[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015076208A1 - Glass sheet - Google Patents

Glass sheet Download PDF

Info

Publication number
WO2015076208A1
WO2015076208A1 PCT/JP2014/080242 JP2014080242W WO2015076208A1 WO 2015076208 A1 WO2015076208 A1 WO 2015076208A1 JP 2014080242 W JP2014080242 W JP 2014080242W WO 2015076208 A1 WO2015076208 A1 WO 2015076208A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
less
glass plate
solar cell
glass substrate
Prior art date
Application number
PCT/JP2014/080242
Other languages
French (fr)
Japanese (ja)
Inventor
伸一 安間
裕 黒岩
朋美 安部
川本 泰
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2015549132A priority Critical patent/JPWO2015076208A1/en
Publication of WO2015076208A1 publication Critical patent/WO2015076208A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass

Definitions

  • the present invention relates to a glass plate, and more particularly to a glass plate suitably used for a compound solar cell substrate.
  • a semiconductor film is formed on a glass substrate as a photoelectric conversion layer.
  • semiconductors used in solar cells 11-13 and 11-16 compound semiconductors having a chalcopyrite crystal structure, and cubic or hexagonal 12-16 group compound semiconductors have wavelengths from visible to near infrared. It has a large absorption coefficient for a range of light. Therefore, it is expected as a material for high-efficiency thin film solar cells.
  • Typical examples include Cu (In, Ga) Se 2 (hereinafter sometimes referred to as CIGS) and CdTe.
  • soda lime glass is used as a substrate and solar cells are obtained because they are inexpensive and have an average thermal expansion coefficient close to that of CIGS compound semiconductors and CdTe semiconductors.
  • glass materials that can withstand high heat treatment temperatures have been proposed as glass substrates for CIGS solar cells (see Patent Documents 1 to 3).
  • the photoelectric conversion efficiency of a CIGS solar cell can be increased by using a glass substrate containing an alkali metal, particularly Na, as such a glass substrate for CIGS solar cell.
  • a CIGS photoelectric conversion layer hereinafter also referred to as “CIGS layer”
  • the glass substrate is heat-treated in the CIGS layer forming step, so that Na atoms contained in the glass substrate are converted into the glass substrate. It diffuses from the surface to the CIGS layer.
  • the carrier concentration of the CIGS layer is increased and the photoelectric conversion rate can be increased.
  • Patent Documents 4 and 5 propose that in a glass plate for a solar cell, Na 2 O is an effective component for the growth of chalcopyrite crystals in the composition of the glass substrate and increases the photoelectric conversion efficiency.
  • Patent Documents 1 to 3 propose glass compositions having a relatively high annealing point, but the inventions described in Patent Documents 1 to 3 do not necessarily have high power generation efficiency. For example, it is desired to increase the power generation efficiency by diffusion of Na from the glass substrate to the photoelectric conversion layer together with the heat resistance of the glass substrate.
  • Patent Document 1 an object is to prevent the deformation and distortion of the glass substrate by controlling the annealing point and the thermal expansion coefficient, but power generation efficiency has not been studied in terms of the amount of Na diffusion.
  • Patent Document 2 Na 2 O is blended for diffusion of Na, but the blending amount of Na 2 O is limited to prevent a decrease in strain point (see paragraph 0027). Further, there is a problem that in Patent Document 2, the strain point from the viewpoint amount of Al 2 O 3 is less lowered.
  • Patent Document 3 the blending amount of Na 2 O is limited in consideration of the strain point, the thermal expansion coefficient, and the warp of the glass substrate, but the power generation efficiency is not examined from the point of Na diffusion amount.
  • Patent Document 4 proposes that Na 2 O is added while BaO is less than 1% by mass, so that the mobility of sodium ions is advantageously acted on to increase the efficiency of the solar cell.
  • the mobility of the sodium ions by Na 2 O while increasing the mobility of the sodium ions by Na 2 O, heat resistance and devitrification resistance of the glass substrate is increased only Na 2 O may be reduced.
  • Patent Document 5 Na 2 O and K 2 O is mentioned as a component to increase the photoelectric conversion efficiency.
  • the blending amount of Na 2 O and K 2 O is limited in consideration of the strain point, the thermal expansion coefficient, and the devitrification characteristics, there is a problem that the photoelectric conversion efficiency cannot be sufficiently increased.
  • An object of the present invention is to provide a glass plate that obtains excellent heat resistance and devitrification characteristics, and increases power generation efficiency by increasing the amount of Na diffusion when used as a compound solar cell substrate.
  • SiO 2 is 45 to 65%
  • Al 2 O 3 is 9 to 17%
  • B 2 O 3 is 0 to 1%
  • MgO is 0 to 2%
  • ZrO 2 2-6% Na 2 O 5-10%
  • MgO + CaO + SrO + BaO is 15 to 30%
  • 2 (SrO—BaO) + (K 2 O—Na 2 O) is 11.5% or less.
  • the glass plate of the present invention excellent heat resistance and devitrification characteristics can be obtained, and the amount of Na diffusion can be increased to increase power generation efficiency. Moreover, the solar cell using this can be provided.
  • FIG. 1 is a cross-sectional view schematically showing an example of the CIGS solar cell of the present embodiment.
  • FIG. 2 is a cross-sectional view schematically showing an example of the CdTe solar cell of the present embodiment.
  • Glass plate according to the present embodiment by mass percentage based on the following oxides, the SiO 2 45 - 65%, the Al 2 O 3 9 ⁇ 17% , the B 2 O 3 0 ⁇ 1% , MgO 0 to 2%, CaO 1-12%, SrO 1-15%, BaO 1.4-12%, ZrO 2 2-6%, Na 2 O 5-10%, K 2 O 2-10 %, MgO + CaO + SrO + BaO is 15 to 30%, and 2 (SrO—BaO) + (K 2 O—Na 2 O) is 11.5% or less.
  • the content ratio of the glass composition component is expressed in terms of mass percentage (mass%), and these are also simply referred to as%.
  • the glass transition temperature and the devitrification characteristics can be set to the preferred ranges shown below by being in the above composition range.
  • the diffusion amount of Na to the photoelectric converting layer formed on a glass substrate from a glass substrate can be increased, and the efficiency of a solar cell can be improved. it can.
  • it can be set as the preferable range which shows a viscosity characteristic, an average thermal expansion coefficient, and a density by being the said composition range below.
  • the glass transition temperature (Tg) of the glass plate of this embodiment is preferably higher than the glass transition temperature of ordinary soda lime glass that is widely used in general, and is specifically preferably 640 ° C. or higher. .
  • the glass transition temperature (Tg) is more preferably 645 ° C. or higher, and more preferably 650 ° C. or higher in order to ensure the formation of the CIGS layer at a high temperature. 655 ° C. or higher is particularly preferable.
  • the temperature be 750 ° C. or lower. More preferably, it is 720 degrees C or less, Most preferably, it is 690 degrees C or less.
  • the relationship between the temperature (T4) at which the viscosity is 10 4 dPa ⁇ s and the devitrification temperature (TL) is preferably T4 ⁇ TL> 0.
  • T4-TL is 0 ° C. or lower, devitrification is likely to occur during the formation of the sheet glass, and it may be difficult to form the glass sheet.
  • T4-TL is more preferably 5 ° C. or higher, and further preferably 10 ° C. or higher.
  • the devitrification temperature is the maximum temperature at which crystals are not generated on the glass surface and inside when the glass is held at a specific temperature for 17 hours.
  • T4 is preferably 1230 ° C. or lower. T4 is more preferably 1220 ° C. or less, and further preferably 1210 ° C. or less.
  • the glass plate of the present embodiment has a temperature (T2) at which the viscosity becomes 10 2 dPa ⁇ s is 1650 ° C. or less in consideration of the solubility of the glass, that is, the improvement of homogeneity and the improvement of productivity. Is preferred. T2 is more preferably 1630 ° C. or lower, and further preferably 1620 ° C. or lower.
  • the average thermal expansion coefficient of the glass plate of this embodiment at 50 to 350 ° C. is preferably 70 ⁇ 10 ⁇ 7 to 90 ⁇ 10 ⁇ 7 / ° C.
  • the glass plate of the present embodiment is used as a glass substrate of a CIGS solar cell, if it is less than 70 ⁇ 10 ⁇ 7 / ° C. or more than 90 ⁇ 10 ⁇ 7 / ° C., the difference in thermal expansion from the CIGS layer becomes too large, and the CIGS layer
  • the CIGS layer may be peeled off during or after the film formation. More preferably, it is 85 ⁇ 10 ⁇ 7 / ° C. or less.
  • the glass plate of the present embodiment preferably has a density of 2.85 g / cm 3 or less.
  • the density is more preferably 2.83 g / cm 3 or less.
  • when manufacturing a glass plate by normal methods, such as a float process and a fusion method when it considers setting it as the glass composition range which can be manufactured easily, it is 2.4 g / cm ⁇ 3 > or more normally.
  • the glass plate according to the present embodiment has the above composition, so that the glass transition temperature is high and excellent heat resistance is obtained, and the T4-TL is large and excellent devitrification characteristics are obtained. Since the amount of diffusion is large, the power generation efficiency can be increased. Furthermore, since the viscosity characteristics, average thermal expansion coefficient, and density of T4 and T2 are in an appropriate range, solubility and moldability can be improved during production of the glass substrate. Accordingly, the glass plate according to the present embodiment has various characteristics in a well-balanced manner, and can be preferably used as a glass substrate for CIGS solar cells or CdTe solar cells.
  • the reason for limiting to the above composition is as follows.
  • SiO 2 is a component that forms a glass skeleton. If it is less than 45% by mass, the heat resistance and chemical durability of the glass plate are lowered, and the average thermal expansion coefficient may be increased. Preferably it is 47% or more, more preferably 49% or more, and particularly preferably 51% or more. However, if it exceeds 65%, the high-temperature viscosity of the glass increases, which may cause a problem that the solubility deteriorates. Preferably it is 63% or less, More preferably, it is 62% or less, More preferably, it is 61% or less, Especially preferably, it is 59% or less, More preferably, it is 57.5% or less.
  • Al 2 O 3 increases the glass transition temperature, improves weather resistance (solarization), heat resistance and chemical durability, and increases Young's modulus. There exists a possibility that glass transition temperature may fall that the content is less than 9%. Moreover, there exists a possibility that an average thermal expansion coefficient may increase. More preferably, it is 9.5% or more, more preferably 10% or more, particularly preferably 11% or more, and further preferably 12% or more.
  • the high-temperature viscosity of the glass is increased, and the solubility may be deteriorated. Further, the devitrification temperature is increased, and the moldability may be deteriorated.
  • it is 16% or less, More preferably, it is 15% or less.
  • B 2 O 3 may be contained up to 1% in order to improve the solubility. If the content exceeds 1%, the glass transition temperature may decrease, or the average thermal expansion coefficient may decrease, which is not preferable for the process of forming a photoelectric conversion layer. Moreover, devitrification temperature rises and it becomes easy to devitrify, and plate glass shaping
  • the content is preferably 0.5% or less. More preferably, it does not contain substantially.
  • “substantially does not contain” means that it is not contained other than inevitable impurities mixed from raw materials or the like, that is, it is not intentionally contained.
  • MgO has the effect of lowering the viscosity at the time of melting the glass and promoting the melting, so it may be contained up to 2%. If it is 2% or less, a desired average thermal expansion coefficient can be obtained. Further, it is preferable that the devitrification temperature does not increase. Preferably it is 1.5% or less, More preferably, it is 1.0%, More preferably, it is 0.5% or less, Most preferably, it is 0.1% or less.
  • CaO is contained in an amount of 1 to 12% because it has the effect of lowering the viscosity of the glass during melting and promoting the melting. Preferably it is 2% or more, More preferably, it is 3% or more, More preferably, it is 4% or more, Most preferably, it is 5% or more. However, if it exceeds 12%, the average thermal expansion coefficient of the glass plate may increase. Moreover, when using as a glass substrate for solar cells, sodium (Na) is difficult to move in the glass substrate, and power generation efficiency may be reduced. Preferably it is 11% or less, More preferably, it is 10% or less, More preferably, it is 9% or less, Most preferably, it is 8.5% or less.
  • SrO is contained in an amount of 1 to 15% because it has the effect of reducing the viscosity at the time of melting the glass and promoting the melting. Moreover, when it uses in the glass substrate, when using the glass plate of this embodiment as a glass substrate of a CIGS solar cell, there exists an effect which accelerates
  • BaO has an effect of lowering the viscosity at the time of melting the glass and promoting the melting, so it is contained in an amount of 1.4 to 12%. Moreover, when using the glass plate of this embodiment as a glass substrate of a CIGS solar cell by containing BaO in a glass plate, there exists an effect which accelerates
  • ZrO 2 has an effect of reducing the viscosity at the time of melting the glass and promoting the melting, so it is contained at 2% or more. If it is 6% or less, the power generation efficiency is good, the devitrification temperature is not increased and devitrification does not occur, and plate glass molding is easy. 5.5% or less is preferable, 5% or less is more preferable, and 4.6% or less is more preferable. Further, it is preferably 2.3% or more, more preferably 2.5% or more, further preferably 3% or more, and particularly preferably 3.5% or more.
  • Na 2 O is a component for contributing to the improvement of power generation efficiency of the CIGS solar cell when using the glass plate of the present embodiment as a glass substrate of the CIGS solar cell, and is an essential component. Further, it has the effect of lowering the viscosity at the glass melting temperature and facilitating melting, so it is contained in an amount of 5 to 10%.
  • Sodium (Na) diffuses into the CIGS layer formed on the glass substrate to increase the power generation efficiency. However, if the content is less than 5%, Na diffusion to the CIGS layer on the glass substrate becomes insufficient, resulting in power generation efficiency. May be insufficient.
  • the content is preferably 5.3% or more, more preferably 5.5% or more, and particularly preferably 5.6% or more.
  • the Young's modulus may be reduced.
  • the content is preferably 9% or less, more preferably 8% or less, and even more preferably 7.5% or less.
  • K 2 O is contained in an amount of 2 to 10% because it has an effect of promoting the diffusion of sodium (Na) into the CIGS layer on the glass substrate. However, if it exceeds 10%, the glass transition temperature is lowered, the average thermal expansion coefficient is increased, and the specific gravity may be increased.
  • the content is preferably 2.5% or more, and more preferably 3% or more. Further, it is preferably 9% or less, more preferably 8% or less, further preferably 7% or less, and particularly preferably 6% or less.
  • TiO 2 When TiO 2 is contained, the devitrification temperature rises, so it is preferable not to contain it.
  • the glass plate of this embodiment is easy to produce a foam layer on the surface of the molten glass when the glass substrate is manufactured, as compared with normal soda lime glass. When the foam layer is generated, the temperature of the molten glass does not rise, it becomes difficult to clarify, and the productivity tends to deteriorate.
  • a titanium compound may be supplied as an antifoaming agent to the foam layer generated on the surface of the molten glass. The titanium compound is taken into the molten glass and exists as TiO 2 .
  • This titanium compound may be an inorganic titanium compound (titanium tetrachloride, titanium oxide, etc.) or an organic titanium compound.
  • examples of the organic titanium compound include titanic acid esters or derivatives thereof, titanium chelates or derivatives thereof, titanium acylates or derivatives thereof, and oxalic acid titanates.
  • TiO 2 is allowed to be contained in the glass substrate at 0.2% or less as an impurity.
  • MgO + CaO + SrO + BaO total content of MgO, CaO, SrO and BaO
  • MgO, CaO, SrO and BaO are contained in an amount of 15% or more in terms of the total content of MgO, CaO, SrO and BaO from the viewpoint of reducing the viscosity at the time of melting the glass and promoting the melting.
  • the total amount of these alkaline earth oxides exceeds 30%, the devitrification temperature rises and the moldability may be deteriorated. 16% or more is preferable, and 17% or more is more preferable.
  • 26% or less is preferable, 25% or less is more preferable, 23% or less is further more preferable, and 21% or less is especially preferable.
  • SrO + BaO total content of SrO and BaO: Both SrO and BaO have the effect of increasing the diffusion of sodium that diffuses into the CIGS layer formed on the glass substrate and increases the power generation efficiency while maintaining the heat resistance of the glass plate. Therefore, it is preferable to contain in the range which SrO + BaO becomes 6% or more. More preferably, it is 6.5% or more, further preferably 7% or more, and particularly preferably 7.5% or more. However, if SrO + BaO is too large, the specific gravity of the glass is increased and the strength as a glass substrate is lowered. Therefore, it is preferable to contain SrO + BaO in a range of 18% or less. More preferably, it is 17% or less, More preferably, it is 16.5% or less, Most preferably, it is 16% or less.
  • SrO—BaO (a value obtained by subtracting the BaO content from the SrO content): BaO has a larger effect of increasing the diffusion of sodium while maintaining heat resistance than SrO, so it is preferable to contain BaO in a range where SrO—BaO is 7.5% or less. More preferably, it is 7% or less, more preferably 6.5% or less, and particularly preferably 6% or less.
  • Na 2 O + K 2 O total content of Na 2 O and K 2 O
  • Increasing the proportion of Na 2 O + K 2 O in the composition has the effect of increasing the diffusion of sodium to increase the power generation efficiency by diffusing into the CIGS layer configured on the glass substrate for CIGS solar cells.
  • It is preferable that Na 2 O + K 2 O is contained within a range of 7% or more. More preferably, it is 7.5% or more, More preferably, it is 8% or more, Most preferably, it is 9% or more.
  • Na 2 O + K 2 O becomes too large, the glass transition point of the glass is lowered and the heat resistance of the glass substrate is lowered, so that Na 2 O + K 2 O is preferably contained in an amount of 15% or less. More preferably, it is 14% or less, more preferably 13.5% or less, and particularly preferably 13% or less.
  • K 2 O—Na 2 O (value obtained by subtracting the content of Na 2 O from the content of K 2 O): Since Na 2 O has a larger ratio of the effect of increasing the diffusion of sodium to the effect of decreasing the heat resistance than K 2 O, from the viewpoint of increasing the diffusion of sodium while maintaining the heat resistance, K 2 O —Na 2 O is preferably contained within a range of 2% or less. More preferably, it is 1% or less, more preferably 0% or less, particularly preferably -1.3%.
  • Glass plate of the present embodiment consists essentially of the above matrix composition (SiO 2, Al 2 O 3 , B 2 O 3, MgO, CaO, SrO, BaO, ZrO 2, Na 2 O, and K 2 O)
  • each of the following other components may be contained in an amount of 1% or less, and a total of 5% or less of these added components and the above-described TiO 2 may be contained.
  • ZnO, Li 2 O, WO 3 , Nb 2 O 5 , V 2 O 5 , Bi 2 O 3 , MoO 3 for the purpose of improving weather resistance, solubility, devitrification, ultraviolet shielding, refractive index, and the like.
  • P 2 O 5 or the like may be contained.
  • these raw materials are matrix composition raw materials so that each glass contains 1% or less of SO 3 , F, Cl, SnO 2 and 2% or less in total. You may add to. Further, in order to improve the chemical durability of the glass plate, 2% or less of Y 2 O 3 and / or La 2 O 3 may be contained in the glass.
  • the matrix composition (SiO 2, Al 2 O 3 , B 2 O 3, MgO, CaO, SrO, BaO, ZrO 2 , Na 2 O, and K 2 O) are preferably contained in an amount of 0.06 parts by mass or less in terms of Fe 2 O 3 with respect to 100 parts by mass. More preferably, it is 0.055 mass part or less, More preferably, it is 0.05 mass part or less, Most preferably, it is 0.045 mass part or less.
  • the iron oxide is preferably 0.2 parts by mass or less, more preferably 0.15 parts by mass or less in terms of Fe 2 O 3 with respect to 100 parts by mass of the mother composition. 0.12 parts by mass or less is more preferable. Further, when the content of the iron oxide is 0.01 parts by mass or more, an industrial raw material in which the mixing of the iron oxide component is unavoidable can be used.
  • examples of the iron oxide input raw material include a valve stem and iron oxide powder.
  • the glass plate of the present embodiment considering the environmental burden, it is preferred not to contain As 2 O 3, Sb 2 O 3 substantially. In consideration of stable float forming, it is preferable that ZnO is not substantially contained.
  • the glass plate of the present embodiment is not limited to being formed by the float method, and may be manufactured by forming by the fusion method.
  • the manufacturing method of the glass plate of this embodiment is demonstrated.
  • molding process are implemented similarly to the time of manufacturing the conventional glass plate.
  • the glass plate of this embodiment is an alkali containing glass substrate containing an alkali metal oxide (Na 2 O and K 2 O), SO 3 can be effectively used as a fining agent, and molding
  • a float method and a fusion method (down draw method) are suitable.
  • a float method capable of easily and stably forming a large-area glass substrate with an increase in the size of the solar cell. Is preferably used.
  • molten glass obtained by melting raw materials is formed into a plate shape.
  • raw materials are prepared so that the obtained glass substrate has the above composition, the raw materials are continuously charged into a melting furnace, and heated to 1550 to 1700 ° C. to obtain molten glass.
  • this molten glass is formed into a ribbon-like glass plate by applying, for example, a float process.
  • a cooling means after drawing the ribbon-shaped glass plate from the float forming furnace, it is cooled to room temperature by a cooling means, and after cutting, the glass plate can be obtained.
  • the glass plate by this embodiment can be preferably used as a glass substrate for solar cells, a cover glass for solar cells, and a back plate glass for solar cells.
  • a 11-13 group or 11-16 group compound semiconductor having a chalcopyrite crystal structure, or a cubic or hexagonal group 12-16 compound semiconductor can be preferably used.
  • Representative examples include CIGS compounds, CdTe compounds, CIS compounds, CZTS compounds, and the like.
  • a silicon compound, an organic compound, or the like may be used as the photoelectric conversion layer of the solar cell.
  • the glass plate by this embodiment can be preferably used for a CIGS solar cell.
  • the thickness of a glass substrate shall be 3 mm or less, More preferably, it is 2 mm or less, More preferably, it is 1.5 mm or less.
  • the method for forming the CIGS layer on the glass substrate is not particularly limited. However, since the glass plate of the present embodiment has a high glass transition temperature, the heating temperature for forming the CIGS layer is 500 to 700 ° C., preferably 550. It can be set to ⁇ 700 ° C., more preferably 580 to 700 ° C., further preferably 600 to 700 ° C., particularly preferably 620 to 700 ° C.
  • a cover glass etc. are not restrict
  • Other examples of the composition of the cover glass include ordinary soda lime glass that is widely used.
  • the thickness of a cover glass shall be 3 mm or less, More preferably, it is 2 mm or less, More preferably, it is 1.5 mm or less.
  • the method of assembling the cover glass on the glass substrate having the CIGS layer is not particularly limited, but when assembled by heating, the heating temperature is 500 to 700 ° C., preferably 600 to 700 ° C. be able to.
  • the glass plate of the present embodiment together with the glass substrate and the cover glass of the CIGS solar cell because the average thermal expansion coefficient is equivalent and thermal deformation or the like during the assembly of the solar cell does not occur.
  • the glass plate according to the present embodiment has the above characteristics, it can be preferably used for a CdTe solar cell.
  • the glass plate of the present embodiment having high glass strength is also suitably used as a glass substrate for CdTe solar cells.
  • it since it has a high glass transition temperature, it can be formed at a high temperature when forming the CdTe layer, which can contribute to the power generation efficiency of the CdTe solar cell.
  • the thickness of the glass substrate is preferably 3 mm or less, more preferably 2 mm or less, and even more preferably 1.5 mm or less.
  • the method for forming the CdTe layer on the glass substrate is not particularly limited. However, since the glass substrate of the present embodiment has a high glass transition temperature, the heating temperature for forming the CdTe layer is preferably 500 to 700 ° C. Can be set to 550 to 700 ° C, more preferably 580 to 700 ° C, still more preferably 600 to 700 ° C, and particularly preferably 620 to 700 ° C.
  • the thickness of the back plate glass is preferably 3 mm or less, more preferably 2 mm or less, and even more preferably 1.5 mm or less.
  • the method of assembling the back glass on the glass substrate having the CdTe layer is not particularly limited, but when assembled by heating, the heating temperature is 500 to 700 ° C., preferably 600 to 700 ° C. Can do.
  • the average thermal expansion coefficient is equivalent, so that thermal deformation or the like during solar cell assembly does not occur, which is preferable.
  • the CIGS solar cell of this embodiment includes a glass substrate, a cover glass, and a Cu—In—Ga—Se photoelectric conversion layer disposed between the glass substrate and the cover glass. At least one of the substrate and the cover glass is the glass plate of this embodiment.
  • FIG. 1 is a cross-sectional view schematically illustrating an example of the CIGS solar cell of the present embodiment.
  • the CIGS solar cell 1 of the present embodiment includes a glass substrate 5, a cover glass 19, and a CIGS layer 9 between the glass substrate 5 and the cover glass 19. At least one of the glass substrate 5 and the cover glass 19 is the glass plate of the present embodiment described above.
  • the glass substrate 5 is the glass plate according to the present embodiment, the effect of Na diffusion can be enhanced.
  • both the glass substrate 5 and the cover glass 19 are the glass plates according to the present embodiment, it is possible to prevent peeling and the like by matching the thermal expansion coefficients.
  • the solar cell 1 has the back electrode layer of Mo film which is the plus electrode 7 on the glass substrate 5, and has the CIGS layer 9 on it.
  • the composition of the CIGS layer, Cu (In 1-X Gax ) Se 2 can be exemplified.
  • x represents the composition ratio of In and Ga, and 0 ⁇ x ⁇ 1.
  • a transparent conductive film 13 such as ZnO, ITO, or Al doped ZnO (AZO) is provided through the buffer layer 9, and an extraction electrode such as an Al electrode (aluminum electrode) that is a negative electrode 15 is provided thereon.
  • An antireflection film may be provided at a necessary place between these layers.
  • an antireflection film 17 is provided between the transparent conductive film 13 and the negative electrode 15.
  • a cover glass 19 may be provided on the negative electrode 15, and if necessary, the resin between the negative electrode and the cover glass may be sealed with resin or may be bonded with a transparent resin for bonding.
  • the edge part of a CIGS layer or the edge part of a solar cell may be sealed.
  • a material for sealing the same material as the glass plate of this embodiment, other glass, resin etc. are mentioned, for example. Note that the thickness of each layer of the solar cell shown in the accompanying drawings is not limited to the drawings.
  • the CIGS solar cell of the present embodiment uses the glass plate of the present embodiment as a glass substrate, and in the second stage of the CIGS layer deposition process, the CIGS layer is deposited under heating conditions of 500 ° C. or higher. High power generation efficiency can be obtained.
  • the heating temperature in the second stage is preferably 550 ° C. or higher, more preferably 580 ° C. or higher, further preferably 600 ° C. or higher, and particularly preferably 620 ° C. or higher.
  • Other processes other than the CIGS layer forming process in the CIGS solar cell manufacturing method, for example, the buffer layer and transparent conductive film layer forming process, etc., may be performed in the same manner as the normal CIGS solar cell manufacturing process. it can.
  • the CdTe solar cell of this embodiment includes a glass substrate, a back plate glass, and a CdTe photoelectric conversion layer (CdTe layer) disposed between the glass substrate and the back plate glass. At least one of the back plate glasses is the glass plate of the present embodiment.
  • a solar cell using a back film having water resistance and oxygen resistance permeability may be used instead of the back glass.
  • FIG. 2 is a cross-sectional view schematically showing an example of the embodiment of the CdTe solar cell of the present embodiment.
  • a solar cell (CdTe solar cell) 21 according to this embodiment includes a glass substrate 22 having a thickness of 1 to 3 mm, a back plate glass 27 having a thickness of 1 to 3 mm, and a gap between the glass substrate 22 and the back plate glass 27.
  • a CdTe layer 25 having a thickness of 3 to 15 ⁇ m is provided.
  • At least one of the glass substrate 22 and the back plate glass 27 is the glass plate of the present embodiment described above. Further, since both the glass substrate 22 and the back plate glass 27 are the glass plates according to the present embodiment, it is possible to prevent peeling and the like by matching the thermal expansion coefficients.
  • the CdTe solar cell 21 has a transparent conductive film 23 having a thickness of 100 to 1000 nm on a glass substrate 22.
  • the heating temperature when forming the CdTe layer or the transparent conductive film is 500 ° C. or higher, preferably 550 ° C. or higher, more preferably 580 ° C. or higher, further preferably 600 ° C. or higher, and particularly preferably 620 ° C. or higher.
  • the transparent conductive film 23 for example, In 2 O 3 or the like doped with doped In 2 O 3 and F of Sn and the like.
  • a buffer layer 24 eg, CdS layer
  • CdTe layer 25 is provided on the buffer layer 24.
  • a back electrode 26 for example, a carbon electrode doped with Cu or a Mo electrode
  • a back plate glass 27 is provided on the back electrode 26.
  • the back electrode 26 and the back plate glass 27 are preferably sealed with a resin or bonded with an adhesive resin.
  • the end of the CdTe layer or the end of the solar cell may be sealed.
  • a material for sealing the same material as the glass substrate for CdTe solar cells of this embodiment, other glass materials, resin, etc. are mentioned, for example.
  • the thickness of each layer of the solar cell shown in the attached drawings is not limited to the drawings.
  • Table 1 shows examples (Examples 1 to 5) and comparative examples (Examples 6 to 11) of the glass plate of the present embodiment.
  • the composition ratio of Table 1 is shown in mass% on the basis of oxide.
  • the raw materials of each component of the glass were prepared so as to have the glass composition shown in Table 1, and 0.1 part by mass of SO 3 in terms of SO 3 was added to the raw material with respect to 100 parts by mass of the raw material for the glass plate component.
  • the mixture was heated at 1650 ° C. for 3 hours for dissolution.
  • the blending amount of Fe 2 O 3 is based on the mother composition (SiO 2 , Al 2 O 3 , B 2 O 3 , MgO, CaO, SrO, BaO, ZrO 2 , Na 2 O, and K 2 O).
  • the mass part with respect to 100 mass parts is shown.
  • a platinum stirrer was inserted and stirred for 1 hour to homogenize the glass. Subsequently, the molten glass was poured out, formed into a plate shape, and then cooled to obtain a glass plate.
  • the average thermal expansion coefficient (unit: ⁇ 10 ⁇ 7 / ° C.), glass transition temperature Tg (unit: ° C.), density (unit: g / cm 3 ), and viscosity of 10 2 dPa ⁇ s of the glass plate thus obtained.
  • Temperature (T2) (unit: ° C.)
  • temperature (T4) (unit: ° C.) at which the viscosity becomes 10 4 dPa ⁇ s
  • TL devitrification temperature
  • Na diffusion amount were measured. .
  • the results are also shown in Table 1. The measuring method of each physical property is shown below.
  • each physical property is the same value with a glass plate and a glass substrate.
  • a glass substrate can be obtained by processing and polishing the obtained glass plate.
  • TMA differential thermal dilatometer
  • Density About 20 g of glass lump containing no foam, cut out from a glass plate, was measured by Archimedes method.
  • Viscosity Measured using a rotational viscometer, temperature T2 (dissolvable reference temperature) when viscosity ⁇ is 10 2 dPa ⁇ s, and temperature when viscosity ⁇ is 10 4 dPa ⁇ s T4 (reference temperature for moldability) was measured.
  • T2 dissolvable reference temperature
  • T4 reference temperature for moldability
  • the obtained glass plate was used for a solar cell substrate, an evaluation solar cell was prepared as shown below, and the Na diffusion amount was evaluated using the solar cell. The production of the solar cell for evaluation will be described below with reference to FIG. In FIG. 1, a sample in which the glass substrate 5, the positive electrode 7, and the CIGS layer 9 were formed was prepared and used for evaluating the Na diffusion amount.
  • the obtained glass plate was processed into a size of 3 cm ⁇ 3 cm and a thickness of 1.1 mm to obtain a glass substrate.
  • a Mo (molybdenum) film was formed as a positive electrode 7 on the glass substrate 5 by a sputtering apparatus. Film formation was performed at room temperature to obtain a Mo film having a thickness of 500 nm.
  • a CuGa alloy layer is formed with a CuGa alloy target using a sputtering apparatus, and then an In layer is formed using an In target to form an In—CuGa precursor film.
  • a film was formed. Film formation was performed at room temperature. The thickness of each layer was adjusted so that the composition of the precursor film measured by fluorescent X-rays was Cu / (Ga + In) ratio of 0.8 and Ga / (Ga + In) ratio of 0.25. Obtained.
  • the precursor film was heat-treated in an argon and hydrogen selenide mixed atmosphere (hydrogen selenide is 5% by volume with respect to argon) using an RTA (Rapid Thermal Annealing) apparatus.
  • argon and hydrogen selenide mixed atmosphere hydrogen selenide is 5% by volume with respect to argon
  • RTA Rapid Thermal Annealing
  • the value of Na diffusion amount shown in Table 1 is a relative amount when the glass plate used in Example 8 is 118.
  • the glass plates of the examples have a glass transition temperature (Tg) of 640 ° C. or higher, and have high heat resistance from the result of the glass transition temperature. -TL). Moreover, it is predicted that the amount of Na diffusion is large and the power generation efficiency is high. Moreover, T2 and T4 were low and it was the range suitable for manufacture of a glass plate. Moreover, the average coefficient of thermal expansion and the density were also in a range suitable for the glass plate. In Examples 1 and 2, 2 (SrO—BaO) + (K 2 O—Na 2 O) is limited to 11.5% or less, and by increasing the amount of BaO, a sufficient amount of Na diffusion can be obtained. Heat resistance could be improved. In Examples 3 and 5, 2 (SrO—BaO) + (K 2 O—Na 2 O) is limited to 11.5% or less, and by increasing the amount of Na 2 O, heat resistance can be sufficiently obtained. , Na diffusion amount could be increased.
  • Example 6 the amount of BaO and Na 2 O were mainly small, and the target Na diffusion amount and devitrification characteristics were not obtained.
  • Example 7 the amount of BaO was mainly small and the amount of Na diffusion decreased.
  • the glass transition temperature decreased.
  • 2 (SrO—BaO) + (K 2 O—Na 2 O) exceeded 11.5%, and the devitrification characteristics were deteriorated.
  • Example 10 there was a problem that the amount of SrO was large, Tg was increased, and the meltability of the glass raw material was lowered.
  • the glass plate of the present invention can obtain excellent heat resistance and devitrification characteristics and increase the amount of Na diffusion to increase power generation efficiency, it can be preferably used for a glass substrate for solar cells. Furthermore, a predetermined average coefficient of thermal expansion, glass density, solubility at the time of production of a glass plate and formability are good, and it can be preferably used for a glass substrate for a solar cell.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Glass Compositions (AREA)

Abstract

 Through the present invention, excellent heat resistance and devitrification characteristics are obtained, and Na diffusion capacity is increased and power generating efficiency is increased when the present invention is used as a glass substrate for a compound semiconductor solar cell. A glass sheet including, by mass percentage based on the oxides below, 45-65% SiO2, 9-17% Al2O3, 0-1% B2O3, 0-2% MgO, 1-12% CaO, 1-15% SrO, 1.4-12% BaO, 2-6% ZrO2, 5-10% Na2O, and 2-10% K2O, MgO + CaO + SrO + BaO being 15-30%, and 2(SrO-BaO) + (K2O-Na2O) being 11.5% or less.

Description

ガラス板Glass plate
 本発明は、ガラス板に関し、特に化合物太陽電池基板に好適に用いられるガラス板に関する。 The present invention relates to a glass plate, and more particularly to a glass plate suitably used for a compound solar cell substrate.
 太陽電池では、ガラス基板に光電変換層として半導体の膜が形成される。太陽電池に用いられる半導体として、カルコパイライト結晶構造を持つ11-13族、11-16族化合物半導体や、立方晶系あるいは六方晶系の12-16族化合物半導体は、可視から近赤外の波長範囲の光に対して大きな吸収係数を有している。そのために、高効率薄膜太陽電池の材料として期待されている。代表的な例として、Cu(In,Ga)Se(以下、CIGSと称することがある。)やCdTeが挙げられる。 In a solar cell, a semiconductor film is formed on a glass substrate as a photoelectric conversion layer. As semiconductors used in solar cells, 11-13 and 11-16 compound semiconductors having a chalcopyrite crystal structure, and cubic or hexagonal 12-16 group compound semiconductors have wavelengths from visible to near infrared. It has a large absorption coefficient for a range of light. Therefore, it is expected as a material for high-efficiency thin film solar cells. Typical examples include Cu (In, Ga) Se 2 (hereinafter sometimes referred to as CIGS) and CdTe.
 CIGS太陽電池及びCdTe太陽電池では、安価であることと平均熱膨張係数がCIGS化合物半導体、またCdTe半導体のそれに近いこととから、ソーダライムガラスが基板として用いられ、太陽電池が得られている。
 近年、CIGS太陽電池用ガラス基板として、高温の熱処理温度に耐えうるガラス材料の提案もされている(特許文献1~3参照)。
In CIGS solar cells and CdTe solar cells, soda lime glass is used as a substrate and solar cells are obtained because they are inexpensive and have an average thermal expansion coefficient close to that of CIGS compound semiconductors and CdTe semiconductors.
In recent years, glass materials that can withstand high heat treatment temperatures have been proposed as glass substrates for CIGS solar cells (see Patent Documents 1 to 3).
 また、このようなCIGS太陽電池用ガラス基板として、アルカリ金属、特にNaを含むガラス基板を用いることで、CIGS太陽電池の光電変換効率を高めることができることが知られている。ガラス基板にCIGS光電変換層(以下、「CIGS層」ともいう。)が形成される場合、ガラス基板がCIGS層の形成工程で加熱処理されることで、ガラス基板に含まれるNa原子がガラス基板表面からCIGS層に拡散していく。これによって、CIGS層のキャリア濃度が高まり、光電変換高率を高めることができる。 Also, it is known that the photoelectric conversion efficiency of a CIGS solar cell can be increased by using a glass substrate containing an alkali metal, particularly Na, as such a glass substrate for CIGS solar cell. When a CIGS photoelectric conversion layer (hereinafter also referred to as “CIGS layer”) is formed on a glass substrate, the glass substrate is heat-treated in the CIGS layer forming step, so that Na atoms contained in the glass substrate are converted into the glass substrate. It diffuses from the surface to the CIGS layer. As a result, the carrier concentration of the CIGS layer is increased and the photoelectric conversion rate can be increased.
 特許文献4及び5には、太陽電池用ガラス板において、ガラス基板の組成のうちNaOがカルコパライト結晶の成長に効果的な成分であり、光電変換効率を高めることが提案されている。 Patent Documents 4 and 5 propose that in a glass plate for a solar cell, Na 2 O is an effective component for the growth of chalcopyrite crystals in the composition of the glass substrate and increases the photoelectric conversion efficiency.
特開平11-135819号公報Japanese Patent Laid-Open No. 11-135819 特開2010-118505号公報JP 2010-118505 A 特開2008-280189号公報JP 2008-280189 A 特開2010-267965号公報JP 2010-267965 A 国際公開第2012/153634号International Publication No. 2012/153634
 太陽電池においては、ガラス基板の間には光電変換層が形成されるが、発電効率の高い太陽電池を作製するには、より高温で光電変換層を熱処理することが好ましく、ガラス基板にはそれに耐えうる耐熱性が要求される。
 しかしながら、特許文献1~3では比較的徐冷点の高いガラス組成物が提案されているが、特許文献1~3に記載された発明が高い発電効率を有するとは必ずしもいえない。例えば、ガラス基板の耐熱性とともに、ガラス基板から光電変換層へのNaの拡散によって発電効率を高めることも望まれる。
In a solar cell, a photoelectric conversion layer is formed between glass substrates. In order to produce a solar cell with high power generation efficiency, it is preferable to heat-treat the photoelectric conversion layer at a higher temperature. Heat resistance that can be tolerated is required.
However, Patent Documents 1 to 3 propose glass compositions having a relatively high annealing point, but the inventions described in Patent Documents 1 to 3 do not necessarily have high power generation efficiency. For example, it is desired to increase the power generation efficiency by diffusion of Na from the glass substrate to the photoelectric conversion layer together with the heat resistance of the glass substrate.
 特許文献1では、徐冷点及び熱膨張係数を制御してガラス基板の変形や歪みを防止することを課題としているが、Na拡散量の点から発電効率は検討されていない。
 特許文献2では、Naの拡散のためにNaOを配合しているが、歪点の低下を防止するためにNaOの配合量が制限される(段落0027参照)。また、特許文献2では、Alの配合量が少ない点からも歪点が低下するという問題がある。
 特許文献3では、歪点、熱膨張係数、ガラス基板の反りを考慮して、NaOの配合量が制限されているが、Na拡散量の点から発電効率は検討されていない。
In Patent Document 1, an object is to prevent the deformation and distortion of the glass substrate by controlling the annealing point and the thermal expansion coefficient, but power generation efficiency has not been studied in terms of the amount of Na diffusion.
In Patent Document 2, Na 2 O is blended for diffusion of Na, but the blending amount of Na 2 O is limited to prevent a decrease in strain point (see paragraph 0027). Further, there is a problem that in Patent Document 2, the strain point from the viewpoint amount of Al 2 O 3 is less lowered.
In Patent Document 3, the blending amount of Na 2 O is limited in consideration of the strain point, the thermal expansion coefficient, and the warp of the glass substrate, but the power generation efficiency is not examined from the point of Na diffusion amount.
 特許文献4では、NaOを添加する一方で、BaOを1質量%未満とすることで、ナトリウムイオンの移動度を有利に作用させて、太陽電池の効率を高めることが提案されている。しかし、NaOによってナトリウムイオンの移動度を高める一方で、NaOのみを増加させるとガラス基板の耐熱性及び失透性が低下することがある。 Patent Document 4 proposes that Na 2 O is added while BaO is less than 1% by mass, so that the mobility of sodium ions is advantageously acted on to increase the efficiency of the solar cell. However, while increasing the mobility of the sodium ions by Na 2 O, heat resistance and devitrification resistance of the glass substrate is increased only Na 2 O may be reduced.
 特許文献5では、光電変換効率を高める成分としてNaO及びKOが挙げられている。しかし、歪点、熱膨張係数、失透特性を考慮してNaO及びKOの配合量が制限されるため、光電変換効率を十分に高めることができない問題がある。 In Patent Document 5, Na 2 O and K 2 O is mentioned as a component to increase the photoelectric conversion efficiency. However, since the blending amount of Na 2 O and K 2 O is limited in consideration of the strain point, the thermal expansion coefficient, and the devitrification characteristics, there is a problem that the photoelectric conversion efficiency cannot be sufficiently increased.
 本発明の一目的としては、優れた耐熱性及び失透特性を得るとともに、化合物太陽電池基板として用いた際に、Na拡散量を多くして発電効率を高めるガラス板を提供することである。 An object of the present invention is to provide a glass plate that obtains excellent heat resistance and devitrification characteristics, and increases power generation efficiency by increasing the amount of Na diffusion when used as a compound solar cell substrate.
 本発明の一側面としては、下記酸化物基準の質量百分率表示で、SiOを45~65%、Alを9~17%、Bを0~1%、MgOを0~2%、CaOを1~12%、SrOを1~15%、BaOを1.4~12%、ZrOを2~6%、NaOを5~10%、KOを2~10%を含み、MgO+CaO+SrO+BaOが15~30%であり、2(SrO-BaO)+(KO-NaO)が11.5%以下である、ガラス板である。 As one aspect of the present invention, SiO 2 is 45 to 65%, Al 2 O 3 is 9 to 17%, B 2 O 3 is 0 to 1%, MgO is 0 to 2%, CaO 1-12%, SrO 1-15%, BaO 1.4-12%, ZrO 2 2-6%, Na 2 O 5-10%, K 2 O 2-10 %, MgO + CaO + SrO + BaO is 15 to 30%, and 2 (SrO—BaO) + (K 2 O—Na 2 O) is 11.5% or less.
 本明細書において数値範囲を示す「~」とは、その前後に記載された数値を下限値および上限値として含む意味で使用され、特段の定めがない限り、以下本明細書において「~」は、同様の意味をもって使用される。 In the present specification, “to” indicating a numerical range is used in the sense of including the numerical values described before and after it as a lower limit and an upper limit, and unless otherwise specified, Are used with similar meanings.
 本発明のガラス板によれば、優れた耐熱性及び失透特性を得るとともに、Na拡散量を多くして発電効率を高めることができる。また、これを用いた太陽電池を提供することができる。 According to the glass plate of the present invention, excellent heat resistance and devitrification characteristics can be obtained, and the amount of Na diffusion can be increased to increase power generation efficiency. Moreover, the solar cell using this can be provided.
図1は本実施形態のCIGS太陽電池の一例を模式的に表す断面図である。FIG. 1 is a cross-sectional view schematically showing an example of the CIGS solar cell of the present embodiment. 図2は本実施形態のCdTe太陽電池の一例を模式的に表す断面図である。FIG. 2 is a cross-sectional view schematically showing an example of the CdTe solar cell of the present embodiment.
 <ガラス板>
 以下、本発明の一実施形態のガラス板について説明する。
<Glass plate>
Hereinafter, the glass plate of one Embodiment of this invention is demonstrated.
 本実施形態によるガラス板は、下記酸化物基準の質量百分率表示で、SiOを45~65%、Alを9~17%、Bを0~1%、MgOを0~2%、CaOを1~12%、SrOを1~15%、BaOを1.4~12%、ZrOを2~6%、NaOを5~10%、KOを2~10%を含み、MgO+CaO+SrO+BaOが15~30%であり、2(SrO-BaO)+(KO-NaO)が11.5%以下であるガラス組成を有することを特徴とする。
 本明細書において、ガラス組成成分の含有割合は、特に断りがない限り、質量百分率表示(質量%)で表し、これらを単に%とも記している。
Glass plate according to the present embodiment, by mass percentage based on the following oxides, the SiO 2 45 - 65%, the Al 2 O 3 9 ~ 17% , the B 2 O 3 0 ~ 1% , MgO 0 to 2%, CaO 1-12%, SrO 1-15%, BaO 1.4-12%, ZrO 2 2-6%, Na 2 O 5-10%, K 2 O 2-10 %, MgO + CaO + SrO + BaO is 15 to 30%, and 2 (SrO—BaO) + (K 2 O—Na 2 O) is 11.5% or less.
In the present specification, unless otherwise specified, the content ratio of the glass composition component is expressed in terms of mass percentage (mass%), and these are also simply referred to as%.
 本実施形態によるガラス板によれば、上記組成範囲であることで、ガラス転移温度及び失透特性を以下に示す好ましい範囲とすることができる。また、上記組成範囲であることで、CIGS太陽電池用においては、ガラス基板から、ガラス基板上に形成される光電変換層へのNaの拡散量を多くして、太陽電池の効率を高めることができる。さらに、上記組成範囲であることで、粘度特性、平均熱膨張係数、密度を以下に示す好ましい範囲とすることができる。 According to the glass plate according to the present embodiment, the glass transition temperature and the devitrification characteristics can be set to the preferred ranges shown below by being in the above composition range. Moreover, by being the said composition range, in CIGS solar cell use, the diffusion amount of Na to the photoelectric converting layer formed on a glass substrate from a glass substrate can be increased, and the efficiency of a solar cell can be improved. it can. Furthermore, it can be set as the preferable range which shows a viscosity characteristic, an average thermal expansion coefficient, and a density by being the said composition range below.
 本実施形態のガラス板のガラス転移点温度(Tg)は、一般に広く使用されている通常のソーダライムガラスのガラス転移点温度より高いことが好ましく、具体的には640℃以上であることが好ましい。ガラス板をCIGS太陽電池のガラス基板として用いる場合、高温におけるCIGS層の形成を担保するため、ガラス転移点温度(Tg)は、645℃以上であることがより好ましく、650℃以上がさらに好ましく、655℃以上が特に好ましい。溶解時の粘性を上げ過ぎないようにするために、750℃以下とするのがより好ましい。さらに好ましくは720℃以下、特に好ましくは690℃以下である。 The glass transition temperature (Tg) of the glass plate of this embodiment is preferably higher than the glass transition temperature of ordinary soda lime glass that is widely used in general, and is specifically preferably 640 ° C. or higher. . When using a glass plate as a glass substrate of a CIGS solar cell, the glass transition temperature (Tg) is more preferably 645 ° C. or higher, and more preferably 650 ° C. or higher in order to ensure the formation of the CIGS layer at a high temperature. 655 ° C. or higher is particularly preferable. In order not to raise the viscosity at the time of dissolution excessively, it is more preferable that the temperature be 750 ° C. or lower. More preferably, it is 720 degrees C or less, Most preferably, it is 690 degrees C or less.
 本実施形態のガラス板は、粘度が10dPa・sとなる温度(T4)と失透温度(TL)との関係がT4-TL>0であることが好ましい。T4-TLが0℃以下では、板ガラス成形時に失透が生じやすく、ガラス板の成形が困難になるおそれがある。T4-TLは、より好ましくは5℃以上、さらに好ましくは10℃以上である。ここで、失透温度は、ガラスを特定の温度で17時間保持するときに、ガラス表面および内部に結晶が生成しない最大温度である。 In the glass plate of the present embodiment, the relationship between the temperature (T4) at which the viscosity is 10 4 dPa · s and the devitrification temperature (TL) is preferably T4−TL> 0. When T4-TL is 0 ° C. or lower, devitrification is likely to occur during the formation of the sheet glass, and it may be difficult to form the glass sheet. T4-TL is more preferably 5 ° C. or higher, and further preferably 10 ° C. or higher. Here, the devitrification temperature is the maximum temperature at which crystals are not generated on the glass surface and inside when the glass is held at a specific temperature for 17 hours.
 ガラス板の成形性、即ち、平坦性向上及び生産性向上を考慮すると、T4は、1230℃以下であることが好ましい。T4は、1220℃以下がより好ましく、1210℃以下がさらに好ましい。 Considering the moldability of the glass plate, that is, improvement in flatness and productivity, T4 is preferably 1230 ° C. or lower. T4 is more preferably 1220 ° C. or less, and further preferably 1210 ° C. or less.
 また、本実施形態のガラス板は、ガラスの溶解性、即ち、均質性向上、生産性向上等を考慮して、粘度が10dPa・sとなる温度(T2)が1650℃以下であることが好ましい。T2は、1630℃以下がより好ましく、1620℃以下がさらに好ましい。 In addition, the glass plate of the present embodiment has a temperature (T2) at which the viscosity becomes 10 2 dPa · s is 1650 ° C. or less in consideration of the solubility of the glass, that is, the improvement of homogeneity and the improvement of productivity. Is preferred. T2 is more preferably 1630 ° C. or lower, and further preferably 1620 ° C. or lower.
 本実施形態のガラス板の50~350℃における平均熱膨張係数は、70×10-7~90×10-7/℃であることが好ましい。本実施形態のガラス板をCIGS太陽電池のガラス基板として用いる場合、70×10-7/℃未満、または90×10-7/℃超ではCIGS層との熱膨張差が大きくなりすぎ、CIGS層の成膜中または成膜後に、CIGS層の剥離が発生することがある。より好ましくは85×10-7/℃以下である。 The average thermal expansion coefficient of the glass plate of this embodiment at 50 to 350 ° C. is preferably 70 × 10 −7 to 90 × 10 −7 / ° C. When the glass plate of the present embodiment is used as a glass substrate of a CIGS solar cell, if it is less than 70 × 10 −7 / ° C. or more than 90 × 10 −7 / ° C., the difference in thermal expansion from the CIGS layer becomes too large, and the CIGS layer The CIGS layer may be peeled off during or after the film formation. More preferably, it is 85 × 10 −7 / ° C. or less.
 本実施形態のガラス板は、密度が2.85g/cm以下であることが好ましい。密度が2.85g/cmを超えると、上記ガラス基板の質量が重くなり好ましくない。密度は、より好ましくは2.83g/cm以下である。また、フロート法やフュージョン法等の通常の方法でガラス板を製造する場合に、容易に製造できるようなガラス組成範囲とすることを考慮すると、通常2.4g/cm以上である。 The glass plate of the present embodiment preferably has a density of 2.85 g / cm 3 or less. When the density exceeds 2.85 g / cm 3 , the mass of the glass substrate becomes heavy, which is not preferable. The density is more preferably 2.83 g / cm 3 or less. Moreover, when manufacturing a glass plate by normal methods, such as a float process and a fusion method, when it considers setting it as the glass composition range which can be manufactured easily, it is 2.4 g / cm < 3 > or more normally.
 このように、本実施形態によるガラス板は、上記組成を有することで、ガラス転移温度が高くて優れた耐熱性を得て、またT4-TLが大きくて優れた失透特性を得て、Na拡散量が多いため発電効率を高めることができる。さらに、T4及びT2の粘度特性、平均熱膨張係数、密度が適正な範囲であるため、ガラス基板の生産時に溶解性及び成形性を良好にすることができる。これによって、本実施形態によるガラス板は、各種の特性をバランスよく有し、CIGS太陽電池用またはCdTe太陽電池用のガラス基板として好ましく用いることができる。 As described above, the glass plate according to the present embodiment has the above composition, so that the glass transition temperature is high and excellent heat resistance is obtained, and the T4-TL is large and excellent devitrification characteristics are obtained. Since the amount of diffusion is large, the power generation efficiency can be increased. Furthermore, since the viscosity characteristics, average thermal expansion coefficient, and density of T4 and T2 are in an appropriate range, solubility and moldability can be improved during production of the glass substrate. Accordingly, the glass plate according to the present embodiment has various characteristics in a well-balanced manner, and can be preferably used as a glass substrate for CIGS solar cells or CdTe solar cells.
 本実施形態のガラス板において、上記組成に限定する理由は、以下のとおりである。 In the glass plate of the present embodiment, the reason for limiting to the above composition is as follows.
 SiO
 SiOは、ガラスの骨格を形成する成分で、45質量%未満ではガラス板の耐熱性および化学的耐久性が低下し、平均熱膨張係数が増大するおそれがある。好ましくは47%以上であり、より好ましくは49%以上であり、特に好ましくは51%以上である。
 しかし、65%超ではガラスの高温粘度が上昇し、溶解性が悪化する問題が生じるおそれがある。好ましくは63%以下であり、より好ましくは62%以下であり、さらに好ましくは61%以下、特に好ましくは59%以下、一層好ましくは57.5%以下である。
SiO 2 :
SiO 2 is a component that forms a glass skeleton. If it is less than 45% by mass, the heat resistance and chemical durability of the glass plate are lowered, and the average thermal expansion coefficient may be increased. Preferably it is 47% or more, more preferably 49% or more, and particularly preferably 51% or more.
However, if it exceeds 65%, the high-temperature viscosity of the glass increases, which may cause a problem that the solubility deteriorates. Preferably it is 63% or less, More preferably, it is 62% or less, More preferably, it is 61% or less, Especially preferably, it is 59% or less, More preferably, it is 57.5% or less.
 Al
 Alは、ガラス転移点温度を上げ、耐候性(ソラリゼーション)、耐熱性および化学的耐久性を向上し、ヤング率を上げる。その含有量が9%未満であると、ガラス転移点温度が低下するおそれがある。また平均熱膨張係数が増大するおそれがある。より好ましくは9.5%以上であり、さらに好ましくは10%以上、特に好ましくは11%以上、一層好ましくは12%以上である。
Al 2 O 3 :
Al 2 O 3 increases the glass transition temperature, improves weather resistance (solarization), heat resistance and chemical durability, and increases Young's modulus. There exists a possibility that glass transition temperature may fall that the content is less than 9%. Moreover, there exists a possibility that an average thermal expansion coefficient may increase. More preferably, it is 9.5% or more, more preferably 10% or more, particularly preferably 11% or more, and further preferably 12% or more.
 しかし、17%超では、ガラスの高温粘度が上昇し、溶解性が悪くなるおそれがある。また、失透温度が上昇し、成形性が悪くなるおそれがある。好ましくは16%以下、より好ましくは15%以下である。 However, if it exceeds 17%, the high-temperature viscosity of the glass is increased, and the solubility may be deteriorated. Further, the devitrification temperature is increased, and the moldability may be deteriorated. Preferably it is 16% or less, More preferably, it is 15% or less.
 B
 Bは、溶解性を向上させる等のために1%まで含有してもよい。含有量が1%を超えるとガラス転移点温度が下がる、または平均熱膨張係数が小さくなるおそれがあり、光電変換層を形成するプロセスにとって好ましくない。また失透温度が上昇して失透しやすくなり板ガラス成形が難しくなる。好ましくは含有量が0.5%以下である。実質的に含有しないことがより好ましい。
 なお、「実質的に含有しない」とは、原料等から混入する不可避的不純物以外には含有しないこと、すなわち、意図的に含有させないことを意味する。
B 2 O 3 :
B 2 O 3 may be contained up to 1% in order to improve the solubility. If the content exceeds 1%, the glass transition temperature may decrease, or the average thermal expansion coefficient may decrease, which is not preferable for the process of forming a photoelectric conversion layer. Moreover, devitrification temperature rises and it becomes easy to devitrify, and plate glass shaping | molding becomes difficult. The content is preferably 0.5% or less. More preferably, it does not contain substantially.
In addition, “substantially does not contain” means that it is not contained other than inevitable impurities mixed from raw materials or the like, that is, it is not intentionally contained.
 MgO:
 MgOは、ガラスの溶解時の粘性を下げ、溶解を促進する効果があるため、2%まで含有してもよい。
 2%以下であれば、所望の平均熱膨張係数が得られる。また失透温度が上昇することもなく好ましい。好ましくは1.5%以下、より好ましくは1.0%であり、さらに好ましくは0.5%以下、特に好ましくは0.1%以下である。
MgO:
MgO has the effect of lowering the viscosity at the time of melting the glass and promoting the melting, so it may be contained up to 2%.
If it is 2% or less, a desired average thermal expansion coefficient can be obtained. Further, it is preferable that the devitrification temperature does not increase. Preferably it is 1.5% or less, More preferably, it is 1.0%, More preferably, it is 0.5% or less, Most preferably, it is 0.1% or less.
 CaO:
 CaOは、ガラスの溶解時の粘性を下げ、溶解を促進する効果があるので1~12%含有させる。好ましくは2%以上、より好ましくは3%以上、さらに好ましくは4%以上、特に好ましくは5%以上である。しかし、12%超ではガラス板の平均熱膨張係数が増大するおそれがある。また、太陽電池用のガラス基板として用いる場合、ナトリウム(Na)がガラス基板中で移動しにくくなり発電効率が低下するおそれがある。好ましくは11%以下、より好ましくは10%以下、さらに好ましくは9%以下、特に好ましくは8.5%以下である。
CaO:
CaO is contained in an amount of 1 to 12% because it has the effect of lowering the viscosity of the glass during melting and promoting the melting. Preferably it is 2% or more, More preferably, it is 3% or more, More preferably, it is 4% or more, Most preferably, it is 5% or more. However, if it exceeds 12%, the average thermal expansion coefficient of the glass plate may increase. Moreover, when using as a glass substrate for solar cells, sodium (Na) is difficult to move in the glass substrate, and power generation efficiency may be reduced. Preferably it is 11% or less, More preferably, it is 10% or less, More preferably, it is 9% or less, Most preferably, it is 8.5% or less.
 SrO:
 SrOは、ガラスの溶解時の粘性を下げ、溶解を促進する効果があるため、1~15%含有させる。また、ガラス基板中に含まれることで、本実施形態のガラス板をCIGS太陽電池のガラス基板として用いる場合、ナトリウム(Na)がガラス基板上のCIGS層へ拡散するのを促進する効果がある。好ましくは1.5%以上、より好ましくは2%以上、さらに好ましくは3%以上である。しかし、15%超含有するとガラス板の密度が増大するおそれがある。13%以下が好ましく、12%以下であることがより好ましく、11.5%以下であることがさらに好ましく、10.5%以下であることが特に好ましい。
SrO:
SrO is contained in an amount of 1 to 15% because it has the effect of reducing the viscosity at the time of melting the glass and promoting the melting. Moreover, when it uses in the glass substrate, when using the glass plate of this embodiment as a glass substrate of a CIGS solar cell, there exists an effect which accelerates | stimulates disperse | distributing sodium (Na) to the CIGS layer on a glass substrate. Preferably it is 1.5% or more, More preferably, it is 2% or more, More preferably, it is 3% or more. However, if the content exceeds 15%, the density of the glass plate may increase. It is preferably 13% or less, more preferably 12% or less, still more preferably 11.5% or less, and particularly preferably 10.5% or less.
 BaO:
 BaOは、ガラスの溶解時の粘性を下げ、溶解を促進する効果があるので、1.4~12%含有させる。またガラス板中にBaOが含まれることで、本実施形態のガラス板をCIGS太陽電池のガラス基板として用いる場合、ナトリウム(Na)がガラス基板上のCIGS層へ拡散するのを促進する効果がある。好ましくは2%以上、より好ましくは3%以上、さらに好ましくは3.5%以上、特に好ましくは4%以上である。しかし、12%超含有するとガラス板の平均熱膨張係数が増大し、密度が増大するおそれがある。また、ヤング率が低下するおそれがある。11%以下が好ましく、10%以下であることがより好ましい。
BaO:
BaO has an effect of lowering the viscosity at the time of melting the glass and promoting the melting, so it is contained in an amount of 1.4 to 12%. Moreover, when using the glass plate of this embodiment as a glass substrate of a CIGS solar cell by containing BaO in a glass plate, there exists an effect which accelerates | stimulates disperse | distributing sodium (Na) to the CIGS layer on a glass substrate. . Preferably it is 2% or more, More preferably, it is 3% or more, More preferably, it is 3.5% or more, Most preferably, it is 4% or more. However, if the content exceeds 12%, the average thermal expansion coefficient of the glass plate increases, and the density may increase. In addition, the Young's modulus may be reduced. It is preferably 11% or less, and more preferably 10% or less.
 ZrO
 ZrOは、ガラスの溶解時の粘性を下げ、溶解を促進する効果があるので2%以上で含有させる。6%以下であれば発電効率が良好で、また失透温度が上昇して失透することもなく、板ガラス成形が容易である。5.5%以下が好ましく、5%以下がより好ましく、4.6%以下がさらに好ましい。また、好ましくは2.3%以上、より好ましくは2.5%以上、さらに好ましくは3%以上、特に好ましくは3.5%以上である。
ZrO 2 :
ZrO 2 has an effect of reducing the viscosity at the time of melting the glass and promoting the melting, so it is contained at 2% or more. If it is 6% or less, the power generation efficiency is good, the devitrification temperature is not increased and devitrification does not occur, and plate glass molding is easy. 5.5% or less is preferable, 5% or less is more preferable, and 4.6% or less is more preferable. Further, it is preferably 2.3% or more, more preferably 2.5% or more, further preferably 3% or more, and particularly preferably 3.5% or more.
 NaO:
 NaOは、本実施形態のガラス板をCIGS太陽電池のガラス基板として用いる場合、CIGS太陽電池の発電効率向上に寄与するための成分であり、必須成分である。また、ガラス溶解温度での粘性を下げ、溶解しやすくする効果があるので5~10%含有させる。ナトリウム(Na)は、ガラス基板上に構成されたCIGS層中に拡散し、発電効率を高めるが、含有量が5%未満ではガラス基板上のCIGS層へのNa拡散が不十分となり、発電効率も不十分となるおそれがある。含有量が5.3%以上であると好ましく、含有量が5.5%以上であるとさらに好ましく、含有量が5.6%以上であると特に好ましい。
 NaO含有量が10%を超えると平均熱膨張係数が大きくなり、ガラス転移点温度が低下する傾向がある。または化学的耐久性が劣化する傾向がある。または、ヤング率が低下するおそれがある。含有量が9%以下であると好ましく、8%以下であるとより好ましく、7.5%以下であるとさらに好ましい。
Na 2 O:
Na 2 O is a component for contributing to the improvement of power generation efficiency of the CIGS solar cell when using the glass plate of the present embodiment as a glass substrate of the CIGS solar cell, and is an essential component. Further, it has the effect of lowering the viscosity at the glass melting temperature and facilitating melting, so it is contained in an amount of 5 to 10%. Sodium (Na) diffuses into the CIGS layer formed on the glass substrate to increase the power generation efficiency. However, if the content is less than 5%, Na diffusion to the CIGS layer on the glass substrate becomes insufficient, resulting in power generation efficiency. May be insufficient. The content is preferably 5.3% or more, more preferably 5.5% or more, and particularly preferably 5.6% or more.
When the Na 2 O content exceeds 10%, the average thermal expansion coefficient tends to increase, and the glass transition temperature tends to decrease. Or chemical durability tends to deteriorate. Alternatively, the Young's modulus may be reduced. The content is preferably 9% or less, more preferably 8% or less, and even more preferably 7.5% or less.
 KO:
 KOは、ナトリウム(Na)がガラス基板上のCIGS層へ拡散するのを促進する効果があるため、2~10%含有させる。しかし、10%超ではガラス転移点温度が低下し、平均熱膨張係数が大きくなり、比重が大きくなるおそれがある。含有量は、2.5%以上であることが好ましく、3%以上であることがより好ましい。また、9%以下が好ましく、8%以下であることがより好ましく、7%以下がさらに好ましく、6%以下が特に好ましい。
K 2 O:
K 2 O is contained in an amount of 2 to 10% because it has an effect of promoting the diffusion of sodium (Na) into the CIGS layer on the glass substrate. However, if it exceeds 10%, the glass transition temperature is lowered, the average thermal expansion coefficient is increased, and the specific gravity may be increased. The content is preferably 2.5% or more, and more preferably 3% or more. Further, it is preferably 9% or less, more preferably 8% or less, further preferably 7% or less, and particularly preferably 6% or less.
 TiO
 TiOを含有させると失透温度が上昇するため、含有しないことが好ましい。ただし、本実施形態のガラス板は、通常のソーダライムガラスに比べて、ガラス基板製造時に溶融ガラス表面に泡層が生成しやすい。泡層が生成すると、溶融ガラスの温度が上がらず、清澄しづらくなり、生産性が悪化する傾向がある。溶融ガラス表面に生成した泡層を薄化または消失させるために、消泡剤としてチタン化合物が溶融ガラス表面に生成した泡層に供給されることがある。チタン化合物は、溶融ガラス中に取り込まれ、TiOとして存在する。このチタン化合物は、無機チタン化合物(四塩化チタン、酸化チタン等)であってもよく、有機チタン化合物であってもよい。有機チタン化合物としては、チタン酸エステルまたはその誘導体、チタンキレートまたはその誘導体、チタンアシレートまたはその誘導体、シュウ酸チタネート等が挙げられる。上記の理由により、TiOは、不純物として0.2%以下でガラス基板中に含有することが許容される。
TiO 2 :
When TiO 2 is contained, the devitrification temperature rises, so it is preferable not to contain it. However, the glass plate of this embodiment is easy to produce a foam layer on the surface of the molten glass when the glass substrate is manufactured, as compared with normal soda lime glass. When the foam layer is generated, the temperature of the molten glass does not rise, it becomes difficult to clarify, and the productivity tends to deteriorate. In order to thin or eliminate the foam layer generated on the surface of the molten glass, a titanium compound may be supplied as an antifoaming agent to the foam layer generated on the surface of the molten glass. The titanium compound is taken into the molten glass and exists as TiO 2 . This titanium compound may be an inorganic titanium compound (titanium tetrachloride, titanium oxide, etc.) or an organic titanium compound. Examples of the organic titanium compound include titanic acid esters or derivatives thereof, titanium chelates or derivatives thereof, titanium acylates or derivatives thereof, and oxalic acid titanates. For the above reasons, TiO 2 is allowed to be contained in the glass substrate at 0.2% or less as an impurity.
 MgO+CaO+SrO+BaO(MgOとCaOとSrOとBaOとの合計含有量):
 MgO、CaO、SrOおよびBaOは、ガラスの溶解時の粘性を下げ、溶解を促進させる点から、MgOとCaOとSrOとBaOとの合計含有量で15%以上含有する。しかし、これらのアルカリ土類酸化物の合量が30%超では失透温度が上昇し、成形性が悪くなる恐れがある。16%以上が好ましく、17%以上がより好ましい。また、26%以下が好ましく、25%以下がより好ましく、23%以下がさらに好ましく、21%以下が特に好ましい。
MgO + CaO + SrO + BaO (total content of MgO, CaO, SrO and BaO):
MgO, CaO, SrO and BaO are contained in an amount of 15% or more in terms of the total content of MgO, CaO, SrO and BaO from the viewpoint of reducing the viscosity at the time of melting the glass and promoting the melting. However, if the total amount of these alkaline earth oxides exceeds 30%, the devitrification temperature rises and the moldability may be deteriorated. 16% or more is preferable, and 17% or more is more preferable. Moreover, 26% or less is preferable, 25% or less is more preferable, 23% or less is further more preferable, and 21% or less is especially preferable.
 SrO+BaO(SrOとBaOとの合計含有量):
 SrO及びBaOは、ともにガラス板の耐熱性を維持しつつ、CIGS太陽電池用においては、ガラス基板上に構成されたCIGS層へ拡散し発電効率を高めるナトリウムの拡散を増加させる効果がある。そのため、SrO+BaOが6%以上となる範囲で含有させるのが好ましい。より好ましくは6.5%以上、さらに好ましくは7%以上、特に好ましくは7.5%以上である。しかし、SrO+BaOが大きくなりすぎるとガラスの比重が大きくなり、ガラス基板としての強度が低下するため、SrO+BaOが18%以下となる範囲で含有させるのが好ましい。より好ましくは17%以下、さらに好ましくは16.5%以下、特に好ましくは16%以下である。
SrO + BaO (total content of SrO and BaO):
Both SrO and BaO have the effect of increasing the diffusion of sodium that diffuses into the CIGS layer formed on the glass substrate and increases the power generation efficiency while maintaining the heat resistance of the glass plate. Therefore, it is preferable to contain in the range which SrO + BaO becomes 6% or more. More preferably, it is 6.5% or more, further preferably 7% or more, and particularly preferably 7.5% or more. However, if SrO + BaO is too large, the specific gravity of the glass is increased and the strength as a glass substrate is lowered. Therefore, it is preferable to contain SrO + BaO in a range of 18% or less. More preferably, it is 17% or less, More preferably, it is 16.5% or less, Most preferably, it is 16% or less.
 SrO-BaO(SrOの含有量からBaOの含有量を引いた値):
 BaOは、SrOよりも、耐熱性を維持しながらナトリウムの拡散を増加させる効果が大きいため、SrO-BaOが7.5%以下となる範囲で含有させるのが好ましい。より好ましくは7%以下、さらに好ましくは6.5%以下、特に好ましくは6%以下である。
SrO—BaO (a value obtained by subtracting the BaO content from the SrO content):
BaO has a larger effect of increasing the diffusion of sodium while maintaining heat resistance than SrO, so it is preferable to contain BaO in a range where SrO—BaO is 7.5% or less. More preferably, it is 7% or less, more preferably 6.5% or less, and particularly preferably 6% or less.
 NaO+KO(NaOとKOとの合計含有量):
 組成中のNaO+KOの割合を増加させることは、CIGS太陽電池用においては、ガラス基板上に構成されたCIGS層へ拡散し発電効率を高めるナトリウムの拡散を増加させる効果があるので、NaO+KOが7%以上となる範囲で含有させるのが好ましい。より好ましくは7.5%以上、さらに好ましくは8%以上、特に好ましくは9%以上である。しかし、NaO+KOが大きくなりすぎるとガラスのガラス転移点が低下しガラス基板としての耐熱性が低下するため、NaO+KOが15%以下となる範囲で含有させるのが好ましい。より好ましくは14%以下、さらに好ましくは13.5%以下、特に好ましくは13%以下である。
Na 2 O + K 2 O (total content of Na 2 O and K 2 O):
Increasing the proportion of Na 2 O + K 2 O in the composition has the effect of increasing the diffusion of sodium to increase the power generation efficiency by diffusing into the CIGS layer configured on the glass substrate for CIGS solar cells. It is preferable that Na 2 O + K 2 O is contained within a range of 7% or more. More preferably, it is 7.5% or more, More preferably, it is 8% or more, Most preferably, it is 9% or more. However, if Na 2 O + K 2 O becomes too large, the glass transition point of the glass is lowered and the heat resistance of the glass substrate is lowered, so that Na 2 O + K 2 O is preferably contained in an amount of 15% or less. More preferably, it is 14% or less, more preferably 13.5% or less, and particularly preferably 13% or less.
 KO-NaO(KOの含有量からNaOの含有量を引いた値):
 NaOは、耐熱性を低下させる効果に対してナトリウムの拡散を増加させる効果の割合がKOよりも大きいため、耐熱性を維持しながらナトリウムの拡散を増加させる観点では、KO-NaOが2%以下となる範囲で含有させるのが好ましい。より好ましくは1%以下、さらに好ましくは0%以下、特に好ましくは-1.3%以下である。
K 2 O—Na 2 O (value obtained by subtracting the content of Na 2 O from the content of K 2 O):
Since Na 2 O has a larger ratio of the effect of increasing the diffusion of sodium to the effect of decreasing the heat resistance than K 2 O, from the viewpoint of increasing the diffusion of sodium while maintaining the heat resistance, K 2 O —Na 2 O is preferably contained within a range of 2% or less. More preferably, it is 1% or less, more preferably 0% or less, particularly preferably -1.3%.
 2(SrO-BaO)+(KO-NaO):
 (SrO-BaO)および(KO-NaO)を小さくすることは、ともに耐熱性を維持しながらナトリウムの拡散量を増加させる効果がある。(SrO-BaO)を小さくすることは、(KO-NaO)を小さくすることよりもナトリウム拡散量を増加させる効果が大きいため、生産性向上を考慮に入れると、2(SrO-BaO)+(KO-NaO)が11.5%以下となる範囲で含有されることが好ましい。より好ましくは11%以下、さらに好ましくは10.5%以下、特に好ましくは10%以下である。
2 (SrO—BaO) + (K 2 O—Na 2 O):
Reducing (SrO—BaO) and (K 2 O—Na 2 O) has the effect of increasing the amount of sodium diffusion while maintaining heat resistance. Decreasing (SrO—BaO) has a greater effect of increasing the amount of sodium diffusion than reducing (K 2 O—Na 2 O). Therefore, when productivity improvement is taken into account, 2 (SrO— BaO) + (K 2 O—Na 2 O) is preferably contained within a range of 11.5% or less. More preferably, it is 11% or less, More preferably, it is 10.5% or less, Most preferably, it is 10% or less.
 本実施形態のガラス板は、本質的に上記母組成(SiO、Al、B、MgO、CaO、SrO、BaO、ZrO、NaO、およびKO)からなるが、本発明の目的を損なわない範囲で、下記のその他の成分をそれぞれ1%以下、およびこれらの加えられた成分と上記したTiOを加えた合計で5%以下含有してもよい。たとえば、耐候性、溶解性、失透性、紫外線遮蔽、屈折率等の改善を目的に、ZnO、LiO、WO、Nb、V、Bi、MoO、P等を含有してもよい場合がある。 Glass plate of the present embodiment consists essentially of the above matrix composition (SiO 2, Al 2 O 3 , B 2 O 3, MgO, CaO, SrO, BaO, ZrO 2, Na 2 O, and K 2 O) However, as long as the object of the present invention is not impaired, each of the following other components may be contained in an amount of 1% or less, and a total of 5% or less of these added components and the above-described TiO 2 may be contained. For example, ZnO, Li 2 O, WO 3 , Nb 2 O 5 , V 2 O 5 , Bi 2 O 3 , MoO 3 for the purpose of improving weather resistance, solubility, devitrification, ultraviolet shielding, refractive index, and the like. , P 2 O 5 or the like may be contained.
 また、ガラスの溶解性、清澄性を改善するため、ガラス中にSO、F、Cl、SnOをそれぞれ1%以下、合量で2%以下含有するように、これらの原料を母組成原料に添加してもよい。
 また、ガラス板の化学的耐久性向上のため、ガラス中にYおよび/またはLaを2%以下含有させてもよい。
In addition, in order to improve the solubility and clarity of the glass, these raw materials are matrix composition raw materials so that each glass contains 1% or less of SO 3 , F, Cl, SnO 2 and 2% or less in total. You may add to.
Further, in order to improve the chemical durability of the glass plate, 2% or less of Y 2 O 3 and / or La 2 O 3 may be contained in the glass.
 なお、本実施形態のガラス板には、透過率を確保し発電効率を高くするために、上記母組成(SiO、Al、B、MgO、CaO、SrO、BaO、ZrO、NaO、およびKO)100質量部に対して、鉄酸化物が、Fe換算で0.06質量部以下の含有量で含まれることが好ましい。より好ましくは0.055質量部以下、さらに好ましくは0.05質量部以下、特に好ましくは0.045質量部以下である。しかしながら、太陽電池用において、ガラス基板の透過率が不問の場合(例えばCIGS太陽電池の基板として用いられる場合など)、通常より鉄の含有量の少ない原料の使用による原料のコストアップの低減、および溶解時の加熱しやすさの観点から、鉄酸化物は、上記母組成100質量部に対して、Fe換算で0.2質量部以下が好ましく、0.15質量部以下がより好ましく、0.12質量部以下がさらに好ましい。
 また、鉄酸化物の含有量が0.01質量部以上であると、鉄酸化物成分の混入が不可避である工業原料を使用できるため、工業的な生産が容易となり好ましい。また、鉄酸化物の含有量が0.01質量部以上であると、溶解時に輻射の吸収が著しく大きくなるために、溶融ガラスの温度が上がりやすくなり製造に支障をきたすことがない。より好ましくは0.015質量部以上、さらに好ましくは0.02質量部以上である。
 なお、本実施形態において鉄酸化物の投入原料としては、弁柄、酸化鉄粉等が挙げられる。
Incidentally, the glass plate of the present embodiment, in order to increase the power generation efficiency to ensure the transmittance, the matrix composition (SiO 2, Al 2 O 3 , B 2 O 3, MgO, CaO, SrO, BaO, ZrO 2 , Na 2 O, and K 2 O) are preferably contained in an amount of 0.06 parts by mass or less in terms of Fe 2 O 3 with respect to 100 parts by mass. More preferably, it is 0.055 mass part or less, More preferably, it is 0.05 mass part or less, Most preferably, it is 0.045 mass part or less. However, for solar cells, when the transmittance of the glass substrate is unquestioned (for example, when used as a substrate for a CIGS solar cell), the cost increase of the raw material due to the use of a raw material with less iron content than usual, and From the viewpoint of ease of heating during dissolution, the iron oxide is preferably 0.2 parts by mass or less, more preferably 0.15 parts by mass or less in terms of Fe 2 O 3 with respect to 100 parts by mass of the mother composition. 0.12 parts by mass or less is more preferable.
Further, when the content of the iron oxide is 0.01 parts by mass or more, an industrial raw material in which the mixing of the iron oxide component is unavoidable can be used. Further, when the content of the iron oxide is 0.01 parts by mass or more, the absorption of radiation is remarkably increased at the time of melting, so that the temperature of the molten glass is easily increased and the production is not hindered. More preferably, it is 0.015 mass part or more, More preferably, it is 0.02 mass part or more.
In this embodiment, examples of the iron oxide input raw material include a valve stem and iron oxide powder.
 また、本実施形態のガラス板は、環境負荷を考慮すると、As、Sbを実質的に含有しないことが好ましい。また、安定してフロート成形することを考慮すると、ZnOを実質的に含有しないことが好ましい。しかし、本実施形態のガラス板は、フロート法による成形に限らず、フュージョン法による成形により製造してもよい。 Further, the glass plate of the present embodiment, considering the environmental burden, it is preferred not to contain As 2 O 3, Sb 2 O 3 substantially. In consideration of stable float forming, it is preferable that ZnO is not substantially contained. However, the glass plate of the present embodiment is not limited to being formed by the float method, and may be manufactured by forming by the fusion method.
 <ガラス板の製造方法>
 本実施形態のガラス板の製造方法について説明する。
 本実施形態のガラス板を製造する場合、従来のガラス板を製造する際と同様に、溶解・清澄工程および成形工程を実施する。なお、本実施形態のガラス板は、アルカリ金属酸化物(NaO、およびKO)を含有するアルカリ含有ガラス基板であるため、清澄剤としてSOを効果的に用いることができ、成形方法としてフロート法およびフュージョン法(ダウンドロー法)が適している。
<Method for producing glass plate>
The manufacturing method of the glass plate of this embodiment is demonstrated.
When manufacturing the glass plate of this embodiment, a melt | dissolution and clarification process and a shaping | molding process are implemented similarly to the time of manufacturing the conventional glass plate. In addition, since the glass plate of this embodiment is an alkali containing glass substrate containing an alkali metal oxide (Na 2 O and K 2 O), SO 3 can be effectively used as a fining agent, and molding As the method, a float method and a fusion method (down draw method) are suitable.
 太陽電池用のガラス基板用のガラス板の製造工程において、ガラスを板状に成形する方法としては、太陽電池の大型化に伴い、大面積のガラス基板を容易に、安定して成形できるフロート法を用いることが好ましい。 In the manufacturing process of a glass plate for a glass substrate for a solar cell, as a method for forming glass into a plate shape, a float method capable of easily and stably forming a large-area glass substrate with an increase in the size of the solar cell. Is preferably used.
 以下、本実施形態のガラス板の製造方法の好ましい態様について説明する。
 初めに、原料を溶解して得た溶融ガラスを板状に成形する。例えば、得られるガラス基板が上記組成となるように原料を調製し、上記原料を溶解炉に連続的に投入し、1550~1700℃に加熱して溶融ガラスを得る。そしてこの溶融ガラスを、例えばフロート法を適用してリボン状のガラス板に成形する。
 次に、リボン状のガラス板をフロート成形炉から引出した後に、冷却手段によって室温状態まで冷却し、切断後、ガラス板を得ることができる。
Hereinafter, the preferable aspect of the manufacturing method of the glass plate of this embodiment is demonstrated.
First, molten glass obtained by melting raw materials is formed into a plate shape. For example, raw materials are prepared so that the obtained glass substrate has the above composition, the raw materials are continuously charged into a melting furnace, and heated to 1550 to 1700 ° C. to obtain molten glass. Then, this molten glass is formed into a ribbon-like glass plate by applying, for example, a float process.
Next, after drawing the ribbon-shaped glass plate from the float forming furnace, it is cooled to room temperature by a cooling means, and after cutting, the glass plate can be obtained.
 <ガラス板の用途>
 本実施形態によるガラス板は、太陽電池用ガラス基板、太陽電池用カバーガラス、太陽電池用裏板ガラスとして好ましく用いることができる。
<Use of glass plate>
The glass plate by this embodiment can be preferably used as a glass substrate for solar cells, a cover glass for solar cells, and a back plate glass for solar cells.
 太陽電池の光電変換層としては、カルコパイライト結晶構造を持つ11-13族、11-16族化合物半導体や、立方晶系あるいは六方晶系の12-16族化合物半導体を好ましく用いることができる。代表的な例としては、CIGS系化合物、CdTe系化合物、CIS系化合物、CZTS系化合物等を挙げることができる。また太陽電池の光電変換層としては、シリコン系化合物、有機系化合物等を用いてもよい。 As the photoelectric conversion layer of the solar cell, a 11-13 group or 11-16 group compound semiconductor having a chalcopyrite crystal structure, or a cubic or hexagonal group 12-16 compound semiconductor can be preferably used. Representative examples include CIGS compounds, CdTe compounds, CIS compounds, CZTS compounds, and the like. In addition, as the photoelectric conversion layer of the solar cell, a silicon compound, an organic compound, or the like may be used.
 本実施形態によるガラス板は、上記特性を有することから、CIGS太陽電池に好ましく用いることができる。
 本実施形態のガラス板をCIGS太陽電池のガラス基板に適用する場合、ガラス基板の厚さは3mm以下とするのが好ましく、より好ましくは2mm以下、さらに好ましくは1.5mm以下である。
 またガラス基板にCIGS層を形成する方法は、特に制限されないが、本実施形態のガラス板はガラス転移温度が高いことから、CIGS層を形成する際の加熱温度を500~700℃、好ましくは550~700℃、より好ましくは580~700℃、さらに好ましくは600~700℃、特に好ましくは620~700℃とすることができる。
Since the glass plate by this embodiment has the said characteristic, it can be preferably used for a CIGS solar cell.
When applying the glass plate of this embodiment to the glass substrate of a CIGS solar cell, it is preferable that the thickness of a glass substrate shall be 3 mm or less, More preferably, it is 2 mm or less, More preferably, it is 1.5 mm or less.
The method for forming the CIGS layer on the glass substrate is not particularly limited. However, since the glass plate of the present embodiment has a high glass transition temperature, the heating temperature for forming the CIGS layer is 500 to 700 ° C., preferably 550. It can be set to ˜700 ° C., more preferably 580 to 700 ° C., further preferably 600 to 700 ° C., particularly preferably 620 to 700 ° C.
 本実施形態のガラス板をCIGS太陽電池のガラス基板のみに使用する場合、カバーガラス等は特に制限されない。カバーガラスの組成の他の例は、一般に広く使用されている通常のソーダライムガラス等が挙げられる。
 本実施形態のガラス板をCIGS太陽電池のカバーガラスとして使用する場合、カバーガラスの厚さは、3mm以下とするのが好ましく、より好ましくは2mm以下、さらに好ましくは1.5mm以下である。
 またCIGS太陽電池の製造において、CIGS層を有するガラス基板にカバーガラスを組立てる方法は、特に制限されないが、加熱して組立てる場合、その加熱温度を500~700℃、好ましくは600~700℃とすることができる。
When using the glass plate of this embodiment only for the glass substrate of a CIGS solar cell, a cover glass etc. are not restrict | limited in particular. Other examples of the composition of the cover glass include ordinary soda lime glass that is widely used.
When using the glass plate of this embodiment as a cover glass of a CIGS solar cell, it is preferable that the thickness of a cover glass shall be 3 mm or less, More preferably, it is 2 mm or less, More preferably, it is 1.5 mm or less.
In the production of CIGS solar cells, the method of assembling the cover glass on the glass substrate having the CIGS layer is not particularly limited, but when assembled by heating, the heating temperature is 500 to 700 ° C., preferably 600 to 700 ° C. be able to.
 本実施形態のガラス板をCIGS太陽電池のガラス基板およびカバーガラスに併用すると、平均熱膨張係数が同等であるため太陽電池組立時の熱変形等が発生せず好ましい。 It is preferable to use the glass plate of the present embodiment together with the glass substrate and the cover glass of the CIGS solar cell because the average thermal expansion coefficient is equivalent and thermal deformation or the like during the assembly of the solar cell does not occur.
 また、本実施形態によるガラス板は、上記特性を有することから、CdTe太陽電池に好ましく用いることができる。 Further, since the glass plate according to the present embodiment has the above characteristics, it can be preferably used for a CdTe solar cell.
 CdTe太陽電池で採用されているスーパーストレート型構造では、ガラス基板が外側に露出するため、高いガラス強度を有する本実施形態のガラス板は、CdTe太陽電池用ガラス基板としても好適に用いられる。
 また、高いガラス転移点温度を有するため、CdTe層形成時に高温で成膜できるため、CdTe太陽電池の発電効率に寄与することができる。
In the super straight type structure adopted in the CdTe solar cell, since the glass substrate is exposed to the outside, the glass plate of the present embodiment having high glass strength is also suitably used as a glass substrate for CdTe solar cells.
In addition, since it has a high glass transition temperature, it can be formed at a high temperature when forming the CdTe layer, which can contribute to the power generation efficiency of the CdTe solar cell.
 本実施形態のガラス板をCdTe太陽電池のガラス基板に適用する場合、ガラス基板の厚さは、3mm以下とするのが好ましく、より好ましくは2mm以下、さらに好ましくは1.5mm以下である。また、ガラス基板にCdTe層を形成する方法は、特に制限されないが、本実施形態のガラス基板は、ガラス転移温度が高いことから、CdTe層を形成する際の加熱温度を500~700℃、好ましくは550~700℃、より好ましくは580~700℃、さらに好ましくは600~700℃、特に好ましくは620~700℃とすることができる。 When the glass plate of this embodiment is applied to a glass substrate of a CdTe solar cell, the thickness of the glass substrate is preferably 3 mm or less, more preferably 2 mm or less, and even more preferably 1.5 mm or less. The method for forming the CdTe layer on the glass substrate is not particularly limited. However, since the glass substrate of the present embodiment has a high glass transition temperature, the heating temperature for forming the CdTe layer is preferably 500 to 700 ° C. Can be set to 550 to 700 ° C, more preferably 580 to 700 ° C, still more preferably 600 to 700 ° C, and particularly preferably 620 to 700 ° C.
 本実施形態のガラス板をCdTe太陽電池のガラス基板のみに使用する場合、裏板ガラス等は、特に制限されない。裏板ガラスの組成の他の例は、一般に広く使用されている通常のソーダライムガラス等が挙げられる。
 本実施形態のガラス板をCdTe太陽電池の裏板ガラスとして使用する場合、裏板ガラスの厚さは3mm以下とするのが好ましく、より好ましくは2mm以下、さらに好ましくは1.5mm以下である。
 またCdTe太陽電池の製造において、CdTe層を有するガラス基板に裏板ガラスを組立てる方法は特に制限されないが、加熱して組立てる場合、その加熱温度を500~700℃、好ましくは600~700℃とすることができる。
 本実施形態のガラス板をCdTe太陽電池のガラス基板および裏板ガラスに併用すると、平均熱膨張係数が同等であるため太陽電池組立時の熱変形等が発生せず好ましい。
When using the glass plate of this embodiment only for the glass substrate of a CdTe solar cell, back plate glass etc. are not restrict | limited in particular. Other examples of the composition of the back glass include ordinary soda lime glass which is generally used widely.
When using the glass plate of this embodiment as a back plate glass of a CdTe solar cell, the thickness of the back plate glass is preferably 3 mm or less, more preferably 2 mm or less, and even more preferably 1.5 mm or less.
In the production of CdTe solar cells, the method of assembling the back glass on the glass substrate having the CdTe layer is not particularly limited, but when assembled by heating, the heating temperature is 500 to 700 ° C., preferably 600 to 700 ° C. Can do.
When the glass plate of this embodiment is used in combination with the glass substrate and the back plate glass of the CdTe solar cell, the average thermal expansion coefficient is equivalent, so that thermal deformation or the like during solar cell assembly does not occur, which is preferable.
 <CIGS太陽電池>
 次に、本発明の一実施形態のCIGS太陽電池について説明する。
 本実施形態のCIGS太陽電池は、ガラス基板と、カバーガラスと、上記ガラス基板と上記カバーガラスとの間に配置されるCu-In-Ga-Seの光電変換層と、を有し、上記ガラス基板と上記カバーガラスのうち少なくとも一方が、本実施形態のガラス板であることを特徴とする。
<CIGS solar cell>
Next, a CIGS solar cell according to an embodiment of the present invention will be described.
The CIGS solar cell of this embodiment includes a glass substrate, a cover glass, and a Cu—In—Ga—Se photoelectric conversion layer disposed between the glass substrate and the cover glass. At least one of the substrate and the cover glass is the glass plate of this embodiment.
 以下、添付の図面を使用して本実施形態のCIGS太陽電池を詳細に説明する。なお、本発明は、添付の図面に限定されない。
 図1は、本実施形態のCIGS太陽電池の一例を模式的に表す断面図である。
Hereinafter, the CIGS solar cell of this embodiment is demonstrated in detail using attached drawing. The present invention is not limited to the attached drawings.
FIG. 1 is a cross-sectional view schematically illustrating an example of the CIGS solar cell of the present embodiment.
 図1において、本実施形態のCIGS太陽電池1は、ガラス基板5、カバーガラス19、およびガラス基板5とカバーガラス19との間にCIGS層9を有する。ガラス基板5及びカバーガラス19のうち少なくとも一方は、上記で説明した本実施形態のガラス板である。ガラス基板5が本実施形態によるガラス板であることで、Na拡散の効果を高めることができる。また、ガラス基板5及びカバーガラス19がともに本実施形態によるガラス板であることで、熱膨張係数を合わせて剥離等を防止することができる。 In FIG. 1, the CIGS solar cell 1 of the present embodiment includes a glass substrate 5, a cover glass 19, and a CIGS layer 9 between the glass substrate 5 and the cover glass 19. At least one of the glass substrate 5 and the cover glass 19 is the glass plate of the present embodiment described above. When the glass substrate 5 is the glass plate according to the present embodiment, the effect of Na diffusion can be enhanced. Further, since both the glass substrate 5 and the cover glass 19 are the glass plates according to the present embodiment, it is possible to prevent peeling and the like by matching the thermal expansion coefficients.
 太陽電池1は、ガラス基板5上にプラス電極7であるMo膜の裏面電極層を有し、その上にCIGS層9を有する。CIGS層の組成は、Cu(In1-XGax)Seが例示できる。xは、InとGaの組成比を示すもので0<x<1である。 The solar cell 1 has the back electrode layer of Mo film which is the plus electrode 7 on the glass substrate 5, and has the CIGS layer 9 on it. The composition of the CIGS layer, Cu (In 1-X Gax ) Se 2 can be exemplified. x represents the composition ratio of In and Ga, and 0 <x <1.
 CIGS層9上にはバッファ層11として、CdS(硫化カドミウム)、ZnS(亜鉛硫化物)層、ZnO(酸化亜鉛)層、Zn(OH)(水酸化亜鉛)層、またはこれらの混晶層を有する。バッファ層9を介して、ZnOまたはITO、またはAlをドープしたZnO(AZO)等の透明導電膜13を有し、さらにその上にマイナス電極15であるAl電極(アルミニウム電極)等の取出し電極を有する。これらの層の間の必要な場所には反射防止膜を設けてもよい。図1においては、透明導電膜13とマイナス電極15との間に反射防止膜17が設けられている。 On the CIGS layer 9, as a buffer layer 11, a CdS (cadmium sulfide), ZnS (zinc sulfide) layer, ZnO (zinc oxide) layer, Zn (OH) 2 (zinc hydroxide) layer, or a mixed crystal layer thereof. Have A transparent conductive film 13 such as ZnO, ITO, or Al doped ZnO (AZO) is provided through the buffer layer 9, and an extraction electrode such as an Al electrode (aluminum electrode) that is a negative electrode 15 is provided thereon. Have. An antireflection film may be provided at a necessary place between these layers. In FIG. 1, an antireflection film 17 is provided between the transparent conductive film 13 and the negative electrode 15.
 また、マイナス電極15上にカバーガラス19を設けてもよく、必要な場合はマイナス電極とカバーガラスとの間は樹脂封止したり、接着用の透明樹脂で接着してもよい。
 本実施形態において、CIGS層の端部または太陽電池の端部は封止されていてもよい。封止するための材料としては、例えば本実施形態のガラス板と同じ材料、その他のガラス、樹脂等が挙げられる。
 なお添付の図面に示す太陽電池の各層の厚さは図面に限定されない。
Further, a cover glass 19 may be provided on the negative electrode 15, and if necessary, the resin between the negative electrode and the cover glass may be sealed with resin or may be bonded with a transparent resin for bonding.
In this embodiment, the edge part of a CIGS layer or the edge part of a solar cell may be sealed. As a material for sealing, the same material as the glass plate of this embodiment, other glass, resin etc. are mentioned, for example.
Note that the thickness of each layer of the solar cell shown in the accompanying drawings is not limited to the drawings.
 本実施形態のCIGS太陽電池は、ガラス基板として本実施形態のガラス板を用い、CIGS層の成膜工程の第二段階において、CIGS層を500℃以上の加熱条件で成膜することで、より高い発電効率を得ることができる。第二段階の加熱温度は、好ましくは550℃以上、より好ましくは580℃以上、さらに好ましくは600℃以上、特に好ましくは620℃以上である。
 CIGS太陽電池の製造方法におけるCIGS層の成膜工程以外のその他の工程、例えば、バッファ層や透明導電膜層の成膜等は、通常のCIGS太陽電池の製造方法の工程と同様に行うことができる。
The CIGS solar cell of the present embodiment uses the glass plate of the present embodiment as a glass substrate, and in the second stage of the CIGS layer deposition process, the CIGS layer is deposited under heating conditions of 500 ° C. or higher. High power generation efficiency can be obtained. The heating temperature in the second stage is preferably 550 ° C. or higher, more preferably 580 ° C. or higher, further preferably 600 ° C. or higher, and particularly preferably 620 ° C. or higher.
Other processes other than the CIGS layer forming process in the CIGS solar cell manufacturing method, for example, the buffer layer and transparent conductive film layer forming process, etc., may be performed in the same manner as the normal CIGS solar cell manufacturing process. it can.
 <CdTe太陽電池>
 次に、本発明の一実施形態のCdTe太陽電池について説明する。
 本実施形態のCdTe太陽電池は、ガラス基板と、裏板ガラスと、上記ガラス基板と上記裏板ガラスとの間に配置されるCdTeの光電変換層(CdTe層)とを有し、上記ガラス基板と上記裏板ガラスのうち少なくとも一方が本実施形態のガラス板である。
 もしくは、上記CdTe太陽電池の構成において、裏板ガラスの代わりに、耐水性、耐酸素透過性をもつバックフィルムを用いた太陽電池でもよい。
<CdTe solar cell>
Next, a CdTe solar cell according to an embodiment of the present invention will be described.
The CdTe solar cell of this embodiment includes a glass substrate, a back plate glass, and a CdTe photoelectric conversion layer (CdTe layer) disposed between the glass substrate and the back plate glass. At least one of the back plate glasses is the glass plate of the present embodiment.
Alternatively, in the configuration of the CdTe solar cell, a solar cell using a back film having water resistance and oxygen resistance permeability may be used instead of the back glass.
 以下、添付の図面を用いて本実施形態における太陽電池を詳細に説明する。なお本発明は添付の図面に限定されない。
 図2は、本実施形態のCdTe太陽電池の実施形態の一例を模式的に表す断面図である。
 図2において、本実施形態の太陽電池(CdTe太陽電池)21は、厚さ1~3mmのガラス基板22、厚さ1~3mmの裏板ガラス27、およびガラス基板22と裏板ガラス27との間に厚さ3~15μmのCdTe層25を有する。ガラス基板22及び裏板ガラス27のうち少なくとも一方は、上記で説明した本実施形態のガラス板である。また、ガラス基板22及び裏板ガラス27がともに本実施形態によるガラス板であることで、熱膨張係数を合わせて剥離等を防止することができる。
Hereinafter, the solar cell in the present embodiment will be described in detail with reference to the accompanying drawings. The present invention is not limited to the attached drawings.
FIG. 2 is a cross-sectional view schematically showing an example of the embodiment of the CdTe solar cell of the present embodiment.
In FIG. 2, a solar cell (CdTe solar cell) 21 according to this embodiment includes a glass substrate 22 having a thickness of 1 to 3 mm, a back plate glass 27 having a thickness of 1 to 3 mm, and a gap between the glass substrate 22 and the back plate glass 27. A CdTe layer 25 having a thickness of 3 to 15 μm is provided. At least one of the glass substrate 22 and the back plate glass 27 is the glass plate of the present embodiment described above. Further, since both the glass substrate 22 and the back plate glass 27 are the glass plates according to the present embodiment, it is possible to prevent peeling and the like by matching the thermal expansion coefficients.
 CdTe太陽電池21は、ガラス基板22上に厚さ100~1000nmの透明導電膜23を有する。CdTe層または透明導電膜を形成する際の加熱温度は、500℃以上であり、好ましくは550℃以上、より好ましくは580℃以上、さらに好ましくは600℃以上、特に好ましくは620℃以上である。 The CdTe solar cell 21 has a transparent conductive film 23 having a thickness of 100 to 1000 nm on a glass substrate 22. The heating temperature when forming the CdTe layer or the transparent conductive film is 500 ° C. or higher, preferably 550 ° C. or higher, more preferably 580 ° C. or higher, further preferably 600 ° C. or higher, and particularly preferably 620 ° C. or higher.
 透明導電膜23としては、例えばSnをドープしたInやFをドープしたIn等が挙げられる。透明導電膜23上には、厚さ50~300nmのバッファ層24(例えば、CdS層)を有し、そのバッファ層24の上にCdTe層25を有する。さらにCdTe層25上には100~1000nmの裏面電極26(例えばCuをドープしたカーボン電極やMo電極等)を有し、裏面電極26上に裏板ガラス27を有する。裏面電極26と裏板ガラス27の間は、樹脂封止するか、接着用の樹脂で接着されることが好ましい。 The transparent conductive film 23, for example, In 2 O 3 or the like doped with doped In 2 O 3 and F of Sn and the like. A buffer layer 24 (eg, CdS layer) having a thickness of 50 to 300 nm is provided on the transparent conductive film 23, and a CdTe layer 25 is provided on the buffer layer 24. Further, on the CdTe layer 25, a back electrode 26 (for example, a carbon electrode doped with Cu or a Mo electrode) having a thickness of 100 to 1000 nm is provided, and a back plate glass 27 is provided on the back electrode 26. The back electrode 26 and the back plate glass 27 are preferably sealed with a resin or bonded with an adhesive resin.
 本実施形態において、CdTe層の端部または太陽電池の端部は封止されていてもよい。封止するための材料としては、例えば本実施形態のCdTe太陽電池用ガラス基板と同じ材料、その他のガラス材料、樹脂等が挙げられる。
 なお、添付の図面に示す太陽電池の各層の厚さは、図面に限定されない。
In the present embodiment, the end of the CdTe layer or the end of the solar cell may be sealed. As a material for sealing, the same material as the glass substrate for CdTe solar cells of this embodiment, other glass materials, resin, etc. are mentioned, for example.
In addition, the thickness of each layer of the solar cell shown in the attached drawings is not limited to the drawings.
 以下、実施例により本発明をさらに詳しく説明するが、本発明は、以下の実施例に限定されない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples.
 表1に、本実施形態のガラス板の実施例(例1~5)および比較例(例6~11)を示す。なお、表1の組成割合は、酸化物基準の質量%で示している。 Table 1 shows examples (Examples 1 to 5) and comparative examples (Examples 6 to 11) of the glass plate of the present embodiment. In addition, the composition ratio of Table 1 is shown in mass% on the basis of oxide.
 表1に示すガラス組成になるようにガラスの各成分の原料を調合し、このガラス板用成分の原料100質量部に対し、硫酸塩をSO換算で0.1質量部、原料に添加し、白金坩堝を用いて1650℃の温度で3時間加熱し溶解した。なお、表1中、Feの配合量は、母組成(SiO、Al、B、MgO、CaO、SrO、BaO、ZrO、NaO、およびKO)100質量部に対する質量部を示す。 The raw materials of each component of the glass were prepared so as to have the glass composition shown in Table 1, and 0.1 part by mass of SO 3 in terms of SO 3 was added to the raw material with respect to 100 parts by mass of the raw material for the glass plate component. Using a platinum crucible, the mixture was heated at 1650 ° C. for 3 hours for dissolution. In Table 1, the blending amount of Fe 2 O 3 is based on the mother composition (SiO 2 , Al 2 O 3 , B 2 O 3 , MgO, CaO, SrO, BaO, ZrO 2 , Na 2 O, and K 2 O). ) The mass part with respect to 100 mass parts is shown.
 溶解にあたっては、白金スターラーを挿入し1時間攪拌しガラスの均質化を行った。次いで、溶融ガラスを流し出し、板状に成形後冷却し、ガラス板を得た。 In melting, a platinum stirrer was inserted and stirred for 1 hour to homogenize the glass. Subsequently, the molten glass was poured out, formed into a plate shape, and then cooled to obtain a glass plate.
 こうして得られたガラス板の平均熱膨張係数(単位:×10-7/℃)、ガラス転移点温度Tg(単位:℃)、密度(単位:g/cm)、粘度が10dPa・sとなる温度(T2)(単位:℃)、粘度が10dPa・sとなる温度(T4)(単位:℃)、失透温度(TL)(単位:℃)、およびNa拡散量を測定した。
 結果を表1に併せて示す。以下に各物性の測定方法を示す。
The average thermal expansion coefficient (unit: × 10 −7 / ° C.), glass transition temperature Tg (unit: ° C.), density (unit: g / cm 3 ), and viscosity of 10 2 dPa · s of the glass plate thus obtained. Temperature (T2) (unit: ° C.), temperature (T4) (unit: ° C.) at which the viscosity becomes 10 4 dPa · s, devitrification temperature (TL) (unit: ° C.), and Na diffusion amount were measured. .
The results are also shown in Table 1. The measuring method of each physical property is shown below.
 なお、実施例では、ガラス板について測定しているが、各物性は、ガラス板とガラス基板とで同じ値である。得られたガラス板を加工、研磨を施すことで、ガラス基板とすることできる。 In addition, although measured about the glass plate in the Example, each physical property is the same value with a glass plate and a glass substrate. A glass substrate can be obtained by processing and polishing the obtained glass plate.
 (1)50~350℃の平均熱膨張係数:示差熱膨張計(TMA)を用いて測定し、JIS R3102(1995年度)より求めた。
 (2)Tg:TgはTMAを用いて測定した値であり、JIS R3103-3(2001年度)により求めた。
(1) Average coefficient of thermal expansion at 50 to 350 ° C .: measured using a differential thermal dilatometer (TMA) and determined from JIS R3102 (1995).
(2) Tg: Tg is a value measured using TMA, and was determined according to JIS R3103-3 (fiscal 2001).
 (3)密度:ガラス板から切り出した、泡を含まない約20gのガラス塊をアルキメデス法によって測定した。 (3) Density: About 20 g of glass lump containing no foam, cut out from a glass plate, was measured by Archimedes method.
 (4)粘度:回転粘度計を用いて測定し、粘度ηが10dPa・sとなるときの温度T2(溶解性の基準温度)と、粘度ηが10dPa・sとなるときの温度T4(成形性の基準温度)を測定した。
 (5)失透温度(TL):ガラス板から切り出したガラス塊5gを白金皿に置き、所定温度で17時間電気炉中で保持した。保持したガラス塊表面および内部に結晶が析出しない温度の最大値を失透温度とした。
(4) Viscosity: Measured using a rotational viscometer, temperature T2 (dissolvable reference temperature) when viscosity η is 10 2 dPa · s, and temperature when viscosity η is 10 4 dPa · s T4 (reference temperature for moldability) was measured.
(5) Devitrification temperature (TL): 5 g of glass lump cut out from the glass plate was placed on a platinum dish and held in an electric furnace at a predetermined temperature for 17 hours. The maximum temperature at which crystals were not deposited on the glass lump surface and inside was defined as the devitrification temperature.
 (6)Na拡散量:得られたガラス板を太陽電池用基板に用い、以下に示すように評価用太陽電池を作製し、これを用いてNa拡散量について評価を行った。
 評価用太陽電池の作製について、図1を用いて以下説明する。図1において、ガラス基板5、プラス電極7、CIGS層9までを形成した試料を作製して、Na拡散量の評価に用いた。
 得られたガラス板を大きさ3cm×3cm、厚さ1.1mmに加工し、ガラス基板を得た。ガラス基板5の上に、スパッタ装置にて、プラス電極7としてMo(モリブデン)膜を成膜した。成膜は、室温にて実施し、厚み500nmのMo膜を得た。
 プラス電極7(Mo膜)上にスパッタ装置にて、CuGa合金ターゲットでCuGa合金層を成膜し、続いてInターゲットを使用してIn層を成膜することで、In-CuGaのプリカーサ膜を成膜した。成膜は室温にて実施した。蛍光X線によって測定したプリカーサ膜の組成が、Cu/(Ga+In)比が0.8、Ga/(Ga+In)比が0.25となるように各層の厚みを調整し、厚み650nmのプリカーサ膜を得た。
(6) Na diffusion amount: The obtained glass plate was used for a solar cell substrate, an evaluation solar cell was prepared as shown below, and the Na diffusion amount was evaluated using the solar cell.
The production of the solar cell for evaluation will be described below with reference to FIG. In FIG. 1, a sample in which the glass substrate 5, the positive electrode 7, and the CIGS layer 9 were formed was prepared and used for evaluating the Na diffusion amount.
The obtained glass plate was processed into a size of 3 cm × 3 cm and a thickness of 1.1 mm to obtain a glass substrate. A Mo (molybdenum) film was formed as a positive electrode 7 on the glass substrate 5 by a sputtering apparatus. Film formation was performed at room temperature to obtain a Mo film having a thickness of 500 nm.
On the positive electrode 7 (Mo film), a CuGa alloy layer is formed with a CuGa alloy target using a sputtering apparatus, and then an In layer is formed using an In target to form an In—CuGa precursor film. A film was formed. Film formation was performed at room temperature. The thickness of each layer was adjusted so that the composition of the precursor film measured by fluorescent X-rays was Cu / (Ga + In) ratio of 0.8 and Ga / (Ga + In) ratio of 0.25. Obtained.
 プリカーサ膜をRTA(Rapid Thermal Annealing)装置を用いてアルゴンおよびセレン化水素混合雰囲気(セレン化水素はアルゴンに対し5体積%)にて加熱処理した。まず、第1段階として500℃で10分保持を行い、CuおよびInおよびGaとSeとを反応させて、その後、第2段階として、さらに580℃で30分保持してCIGS結晶を成長させることでCIGS層9を得た。得られたCIGS層9の厚みは2μmであった。 The precursor film was heat-treated in an argon and hydrogen selenide mixed atmosphere (hydrogen selenide is 5% by volume with respect to argon) using an RTA (Rapid Thermal Annealing) apparatus. First, hold at 500 ° C. for 10 minutes as the first stage, react Cu, In, Ga and Se, and then hold at 580 ° C. for another 30 minutes to grow CIGS crystals as the second stage. CIGS layer 9 was obtained. The thickness of the obtained CIGS layer 9 was 2 μm.
 上記RTA装置による加熱処理の第2段階終了後、試料を二次イオン質量分析法(SIMS)にてCIGS層中の23Naの積分強度を測定した。表1に示すNa拡散量の値は、例8で用いたガラス板を118としたときの相対量である。 After the completion of the second stage of the heat treatment by the RTA apparatus, the sample was measured for the integrated intensity of 23 Na in the CIGS layer by secondary ion mass spectrometry (SIMS). The value of Na diffusion amount shown in Table 1 is a relative amount when the glass plate used in Example 8 is 118.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 各表に示す通り、実施例(例1~5)のガラス板は、ガラス転移温度(Tg)が640℃以上であり、又そのガラス転移温度の結果から耐熱性が高く、失透特性(T4-TL)に優れている。また、Na拡散量が多く発電効率が高いと予測される。また、T2及びT4が低く、ガラス板の製造に適する範囲であった。また、平均熱膨張係数及び密度も、ガラス板に適した範囲であった。
 例1及び例2では、2(SrO-BaO)+(KO-NaO)を11.5%以下に制限し、BaO量を多くすることで、Na拡散量を十分に得ながら、耐熱性を高めることができた。
 例3及び例5では、2(SrO-BaO)+(KO-NaO)を11.5%以下に制限し、NaO量を多くすることで、耐熱性を十分に得ながら、Na拡散量を高めることができた。
As shown in each table, the glass plates of the examples (Examples 1 to 5) have a glass transition temperature (Tg) of 640 ° C. or higher, and have high heat resistance from the result of the glass transition temperature. -TL). Moreover, it is predicted that the amount of Na diffusion is large and the power generation efficiency is high. Moreover, T2 and T4 were low and it was the range suitable for manufacture of a glass plate. Moreover, the average coefficient of thermal expansion and the density were also in a range suitable for the glass plate.
In Examples 1 and 2, 2 (SrO—BaO) + (K 2 O—Na 2 O) is limited to 11.5% or less, and by increasing the amount of BaO, a sufficient amount of Na diffusion can be obtained. Heat resistance could be improved.
In Examples 3 and 5, 2 (SrO—BaO) + (K 2 O—Na 2 O) is limited to 11.5% or less, and by increasing the amount of Na 2 O, heat resistance can be sufficiently obtained. , Na diffusion amount could be increased.
 例6では、主にBaO量、及びNaO量が少なく、目標とするNa拡散量、失透特性が得られなかった。
 例7では、主にBaO量が少なく、Na拡散量が低下した。
 また、例6及び7では、ガラス転移温度が低下した。
 例8及び例11では、2(SrO-BaO)+(KO-NaO)が11.5%超過であり、失透特性が低下した。
 例9及び例10では、2(SrO-BaO)+(KO-NaO)が11.5%超過であり、さらにAl量が多く、失透特性が低下した。
 例10では、SrO量が多く、Tgが上昇して、ガラス原料の溶融性が低下する問題があった。
In Example 6, the amount of BaO and Na 2 O were mainly small, and the target Na diffusion amount and devitrification characteristics were not obtained.
In Example 7, the amount of BaO was mainly small and the amount of Na diffusion decreased.
In Examples 6 and 7, the glass transition temperature decreased.
In Example 8 and Example 11, 2 (SrO—BaO) + (K 2 O—Na 2 O) exceeded 11.5%, and the devitrification characteristics were deteriorated.
In Examples 9 and 10, 2 (SrO—BaO) + (K 2 O—Na 2 O) exceeded 11.5%, the amount of Al 2 O 3 was large, and the devitrification characteristics deteriorated.
In Example 10, there was a problem that the amount of SrO was large, Tg was increased, and the meltability of the glass raw material was lowered.
 本発明のガラス板は、優れた耐熱性及び失透特性を得るとともに、Na拡散量を多くして発電効率を高めることができるため、太陽電池用ガラス基板に好ましく用いることができる。さらに、所定の平均熱膨張係数、ガラス密度、ガラス板の生産時の溶解性及び成形性が良好であり、太陽電池用ガラス基板に好ましく用いることができる。
 なお、2013年11月19日に出願された日本特許出願2013-238666号の明細書、特許請求の範囲、図面および要約書の全内容をここに引用し、本発明の開示として取り入れるものである。
Since the glass plate of the present invention can obtain excellent heat resistance and devitrification characteristics and increase the amount of Na diffusion to increase power generation efficiency, it can be preferably used for a glass substrate for solar cells. Furthermore, a predetermined average coefficient of thermal expansion, glass density, solubility at the time of production of a glass plate and formability are good, and it can be preferably used for a glass substrate for a solar cell.
The entire contents of the specification, claims, drawings, and abstract of Japanese Patent Application No. 2013-238666 filed on November 19, 2013 are incorporated herein by reference. .
1 CIGS太陽電池
5 ガラス基板
7 プラス電極
9 CIGS層
11 バッファ層
13 透明導電膜
15 マイナス電極
17 反射防止膜
19 カバーガラス
21 CdTe太陽電池
22 ガラス基板
23 透明導電膜
24 バッファ層
25 CdTe層
26 裏面電極
27 裏板ガラス
DESCRIPTION OF SYMBOLS 1 CIGS solar cell 5 Glass substrate 7 Positive electrode 9 CIGS layer 11 Buffer layer 13 Transparent conductive film 15 Negative electrode 17 Antireflection film 19 Cover glass 21 CdTe solar cell 22 Glass substrate 23 Transparent conductive film 24 Buffer layer 25 CdTe layer 26 Back electrode 27 Back plate glass

Claims (9)

  1.  下記酸化物基準の質量百分率表示で、SiOを45~65%、Alを9~17%、Bを0~1%、MgOを0~2%、CaOを1~12%、SrOを1~15%、BaOを1.4~12%、ZrOを2~6%、NaOを5~10%、KOを2~10%を含み、MgO+CaO+SrO+BaOが15~30%であり、2(SrO-BaO)+(KO-NaO)が11.5%以下である、ガラス板。 In terms of mass percentage based on the following oxide, SiO 2 is 45 to 65%, Al 2 O 3 is 9 to 17%, B 2 O 3 is 0 to 1%, MgO is 0 to 2%, and CaO is 1 to 12%. %, SrO 1-15%, BaO 1.4-12%, ZrO 2 2-6%, Na 2 O 5-10%, K 2 O 2-10%, MgO + CaO + SrO + BaO 15- A glass plate which is 30% and 2 (SrO—BaO) + (K 2 O—Na 2 O) is 11.5% or less.
  2.  NaOの含有量が5.6~10%である、請求項1に記載のガラス板。 The glass plate according to claim 1, wherein the content of Na 2 O is 5.6 to 10%.
  3.  SrO+BaOが、6~18%である、請求項1または2に記載のガラス板。 The glass plate according to claim 1 or 2, wherein SrO + BaO is 6 to 18%.
  4.  SrO-BaOが、7.5%以下である、請求項1または2に記載のガラス板。 The glass plate according to claim 1 or 2, wherein SrO-BaO is 7.5% or less.
  5.  NaO+KOが、7~15%である、請求項1または2に記載のガラス板。 The glass plate according to claim 1 or 2, wherein Na 2 O + K 2 O is 7 to 15%.
  6.  KO-NaOが、2%以下である、請求項1または2に記載のガラス板。 The glass plate according to claim 1 or 2, wherein K 2 O-Na 2 O is 2% or less.
  7.  粘度が10dPa・sとなる温度(T4)が1230℃以下、粘度が10dPa・sとなる温度(T2)が1650℃以下、前記T4と失透温度(TL)との関係がT4-TL>0℃である、請求項1から6のいずれか1項に記載のガラス板。 The temperature (T4) at which the viscosity becomes 10 4 dPa · s is 1230 ° C. or lower, the temperature (T2) at which the viscosity becomes 10 2 dPa · s is 1650 ° C. or lower, and the relationship between the T4 and the devitrification temperature (TL) is T4 The glass plate according to any one of claims 1 to 6, wherein -TL> 0 ° C.
  8.  ガラス転移点温度が640℃以上である、請求項1から6のいずれか1項に記載のガラス板。 The glass plate according to any one of claims 1 to 6, wherein the glass transition temperature is 640 ° C or higher.
  9.  平均熱膨張係数が70×10-7~90×10-7/℃である、請求項1から6のいずれか1項に記載のガラス板。 The glass plate according to any one of claims 1 to 6, having an average coefficient of thermal expansion of 70 x 10 -7 to 90 x 10 -7 / ° C.
PCT/JP2014/080242 2013-11-19 2014-11-14 Glass sheet WO2015076208A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015549132A JPWO2015076208A1 (en) 2013-11-19 2014-11-14 Glass plate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-238666 2013-11-19
JP2013238666 2013-11-19

Publications (1)

Publication Number Publication Date
WO2015076208A1 true WO2015076208A1 (en) 2015-05-28

Family

ID=53179473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080242 WO2015076208A1 (en) 2013-11-19 2014-11-14 Glass sheet

Country Status (3)

Country Link
JP (1) JPWO2015076208A1 (en)
TW (1) TW201524931A (en)
WO (1) WO2015076208A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019021911A1 (en) * 2017-07-26 2019-01-31 Agc株式会社 Support glass for semiconductor packages
CN113233758A (en) * 2021-06-25 2021-08-10 北京北旭电子材料有限公司 Glass composition, glass raw powder and preparation method thereof, and glass powder and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10255669A (en) * 1997-03-14 1998-09-25 Nippon Electric Glass Co Ltd Glass substrate for flat panel display and plasma display device using it
JP2000072472A (en) * 1998-08-24 2000-03-07 Nippon Sheet Glass Co Ltd Heat-resistant glass composition and plasma display panel using it
WO2012153634A1 (en) * 2011-05-10 2012-11-15 日本電気硝子株式会社 Glass plate for thin film solar cell
JP2013063880A (en) * 2011-09-20 2013-04-11 Nippon Electric Glass Co Ltd Glass plate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10255669A (en) * 1997-03-14 1998-09-25 Nippon Electric Glass Co Ltd Glass substrate for flat panel display and plasma display device using it
JP2000072472A (en) * 1998-08-24 2000-03-07 Nippon Sheet Glass Co Ltd Heat-resistant glass composition and plasma display panel using it
WO2012153634A1 (en) * 2011-05-10 2012-11-15 日本電気硝子株式会社 Glass plate for thin film solar cell
JP2013063880A (en) * 2011-09-20 2013-04-11 Nippon Electric Glass Co Ltd Glass plate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019021911A1 (en) * 2017-07-26 2019-01-31 Agc株式会社 Support glass for semiconductor packages
JPWO2019021911A1 (en) * 2017-07-26 2020-07-30 Agc株式会社 Support glass for semiconductor packages
CN113233758A (en) * 2021-06-25 2021-08-10 北京北旭电子材料有限公司 Glass composition, glass raw powder and preparation method thereof, and glass powder and preparation method thereof

Also Published As

Publication number Publication date
TW201524931A (en) 2015-07-01
JPWO2015076208A1 (en) 2017-03-16

Similar Documents

Publication Publication Date Title
US8497220B2 (en) Glass substrate for solar cell
WO2011049146A1 (en) Glass sheet for cu-in-ga-se solar cells, and solar cells using same
WO2013105625A1 (en) Glass
WO2012102346A1 (en) GLASS SUBSTRATE FOR Cu-In-Ga-Se SOLAR CELLS AND SOLAR CELL USING SAME
WO2012053549A1 (en) Glass substrate for cu-in-ga-se solar cells and solar cell using same
WO2011152414A1 (en) Glass substrate and method for producing same
JP6048490B2 (en) Glass substrate for Cu-In-Ga-Se solar cell and solar cell using the same
WO2012108345A1 (en) Glass composition, glass substrate for solar cells using glass composition, and glass substrate for display panel
TWI543952B (en) Glass plate for thin film solar cells
JP2010118505A (en) Glass substrate for solar cell
WO2013047246A1 (en) GLASS SUBSTRATE FOR CdTe SOLAR CELLS, AND SOLAR CELL USING SAME
JP6210136B2 (en) Glass substrate
US20150325725A1 (en) Glass substrate for solar cell
WO2015076208A1 (en) Glass sheet
JP6128128B2 (en) Glass substrate for solar cell and solar cell using the same
JP2016102058A (en) Glass substrate for solar cells and solar cell prepared therewith
WO2014024850A1 (en) GLASS SUBSTRATE FOR Cu-In-Ga-Se SOLAR CELL, AND SOLAR CELL USING SAME
JP2016084247A (en) Glass sheet
JP2017014039A (en) Glass substrate for solar battery and cigs solar battery
JP2018177592A (en) Cigs solar battery
JP2016171158A (en) Cu-In-Ga-Se SOLAR CELL

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14863218

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015549132

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14863218

Country of ref document: EP

Kind code of ref document: A1