WO2015068508A1 - 通信システム、基地局装置、および端末装置 - Google Patents
通信システム、基地局装置、および端末装置 Download PDFInfo
- Publication number
- WO2015068508A1 WO2015068508A1 PCT/JP2014/076581 JP2014076581W WO2015068508A1 WO 2015068508 A1 WO2015068508 A1 WO 2015068508A1 JP 2014076581 W JP2014076581 W JP 2014076581W WO 2015068508 A1 WO2015068508 A1 WO 2015068508A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- base station
- channel
- information
- state information
- channel state
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signaling, i.e. of overhead other than pilot signals
- H04L5/0057—Physical resource allocation for CQI
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
- H04B7/0452—Multi-user MIMO systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
- H04B7/0456—Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0619—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
- H04B7/0636—Feedback format
- H04B7/0643—Feedback on request
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0015—Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0023—Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
- H04L1/0026—Transmission of channel quality indication
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0023—Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
- H04L1/0028—Formatting
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0619—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
- H04B7/0621—Feedback content
- H04B7/0626—Channel coefficients, e.g. channel state information [CSI]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
- H04L5/005—Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
- H04L5/0051—Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/08—Access point devices
Definitions
- the present invention relates to a technique for performing multiple input multiple output transmission.
- MIMO multiple-input multiple-output
- MU-MIMO Multi-User MIMO: MU-MIMO
- MU-MIMO multi-user MIMO
- MU-MIMO it is necessary to suppress inter-user-interference (IUI) between transmission signals addressed to each terminal device.
- IUI inter-user-interference
- LTE Long term evolution
- LTE-A LTE-Advanced
- a linear filter is pre-multiplied by a base station apparatus to obtain IUI. Suppressing linear precoding is employed.
- the base station device can add a perturbation vector whose element is a complex number (perturbation term) obtained by multiplying an arbitrary Gaussian integer by a constant real number to the transmission signal. . Therefore, if the base station apparatus appropriately sets the perturbation vector according to the channel state information (Channel State Information: CSI) with a plurality of terminal devices, the base station device compares the required transmission power with the linear precoding. It becomes possible to reduce significantly.
- Vector perturbation (VP) and Tomlinson Harashima precoding (THP) are well known as non-linear precoding (described in Non-Patent Documents 1 and 2, etc.).
- the base station apparatus In order for the base station apparatus to perform MU-MIMO transmission, MIMO channel information with the terminal apparatus is required.
- the terminal device reports channel state information (CSI report) to the base station device
- the base station device can grasp the MIMO channel.
- the terminal device reports the channel state based on periodic channel state information report (Periodic CSI reporting) in which the terminal device periodically reports channel state information and the channel state information report request (CSI trigger) from the base station device.
- Period CSI reporting periodic channel state information report
- the terminal device also notifies the base station device of information associated with the reception quality of the device itself, and the base station device applies the coding rate and modulation scheme (Modulation) applied to the transmission signal addressed to each terminal device.
- Mode coding rate and modulation scheme
- AMC Adaptive Modulation and Coding
- MCS Coding Scheme
- each terminal apparatus performs a CSI report on the assumption that a single user MIMO (SU-MIMO) transmission is performed with a base station apparatus. This is because the terminal device cannot determine whether or not the MU-MIMO transmission is transmitted to the terminal device at the time when the terminal device performs the CSI report to the base station device. This suggests that the terminal device performs a CSI report that does not assume a modulo operation.
- SU-MIMO single user MIMO
- the base station apparatus determines the MCS of the signal addressed to each terminal apparatus based on the CSI report from each terminal apparatus.
- the modulo operation is not considered in the CSI report of each terminal apparatus, when the base station apparatus performs nonlinear precoding, there is a problem that the MCS of the signal addressed to each terminal apparatus cannot be set correctly. .
- the information associated with the reception quality estimated by each terminal apparatus varies greatly depending on the access scheme in which the base station apparatus transmits a data signal to the terminal apparatus and the difference in carrier frequency, Since the terminal device cannot always notify the base station device of information associated with the reception quality in all cases, the base station device cannot correctly set the MCS of the signal addressed to each terminal device.
- the present invention has been made in view of such circumstances, and in a system in which a base station device and a terminal device perform wireless communication based on a plurality of technologies or wireless resources, each terminal device is associated with an appropriate reception quality. It is an object of the present invention to provide a communication system, a base station apparatus, and a terminal apparatus that can notify received information.
- the communication system of the present invention is a communication system used when notifying channel state information (CSI) from a terminal device to a base station device, and the channel state information requested by the base station device to the terminal device.
- CSI channel state information
- Determining a channel information rule that is a rule from among a plurality of candidates, generating control information including information specifying the determined channel information rule, and transmitting the control information to the terminal device A step of receiving the control information, a step of estimating a channel between the base station device, and a channel between the control information and the estimated base station device.
- the channel information norm includes a norm for the terminal device to calculate channel state information considering a perturbation vector and a norm for the terminal device to calculate channel state information without considering a perturbation vector.
- the base station device when the base station device requests channel state information from the terminal device, the base station device can specify whether or not to consider the perturbation vector. Based on the status information, a data signal addressed to each terminal device can be appropriately generated. Further, the terminal device can determine whether or not to consider the perturbation vector when calculating the channel state information based on the control information notified from the base station device. Therefore, the reception quality of the terminal device can be improved.
- the communication system of this invention estimates the channel between the small base station apparatuses which exist in the communication range of the said base station apparatus, The said control information, the said estimated small base station apparatus, Generating channel state information with the small base station device based on a channel between the small base station device, reporting channel state information with the small base station device to the base station device, and A step in which the base station apparatus notifies the small base station apparatus of channel state information reported to the small base station apparatus from the terminal apparatus; and the small base station apparatus is notified from the base station apparatus. Acquiring the channel state information.
- Such a communication system allows the base station device, the small base station device, and the terminal device to exchange channel state information based on different channel information standards. Further, the base station apparatus and the small base station apparatus can appropriately generate a data signal addressed to each terminal apparatus based on the channel state information notified from the terminal apparatus. Therefore, the reception quality of the terminal device can be improved.
- control information includes information specifying whether the terminal device reports the channel state information to the base station device or the small base station device. It is further characterized by including.
- the base station device can specify the notification destination of the channel state information to the terminal device, and the terminal device can notify the generated channel state information to the appropriate notification destination. it can. Therefore, the reception quality of the terminal device can be improved.
- the base station apparatus of the present invention is a base station apparatus that receives channel state information from a plurality of terminal apparatuses, and has a channel information standard that is a standard of channel state information requested to the terminal apparatus.
- a control unit that determines from among a plurality of candidates, a control information generation unit that generates control information including information specifying the determined channel information norm, and wireless transmission that transmits the control information to the terminal device
- the channel information standard includes a standard for the terminal device to calculate channel state information in consideration of a perturbation vector, and a standard for the terminal device to calculate channel state information without considering a perturbation vector. , Including.
- each terminal device Since such a base station device can specify whether or not to consider the perturbation vector when requesting channel state information from the terminal device, each terminal device is based on the channel state information notified from the terminal device. An addressed data signal can be appropriately generated. Therefore, the reception quality of the terminal device can be improved.
- the base station apparatus of this invention notifies the said channel state information reported from some of these terminal apparatuses to the small base station apparatus which exists in the communication range of an own station, It is characterized by the above-mentioned.
- Such a base station apparatus can notify channel state information reported from a part of the terminal apparatus to small base station apparatuses existing within the communication range of the local station, the small base station apparatus is notified.
- the data signal addressed to the terminal device existing within the communication range of the small base station device can be appropriately generated based on the channel state information. Therefore, the reception quality of the terminal device can be improved.
- a part of the plurality of terminal apparatuses reports the channel state information to either the base station apparatus or the small base station apparatus. It further includes information for designating.
- Such a base station apparatus can specify whether to report channel state information to a base station apparatus or a small base station apparatus for a part of terminal apparatuses. Therefore, the terminal device can notify the channel state information to an appropriate notification destination. Therefore, the reception quality of the terminal device can be improved.
- the base station apparatus of the present invention includes a plurality of channel quality indicator tables in which combinations of a plurality of coding rates and modulation schemes are described, and the plurality of channel quality indicator tables correspond to the channel information standards, respectively. It is characterized by being compatible.
- Such a base station apparatus can use a plurality of channel quality indicator tables respectively associated with a plurality of channel information standards, data addressed to the terminal apparatus based on the channel state information notified from the terminal apparatus The signal can be generated appropriately. Therefore, the reception quality of the terminal device can be improved.
- the terminal device of the present invention is a terminal device that notifies channel state information to the base station device, and specifies a channel information standard that is a standard of channel state information transmitted from the base station device.
- a radio reception unit that receives control information including information, a channel estimation unit that estimates a channel between the base station device, a channel information standard specified by the control information, and the estimated base station device.
- a channel state information generating unit that generates channel state information with the base station device based on a channel between, and a radio transmission unit that transmits the channel state information to the base station device, the channel
- the information standard includes a standard for the channel state information generation unit to calculate the channel state information in consideration of the perturbation vector and a standard for calculating the channel state information without considering the perturbation vector. Characterized in that it comprises a and.
- Such a terminal apparatus considers a perturbation vector when calculating channel state information based on control information including information designating a channel information standard that is a standard of channel state information notified from the base station apparatus. Therefore, the channel state information can be notified to the base station apparatus with high accuracy. Therefore, since the data signal addressed to the own device is appropriately generated, the reception quality of the terminal device can be improved.
- the propagation path estimation unit estimates a channel with a small base station device existing within a communication range of the base station device, and the channel state information generation unit , Based on the channel information standard specified by the control information and the channel between the estimated small base station device, to generate channel state information between the small base station device, the wireless transmission unit, Channel state information with the small base station apparatus is transmitted to the base station apparatus.
- Such a terminal device can determine whether or not to consider a perturbation vector when calculating channel state information with a small base station device based on the control information, the channel state can be accurately determined. Information can be generated. Therefore, since the data signal addressed to the own device is appropriately generated, the reception quality of the terminal device can be improved.
- the wireless transmission unit can transmit channel state information with the small base station device to the small base station device, and the control information includes Further includes information specifying whether to report the channel state information to the base station device or the small base station device, and based on the control information, Which channel state information is to be reported to either the base station apparatus or the small base station apparatus.
- Such a terminal device can determine the notification destination of the channel state information with the small base station device based on the control information, it can notify the channel state information to an appropriate notification destination. . Therefore, since the data signal addressed to the own device is appropriately generated, the reception quality of the terminal device can be improved.
- the terminal device of the present invention includes a plurality of channel quality indicator tables in which a plurality of combinations of coding rates and modulation schemes are described, and the plurality of channel quality indicator tables correspond to different channel information standards.
- a channel quality indicator table used by the channel state information generation unit is determined based on the control information.
- Such a terminal device can calculate channel state information with high accuracy based on a plurality of channel quality indicator tables and can notify the base station device. Therefore, since the data signal addressed to the own device is appropriately generated, the reception quality of the terminal device can be improved.
- each terminal device can notify information associated with appropriate reception quality in a system that performs wireless communication based on a plurality of technologies or wireless resources in which the base station device and the terminal device are different. It becomes possible to appropriately set the MCS of the signal addressed to the apparatus, and the transmission quality can be improved. As a result, it can contribute to the significant improvement of the frequency utilization efficiency of the radio communication system.
- the subject of the present invention is a radio communication system including the following base station apparatus and terminal apparatus.
- the base station apparatus transmits a downlink control signal including information requesting the CSI report to the terminal apparatus in an aperiodic manner.
- the terminal device detects a trigger bit for requesting a CSI report from the received downlink control signal, and performs a CSI report to the base station device.
- the present invention is applicable to LTE, LTE-A and its successor standards. Further, there is a possibility that the structure or format format of LTE, LTE-A and its successor standards will be changed or added in the future, but the present invention can be applied even in that case.
- main physical channels (or physical signals) used in LTE and LTE-A will be described mainly related to the present invention.
- a channel means a medium used for signal transmission
- a physical channel means a physical medium used for signal transmission.
- LTE and LTE-A physical channel scheduling is managed using radio frames.
- One radio frame is 10 ms, and one radio frame is composed of 10 subframes. Further, one subframe is composed of two slots (that is, one slot is 0.5 ms).
- scheduling for allocating a physical channel is managed using a resource block (Resource Block: RB) as a minimum unit.
- the resource block includes a constant frequency region configured by a set of a plurality of subcarriers (for example, 12 subcarriers) in the frequency axis direction, and a time region configured by a constant transmission time interval (1 slot) in the time axis direction Defined by an area delimited by.
- the physical broadcast channel (Physical Broadcast Channel: PBCH) is transmitted from the base station apparatus for the purpose of notifying control parameters (broadcast information (system information): System information) that are commonly used by terminal apparatuses in the cell. Broadcast information that is not notified in the physical broadcast channel is a layer 3 message using a physical downlink shared channel (Physical Downlink Shared Channel: PDSCH) in which radio resources are notified in a physical downlink control channel (Physical Downlink Control Channel: PDCCH). Sent as (system information).
- PDSCH Physical Downlink Shared Channel
- PDCCH Physical Downlink Control Channel
- Broadcast information includes a cell global identifier (Cell Global Identifier: CGI) indicating a cell-specific identifier, a tracking area identifier (Tracking Area Identifier: TAI) for managing a paging standby area, random access setting information (transmission timing timer, etc.)
- CGI Cell Global Identifier
- TAI Track Area Identifier
- the common radio resource setting information is notified.
- the layer 3 message is a control-plane message exchanged between the radio resource control (Radio Resource Control: RRC) layer of the terminal device and the base station device, and has the same meaning as RRC signaling or RRC message. Used in.
- Downlink reference signals are classified into multiple types according to their use.
- a cell-specific reference signal (CRS) is a pilot signal transmitted at a predetermined power for each cell, and is downlinked periodically in the frequency domain and the time domain based on a predetermined rule.
- Link reference signal The terminal apparatus receives the cell-specific reference signal and measures reception quality for each cell.
- the terminal apparatus also uses the cell-specific reference signal as a signal to be referenced for demodulation of the physical downlink control channel and the physical downlink shared channel that are transmitted simultaneously with the cell-specific reference signal.
- the sequence used for the cell-specific reference signal is a sequence that can be identified for each cell.
- the downlink reference signal is also used for estimation of the downlink propagation path state.
- cell-specific reference signals corresponding to a maximum of four antennas are used.
- LTE-A uses channel state information reference signals (Channel ⁇ State Information Reference Signals: CSI) corresponding to a maximum of eight antennas. -RS) is available.
- CSI Channel ⁇ State Information Reference Signals: CSI
- terminal-specific reference signals As downlink reference signals set individually for each terminal device, there are terminal-specific reference signals (UE-specific reference signals or Demodulation Reference Signals: DM-RS).
- the terminal-specific reference signal is used for demodulation of the physical downlink control channel or the physical downlink shared channel.
- the physical downlink control channel is transmitted using several OFDM symbols from the beginning of each subframe, and the radio resource allocation information based on the scheduling result of the base station apparatus and the adjustment amount of increase / decrease in uplink transmission power are It is used for the purpose of notifying downlink control information (Downlink Control information (DCI)) in which information for instructing the device is described.
- DCI Downlink Control information
- the terminal device Prior to reception of downlink user data, reception of layer 3 messages (paging, handover commands, etc.) that are downlink control data, or transmission of uplink user data, the terminal device is addressed to its own terminal device. It is necessary to acquire radio resource allocation information called uplink grant for uplink transmission and downlink grant (downlink assignment) for downlink reception by monitoring and receiving the physical downlink control channel .
- the physical downlink control channel is an area of a resource block that is allocated from the base station apparatus to the terminal apparatus in a dedicated manner other than being transmitted with several ODFM symbols from the top of each subframe described above. It can also be configured to be
- the physical uplink control channel (Physical Uplink Control Channel: PUCCH) is an acknowledgment (ACK) and negative acknowledgment (Negative Acknowledgement: NACK or NAK) of data transmitted on the physical downlink shared channel, and a downlink propagation path.
- ACK acknowledgment
- NACK Negative Acknowledgement
- NACK or NAK negative acknowledgment
- SR scheduling request
- the physical downlink shared channel (Physical Downlink Shared Channel: PDSCH) not only transmits downlink data but also reports paging and broadcast information (system information) not notified by the physical broadcast channel to the terminal device as a layer 3 message. Also used. Radio resource allocation information of the physical downlink shared channel is indicated by a physical downlink control channel.
- PDSCH Physical Downlink Shared Channel
- a physical uplink shared channel mainly transmits uplink data and uplink control data, and includes control data such as ACK / NACK for downlink CSI and downlink data. Is also possible. In addition to transmitting uplink data, it is also used to notify the base station apparatus of uplink control information as a layer 3 message. Also, the radio resource allocation information of the physical uplink shared channel is indicated by the physical downlink control channel, similarly to the radio resource allocation information of the physical downlink shared channel. Moreover, when uplink control information (UCI)) is not transmitted via PUSCH, UCI is transmitted via PUCCH.
- UCI Uplink control information
- the uplink reference signal (also referred to as Uplink Reference Signal, uplink pilot signal, or uplink pilot channel) is a demodulation reference signal used by the base station apparatus to demodulate the physical uplink control channel and the physical uplink shared channel ( Demodulation Reference Signal (DM-RS) and Sounding Reference Signal (SRS) mainly used by the base station apparatus to estimate the uplink channel state are included.
- Sounding reference signals include a periodic sounding reference signal (Periodic SRS) and an aperiodic sounding reference signal (Aperiodic SRS).
- a physical random access channel (Physical Random Access Channel: PRACH) is a channel used to notify a preamble sequence and has a guard time.
- the preamble sequence is configured so as to express 6-bit information by preparing 64 types of sequences.
- the physical random access channel is used as an access means from the terminal device to the base station device.
- the terminal apparatus transmits a radio resource allocation request when the physical uplink control channel is not set and transmission timing adjustment information (timing advance (TA)) required to match the uplink transmission timing with the reception timing window of the base station apparatus.
- TA transmission timing adjustment information
- the physical random access channel is used to request the base station apparatus.
- a wireless communication system in an embodiment of the present invention includes a base station device (transmitting device, cell, transmission point, transmitting antenna group, transmitting antenna port group, eNodeB) and terminal device (mobile terminal, receiving point, receiving terminal, receiving device,
- the base station apparatus transmits control information and information data through the downlink in order to perform data communication with the terminal apparatus.
- FIG. 1 is a diagram illustrating an example of an outline of a wireless communication system according to the first embodiment of the present invention.
- a plurality of terminal apparatuses 2 also referred to as radio reception apparatuses
- base station apparatus 1 also referred to as a radio transmission apparatus
- base station apparatus 1 capable of precoding MU-MIMO transmission including nonlinear precoding. It is assumed that four terminal devices 2-1 to 2-4 in FIG. 1 are connected.
- the terminal device 2 receives at least one of the cell-specific reference signal and the channel state information reference signal transmitted from the base station device 1, and connects each transmission antenna of the base station device 1 and each reception antenna of the own terminal device 2.
- Channel state information (Channel ⁇ State Information: CSI) is reported to the base station apparatus 1 by uplink transmission based on the propagation path state (this is also referred to as a CSI report).
- the base station apparatus 1 selects a plurality of terminal apparatuses 2 based on the CSI report from each terminal apparatus 2, and spatially multiplexes the transmission data addressed to the plurality of terminal apparatuses 2 and simultaneously transmits the MU-MIMO. Perform transmission.
- the LTE system has two methods of periodic feedback and aperiodic feedback.
- the two methods are periodic channel state information reporting (Periodic CSI ⁇ reporting) and aperiodic channel state information reporting (Aperiodic CSI reporting).
- Period CSI ⁇ reporting periodic channel state information reporting
- Aperiodic CSI reporting aperiodic channel state information reporting
- the terminal apparatus 2 feeds back CSI according to a predetermined period for the base station apparatus 1.
- the base station apparatus 1 transmits an aperiodic channel state information report request signal (also referred to as a CSI trigger bit or simply a CSI trigger) to the terminal apparatus 2.
- an aperiodic channel state information report request signal also referred to as a CSI trigger bit or simply a CSI trigger
- the terminal apparatus 2 detects a CSI trigger bit included in the downlink control signal
- the terminal apparatus 2 performs a CSI report once to the base station apparatus.
- the terminal device 2 reports an aperiodic channel state information report to the base station device 1 via the PUSCH.
- the CSI mainly includes the following information. That is, information on the MIMO channel between the base station apparatus 1 and the terminal apparatus 2, information on the reception quality of the terminal apparatus 2, and information on the number of requested data streams of the terminal apparatus 2.
- the MIMO channel is represented by a matrix having a complex channel gain as an element between each transmission antenna of the base station apparatus 1 and each reception antenna of the terminal apparatus 2.
- a precoding matrix indicator (PMI) indicating desirable precoding information for the MIMO channel estimated by the terminal device 2 is provided. Is defined.
- an indicator may be described as Indication, the use and meaning are the same.
- information indicating the MIMO channel itself estimated by the terminal device 2 may be used as the information regarding the MIMO channel.
- information indicating the MIMO channel itself a value obtained by directly quantizing the MIMO channel value estimated by the terminal apparatus 2 with a finite number of bits, or some signal processing (for example, averaging, interpolation, eigenvalue decomposition, A value obtained by performing singular value decomposition, inverse discrete Fourier transform, and inverse discrete sine transform) may be quantized with a finite number of bits.
- a rank indicator (Rank indicator: RI) indicating the most desirable number of data streams (number of ranks) for the MIMO channel estimated by the terminal device 2 Is defined.
- a channel quality indicator (Channel quality indicator) indicating the most suitable frequency utilization efficiency to be applied in PDSCH based on the MIMO channel estimated by the terminal device 2 is used. : CQI) is defined.
- FIG. 2 is a diagram showing an example of the CQI table.
- the terminal device 2 receives a data signal (for example, a signal transmitted via PDSCH) based on the estimated MIMO channel, PMI, RI, and reception detection method, and a received signal-to-interference + noise power ratio ( SINR). Then, the MCS that gives the maximum frequency utilization efficiency that satisfies the required reception quality is calculated based on the estimated reception SINR. Then, the value closest to the frequency utilization efficiency is extracted from the CQI table, and the terminal device 2 notifies the base station device 1 of the index.
- a data signal for example, a signal transmitted via PDSCH
- SINR received signal-to-interference + noise power ratio
- the CQI also depends on the reception detection method of the terminal device 2.
- the base station apparatus 1 in this embodiment can perform precoding including nonlinear precoding on the data signal addressed to each terminal apparatus 2.
- an offset vector called a perturbation vector is added to the data signal addressed to each terminal apparatus 2 in advance.
- the perturbation vector has an effect of preventing enhancement of required transmission power generated when the base station apparatus 1 performs MU-MIMO transmission.
- the terminal device 2 When the terminal device 2 receives a data signal subjected to nonlinear precoding, it is necessary to perform reception detection in consideration of a perturbation vector added to the data signal. At this time, a non-linear operation called a modulo operation is generally used.
- the modulo operation is an operation of adding offset vectors at regular intervals to the input signal so that the input signal falls within a constant amplitude.
- the terminal device 2 can remove the perturbation vector added to the data signal by the base station device 1 by modulo calculation.
- adding the perturbation vector to the data signal by the base station apparatus 1 is equivalent to selecting an arbitrary signal candidate point from the signal point space in which the original modulation signal candidate point is repeated on the complex plane. Therefore, the terminal device 2 can detect the desired signal by performing maximum likelihood detection on the received signal.
- performing signal detection in consideration of a perturbation vector is also referred to as performing signal detection in consideration of a modulo operation.
- the modulo calculation reduces the area of the signal determination surface. Therefore, when the reception quality before the modulo calculation is the same, the reception quality after the reception detection is inferior when the modulo calculation is performed. This suggests that the reception quality estimated by the terminal device 2 varies greatly depending on whether or not the modulo operation is applied.
- the base station device 1 does not always perform nonlinear precoding on a data signal. This is because whether the base station apparatus 1 performs nonlinear precoding is determined based on the CSI report from the terminal apparatus 2.
- the base station apparatus 1 includes in the CSI trigger for the terminal apparatus 2 information specifying whether or not the terminal apparatus 2 considers the modulo operation.
- signal processing and norms that the terminal device 2 considers when performing the CSI report such as modulo arithmetic targeted by the present embodiment, will be referred to as channel information norms.
- the base station device 1 includes 1 bit in the CSI trigger for the terminal device 2. If the included 1 bit is “0”, the terminal device 2 calculates the CSI without considering the modulo operation, and if the included 1 bit is “1”, the terminal device 2 considers the modulo operation. Calculate CSI.
- the terminal device 2 can determine whether or not to consider the modulo calculation based on the CSI trigger. Further, since the base station apparatus 1 can request each terminal apparatus 2 for a desired channel information standard, it determines the MCS of the data signal addressed to the terminal apparatus 2 to which nonlinear precoding is applied more efficiently. it can.
- LTE-A is configured to be able to communicate in a plurality of serving cells of different component carriers. Therefore, the base station apparatus 1 can specify which serving cell's CSI is reported by the terminal apparatus 2 based on the value of the CSI request field indicating the CSI trigger included in the DCI. Therefore, also in this embodiment, the base station apparatus 1 modifies the terminal apparatus 2 to the modulo by changing the contents of the CSI request field, adding new information to the CSI request field, or adding a new request field to DCI. The presence or absence of calculation may be specified.
- FIG. 3 is a diagram showing an example of the CSI request field in the present embodiment.
- the terminal device 2 does not perform the CSI report.
- the 2-bit value is “01”, the terminal apparatus 2 performs the CSI report, but calculates the CSI on the assumption that the modulo operation is not performed.
- the 2-bit value is “10”, the terminal apparatus 2 performs the CSI report, and it is assumed that a modulo operation is performed at that time.
- the terminal device 2 can determine whether or not to consider the modulo operation when calculating the CQI according to the value of the CSI request field. Moreover, since the base station apparatus 1 can request each terminal apparatus 2 for a desired CSI report, it can determine whether or not to apply nonlinear precoding with higher efficiency.
- FIG. 4 is a diagram showing another example of the CSI request field in the present embodiment.
- the terminal device 2 can grasp whether or not the modulo calculation is considered in an environment where a plurality of serving cells are used. For example, if the 3-bit value is “000”, the terminal device 2 does not perform the CSI report. If the 3-bit value is “001”, the terminal apparatus 2 reports the CSI related to the serving cell of the downlink component carrier corresponding to the PUSCH, but it is assumed that the modulo calculation is not performed.
- the terminal apparatus 2 reports CSI related to at least one serving cell designated as the first set by other signaling (for example, higher layer signaling such as RRC signaling), but considers the modulo operation. Assuming By using such a CSI request field, even in an environment in which a plurality of serving cells are used for communication, the terminal device 2 considers the modulo calculation when calculating the CQI of each serving cell according to the value of the CSI request field. Can be judged.
- the plurality of serving cells are not limited to those transmitted from the same base station apparatus 1. For example, the case where it is controlled so that at least one serving cell designated as the first set is transmitted from another base station apparatus 1 is also included.
- FIG. 5 is a diagram illustrating an example of a CSI request field and a modulo calculation request field in the present embodiment.
- the CSI request field is the same as in the existing LTE-A system.
- the terminal device 2 further determines the presence / absence of a modulo calculation based on the value of the modulo calculation request field. That is, if “0” is set, the terminal device 2 estimates the CSI without considering the modulo calculation. On the other hand, if “1” is set, the terminal device 2 performs the CSI report in consideration of the modulo calculation.
- the meaning of the description contents of the existing CSI request field may be changed by another signaling.
- the terminal device 2 when the terminal device 2 is set to estimate CSI in consideration of the modulo operation by higher layer signaling, the terminal device 2 performs the modulo operation on the data signal regardless of the description of the CSI request field.
- the CSI report is performed on the premise of the above.
- FIG. 6 is a sequence chart showing an example of communication between the base station device 1 and the terminal device 2 in the present embodiment.
- FIG. 6 only the part related to the CSI report is shown. Further, although only one terminal device 2 is shown, in the actual system, a plurality of terminal devices 2 perform the same communication. It is assumed that the reference signal for each terminal apparatus 2 such as CRS or CSI-RS to estimate CSI is periodically communicated by another control.
- the base station apparatus 1 determines whether to request each terminal apparatus 2 for a CSI report in consideration of a modulo calculation (step S601).
- the determination method is not limited to anything in the present embodiment.
- the terminal device 2 that has used a modulation scheme of a relatively high modulation level in PDSCH transmission up to this point, A method in which the base station apparatus 1 requests a CSI report in consideration of a modulo calculation is conceivable. This is because the characteristic deterioration due to the modulo operation in the terminal device 2 is smaller as the modulation method has a higher modulation level, and it is desirable to perform nonlinear precoding on such a data signal addressed to the terminal device 2. It is.
- the base station apparatus 1 transmits a signal (CSI trigger) requesting a CSI report to each terminal apparatus 2 (step S602).
- the base station apparatus 1 may transmit the DCI that is a downlink control signal for each terminal apparatus 2 including the CSI request field described above.
- the terminal device 2 determines the presence / absence of a modulo calculation based on the CSI trigger notified from the base station device 1, and generates channel state information (step S603). And the terminal device 2 reports channel state information to the base station apparatus 1 (step S604).
- the base station apparatus 1 determines a precoding scheme to be applied to the data signal addressed to each terminal apparatus 2 based on the CSI report from the terminal apparatus 2 (step S605).
- the base station apparatus 1 determines the MCS to be applied to the data signal based on the determined precoding scheme and the CSI report from the terminal apparatus 2, and generates a physical channel signal (step S606).
- a physical channel signal is a signal transmitted via PDSCH.
- the base station apparatus 1 performs precoding on the generated physical channel signal (step S607). Then, the base station apparatus 1 transmits the precoded signal to each terminal apparatus 2 (step S608).
- the terminal device 2 demodulates a desired signal from the received signal (step S609).
- the above is an example of communication between the base station device 1 and the terminal device 2 in the present embodiment.
- the terminal device 2 can determine the presence / absence of a modulo operation when calculating the CSI, and the base station device 1 sends each terminal device 2 the modulo operation at the time of CSI calculation.
- the presence or absence can be requested.
- FIG. 7 is a block diagram illustrating a configuration example of the base station apparatus 1 according to the present embodiment.
- the base station apparatus 1 includes a control unit 701, a control signal generation unit 702, a wireless transmission unit 703, an antenna 704, a wireless reception unit 705, a CSI acquisition unit 706, and a physical channel signal.
- a generation unit 707 and a precoding unit 708 are configured.
- FIG. 8 is a flowchart illustrating an example of signal processing in which the base station apparatus 1 according to the present embodiment requests the terminal apparatus 2 for a CSI report.
- control unit 701 determines whether to request the CSI report in consideration of the modulo calculation from the terminal device 2 (step S801). Whether the control unit 701 requests each terminal apparatus 2 for a CSI report considering the modulo operation according to the CSI report from the terminal apparatus 2 so far, the maximum number of spatially multiplexed terminals multiplexed by MU-MIMO transmission, or the like. Decide whether or not.
- control signal generation unit 702 generates a control signal addressed to each terminal apparatus 2 including a CSI trigger based on the presence / absence of a modulo calculation request determined by the control unit 701 (step S802).
- the control signal generation unit 702 generates, for example, DCI including a CSI request field and a modulo calculation request field as shown in FIGS.
- the wireless transmission unit 703 generates a transmission signal including the control signal generated by the control signal generation unit 702 (step S803).
- the wireless transmission unit 703 performs processing such as channel coding, data modulation, resource allocation, orthogonal frequency division multiplexing modulation, and up-conversion to a radio frequency (RF) band for the control signal.
- RF radio frequency
- generated is transmitted toward each terminal device 2 via the antenna 704 (step S804).
- the above is an example of signal processing in which the base station apparatus 1 according to the present embodiment requests the CSI report from the terminal apparatus 2.
- FIG. 9 is a flowchart illustrating an example of signal processing for the base station apparatus 1 according to the present embodiment to perform precoding transmission to each terminal apparatus 2 based on the CSI report from the terminal apparatus 2. Note that the signal processing performed in FIG. 8 and FIG. 9 is not necessarily performed exclusively in the base station apparatus 1, and part of the signal processing can be performed in parallel.
- the base station apparatus 1 receives a signal including CSI transmitted from each terminal apparatus 2 via the antenna 704 (step S901). Then, the wireless reception unit 705 inputs information on CSI to the CSI acquisition unit 706 and other information to the control unit 701 from the signal input from the antenna 704 (step S902).
- the CSI acquisition unit 706 acquires information such as MIMO channel information (for example, PMI), reception quality information (for example, CQI), and desired rank information (for example, RI) from information related to CSI input from the wireless reception unit 705. These are input to the control unit 701 and the precoding unit 708 (step S903).
- MIMO channel information for example, PMI
- reception quality information for example, CQI
- desired rank information for example, RI
- control unit 701 applies the MCS to be applied to the data signal (for example, the data signal transmitted to each terminal device 2 via the PDSCH) and A precoding scheme is determined (step S904).
- linear precoding (first precoding), nonlinear precoding (second precoding), and precoding (first precoding) in which linear precoding and nonlinear precoding are mixed are used.
- first precoding linear precoding
- second precoding nonlinear precoding
- precoding first precoding in which linear precoding and nonlinear precoding are mixed
- Linear precoding refers to precoding that suppresses IUI using only a linear filter calculated from a MIMO channel, and includes zero forcing (ZF) normative precoding and minimum mean square error (Minimum mean square error: MMSE). ) Normative precoding is an example.
- Nonlinear precoding refers to precoding that adds a perturbation vector to a data signal in advance and then suppresses IUI using a linear filter calculated from a MIMO channel, and examples include VP and THP.
- Precoding in which linear precoding and non-linear precoding are mixed refers to precoding in which perturbation vectors are not added to data signals addressed to some terminal apparatuses 2 in non-linear precoding.
- the control unit 701 determines the precoding scheme based on whether the base station apparatus 1 requests each terminal apparatus 2 to consider the modulo calculation during CSI trigger transmission. Specifically, the base station apparatus 1 does not add a perturbation vector to the data signal addressed to the terminal apparatus 2 (first terminal apparatus) that has requested a CSI report that does not consider the modulo calculation. On the other hand, the base station apparatus 1 adds a perturbation vector to the data signal addressed to the terminal apparatus 2 (second terminal apparatus) that has requested the CSI report considering the modulo operation.
- the control unit 701 determines to perform the first precoding. Also, if all the terminal devices 2 to be spatially multiplexed are the second terminal devices, the control unit 701 determines to perform the second precoding. If the first terminal device and the second terminal device are mixed in the spatially multiplexed terminal device 2, the control unit 701 determines to perform the third precoding.
- the physical channel signal generation unit 707 generates a physical channel signal based on the information input from the control unit 701 (step S905).
- a physical channel signal is a data signal transmitted to each terminal device 2 via PDSCH, for example.
- the physical channel signal generation unit 707 performs digital signal processing such as channel coding and data modulation for information bit sequences addressed to each terminal apparatus 2, multiplexing of reference signals such as CRS, and resource allocation for data signals and reference signals.
- the precoding unit 708 performs precoding on at least some physical channel signals based on the precoding scheme determined by the control unit 701 and the MIMO channel information acquired by the CSI acquisition unit 706. (Step S906).
- the wireless transmission unit 703 generates a transmission signal including the physical channel signal that has been subjected to precoding (step S907).
- the generated transmission signal is transmitted to each terminal device 2 via the antenna 704 (step S908).
- FIG. 10 is a block diagram illustrating a configuration example of the terminal device 2 according to the present embodiment.
- the terminal apparatus 2 includes an antenna 1001, a radio reception unit 1002, a channel estimation unit 1003, a control unit 1004, a channel state information (CSI) generation unit 1005, and a physical channel signal generation unit 1006. And a radio transmission unit 1007 and a physical channel signal demodulation unit 1008.
- CSI channel state information
- FIG. 11 is a flowchart illustrating an example of signal processing in which the terminal device 2 according to the present embodiment performs a CSI report to the base station device 1.
- the terminal device 2 receives a signal including a CSI trigger transmitted from the base station device 1 via the antenna 1001 (step S1101), and the wireless reception unit 1002 receives a control signal received via the antenna 1001. After conversion to a baseband signal, control information including the CSI trigger is extracted from the signal including the CSI trigger and input to the control unit 1004. Radio receiving section 1002 inputs a separately received reference signal such as CRS or CSI-RS to channel estimating section 1003 (step S1102).
- a separately received reference signal such as CRS or CSI-RS
- channel estimation section 1003 estimates a MIMO channel with base station apparatus 1 based on CRS and CSI-RS periodically transmitted from base station apparatus 1 (step S1103).
- control unit 1004 determines whether or not to consider the modulo operation when calculating the CSI based on the CSI trigger (step S1104). For example, the control unit 1004 may read the value of the CSI request field and determine whether or not to consider the modulo calculation. Note that the presence / absence of consideration of the modulo calculation determined at this time is also used when demodulating a physical channel signal described later.
- the CSI generation unit 1005 generates CSI based on the MIMO channel estimated by the channel estimation unit 1003 and the presence / absence of the modulo calculation determined by the control unit 1004 (step S1105). For example, when considering the modulo operation when calculating the CQI, the reception SINR is estimated from the MIMO channel on the assumption that the reception detection method including the modulo operation is used, and the frequency utilization efficiency is obtained to determine the CQI.
- the physical channel signal generation unit 1006 generates a transmission signal including a CSI and a data signal to be transmitted to the base station apparatus 1.
- the signal generated by the physical channel signal generation unit 1006 is a signal transmitted via PUSCH.
- Radio transmission section 1007 converts the transmission signal addressed to base station apparatus 1 into an RF band radio transmission signal.
- the terminal device 2 transmits a radio
- FIG. 12 is a flowchart illustrating an example of signal processing in which the terminal apparatus 2 according to the present embodiment demodulates the precoded data signal transmitted from the base station apparatus 1.
- the precoded data signal transmitted from the base station apparatus 1 is a signal transmitted via the PDSCH. Note that the signal processing performed in FIG. 11 and FIG. 12 is not necessarily performed exclusively in the terminal device 2, and part of the signal processing can be performed in parallel.
- the terminal device 2 receives a signal including a precoded data signal transmitted from the base station device 1 via the antenna 1001 (step S1201), and the wireless reception unit 1002 receives the signal via the antenna 1001. After the received signal is converted to a baseband signal, the precoded data signal is input to the physical channel signal demodulator 1008. Radio receiving section 1002 inputs a separately received reference signal such as DMRS to channel estimation section 1003 (step S1202).
- DMRS channel estimation section 1003
- channel estimation section 1003 estimates MIMO channel information for demodulating the precoded data signal based on DMRS or the like (step S1203).
- the physical channel signal demodulator 1008 demodulates the desired signal from the precoded data signal based on the MIMO channel information for demodulating the precoded data signal (step S1204).
- the physical channel signal demodulator 1008 performs linear coding, interference canceller, maximum likelihood detection, turbo detection, and spatial detection processing by combination or repetition thereof, resource demapping, data demodulation, channel decoding, and the like. Apply to signal.
- the CSI generation unit 1005 when the CSI generation unit 1005 generates CSI in consideration of the modulo operation, the physical channel signal demodulation unit 1008 performs signal demodulation including signal processing (for example, modulo operation) in consideration of the perturbation vector.
- the physical channel signal demodulation unit 1008 performs signal demodulation without considering the perturbation vector.
- the base station apparatus 1 requests the terminal apparatus 2 to determine whether or not to consider the modulo operation when requesting the CSI report.
- a trigger can be sent.
- the terminal device 2 can determine whether or not to consider the modulo calculation by the CSI trigger. Therefore, since the base station apparatus 1 can appropriately determine the precoding scheme and MCS when performing precoding MU-MIMO transmission including nonlinear precoding, the transmission quality can be improved. It can contribute to the improvement of the frequency utilization efficiency of the radio communication system.
- each of the base station device 1 and the terminal device 2 includes a plurality of CQI tables or MCS set tables. Then, a plurality of CQI tables and MCS sets are switched and used by a CSI trigger notified from the base station apparatus 1 to the terminal apparatus 2.
- FIG. 13 is a diagram showing an example of the second CQI table in the present embodiment.
- the CQI table shown in FIG. 2 is a first CQI table, and that base station apparatus 1 and terminal apparatus 2 are provided with first and second CQI tables.
- the second CQI table does not include QPSK modulation. This is because the modulo operation has a great influence on the reception quality of the QPSK modulated signal.
- the terminal device 2 (second terminal device) that is set to consider the modulo operation by the CSI trigger performs the CSI report using the second CQI table.
- the second terminal device can flexibly select the CQI in a region where nonlinear precoding can be performed relatively efficiently.
- the first CQI table may be used for the first terminal device.
- the configuration of the second CQI table is not limited to the configuration shown in FIG.
- the second CQI table only needs to have a smaller ratio of QPSK modulation to the CQI table than the first CQI table.
- the ratio of 16QAM modulation and 64QAM modulation, the respective coding rates, and the number of MCS sets described in the CQI table may be different from those in FIG.
- FIG. 14 is a diagram showing an example of a third CQI table in the present embodiment.
- the base station device 1 and the terminal device 2 may be configured to include first and third CQI tables.
- the third CQI table has a configuration including 256QAM modulation that can achieve high frequency utilization efficiency.
- the second terminal apparatus uses the third CQI table when performing the CSI report.
- the data signal addressed to the second terminal device is assumed to be subjected to nonlinear precoding in the base station device 1.
- non-linear precoding the gain for linear precoding increases as the modulation multi-level number increases. Therefore, high frequency utilization efficiency is realizable by using the 3rd CQI table in which MCS in which the 2nd terminal device shows high frequency utilization efficiency was described.
- the first CQI table may be used for the first terminal device.
- the configuration of the third CQI table is not limited to the configuration shown in FIG.
- the second CQI table only needs to include MCS indicating higher frequency utilization efficiency than the first CQI table.
- MCS indicating higher frequency utilization efficiency
- the ratio of 16QAM modulation, 64QAM modulation, and 256QAM modulation, the respective coding rates, and the number of MCS sets described in the CQI table may be different from those in FIG.
- the base station apparatus 1 can determine that the second terminal apparatus is a terminal apparatus that is not suitable for nonlinear precoding. At the trigger transmission timing, the base station apparatus 1 may set the CSI trigger so that the CSI report is sent to the second terminal apparatus without considering the modulo calculation.
- the base station apparatus 1 reports CSI based on the second or third CQI table from the second terminal apparatus.
- the base station apparatus 1 may set the MCS for the data signal addressed to the second terminal apparatus based on the MCS described in the second or third CQI table. Further, the base station apparatus 1 may set the MCS based on another MCS table in which a plurality of MCSs different from the MCSs described in the second or third CQI table are described.
- another MCS table describes an MCS that can realize the frequency use efficiency ranges described in the second and third CQI tables and the frequency use efficiency in the vicinity thereof with a higher granularity.
- the base station device 1 and each terminal device 2 are commonly used.
- the base station device 1 and the terminal device 2 include a plurality of CQI tables or MCS tables.
- the base station apparatus 1 can set the MCS of the data signal addressed to the second terminal apparatus that performs nonlinear precoding with higher accuracy. Therefore, the reception quality of the terminal device 2 can be improved, and by extension, the frequency utilization efficiency of the wireless communication system can be improved.
- the third embodiment targets a wireless communication system in which a plurality of small base station devices 3 exist within the communication range of the base station device 1 (referred to as a macro cell).
- FIG. 15 is a diagram illustrating an example of a wireless communication system according to the present embodiment. Further, it exists in the communication range (referred to as a small cell) between the terminal device 2 (also referred to as the terminal device 2-1, the terminal device 2-2, and the third terminal device) existing in the macro cell and the small base station device 3.
- terminal devices 2 also referred to as terminal device 2-3, terminal device 2-4, and fourth terminal device
- both terminal devices 2 are assumed to be connected to base station device 1.
- the base station device 1 and the small base station device 3 can communicate with each other, but the interface may be wired communication or wireless communication.
- one small base station apparatus 3 is provided, but naturally a plurality of small base station apparatuses 3 are also included in the macro cell.
- the macro cell and the small cell use different carrier frequencies and are intended for systems that do not interfere with each other. It is assumed that the carrier frequency used in the small cell is higher than the carrier frequency used in the macro cell.
- the small base station apparatus 3 performs precoding including nonlinear precoding on the data signal addressed to the connected terminal apparatus 2 (fourth terminal apparatus), similarly to the base station apparatus 1.
- the base station apparatus 1 has the same apparatus configuration as that of the base station apparatus 1.
- FIG. 16 is a sequence chart showing an example of communication between the base station apparatus 1, the terminal apparatus 2 (third terminal apparatus and fourth terminal apparatus), and the small base station apparatus 3 in the present embodiment.
- the base station apparatus 1 the terminal apparatus 2 (third terminal apparatus and fourth terminal apparatus), and the small base station apparatus 3 in the present embodiment.
- FIG. 16 only the part related to the CSI report is shown. Further, only one third terminal device, fourth terminal device, and small base station device 3 are shown, but in an actual system, a plurality of devices may perform the same communication.
- a reference signal for each terminal apparatus 2 such as CRS or CSI-RS for estimating CSI is periodically communicated from the base station apparatus 1 and the small base station apparatus 3 by another control. Further, it is assumed that the base station device 1 and the small base station device 3 know whether each terminal device 2 is in a macro cell or a small cell.
- the base station apparatus 1 determines whether to request each terminal apparatus 2 for a CSI report assuming a modulo calculation (step S1601).
- the base station device 1 does not request a modulo operation from the third terminal device, while requesting a modulo operation from the fourth terminal device. This is because the third terminal apparatus whose reception quality tends to be relatively low is not suitable for nonlinear precoding, while the fourth terminal apparatus whose reception quality is relatively high is suitable for nonlinear precoding.
- the base station apparatus 1 may determine whether or not there is a request for a modulo calculation based on another standard.
- the base station apparatus 1 transmits a CSI trigger to each terminal apparatus 2 (step S1602).
- each terminal apparatus 2 generates CSI based on the CSI trigger notified from the base station apparatus 1.
- the third terminal apparatus generates CSI with the base station apparatus 1 (step S1603-1), and the fourth terminal apparatus generates CSI with the small base station apparatus 3 (step S1603-2).
- Each terminal device 2 reports the generated CSI to the base station device 1 (steps S1604-1 and S1604-2).
- the base station apparatus 1 notifies the small base station apparatus 3 of the contents of the CSI report from the fourth terminal apparatus (step S1605).
- the base station apparatus 1 determines a precoding scheme to be applied to the data signal addressed to the third terminal apparatus based on the CSI report from the third terminal apparatus (step S1606). Further, the small base station apparatus 3 determines a precoding scheme to be applied to the data signal addressed to the fourth terminal apparatus based on the CSI report from the fourth terminal apparatus notified from the base station apparatus 1 (step S1607). ). Note that if it is determined in advance that the base station apparatus 1 uses linear precoding and the small base station apparatus 3 uses nonlinear precoding, steps S1606 and S1607 may be skipped.
- the base station apparatus 1 determines an MCS to be applied to the data signal addressed to the third terminal apparatus based on the CSI report from the third terminal apparatus and the precoding scheme, and generates a physical channel signal (step). S1608).
- the small base station apparatus 3 determines the MCS to be applied to the data signal addressed to the fourth terminal apparatus based on the CSI report from the fourth terminal apparatus and the precoding scheme, and generates a physical channel signal (S1609). ).
- base station apparatus 1 and small base station apparatus 3 perform precoding on the generated physical channel signal (steps S1610 and S1611), and transmit the precoded signal to each terminal apparatus 2 (step). S1612 and S1613).
- Each terminal device 2 demodulates a desired signal from the received signal (steps S1614 and S1615).
- each terminal device 2 is appropriately connected to the base station device 1 and the small base station device 3 to which the terminal device 2 is connected based on the CSI trigger transmitted from the base station device 1. It is possible to perform a simple CSI report. Further, the base station device 1 and the small base station device 3 can appropriately set the MCS of the data signal addressed to the terminal device 2 connected to the own device.
- the calculated CSI is always reported to the base station apparatus 1 by the fourth terminal apparatus.
- the fourth terminal apparatus may directly perform the CSI report to the small base station apparatus 3.
- the CSI trigger that the base station apparatus 1 notifies each terminal apparatus 2 may include information that specifies which of the base station apparatus 1 and the small base station apparatus 3 is to report the CSI.
- the third terminal apparatus and the fourth terminal apparatus may have different types of information regarding the MIMO channel.
- information with a certain degree of accuracy for example, PMI
- the fourth terminal device provides information with a certain degree of accuracy (for example, information representing the MIMO channel itself).
- the case where it reports to the small base station apparatus 3 can be considered. This is. This is because non-linear precoding with high probability performed by the small base station apparatus 3 requires highly accurate channel state information.
- the CSI trigger notified from the base station apparatus 1 to each terminal apparatus 2 may include information specifying what accuracy of the CSI report is to be performed based on the MIMO channel information.
- a plurality of different CQI tables may be shared by the base station device 1, the small base station device 3, and the terminal device 2. At this time, it is possible to control so that the fourth terminal apparatus uses the second and third CQI tables, and the third terminal apparatus uses the first CQI table. Further, the base station apparatus 1 can request each terminal apparatus 2 which CQI table to use by a CSI trigger.
- the base station apparatus 1 can request each terminal apparatus 2 whether or not to consider the modulo calculation by the CSI trigger. Further, when the terminal apparatus 2 generates CSI with the base station apparatus 1 or the small base station apparatus 3, the terminal apparatus 2 can determine whether or not to consider the modulo calculation by the CSI trigger. Therefore, since the base station apparatus 1 and the small base station apparatus 3 can appropriately determine the MCS to be applied to the data signal addressed to each terminal apparatus 2, the transmission quality can be improved.
- each embodiment is based on the non-periodic channel state information report, but can also be applied to the case where the periodic channel state information report is performed.
- information specifying whether or not to consider the modulo operation may be included in signaling (such as signaling specifying the feedback mode in LTE) that specifies information for the terminal device 2 to report periodic channel state information to the base station device 1. .
- the CSI trigger includes information for designating whether or not to consider the modulo operation.
- the content of the information on the MIMO channel reported by the terminal device 2 may be changed depending on whether or not the modulo calculation is taken into consideration.
- the terminal device 2 that has been requested for the CSI report in consideration of the modulo calculation reports highly accurate MIMO channel information (for example, information indicating the MIMO channel itself) to the base station device 1.
- the terminal apparatus 2 that is requested to receive the CSI report that does not consider the modulo calculation may be controlled to report the MIMO channel information (for example, PMI) with low accuracy to the base station apparatus 1.
- MIMO channel information for example, PMI
- the signal included in the CSI trigger is for designating whether or not to consider the modulo operation when performing the CSI report.
- the base station apparatus 1 requests the terminal apparatus 2 for CSI reports based on different norms, not limited to modulo arithmetic. For example, when the base station apparatus 1 requests the terminal apparatus 2 for either CQI when using PMI as information regarding the MIMO channel or CQI when using information representing the MIMO channel itself, the base station apparatus 1 The terminal device 2 may be requested to calculate which CQI is calculated based on the CSI trigger.
- the base station apparatus 1 uses the CSI trigger to It is possible to notify the terminal device 2 whether to request information on the MIMO channel. Further, the base station apparatus 1 may request the terminal apparatus 2 by a CSI trigger to determine which reference signal the terminal apparatus 2 that receives a plurality of reference signals performs.
- low-accuracy information for example, PMI
- high-accuracy information for example, information representing the MIMO channel itself
- the base station apparatus 1 selects linear precoding, nonlinear precoding, or precoding in which both are mixed, and applies it to the data signal addressed to each terminal apparatus 2.
- the base station apparatus 1 changes the content of the CSI trigger addressed to each terminal apparatus 2 in accordance with a precoding scheme assumed to be applied to the data signal addressed to each terminal apparatus 2.
- the precoding scheme applicable to the base station apparatus 1 is not limited to the above-described one.
- the base station apparatus 1 gives a transmission power difference between the terminal apparatuses 2 to perform simultaneous multiplex transmission. Non-orthogonal access (also referred to as superimposed communication) is possible.
- the base station apparatus 1 can also request a CSI report assuming that the data signal is multiplexed to each terminal apparatus 2 by superposition communication by the same method as the present invention.
- the base station apparatus 1, the terminal apparatus 2 and the small base station apparatus 3 of the present invention are not limited to application to terminal apparatuses such as a cellular system, but are stationary or non-movable that are installed indoors and outdoors. Needless to say, the present invention can be applied to electronic equipment such as AV equipment, kitchen equipment, cleaning / washing equipment, air conditioning equipment, office equipment, vending machines, and other daily life equipment.
- a program that operates in the base station apparatus 1, the terminal apparatus 2, and the small base station apparatus 3 according to the present invention is a program that controls a CPU or the like (a computer is caused to function) so as to realize the functions of the above-described embodiments according to the present invention.
- Program Information handled by these devices is temporarily stored in the RAM at the time of processing, then stored in various ROMs and HDDs, read out by the CPU, and corrected and written as necessary.
- a recording medium for storing the program a semiconductor medium (for example, ROM, nonvolatile memory card, etc.), an optical recording medium (for example, DVD, MO, MD, CD, BD, etc.), a magnetic recording medium (for example, magnetic tape, Any of a flexible disk etc. may be sufficient.
- the processing is performed in cooperation with the operating system or other application programs. The functions of the invention may be realized.
- the program when distributing to the market, can be stored and distributed on a portable recording medium, or transferred to a server computer connected via a network such as the Internet.
- the storage device of the server computer is also included in the present invention.
- LSI which is typically an integrated circuit.
- Each functional block of the base station apparatus 1, the terminal apparatus 2, and the small base station apparatus 3 may be individually made into a processor, or a part or all of them may be integrated into a processor.
- the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor.
- an integrated circuit based on the technology can also be used.
- the present invention is suitable for use in communication systems, base station devices, and terminal devices.
- Base station device 2 2-1, 2-2, 2-3, 2-4 Terminal device 3
- Small base station device 701 1004 Control unit 702 Control signal generation unit 703, 1007 Radio transmission unit 704, 1001 Antenna 705, 1002 Radio reception unit 706 CSI acquisition unit 707, 1006 Physical channel signal generation unit 708 Precoding unit 1003 Channel estimation unit 1005 CSI generation unit 1008 Physical channel signal demodulation unit
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Quality & Reliability (AREA)
- Mobile Radio Communication Systems (AREA)
- Radio Transmission System (AREA)
Abstract
基地局装置と端末装置とが、異なるチャネル情報規範に基づいたチャネル情報を高効率にやり取りする通信システム、基地局装置、および端末装置を提供する。基地局装置が、端末装置に対して要求するチャネル情報規範を決定し、前記チャネル情報規範を指定する情報を含んだ制御情報を生成し、前記制御情報を端末装置に対して送信し、端末装置は、前記制御情報を受信し、前記基地局との間のチャネルを推定し、前記制御情報と前記チャネルに基づいて、基地局装置との間のチャネル状態情報を生成し、前記チャネル状態情報を前記基地局装置に報告する。
Description
本発明は、多重入力多重出力伝送を行なう技術に関する。
限られた周波数帯域における高速・大容量の無線通信を実現するために、複数の送受信アンテナを用いて無線伝送を行なう多重入力多重出力(Multiple Input Multiple Output:MIMO)技術が注目を集めており、セルラーシステムや無線LANシステムなどで実用化されている。また、基地局装置に同時接続する複数端末装置を仮想的な大規模アレーアンテナとみなし、基地局装置から各端末装置への送信信号を空間多重させるマルチユーザMIMO(Multi-User MIMO:MU-MIMO)が周波数利用効率の改善に有効である。
MU-MIMOでは、各端末装置宛ての送信信号同士のユーザ間干渉(Inter-User-Interference:IUI)を抑圧する必要がある。例えば、第3.9世代および第4世代移動無線通信システムとして知られるLong term evolution(LTE)やLTE-Advanced(LTE-A)では、線形フィルタを基地局装置にて予め乗算することでIUIを抑圧する線形プリコーディングが採用されている。
また、非線形処理を基地局装置側で行なう非線形プリコーディングを用いるMU-MIMO技術が注目を集めている。端末装置において、剰余(Modulo、モジュロ)演算が可能である場合、基地局装置は任意のガウス整数に一定の実数が乗算された複素数(摂動項)を要素とする摂動ベクトルを送信信号に加算できる。そこで、基地局装置は、複数の端末装置との間のチャネル状態情報(Channel State Information:CSI)に応じて、摂動ベクトルを適切に設定してやれば、線形プリコーディングと比較して、所要送信電力を大幅に削減することが可能となる。非線形プリコーディングとして、Vector perturbation(VP)やTomlinson Harashima precoding(THP)が良く知られている(非特許文献1および2等に記載)。
MU-MIMO伝送を基地局装置が行なうためには、端末装置との間のMIMOチャネル情報が必要である。端末装置が基地局装置にチャネル状態情報を報告(CSIレポート)することで、基地局装置はMIMOチャネルを把握できる。LTEシステムでは、周期的に端末装置がチャネル状態情報を報告する周期チャネル状態情報報告(Periodic CSI reporting)と、基地局装置からのチャネル状態情報報告要求(CSIトリガ)に基づいて端末装置がチャネル状態情報を報告する非周期チャネル状態情報報告(Aperiodic CSI reporting)が採用されている(特許文献1等に記載)。
また、端末装置が、基地局装置に対して自装置の受信品質に関連付けられた情報を併せて通知し、基地局装置は各端末装置宛ての送信信号に適用する符号化率および変調方式(Modulation and Coding Scheme:MCS)を決定する適応変調伝送(Adaptive Modulation and Coding:AMC)が周波数利用効率の改善に有効である。また、受信品質に関連付けられた情報は基地局装置がMU-MIMO伝送を行なうか否かを決定する際にも有用である。
しかしLTEでは、各端末装置は、基地局装置とシングルユーザMIMO(Single user-MIMO:SU-MIMO)伝送を行なうことを想定してCSIレポートを行なうことになる。なぜならば、端末装置はCSIレポートを基地局装置に行なう時点において、自装置宛てにMU-MIMO伝送されるかどうかを判断できないためである。このことは、端末装置はmodulo演算を想定していないCSIレポートを行なうことを示唆している。
B. M. Hochwald, et. al., "A vector-perturbation technique for near-capacity multiantenna multiuser communication-Part II:Perturbation," IEEE Trans. Commun., Vol. 53, No. 3, pp.537-544, March 2005.
M. Joham, et. al., "MMSE approaches to multiuser spatio-temporal Tomlinson- Harashima precoding", Proc. 5th Int. ITG Conf. on Source and Channel Coding, Erlangen, Germany, Jan. 2004.
基地局装置は、各端末装置からのCSIレポートに基づいて、各端末装置宛ての信号のMCSを決定する。しかし、従来方式において、各端末装置のCSIレポートにはmodulo演算が考慮されていないため、基地局装置が非線形プリコーディングを行なう場合、各端末装置宛ての信号のMCSを正しく設定できない問題が発生する。
また、プリコーディング方式に依らず、基地局装置が端末装置にデータ信号を送信するアクセス方式や、搬送波周波数の違いによっても、各端末装置が推定する受信品質に関連付けられた情報は大きく変わるが、端末装置は、常に全ての場合における受信品質に関連付けられた情報を基地局装置に通知することはできないため、基地局装置が各端末装置宛ての信号のMCSを正しく設定できない問題が発生する。
本発明は、このような事情に鑑みてなされたものであり、基地局装置と端末装置が複数の技術もしくは無線リソースに基づいて無線通信を行なうシステムにおいて、各端末装置が適切な受信品質に関連付けられた情報を通知できる通信システム、基地局装置、および端末装置を提供することを目的とする。
(1)上記の目的を達成するために、本発明は、以下のような手段を講じた。すなわち、本発明の通信システムは、端末装置から基地局装置へチャネル状態情報(CSI)を通知する際の通信システムであって、前記基地局装置が前記端末装置に対して要求するチャネル状態情報の規範であるチャネル情報規範を複数の候補の中から決定するステップと、前記決定したチャネル情報規範を指定する情報を含んだ制御情報を生成するステップと、前記制御情報を前記端末装置に対して送信するステップと、前記端末装置が前記制御情報を受信するステップと、前記基地局装置との間のチャネルを推定するステップと、前記制御情報と前記推定した基地局装置との間のチャネルに基づいて、前記基地局装置との間のチャネル状態情報を生成するステップと、前記チャネル状態情報を前記基地局装置に報告するステップと、を備え、前記チャネル情報規範は、前記端末装置が摂動ベクトルを考慮してチャネル状態情報を算出する規範と、前記端末装置が摂動ベクトルを考慮せずにチャネル状態情報を算出する規範と、を含むことを特徴とする。
このような通信システムにより、基地局装置が、端末装置にチャネル状態情報を要求する際に、摂動ベクトルの考慮の有無を指定することができるから、基地局装置は、端末装置より通知されるチャネル状態情報に基づいて、各端末装置宛てのデータ信号を適切に生成できる。また、端末装置は、基地局装置より通知される制御情報に基づいて、チャネル状態情報を算出する際に、摂動ベクトルを考慮するか否かを判断できる。よって、端末装置の受信品質を改善することができる。
(2)また、本発明の通信システムは、前記基地局装置の通信範囲内に存在する小型基地局装置との間のチャネルを推定するステップと、前記制御情報と前記推定した小型基地局装置との間のチャネルに基づいて、前記小型基地局装置との間のチャネル状態情報を生成するステップと、前記小型基地局装置との間のチャネル状態情報を前記基地局装置に報告するステップと、前記基地局装置が、前記端末装置より報告された前記小型基地局装置との間のチャネル状態情報を前記小型基地局装置に通知するステップと、前記小型基地局装置が前記基地局装置より通知された前記チャネル状態情報を取得するステップと、を更に備えることを特徴とする。
このような通信システムにより、基地局装置と小型基地局装置と端末装置が、異なるチャネル情報規範に基づいてチャネル状態情報のやり取りすることができる。また、基地局装置と小型基地局装置は、端末装置より通知されるチャネル状態情報に基づいて、各端末装置宛てのデータ信号を適切に生成できる。よって、端末装置の受信品質を改善することができる。
(3)また、本発明の通信システムは、前記制御情報には、前記端末装置が、前記チャネル状態情報を、前記基地局装置と前記小型基地局装置のいずれに報告するかを指定する情報を更に含むことを特徴とする。
このような通信システムにより、基地局装置は、端末装置に対して、チャネル状態情報の通知先を指定することができ、端末装置は、生成したチャネル状態情報を適切な通知先に通知することができる。よって、端末装置の受信品質を改善することができる。
(4)また、本発明の基地局装置は、複数の端末装置からチャネル状態情報を受信する基地局装置であって、前記端末装置に対して要求するチャネル状態情報の規範であるチャネル情報規範を複数の候補の中から決定する制御部と、前記決定したチャネル情報規範を指定する情報を含んだ制御情報を生成する制御情報生成部と、前記制御情報を前記端末装置に対して送信する無線送信部と、を備え、前記チャネル情報規範は、前記端末装置が摂動ベクトルを考慮してチャネル状態情報を算出する規範と、前記端末装置が摂動ベクトルを考慮せずにチャネル状態情報を算出する規範と、を含むことを特徴とする。
このような基地局装置は、端末装置にチャネル状態情報を要求する際に、摂動ベクトルの考慮の有無を指定することができるから、端末装置より通知されるチャネル状態情報に基づいて、各端末装置宛てのデータ信号を適切に生成できる。よって、端末装置の受信品質を改善することができる。
(5)また、本発明の基地局装置は、前記複数の端末装置の一部より報告された前記チャネル状態情報を、自局の通信範囲内に存在する小型基地局装置に通知することを特徴とする。
このような基地局装置は、端末装置の一部より報告されたチャネル状態情報を自局の通信範囲内に存在する小型基地局装置に通知することができるから、小型基地局装置は、通知されるチャネル状態情報に基づいて、小型基地局装置の通信範囲内に存在する端末装置宛てのデータ信号を適切に生成できる。よって、端末装置の受信品質を改善することができる。
(6)また、本発明の基地局装置は、前記制御情報には、前記複数の端末装置の一部が、前記チャネル状態情報を、前記基地局装置と前記小型基地局装置のいずれに報告するかを指定する情報を更に含むことを特徴とする。
このような基地局装置は、端末装置の一部に対して、チャネル状態情報を、基地局装置と、小型基地局装置のいずれに報告するかを指定することができる。よって、端末装置は、チャネル状態情報を適切な通知先に通知することができる。よって、端末装置の受信品質を改善することができる。
(7)また、本発明の基地局装置は、複数の符号化率および変調方式の組み合わせが記載されたチャネル品質インジケータテーブルを複数備え、前記複数のチャネル品質インジケータテーブルは、前記チャネル情報規範にそれぞれ対応していることを特徴とする。
このような基地局装置は、複数のチャネル情報規範にそれぞれ対応付けられた複数のチャネル品質インジケータテーブルを用いることができるから、端末装置より通知されたチャネル状態情報に基づいて、端末装置宛てのデータ信号を適切に生成できる。よって、端末装置の受信品質を改善することができる。
(8)また、本発明の端末装置は、基地局装置へチャネル状態情報を通知する端末装置であって、前記基地局装置より送信された、チャネル状態情報の規範であるチャネル情報規範を指定する情報を含む制御情報を受信する無線受信部と、前記基地局装置との間のチャネルを推定する伝搬路推定部と、前記制御情報で指定されたチャネル情報規範と前記推定した基地局装置との間のチャネルに基づいて、前記基地局装置との間のチャネル状態情報を生成するチャネル状態情報生成部と、前記チャネル状態情報を前記基地局装置に送信する無線送信部と、を備え、前記チャネル情報規範は、前記チャネル状態情報生成部が摂動ベクトルを考慮してチャネル状態情報を算出する規範と、摂動ベクトルを考慮せずにチャネル状態情報を算出する規範と、を含むことを特徴とする。
このような端末装置は、基地局装置より通知されるチャネル状態情報の規範であるチャネル情報規範を指定する情報を含む制御情報に基づいて、チャネル状態情報を算出する際に、摂動ベクトルを考慮するか否かを判断することができるから、基地局装置に精度よくチャネル状態情報を通知することができる。よって、自装置宛てのデータ信号が適切に生成されるから、端末装置の受信品質を改善できる。
(9)また、本発明の端末装置は、前記伝搬路推定部は、前記基地局装置の通信範囲内に存在する小型基地局装置との間のチャネルを推定し、前記チャネル状態情報生成部は、前記制御情報で指定されたチャネル情報規範と前記推定した小型基地局装置との間のチャネルに基づいて、前記小型基地局装置との間のチャネル状態情報を生成し、前記無線送信部は、前記小型基地局装置との間のチャネル状態情報を、前記基地局装置に送信することを特徴とする。
このような端末装置は、制御情報に基づいて、小型基地局装置との間のチャネル状態情報を算出する際に、摂動ベクトルを考慮するか否かを判断することができるから、精度よくチャネル状態情報を生成することができる。よって、自装置宛てのデータ信号が適切に生成されるから、端末装置の受信品質を改善できる。
(10)また、本発明の端末装置は、前記無線送信部は、前記小型基地局装置との間のチャネル状態情報を、前記小型基地局装置に送信することが可能であり、前記制御情報には、前記チャネル状態情報を、前記基地局装置と前記小型基地局装置のいずれに報告するかを指定する情報が更に含まれており、前記制御情報に基づいて、前記小型基地局装置との間のチャネル状態情報を、前記基地局装置と前記小型基地局装置のいずれに報告するかを決定することを特徴とする。
このような端末装置は、制御情報に基づいて、前記小型基地局装置との間のチャネル状態情報の通知先を判断することができるから、チャネル状態情報を適切な通知先に通知することができる。よって、自装置宛てのデータ信号が適切に生成されるから、端末装置の受信品質を改善できる。
(11)また、本発明の端末装置は、複数の符号化率および変調方式の組み合わせが記載されたチャネル品質インジケータテーブルを複数備え、前記複数のチャネル品質インジケータテーブルは、異なる前記チャネル情報規範にそれぞれ対応し、前記制御情報に基づいて、前記チャネル状態情報生成部が使用するチャネル品質インジケータテーブルを決定することを特徴とする。
このような端末装置は、複数のチャネル品質インジケータテーブルに基づいて、高精度に、チャネル状態情報を算出し、基地局装置に通知することができる。よって、自装置宛てのデータ信号が適切に生成されるから、端末装置の受信品質を改善できる。
本発明によれば、基地局装置と端末装置が異なる複数の技術もしくは無線リソースに基づいて無線通信を行なうシステムにおいて、各端末装置が適切な受信品質に関連付けられた情報を通知できるから、各端末装置宛ての信号のMCSを適切に設定することが可能となり、伝送品質を改善できる。ひいては無線通信システムの周波数利用効率の大幅な改善に寄与できる。
以下、図面を参照して本発明の無線通信システムを適用した場合における実施形態について説明する。
本発明が対象とするのは、以下のような基地局装置と端末装置を含んだ無線通信システムである。基地局装置はCSIレポートを要求する情報を含んだ下りリンク制御信号を非周期に端末装置に送信する。端末装置は、受信した下りリンク制御信号よりCSIレポートを要求するトリガビットを検出し、基地局装置にCSIレポートを行なう。
本発明は、LTE、LTE-A及びその後継規格に適用可能である。また、今後、LTE、LTE-A及びその後継規格の構造やフォーマット形式の変更又は追加が行なわれる可能性もあるが、その場合でも本発明は適用可能である。以下では、LTE及びLTE-Aで使用される主な物理チャネル(又は物理信号)について、主に本発明に関係するものについて説明する。チャネルとは信号の送信に用いられる媒体を意味し、物理チャネルとは信号の送信に用いられる物理的な媒体を意味する。
LTE及びLTE-Aでは、物理チャネルのスケジューリングは無線フレームを用いて管理している。1無線フレームは10msであり、1無線フレームは10サブフレームで構成される。さらに、1サブフレームは2スロットで構成される(すなわち、1スロットは0.5msである)。また、物理チャネルを配置するスケジューリングは、最小単位としてリソースブロック(Resource Block:RB)を用いて管理されている。リソースブロックは、周波数軸方向に複数のサブキャリア(例えば12サブキャリア)の集合で構成される一定の周波数領域と、時間軸方向に一定の送信時間間隔(1スロット)で構成される時間領域とで区切られる領域で定義される。
物理報知チャネル(Physical Broadcast Channel:PBCH)は、セル内の端末装置で共通に用いられる制御パラメータ(報知情報(システム情報):System information)を通知する目的で基地局装置から送信される。物理報知チャネルで通知されない報知情報は、物理下りリンク制御チャネル(Physical Downlink Control Channel:PDCCH)において無線リソースが通知された物理下りリンク共有チャネル(Physical Downlink Shared Channel:PDSCH)を用いて、レイヤ3メッセージ(システムインフォメーション)として送信される。報知情報としては、セル個別の識別子を示すセルグローバル識別子(Cell Global Identifier:CGI)、ページングによる待ち受けエリアを管理するトラッキングエリア識別子(Tracking Area Identifier:TAI)、ランダムアクセス設定情報(送信タイミングタイマーなど)、共通無線リソース設定情報などが通知される。なお、レイヤ3メッセージは、端末装置と基地局装置の無線リソース制御(Radio Resource Control:RRC)層でやり取りされる制御平面(Control-plane)のメッセージであり、RRCシグナリング又はRRCメッセージと同義の意味で使用される。
下りリンク参照信号は、その用途によって複数のタイプに分類される。例えば、セル固有参照信号(Cell-specific Reference Signals:CRS)は、セル毎に所定の電力で送信されるパイロット信号であり、所定の規則に基づいて周波数領域及び時間領域で周期的に繰り返される下りリンク参照信号である。端末装置は、セル固有参照信号を受信し、セル毎の受信品質を測定する。また、端末装置は、セル固有参照信号と同時に送信される物理下りリンク制御チャネル及び物理下りリンク共有チャネルの復調のために参照する信号としても、セル固有参照信号を使用する。セル固有参照信号に使用される系列は、セル毎に識別可能な系列が用いられる。
また、下りリンク参照信号は、下りリンクの伝搬路状態の推定にも用いられる。伝搬路状態の推定には、最大4アンテナに対応したセル固有参照信号が用いられ、これに加えてLTE-Aでは、最大8アンテナに対応したチャネル状態情報参照信号(Channel State Information Reference Signals:CSI-RS)が利用可能である。
また、端末装置毎に個別に設定される下りリンク参照信号として、端末固有参照信号(UE-specific reference signals又はDemodulation Reference Signals:DM-RS)がある。端末固有参照信号は、物理下りリンク制御チャネル又は物理下りリンク共有チャネルの復調に用いられる。
物理下りリンク制御チャネルは、各サブフレームの先頭から幾つかのOFDMシンボルを用いて送信され、基地局装置のスケジューリング結果に基づく無線リソース割り当て情報や、上りリンクの送信電力の増減の調整量を端末装置へ指示する情報などが記載された下りリンク制御情報(Downlink Control information(DCI))を通知する目的で使用される。端末装置は、下りリンクのユーザデータの受信や下りリンクの制御データであるレイヤ3メッセージ(ページング、ハンドオーバーコマンドなど)の受信、あるいは上りリンクのユーザデータなどの送信に先だって、自端末装置宛ての物理下りリンク制御チャネルを監視(モニタ)し、受信することで、上りリンク送信に対する上りリンクグラント、下りリンク受信に対する下りリンクグラント(下りリンクアサインメント)と呼ばれる無線リソース割り当て情報を取得する必要がある。なお、物理下りリンク制御チャネルは、上述した各サブフレームの先頭から幾つかのODFMシンボルで送信される以外に、基地局装置から端末装置に対して個別(dedicated)に割り当てられるリソースブロックの領域で送信されるように構成することも可能である。
物理上りリンク制御チャネル(Physical Uplink Control Channel:PUCCH)は、物理下りリンク共有チャネルで送信されたデータの確認応答(Acknowledgement:ACK)及び否定応答(Negative Acknowledgement:NACK又はNAK)、下りリンクの伝搬路(チャネル)状態情報(Channel State Information:CSI)、上りリンクの無線リソース割り当て要求(無線リソース要求)であるスケジューリングリクエスト(Scheduling Request:SR)を通知するために使用される。
物理下りリンク共有チャネル(Physical Downlink Shared Channel:PDSCH)は、下りリンクデータの伝送の他、ページングや、物理報知チャネルで通知されない報知情報(システムインフォメーション)をレイヤ3メッセージとして端末装置に通知するためにも使用される。物理下りリンク共有チャネルの無線リソース割り当て情報は、物理下りリンク制御チャネルで示される。
物理上りリンク共有チャネル(Physical Uplink Shared Channel:PUSCH)は、主に上りリンクデータと上りリンク制御データを伝送し、下りリンクのCSIや、下りリンクデータ等に対するACK/NACKなどの制御データを含めることも可能である。また、上りリンクデータの伝送の他、上りリンク制御情報をレイヤ3メッセージとして基地局装置に通知するためにも使用される。また、物理上りリンク共有チャネルの無線リソース割り当て情報は、物理下りリンク共有チャネルの無線リソース割り当て情報と同様に、物理下りリンク制御チャネルで示される。また、上りリンク制御情報(Uplink control information(UCI))がPUSCHを介して送信されない場合、UCIはPUCCHを介して送信される。
上りリンク参照信号(Uplink Reference Signal、上りリンクパイロット信号、上りリンクパイロットチャネルとも呼称する)は、物理上りリンク制御チャネル及び物理上りリンク共有チャネルを復調するために基地局装置が使用する復調参照信号(Demodulation Reference Signal:DM-RS)と、主に上りリンクのチャネル状態を推定するために基地局装置が使用するサウンディング参照信号(Sounding Reference Signal:SRS)が含まれる。また、サウンディング参照信号には、周期的サウンディング参照信号(Periodic SRS)と非周期的サウンディング参照信号(Aperiodic SRS)とがある。
物理ランダムアクセスチャネル(Physical Random Access Channel:PRACH)は、プリアンブル系列を通知するために使用されるチャネルであり、ガードタイムを有する。プリアンブル系列は、64種類のシーケンスを用意して6ビットの情報を表現するように構成されている。物理ランダムアクセスチャネルは、端末装置から基地局装置へのアクセス手段として用いられる。端末装置は、物理上りリンク制御チャネル未設定時の無線リソース割り当て要求や、上りリンク送信タイミングを基地局装置の受信タイミングウィンドウに合わせるために必要な送信タイミング調整情報(タイミングアドバンス(Timing Advance:TA)とも呼ばれる)を基地局装置に要求するために物理ランダムアクセスチャネルを用いる。
本発明の実施形態における無線通信システムは、基地局装置(送信装置、セル、送信点、送信アンテナ群、送信アンテナポート群、eNodeB)及び端末装置(移動端末、受信点、受信端末、受信装置、受信アンテナ群、受信アンテナポート群、UE)を備え、基地局装置は、端末装置とデータ通信を行なうために、下りリンクを通じて制御情報及び情報データを送信する。
以下において、本発明の実施形態に係る通信技術について、図面を参照しながら説明を行なう。なお、実施形態において説明した事項は、発明を理解するための一態様であり、実施形態に限定して発明の内容が解釈されるものではない。
[1.第1の実施形態]
図1は、本発明の第1の実施形態に係る無線通信システムの概略の一例を示す図である。第1の実施形態においては、非線形プリコーディングを含むプリコーディングMU-MIMO伝送が可能な基地局装置1(無線送信装置とも呼ぶ)に対して、端末装置2(無線受信装置とも呼ぶ)が複数個(図1中では端末装置2-1~2-4の4個)接続しているものとする。
図1は、本発明の第1の実施形態に係る無線通信システムの概略の一例を示す図である。第1の実施形態においては、非線形プリコーディングを含むプリコーディングMU-MIMO伝送が可能な基地局装置1(無線送信装置とも呼ぶ)に対して、端末装置2(無線受信装置とも呼ぶ)が複数個(図1中では端末装置2-1~2-4の4個)接続しているものとする。
端末装置2は、基地局装置1から送信された、セル固有参照信号及びチャネル状態情報参照信号の少なくとも一方を受信し、基地局装置1の各送信アンテナと自端末装置2の各受信アンテナとの間の下りリンクのチャネル状態を推定し、その伝搬路状態に基づいてチャネル状態情報(Channel State Information:CSI)を上りリンク伝送によって基地局装置1にそれぞれ報告する(このことをCSIレポートとも呼ぶ)。基地局装置1は、各端末装置2からのCSIレポート等に基づいて複数の端末装置2を選択し、それら複数の端末装置2宛ての送信データを空間的に多重して同時伝送するMU-MIMO伝送を行なう。
端末装置2が基地局装置1にCSIを報告する手段として、LTEシステムでは、周期フィードバックと非周期フィードバックという2つの方式を有する。2つの方式は、周期チャネル状態情報報告(Periodic CSI reporting)と非周期チャネル状態情報報告(Aperiodic CSI reporting)である。周期チャネル状態情報報告は、端末装置2が基地局装置1に事前に定められた周期に従ってCSIをフィードバックする。
非周期チャネル状態情報報告は、基地局装置1が端末装置2に非周期チャネル状態情報報告要求信号(CSIトリガビットもしくは単にCSIトリガとも呼ぶ)を送信する。端末装置2は、下りリンク制御信号に含まれるCSIトリガビットを検出した場合、基地局装置に1回CSIレポートを行なう。LTEシステムにおいて、端末装置2はPUSCHを介して非周期チャネル状態情報報を基地局装置1に報告する。
CSIには、主に以下の情報が含まれる。すなわち、基地局装置1と端末装置2との間のMIMOチャネルに関する情報と、端末装置2の受信品質に関する情報と、端末装置2の要求データストリーム数に関する情報である。MIMOチャネルとは、基地局装置1の各送信アンテナと、端末装置2の各受信アンテナとの間の複素チャネル利得を要素とする行列で表される。
MIMOチャネルに関する情報(MIMOチャネル情報とも呼ぶ)として、LTE及びLTE-Aでは、端末装置2が推定したMIMOチャネルに対して、望ましいプリコーディング情報を示すプリコーディング行列インジケータ(Precoding matrix indicator:PMI)が定義されている。なお、インジケータは、Indicationと表記される場合もあるが、その用途と意味は同じである。
本実施形態においては、MIMOチャネルに関する情報として、端末装置2が推定したMIMOチャネルそのものを示す情報を用いても良い。MIMOチャネルそのものを示す情報として、端末装置2が推定したMIMOチャネルの値を有限ビット数にて直接量子化したものや、推定したMIMOチャネルに何らかの信号処理(例えば、平均化、補間、固有値分解、特異値分解、逆離散フーリエ変換及び逆離散個サイン変換)を施すことで得られる値を、有限ビット数にて量子化したものでも良い。
端末装置2の要求データストリーム数に関する情報として、LTE及びLTE-Aでは、端末装置2が推定したMIMOチャネルに対して、最も望ましいデータストリーム数(ランク数)を示すランクインジケータ(Rank indicator:RI)が定義されている。
端末装置2の受信品質に関する情報として、LTE及びLTE-Aでは、端末装置2が推定したMIMOチャネルに基づき、PDSCHで適用されるのに最も適した周波数利用効率を示すチャネル品質インジケータ(Channel quality indicator:CQI)が定義されている。
以下では、前述したLTEおよびLTE-Aで用いられている言葉を用いて説明を行なうが、異なる無線通信システムでも、同様の意味で定義されている制御が行なわれているのであれば、本発明は適用可能である。
図2はCQIテーブルの一例を示す図である。端末装置2は、推定したMIMOチャネルと、PMI、RI及び受信検出方式に基づいて、データ信号(例えばPDSCHを介して送信される信号)を受信した場合の、受信信号対干渉+雑音電力比(SINR)を推定する。そして、推定した受信SINRによって所要受信品質を満たす最大の周波数利用効率を与えるMCSを算出する。そして、その周波数利用効率に最も近い値をCQIテーブルより抽出し、そのインデックスを端末装置2は基地局装置1に通知することになる。
上記の通り、CQIは端末装置2の受信検出方式にも依存する。本実施形態における基地局装置1は、各端末装置2宛てのデータ信号に対して、非線形プリコーディングを含むプリコーディングを施すことができる。非線形プリコーディングがデータ信号に施される場合、各端末装置2宛てのデータ信号に予め摂動ベクトルと呼ばれるオフセットベクトルが加算される。摂動ベクトルは、基地局装置1がMU-MIMO伝送を行なう際に発生する所要送信電力の強調を防ぐ効果がある。
端末装置2は、非線形プリコーディングが施されたデータ信号を受信した場合、データ信号に加算された摂動ベクトルを考慮した受信検出を行なう必要がある。このときに、一般的に用いられるのがmodulo演算と呼ばれる非線形演算である。
modulo演算は、入力された信号が一定振幅内に収まるように、入力信号に一定間隔のオフセットベクトルを加算する演算である。端末装置2はmodulo演算により、基地局装置1がデータ信号に加算した摂動ベクトルを取り除くことができる。
また、基地局装置1が摂動ベクトルをデータ信号に加算することは、元々の変調信号候補点が複素平面上に繰り返された信号点空間から、任意の信号候補点を選択することと等価であるから、端末装置2は、受信信号に対して、最尤検出を行なうことで所望信号を検出することが可能である。以下では、摂動ベクトルを考慮して信号検出を行なうことを、modulo演算を考慮して信号検出を行なうこととも呼ぶこととする。
しかし、modulo演算は、信号判定面の面積を小さくしてしまう。そのため、modulo演算前の受信品質が同一である場合、modulo演算を行なった方が、受信検出後の受信品質は劣ってしまう。このことは、modulo演算を適用するか否かで、端末装置2が推定する受信品質は大きく異なってしまうことを示唆している。
端末装置2が常にmodulo演算を前提としたCQIを算出する方法も考えられるが、基地局装置1は常にデータ信号において非線形プリコーディングを施すとは限らない。それは、基地局装置1が非線形プリコーディングを施すか否かは、端末装置2からのCSIレポートに基づいて決定するからである。
そこで、本実施形態において、基地局装置1は、端末装置2に対するCSIトリガに、端末装置2がmodulo演算を考慮するか否かを指定する情報を含める。なお、以下では、本実施形態が対象とするmodulo演算等の、端末装置2がCSIレポートを行なう際に考慮する信号処理や規範のことをチャネル情報規範と呼ぶこととする。
例えば、基地局装置1は、端末装置2に対するCSIトリガに1ビットを含める。含めた1ビットが「0」であれば、端末装置2はmodulo演算を考慮せずにCSIを計算し、含めた1ビットが「1」であれば、端末装置2はmodulo演算を考慮してCSIを計算する。
このように制御することで、端末装置2は、CSIトリガに基づいて、modulo演算の考慮の有無を決定することができる。また、基地局装置1は各端末装置2に対して、所望のチャネル情報規範を要求することができるから、より高効率に非線形プリコーディングが適用された端末装置2宛てのデータ信号のMCSを決定できる。
また、LTE-Aでは、異なるコンポーネントキャリアの複数のサービングセルにおいて通信できるように構成されている。そこで、DCIに含まれるCSIトリガを示すCSIリクエストフィールドの値により、どのサービングセルのCSIを端末装置2が報告するかを基地局装置1は指定することができる。そこで、本実施形態においても、CSIリクエストフィールドの内容を変更、もしくはCSIリクエストフィールドに新たに情報を追加、もしくはDCIに新たなリクエストフィールドを追加することで、基地局装置1が端末装置2にmodulo演算の有無を指定しても良い。
図3は、本実施形態におけるCSIリクエストフィールドの一例を示す図である。図3に示す例においては、2ビットの値が「00」であれば、端末装置2はCSIレポートを行なわない。2ビットの値が「01」であれば、端末装置2はCSIレポートを行なうが、modulo演算は行なわないことを前提としてCSIを算出する。そして、2ビットの値が「10」であれば、端末装置2はCSIレポートを行なうが、その際に、modulo演算を行なうことを前提とする。
図3の例によれば、端末装置2はCSIリクエストフィールドの値に従って、CQIを算出する際のmodulo演算の考慮の有無を決定することができる。また、基地局装置1は各端末装置2に対して、所望のCSIレポートを要求できるから、より高効率に非線形プリコーディングの適用の可否を決定できる。
図4は、本実施形態におけるCSIリクエストフィールドの他の一例を示す図である。図4に示す例においては、従来のLTE-Aシステムと同様に、複数のサービングセルが利用される環境において、modulo演算の考慮の有無を端末装置2が把握することができる。例えば、3ビットの値が「000」であれば、端末装置2はCSIレポートを行なわない。3ビットの値が「001」であれば、端末装置2はPUSCHに対応する下りコンポーネントキャリアのサービングセルに関するCSIを報告するが、modulo演算は行なわないことを前提とする。「110」であれば、端末装置2は他のシグナリング(例えばRRCシグナリング等のハイヤーレイヤシグナリング)によって第1のセットとして指定された少なくとも一つのサービングセルに関するCSIを報告するが、modulo演算を考慮することを前提とする。このようなCSIリクエストフィールドを用いることで、複数のサービングセルが通信に用いられる環境においても、端末装置2は、CSIリクエストフィールドの値に従って、各サービングセルのCQIを算出する際のmodulo演算の考慮の有無を判断できる。なお、複数のサービングセルは、全て同一の基地局装置1から送信されるものに限定されるわけではない。例えば、第1のセットとして指定された少なくとも一つのサービングセルが別の基地局装置1より送信されるように制御されている場合も含まれる。
また、既存のCSIリクエストフィールドとは別に、新たにmodulo演算の考慮の有無を指定するフィールドを追加しても良い。図5は、本実施形態におけるCSIリクエストフィールドとmodulo演算リクエストフィールドの一例を示す図である。CSIリクエストフィールドについては、既存のLTE-Aシステムと同様である。端末装置2は、更にmodulo演算リクエストフィールドの値に基づいて、modulo演算の有無を判断する。すなわち、「0」が設定されれば、端末装置2はmodulo演算を考慮せずにCSIを推定する。一方で、「1」が設定されれば、端末装置2はmodulo演算を考慮してCSIレポートを行なう。
また、既存のCSIリクエストフィールドの記載内容の意味が、別のシグナリングによって変更されても良い。例えば、ハイヤーレイヤシグナリングによって、端末装置2がmodulo演算を考慮してCSIを推定するように設定される場合、端末装置2は、CSIリクエストフィールドの記載に依らず、データ信号にmodulo演算を行なうことを前提として、CSIレポートを行なう。
図6は、本実施形態における基地局装置1と端末装置2との通信の一例を示すシーケンスチャートである。図6では、CSIレポートに関する部分だけが示されている。また、端末装置2については1個だけが示されているが、実際のシステムにおいては、複数の端末装置2が同様の通信を行なっている。なお、CRSやCSI-RS等の各端末装置2がCSIを推定するための参照信号は、別の制御により周期的に通信されているものとする。
はじめに、基地局装置1は、各端末装置2に対して、modulo演算を考慮したCSIレポートを要求するか否かを決定する(ステップS601)。決定方法については、本実施形態において何かに限定されるものではないが、例えば、この時点までのPDSCHの送信において比較的高い変調レベルの変調方式が使われてきた端末装置2に対して、modulo演算を考慮したCSIレポートを基地局装置1が要求する方法が考えられる。これは、端末装置2におけるmodulo演算による特性劣化は、高い変調レベルの変調方式であるほど小さいためであり、そのような端末装置2宛てのデータ信号に対して非線形プリコーディングを施すことが望ましいためである。
次いで、基地局装置1は、各端末装置2に対して、CSIレポートを要求する信号(CSIトリガ)を送信する(ステップS602)。例えば、基地局装置1は各端末装置2に対する下りリンク制御信号であるDCIに前述したCSIリクエストフィールドを含めて送信すれば良い。
次に、端末装置2は、基地局装置1より通知されるCSIトリガに基づいて、modulo演算の有無を判断してチャネル状態情報を生成する(ステップS603)。そして、端末装置2は、基地局装置1にチャネル状態情報を報告する(ステップS604)。
次に、基地局装置1は端末装置2からのCSIレポートに基づいて、各端末装置2宛てのデータ信号に適用するプリコーディング方式を決定する(ステップS605)。
次に、基地局装置1は、決定されたプリコーディング方式と、端末装置2からのCSIレポートに基づいて、データ信号に適用するMCSを決定し、物理チャネル信号を生成する(ステップS606)。例えば、物理チャネル信号とはPDSCHを介して送信される信号である。
次に、基地局装置1は生成した物理チャネル信号にプリコーディングを施す(ステップS607)。そして、基地局装置1はプリコーディングが施された信号を、各端末装置2宛てに送信する(ステップS608)。
次に、端末装置2は受信した信号から所望の信号を復調する(ステップS609)。
以上が、本実施形態における基地局装置1と端末装置2との通信の一例である。このような通信により、端末装置2は、CSIを算出する際に、modulo演算の有無を判断することが可能となり、また基地局装置1は、各端末装置2に、CSI算出時のmodulo演算の有無を要求することができる。
[1.1.基地局装置1]
図7は、本実施形態に係る基地局装置1の1構成例を示すブロック図である。図7に示すように、基地局装置1は、制御部701と、制御信号生成部702と、無線送信部703と、アンテナ704と、無線受信部705と、CSI取得部706と、物理チャネル信号生成部707と、プリコーディング部708と、から構成されている。
図7は、本実施形態に係る基地局装置1の1構成例を示すブロック図である。図7に示すように、基地局装置1は、制御部701と、制御信号生成部702と、無線送信部703と、アンテナ704と、無線受信部705と、CSI取得部706と、物理チャネル信号生成部707と、プリコーディング部708と、から構成されている。
図8は、本実施形態に係る基地局装置1が端末装置2にCSIレポートを要求する信号処理の一例を示すフローチャートである。
はじめに、制御部701は端末装置2にmodulo演算を考慮したCSIレポートを要求するか否かを決定する(ステップS801)。制御部701は、これまでの端末装置2からのCSIレポートや、MU-MIMO伝送で多重する最大空間多重端末数等に応じて、各端末装置2にmodulo演算を考慮したCSIレポートを要求するか否かを決定する。
次に、制御信号生成部702は、制御部701で決定されたmodulo演算の要求の有無に基づいて、CSIトリガを含んだ各端末装置2宛ての制御信号を生成する(ステップS802)。制御信号生成部702は、例えば、図3~図5で示されているようなCSIリクエストフィールドや、modulo演算リクエストフィールドを含んだDCIを各端末装置2宛てに生成する。
次に、無線送信部703は、制御信号生成部702が生成した制御信号を含んだ送信信号を生成する(ステップS803)。無線送信部703では、制御信号に対するチャネル符号化、データ変調、リソースアロケーション、直交周波数分割多重変調、Radio frequency(RF)帯へのアップコンバージョン等の処理が行なわれる。そして、無線送信部703が生成した送信信号はアンテナ704を介して、各端末装置2に向けて送信される(ステップS804)。以上が、本実施形態に係る基地局装置1が端末装置2にCSIレポートを要求する信号処理の一例である。
図9は、本実施形態に係る基地局装置1が端末装置2からのCSIレポートに基づいて、各端末装置2にプリコーディング伝送を行なうための信号処理の一例を示すフローチャートである。なお、図8と図9で行なわれている信号処理は基地局装置1にて排他的に行なわれているとは限らず、一部の信号処理を並列に行なうことも可能である。
はじめに、基地局装置1はアンテナ704を介して、各端末装置2より送信されるCSIを含んだ信号を受信する(ステップS901)。そして、無線受信部705は、アンテナ704より入力される信号より、CSIに関する情報をCSI取得部706に、それ以外の情報を制御部701に入力する(ステップS902)。
次に、CSI取得部706は、無線受信部705より入力されるCSIに関する情報から、MIMOチャネル情報(例えばPMI)、受信品質情報(例えばCQI)、所望ランク情報(例えばRI)等の情報を取得し、それぞれを制御部701およびプリコーディング部708に入力する(ステップS903)。
次に、制御部701はCSI取得部706および無線受信部705より入力される制御信号に基づいて、データ信号(例えばPDSCHを介して各端末装置2に送信されるデータ信号)に適用するMCS及びプリコーディング方式を決定する(ステップS904)。
ここで、プリコーディング方式として、本実施形態においては、線形プリコーディング(第1のプリコーディング)、非線形プリコーディング(第2のプリコーディング)及び線形プリコーディングと非線形プリコーディングが混在したプリコーディング(第3のプリコーディング)が適用可能であるものとする。
線形プリコーディングは、MIMOチャネルより算出される線形フィルタのみを使ってIUIを抑圧するプリコーディングを指し、ゼロフォーシング(Zero forcing:ZF)規範プリコーディングや、最小平均二乗誤差(Minimum mean square error:MMSE)規範プリコーディング等が例として挙げられる。非線形プリコーディングは、データ信号に予め摂動ベクトルを加算したのち、MIMOチャネルより算出される線形フィルタを使ってIUIを抑圧するプリコーディングを指し、VPやTHPが例として挙げられる。線形プリコーディングと非線形プリコーディングが混在したプリコーディングとは、非線形プリコーディングにおいて、一部の端末装置2宛てのデータ信号への摂動ベクトルの加算を行なわないプリコーディングを指す。
制御部701は、CSIトリガ送信時に、基地局装置1が各端末装置2にmodulo演算の考慮を要求したか否かに基づいてプリコーディング方式を決定する。具体的には、基地局装置1はmoduo演算を考慮しないCSIレポートを要求した端末装置2(第1の端末装置)宛てのデータ信号には摂動ベクトルを加算しない。一方で、基地局装置1はmoduo演算を考慮したCSIレポートを要求した端末装置2(第2の端末装置)宛てのデータ信号には摂動ベクトルの加算を行なう。
よって、空間多重される端末装置2が、全て第1の端末装置であれば、制御部701は第1のプリコーディングを施すことを決定する。また、空間多重される端末装置2が、全て第2の端末装置であれば、制御部701は第2のプリコーディングを施すことを決定する。そして、空間多重される端末装置2に、第1の端末装置と第2の端末装置が混在していれば、制御部701は第3のプリコーディングを施すことを決定する。
次に、物理チャネル信号生成部707では、制御部701より入力される情報に基づいて、物理チャネル信号を生成する(ステップS905)。物理チャネル信号とは、例えばPDSCHを介して各端末装置2に送信されるデータ信号である。物理チャネル信号生成部707は各端末装置2宛ての情報ビット系列に対するチャネル符号化とデータ変調、またCRS等の参照信号の多重、またデータ信号や参照信号に対するリソースアロケーション等のディジタル信号処理を施す。
次に、プリコーディング部708が、制御部701で決定されたプリコーディング方式と、CSI取得部706にて取得されたMIMOチャネル情報に基づいて、少なくとも一部の物理チャネル信号に対してプリコーディングを施す(ステップS906)。
次に無線送信部703は、プリコーディングが施された物理チャネル信号を含んだ送信信号を生成する(ステップS907)。生成された送信信号はアンテナ704を介して、各端末装置2に向けて送信される(ステップS908)。
[1.2.端末装置2]
図10は、本実施形態に係る端末装置2の1構成例を示すブロック図である。図10に示すように、端末装置2は、アンテナ1001と、無線受信部1002と、チャネル推定部1003と、制御部1004と、チャネル状態情報(CSI)生成部1005と、物理チャネル信号生成部1006と、無線送信部1007と、物理チャネル信号復調部1008と、から構成されている。
図10は、本実施形態に係る端末装置2の1構成例を示すブロック図である。図10に示すように、端末装置2は、アンテナ1001と、無線受信部1002と、チャネル推定部1003と、制御部1004と、チャネル状態情報(CSI)生成部1005と、物理チャネル信号生成部1006と、無線送信部1007と、物理チャネル信号復調部1008と、から構成されている。
図11は、本実施形態に係る端末装置2が基地局装置1にCSIレポートを行なう信号処理の一例を示すフローチャートである。
はじめに、端末装置2はアンテナ1001を介して、基地局装置1より送信されるCSIトリガを含む信号を受信し(ステップS1101)、無線受信部1002は、アンテナ1001を介して受信される制御信号をベースバンド帯の信号に変換したのち、CSIトリガを含む信号から、CSIトリガを含む制御情報を取り出し、制御部1004に入力する。また、無線受信部1002は、別に受信しているCRSやCSI-RS等の参照信号をチャネル推定部1003に入力する(ステップS1102)。
次に、チャネル推定部1003は、基地局装置1より周期的に送信されるCRSやCSI-RSに基づいて、基地局装置1との間のMIMOチャネルを推定する(ステップS1103)。
次に、制御部1004は、CSIを算出する際にmodulo演算を考慮するか否かを、CSIトリガに基づいて決定する(ステップS1104)。例えば、制御部1004は、CSIリクエストフィールドの値を読み取って、modulo演算の考慮の有無を決定すれば良い。なお、このとき決定したmodulo演算の考慮の有無は、後述する物理チャネル信号の復調時にも用いる。
次に、CSI生成部1005は、チャネル推定部1003が推定したMIMOチャネルと、制御部1004が決定したmodulo演算の考慮の有無に基づいて、CSIを生成する(ステップS1105)。例えば、CQIを算出する際にmodulo演算を考慮する場合、modulo演算を含んだ受信検出方式を用いるものとしてMIMOチャネルより受信SINRを推定し、周波数利用効率を求めて、CQIを決定すれば良い。
次に、物理チャネル信号生成部1006は、CSIや、基地局装置1に向けて送信するデータ信号を含んだ送信信号を生成する。例えば、物理チャネル信号生成部1006が生成する信号は、PUSCHを介して送信される信号である。そして、無線送信部1007は、基地局装置1宛ての送信信号をRF帯の無線送信信号に変換する。そして、端末装置2はアンテナ1001を介して、基地局装置1に対して、無線送信信号を送信する(ステップS1106)。
図12は、本実施形態に係る端末装置2が基地局装置1より送信されたプリコーディングが施されたデータ信号を復調する信号処理の一例を示すフローチャートである。例えば、基地局装置1より送信されたプリコーディングが施されたデータ信号とは、PDSCHを介して送信される信号である。なお、図11と図12で行なわれている信号処理は端末装置2にて排他的に行なわれているとは限らず、一部の信号処理を並列に行なうことも可能である。
はじめに、端末装置2はアンテナ1001を介して、基地局装置1より送信されたプリコーディングが施されたデータ信号を含む信号を受信し(ステップS1201)、無線受信部1002は、アンテナ1001を介して受信される信号をベースバンド帯の信号に変換したのち、プリコーディングが施されたデータ信号を物理チャネル信号復調部1008に入力する。また、無線受信部1002は、別に受信しているDMRS等の参照信号をチャネル推定部1003に入力する(ステップS1202)。
次に、チャネル推定部1003は、DMRS等に基づいて、プリコーディングが施されたデータ信号を復調するためのMIMOチャネル情報を推定する(ステップS1203)。
次に、物理チャネル信号復調部1008は、プリコーディングが施されたデータ信号を復調するためのMIMOチャネル情報に基づいて、プリコーディングが施されたデータ信号より所望信号を復調する(ステップS1204)。物理チャネル信号復調部1008は、線形フィルタリング、干渉キャンセラ、最尤検出、ターボ検出、およびこれらの組み合わせもしくは繰り返しによる空間検出処理、リソースデマッピング、データ復調、チャネル復号等をプリコーディングが施されたデータ信号に施す。このとき、CSI生成部1005が、modulo演算を考慮したCSIを生成していた場合、物理チャネル信号復調部1008は、摂動ベクトルを考慮した信号処理(例えばmodulo演算)を含んだ信号復調を行なう。一方で、CSI生成部1005が、modulo演算を考慮しないCSIを生成した場合、物理チャネル信号復調部1008は、摂動ベクトルを考慮せずに信号復調を行なう。
以上説明してきた、通信方法、基地局装置、および端末装置により、基地局装置1は各端末装置2に対して、CSIレポートを要求する際に、modulo演算を考慮するか否かを要求するCSIトリガを送信できる。また、端末装置2はCSIレポートを行なう際に、CSIトリガによってmodulo演算を考慮するか否かを判断することができる。よって、基地局装置1は非線形プリコーディングを含むプリコーディングMU-MIMO伝送を行なう際に、適切に、プリコーディング方式やMCSを決定することができるため、伝送品質を改善することができ、ひいては、無線通信システムの周波数利用効率の改善に寄与できる。
[2.第2の実施形態]
本実施形態においては、基地局装置1と端末装置2はそれぞれ複数のCQIテーブルもしくはMCSセットテーブルを備える。そして、基地局装置1が端末装置2に通知するCSIトリガによって、複数のCQIテーブルおよびMCSセットを切り替えて用いる。
本実施形態においては、基地局装置1と端末装置2はそれぞれ複数のCQIテーブルもしくはMCSセットテーブルを備える。そして、基地局装置1が端末装置2に通知するCSIトリガによって、複数のCQIテーブルおよびMCSセットを切り替えて用いる。
図13は、本実施形態における第2のCQIテーブルの一例を示す図である。なお、ここでは、図2で示されているCQIテーブルを第1のCQIテーブルとし、基地局装置1と端末装置2は、第1および第2のCQIテーブルを備えているものとする。
第2のCQIテーブルは第1のCQIテーブルと異なりQPSK変調が含まれない構成となっている。これは、modulo演算がQPSK変調信号の受信品質に与える影響が大きいためである。本実施形態では、CSIトリガによってmodulo演算を考慮するように設定される端末装置2(第2の端末装置)は、第2のCQIテーブルを用いてCSIレポートを行なう。
このような第2のCQIテーブルを第2の端末装置が用いることで、第2の端末装置は、非線形プリコーディングが比較的高効率に行なえる領域において、柔軟にCQIを選択することができる。一方、第1の端末装置については、第1のCQIテーブルを用いれば良い。
なお、第2のCQIテーブルの構成は図13に示した構成に限定されるものではない。第2のCQIテーブルは、第1のCQIテーブルに対して、QPSK変調がCQIテーブルに占める比率が小さければ良い。例えば、16QAM変調と64QAM変調の割合や、それぞれの符号化率およびCQIテーブル記載のMCSセット数が図13と異なっていても構わない。
図14は、本実施形態における第3のCQIテーブルの一例を示す図である。基地局装置1と端末装置2は、第1および第3のCQIテーブルを備える構成としても良い。
第3のCQIテーブルは第2のCQIテーブルと異なり、高い周波数利用効率を達成できる256QAM変調が含まれた構成となっている。第1のCQIテーブルと第3のCQIテーブルが用いられた場合、第2の端末装置はCSIレポートを行なう際に、第3のCQIテーブルを用いる。第2の端末装置宛てのデータ信号は、基地局装置1において非線形プリコーディングが施されることが想定されている。そして、非線形プリコーディングは変調多値数が高いほど、線形プリコーディングに対する利得が大きくなる。そのため、第2の端末装置が高い周波数利用効率を示すMCSが記載された第3のCQIテーブルを用いることで、高い周波数利用効率が実現できる。一方、第1の端末装置については、第1のCQIテーブルを用いれば良い。
なお、第3のCQIテーブルの構成も図14に示した構成に限定されるものではない。第2のCQIテーブルは、第1のCQIテーブルに対して、より高い周波数利用効率を示すMCSが含まれていれば良い。例えば、16QAM変調、64QAM変調および256QAM変調の割合、それぞれの符号化率、およびCQIテーブル記載のMCSセット数が図14と異なっていても構わない。
なお、CQIインデックスとして「0」が基地局装置1に通知された場合、基地局装置1は、当該の第2の端末装置を非線形プリコーディングには適さない端末装置と判断できるから、次のCSIトリガの送信タイミングにおいては、基地局装置1は当該の第2の端末装置宛てには、modulo演算を考慮せずにCSIレポートを行なうように、CSIトリガを設定すれば良い。
なお、基地局装置1は、第2の端末装置より、第2もしくは第3のCQIテーブルに基づいたCSIが報告される。基地局装置1は、第2の端末装置宛てのデータ信号に対するMCSを第2もしくは第3のCQIテーブルに記載のMCSに基づいて設定しても良い。また、基地局装置1は、第2もしくは第3のCQIテーブル記載のMCSとは異なるMCSが複数記載された別のMCSテーブルに基づいて、MCSを設定しても良い。ここで、別のMCSテーブルは、第2および第3のCQIテーブルに記載されている周波数利用効率の範囲と、その近傍の周波数利用効率を、より高い粒度で実現できるMCSが記載されていれば良く、基地局装置1と各端末装置2とで共用されている。
本実施形態にはおいては、基地局装置1と端末装置2は、複数のCQIテーブルもしくはMCSテーブルを備える。このような無線通信システムでは、基地局装置1は非線形プリコーディングを施す第2の端末装置宛てのデータ信号のMCSをより高精度に設定することが可能である。よって、端末装置2の受信品質を改善でき、ひいては、無線通信システムの周波数利用効率の改善に寄与できる。
[3.第3の実施形態]
第3の実施形態では、基地局装置1の通信範囲内(マクロセルと呼ぶ)に複数の小型基地局装置3が存在する無線通信システムを対象とする。図15は本実施形態に係る無線通信システムの一例を示す図である。また、マクロセルに存在する端末装置2(端末装置2-1及び端末装置2-2、第3の端末装置とも呼ぶ)と、小型基地局装置3の通信範囲内(スモールセルと呼ぶ)に存在する端末装置2(端末装置2-3及び端末装置2-4、第4の端末装置とも呼ぶ)が混在するが、いずれの端末装置2も基地局装置1とは接続しているものとする。また、基地局装置1と小型基地局装置3はお互いに通信が可能であるものとするが、そのインターフェースは有線通信でも無線通信でも構わない。
第3の実施形態では、基地局装置1の通信範囲内(マクロセルと呼ぶ)に複数の小型基地局装置3が存在する無線通信システムを対象とする。図15は本実施形態に係る無線通信システムの一例を示す図である。また、マクロセルに存在する端末装置2(端末装置2-1及び端末装置2-2、第3の端末装置とも呼ぶ)と、小型基地局装置3の通信範囲内(スモールセルと呼ぶ)に存在する端末装置2(端末装置2-3及び端末装置2-4、第4の端末装置とも呼ぶ)が混在するが、いずれの端末装置2も基地局装置1とは接続しているものとする。また、基地局装置1と小型基地局装置3はお互いに通信が可能であるものとするが、そのインターフェースは有線通信でも無線通信でも構わない。
図15において小型基地局装置3は1個としているが、当然複数の小型基地局装置3がマクロセル内に存在する場合も本実施形態には含まれる。また、マクロセルとスモールセルとでは、異なる搬送波周波数を用いるものとし、互いに干渉を与えないシステムを対象とする。なお、スモールセルで用いられる搬送波周波数はマクロセルで用いられる搬送波周波数よりも高い周波数であるものとする。
なお、本実施形態における小型基地局装置3は、基地局装置1と同様に、接続している端末装置2(第4の端末装置)宛てのデータ信号に、非線形プリコーディングを含むプリコーディングを施すことが可能であり、基地局装置1と同様の装置構成であるものとする。
図16は、本実施形態における基地局装置1と端末装置2(第3の端末装置と第4の端末装置)と小型基地局装置3の通信の一例を示すシーケンスチャートである。図16では、CSIレポートに関する部分だけが示されている。また、第3の端末装置と第4の端末装置および小型基地局装置3については1個だけが示されているが、実際のシステムにおいては、それぞれ複数の装置が同様の通信を行なっても良い。なお、CRSやCSI-RS等の各端末装置2がCSIを推定するための参照信号は、別の制御により基地局装置1および小型基地局装置3より周期的に通信されているものとする。また、基地局装置1および小型基地局装置3は、各端末装置2がマクロセルとスモールセルのいずれのセルにいるかを把握しているものとする。
はじめに、基地局装置1は、各端末装置2に対して、modulo演算を想定したCSIレポートを要求するか否かを決定する(ステップS1601)。本実施形態においては、基地局装置1は第3の端末装置に対してmodulo演算を要求せず、一方で、第4の端末装置に対してはmodulo演算を要求する。これは、比較的受信品質が低くなりがちな第3の端末装置は非線形プリコーディングに適さない一方で、比較的受信品質が高くなる第4の端末装置は非線形プリコーディングに適しているためである。もちろん、他の規範に基づいて、基地局装置1がmodulo演算の要求の有無を決定しても良い。
次に、基地局装置1は、各端末装置2に対して、CSIトリガを送信する(ステップS1602)。
次に、各端末装置2は、基地局装置1より通知されるCSIトリガに基づいて、CSIを生成する。第3の端末装置は基地局装置1との間のCSIを生成し(ステップS1603-1)、第4の端末装置は小型基地局装置3との間のCSIを生成する(ステップS1603-2)。そして、各端末装置2は、生成したCSIを基地局装置1に報告する(ステップS1604-1およびステップS1604-2)。
次に、基地局装置1は第4の端末装置からのCSIレポートの内容を小型基地局装置3に通知する(ステップS1605)。
次に、基地局装置1は第3の端末装置からのCSIレポートに基づいて、第3の端末装置宛てのデータ信号に適用するプリコーディング方式を決定する(ステップS1606)。また、小型基地局装置3は基地局装置1より通知された第4の端末装置からのCSIレポートに基づいて、第4の端末装置宛てのデータ信号に適用するプリコーディング方式を決定する(ステップS1607)。なお、基地局装置1は線形プリコーディングを用い、小型基地局装置3は非線形プリコーディングを用いるものと予め決められている場合、ステップS1606およびステップS1607はスキップしても構わない。
次に、基地局装置1は第3の端末装置からのCSIレポートとプリコーディング方式に基づいて、第3の端末装置宛てのデータ信号に適用するMCSを決定し、物理チャネル信号を生成する(ステップS1608)。同様に小型基地局装置3は第4の端末装置からのCSIレポートとプリコーディング方式に基づいて、第4の端末装置宛てのデータ信号に適用するMCSを決定し、物理チャネル信号を生成する(S1609)。
次に、基地局装置1と小型基地局装置3は生成した物理チャネル信号にプリコーディングを施し(ステップS1610およびS1611)、プリコーディングが施された信号を、各端末装置2宛てに送信する(ステップS1612およびS1613)。
各端末装置2は、受信した信号から所望の信号を復調する(ステップS1614およびS1615)。
以上、説明してきた方法により、各端末装置2は、自装置が接続している基地局装置1および小型基地局装置3に対して、基地局装置1より送信されるCSIトリガに基づいて、適切なCSIレポートを行なうことが可能となる。また、基地局装置1および小型基地局装置3は自装置に接続している端末装置2宛てのデータ信号のMCSを適切に設定することが可能である。
なお、以上説明してきた方法では、第4の端末装置も、算出したCSIは常に基地局装置1に報告している。しかし、第4の端末装置が小型基地局装置3に直接CSIレポートを行なっても構わない。このとき、基地局装置1が各端末装置2に通知するCSIトリガに、基地局装置1と小型基地局装置3のいずれにCSIを報告するかを指定する情報を含めても良い。
なお、第3の端末装置と第4の端末装置とで、MIMOチャネルに関する情報が異なる種類の場合もある。例えば、第3の端末装置については、ある程度精度の低い情報(例えばPMI)を基地局装置1に報告し、第4の端末装置は、ある程度精度の高い情報(例えばMIMOチャネルそのものを表す情報)を小型基地局装置3に報告する場合が考えられる。これは。小型基地局装置3が行なう確率が高い非線形プリコーディングでは、高い精度のチャネル状態情報が要求されるためである。このとき、基地局装置1が各端末装置2に通知するCSIトリガに、どのような精度のMIMOチャネル情報に基づいてCSIレポートを行なうかを指定する情報を含めても良い。
なお、第2の実施形態と同様に、複数の異なるCQIテーブルを基地局装置1と小型基地局装置3と端末装置2とが共用しても良い。このとき、第4の端末装置が第2および第3のCQIテーブルを用いるものとし、第3の端末装置が第1のCQIテーブルを用いるように制御することが可能である。また、基地局装置1は、CSIトリガによって、各端末装置2にどのCQIテーブルを用いるかを要求することも可能である。
以上説明してきた方法により、基地局装置1は各端末装置2に対して、CSIトリガにより、modulo演算を考慮するか否かを要求できる。また、端末装置2は基地局装置1もしくは小型基地局装置3との間のCSIを生成する際に、CSIトリガによってmodulo演算を考慮するか否かを判断することができる。よって、基地局装置1および小型基地局装置3は各端末装置2宛てのデータ信号に適用するMCSを適切に決定することができるため、伝送品質を改善することができる。
[4.全実施形態共通]
各実施形態の説明は、非周期チャネル状態情報報告に基づいているが、周期チャネル状態情報報告を行なう場合においても適用可能である。例えば、端末装置2が基地局装置1に周期チャネル状態情報報告する情報を指定するシグナリング(LTEにおいてフィードバックモードを指定するシグナリング等)にmodulo演算を考慮するか否かを指定する情報を含めれば良い。
各実施形態の説明は、非周期チャネル状態情報報告に基づいているが、周期チャネル状態情報報告を行なう場合においても適用可能である。例えば、端末装置2が基地局装置1に周期チャネル状態情報報告する情報を指定するシグナリング(LTEにおいてフィードバックモードを指定するシグナリング等)にmodulo演算を考慮するか否かを指定する情報を含めれば良い。
また、本発明では、CSIトリガに、modulo演算を考慮するか否かを指定する情報を含めている。このとき、modulo演算を考慮するか否かにより、端末装置2が報告するMIMOチャネルに関する情報の内容を変更しても構わない。例えば、modulo演算を考慮したCSIレポートを要求された端末装置2は、精度の高いMIMOチャネル情報(例えばMIMOチャネルそのものを表す情報)を基地局装置1に報告する。そして、modulo演算を考慮しないCSIレポートを要求された端末装置2は、精度の低いMIMOチャネル情報(例えばPMI)を基地局装置1に報告するように制御しても良い。これは、非線形プリコーディングは、線形プリコーディングよりも高い精度のMIMOチャネル情報が必要であるためである。しかし、全ての端末装置2が高い精度のMIMOチャネル情報に基づいてCSIレポートを行なうとオーバーヘッドが増加してしまう。よって、CSIトリガに基づいて、端末装置2が報告するMIMOチャネルに関する情報を変更することで、オーバーヘッドの増加を抑圧することが可能である。
また、本発明では、CSIトリガに含める信号は、CSIレポートを行なう際に、modulo演算を考慮するか否かを指定するためのものである。しかし、modulo演算に限らずに、異なる規範に基づいたCSIレポートを基地局装置1が端末装置2に要求することも本発明では可能である。例えば、基地局装置1は、MIMOチャネルに関する情報としてPMIを用いる場合のCQIと、MIMOチャネルそのものを表す情報を用いる場合のCQIのいずれかを端末装置2に要求する場合、基地局装置1は、CSIトリガによって、どちらの規範に基づいたCQIを算出するかを端末装置2に要求しても良い。また、MIMOチャネルに関する情報として精度の低い情報(例えばPMI)と精度の高い情報(例えばMIMOチャネルそのものを表す情報)のいずれかを要求する場合においても、基地局装置1は、CSIトリガによって、どちらのMIMOチャネルに関する情報を要求するかを端末装置2に通知することが可能である。また、複数の参照信号を受信する端末装置2が、どの参照信号に基づいてCSIレポートを行なうかを基地局装置1がCSIトリガによって端末装置2に要求しても良い。
また、本発明では、基地局装置1は、線形プリコーディング、非線形プリコーディング、およびその両者が混在したプリコーディングのいずれかを選択し、各端末装置2宛てのデータ信号に適用している。基地局装置1は、各端末装置2宛てのデータ信号への適用が想定されるプリコーディング方式に応じて、各端末装置2宛てのCSIトリガの内容を変更している。ここで、基地局装置1が適用可能なプリコーディング方式は上述したものに限定されるものではなく、例えば、基地局装置1は端末装置2間に送信電力差を与えることで、同時多重伝送を可能とする非直交アクセス(重畳通信とも呼ぶ)も可能である。そして、基地局装置1は各端末装置2に重畳通信によってデータ信号が多重されてくることを想定したCSIレポートを本発明と同様の方法により要求することも可能である。
以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も特許請求の範囲に含まれる。
なお、本発明は上述の実施形態に限定されるものではない。本発明の基地局装置1、端末装置2および小型基地局装置3は、セルラーシステム等の端末装置への適用に限定されるものではなく、屋内外に設置される据え置き型、または非可動型の電子機器、たとえば、AV機器、キッチン機器、掃除・洗濯機器、空調機器、オフィス機器、自動販売機、その他生活機器などに適用できることは言うまでもない。
本発明に関わる基地局装置1、端末装置2および小型基地局装置3で動作するプログラムは、本発明に関わる上記実施形態の機能を実現するように、CPU等を制御するプログラム(コンピュータを機能させるプログラム)である。そして、これら装置で取り扱われる情報は、その処理時に一時的にRAMに蓄積され、その後、各種ROMやHDDに格納され、必要に応じてCPUによって読み出し、修正・書き込みが行なわれる。プログラムを格納する記録媒体としては、半導体媒体(例えば、ROM、不揮発性メモリカード等)、光記録媒体(例えば、DVD、MO、MD、CD、BD等)、磁気記録媒体(例えば、磁気テープ、フレキシブルディスク等)等のいずれであっても良い。また、ロードしたプログラムを実行することにより、上述した実施形態の機能が実現されるだけでなく、そのプログラムの指示に基づき、オペレーティングシステムあるいは他のアプリケーションプログラム等と共同して処理することにより、本発明の機能が実現される場合もある。
また市場に流通させる場合には、可搬型の記録媒体にプログラムを格納して流通させたり、インターネット等のネットワークを介して接続されたサーバコンピュータに転送したりすることができる。この場合、サーバコンピュータの記憶装置も本発明に含まれる。また、上述した実施形態における基地局装置1、端末装置2および小型基地局装置3の一部、または全部を典型的には集積回路であるLSIとして実現しても良い。基地局装置1、端末装置2および小型基地局装置3の各機能ブロックは個別にプロセッサ化しても良いし、一部、または全部を集積してプロセッサ化しても良い。また、集積回路化の手法はLSIに限らず専用回路、または汎用プロセッサで実現しても良い。また、半導体技術の進歩によりLSIに代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いることも可能である。
本発明は、通信システム、基地局装置、および端末装置に用いて好適である。
なお、本国際出願は、2013年11月7日に出願した日本国特許出願第2013-231256号に基づく優先権を主張するものであり、日本国特許出願第2013-231256号の全内容を本国際出願に援用する。
1 基地局装置
2、2-1、2-2、2-3、2-4 端末装置
3 小型基地局装置
701、1004 制御部
702 制御信号生成部
703、1007 無線送信部
704、1001 アンテナ
705、1002 無線受信部
706 CSI取得部
707、1006 物理チャネル信号生成部
708 プリコーディング部
1003 チャネル推定部
1005 CSI生成部
1008 物理チャネル信号復調部
2、2-1、2-2、2-3、2-4 端末装置
3 小型基地局装置
701、1004 制御部
702 制御信号生成部
703、1007 無線送信部
704、1001 アンテナ
705、1002 無線受信部
706 CSI取得部
707、1006 物理チャネル信号生成部
708 プリコーディング部
1003 チャネル推定部
1005 CSI生成部
1008 物理チャネル信号復調部
Claims (11)
- 端末装置から基地局装置へチャネル状態情報を通知する際の通信システムであって、
前記基地局装置が、
前記端末装置に対して要求するチャネル状態情報の規範であるチャネル情報規範を複数の候補の中から決定するステップと、
前記決定したチャネル情報規範を指定する情報を含んだ制御情報を生成するステップと、
前記制御情報を前記端末装置に対して送信するステップと、
前記端末装置が、
前記制御情報を受信するステップと、
前記基地局装置との間のチャネルを推定するステップと、
前記制御情報と前記推定した基地局装置との間のチャネルに基づいて、前記基地局装置との間のチャネル状態情報を生成するステップと、
前記チャネル状態情報を前記基地局装置に報告するステップと、を備え、
前記チャネル情報規範は、前記端末装置が摂動ベクトルを考慮してチャネル状態情報を算出する規範と、前記端末装置が摂動ベクトルを考慮せずにチャネル状態情報を算出する規範と、を含む通信システム。 - 前記端末装置が、
前記基地局装置の通信範囲内に存在する小型基地局装置との間のチャネルを推定するステップと、
前記制御情報と前記推定した小型基地局装置との間のチャネルに基づいて、前記小型基地局装置との間のチャネル状態情報を生成するステップと、
前記小型基地局装置との間のチャネル状態情報を前記基地局装置に報告するステップと、
前記基地局装置が、
前記端末装置より報告された前記小型基地局装置との間のチャネル状態情報を前記小型基地局装置に通知するステップと、
前記小型基地局装置が前記基地局装置より通知された前記チャネル状態情報を取得するステップと、を更に備える請求項1に記載の通信システム。 - 前記制御情報には、前記端末装置が、前記チャネル状態情報を、前記基地局装置と前記小型基地局装置のいずれに報告するかを指定する情報を更に含む請求項2に記載の通信システム。
- 複数の端末装置からチャネル状態情報を受信する基地局装置であって、
前記端末装置に対して要求するチャネル状態情報の規範であるチャネル情報規範を複数の候補の中から決定する制御部と、
前記決定したチャネル情報規範を指定する情報を含んだ制御情報を生成する制御情報生成部と、
前記制御情報を前記端末装置に対して送信する無線送信部と、を備え、
前記チャネル情報規範は、前記端末装置が摂動ベクトルを考慮してチャネル状態情報を算出する規範と、前記端末装置が摂動ベクトルを考慮せずにチャネル状態情報を算出する規範と、を含む基地局装置。 - 前記複数の端末装置の一部より報告された前記チャネル状態情報を、自局の通信範囲内に存在する小型基地局装置に通知する請求項4に記載の基地局装置。
- 前記制御情報には、前記複数の端末装置の一部が、前記チャネル状態情報を、前記基地局装置と前記小型基地局装置のいずれに報告するかを指定する情報を更に含む請求項5に記載の基地局装置。
- 複数の符号化率および変調方式の組み合わせが記載されたチャネル品質インジケータテーブルを複数備え、
前記複数のチャネル品質インジケータテーブルは、前記チャネル情報規範にそれぞれ対応している請求項4に記載の基地局装置。 - 基地局装置へチャネル状態情報を通知する端末装置であって、
前記基地局装置より送信されたチャネル状態情報の規範であるチャネル情報規範を指定する情報を含む制御情報を受信する無線受信部と、
前記基地局装置との間のチャネルを推定する伝搬路推定部と、
前記制御情報で指定されたチャネル情報規範と前記推定した基地局装置との間のチャネルに基づいて、前記基地局装置との間のチャネル状態情報を生成するチャネル状態情報生成部と、
前記チャネル状態情報を前記基地局装置に送信する無線送信部と、を備え、
前記チャネル情報規範は、前記チャネル状態情報生成部が摂動ベクトルを考慮してチャネル状態情報を算出する規範と、摂動ベクトルを考慮せずにチャネル状態情報を算出する規範と、を含む端末装置。 - 前記伝搬路推定部は、前記基地局装置の通信範囲内に存在する小型基地局装置との間のチャネルを推定し、
前記チャネル状態情報生成部は、前記制御情報で指定されたチャネル情報規範と前記推定した小型基地局装置との間のチャネルに基づいて、前記小型基地局装置との間のチャネル状態情報を生成し、
前記無線送信部は、前記小型基地局装置との間のチャネル状態情報を、前記基地局装置に送信する請求項8に記載の端末装置。 - 前記無線送信部は、前記小型基地局装置との間のチャネル状態情報を、前記小型基地局装置に送信することが可能であり、
前記制御情報には、前記チャネル状態情報を、前記基地局装置と前記小型基地局装置のいずれに報告するかを指定する情報が更に含まれており、
前記制御情報に基づいて、前記小型基地局装置との間のチャネル状態情報を、前記基地局装置と前記小型基地局装置のいずれに報告するかを決定する請求項9に記載の端末装置。 - 複数の符号化率および変調方式の組み合わせが記載されたチャネル品質インジケータテーブルを複数備え、
前記複数のチャネル品質インジケータテーブルは、異なる前記チャネル情報規範にそれぞれ対応し、
前記制御情報に基づいて、前記チャネル状態情報生成部が使用するチャネル品質インジケータテーブルを決定する請求項8に記載の端末装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/032,723 US20160254894A1 (en) | 2013-11-07 | 2014-10-03 | Communication system, base station apparatus, and terminal apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013231256A JP2017022427A (ja) | 2013-11-07 | 2013-11-07 | 通信システム、基地局装置、および端末装置 |
JP2013-231256 | 2013-11-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015068508A1 true WO2015068508A1 (ja) | 2015-05-14 |
Family
ID=53041291
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/076581 WO2015068508A1 (ja) | 2013-11-07 | 2014-10-03 | 通信システム、基地局装置、および端末装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20160254894A1 (ja) |
JP (1) | JP2017022427A (ja) |
WO (1) | WO2015068508A1 (ja) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110149169B (zh) | 2014-03-21 | 2021-12-14 | 株式会社Kt | 用于发送和接收信道状态信息的方法和其设备 |
JP7056017B2 (ja) * | 2017-06-15 | 2022-04-19 | ソニーグループ株式会社 | 通信装置、通信方法、及びプログラム |
US11522586B2 (en) * | 2018-01-18 | 2022-12-06 | Nokia Technologies Oy | Apparatuses and methods for non-linear precoding |
US11184205B2 (en) * | 2018-05-10 | 2021-11-23 | Ntt Docomo, Inc. | Reception apparatus and transmission apparatus |
US20230056886A1 (en) * | 2020-03-26 | 2023-02-23 | Sony Group Corporation | Multiple modulation scheme signalling in a single resource allocation |
KR102568331B1 (ko) * | 2020-08-24 | 2023-08-18 | 한국전자통신연구원 | 통신 시스템에서 채널 상태 정보 피드백 방법 및 장치 |
JPWO2022113808A1 (ja) * | 2020-11-25 | 2022-06-02 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110064160A1 (en) * | 2008-04-17 | 2011-03-17 | Thomas Haustein | Method for Transmitting Data in a MIMO System and Communication System for Transmitting Data in a MIMO System |
WO2012020312A2 (en) * | 2010-08-13 | 2012-02-16 | Alcatel Lucent | A method and device for obtaining enhanced channel quality indicator |
WO2012136269A1 (en) * | 2011-04-08 | 2012-10-11 | Nokia Siemens Networks Oy | Uplink control signalling in a carrier aggregation system |
JP2013062763A (ja) * | 2011-09-15 | 2013-04-04 | Sharp Corp | 無線送信装置、無線受信装置、および無線通信システム |
JP2013187612A (ja) * | 2012-03-06 | 2013-09-19 | Sharp Corp | プリコーディング装置、無線送信装置、無線受信装置、無線通信システムおよび集積回路 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100992418B1 (ko) * | 2006-07-12 | 2010-11-05 | 삼성전자주식회사 | 다중 안테나 시스템의 송신단에서 간섭을 제거하기 위한장치 및 방법 |
US8526319B2 (en) * | 2010-10-22 | 2013-09-03 | Qualcomm Incorporated | Reporting of channel quality indicators for a non-linear detector |
JP5727201B2 (ja) * | 2010-11-24 | 2015-06-03 | シャープ株式会社 | 基地局装置及び通信方法 |
EP2725845B1 (en) * | 2011-08-05 | 2018-05-16 | Panasonic Intellectual Property Corporation of America | Terminal, transmitting device, reception quality reporting method and reception method |
US9237475B2 (en) * | 2012-03-09 | 2016-01-12 | Samsung Electronics Co., Ltd. | Channel quality information and beam index reporting |
-
2013
- 2013-11-07 JP JP2013231256A patent/JP2017022427A/ja active Pending
-
2014
- 2014-10-03 US US15/032,723 patent/US20160254894A1/en not_active Abandoned
- 2014-10-03 WO PCT/JP2014/076581 patent/WO2015068508A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110064160A1 (en) * | 2008-04-17 | 2011-03-17 | Thomas Haustein | Method for Transmitting Data in a MIMO System and Communication System for Transmitting Data in a MIMO System |
WO2012020312A2 (en) * | 2010-08-13 | 2012-02-16 | Alcatel Lucent | A method and device for obtaining enhanced channel quality indicator |
WO2012136269A1 (en) * | 2011-04-08 | 2012-10-11 | Nokia Siemens Networks Oy | Uplink control signalling in a carrier aggregation system |
JP2013062763A (ja) * | 2011-09-15 | 2013-04-04 | Sharp Corp | 無線送信装置、無線受信装置、および無線通信システム |
JP2013187612A (ja) * | 2012-03-06 | 2013-09-19 | Sharp Corp | プリコーディング装置、無線送信装置、無線受信装置、無線通信システムおよび集積回路 |
Non-Patent Citations (1)
Title |
---|
MEDIATEK: "On DL Precoding for llac", IEEE 802.11-10/01119R0, September 2010 (2010-09-01), pages 1 - 8 * |
Also Published As
Publication number | Publication date |
---|---|
US20160254894A1 (en) | 2016-09-01 |
JP2017022427A (ja) | 2017-01-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11563548B2 (en) | Methods and arrangements for CSI reporting | |
CN108476049B (zh) | 用于信道状态信息参考信号(csi-rs)的方法和装置 | |
CN110832803B (zh) | 用于多用户多入多出的干扰测量和信道状态信息反馈 | |
US10374677B2 (en) | Method for channel-related feedback and apparatus for same | |
US9497750B2 (en) | Method and apparatus for transmitting control signaling | |
US8934560B2 (en) | Method and apparatus of using CDD like schemes with UE-RS based open loop beamforming | |
JP6529087B2 (ja) | 基地局装置、端末装置および集積回路 | |
US8964591B2 (en) | Method and device for transmitting/receiving channel state information in a wireless communication system | |
JP5271373B2 (ja) | 基地局、端末、通信システム、通信方法、および集積回路 | |
WO2015068508A1 (ja) | 通信システム、基地局装置、および端末装置 | |
US20120088458A1 (en) | Transmission device, receiving device, communication system, and communication method | |
US20100303034A1 (en) | Dual-Layer Beam Forming in Cellular Networks | |
CA2849070A1 (en) | Interference management in a wireless network | |
JP2016119496A (ja) | 基地局装置、端末装置、無線通信システム及び集積回路 | |
US10454556B2 (en) | Method for reporting channel state and apparatus therefor | |
CN109196790A (zh) | 无线网络中的信道状态信息确定 | |
CN105991222A (zh) | 配置信息通知方法、获取方法、装置、基站及终端 | |
US20200280353A1 (en) | Reporting of radio channel quality | |
CN107370584B (zh) | 一种导频信息的发送方法和装置以及接收方法和装置 | |
US20140003266A1 (en) | Calculating and reporting channel characteristics | |
JP5725676B2 (ja) | 基地局、端末、通信システム、通信方法、および集積回路 | |
EP3335351A1 (en) | Cluster-specific reference signal configuration for cell coordination |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14861034 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15032723 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14861034 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |