[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015076027A1 - 蒸発燃料処理装置 - Google Patents

蒸発燃料処理装置 Download PDF

Info

Publication number
WO2015076027A1
WO2015076027A1 PCT/JP2014/076542 JP2014076542W WO2015076027A1 WO 2015076027 A1 WO2015076027 A1 WO 2015076027A1 JP 2014076542 W JP2014076542 W JP 2014076542W WO 2015076027 A1 WO2015076027 A1 WO 2015076027A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
internal pressure
fuel tank
stroke amount
stroke
Prior art date
Application number
PCT/JP2014/076542
Other languages
English (en)
French (fr)
Inventor
実 秋田
善和 宮部
直行 田川
順也 木本
Original Assignee
愛三工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 愛三工業株式会社 filed Critical 愛三工業株式会社
Priority to US15/038,898 priority Critical patent/US9816450B2/en
Priority to KR1020167010335A priority patent/KR101852278B1/ko
Priority to DE112014005351.1T priority patent/DE112014005351B4/de
Priority to CN201480063105.XA priority patent/CN105765207B/zh
Priority to JP2015549030A priority patent/JP6203863B2/ja
Publication of WO2015076027A1 publication Critical patent/WO2015076027A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/003Adding fuel vapours, e.g. drawn from engine fuel reservoir
    • F02D41/0032Controlling the purging of the canister as a function of the engine operating conditions
    • F02D41/004Control of the valve or purge actuator, e.g. duty cycle, closed loop control of position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K15/035Fuel tanks characterised by venting means
    • B60K15/03504Fuel tanks characterised by venting means adapted to avoid loss of fuel or fuel vapour, e.g. with vapour recovery systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • F02M25/0836Arrangement of valves controlling the admission of fuel vapour to an engine, e.g. valve being disposed between fuel tank or absorption canister and intake manifold
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • F02M25/0854Details of the absorption canister
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • F02M25/0872Details of the fuel vapour pipes or conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • F02M2025/0845Electromagnetic valves

Definitions

  • the present invention relates to an evaporative fuel processing apparatus including a canister that includes an adsorbent that adsorbs evaporative fuel generated in a fuel tank, and a block valve provided in a vapor passage that connects the canister and the fuel tank.
  • This evaporative fuel processing apparatus includes a block valve (control valve) in a vapor passage that connects a canister and a fuel tank.
  • the blocking valve includes a dead zone area (valve closing area) for blocking evaporated fuel and a conduction area (valve opening area) for allowing evaporated fuel to pass, and holds the fuel tank in a closed state in the closed state, In the open state, the fuel tank evaporative fuel is allowed to escape to the canister side, and the internal pressure of the fuel tank can be reduced.
  • the evaporative fuel processing device changes the opening of the blocking valve from the closed position to the opening direction at a predetermined speed, and when the internal pressure of the fuel tank starts to decrease, the opening of the blocking valve is set as the opening start position. Learning control is stored.
  • the detection timing of the internal pressure drop of the fuel tank is delayed with respect to the opening start timing of the block valve. For this reason, in the learning method of gradually changing the stroke amount, which is the axial distance of the valve movable portion with respect to the valve seat, when the internal pressure drop of the fuel tank is detected, the block valve is slightly opened from the valve opening start position. Can be considered. That is, there is a problem that the accuracy of learning control of the valve opening start position in the blocking valve is low.
  • the present invention has been made to solve the above-mentioned problems, and the problem to be solved by the present invention is to improve the learning accuracy of the valve opening start position in the blocking valve.
  • an evaporative fuel treatment includes a canister that includes an adsorbent that adsorbs the evaporated fuel generated in the fuel tank, and a block valve provided in a vapor passage that connects the canister and the fuel tank.
  • the block valve is capable of holding the fuel tank in a closed state when the stroke amount, which is the axial distance of the valve movable portion with respect to the valve seat, is within a predetermined range from zero, The stroke amount is changed in the valve opening direction so that the valve opening start position can be learned based on the stroke amount when the internal pressure of the fuel tank decreases by a predetermined value or more.
  • the valve In learning of the start position, the valve is changed in the valve opening direction by the first predetermined stroke and maintained for the first time, and then in the valve closing direction by a second predetermined stroke smaller than the first predetermined stroke.
  • the step of changing the stroke amount in the valve opening direction by repeating the step of maintaining the second time longer than the first time by changing the internal pressure of the fuel tank to a predetermined value or more, or the previous step
  • the valve opening start position is determined based on the stroke amount in the second time maintaining state.
  • the previous process includes not only the previous process but also the previous process.
  • the stroke amount of the valve movable portion is changed in the valve opening direction and maintained for the first time, and is smaller than the valve opening direction (second predetermined stroke). Only the step of changing in the valve closing direction and maintaining the second time longer than the first time is repeated, and the stroke amount is changed stepwise in the valve opening direction. For this reason, at the valve opening start position of the block valve, the flow path is returned from the open state to the closing direction, so that the response of the internal pressure change in the fuel tank is improved and the actual valve opening start is started. The time lag between the start time and the valve opening start determination time (fuel tank internal pressure drop detection timing) is reduced, and the learning accuracy can be improved.
  • the stroke amount of the valve movable portion is changed to the valve closing position at the timing when it is detected that the internal pressure of the fuel tank has decreased by a predetermined value or more.
  • the detection period of the internal pressure of the fuel tank is shorter than the first time. That is, since the internal pressure of the fuel tank can be detected in a relatively short cycle, the deviation between the actual internal pressure of the fuel tank and the detected value is reduced.
  • the control for changing the stroke amount of the blocking valve in learning of the valve opening start position of the blocking valve, there is a control for changing the stroke amount of the blocking valve and a control for detecting that the internal pressure of the fuel tank has decreased by a predetermined value or more. Done independently. Further, the control cycle of the control for detecting that the internal pressure of the fuel tank has decreased by a predetermined value or more is set to a value smaller than the control cycle of the control for changing the stroke amount of the blocking valve. For this reason, compared with the case where the control cycle of the control for detecting that the internal pressure of the fuel tank has decreased by a predetermined value or more is matched with the control for changing the stroke amount of the block valve, learning of the valve opening start position of the block valve is performed. It can finish early.
  • the temporary learning flag is turned on when it is detected that the internal pressure of the fuel tank has decreased by a value smaller than a predetermined value, and the internal pressure of the fuel tank is continuously decreasing Then, when the internal pressure of the fuel tank is reduced by a predetermined value or more in the subsequent process, the valve is opened based on the stroke amount in the second time maintaining state in the process when the temporary learning flag is turned on or in the previous process. The starting position is determined. Thereby, even if the internal pressure of the fuel tank is low and the internal pressure of the tank gradually decreases even when the opening of the closing valve starts, the opening start position of the closing valve can be learned with high accuracy.
  • the valve opening is started based on the stroke amount in the second time maintaining state in the process when the internal pressure of the fuel tank decreases by a predetermined value or more, or the process when the temporary learning flag is turned on.
  • a value based on the difference between the first predetermined stroke and the second predetermined stroke is subtracted from the stroke amount, and the process immediately before the internal pressure of the fuel tank drops by a predetermined value or more, or the temporary
  • the valve opening start position is determined based on the stroke amount in the second time maintaining state in the process immediately before the learning flag is turned on, the difference between the first predetermined stroke and the second predetermined stroke is determined as the stroke amount.
  • a value based on is added. For this reason, the learning accuracy of the valve opening start position of the blocking valve is improved.
  • the learning accuracy of the valve opening start position in the blocking valve can be improved.
  • FIG. 1 is an overall configuration diagram of an evaporated fuel processing apparatus according to Embodiment 1 of the present invention. It is a longitudinal cross-sectional view showing the initialization state of the blocking valve used with the said fuel vapor processing apparatus. It is a longitudinal cross-sectional view showing the valve closing state of the said blocking valve. It is a longitudinal cross-sectional view showing the valve opening state of the said blocking valve. It is a graph showing the learning control which learns the valve opening start position of the said blocking valve.
  • FIG. 6 is a graph I showing learning control of the VI arrow portion of FIG. 5.
  • FIG. 6 is a graph II showing learning control of the VI arrow portion of FIG. 5. It is a graph showing the learning control which concerns on the example of a change.
  • the evaporated fuel processing apparatus 20 according to Embodiment 1 of the present invention will be described with reference to FIGS. 1 to 14.
  • the fuel vapor processing apparatus 20 of this embodiment is provided in a vehicle engine system 10, and prevents fuel vapor generated in a fuel tank 15 of the vehicle from leaking outside. Device.
  • the evaporated fuel processing apparatus 20 includes a canister 22, a vapor passage 24 connected to the canister 22, a purge passage 26, and an atmospheric passage 28.
  • Activated carbon (not shown) as an adsorbent is loaded in the canister 22 so that the evaporated fuel in the fuel tank 15 can be adsorbed by the adsorbent.
  • One end portion (upstream end portion) of the vapor passage 24 is communicated with an air layer portion in the fuel tank 15, and the other end portion (downstream end portion) of the vapor passage 24 is communicated with the inside of the canister 22. .
  • a sealing valve 40 (described later) that communicates and blocks the vapor passage 24 is interposed in the vapor passage 24.
  • One end (upstream end) of the purge passage 26 communicates with the inside of the canister 22, and the other end (downstream end) of the purge passage 26 is connected to the throttle valve 17 in the intake passage 16 of the engine 14. Is also communicated with the downstream passage.
  • a purge valve 26v for communicating and blocking the purge passage 26 is interposed in the middle of the purge passage 26, a purge valve 26v for communicating and blocking the purge passage 26 is interposed.
  • the canister 22 is connected to the atmospheric passage 28 through an OBD component 28v used for failure detection.
  • An air filter 28a is interposed in the middle of the atmospheric passage 28, and the other end of the atmospheric passage 28 is open to the atmosphere.
  • the block valve 40, the purge valve 26v, and the OBD component 28v are controlled based on a signal from the ECU 19. Further, a signal from a tank internal pressure sensor 15p for detecting
  • the purge valve 26v is controlled to open and close while the canister 22 is in communication with the atmosphere through the atmosphere passage 28.
  • the purge valve 26v is opened, the intake negative pressure of the engine 14 acts in the canister 22 via the purge passage 26. As a result, air flows from the atmospheric passage 28 into the canister 22.
  • the block valve 40 operates in the valve opening direction, and the pressure relief control of the fuel tank 15 is performed. As a result, the gas in the fuel tank 15 flows into the canister 22 from the vapor passage 24.
  • the adsorbent in the canister 22 is purged by air or the like flowing into the canister 22, and the evaporated fuel separated from the adsorbent is guided to the intake passage 16 of the engine 14 together with air and burned in the engine 14. .
  • the block valve 40 is a flow rate control valve that blocks the vapor passage 24 in the closed state and controls the flow rate of the gas flowing through the vapor passage 24 in the open state.
  • the valve casing 42 includes a valve chamber 44, an inflow path 45, and an outflow path 46, thereby forming a series of inverted L-shaped fluid passages 47.
  • a valve seat 48 is formed concentrically on the lower surface of the valve chamber 44, that is, on the mouth edge of the upper end opening of the inflow passage 45.
  • the stepping motor 50 is installed on the valve casing 42.
  • the stepping motor 50 has a motor main body 52 and an output shaft 54 that protrudes from the lower surface of the motor main body 52 and is configured to be rotatable forward and backward.
  • the output shaft 54 is disposed concentrically within the valve chamber 44 of the valve casing 42, and a male screw portion 54 n is formed on the outer peripheral surface of the output shaft 54.
  • the valve guide 60 is formed in a cylindrical cylindrical shape from a cylindrical tube wall portion 62 and an upper wall portion 64 that closes the upper end opening of the tube wall portion 62.
  • a cylindrical shaft portion 66 is formed concentrically at the center of the upper wall portion 64, and a female screw portion 66 w is formed on the inner peripheral surface of the cylindrical shaft portion 66.
  • the valve guide 60 is disposed so as to be movable in the axial direction (vertical direction) with respect to the valve casing 42 in a state in which the valve guide 42 is prevented from rotating in the direction around the axis by a detent means (not shown).
  • a male threaded portion 54n of the output shaft 54 of the stepping motor 50 is screwed into the female threaded portion 66w of the cylindrical shaft portion 66 of the valve guide 60, and based on forward and reverse rotation of the output shaft 54 of the stepping motor 50.
  • the valve guide 60 is configured to be movable up and down in the vertical direction (axial direction).
  • an auxiliary spring 68 for biasing the valve guide 60 upward is interposed.
  • the valve body 70 is formed in a cylindrical shape with a bottom from a cylindrical tube wall portion 72 and a lower wall portion 74 that closes a lower end opening of the tube wall portion 72.
  • a seal member 76 made of, for example, a disk-like rubber-like elastic material is attached to the lower surface of the lower wall portion 74.
  • the valve body 70 is disposed concentrically within the valve guide 60, and the seal member 76 of the valve body 70 is disposed so as to be able to contact the upper surface of the valve seat 48 of the valve casing 42.
  • On the outer peripheral surface of the upper end of the cylindrical wall portion 72 of the valve body 70 a plurality of connecting projections 72t are formed in the circumferential direction.
  • connection convex part 72t of the valve body 70 is fitted to the longitudinally grooved connection concave part 62m formed on the inner peripheral surface of the cylindrical wall part 62 of the valve guide 60 in a state where it can be relatively moved in the vertical direction by a certain dimension.
  • the valve guide 60 and the valve body 70 are integrally and upwardly (in the valve opening direction) with the bottom wall portion 62b of the connection recess 62m of the valve guide 60 in contact with the connection protrusion 72t of the valve body 70 from below. ) Can be moved.
  • valve body 70 that constantly urges the valve body 70 downward, that is, in a valve closing direction with respect to the valve guide 60, between the upper wall portion 64 of the valve guide 60 and the lower wall portion 74 of the valve body 70.
  • a spring 77 is interposed concentrically.
  • the blocking valve 40 rotates the stepping motor 50 by a predetermined number of steps in the valve opening direction or the valve closing direction based on the output signal from the ECU 19. Then, the stepping motor 50 rotates by a predetermined number of steps, so that the male screw portion 54n of the output shaft 54 of the stepping motor 50 and the female screw portion 66w of the tube shaft portion 66 of the valve guide 60 are screwed together.
  • the valve guide 60 moves in a vertical direction by a predetermined stroke amount. In the blocking valve 40, for example, the number of steps is set to about 200 Step and the stroke amount is set to about 5 mm in the fully opened position.
  • the valve guide 60 In the initialized state (initial state) of the blocking valve 40, as shown in FIG. 2, the valve guide 60 is held at the lower limit position, and the lower end surface of the cylindrical wall portion 62 of the valve guide 60 is the valve seat 48 of the valve casing 42. It is in contact with the upper surface of.
  • the connecting projection 72 t of the valve body 70 is positioned above the bottom wall 62 b of the connecting recess 62 m of the valve guide 60, and the seal member 76 of the valve body 70 is connected to the valve spring 77. It is pressed against the upper surface of the valve seat 48 of the valve casing 42 by the spring force. That is, the blocking valve 40 is held in a fully closed state.
  • the number of steps of the stepping motor 50 is 0 Step, and the movement amount of the valve guide 60 in the axial direction (upward direction), that is, the stroke amount in the valve opening direction is 0 mm.
  • the stepping motor 50 of the blocking valve 40 rotates, for example, 4 steps from the initialized state in the valve opening direction.
  • the valve guide 60 moves upward by about 0.1 mm by the screwing action of the male threaded portion 54n of the output shaft 54 of the stepping motor 50 and the female threaded portion 66w of the cylindrical shaft portion 66 of the valve guide 60, and the valve casing 42
  • the valve seat 48 is held in a floating state. This makes it difficult to apply an excessive force between the valve guide 60 of the blocking valve 40 and the valve seat 48 of the valve casing 42 due to environmental changes such as temperature.
  • the seal member 76 of the valve body 70 is pressed against the upper surface of the valve seat 48 of the valve casing 42 by the spring force of the valve spring 77.
  • valve guide 60 moves upward by the screwing action of the male screw portion 54n and the female screw portion 66w, and as shown in FIG.
  • the bottom wall portion 62b of the connection recess 62m of the guide 60 abuts on the connection projection 72t of the valve body 70 from below.
  • the valve guide 60 further moves upward, the valve body 70 moves upward together with the valve guide 60 as shown in FIG. 4, and the seal member 76 of the valve body 70 moves from the valve seat 48 of the valve casing 42. Get away. Thereby, the blocking valve 40 is opened.
  • the valve opening start position of the sealing valve 40 is determined by the position tolerance of the connecting convex portion 72t formed in the valve body 70, the position tolerance of the bottom wall portion 62b formed in the connecting concave portion 62m of the valve guide 60, and the like. Since each valve 40 is different, it is necessary to accurately learn the valve opening start position. This learning is performed in the learning control, and the valve opening is started based on the timing when the internal pressure of the fuel tank 15 decreases by a predetermined value or more while rotating the stepping motor 50 of the blocking valve 40 in the valve opening direction (increasing the number of steps). The number of position steps is detected.
  • valve guide 60 corresponds to the valve movable portion of the present invention
  • valve guide 60 and the valve body 70 are in the present invention. It corresponds to the valve moving part.
  • the learning control of the valve opening start position of the blocking valve 40 will be described with reference to FIGS.
  • the learning control is performed when the ignition switch of the engine is turned on while the vehicle is parked.
  • the upper diagram of FIG. 5 represents the change in the number of steps of the stepping motor 50 with respect to time (horizontal axis), that is, the stroke amount (amount of movement in the axial direction) of the valve guide 60 and the valve body 70. Yes. For this reason, the number of steps and the stroke amount will be used as synonyms hereinafter.
  • the lower diagram of FIG. 5 represents a change in the internal pressure (tank internal pressure) of the fuel tank 15 with time as a reference (horizontal axis).
  • the tank internal pressure is detected at regular intervals ( ⁇ Ts).
  • the stepping motor 50 is rotated in the valve opening direction, for example, by 4 Steps, and the valve guide 60 is held in a state of being lifted about 0.1 mm from the valve seat 48 of the valve casing 42.
  • the stepping motor 50 rotates 4 steps ( ⁇ 4 steps) in the valve closing direction, and the block valve 40 is returned to the initialized state (0 step).
  • the stepping motor 50 rotates at high speed in the valve opening direction to the designed valve closing limit position S0Step of the blocking valve 40.
  • the valve guide 60 moves upward to the valve closing limit position relatively quickly, and the learning time can be shortened.
  • the seal member 76 of the valve body 70 is in contact with the upper surface of the valve seat 48 of the valve casing 42 by the spring force of the valve spring 77, and the closing valve 40 is in a closed state.
  • the stepping motor 50 rotates in the valve opening direction to the closing limit position S0Step of the block valve 40, the stepping motor 50 stops and this state is maintained for a certain time T1 (for example, 500 msec) (see the upper diagram of FIG. 5). ).
  • the stepping motor 50 rotates in the valve closing direction by BStep (for example, ⁇ 2 Step), and this state is maintained for a predetermined time T2 (for example, 1 sec).
  • the tank internal pressure is detected at a predetermined timing while the stepping motor 50 is maintained for a predetermined time T2.
  • the stepping motor 50 is rotated in the valve opening direction by AStep (for example, 4 Step) and maintained for a certain time T1 (for example, 500 msec)
  • the stepping motor 50 is moved to BStep ( For example, it rotates in the valve closing direction by ⁇ 2 Step) and is maintained for a certain time T2 (for example, 1 sec).
  • the tank internal pressure is detected at a predetermined timing while the stepping motor 50 is maintained for a predetermined time T2.
  • the stroke amount A in the current valve opening direction and the valve closing direction in the previous stroke amount (S0-2) Step are set.
  • the tank internal pressure detection cycle ( ⁇ Ts) is set equal to the learning cycle in which the stepping motor 50 rotates in the valve opening direction and is maintained for a certain time T1, and is rotated in the valve closing direction and maintained for a certain time T2. ing.
  • the tank internal pressure detected this time is decreased by a predetermined value ( ⁇ P1) or more with respect to the previous detection value (see timing Ts3) as shown in the tank internal pressure graph of FIG. If it does (see timing Ts4), it is determined that the opening of the blocking valve 40 has started.
  • the learning flag is turned on at timing Ts4.
  • the learning value Sx of the start position is stored, and the learning control ends.
  • the predetermined value ( ⁇ P1) which is the amount of change in the tank internal pressure used to determine the valve opening start position of the blocking valve 40, is the variation in the characteristics of the tank internal pressure sensor 15p, the liquid in the fuel tank 15 due to vehicle running, etc.
  • the value is set to about 0.3 kPa.
  • the state in which the stepping motor 50 is rotated in the valve opening direction by AStep corresponds to the state in which the valve movable portion of the present invention is changed in the valve opening direction by the first predetermined stroke.
  • the state in which 50 is rotated in the valve closing direction by BStep corresponds to the state in which the valve movable portion of the present invention is changed in the valve closing direction by the second predetermined stroke.
  • the fixed time T1 (for example, 500 msec) corresponds to the first time of the present invention
  • the fixed time T2 for example, 1 sec) corresponds to the second time of the present invention.
  • the stepping motor 50 in learning the valve opening start position of the blocking valve 40, the stepping motor 50 is rotated in the valve opening direction by AStep (for example, 4 Steps) for a predetermined time T1 (for example, 500 msec).
  • T1 for example, 500 msec
  • the step of rotating the stepping motor 50 in the valve closing direction by BStep (for example, 2Step) and maintaining for a certain time T2 (for example, 1 second) is repeated step by step, and the valve guide 60 and the valve body 70 (valve) The stroke amount of the movable part) is changed in the valve opening direction.
  • the flow path is returned from the opened state to the closing direction, so that the response of the internal pressure change in the fuel tank 15 is improved, and the actual valve opening is performed.
  • the time lag between the start time and the valve opening start determination time is reduced, and the learning accuracy can be improved.
  • ⁇ Modification 1> The present invention is not limited to the above-described embodiment, and modifications can be made without departing from the gist of the present invention.
  • the tank internal pressure can also be detected at all times.
  • ⁇ P1 a predetermined value
  • Tsx the learning flag is turned on regardless of the learning cycle.
  • the stepping motor 50 of the block valve 40 is rotated in the valve closing direction by XStep to return the valve guide 60 and the valve body 70 to the valve closing position.
  • the internal pressure (tank internal pressure) of the fuel tank 15 is detected at regular intervals ( ⁇ Ts) in accordance with the learning cycle, and the tank reference pressure is smaller than a predetermined value ( ⁇ P1).
  • ⁇ P01 a predetermined value
  • the tank internal pressure while the stepping motor 50 is rotated in the valve closing direction by BStep (for example, ⁇ 2 Step) and maintained for a certain time T2 (for example, 1 sec) is as shown in the tank internal pressure graph of FIG.
  • Ts2 for example, 1 sec
  • the number of steps of the stepping motor 50 is S3Step as shown in the upper diagram of FIG. 9, but the update of the stroke amount is prohibited when the temporary learning flag is turned on. That is, the stroke amount (S2 Step) updated in the previous process is suspended.
  • the stepping motor 50 is rotated in the valve opening direction by AStep (for example, 4 Step) and maintained for a certain time T1 (for example, 500 msec)
  • the stepping motor 50 is moved in the valve closing direction by BStep (for example, ⁇ 2 Step). It rotates and is maintained for a certain time T2 (for example, 1 sec).
  • Ts4 for example, 1 sec
  • FIG. 9 shows an example in which the update of the stroke amount is prohibited when the temporary learning flag is turned on, but as shown in FIG. 10, the stroke amount even when the temporary learning flag is turned on at timing Ts3.
  • Is also possible by updating S2Step to S3Step and subtracting (AB-1 1) Step from the updated stroke amount (S3Step) when the learning flag is turned on in the next step (see timing Ts4) It is.
  • FIGS. 9 and 10 show examples in which the internal pressure of the fuel tank 15 (tank internal pressure) is detected at regular intervals ( ⁇ Ts).
  • the tank internal pressure can always be detected, and when the tank internal pressure has decreased by a predetermined value ( ⁇ P1) or more (see timing Tsx) with respect to the previous detection value (see timing Ts4), learning is performed. It is also possible to turn on the flag.
  • the temporary learning flag is turned on at a timing (see timing Ts3) when the tank internal pressure is lower than the first reference value ( ⁇ P01) during a certain period ( ⁇ Ts), and the tank internal pressure is
  • Ts3 when the tank internal pressure is lower than the first reference value ( ⁇ P01) during a certain period ( ⁇ Ts)
  • ⁇ Ts the tank internal pressure
  • Ts4 that falls within a predetermined value ( ⁇ P1) within ⁇ Ts).
  • the temporary learning flag is turned on at a timing (see timing Ts4) when the tank internal pressure drops below the first reference value ( ⁇ P01) during a certain period ( ⁇ Ts), and the next process (a certain period) (During ( ⁇ Ts))
  • a learning flag when the sum of the value in which the tank internal pressure has decreased and the value in which the tank internal pressure has decreased in the previous process, that is, the integrated amount of decrease in tank internal pressure is greater than or equal to a predetermined value ( ⁇ P1) It is also possible to turn on. Furthermore, as shown in FIG. 13, it is possible to always detect the tank internal pressure, and it is also possible to turn on the learning flag when the tank internal pressure decrease amount integrated value becomes equal to or greater than a predetermined value ( ⁇ P1) (see timing Tsx). It is.
  • ⁇ Modification 3> When the tank internal pressure is low, it may be considered that it takes a long time for the tank internal pressure to gradually decrease and decrease by a predetermined value ( ⁇ P1) or more even when the opening of the blocking valve 40 is started. Even in such a case, in order to accurately perform the learning control, as shown in FIG. 14, after the provisional learning flag is turned on, the state of decrease in the tank internal pressure is monitored, and the integrated amount of decrease in the tank internal pressure is obtained. The learning flag is turned on when the predetermined value ( ⁇ P1) or more is reached.
  • the temporary learning flag is turned on at this timing Ts3.
  • the number of steps (stroke amount) of the stepping motor 50 is S3Step as shown in the upper diagram of FIG. 14, but the update of the stroke amount is prohibited when the temporary learning flag is turned on. That is, the stroke amount (S2 Step) updated in the previous process is suspended.
  • the tank internal pressure drop in the next step that is, when the second reference value ( ⁇ P02) is larger than the first reference value ( ⁇ P01
  • the temporary learning flag is kept on.
  • the temporary learning flag is kept on.
  • the learning flag is turned on when the tank internal pressure decrease amount integrated value becomes equal to or greater than a predetermined value ( ⁇ P1).
  • (AB-1 1) Step is added to the stroke amount (S2 Step) held by the temporary learning flag being turned on, and the value is stored as the learning value Sx of the valve opening start position.
  • Learning control ends.
  • the stepping motor 50 of the blocking valve 40 rotates in the valve closing direction by XStep, and the valve guide 60 and the valve body 70 are returned to the valve closing position.
  • the temporary learning flag is turned on, for example, when the tank internal pressure drop in the next step, that is, the second reference value ( ⁇ P02) becomes smaller than the first reference value ( ⁇ P01), the blockage is performed. It is determined that the internal pressure of the tank is not lowered due to the start of opening of the valve 40, and the temporary learning flag is turned off.
  • the stepping motor 50 is rotated in the valve opening direction by AStep (for example, 4 Step) and maintained for a certain time T1 (for example, 500 msec), and the stepping motor 50 is moved in the valve closing direction by BStep (for example, ⁇ 2 Step).
  • AStep for example, 4 Step
  • T1 for example, 500 msec
  • BStep for example, ⁇ 2 Step
  • the example shows that the tank internal pressure is detected at a predetermined timing while rotating and maintaining for a certain time T2 (for example, 1 sec) and for a certain time T2.
  • T2 for example, 1 sec
  • T2 for example, 1 sec
  • the fixed time T1 when rotating in the valve opening direction and the fixed time T2 when rotating in the valve closing direction can be appropriately changed.
  • the stepping motor 50 is used as the motor of the blocking valve 40
  • a DC motor or the like can be used instead of the stepping motor 50.
  • the fuel vapor processing apparatus 20 according to the second embodiment of the present invention will be described with reference to FIGS. 5 and 15 to 19.
  • the control for changing the stroke amount of the blocking valve 40 hereinafter referred to as stroke control
  • the control to detect hereinafter referred to as internal pressure detection control
  • the stroke control of the blocking valve 40 is executed based on the flowchart of FIG.
  • the process shown in the flowchart of FIG. 15 is repeatedly executed at predetermined intervals Tx based on a program stored in the memory of the ECU 19 (see FIG. 1).
  • the internal pressure detection control in the learning control is executed based on the flowchart of FIG.
  • the process shown in the flowchart of FIG. 16 is repeatedly executed at predetermined intervals Tv based on a program stored in the memory of the ECU 19.
  • the graph of FIG. 17 is a graph showing the change over time of the stroke control and the internal pressure detection control of the blocking valve 40.
  • the stepping motor 50 of the blocking valve 40 is closed in the valve opening direction. The state after rotating to the limit position S0Step is shown in detail.
  • FIG. 16 is started in the state in which the closing valve 40 exists in the valve closing limit position S0Step (stroke amount S0) (refer the upper timing T1 of FIG. 17). That is, in step S101 in FIG. 15, it is determined whether or not the stepping motor 50 of the block valve 40 has rotated in the valve opening direction by AStep (for example, 4 Step) (the block valve 40 operates in the AStep valve opening direction). At timing T1 in FIG. 17, since the closing valve 40 is before the AStep valve opening operation, the determination in step S101 in FIG.
  • step S111 the tank internal pressure PD1 at this timing is stored (step S110), and further the closing valve A process of moving 40 in the AStep valve opening direction is performed (step S111), and the current process ends.
  • the current tank internal pressure P is compared with the tank internal pressure PD1 stored at the timing T1 in FIG. 17 in step S202.
  • the current tank internal pressure P has not decreased by ⁇ P1 or more from the tank internal pressure PD1, so the determination in step S202 is NO.
  • step S101 it is determined whether or not the closing valve 40 has moved in the valve closing direction by BStep (for example, ⁇ 2Step).
  • BStep for example, ⁇ 2Step
  • the determination in step S102 in FIG. 15 is NO, and in step S113, a process for operating the blocking valve 40 in the BStep valve closing direction is performed.
  • step S101, S102 YES It is determined whether the time Y has elapsed after the valve direction operation.
  • the current process is terminated. In this way, when the process of steps S101, S102, and S103 in FIG.
  • step S104 the current tank internal pressure P and timing T1 are reached in step S104.
  • the stored tank internal pressure PD1 is compared.
  • the determination in step S104 is NO.
  • the opening / closing execution history of the blocking valve 40 is cleared.
  • the learned value is the stroke amount difference between the current AStep opening direction operation and the BStep closing direction operation (A) at the designed valve closing limit position S0Step (stroke amount S0) of the blocking valve 40.
  • -B 2) Updated to the value S1 obtained by adding Step.
  • step S101 the tank internal pressure PD2 is stored at the timing T7 in FIG. 17 (step S110), and the AStep valve opening direction operation of the block valve 40 is performed (step S111). Then, as in the case of timing T2 to timing T6 described above, after the AStep opening state of the blocking valve 40 is maintained for the time Tx, the BStep closing direction operation of the blocking valve 40 is performed, and the BStep closing state is changed. Only time Y is maintained.
  • step S204 the block valve 40 is returned by 8 Steps in the valve closing direction, and the block valve 40 is closed.
  • the learning control completion time is delayed by the time from the timing T10b to the timing T12 of FIG. 17 with respect to the process of the flowchart of FIG. Note that the processing of the flowchart of FIG. 15 may be terminated when the learning completion processing or the like is performed in the processing of the flowchart of FIG.
  • step S301 in FIG. 18 the determination in step S301 in FIG. 18 is YES, and the tank internal pressure PD1 at the timing T1 in FIG. 19 is stored (step S303). Further, the AStep valve opening direction operation of the blocking valve 40 is performed (step S304), and the current process is completed.
  • step S201 and step S202 are repeatedly executed at a predetermined cycle Tv.
  • step S301 is NO. It becomes. Furthermore, since the determination in step S302 is also NO, in step S305, the BStep valve closing direction operation of the blocking valve 40 is performed, and the current process is completed.
  • step S3 the time Y has not elapsed since the BStep valve closing direction operation was performed (NO in step S301), and the BStep valve closing direction operation has ended (YES in step S302). Exit. Then, when the process of steps S301 and S302 in FIG.
  • step S301 the determination in step S301 is YES. For this reason, the tank internal pressure PD2 at the timing T6 in FIG. 19 is stored (step S303). Further, the AStep valve opening direction operation of the blocking valve 40 is performed (step S304).
  • the operation of maintaining the AStep valve opening direction state for the time Tx and maintaining the BStep valve closing direction state for the time Y can be repeatedly executed. For this reason, as in the process shown in the flowchart of FIG. 15, the process of canceling the opening / closing history of the blocking valve 40 becomes unnecessary, and immediately after the time Y has elapsed after the BStep valve closing direction operation of the blocking valve 40 ends. AStep valve opening direction operation can be performed. For this reason, the time required for learning control can be shortened. Then, as shown at timing T9b in FIG. 19, when the current tank internal pressure P decreases by ⁇ P1 or more from the tank internal pressure PD2 at timing T6 in FIG.
  • step S203 learning completion processing is performed in step S203.
  • time Tx> time Tv the specific value can be changed as appropriate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)

Abstract

 蒸発燃料処理装置によると、燃料タンク内で発生した蒸発燃料を吸着する吸着材を備えるキャニスタと、キャニスタと燃料タンクとをつなぐベーパ通路に設けられている封鎖弁とを備える蒸発燃料処理装置であって、封鎖弁は、ストローク量が零から所定範囲内にあるときが閉弁状態で燃料タンクを密閉状態に保持可能であり、ストローク量を開弁方向に変化させて燃料タンクの内圧が所定値以上低下したときのストローク量に基づいて開弁開始位置を学習でき、前記学習では、第1所定ストローク(A)だけ開弁方向に変化させて第1の時間(T1)維持し、次に第2所定ストローク(B)だけ閉弁方向に変化させて第2の時間(T2)維持する工程を繰り返すことでストローク量を開弁方向に変化させ、燃料タンクの内圧が所定値以上低下したときの工程、あるいはその前工程の第2の時間(T2)維持状態におけるストローク量に基づいて開弁開始位置が決められる。

Description

蒸発燃料処理装置
 本発明は、燃料タンク内で発生した蒸発燃料を吸着する吸着材を備えるキャニスタと、前記キャニスタと前記燃料タンクとをつなぐベーパ通路に設けられている封鎖弁とを備える蒸発燃料処理装置に関する。
 これに関連する従来の蒸発燃料処理装置が特開2011-256778号に開示されている。この蒸発燃料処理装置は、キャニスタと燃料タンクとをつなぐベーパ通路に封鎖弁(制御バルブ)を備えている。前記封鎖弁は、蒸発燃料を遮断する不感帯領域(閉弁領域)と、蒸発燃料を通過させる導通領域(開弁領域)とを備えており、閉弁状態で燃料タンクを密閉状態に保持し、開弁状態で燃料タンクの蒸発燃料をキャニスタ側に逃がし、燃料タンクの内圧を低下させられるように構成されている。前記蒸発燃料処理装置は、封鎖弁の開度を閉弁位置から所定速度で開方向に変化させて、燃料タンクの内圧が低下し始めたときに、封鎖弁の開度を開弁開始位置として記憶する学習制御を行なっている。
 しかし、前記封鎖弁の開弁開始タイミングに対して燃料タンクの内圧低下の検出タイミングは遅れている。このため、弁座に対する弁可動部の軸方向距離であるストローク量を徐々に変化させる学習方法では、燃料タンクの内圧低下を検出した時点で封鎖弁は開弁開始位置よりも若干開いていることが考えられる。即ち、封鎖弁における開弁開始位置の学習制御の精度が低いという問題がある。
 本発明は、上記問題点を解決するためになされたものであり、本発明が解決しようとする課題は、封鎖弁における開弁開始位置の学習精度を向上させることである。
 本発明の一つの側面では、燃料タンク内で発生した蒸発燃料を吸着する吸着材を備えるキャニスタと、前記キャニスタと前記燃料タンクとをつなぐベーパ通路に設けられている封鎖弁とを備える蒸発燃料処理装置であって、前記封鎖弁は、弁座に対する弁可動部の軸方向距離であるストローク量が零から所定範囲内にあるときが閉弁状態で前記燃料タンクを密閉状態に保持可能であり、前記ストローク量を開弁方向に変化させて前記燃料タンクの内圧が所定値以上低下したときの前記ストローク量に基づいて開弁開始位置を学習できるように構成されており、前記封鎖弁の開弁開始位置の学習では、第1所定ストロークだけ開弁方向に変化させて第1の時間維持し、次に第1所定ストロークよりも小さい第2所定ストロークだけ閉弁方向に変化させて第1の時間より長い第2の時間維持する工程を繰り返すことで前記ストローク量を開弁方向に変化させ、前記燃料タンクの内圧が所定値以上低下したときの工程、あるいはその前工程の第2の時間維持状態における前記ストローク量に基づいて開弁開始位置が決められる。ここで、前工程とは、直前の工程のみならず、それよりも前の工程を含むものとする。
 本発明によると、封鎖弁の開弁開始位置の学習では、弁可動部のストローク量を開弁方向に変化させて第1の時間維持し、開弁方向よりも少ない量(第2所定ストローク)だけ閉弁方向に変化させて第1の時間より長い第2の時間維持する工程を繰り返し、段階的にストローク量を開弁方向に変化させる。このため、封鎖弁の開弁開始位置では、流路が多めに開かれた状態から閉方向に戻されるようになるため、燃料タンク内の内圧変化の応答性が良くなり、実際の開弁開始時と開弁開始判定時(燃料タンクの内圧低下検出タイミング)との時間ずれが小さくなり、学習精度を向上させることができる。
 本発明の他の側面によると、封鎖弁の開弁開始位置の学習では、燃料タンクの内圧が所定値以上低下したことが検出されたタイミングで、弁可動部のストローク量を閉弁位置まで変化させる。これにより、燃料タンクの内圧が高い場合に、燃料タンク内の気体が多量にキャニスタ側に流入するのを防止できるようになる。
 本発明の他の側面によると、燃料タンクの内圧の検出周期は、前記第1の時間よりも短い時間である。即ち、比較的短い周期で燃料タンクの内圧を検出できるため、実際の燃料タンクの内圧と検出値とのずれが小さくなる。
 本発明の他の側面によると、封鎖弁の開弁開始位置の学習では、前記封鎖弁のストローク量を変化させる制御と、前記燃料タンクの内圧が所定値以上低下したことを検出する制御とが独立して行なわれる。また、燃料タンクの内圧が所定値以上低下したことを検出する制御の制御周期が前記封鎖弁のストローク量を変化させる制御の制御周期よりも小さな値に設定されている。このため、前記燃料タンクの内圧が所定値以上低下したことを検出する制御の制御周期を封鎖弁のストローク量を変化させる制御に合わせる場合と比較して、封鎖弁の開弁開始位置の学習を早く終了できる。
 本発明の他の側面によると、燃料タンクの内圧が所定値よりも小さい値だけ低下したことを検出したときに仮学習フラグをオンさせ、前記燃料タンクの内圧が継続して低下している状態で、後工程において前記燃料タンクの内圧が所定値以上低下したときは、前記仮学習フラグがオンしたときの工程、あるいはその前工程の第2の時間維持状態における前記ストローク量に基づいて開弁開始位置が決められる。これにより、燃料タンクの内圧が低く、封鎖弁の開弁が開始されてもタンクの内圧が緩やかに低下する場合であっても、精度良く封鎖弁の開弁開始位置を学習できる。
 本発明の他の側面によると、燃料タンクの内圧が所定値以上低下したときの工程、あるいは仮学習フラグがオンしたときの工程における第2の時間維持状態の前記ストローク量に基づいて開弁開始位置を決める際には、前記ストローク量から第1所定ストロークと第2所定ストロークとの差に基づく値を減算し、前記燃料タンクの内圧が所定値以上低下したときの直前の工程、あるいは前記仮学習フラグがオンしたときの直前の工程における第2の時間維持状態の前記ストローク量に基づいて開弁開始位置を決める際には、前記ストローク量に第1所定ストロークと第2所定ストロークとの差に基づく値を加算することを特徴とする。このため、封鎖弁の開弁開始位置の学習精度が向上する。
 本発明によると、封鎖弁における開弁開始位置の学習精度を向上させることができる。
本発明の実施形態1に係る蒸発燃料処理装置の全体構成図である。 前記蒸発燃料処理装置で使用される封鎖弁のイニシャライズ状態を表す縦断面図である。 前記封鎖弁の閉弁状態を表す縦断面図である。 前記封鎖弁の開弁状態を表す縦断面図である。 前記封鎖弁の開弁開始位置を学習する学習制御を表すグラフである。 図5のVI矢視部分の学習制御を表すグラフIである。 図5のVI矢視部分の学習制御を表すグラフIIである。 変更例に係る学習制御を表すグラフである。 変更例に係る学習制御を表すグラフである。 変更例に係る学習制御を表すグラフである。 変更例に係るタンク内圧と学習フラグとの関係を表すグラフである。 変更例に係るタンク内圧と学習フラグとの関係を表すグラフである。 変更例に係るタンク内圧と学習フラグとの関係を表すグラフである。 変更例に係る学習制御を表すグラフである。 本発明の実施形態2に係る蒸発燃料処理装置の学習制御における封鎖弁のストローク量を変化させる制御を表すフローチャートである。 前記学習制御における燃料タンクの内圧が所定値以上低下したことを検出する制御を表すフローチャートである。 前記学習制御を表すグラフである。 変更例に係る学習制御における封鎖弁のストローク量を変化させる制御を表すフローチャートである。 変更例に係る学習制御を表すグラフである。
  [実施形態1]
 以下、図1から図14に基づいて本発明の実施形態1に係る蒸発燃料処理装置20の説明を行なう。本実施形態の蒸発燃料処理装置20は、図1に示すように、車両のエンジンシステム10に備えられており、車両の燃料タンク15で発生した蒸発燃料が外部に漏れ出ないようにするための装置である。
<蒸発燃料処理装置20の構造概要について>
 蒸発燃料処理装置20は、図1に示すように、キャニスタ22と、そのキャニスタ22に接続されたベーパ通路24、パージ通路26、及び大気通路28とを備えている。キャニスタ22内には、吸着材としての活性炭(図示省略)が装填されており、燃料タンク15内の蒸発燃料を前記吸着材により吸着できるように構成されている。ベーパ通路24の一端部(上流側端部)は、燃料タンク15内の気層部と連通されており、ベーパ通路24の他端部(下流側端部)がキャニスタ22内と連通されている。そして、ベーパ通路24の途中にはベーパ通路24を連通・遮断する封鎖弁40(後記する)が介装されている。また、パージ通路26の一端部(上流側端部)は、キャニスタ22内と連通されており、パージ通路26の他端部(下流側端部)がエンジン14の吸気通路16におけるスロットルバルブ17よりも下流側通路部と連通されている。そして、パージ通路26の途中にはパージ通路26を連通・遮断するパージ弁26vが介装されている。
 さらに、キャニスタ22は故障検出に使用されるOBD用部品28vを介して大気通路28が連通されている。大気通路28の途中にはエアフィルタ28aが介装されており、大気通路28の他端部は大気に開放されている。前記封鎖弁40、パージ弁26v及びOBD用部品28vは、ECU19からの信号に基づいて制御される。さらに、ECU19には、燃料タンク15内の圧力を検出するタンク内圧センサ15p等の信号が入力される。
<蒸発燃料処理装置20の動作概要について>
 次に、蒸発燃料処理装置20の基本的動作について説明する。車両の駐車中は、封鎖弁40が閉弁状態に維持される。このため、燃料タンク15の蒸発燃料がキャニスタ22内に流入することはない。そして、駐車中に車両のイグニッションスイッチがオンされると、封鎖弁40の開弁開始位置を学習する学習制御が行われる(後記する)。また、車両の駐車中は、パージ弁26vは閉弁状態に維持されてパージ通路26は遮断状態となり、大気通路28は連通状態に維持される。車両の走行中は、所定のパージ条件が成立する場合に、ECU19がキャニスタ22に吸着されている蒸発燃料をパージさせる制御を実行する。この制御では、キャニスタ22を大気通路28により大気に連通させたまま、パージ弁26vが開閉制御される。パージ弁26vが開弁されると、エンジン14の吸気負圧がパージ通路26を介してキャニスタ22内に作用する。これにより、キャニスタ22内に大気通路28から空気が流入するようになる。さらに、パージ弁26vが開弁されると、封鎖弁40が開弁方向に動作して燃料タンク15の圧抜き制御が行なわれる。これにより、キャニスタ22内にベーパ通路24から燃料タンク15内の気体が流入するようになる。この結果、キャニスタ22内の吸着材がキャニスタ22に流入する空気等によりパージされ、前記吸着材から離脱した蒸発燃料が空気と共にエンジン14の吸気通路16に導かれて、エンジン14内で燃焼される。
<封鎖弁40の基本構造について>
 封鎖弁40は、閉弁状態でベーパ通路24を封鎖し、開弁状態でベーパ通路24を流れる気体の流量を制御する流量制御弁であり、図2に示すように、バルブケーシング42とステッピングモータ50とバルブガイド60とバルブ体70とを備えている。バルブケーシング42には、弁室44、流入路45及び流出路46により、一連状をなす逆L字状の流体通路47が構成されている。また、弁室44の下面すなわち流入路45の上端開口部の口縁部には、弁座48が同心状に形成されている。前記ステッピングモータ50は、前記バルブケーシング42の上部に設置されている。前記ステッピングモータ50は、モータ本体52と、そのモータ本体52の下面から突出し、正逆回転可能に構成された出力軸54を有している。出力軸54は、バルブケーシング42の弁室44内に同心状に配置されており、その出力軸54の外周面に雄ネジ部54nが形成されている。
 バルブガイド60は、円筒状の筒壁部62と筒壁部62の上端開口部を閉鎖する上壁部64とから有天円筒状に形成されている。上壁部64の中央部には筒軸部66が同心状に形成されており、その筒軸部66の内周面に雌ネジ部66wが形成されている。前記バルブガイド60は、前記バルブケーシング42に対して、回り止め手段(図示省略)により軸回り方向に回り止めされた状態で軸方向(上下方向)に移動可能に配置されている。バルブガイド60の筒軸部66の雌ネジ部66wには、前記ステッピングモータ50の出力軸54の雄ネジ部54nが螺合されており、ステッピングモータ50の出力軸54の正逆回転に基いて、バルブガイド60が上下方向(軸方向)に昇降移動可能に構成されている。前記バルブガイド60の周囲には、そのバルブガイド60を上方へ付勢する補助スプリング68が介装されている。
 前記バルブ体70は、円筒状の筒壁部72と筒壁部72の下端開口部を閉鎖する下壁部74とから有底円筒状に形成されている。下壁部74の下面には、例えば、円板状のゴム状弾性材からなるシール部材76が装着されている。前記バルブ体70は、前記バルブガイド60内に同心状に配置されており、そのバルブ体70のシール部材76がバルブケーシング42の弁座48の上面に対して当接可能に配置されている。バルブ体70の筒壁部72の上端外周面には、円周方向に複数個の連結凸部72tが形成されている。そして、バルブ体70の連結凸部72tがバルブガイド60の筒壁部62の内周面に形成された縦溝状の連結凹部62mと一定寸法だけ上下方向に相対移動可能な状態で嵌合している。そして、バルブガイド60の連結凹部62mの底壁部62bがバルブ体70の連結凸部72tに対して下方から当接した状態で、バルブガイド60とバルブ体70とが一体で上方(開弁方向)に移動可能となる。また、前記バルブガイド60の上壁部64と前記バルブ体70の下壁部74との間には、バルブガイド60に対してバルブ体70を常に下方、即ち、閉弁方向へ付勢するバルブスプリング77が同心状に介装されている。
<封鎖弁40の基本動作について>
 次に、封鎖弁40の基本動作について説明する。封鎖弁40は、ECU19からの出力信号に基づいてステッピングモータ50を開弁方向、あるいは閉弁方向に予め決められたステップ数だけ回転させる。そして、ステッピングモータ50が予め決められたステップ数だけ回転することで、ステッピングモータ50の出力軸54の雄ネジ部54nとバルブガイド60の筒軸部66の雌ネジ部66wとの螺合作用により、バルブガイド60が上下方向に予め決められたストローク量だけ移動するようになる。前記封鎖弁40では、例えば、全開位置においてステップ数が約200Step、ストローク量が約5mmとなるように設定されている。
 封鎖弁40のイニシャライズ状態(初期状態)では、図2に示すように、バルブガイド60が下限位置に保持されて、そのバルブガイド60の筒壁部62の下端面がバルブケーシング42の弁座48の上面に対して当接している。また、この状態で、バルブ体70の連結凸部72tは、バルブガイド60の連結凹部62mの底壁部62bに対して上方に位置しており、バルブ体70のシール部材76はバルブスプリング77のバネ力により、バルブケーシング42の弁座48の上面に押付けられている。即ち、封鎖弁40は全閉状態に保持されている。そして、このときのステッピングモータ50のステップ数が0Stepであり、バルブガイド60の軸方向(上方向)の移動量、即ち、開弁方向のストローク量が0mmとなる。
 また、車両の駐車中等では、封鎖弁40のステッピングモータ50がイニシャライズ状態から開弁方向に、例えば、4Step回転する。これにより、ステッピングモータ50の出力軸54の雄ネジ部54nとバルブガイド60の筒軸部66の雌ネジ部66wとの螺合作用でバルブガイド60が約0.1mm上方に移動し、バルブケーシング42の弁座48から浮いた状態に保持される。これにより、気温等の環境変化で封鎖弁40のバルブガイド60とバルブケーシング42の弁座48間に無理な力が加わり難くなる。なお、この状態で、バルブ体70のシール部材76はバルブスプリング77のバネ力により、バルブケーシング42の弁座48の上面に押付けられている。
 ステッピングモータ50が4Step回転した位置からさらに開弁方向に回転すると、前記雄ネジ部54nと雌ネジ部66wとの螺合作用でバルブガイド60が上方に移動し、図3に示すように、バルブガイド60の連結凹部62mの底壁部62bがバルブ体70の連結凸部72tに下方から当接する。そして、バルブガイド60がさらに上方に移動することで、図4に示すように、バルブ体70がバルブガイド60と共に上方に移動し、バルブ体70のシール部材76がバルブケーシング42の弁座48から離れるようになる。これにより、封鎖弁40が開弁される。
 ここで、封鎖弁40の開弁開始位置は、バルブ体70に形成された連結凸部72tの位置公差、バルブガイド60の連結凹部62mに形成された底壁部62bの位置公差等により、封鎖弁40毎に異なるため、正確に開弁開始位置を学習する必要がある。この学習を行なうのが学習制御であり、封鎖弁40のステッピングモータ50を開弁方向に回転(ステップ数を増加)させながら燃料タンク15の内圧が所定値以上低下したタイミングに基づいて開弁開始位置のステップ数を検出する。このように、封鎖弁40が閉弁状態のときはバルブガイド60が本発明の弁可動部に相当し、封鎖弁40が開弁状態のときはバルブガイド60とバルブ体70とが本発明の弁可動部に相当する。
<封鎖弁40の学習制御について>
 次に、図5から図7に基づいて、封鎖弁40の開弁開始位置の学習制御について説明する。学習制御は、車両の駐車中にエンジンのイグニッションスイッチがオンしたタイミングで行われる。ここで、図5の上図は、時間を基準(横軸)としてステッピングモータ50のステップ数の変化、即ち、バルブガイド60、及びバルブ体70のストローク量(軸方向の移動量)を表している。このため、以後、ステップ数とストローク量とは同意語として使用する。また、図5の下図は、時間を基準(横軸)として燃料タンク15の内圧(タンク内圧)の変化を表している。ここで、タンク内圧は、一定周期(ΔTs)毎に検出される。
 前述のように、車両の駐車中では、ステッピングモータ50が開弁方向に、例えば、4Step回転してバルブガイド60がバルブケーシング42の弁座48から約0.1mm浮いた状態に保持されている。この状態で、エンジンのイグニッションスイッチがオンすると、ステッピングモータ50が閉弁方向に4Step(-4Step)回転し、前記封鎖弁40はイニシャライズ状態(0Step)に戻される。次に、図5の上図に示すように、ステッピングモータ50が封鎖弁40の設計上の閉弁限界位置S0Stepまで開弁方向に高速回転する。これにより、バルブガイド60が比較的速く閉弁限界位置まで上方に移動するようになり、学習時間の短縮を図れるようになる。なお、このときには、バルブ体70のシール部材76は、バルブスプリング77のバネ力でバルブケーシング42の弁座48の上面に当接しており、封鎖弁40は閉弁状態である。
 ステッピングモータ50が封鎖弁40の閉弁限界位置S0Stepまで開弁方向に回転すると、ステッピングモータ50が停止して一定時間T1(例えば、500msec)だけこの状態が維持される(図5の上図参照)。次に、ステッピングモータ50がBStep(例えば、-2Step)だけ閉弁方向に回転し、一定時間T2(例えば、1sec)だけこの状態が維持される。そして、ステッピングモータ50が一定時間T2維持されている間の所定タイミングでタンク内圧が検出される。このとき、検出されたタンク内圧が前回の検出値に対して所定値(ΔP1)以上低下していなければ、閉弁限界位置S0StepからBStep(B=2)減算した値、即ち、(S0-2)Stepがストローク量として記憶される。
 次に、図6の上図に示すように、ステッピングモータ50がAStep(例えば、4Step)だけ開弁方向に回転して一定時間T1(例えば、500msec)維持された後、ステッピングモータ50がBStep(例えば、-2Step)だけ閉弁方向に回転し、一定時間T2(例えば、1sec)維持される。そして、ステッピングモータ50が一定時間T2維持されている間の所定タイミングでタンク内圧が検出される。このとき、タンク内圧が前回の検出値に対して所定値(ΔP1)以上低下していなければ、前回のストローク量(S0-2)Stepに今回の開弁方向のストローク量Aと閉弁方向のストローク量Bとの差(A-B=2)Stepを加算した値が新たなストローク量となる。即ち、ストローク量が(S0-2)StepからS0Stepに更新される。ここで、タンク内圧の検出周期(ΔTs)と、ステッピングモータ50が開弁方向に回転して一定時間T1維持され、閉弁方向に回転して一定時間T2維持される学習周期とが等しく設定されている。
 そして、このような工程が繰り返し実行されて、図6のタンク内圧のグラフに示すように、今回検出されたタンク内圧が前回(タイミングTs3 参照)の検出値に対して所定値(ΔP1)以上低下していると(タイミングTs4 参照)、封鎖弁40の開弁が開始されたと判定される。これにより、図6の下図に示すように、タイミングTs4で学習フラグがオンする。この結果、図6の学習値のグラフに示すように、一つ前の工程(タイミングTs3 参照)で更新したストローク量S3に(A-B-1=1)Stepが加算された値が開弁開始位置の学習値Sxとして記憶され、学習制御が終了する。ここで、封鎖弁40の開弁開始位置の判定に使用されるタンク内圧の変化量である所定値(ΔP1)は、タンク内圧センサ15pの特性のばらつきや、車両走行等による燃料タンク15の液面揺れを考慮して、例えば、0.3kPa程度の値に設定されている。
 また、学習フラグがオンしたときに、一つ前の工程(タイミングTs3 参照)で更新したストローク量S3に(A-B-1=1)Stepを加算して学習値Sxとする例を示したが、図7の学習値のグラフに示すように、学習フラグがオンした工程(タイミングTs4 参照)でストローク量をS3StepからS4Stepに更新し、更新したストローク量S4から(A-B-1=1)Stepを減算した値を学習値Sxとして記憶することも可能である。上記したように、ステッピングモータ50をAStep(例えば、4Step)だけ開弁方向に回転させる状態が、本発明の弁可動部を第1所定ストロークだけ開弁方向に変化させる状態に相当し、ステッピングモータ50をBStep(例えば、2Step)だけ閉弁方向に回転させる状態が、本発明の弁可動部を第2所定ストロークだけ閉弁方向に変化させる状態に相当する。また、一定時間T1(例えば、500msec)は本発明の第1の時間に相当し、一定時間T2(例えば、1sec)が本発明の第2の時間に相当する。
<本実施形態に係る蒸発燃料処理装置20の長所>
 本実施形態に係る蒸発燃料処理装置20によると、封鎖弁40の開弁開始位置の学習では、ステッピングモータ50をAStep(例えば、4Step)だけ開弁方向に回転させて一定時間T1(例えば、500msec)維持し、さらに、ステッピングモータ50をBStep(例えば、2Step)だけ閉弁方向に回転させて一定時間T2(例えば、1sec)維持する工程を繰り返し、段階的にバルブガイド60、バルブ体70(弁可動部)のストローク量を開弁方向に変化させる。即ち、封鎖弁40の開弁開始位置では、流路が多めに開かれた状態から閉方向に戻されるようになるため、燃料タンク15内の内圧変化の応答性が良くなり、実際の開弁開始時と開弁開始判定時(燃料タンク15の内圧低下検出タイミング)との時間ずれが小さくなり、学習精度を向上させることができる。
<変更例1>
 本発明は上記した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における変更が可能である。例えば、本実施形態では、燃料タンク15の内圧(タンク内圧)を学習周期に合わせて一定周期(ΔTs)毎に検出する例を示したが、タンク内圧を常時検出することも可能である。これにより、例えば、図8のタンク内圧のグラフに示すように、タンク内圧が所定値(ΔP1)以上低下したことを検出した時点で(タイミングTsx 参照)、学習周期に係わりなく、学習フラグをオンし、学習値Sx(=S4+A-B-1)を更新することができる。さらに、学習値を更新したら、封鎖弁40のステッピングモータ50をXStepだけ閉弁方向に回転させてバルブガイド60、バルブ体70を閉弁位置まで戻すのが好ましい。これにより、燃料タンク15の内圧が高い場合でも、燃料タンク15内の気体が多量にキャニスタ22側に流入するのを防止できるようになる。
<変更例2>
 また、本実施形態では、燃料タンク15の内圧(タンク内圧)が前回の検出値に対して所定値(ΔP1)以上低下して始めて、封鎖弁40の開弁が開始されたと判定された。しかし、タンク内圧が低い場合、封鎖弁40の開弁が開始されても、タンク内圧が所定値(ΔP1)以上低下しない場合が考えられる。このような場合でも、正確に学習制御が行なわれるようにするため、図9に示すように、仮学習フラグをオンさせることで、ストローク量の更新を保留することが行なわれる。
 即ち、図9に示す方法は、燃料タンク15の内圧(タンク内圧)を学習周期に合わせて一定周期(ΔTs)毎に検出し、タンク内圧が所定値(ΔP1)よりも小さい第1基準値(ΔP01)より低下した場合に、封鎖弁40の開弁開始の可能性があると判定して仮学習フラグをオンするように構成されている。例えば、ステッピングモータ50がBStep(例えば、-2Step)だけ閉弁方向に回転して一定時間T2(例えば、1sec)維持されている間のタンク内圧が、図9のタンク内圧のグラフに示すように、前回の検出値(タイミングTs2 参照)に対して第1基準値(ΔP01)より低下していることが検出されると(タイミングTs3 参照)、このタイミングTs3で仮学習フラグがオンする。
 このとき、ステッピングモータ50のステップ数は、図9の上図に示すように、S3Stepであるが、仮学習フラグがオンすることでストローク量の更新が禁止される。即ち、前回の工程で更新されたストローク量(S2Step)が保留される。次に、ステッピングモータ50がAStep(例えば、4Step)だけ開弁方向に回転して一定時間T1(例えば、500msec)維持された後、ステッピングモータ50がBStep(例えば、-2Step)だけ閉弁方向に回転し、一定時間T2(例えば、1sec)維持される。そして、ステッピングモータ50が一定時間T2維持されている間のタイミングTs4でタンク内圧が検出される。このとき、今回検出されたタンク内圧が前回の検出値(タイミングTs3 参照)に対して所定値(ΔP1)以上低下していると(タイミングTs4 参照)、このタイミングTs4で学習フラグがオンする。これにより、保留されたストローク量(S2Step)に(A-B-1=1)Stepが加算された値が開弁開始位置の学習値Sxとして記憶され、学習制御が終了する。即ち、タンク内圧が低い場合でも、正確に学習制御が行なえるようになる。
 ここで、図9では、仮学習フラグがオンしたときに、ストローク量の更新が禁止される例を示したが、図10に示すように、タイミングTs3で仮学習フラグがオンした場合でもストローク量をS2StepからS3Stepに更新し、次の工程で学習フラグがオンしたときに(タイミングTs4 参照)、更新されたストローク量(S3Step)から(A-B-1=1)Stepを減算する方法でも可能である。
 ここで、図9、図10では、燃料タンク15の内圧(タンク内圧)を一定周期(ΔTs)毎に検出する例を示した。しかし、図11に示すように、タンク内圧を常時検出できるようにし、タンク内圧が前回の検出値(タイミングTs4 参照)に対して所定値(ΔP1)以上低下した時点で(タイミングTsx 参照)、学習フラグをオンすることも可能である。また、図9、図10では、タンク内圧が一定周期(ΔTs)の間で第1基準値(ΔP01)より低下したタイミング(タイミングTs3 参照)で仮学習フラグをオンし、タンク内圧が一定周期(ΔTs)内に所定値(ΔP1)以上低下したタイミング(タイミングTs4 参照)で学習フラグをオンする例を示した。しかし、図12に示すように、タンク内圧が一定周期(ΔTs)の間で第1基準値(ΔP01)より低下したタイミング(タイミングTs4 参照)で仮学習フラグをオンし、次の工程(一定周期(ΔTs)の間)でタンク内圧が低下した値と前回の工程でタンク内圧が低下した値との加算値、即ち、タンク内圧の低下量積算値が所定値(ΔP1)以上の場合に学習フラグをオンすることも可能である。さらに、図13に示すように、タンク内圧を常時検出できるようにし、タンク内圧の低下量積算値が所定値(ΔP1)以上となった時点(タイミングTsx 参照)で学習フラグをオンすることも可能である。
<変更例3>
 タンク内圧が低い場合、封鎖弁40の開弁が開始されてもタンク内圧が緩やかに低下して所定値(ΔP1)以上低下するまでに時間が掛かる場合が考えられる。このような場合でも、正確に学習制御が行なわれるようにするため、図14に示すように、仮学習フラグがオンしてからタンク内圧の低下状況を監視し、タンク内圧の低下量積算値が所定値(ΔP1)以上となったときに学習フラグをオンすることが行われる。
 即ち、図14のタンク内圧のグラフに示すように、タンク内圧が前回の検出値(タイミングTs2 参照)に対して第1基準値(ΔP01)より低下していることが検出されると(タイミングTs3 参照)、このタイミングTs3で仮学習フラグがオンする。このとき、ステッピングモータ50のステップ数(ストローク量)は、図14の上図に示すように、S3Stepであるが、仮学習フラグがオンすることでストローク量の更新が禁止される。即ち、前回の工程で更新されたストローク量(S2Step)が保留される。そして、次の工程におけるタンク内圧の低下分、即ち、第2基準値(ΔP02)が第1基準値(ΔP01)よりも大きい場合に、仮学習フラグのオン状態が維持される。さらに、次の工程におけるタンク内圧の低下分、即ち、第3基準値(ΔP03)が第2基準値(ΔP02)よりも大きい場合に、仮学習フラグのオン状態が維持される。そして、最終的に、タンク内圧の低下量積算値が所定値(ΔP1)以上となったときに学習フラグがオンする。
 これにより、仮学習フラグがオンすることで保留されたストローク量(S2Step)に(A-B-1=1)Stepが加算され、その値が開弁開始位置の学習値Sxとして記憶されて、学習制御が終了する。そして、学習制御が終了した段階で、封鎖弁40のステッピングモータ50がXStepだけ閉弁方向に回転してバルブガイド60、バルブ体70が閉弁位置まで戻される。ここで、仮学習フラグがオンした後に、例えば、次の工程におけるタンク内圧の低下分、即ち、第2基準値(ΔP02)が第1基準値(ΔP01)よりも小さくなった場合には、封鎖弁40の開弁開始によるタンク内圧の低下ではないと判定して仮学習フラグをオフする。
<その他の変更例>
 本実施形態では、ステッピングモータ50をAStep(例えば、4Step)だけ開弁方向に回転して一定時間T1(例えば、500msec)維持し、ステッピングモータ50をBStep(例えば、-2Step)だけ閉弁方向に回転し、一定時間T2(例えば、1sec)維持し、一定時間T2維持されている間の所定タイミングでタンク内圧を検出する例を示した。しかし、ステッピングモータ50を開弁方向に回転する値(AStep)と閉弁方向に回転する値(BStep)とを適宜変更することは可能である。また、開弁方向に回転したときの一定時間T1、及び閉弁方向に回転したときの一定時間T2も適宜変更可能である。また、本実施形態では、封鎖弁40のモータにステッピングモータ50を使用する例を示したが、ステッピングモータ50の代わりにDCモータ等を使用することも可能である。
   [実施形態2]
 以下、図5、及び図15から図19に基づいて本発明の実施形態2に係る蒸発燃料処理装置20の説明を行なう。本実施形態に係る蒸発燃料処理装置20では、学習制御において封鎖弁40のストローク量を変化させる制御(以下、ストローク制御という)と、燃料タンク15の内圧が所定値(ΔP1)以上低下したことを検出する制御(以下、内圧検知制御という)とを独立して行なえるように構成されている。なお、本実施形態に係る蒸発燃料処理装置20の他の構成については、実施形態1に係る蒸発燃料処理装置20と同じであるため、同一符号を付して説明を省略する。
 本実施形態に係る蒸発燃料処理装置20の学習制御では、封鎖弁40のストローク制御は、図15のフローチャートに基づいて実行される。ここで、図15のフローチャートに示す処理は、ECU19(図1参照)のメモリに格納されたプログラムに基づいて所定周期Tx毎に繰り返し実行される。本実施形態では、所定周期Txは、例えば、Tx=300msに設定されている。また、前記学習制御における内圧検知制御は、図16のフローチャートに基づいて実行される。ここで、図16のフローチャートに示す処理は、同じくECU19のメモリに格納されたプログラムに基づいて所定周期Tv毎に繰り返し実行される。本実施形態では、所定周期Tvは、例えば、Tv=1/3×Tx=100msに設定されている。また、図17のグラフは、封鎖弁40のストローク制御と内圧検知制御との時間毎の変化を表すグラフであり、図5のグラフにおいて、封鎖弁40のステッピングモータ50が開弁方向に閉弁限界位置S0Stepまで回転した後の状態を詳細に表している。
 次に、図5、及び図15~図17に基づいて、本実施形態に係る学習制御の具体的な手順について説明する。エンジンのイグニッションスイッチがオンされると、図5の上図に示すように、ステッピングモータ50が閉弁方向に4Step(-4Step)回転し、前記封鎖弁40はイニシャライズ状態(0Step)に戻される。次に、ステッピングモータ50が封鎖弁40の設計上の閉弁限界位置S0Stepまで開弁方向に高速回転する。また、図5の下図に示すように、燃料タンク15の内圧(タンク内圧)が所定周期Tv毎に繰り返し検出される。
 そして、封鎖弁40が閉弁限界位置S0Step(ストローク量S0)にある状態(図17の上図 タイミングT1 参照)で、図15、図16のフローチャートに示す処理が開始される。即ち、図15のステップS101で封鎖弁40のステッピングモータ50がAStep(例えば、4Step)だけ開弁方向に回転(封鎖弁40がAStep開弁方向動作)したか否かが判定される。図17のタイミングT1では、封鎖弁40がAStep開弁方向動作する前であるため、図15のステップS101の判定がNOとなり、このタイミングのタンク内圧PD1が記憶され(ステップS110)、さらに封鎖弁40をAStep開弁方向動作させる処理が行なわれて(ステップS111)、今回の処理が終了する。また、図16のフローチャートに示す処理では、学習制御が完了していないため(ステップS201 YES)、ステップS202で現在のタンク内圧Pと図17のタイミングT1で記憶されたタンク内圧PD1とが比較される。図17のタイミングT1,T1a,T1bでは、現在のタンク内圧Pがタンク内圧PD1からΔP1以上低下していないため、ステップS202の判定がNOとなる。このため、図16のフローチャートに示す処理では、現在のタンク内圧Pがタンク内圧PD1からΔP1以上低下するまで、ステップS201、ステップS202の処理が所定周期Tv(=100ms)で繰り返し実行される。
 図15のフローチャートにおける次回の処理(所定周期Tx(=300ms)後の処理)、即ち、図17のタイミングT2では、封鎖弁40がAStep開弁方向動作しているため(ステップS101 YES)、ステップS102で封鎖弁40がBStep(例えば、-2Step)だけ閉弁方向動作したか否かが判定される。図17のタイミングT2では、封鎖弁40がBStep閉弁方向動作する前であるため、図15のステップS102の判定がNOとなり、ステップS113で封鎖弁40をBStep閉弁方向動作する処理が行なわれ、今回の処理が終了する。即ち、封鎖弁40はAStep開弁方向動作すると、図15のフローチャートの周期Tx(=300ms)に等しい時間だけ開弁方向動作状態が維持される。
 図15のフローチャートにおける次回の処理、即ち、図17のタイミングT3では、封鎖弁40のAStep開弁方向動作とBStep閉弁方向動作とが終了しているため(ステップS101、S102 YES)、BStep閉弁方向動作後に時間Yが経過しているか否かが判定される(ステップS103)。ここで、時間Yは、例えば、所定周期Tx×4に設定されている(時間Y=1200ms)。図17のタイミングT3では、時間Yが経過していないため(ステップS103 NO)、今回の処理を終了する。このようにして、図15のステップS101、S102、S103の処理が繰り返されて、時間Yが経過すると(ステップS103 YES 図17のタイミングT6参照)、ステップS104で現在のタンク内圧PとタイミングT1で記憶されたタンク内圧PD1とが比較される。図17のタイミングT6では、現在のタンク内圧Pがタンク内圧PD1からΔP1以上低下していないため、ステップS104の判定がNOとなる。
 このため、ステップS108で次のAStep開弁方向動作とBStep閉弁方向動作を行なえるようにするため、封鎖弁40の開閉実施履歴をクリアする。また、図17に示すように、学習値が、封鎖弁40の設計上の閉弁限界位置S0Step(ストローク量S0)に今回のAStep開弁方向動作とBStep閉弁方向動作のストローク量差(A-B=2)Stepを加算した値S1に更新される。ここで、図15のフローチャートの処理とは並行して、図16のフローチャートのステップS201、S202の処理が所定周期Tv(=100ms)で繰り返し実行される。
 図15のフローチャートにおける次回の処理、即ち、図17のタイミングT7では、タイミングT6で、封鎖弁40の開閉実施履歴をクリアされているため、今回の封鎖弁40のAStep開弁方向動作は行なわれておらず、ステップS101の判定はNOとなる。このため、図17のタイミングT7でタンク内圧PD2が記憶され(ステップS110)、さらに封鎖弁40のAStep開弁方向動作が行なわれる(ステップS111)。そして、上記したタイミングT2~タイミングT6の場合と同様に、封鎖弁40のAStep開弁状態が時間Txだけ維持された後、封鎖弁40のBStep閉弁方向動作が行なわれ、BStep閉弁状態が時間Yだけ維持される。この状態で、図17のタイミングT10bに示すように、現在のタンク内圧Pが図17のタイミングT7におけるタンク内圧PD2からΔP1以上低下すると、図16のフローチャートにおけるステップS202の判定がYESとなる。このため、ステップS203で学習完了処理が行なわれる。即ち、図17に示すように、学習フラグがオンして、封鎖弁40の開弁が開始されたと判定される。そして、一つ前の工程(図17のタイミングT6)で更新されたストローク量S1に(A-B-1=1)Stepが加算された値が開弁開始位置の学習値Sxとして記憶される。次に、ステップS204で、封鎖弁40を閉弁方向に8Step戻して、封鎖弁40を閉鎖する。
 図16のフローチャートの処理で学習完了処理等(図17のタイミングT10b参照)が行なわれているときに、図15のフローチャートでは、ステップS101、S102、S103の処理が繰り返し行なわれている。そして、図17のタイミングT12において、時間Yが経過すると(図15 ステップS103 YES)、ステップS104で現在のタンク内圧PとタイミングT7で記憶されたタンク内圧PD2とが比較される。上記したように、現在のタンク内圧Pがタンク内圧PD2からΔP1以上低下しているため、学習完了処理が行なわれ、封鎖弁40が閉鎖される(ステップS105、S106)。このため、図15のフローチャートの処理では、図16のフローチャートの処理に対して、図17のタイミングT10bからタイミングT12までの時間分だけ学習制御の完了時間が遅れるようになる。なお、図16のフローチャートの処理で学習完了処理等が行なわれているときに、図15のフローチャートの処理を終了させるようにすることも可能である。
<変更例>
 次に、図18、図19に基づいて実施形態2に係る蒸発燃料装置20の変形例について説明する。変形例に係る蒸発燃料装置20では、封鎖弁40のストローク制御のフローチャート(図15)を改良したものであり、図16に示す内圧検知制御のフローチャートは変更がない。
 先ず、封鎖弁40が閉弁限界位置S0Step(ストローク量S0)まで動作すると(図19のタイミングT1 参照)、図16、図18のフローチャートに示す処理が実行される。即ち、図18のステップS301の判定がYESになり、図19のタイミングT1におけるタンク内圧PD1が記憶される(ステップS303)。さらに、封鎖弁40のAStep開弁方向動作が行なわれ(ステップS304)、今回の処理が終了する。また、図16のフローチャートに示す処理では、ステップS201、ステップS202の処理が所定周期Tvで繰り返し実行される。
 図18のフローチャートに示す次の処理(図19 タイミングT2 参照)では、封鎖弁40が閉弁限界位置S0Stepでなく、また、BStep閉弁方向動作が行なわれていないため、ステップS301の判定がNOとなる。さらに、ステップS302の判定もNOとなるため、ステップS305で、封鎖弁40のBStep閉弁方向動作が行なわれ、今回の処理が終了する。図19のタイミングT3では、BStep閉弁方向動作が行なわれてから時間Yが経過しておらず(ステップS301 NO)、さらにBStep閉弁方向動作は終了しているため(ステップS302 YES)、処理を終了する。そして、図8のステップS301、S302の処理が繰り返し行なわれて、BStep閉弁方向動作が終了してから時間Yが経過すると(図19 タイミングT6)、ステップS301の判定がYESとなる。このため、図19のタイミングT6におけるタンク内圧PD2が記憶される(ステップS303)。さらに、封鎖弁40のAStep開弁方向動作が行なわれる(ステップS304)。
 このように、図18のフローチャートに示す処理によると、AStep開弁方向状態を時間Txだけ維持し、BStep閉弁方向状態を時間Yだけ維持する動作を繰り返し実行できるようになる。このため、図15のフローチャートに示す処理にように、封鎖弁40の開閉実施履歴のキャンセル処理が不要になり、封鎖弁40のBStep閉弁方向動作が終了してから時間Yの経過後、直ぐにAStep開弁方向動作を行なうことができる。このため、学習制御に要する時間を短くできる。そして、図19のタイミングT9bに示すように、現在のタンク内圧Pが図19のタイミングT6におけるタンク内圧PD2からΔP1以上低下すると(図16のフローチャートのステップS202 YES)、ステップS203で学習完了処理が行なわれる。ここで、本実施形態では、封鎖弁40のストローク制御の制御周期を時間Tx(=300ms)にし、内圧検知制御の制御周期Tv(=100ms)にする例を示した。しかし、時間Tx>時間Tvであれば、具体的な値は適宜変更可能である。                                                                                      

Claims (7)

  1.  燃料タンク内で発生した蒸発燃料を吸着する吸着材を備えるキャニスタと、前記キャニスタと前記燃料タンクとをつなぐベーパ通路に設けられている封鎖弁とを備える蒸発燃料処理装置であって、
     前記封鎖弁は、弁座に対する弁可動部の軸方向距離であるストローク量が零から所定範囲内にあるときが閉弁状態で前記燃料タンクを密閉状態に保持可能であり、前記ストローク量を開弁方向に変化させて前記燃料タンクの内圧が所定値以上低下したときの前記ストローク量に基づいて開弁開始位置を学習できるように構成されており、
     前記封鎖弁の開弁開始位置の学習では、第1所定ストロークだけ開弁方向に変化させて第1の時間維持し、次に第1所定ストロークよりも小さい第2所定ストロークだけ閉弁方向に変化させて第1の時間より長い第2の時間維持する工程を繰り返すことで前記ストローク量を開弁方向に変化させ、前記燃料タンクの内圧が所定値以上低下したときの工程、あるいはその前工程の第2の時間維持状態における前記ストローク量に基づいて開弁開始位置が決められる蒸発燃料処理装置。
  2.  請求項1に記載された蒸発燃料処理装置であって、
     前記封鎖弁の開弁開始位置の学習では、前記燃料タンクの内圧が所定値以上低下したことが検出されたタイミングで、前記弁可動部のストローク量を閉弁位置まで変化させる蒸発燃料処理装置。
  3.  請求項1又は請求項2のいずれかに記載された蒸発燃料処理装置であって、
     前記燃料タンクの内圧の検出周期は、前記第1の時間よりも短い時間である蒸発燃料処理装置。
  4.  請求項1から請求項3のいずれかに記載された蒸発燃料処理装置であって、
     前記封鎖弁の開弁開始位置の学習では、前記封鎖弁のストローク量を変化させる制御と、前記燃料タンクの内圧が所定値以上低下したことを検出する制御とが独立して行なわれる蒸発燃料処理装置。
  5.  請求項4に記載された蒸発燃料処理装置であって、
     前記燃料タンクの内圧が所定値以上低下したことを検出する制御の制御周期が前記封鎖弁のストローク量を変化させる制御の制御周期よりも小さな値に設定されている蒸発燃料処理装置。
  6.  請求項1から請求項5のいずれかに記載された蒸発燃料処理装置であって、
     前記燃料タンクの内圧が所定値よりも小さい値だけ低下したことを検出したときに仮学習フラグをオンさせ、前記燃料タンクの内圧が継続して低下している状態で、後工程において前記燃料タンクの内圧が所定値以上低下したときは、前記仮学習フラグがオンしたときの工程、あるいはその前工程の第2の時間維持状態における前記ストローク量に基づいて開弁開始位置が決められる蒸発燃料処理装置。
  7.  請求項1から請求項6のいずれかに記載された蒸発燃料処理装置であって、
     前記燃料タンクの内圧が所定値以上低下したときの工程、あるいは前記仮学習フラグがオンしたときの工程における第2の時間維持状態の前記ストローク量に基づいて開弁開始位置を決める際には、前記ストローク量から第1所定ストロークと第2所定ストロークとの差に基づく値を減算し、
     前記燃料タンクの内圧が所定値以上低下したときの直前の工程、あるいは前記仮学習フラグがオンしたときの直前の工程における第2の時間維持状態の前記ストローク量に基づいて開弁開始位置を決める際には、前記ストローク量に第1所定ストロークと第2所定ストロークとの差に基づく値を加算する蒸発燃料処理装置。
                                                                                    
PCT/JP2014/076542 2013-11-25 2014-10-03 蒸発燃料処理装置 WO2015076027A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/038,898 US9816450B2 (en) 2013-11-25 2014-10-03 Fuel vapor processing apparatus
KR1020167010335A KR101852278B1 (ko) 2013-11-25 2014-10-03 증발 연료 처리 장치
DE112014005351.1T DE112014005351B4 (de) 2013-11-25 2014-10-03 Kraftstoffdampf-Bearbeitungsvorrichtung
CN201480063105.XA CN105765207B (zh) 2013-11-25 2014-10-03 蒸发燃料处理装置
JP2015549030A JP6203863B2 (ja) 2013-11-25 2014-10-03 蒸発燃料処理装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013242850 2013-11-25
JP2013-242850 2013-11-25

Publications (1)

Publication Number Publication Date
WO2015076027A1 true WO2015076027A1 (ja) 2015-05-28

Family

ID=53179297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/076542 WO2015076027A1 (ja) 2013-11-25 2014-10-03 蒸発燃料処理装置

Country Status (6)

Country Link
US (1) US9816450B2 (ja)
JP (1) JP6203863B2 (ja)
KR (1) KR101852278B1 (ja)
CN (1) CN105765207B (ja)
DE (1) DE112014005351B4 (ja)
WO (1) WO2015076027A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180110062A (ko) * 2016-02-10 2018-10-08 도요타지도샤가부시키가이샤 증발 연료 처리 장치 및 증발 연료 처리 장치에 있어서의 봉쇄 밸브의 밸브 개방 개시 위치 학습 방법
JP2018193888A (ja) * 2017-05-15 2018-12-06 トヨタ自動車株式会社 蒸発燃料処理装置
US10233851B2 (en) 2016-12-21 2019-03-19 Toyota Jidosha Kabushiki Kaisha Evaporated fuel processing apparatus
US10556503B2 (en) 2017-03-14 2020-02-11 Toyota Jidosha Kabushiki Kaisha Evaporated fuel treatment device
US10851722B2 (en) 2016-12-21 2020-12-01 Aisan Kogyo Kabushiki Kaisha Evaporated fuel processing apparatus

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016035654A1 (ja) * 2014-09-01 2016-03-10 愛三工業株式会社 蒸発燃料処理装置
US10400713B2 (en) 2014-09-24 2019-09-03 Eaton Corporation Electrically controlled fuel system module
US11698045B2 (en) 2014-09-24 2023-07-11 Eaton Intelligent Power Limited Electrically controlled fuel system module
KR20170058963A (ko) 2014-09-24 2017-05-29 이턴 코포레이션 전기 제어식 연료 시스템 모듈
JP2017133411A (ja) * 2016-01-27 2017-08-03 トヨタ自動車株式会社 蒸発燃料処理装置
DE112017002449T5 (de) 2016-06-09 2019-03-28 Eaton Intelligent Power Limited Elektronisches Kraftstofftanksystem mit nockenbetätigter Entlüftung mit Isolierung der Kanisterleitung
US10040564B2 (en) * 2016-11-02 2018-08-07 General Electric Company Managing an input device
JP6619324B2 (ja) * 2016-12-21 2019-12-11 トヨタ自動車株式会社 蒸発燃料処理装置
KR20220017239A (ko) * 2020-08-04 2022-02-11 현대자동차주식회사 자동차용 연료탱크 밀폐밸브

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10266908A (ja) * 1997-03-26 1998-10-06 Fuji Heavy Ind Ltd エンジンの蒸発燃料パージ制御装置
JP2005248911A (ja) * 2004-03-08 2005-09-15 Toyota Motor Corp 流路遮断装置およびそれを用いた燃料貯留装置
JP2011169276A (ja) * 2010-02-19 2011-09-01 Honda Motor Co Ltd 蒸発燃料処理装置
JP2011256778A (ja) * 2010-06-09 2011-12-22 Honda Motor Co Ltd 蒸発燃料処理装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3131743B2 (ja) 1991-07-31 2001-02-05 マツダ株式会社 蒸発燃料処理装置
US5275144A (en) * 1991-08-12 1994-01-04 General Motors Corporation Evaporative emission system diagnostic
JP3401778B2 (ja) * 1996-08-12 2003-04-28 トヨタ自動車株式会社 エバポパージシステムの故障診断装置
JP2000008974A (ja) * 1998-06-25 2000-01-11 Toyota Motor Corp 蒸発燃料処理装置の故障診断装置
JP2003013808A (ja) 2001-06-29 2003-01-15 Toyota Motor Corp 密閉燃料タンクシステムの給油制御装置
JP2005155323A (ja) 2003-09-08 2005-06-16 Toyota Motor Corp 内燃機関の蒸発燃料処理装置
US8627802B2 (en) 2010-02-19 2014-01-14 Honda Motor Co., Ltd. Evaporated fuel treatment apparatus and method of detecting failure in control valve
JP5400669B2 (ja) * 2010-03-11 2014-01-29 本田技研工業株式会社 蒸発燃料処理装置
US8640676B2 (en) 2010-03-11 2014-02-04 Honda Motor Co., Ltd. Evaporated fuel treatment apparatus
US8019525B2 (en) * 2010-05-28 2011-09-13 Ford Global Technologies, Llc Method and system for fuel vapor control
JP5583552B2 (ja) 2010-11-05 2014-09-03 愛三工業株式会社 電磁弁及びその電磁弁を備えた蒸発燃料処理装置
US20130061934A1 (en) * 2011-09-12 2013-03-14 Ti Group Automotive Systems, L.L.C. In-tank evaporative emission control system
JP5660008B2 (ja) 2011-11-10 2015-01-28 トヨタ自動車株式会社 リリーフ弁開弁判定装置及びパージ系リーク診断装置
DE102014017159B4 (de) * 2013-11-25 2017-01-26 Aisan Kogyo Kabushiki Kaisha Kraftstoffdampfverarbeitungsvorrichtung
JP6144182B2 (ja) * 2013-11-25 2017-06-07 愛三工業株式会社 蒸発燃料処理装置
JP6133201B2 (ja) * 2013-12-06 2017-05-24 愛三工業株式会社 蒸発燃料処理装置
JP6073212B2 (ja) * 2013-12-06 2017-02-01 愛三工業株式会社 蒸発燃料処理装置
JP6177675B2 (ja) * 2013-12-06 2017-08-09 愛三工業株式会社 蒸発燃料処理装置
JP6087266B2 (ja) * 2013-12-06 2017-03-01 愛三工業株式会社 蒸発燃料処理装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10266908A (ja) * 1997-03-26 1998-10-06 Fuji Heavy Ind Ltd エンジンの蒸発燃料パージ制御装置
JP2005248911A (ja) * 2004-03-08 2005-09-15 Toyota Motor Corp 流路遮断装置およびそれを用いた燃料貯留装置
JP2011169276A (ja) * 2010-02-19 2011-09-01 Honda Motor Co Ltd 蒸発燃料処理装置
JP2011256778A (ja) * 2010-06-09 2011-12-22 Honda Motor Co Ltd 蒸発燃料処理装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180110062A (ko) * 2016-02-10 2018-10-08 도요타지도샤가부시키가이샤 증발 연료 처리 장치 및 증발 연료 처리 장치에 있어서의 봉쇄 밸브의 밸브 개방 개시 위치 학습 방법
KR102021715B1 (ko) 2016-02-10 2019-09-16 도요타지도샤가부시키가이샤 증발 연료 처리 장치 및 증발 연료 처리 장치에 있어서의 봉쇄 밸브의 밸브 개방 개시 위치 학습 방법
US10233851B2 (en) 2016-12-21 2019-03-19 Toyota Jidosha Kabushiki Kaisha Evaporated fuel processing apparatus
US10851722B2 (en) 2016-12-21 2020-12-01 Aisan Kogyo Kabushiki Kaisha Evaporated fuel processing apparatus
US10556503B2 (en) 2017-03-14 2020-02-11 Toyota Jidosha Kabushiki Kaisha Evaporated fuel treatment device
JP2018193888A (ja) * 2017-05-15 2018-12-06 トヨタ自動車株式会社 蒸発燃料処理装置

Also Published As

Publication number Publication date
DE112014005351B4 (de) 2018-03-08
KR101852278B1 (ko) 2018-04-25
JP6203863B2 (ja) 2017-09-27
JPWO2015076027A1 (ja) 2017-03-16
US9816450B2 (en) 2017-11-14
DE112014005351T5 (de) 2016-08-04
US20160356227A1 (en) 2016-12-08
CN105765207B (zh) 2018-04-03
CN105765207A (zh) 2016-07-13
KR20160058906A (ko) 2016-05-25

Similar Documents

Publication Publication Date Title
JP6203863B2 (ja) 蒸発燃料処理装置
JP6087266B2 (ja) 蒸発燃料処理装置
JP6177675B2 (ja) 蒸発燃料処理装置
JP6073212B2 (ja) 蒸発燃料処理装置
US10012180B2 (en) Evaporated fuel processing device
JP6133201B2 (ja) 蒸発燃料処理装置
JP6076885B2 (ja) 蒸発燃料処理装置
US9421490B2 (en) Fuel vapor processing apparatus
JP2019183677A (ja) 蒸発燃料処理装置
WO2016035657A1 (ja) 蒸発燃料処理装置
JP6129722B2 (ja) 蒸発燃料処理装置
JP6100148B2 (ja) 蒸発燃料処理装置
WO2018116734A1 (ja) 蒸発燃料処理装置
US10233851B2 (en) Evaporated fuel processing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14863164

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015549030

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167010335

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15038898

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112014005351

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14863164

Country of ref document: EP

Kind code of ref document: A1