ref document: EP Kind code of ref document: A1 |