WO2015072291A1 - 二軸配向ポリプロピレンフィルムおよびその製造方法 - Google Patents
二軸配向ポリプロピレンフィルムおよびその製造方法 Download PDFInfo
- Publication number
- WO2015072291A1 WO2015072291A1 PCT/JP2014/077888 JP2014077888W WO2015072291A1 WO 2015072291 A1 WO2015072291 A1 WO 2015072291A1 JP 2014077888 W JP2014077888 W JP 2014077888W WO 2015072291 A1 WO2015072291 A1 WO 2015072291A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- film
- biaxially oriented
- oriented polypropylene
- polypropylene film
- value
- Prior art date
Links
- 229920006378 biaxially oriented polypropylene Polymers 0.000 title claims abstract description 51
- 239000011127 biaxially oriented polypropylene Substances 0.000 title claims abstract description 51
- 238000004519 manufacturing process Methods 0.000 title claims description 18
- 239000003990 capacitor Substances 0.000 claims abstract description 60
- 238000000034 method Methods 0.000 claims description 59
- -1 polypropylene Polymers 0.000 claims description 56
- 239000004743 Polypropylene Substances 0.000 claims description 52
- 229920001155 polypropylene Polymers 0.000 claims description 52
- 230000008569 process Effects 0.000 claims description 28
- 229910052751 metal Inorganic materials 0.000 claims description 19
- 239000002184 metal Substances 0.000 claims description 19
- 238000011282 treatment Methods 0.000 claims description 17
- 238000010438 heat treatment Methods 0.000 claims description 16
- 238000000137 annealing Methods 0.000 claims description 15
- 239000011347 resin Substances 0.000 claims description 15
- 229920005989 resin Polymers 0.000 claims description 15
- 239000012298 atmosphere Substances 0.000 claims description 5
- 239000005026 oriented polypropylene Substances 0.000 claims description 2
- 239000010408 film Substances 0.000 description 184
- 238000007740 vapor deposition Methods 0.000 description 16
- 239000000155 melt Substances 0.000 description 14
- 230000015572 biosynthetic process Effects 0.000 description 10
- 238000004804 winding Methods 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 8
- 230000001965 increasing effect Effects 0.000 description 8
- 239000003963 antioxidant agent Substances 0.000 description 7
- 239000000203 mixture Substances 0.000 description 6
- 238000010248 power generation Methods 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 230000003078 antioxidant effect Effects 0.000 description 5
- 239000003484 crystal nucleating agent Substances 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 239000000523 sample Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 230000037303 wrinkles Effects 0.000 description 5
- 230000000903 blocking effect Effects 0.000 description 4
- 238000005266 casting Methods 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 3
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 3
- 230000008602 contraction Effects 0.000 description 3
- 238000007334 copolymerization reaction Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000004806 packaging method and process Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000004381 surface treatment Methods 0.000 description 3
- 239000008096 xylene Substances 0.000 description 3
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 2
- AFFLGGQVNFXPEV-UHFFFAOYSA-N 1-decene Chemical compound CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 2
- CRSBERNSMYQZNG-UHFFFAOYSA-N 1-dodecene Chemical compound CCCCCCCCCCC=C CRSBERNSMYQZNG-UHFFFAOYSA-N 0.000 description 2
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 2
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- OWYWGLHRNBIFJP-UHFFFAOYSA-N Ipazine Chemical compound CCN(CC)C1=NC(Cl)=NC(NC(C)C)=N1 OWYWGLHRNBIFJP-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 150000001336 alkenes Chemical class 0.000 description 2
- 239000011162 core material Substances 0.000 description 2
- 238000003851 corona treatment Methods 0.000 description 2
- LPIQUOYDBNQMRZ-UHFFFAOYSA-N cyclopentene Chemical compound C1CC=CC1 LPIQUOYDBNQMRZ-UHFFFAOYSA-N 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- SDRZFSPCVYEJTP-UHFFFAOYSA-N 1-ethenylcyclohexene Chemical compound C=CC1=CCCCC1 SDRZFSPCVYEJTP-UHFFFAOYSA-N 0.000 description 1
- KIHBGTRZFAVZRV-UHFFFAOYSA-N 2-hydroxyoctadecanoic acid Chemical compound CCCCCCCCCCCCCCCCC(O)C(O)=O KIHBGTRZFAVZRV-UHFFFAOYSA-N 0.000 description 1
- MBSRTKPGZKQXQR-UHFFFAOYSA-N 2-n,6-n-dicyclohexylnaphthalene-2,6-dicarboxamide Chemical compound C=1C=C2C=C(C(=O)NC3CCCCC3)C=CC2=CC=1C(=O)NC1CCCCC1 MBSRTKPGZKQXQR-UHFFFAOYSA-N 0.000 description 1
- YHQXBTXEYZIYOV-UHFFFAOYSA-N 3-methylbut-1-ene Chemical compound CC(C)C=C YHQXBTXEYZIYOV-UHFFFAOYSA-N 0.000 description 1
- LDTAOIUHUHHCMU-UHFFFAOYSA-N 3-methylpent-1-ene Chemical compound CCC(C)C=C LDTAOIUHUHHCMU-UHFFFAOYSA-N 0.000 description 1
- VSAWBBYYMBQKIK-UHFFFAOYSA-N 4-[[3,5-bis[(3,5-ditert-butyl-4-hydroxyphenyl)methyl]-2,4,6-trimethylphenyl]methyl]-2,6-ditert-butylphenol Chemical compound CC1=C(CC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)C(C)=C(CC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)C(C)=C1CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 VSAWBBYYMBQKIK-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- NRCMAYZCPIVABH-UHFFFAOYSA-N Quinacridone Chemical class N1C2=CC=CC=C2C(=O)C2=C1C=C1C(=O)C3=CC=CC=C3NC1=C2 NRCMAYZCPIVABH-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 208000028659 discharge Diseases 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229940069096 dodecene Drugs 0.000 description 1
- BXKDSDJJOVIHMX-UHFFFAOYSA-N edrophonium chloride Chemical compound [Cl-].CC[N+](C)(C)C1=CC=CC(O)=C1 BXKDSDJJOVIHMX-UHFFFAOYSA-N 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 239000012760 heat stabilizer Substances 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- PJJZFXPJNUVBMR-UHFFFAOYSA-L magnesium benzoate Chemical compound [Mg+2].[O-]C(=O)C1=CC=CC=C1.[O-]C(=O)C1=CC=CC=C1 PJJZFXPJNUVBMR-UHFFFAOYSA-L 0.000 description 1
- 239000011104 metalized film Substances 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000001225 nuclear magnetic resonance method Methods 0.000 description 1
- 239000002667 nucleating agent Substances 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- RGSFGYAAUTVSQA-UHFFFAOYSA-N pentamethylene Natural products C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 150000002989 phenols Chemical group 0.000 description 1
- 229930015698 phenylpropene Natural products 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 229920006380 polyphenylene oxide Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- HJWLCRVIBGQPNF-UHFFFAOYSA-N prop-2-enylbenzene Chemical compound C=CCC1=CC=CC=C1 HJWLCRVIBGQPNF-UHFFFAOYSA-N 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 229920001384 propylene homopolymer Polymers 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000012748 slip agent Substances 0.000 description 1
- WXMKPNITSTVMEF-UHFFFAOYSA-M sodium benzoate Chemical compound [Na+].[O-]C(=O)C1=CC=CC=C1 WXMKPNITSTVMEF-UHFFFAOYSA-M 0.000 description 1
- 239000004299 sodium benzoate Substances 0.000 description 1
- 235000010234 sodium benzoate Nutrition 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 235000010356 sorbitol Nutrition 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 1
- 239000004034 viscosity adjusting agent Substances 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C55/00—Shaping by stretching, e.g. drawing through a die; Apparatus therefor
- B29C55/02—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
- B29C55/10—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
- B29C55/12—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
- B29C55/14—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/001—Combinations of extrusion moulding with other shaping operations
- B29C48/0018—Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
- B32B15/085—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyolefins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/32—Layered products comprising a layer of synthetic resin comprising polyolefins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/10—Homopolymers or copolymers of propene
- C08L23/12—Polypropene
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/018—Dielectrics
- H01G4/06—Solid dielectrics
- H01G4/14—Organic dielectrics
- H01G4/18—Organic dielectrics of synthetic material, e.g. derivatives of cellulose
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2023/00—Use of polyalkenes or derivatives thereof as moulding material
- B29K2023/10—Polymers of propylene
- B29K2023/12—PP, i.e. polypropylene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/20—Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/514—Oriented
- B32B2307/518—Oriented bi-axially
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/546—Flexural strength; Flexion stiffness
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/732—Dimensional properties
- B32B2307/734—Dimensional stability
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/732—Dimensional properties
- B32B2307/734—Dimensional stability
- B32B2307/736—Shrinkable
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2323/00—Polyalkenes
- B32B2323/10—Polypropylene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
- B32B2457/16—Capacitors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2553/00—Packaging equipment or accessories not otherwise provided for
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2323/10—Homopolymers or copolymers of propene
- C08J2323/12—Polypropene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2423/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2423/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2423/10—Homopolymers or copolymers of propene
- C08J2423/12—Polypropene
Definitions
- the present invention relates to a biaxially oriented polypropylene film obtained by stretching a polypropylene resin sheet in the longitudinal direction (MD) and the biaxial direction in the width direction (TD), which is suitable for packaging and industrial use. More specifically, the present invention relates to a biaxially oriented polypropylene film suitable for an excellent capacitor application maintaining a very high voltage resistance as a dielectric for a capacitor and a method for producing the same.
- the biaxially oriented polypropylene film is excellent in transparency, mechanical properties, electrical properties, etc., it is used in various applications such as packaging applications, tape applications, cable wrapping and electrical applications including capacitors.
- capacitors are particularly preferably used for high voltage capacitors because of their excellent withstand voltage characteristics and low loss characteristics, not limited to DC applications and AC applications.
- Such a biaxially oriented polypropylene film requires high rigidity in the film surface from the viewpoint of voltage resistance, productivity, and processability.
- high rigidity in the film width direction is required. is important.
- the capacity reduction and dimensional stability of capacitors at high temperatures are not necessarily sufficient (see, for example, Patent Documents 1 to 5).
- the inventors of the present invention have arrived at the present invention as a result of intensive studies in order to solve the above problems.
- the present invention provides a biaxially oriented polypropylene film that can exhibit excellent voltage resistance and reliability at high temperatures even in high-voltage capacitor applications, and has both dimensional stability and high rigidity suitable for such capacitor applications. To do.
- the above-mentioned problems are that the stress (TD-F5 value) at 5% elongation in the film width direction exceeds 100 MPa, and the thermal shrinkage rate in the heat treatment at 120 ° C. for 15 minutes in the film longitudinal direction is 2% or less. Achievable with an axially oriented polypropylene film.
- the present invention can provide a biaxially oriented polypropylene film that achieves both excellent dimensional stability and high rigidity, it can be used in various applications such as packaging applications, tape applications, cable wrapping and electrical applications including capacitors. And is particularly suitable for capacitor applications, preferably for automobiles, solar power generation and wind power generation.
- the stress (TD-F5 value) at 5% elongation in the film width direction exceeds 100 MPa.
- the TD-F5 value is 100 MPa or less, the withstand voltage of the film is lowered, or the winding property is poor, such as wrinkles in the process of forming the metal film by vapor deposition or winding of the capacitor element, Due to wrinkles, problems such as air mixing into the capacitor and lowering the withstand voltage of the capacitor are likely to occur.
- the TD-F5 value is preferably 105 MPa or more, more preferably 110 MPa or more, and further preferably 115 MPa or more.
- the upper limit is not particularly limited, but is 150 MPa from the viewpoint of film formation stability.
- the inventors have intensively studied that there is a high correlation between the voltage resistance of the film and the TD-F5 value, and it is important to control the TD-F5 value to be high for improving the voltage resistance. Is found.
- the biaxially oriented polypropylene film of the present invention has a heat shrinkage rate in the heat treatment at 120 ° C. for 15 minutes in the longitudinal direction of the film from the viewpoint of exerting further heat resistance as a capacitor while the process conditions are increased in the production of the capacitor. It is important that it is 2% or less.
- the heat shrinkage rate exceeds 2%, in the capacitor manufacturing process in which the capacitor element is heat-treated, the overlapping films in the capacitor are tightened together, and the layers between the films are reduced, and the gas generated when self-recovery occurs. It is easy to reduce the withstand voltage without the scattered metal coming out of the system.
- the winding state of the element may be loosened due to the heat of the capacitor manufacturing process or use process, and is preferably -0.5 to 1.8%. Preferably, it is -0.2 to 1.7%, more preferably 0.0 to 1.6%.
- the biaxially oriented polypropylene film of the present invention has a stress (TD-F5 value) at an elongation of 5% in the film width direction and a heat shrinkage rate in a heat treatment at 120 ° C. for 15 minutes in the film longitudinal direction within the range described in the present application.
- TD-F5 value stress
- the tension in the longitudinal stretching step and the transverse stretching step at the time of production or by annealing the product roll. Details will be described later. .
- the biaxially oriented polypropylene film of the present invention preferably has a stress (MD-F5 value) of 58 MPa or more when the elongation is 5% in the film longitudinal direction. If the MD-F5 value is less than 58 MPa, there may be a problem such as a winding failure due to wrinkling in the winding process of the capacitor element or a problem such as deterioration of the voltage resistance of the capacitor due to air mixing due to wrinkling. is there. From the above viewpoint, the MD-F5 value is preferably 60 MPa or more, more preferably 62 Pa or more, and further preferably 64 MPa or more. The upper limit is not particularly limited, but is 100 MPa from the viewpoint of film formation stability.
- the biaxially oriented polypropylene film of the present invention has a resistance to a sum of (MD-F5 value) and (TD-F5 value) of 160 MPa or more, which is a stress at an elongation of 5% in the film longitudinal direction and the width direction. It is preferable from a viewpoint of a voltage improvement, More preferably, it is 170 MPa or more, More preferably, it is 180 MPa or more.
- the upper limit is not particularly limited, but is 250 MPa from the viewpoint of film formation stability.
- the heat shrinkage rate in the film width direction in the heat treatment at 120 ° C. for 15 minutes is preferably 1% or less, more preferably 0.8% or less, and still more preferably 0.6%. It is as follows. When the thermal shrinkage rate exceeds 1%, the film itself shrinks due to the heat of the capacitor manufacturing process and the use process, and the withstand voltage may decrease due to poor contact with the element end metallicon.
- the lower limit is not particularly limited, but it is preferably -1% because if the film expands too much, the winding state of the element may be loosened by the heat of the capacitor manufacturing process or use process.
- Linear polypropylene is usually used for packaging materials and capacitors, but preferably has a cold xylene soluble part (hereinafter CXS) of 4% by mass or less and a mesopentad fraction of 0.95 or more.
- CXS cold xylene soluble part
- a certain polypropylene is preferable. If these conditions are not satisfied, film formation stability may be inferior, or voids may be formed in the film when producing a biaxially oriented film, resulting in a significant decrease in dimensional stability and voltage resistance. There is.
- the cold xylene-soluble part refers to a polypropylene component dissolved in xylene when the film is completely dissolved in xylene and then deposited at room temperature, and has low stereoregularity. It is considered that it corresponds to a component that is difficult to crystallize due to low molecular weight. If many such components are contained in the resin, problems such as inferior thermal dimensional stability of the film and reduction in dielectric breakdown voltage at high temperatures may occur. Therefore, CXS is preferably 4% by mass or less, more preferably 3% by mass or less, and particularly preferably 2% by mass or less. In order to obtain such a linear polypropylene having CXS, methods such as a method for enhancing the catalytic activity in obtaining a resin and a method for washing the obtained resin with a solvent or propylene monomer itself can be used.
- the mesopentad fraction of the linear polypropylene is preferably 0.95 or more, and more preferably 0.97 or more.
- the mesopentad fraction is an index indicating the stereoregularity of the crystal phase of polypropylene measured by a nuclear magnetic resonance method (NMR method).
- NMR method nuclear magnetic resonance method
- the upper limit of the mesopentad fraction is not particularly specified.
- a method of washing resin powder obtained with a solvent such as n-heptane there are a method of appropriately selecting a catalyst and / or a promoter, and a composition. Preferably employed.
- the melt flow index (MFR) is more preferably 1 to 10 g / 10 minutes (230 ° C., 21.18 N load), particularly preferably 2 to 5 g / 10 minutes (230 ° C., 21.18 N).
- the range of (load) is preferable from the viewpoint of film forming property.
- a method of controlling the average molecular weight or the molecular weight distribution is employed.
- Such linear polypropylene is mainly composed of a propylene homopolymer, but may contain other unsaturated hydrocarbon copolymerization components or the like as long as the object of the present invention is not impaired.
- No polymer may be blended.
- the copolymerization amount or blend amount is preferably less than 1 mol% in copolymerization amount and less than 10
- the linear polypropylene has various additives such as a crystal nucleating agent, an antioxidant, a heat stabilizer, a slip agent, an antistatic agent, an antiblocking agent, and a filler as long as the object of the present invention is not impaired. , A viscosity modifier, a coloring inhibitor, and the like can also be contained.
- the selection of the type and amount of antioxidant is important from the viewpoint of long-term heat resistance. That is, the antioxidant is a phenolic compound having steric hindrance, and at least one of them is preferably a high molecular weight type having a molecular weight of 500 or more.
- BHT 2,6-di-t-butyl-p-cresol
- 1,3,5-trimethyl-2,4,6- Tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene
- Irganox registered trademark 1330: molecular weight 775.2 manufactured by Ciba Geigy
- tetrakis [methylene-3 (3,5-di-t- (Butyl-4-hydroxyphenyl) propionate] methane
- Irganox (registered trademark) 1010 molecular weight 1177.7 manufactured by Ciba Geigy
- the total content of these antioxidants is preferably in the range of 0.03 to 1.0 mass% with respect to the total amount of polypropylene. If the amount of the antioxidant is too small, the long-term heat resistance may be poor. If the amount of the antioxidant is too large, the capacitor element may be adversely affected by blocking at a high temperature due to bleeding out of these antioxidants.
- a more preferable content is 0.1 to 0.9% by mass, particularly preferably 0.2 to 0.8% by mass.
- the biaxially oriented polypropylene film of the present invention may contain branched polypropylene (H) from the viewpoint of improving voltage resistance, and when added, it is preferably 0.05 to 10% by mass, more preferably 0. It is preferable to contain 5 to 8% by mass, more preferably 1 to 5% by mass.
- H branched polypropylene
- the film of the present invention is preferably composed of a mixture of linear polypropylene and the branched polypropylene (H).
- the branched polypropylene (H) has a relationship that the melt tension (MS) and the melt flow index (MFR) measured at 230 ° C. are log (MS)> ⁇ 0.56 log (MFR) +0.74.
- a branched polypropylene (H) satisfying the formula is particularly preferable.
- a branched polypropylene (H) satisfying the relational expression that the melt tension (MS) and the melt flow index (MFR) measured at 230 ° C. are log (MS)> ⁇ 0.56 log (MFR) +0.74 is obtained.
- a method of blending a polypropylene containing a large amount of high molecular weight components a method of blending an oligomer or polymer having a branched structure, and a long-chain branched structure in a polypropylene molecule as described in JP-A-62-1121704.
- a method of introducing a thiol or a method described in Japanese Patent No. 2869606 is preferably used.
- melt tension measured at 230 ° C. is measured according to the melt flow index (MFR) measurement shown in JIS-K7210 (1999). Specifically, using a melt tension tester manufactured by Toyo Seiki, polypropylene is heated to 230 ° C., molten polypropylene is discharged at an extrusion speed of 15 mm / min to form a strand, and this strand is taken up at a speed of 6.4 m / min. The tension at the time is measured and set as the melt tension (unit cN).
- the melt flow index (MFR) measured at 230 ° C. is a value measured in accordance with JIS-K7210 (1999) at a load of 21.18 N (unit: g / 10 minutes).
- the branched polypropylene (H) preferably satisfies the above formula, but is not particularly limited.
- the melt flow index (MFR) is in the range of 1 to 20 g / 10 min. And those having a range of 1 to 10 g / 10 min are more preferred.
- the melt tension is preferably in the range of 1 to 30 cN, more preferably in the range of 2 to 20 cN.
- the branched polypropylene (H) referred to here is a polypropylene having 5 or less internal 3-substituted olefins per 10,000 carbon atoms. The presence of the internal trisubstituted olefin can be confirmed by the proton ratio in the 1 H-NMR spectrum.
- a crystal nucleating agent can be added as long as it does not contradict the purpose of the present invention.
- the branched polypropylene (H) has an ⁇ -crystal or ⁇ -crystal nucleating agent effect itself, but other ⁇ -crystal nucleating agents (dibenzylidene sorbitols, sodium benzoate, etc.) ), ⁇ crystal nucleating agents (amide compounds such as potassium 1,2-hydroxystearate, magnesium benzoate, N, N′-dicyclohexyl-2,6-naphthalenedicarboxamide, quinacridone compounds, etc.), etc. .
- the content is usually 0.5% by mass or less, preferably based on the total amount of polypropylene. It is preferably 0.1% by mass or less, more preferably 0.05% by mass or less.
- the biaxially oriented polypropylene film of the present invention is suitable for a thin film capacitor because it has a high rigidity and dimensional stability, and is excellent in voltage resistance and handling properties. If it is in the range of 5 ⁇ m or more and less than 3 ⁇ m, the performance is effectively expressed.
- a more preferable thickness is 0.8 ⁇ m or more and less than 2.8 ⁇ m, and a further preferable thickness is 1 ⁇ m or more and less than 2.6 ⁇ m.
- the biaxially oriented polypropylene film of the present invention is preferably used as a dielectric film for a capacitor, but is not limited to a capacitor type.
- a capacitor type either a foil wound capacitor or a metal vapor deposition film capacitor may be used, and it is also preferably used for an oil immersion type capacitor impregnated with insulating oil or a dry type capacitor not using insulating oil at all. It is done.
- it may be a winding type or a laminated type.
- it is particularly preferably used as a metal vapor deposition film capacitor because of the characteristics of the film of the present invention.
- a polypropylene film since a polypropylene film usually has a low surface energy and it is difficult to stably deposit metal, it is preferable to perform a surface treatment in advance for the purpose of improving metal adhesion.
- Specific examples of the surface treatment include corona discharge treatment, plasma treatment, glow treatment, and flame treatment.
- the surface wet tension of polypropylene film is about 30 mN / m.
- the biaxially oriented polypropylene film of the present invention is obtained by biaxially stretching using a raw material that can give the above-described properties.
- the biaxial stretching method can be obtained by any of the inflation simultaneous biaxial stretching method, the stenter simultaneous biaxial stretching method, and the stenter sequential biaxial stretching method.
- a method for producing the biaxially oriented polypropylene film of the present invention will be described.
- a polypropylene resin is melt-extruded on a support to obtain a polypropylene resin sheet.
- the polypropylene resin sheet is sequentially biaxially stretched in the order of longitudinal stretching and lateral stretching, and then subjected to heat treatment and relaxation treatment to produce a biaxially oriented polypropylene film.
- the film transport speed at the entrance of the transverse stretching process is set to 99.9% to 97.0% with respect to the film transport speed at the exit of the longitudinal stretching process.
- the end of the film is gripped with a clip and stretched laterally, and in the next step, heat treatment and relaxation treatment are performed with the clip held tightly in the width direction.
- heat treatment and relaxation treatment are performed with the clip held tightly in the width direction.
- high melt tension polypropylene (branched polypropylene (H)) is blended with linear polypropylene, melt extruded, passed through a filtration filter, and then extruded from a slit die at a temperature of 230 to 260 ° C. Solidification is performed on a cooling drum controlled at a temperature of 0 ° C. to obtain an unstretched sheet.
- an adhesion method to the casting drum any method of an electrostatic application method, an adhesion method using the surface tension of water, an air knife method, a press roll method, an underwater casting method, etc. may be used.
- the air knife method is preferable because it is good and the surface roughness can be controlled.
- the air temperature of the air knife is 0 to 100 ° C., preferably 20 to 70 ° C.
- the blowing air speed is preferably 130 to 150 m / s
- the air knife has a double tube structure in order to improve the uniformity in the width direction. It is preferable. Further, it is preferable to appropriately adjust the position of the air knife so that air flows downstream of the film formation so as not to cause vibration of the film.
- this unstretched film is biaxially stretched to be biaxially oriented.
- the unstretched film is preheated through a roll maintained at 120 to 150 ° C., then the sheet is maintained at a temperature of 130 ° C. to 150 ° C., stretched 2 to 8 times in the longitudinal direction, and then cooled to room temperature. .
- the stretching method and the stretching ratio are not particularly limited and are appropriately selected depending on the polymer characteristics to be used.
- the stretched film is continuously guided to a stenter and subjected to transverse stretching.
- the film of the biaxially oriented polypropylene film of the present invention is such that the film conveyance speed at the entrance of the transverse stretching process is 99.9% to 97.0% with respect to the film conveyance speed at the process outlet of the longitudinal stretching. It is preferable from the standpoint that the stress (TD-F5 value) at 5% elongation in the width direction exceeds 100 MPa, and the heat shrinkage rate in the heat treatment at 120 ° C. for 15 minutes in the film longitudinal direction is 2% or less.
- Distortion in the longitudinal direction can be released by setting the film conveyance speed at the entrance of the transverse stretching process within the above range relative to the film conveyance speed at the process outlet of the longitudinal stretching, and the crystal orientation is ordered in the width direction in the transverse stretching process.
- the thermal contraction rate in the longitudinal direction of the biaxially oriented polypropylene film can be relaxed, and the rigidity in the width direction can be increased.
- the film conveyance speed at the process entrance of the transverse stretching is lower than 97.0% with respect to the film conveyance speed at the process exit of the longitudinal stretching, the film sags in the above section, or the rigidity in the longitudinal direction of the biaxially oriented polypropylene film May decrease, resulting in a decrease in in-plane rigidity, resulting in a film with poor voltage resistance.
- the film conveyance speed at the entrance of the transverse stretching process exceeds 99.9% with respect to the film conveyance speed at the longitudinal stretching process exit, the film breaks in the above section or the rigidity in the width direction is not good. It may become a film with sufficient voltage resistance and inferiority.
- the film conveyance speed at the entrance of the transverse stretching process is 99.7% to 97.5%, more preferably 99.5% with respect to the speed at the exit of the longitudinal stretching process. It is in the range of ⁇ 98.0%.
- the edge of the film is gripped with a clip, and the transverse stretch is stretched 7 to 13 times in the width direction at a temperature of 140 to 165 ° C., and then 2 to 20% in the width direction with the clip held in tension.
- the film is heat-fixed at a temperature of 140 to 165 ° C. and then guided to the outside of the tenter through a cooling process at 100 to 150 ° C., the clip at the end of the film is released, and the film edge is slit in the winder process, Wind the film product roll.
- a corona discharge treatment in air, nitrogen, carbon dioxide or a mixed gas thereof.
- the stress (TD-F5 value) when the elongation in the film width direction of the biaxially oriented polypropylene film of the present invention is 5% exceeds 100 MPa, and the thermal shrinkage rate in the heat treatment at 120 ° C. for 15 minutes in the film longitudinal direction is Annealing treatment is preferable from the viewpoint of achieving 2% or less.
- a polypropylene film is annealed at 20 to 50 ° C.
- the temperature exceeds 50 ° C. and 100 ° C. from the viewpoint of increasing the rigidity and dimensional stability of the biaxially oriented polypropylene film. It is preferable to carry out in the following temperature range.
- This annealing treatment is preferably performed after the aforementioned relaxation treatment in the width direction.
- the annealing treatment may be performed in a sheet-like state for a single-wafer film obtained by sampling the film to a desired size, or wound around a core. You may perform in a roll state for a product roll.
- the annealing temperature is preferably 60 to 90 ° C, more preferably 70 to 85 ° C.
- the treatment is preferably performed in the above atmosphere for 3 to 100 hours, more preferably 6 to 75 hours, and further preferably 8 to 50 hours. If the treatment time is less than 3 hours, the voltage resistance may be inferior. On the other hand, if the treatment exceeds 100 hours, the voltage resistance is inferior due to a decrease in rigidity due to excessive relaxation. And wrinkles and blocking between films may occur.
- the annealing treatment is preferably performed before providing a metal film laminated film by providing a vapor deposition film on the film surface. This is because the generation of wrinkles can be suppressed when the vapor deposition film is provided, and the withstand voltage can be effectively increased.
- the method of providing a metal film on the surface of the above-mentioned biaxially oriented polypropylene film to form a metal film laminated film is not particularly limited.
- aluminum is deposited on at least one side of the polypropylene film to form the inside of the film capacitor.
- a method of providing a metal film such as an aluminum vapor deposition film to be an electrode is preferably used.
- other metal components such as nickel, copper, gold, silver, chromium, and zinc can be deposited simultaneously or sequentially with aluminum.
- a protective layer can be provided on the deposited film with oil or the like.
- the metal film laminated film can be annealed at a specific temperature or heat-treated.
- a coating of polyphenylene oxide or the like can be applied to at least one surface of the metal film laminated film.
- the metal film laminated film thus obtained can be laminated or wound by various methods to obtain a film capacitor.
- An example of a preferred method for producing a wound film capacitor is as follows.
- Aluminum is evaporated on one side of the polypropylene film under reduced pressure. In that case, it vapor-deposits in the stripe form which has the margin part which runs in a film longitudinal direction.
- a tape-shaped take-up reel having a margin on one side is prepared by inserting a blade into the center of each vapor deposition section on the surface and the center of each margin section. Two tape-shaped take-up reels with margins on the left or right are wound on each other so that the vapor deposition part protrudes from the margin part in the width direction. Get.
- the vapor deposition is performed in a stripe shape having a margin portion that runs in the longitudinal direction of one surface, and the other surface is striped so that the longitudinal margin portion is located at the center of the vapor deposition portion on the back side.
- Vapor deposition Next, a tape-like take-up reel having a margin on one side (for example, a margin on the right side of the front surface and a margin on the left side of the back surface) is prepared on both sides of the front and back margins with a blade. Two each of the obtained reel and undeposited laminated film are overlapped and wound so that the metallized film protrudes from the laminated film in the width direction, and a wound body is obtained.
- the core material can be removed from the wound body produced as described above and pressed, and the metallicon is sprayed on both end faces to form external electrodes, and lead wires are welded to the metallicon to obtain a wound film capacitor.
- Film capacitors are used in a wide variety of applications such as railway vehicles, automobiles (hybrid cars, electric cars), solar power generation / wind power generation, and general home appliances. The film capacitors of the present invention are also suitable for these applications. Can be used.
- the characteristic value measuring method and the effect evaluating method in the present invention are as follows.
- Film thickness A total of 10 arbitrary positions were measured with a contact-type film thickness meter Lightmatic VL-50A (10.5 mm ⁇ carbide spherical surface probe, measuring load 0.06 N) manufactured by Mitutoyo Corporation, and the average The value was taken as the thickness of the biaxially oriented polypropylene film.
- the load applied to the film when the sample elongation was 5% was read, and the value obtained by dividing by the cross-sectional area of the sample before the test (film thickness x width (10 mm)) was calculated as the stress at the elongation of 5%.
- the test was performed 5 times, and the average value was evaluated.
- the thickness of the film used for MD-F5 value and TD-F5 value calculation was measured as follows. Cut out into a rectangular shape with a length of 150 mm and a width of 10 mm, contact type film thickness meter Mitutoyo's Lightmatic VL-50A (10.5 mm ⁇ super hard spherical surface probe, measurement) at an arbitrary 5 positions within the initial chuck distance of 50 mm. The load was measured at 0.06 N), and the average value was used.
- Thermal contraction rate ⁇ (l 0 ⁇ l 1 ) / l 0 ⁇ ⁇ 100 (%) (4) Film breakdown voltage (V / ⁇ m) JIS C2330 (2010) 6.2. The average value was determined according to the b method (flat electrode method), divided by the film thickness ( ⁇ m) of the measured sample, and expressed in V / ⁇ m.
- the capacitor element was wound up with an element winding machine (KAW-4NHB) manufactured by Minato Manufacturing Co., Ltd., and metallized, followed by heat treatment at 105 ° C. for 10 hours under reduced pressure, The mounting capacitor element was finished.
- the capacitance of the capacitor element at this time was 5 ⁇ F.
- a voltage of 300 VDC is applied to the capacitor element at a high temperature of 105 ° C., and the applied voltage is gradually increased in steps of 50 VDC / 1 minute after 10 minutes at that voltage.
- a so-called step-up test was repeated.
- the capacitance change at this time was measured and plotted on a graph, and the voltage at which the capacitance reached 70% of the initial value was divided by the film thickness (described above) to obtain a withstand voltage evaluation, using 450 V / ⁇ m or more. Make it possible.
- the capacitor element was disassembled, the state of destruction was examined, and the safety was evaluated as follows.
- AA can be used without problems, but A can be used depending on conditions. B and C cause practical problems.
- Example 1 As a linear polypropylene, a polypropylene polymer manufactured by Prime Polymer Co., Ltd., which has a mesopentad fraction of 0.985 and a melt mass flow rate (MFR) of 2.6 g / 10 min, is branched chain polypropylene resin manufactured by Basell (high melting Tension polypropylene Profax PF-814) was blended at 1.0% by mass and supplied to an extruder at a temperature of 250 ° C., and melt extruded into a sheet form from a T-type slit die at a resin temperature of 250 ° C. The molten sheet was held at 90 ° C.
- Basell high melting Tension polypropylene Profax PF-814
- the sheet was gradually preheated to 140 ° C. by a plurality of roll groups, and subsequently passed between rolls maintained at a temperature of 145 ° C. and provided with a difference in peripheral speed, and stretched 4.8 times in the longitudinal direction.
- the film transport speed at the entrance of the transverse stretching process is set to 99.0% of the film transport speed at the outlet of the longitudinal stretching process, and the film is subsequently guided to a tenter and stretched 10 times in the width direction at a temperature of 158 ° C.
- Heat treatment is performed at 155 ° C.
- Examples 2-5 and Comparative Examples 1, 3-4 A biaxially stretched polypropylene film was obtained in the same manner as in Example 1 except that the annealing conditions for the product roll were changed to those shown in Table 1.
- the characteristics and capacitor characteristics of the biaxially oriented polypropylene film films of Examples 2 to 5 were as shown in Table 1, and were excellent in withstand voltage and reliability.
- the characteristics and capacitor characteristics of the biaxially oriented polypropylene film films of Comparative Examples 1 and 3 were low in withstand voltage and somewhat inferior in reliability as shown in Table 2, and were at a level causing problems in actual use. .
- condenser characteristic of the biaxially oriented polypropylene film film of the comparative example 4 are as showing in Table 2, and since the annealing temperature was too high, the films were blocking and it was in the state which cannot be evaluated.
- Example 6 A biaxially stretched polypropylene film was obtained in the same manner as in Example 1 except that the product roll was not annealed.
- the characteristics and capacitor characteristics of the biaxially oriented polypropylene film of this example are as shown in Table 1, and are excellent in withstand voltage, and the reliability is at a level that can be used depending on conditions.
- Example 7 A biaxially stretched polypropylene film was obtained in the same manner as in Example 1 except that in the longitudinal stretching step during film formation, the film was stretched 5.5 times in the longitudinal direction and the annealing conditions of the product roll were changed to those shown in Table 1.
- the characteristics and capacitor characteristics of the biaxially oriented polypropylene film of this example are as shown in Table 1, and were excellent in withstand voltage and reliability.
- Example 2 Except that the film transport speed at the entrance of the transverse stretching process is 100.2% of the film transport speed at the exit of the longitudinal stretching process during film formation, and the product roll is not annealed in the same manner as in Example 1. A biaxially stretched polypropylene film was obtained.
- the characteristics and capacitor characteristics of the biaxially oriented polypropylene film of this comparative example are as shown in Table 2. The withstand voltage is low, and the reliability is at a level where the element shape is broken and causes problems in actual use. .
- Example 5 A biaxially stretched polypropylene film was obtained in the same manner as in Example 1 except that the relaxation rate after transverse stretching during film formation was 0%.
- the characteristics and capacitor characteristics of the biaxially oriented polypropylene film of this comparative example are as shown in Table 2. The withstand voltage is low, and the reliability is at a level where the element shape is broken and causes problems in actual use. .
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Power Engineering (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
- Laminated Bodies (AREA)
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
Abstract
Description
任意の場所の合計10箇所を接触式の膜厚計ミツトヨ社製ライトマチックVL-50A(10.5mmφ超硬球面測定子、測定荷重0.06N)にて測定し、その平均値を二軸配向ポリプロピレンフィルムの厚みとした。
二軸配向ポリプロピレンフィルムを、その長手方向および幅方向のそれぞれについて、試験方向長さ150mm×幅10mmの矩形に切り出しサンプルとした。引張試験機(オリエンテック製テンシロンAMF/RTA-100)を用いて、初期チャック間距離50mmとし、引張速度を300mm/分としてフィルムの引張試験を行った。サンプル伸び5%時にフィルムにかかっていた荷重を読み取り、試験前の試料の断面積(フィルム厚み×幅(10mm))で除した値を伸度5%時の応力として算出し、測定は各サンプル5回ずつ行い、その平均値で評価を行った。
フィルムの長手方向および幅方向のそれぞれについて、幅10mm、長さ200mm(測定方向)の試料を5本切り出し、両端から25mmの位置に印を付けて試長150mm(l0)とする。次に、試験片を紙に挟み込み荷重ゼロの状態で120℃に保温されたオーブン内で、15分間加熱後に取り出して、室温で冷却後、寸法(l1)を測定して下記式にて求め、5本の平均値を熱収縮率とした。
(4)フィルム絶縁破壊電圧(V/μm)
JIS C2330(2010)6.2.b法(平板電極法)に準じて、平均値を求め、測定したサンプルのフイルム厚み(μm)で除し、V/μmで表記した。
後述する各実施例および比較例で得られたフィルムに、ULVAC製真空蒸着機でアルミニウムを膜抵抗が8Ω/□で長手方向に垂直な方向にマージン部を設けた所謂T型マージンパターンを有する蒸着パターンを施し、幅50mmの蒸着リールを得た。
直鎖状ポリプロピレンとしてメソペンタッド分率が0.985で、メルトマスフローレイト(MFR)が2.6g/10分であるプライムポリマー(株)製ポリプロピレン樹脂に、Basell社製分岐鎖状ポリプロピレン樹脂(高溶融張力ポリプロピレンProfax PF-814)を1.0質量%ブレンドし温度250℃の押出機に供給し、樹脂温度250℃でT型スリットダイよりシート状に溶融押出し、該溶融シートを90℃に保持されたキャスティングドラム上で、エアーナイフにより密着させ冷却固化し未延伸シートを得た。次いで、該シートを複数のロール群にて徐々に140℃に予熱し、引き続き145℃の温度に保ち周速差を設けたロール間に通し、長手方向に4.8倍に延伸した。縦延伸工程の出口のフィルム搬送速度に対し、横延伸工程の入口のフィルム搬送速度を99.0%とし、引き続き該フィルムをテンターに導き、158℃の温度で幅方向に10倍延伸し、次いで幅方向に6%の弛緩を与えながら155℃で熱処理を行ない、その後100℃で冷却し、次いでフィルム表面(キャスティングドラム接触面側)に25W・min/m2の処理強度で大気中でコロナ放電処理を行い、フィルム厚み2.4μmのフィルムをフィルムロールとして巻き取った。さらにこのフィルムロールを650mm幅に裁断スリットして、長さ5,000m巻き製品ロールを採取した。その後80℃の雰囲気で保ったアニール室で10時間処理して得られた二軸配向ポリプロピレンフィルムの特性およびコンデンサ特性は表1に示す通りで、耐電圧、信頼性とも優れるものであった。
製品ロールのアニール処理条件を表1に記した条件とした以外は実施例1と同様にして二軸延伸ポリプロピレンフィルムを得た。実施例2~5の二軸配向ポリプロピレンフィルムフィルムの特性およびコンデンサ特性は表1に示す通りで、耐電圧、信頼性とも優れるものであった。一方、比較例1および3の二軸配向ポリプロピレンフィルムフィルムの特性およびコンデンサ特性は表2に示す通り、耐電圧が低く、信頼性がやや劣るもので実使用で問題が生じるレベルのものであった。また、比較例4の二軸配向ポリプロピレンフィルムフィルムの特性およびコンデンサ特性は表2に示す通りで、アニール温度が高温過ぎる故にフィルム同士がブロッキングしており評価できない状態であった。
製品ロールのアニール処理を行わないこと以外は実施例1と同様にして二軸延伸ポリプロピレンフィルムを得た。本実施例の二軸配向ポリプロピレンフィルムの特性およびコンデンサ特性は表1に示す通りで、耐電圧に優れ、信頼性は条件次第で使用できるレベルのものであった。
(実施例7)
製膜時の縦延伸工程において長手方向に5.5倍延伸、製品ロールのアニール処理条件を表1に記した条件とした以外は実施例1と同様にして二軸延伸ポリプロピレンフィルムを得た。本実施例の二軸配向ポリプロピレンフィルムの特性およびコンデンサ特性は表1に示す通りで、耐電圧、信頼性とも優れるものであった。
製膜時の縦延伸工程の出口のフィルム搬送速度に対し、横延伸工程の入口のフィルム搬送速度を100.2%とし、製品ロールのアニール処理を行わないこと以外は実施例1と同様にして二軸延伸ポリプロピレンフィルムを得た。本比較例の二軸配向ポリプロピレンフィルムの特性およびコンデンサ特性は表2に示す通りで、耐電圧が低く、信頼性は素子形状に破壊が見られ実使用上に問題が生じるレベルのものであった。
製膜時の横延伸後の弛緩処理率を0%とした以外は実施例1と同様にして二軸延伸ポリプロピレンフィルムを得た。本比較例の二軸配向ポリプロピレンフィルムの特性およびコンデンサ特性は表2に示す通りで、耐電圧が低く、信頼性は素子形状に破壊が見られ実使用上に問題が生じるレベルのものであった。
Claims (9)
- フィルム幅方向における伸度5%時の応力(TD-F5値)が100MPaを超え、かつ、フィルム長手方向の120℃15分加熱処理における熱収縮率が2%以下である二軸配向ポリプロピレンフィルム。
- フィルム長手方向における伸度5%時の応力(MD-F5値)が58MPa以上である、請求項1に記載の二軸配向ポリプロピレンフィルム。
- フィルム幅方向における伸度5%時の応力(TD-F5値)とフィルム長手方向における伸度5%時の応力(MD-F5値)との総和が160MPa以上である、請求項1または2に記載の二軸配向ポリプロピレンフィルム。
- 120℃15分加熱処理におけるフィルム幅方向の熱収縮率が1%以下である、請求項1~3のいずれかに記載の二軸配向ポリプロピレンフィルム。
- フィルム厚みが0.5μm以上3μm未満である、請求項1~4のいずれかに記載の二軸配向ポリプロピレンフィルム。
- 請求項1~5のいずれかに記載の二軸配向ポリプロピレンフィルムの少なくとも片面に金属膜が設けられてなる金属膜積層フィルム。
- 請求項6に記載の金属膜積層フィルムを用いてなるフィルムコンデンサ。
- 請求項1~5のいずれかに記載の二軸配向ポリプロピレンフィルムの製造方法であって、ポリプロピレン樹脂を支持体上に溶融押出してポリプロピレン樹脂シートとし、このポリプロピレン樹脂シートを縦延伸、横延伸の順に逐次二軸延伸した後に熱処理および弛緩処理を施して二軸配向ポリプロピレンフィルムを製造する方法において、縦延伸の工程出口でのフィルム搬送速度に対し、横延伸の工程入口でのフィルム搬送速度を99.9%~97.0%とした後にフィルムの端部をクリップで把持し横延伸を行い、次工程ではクリップで幅方向を緊張把持したまま熱処理および弛緩処理を施すことを特徴とする、二軸配向ポリプロピレンフィルムの製造方法。
- 二軸配向ポリプロピレンフィルムをアニール処理して製造する方法であって、該アニール処理が、請求項8記載の弛緩処理の後に、50℃を超え100℃以下の雰囲気下で3~100時間処理されることを特徴とする、請求項8に記載の二軸配向ポリプロピレンフィルムの製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201480059044.XA CN105682892A (zh) | 2013-11-14 | 2014-10-21 | 双轴取向聚丙烯膜及其制造方法 |
EP14862959.5A EP3069850B1 (en) | 2013-11-14 | 2014-10-21 | Biaxially oriented polypropylene film and method for producing same |
KR1020167011436A KR102299286B1 (ko) | 2013-11-14 | 2014-10-21 | 2축 배향 폴리프로필렌 필름 및 그의 제조 방법 |
JP2014557635A JP5776858B1 (ja) | 2013-11-14 | 2014-10-21 | 二軸配向ポリプロピレンフィルムおよびその製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-235620 | 2013-11-14 | ||
JP2013235620 | 2013-11-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015072291A1 true WO2015072291A1 (ja) | 2015-05-21 |
Family
ID=53057233
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/077888 WO2015072291A1 (ja) | 2013-11-14 | 2014-10-21 | 二軸配向ポリプロピレンフィルムおよびその製造方法 |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP3069850B1 (ja) |
JP (1) | JP5776858B1 (ja) |
KR (1) | KR102299286B1 (ja) |
CN (1) | CN105682892A (ja) |
WO (1) | WO2015072291A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2018181271A1 (ja) * | 2017-03-30 | 2020-03-05 | 東レ株式会社 | ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ並びにそれらの製造方法 |
WO2020137789A1 (ja) * | 2018-12-28 | 2020-07-02 | 東洋紡株式会社 | 二軸配向ポリプロピレンフィルム |
JP2020193342A (ja) * | 2016-06-24 | 2020-12-03 | 王子ホールディングス株式会社 | 二軸延伸ポリプロピレンフィルム、金属化フィルム、及び、コンデンサ |
CN112955308A (zh) * | 2018-10-09 | 2021-06-11 | 胜亚诺盟股份有限公司 | 聚丙烯片材的制造方法 |
WO2021193507A1 (ja) * | 2020-03-24 | 2021-09-30 | 東洋紡株式会社 | 二軸配向ポリプロピレンフィルムの製造方法 |
WO2021256350A1 (ja) * | 2020-06-17 | 2021-12-23 | 東洋紡株式会社 | 二軸配向ポリプロピレンフィルム |
WO2021261311A1 (ja) * | 2020-06-25 | 2021-12-30 | 東洋紡株式会社 | 二軸配向ポリプロピレンフィルム |
WO2022210493A1 (ja) * | 2021-03-31 | 2022-10-06 | 東レ株式会社 | ポリプロピレンフィルム、積層体、包装材、及び梱包体 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6658953B1 (ja) * | 2018-08-23 | 2020-03-04 | 東レ株式会社 | ポリプロピレンフィルムおよびこれを用いた金属膜積層フィルム、フィルムコンデンサ |
CN113226705B (zh) * | 2018-12-28 | 2024-04-12 | 东洋纺株式会社 | 双轴取向聚丙烯薄膜 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62121704A (ja) | 1985-01-31 | 1987-06-03 | モンテル ノース アメリカ インコーポレイテッド | 自由端長鎖枝分れを有するポリプロピレンおよびその製造法 |
JPH1167580A (ja) | 1997-08-21 | 1999-03-09 | Oji Paper Co Ltd | 金属化フィルムコンデンサの製造方法 |
JP2869606B2 (ja) | 1992-11-26 | 1999-03-10 | チッソ株式会社 | 高溶融張力ポリプロピレンおよびその製造方法と成形品 |
JPH11273990A (ja) | 1998-03-19 | 1999-10-08 | Oji Paper Co Ltd | 耐熱コンデンサ用ポリプロピレンフィルム |
JP2002234124A (ja) * | 2000-12-06 | 2002-08-20 | Toray Ind Inc | 金属化用二軸配向ポリプロピレンフィルムおよびその金属化フィルムおよびそれを用いた包装体 |
WO2004084242A1 (ja) | 2003-03-19 | 2004-09-30 | Toray Industries, Inc. | 扁平型コンデンサ用ポリプロピレンフィルム及びそれからなる扁平型コンデンサ |
JP2005064067A (ja) | 2003-08-19 | 2005-03-10 | Toray Ind Inc | コンデンサ用二軸配向ポリプロピレンフィルム |
JP2007169595A (ja) | 2005-11-24 | 2007-07-05 | Toray Ind Inc | コンデンサ用ポリプロピレンフイルム |
JP2011122142A (ja) * | 2009-11-10 | 2011-06-23 | Toray Ind Inc | コンデンサ用二軸延伸ポリプロピレンフィルム、金属化フィルムおよびフィルムコンデンサ |
WO2012002123A1 (ja) * | 2010-06-29 | 2012-01-05 | 東レ株式会社 | 二軸配向ポリプロピレンフィルム、金属化フィルムおよびフィルムコンデンサ |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002128913A (ja) | 2000-10-27 | 2002-05-09 | Toray Ind Inc | 二軸配向ポリプロピレンフィルム |
TWI295963B (ja) * | 2001-05-11 | 2008-04-21 | Toray Industries | |
JP2007003975A (ja) | 2005-06-27 | 2007-01-11 | Toray Ind Inc | 光反射板用ポリプロピレンフィルム |
DE602007001873D1 (de) * | 2007-05-08 | 2009-09-17 | Borealis Tech Oy | Folie zur elektrischen Isolierung |
-
2014
- 2014-10-21 WO PCT/JP2014/077888 patent/WO2015072291A1/ja active Application Filing
- 2014-10-21 JP JP2014557635A patent/JP5776858B1/ja active Active
- 2014-10-21 KR KR1020167011436A patent/KR102299286B1/ko active IP Right Grant
- 2014-10-21 CN CN201480059044.XA patent/CN105682892A/zh active Pending
- 2014-10-21 EP EP14862959.5A patent/EP3069850B1/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62121704A (ja) | 1985-01-31 | 1987-06-03 | モンテル ノース アメリカ インコーポレイテッド | 自由端長鎖枝分れを有するポリプロピレンおよびその製造法 |
JP2869606B2 (ja) | 1992-11-26 | 1999-03-10 | チッソ株式会社 | 高溶融張力ポリプロピレンおよびその製造方法と成形品 |
JPH1167580A (ja) | 1997-08-21 | 1999-03-09 | Oji Paper Co Ltd | 金属化フィルムコンデンサの製造方法 |
JPH11273990A (ja) | 1998-03-19 | 1999-10-08 | Oji Paper Co Ltd | 耐熱コンデンサ用ポリプロピレンフィルム |
JP2002234124A (ja) * | 2000-12-06 | 2002-08-20 | Toray Ind Inc | 金属化用二軸配向ポリプロピレンフィルムおよびその金属化フィルムおよびそれを用いた包装体 |
WO2004084242A1 (ja) | 2003-03-19 | 2004-09-30 | Toray Industries, Inc. | 扁平型コンデンサ用ポリプロピレンフィルム及びそれからなる扁平型コンデンサ |
JP2005064067A (ja) | 2003-08-19 | 2005-03-10 | Toray Ind Inc | コンデンサ用二軸配向ポリプロピレンフィルム |
JP2007169595A (ja) | 2005-11-24 | 2007-07-05 | Toray Ind Inc | コンデンサ用ポリプロピレンフイルム |
JP2011122142A (ja) * | 2009-11-10 | 2011-06-23 | Toray Ind Inc | コンデンサ用二軸延伸ポリプロピレンフィルム、金属化フィルムおよびフィルムコンデンサ |
WO2012002123A1 (ja) * | 2010-06-29 | 2012-01-05 | 東レ株式会社 | 二軸配向ポリプロピレンフィルム、金属化フィルムおよびフィルムコンデンサ |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7068665B2 (ja) | 2016-06-24 | 2022-05-17 | 王子ホールディングス株式会社 | 二軸延伸ポリプロピレンフィルム、金属化フィルム、及び、コンデンサ |
JP2020193342A (ja) * | 2016-06-24 | 2020-12-03 | 王子ホールディングス株式会社 | 二軸延伸ポリプロピレンフィルム、金属化フィルム、及び、コンデンサ |
JPWO2018181271A1 (ja) * | 2017-03-30 | 2020-03-05 | 東レ株式会社 | ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ並びにそれらの製造方法 |
JP7088019B2 (ja) | 2017-03-30 | 2022-06-21 | 東レ株式会社 | ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ並びにそれらの製造方法 |
CN112955308A (zh) * | 2018-10-09 | 2021-06-11 | 胜亚诺盟股份有限公司 | 聚丙烯片材的制造方法 |
CN112955308B (zh) * | 2018-10-09 | 2023-03-17 | 胜亚诺盟股份有限公司 | 聚丙烯片材的制造方法 |
WO2020137789A1 (ja) * | 2018-12-28 | 2020-07-02 | 東洋紡株式会社 | 二軸配向ポリプロピレンフィルム |
JPWO2020137789A1 (ja) * | 2018-12-28 | 2021-05-20 | 東洋紡株式会社 | 二軸配向ポリプロピレンフィルム |
WO2021193507A1 (ja) * | 2020-03-24 | 2021-09-30 | 東洋紡株式会社 | 二軸配向ポリプロピレンフィルムの製造方法 |
JP7563386B2 (ja) | 2020-03-24 | 2024-10-08 | 東洋紡株式会社 | 二軸配向ポリプロピレンフィルムの製造方法 |
JPWO2021256350A1 (ja) * | 2020-06-17 | 2021-12-23 | ||
JP2022120153A (ja) * | 2020-06-17 | 2022-08-17 | 東洋紡株式会社 | 二軸配向ポリプロピレンフィルム |
JP7124980B2 (ja) | 2020-06-17 | 2022-08-24 | 東洋紡株式会社 | 二軸配向ポリプロピレンフィルム |
WO2021256350A1 (ja) * | 2020-06-17 | 2021-12-23 | 東洋紡株式会社 | 二軸配向ポリプロピレンフィルム |
JP7276567B2 (ja) | 2020-06-17 | 2023-05-18 | 東洋紡株式会社 | 二軸配向ポリプロピレンフィルム |
JPWO2021261311A1 (ja) * | 2020-06-25 | 2021-12-30 | ||
WO2021261311A1 (ja) * | 2020-06-25 | 2021-12-30 | 東洋紡株式会社 | 二軸配向ポリプロピレンフィルム |
JP7164053B2 (ja) | 2020-06-25 | 2022-11-01 | 東洋紡株式会社 | 二軸配向ポリプロピレンフィルム |
WO2022210493A1 (ja) * | 2021-03-31 | 2022-10-06 | 東レ株式会社 | ポリプロピレンフィルム、積層体、包装材、及び梱包体 |
JP7188651B1 (ja) * | 2021-03-31 | 2022-12-13 | 東レ株式会社 | ポリプロピレンフィルム、積層体、包装材、及び梱包体 |
Also Published As
Publication number | Publication date |
---|---|
KR102299286B1 (ko) | 2021-09-08 |
EP3069850A4 (en) | 2017-07-05 |
KR20160086327A (ko) | 2016-07-19 |
EP3069850B1 (en) | 2018-08-29 |
JPWO2015072291A1 (ja) | 2017-03-16 |
JP5776858B1 (ja) | 2015-09-09 |
EP3069850A1 (en) | 2016-09-21 |
CN105682892A (zh) | 2016-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5776858B1 (ja) | 二軸配向ポリプロピレンフィルムおよびその製造方法 | |
JP5920538B2 (ja) | 二軸配向ポリプロピレンフィルム | |
JP5854180B1 (ja) | 二軸配向ポリプロピレンフィルム | |
JP7088019B2 (ja) | ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ並びにそれらの製造方法 | |
JP6572657B2 (ja) | ポリプロピレンフィルム | |
JP6070864B2 (ja) | ポリプロピレンフィルムおよびフィルムコンデンサ | |
JP6658953B1 (ja) | ポリプロピレンフィルムおよびこれを用いた金属膜積層フィルム、フィルムコンデンサ | |
JP6032386B1 (ja) | コンデンサ用二軸配向ポリプロピレンフィルム、金属積層フィルムおよびフィルムコンデンサ | |
JP6988244B2 (ja) | ポリプロピレンフィルムロール | |
JP6682937B2 (ja) | コンデンサ用二軸配向ポリプロピレンフィルム、金属膜積層フィルム、およびフィルムコンデンサ | |
WO2021166994A1 (ja) | ポリプロピレンフィルム、それを用いた金属膜積層フィルムおよびフィルムコンデンサ | |
WO2020171163A1 (ja) | ポリプロピレンフィルムおよびこれを用いた金属膜積層フィルム、フィルムコンデンサ | |
JP6885484B2 (ja) | ポリプロピレンフィルムおよびこれを用いた金属膜積層フィルム、フィルムコンデンサ | |
JP7247919B2 (ja) | ポリプロピレンフィルムおよびこれを用いた金属膜積層フィルム、フィルムコンデンサ | |
JP6988243B2 (ja) | ポリプロピレンフィルムロール | |
JP6992919B2 (ja) | ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ | |
JP2020132883A (ja) | ポリプロピレンフィルムおよびこれを用いた金属膜積層フィルム、フィルムコンデンサ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2014557635 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14862959 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20167011436 Country of ref document: KR Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2014862959 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014862959 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |