[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015068291A1 - Printed article - Google Patents

Printed article Download PDF

Info

Publication number
WO2015068291A1
WO2015068291A1 PCT/JP2013/080345 JP2013080345W WO2015068291A1 WO 2015068291 A1 WO2015068291 A1 WO 2015068291A1 JP 2013080345 W JP2013080345 W JP 2013080345W WO 2015068291 A1 WO2015068291 A1 WO 2015068291A1
Authority
WO
WIPO (PCT)
Prior art keywords
antimony
printing
tin oxide
layer
doped tin
Prior art date
Application number
PCT/JP2013/080345
Other languages
French (fr)
Japanese (ja)
Inventor
文人 小林
芝岡 良昭
博昭 島根
渉 吉住
正太 川▲崎▼
Original Assignee
共同印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 共同印刷株式会社 filed Critical 共同印刷株式会社
Priority to PCT/JP2013/080345 priority Critical patent/WO2015068291A1/en
Publication of WO2015068291A1 publication Critical patent/WO2015068291A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M3/00Printing processes to produce particular kinds of printed work, e.g. patterns
    • B41M3/14Security printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • B42D25/369Magnetised or magnetisable materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • B42D25/373Metallic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • B42D25/378Special inks
    • B42D25/382Special inks absorbing or reflecting infrared light
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • C01G19/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G30/00Compounds of antimony
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/037Printing inks characterised by features other than the chemical nature of the binder characterised by the pigment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents
    • C09D11/322Pigment inks
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer

Definitions

  • the present invention relates to a printed matter, and particularly to an infrared absorbing printed matter for preventing counterfeiting.
  • the area of the infrared absorbing ink is visually observed in the same manner as the area of the general ink (infrared non-absorbing ink).
  • the region of the infrared absorbing ink can be confirmed while the region of the general ink is not observed.
  • part of the print design is formed with infrared absorbing ink and the remaining part is formed with infrared non-absorbing ink to obtain a printed matter
  • only the infrared absorbing ink portion is confirmed by checking the printed matter with an infrared detector. Can be confirmed.
  • infrared absorbers infrared absorbing organic materials such as cyanine compounds and phthalocyanine compounds; or infrared absorbing inorganic materials such as carbon black, tungsten oxide, and lead oxide are known.
  • Patent Document 1 describes that a printed matter is obtained using an infrared absorbing ink containing carbon black as an infrared absorbing material.
  • Patent Document 2 discloses a printed matter in which an infrared absorbing printing layer containing a conventional antimony-doped tin oxide and an infrared reflecting (infrared non-absorbing) printing layer are arranged on a base material in a state in which the colors are matched. Is described.
  • an infrared absorbing printing layer containing an infrared absorbing organic material as an infrared absorber can exhibit various colors because of the variety of colors of this material, but the problem of low weather resistance has been pointed out. .
  • the infrared absorbing printing layer formed with an infrared absorbing ink containing carbon black as an infrared absorbing inorganic material is superior to the ink containing the infrared absorbing organic material in weather resistance, but the carbon black has a dark color tone. Since it is a pigment which has, the color of the printing layer was restricted to the thing of a black type or a low brightness. For this reason, when carbon black was used as the infrared absorbing inorganic material, it was not possible to obtain an infrared absorbing printing layer having a variety of colors by mixing with pigments or dyes having other colors. In particular, it was impossible to obtain a light-colored, particularly light-colored, light-colored infrared absorbing printing layer.
  • the white pigment has the property of reflecting infrared rays, so the printing layer Infrared absorptivity is inhibited, and the function as a printed matter for preventing counterfeiting is adversely affected.
  • an infrared absorbing printing layer containing a metal oxide such as tungsten oxide or lead oxide as an infrared absorbing inorganic material has a problem that the infrared absorbing effect is low although the transparency is high.
  • ITO indium tin oxide
  • antimony tin oxide is excellent in transparency and weather resistance, but regulations of each industry (for example, chemical substance release and transfer notification system (PRTR), toy safety standards, etc.) Therefore, it has been desired to reduce the amount of antimony. Moreover, since antimony is also a rare metal, it has been desired to reduce the production cost of ATO-containing ink by reducing the amount of antimony contained in ATO.
  • PRTR chemical substance release and transfer notification system
  • an object of the present invention is to provide a printed matter that is excellent in infrared absorptivity, transparency, weather resistance, safety and cost, and can exhibit a variety of colors by including colorants of various colors. To do.
  • the degree of crystallinity is 58427 or more.
  • Printed matter [2] The printed matter according to [1], which is for forgery prevention. [3] The printed matter according to [1] or [2], wherein, in (a), the full width at half maximum ( ⁇ 2 ⁇ ) is 0.21 or less. [4] In (b), the content of the antimony oxide is 2.8 to 9.3 wt% based on the weight of the antimony-doped tin oxide, according to [1] or [2] Printed matter. [5] The printed material according to [1] or [2], wherein the crystallinity is 78020 or more.
  • the printing layer (A) and the printing layer (B) contain the antimony-doped tin oxide, and the content of the antimony-doped tin oxide in the printing layer (A) and the printing layer (B) is The printed matter according to any one of [1] to [6], which is different.
  • the range in which the print layer (A) is disposed and the range in which the print layer (B) is disposed are adjacent to or separated from each other. The printed matter according to claim 1.
  • the printing layer (A) is formed by at least one selected from the group consisting of offset printing, flexographic printing, letterpress printing, intaglio printing, gravure printing, screen printing, and inkjet printing. ] To [11].
  • the printing layer (B) is formed by at least one selected from the group consisting of offset printing, flexographic printing, letterpress printing, intaglio printing, gravure printing, screen printing, and inkjet printing. ] To [12]. [14] The printing layer (A) and / or the printing layer (B) further includes at least one selected from the group consisting of a chromic material, a magnetic pigment, an ultraviolet absorber, an optical variable material, and a pearl pigment. The printed material according to any one of [1] to [13].
  • a method for producing a printed material in which the printed layer (A) and the printed layer (B) are formed on a substrate by printing,
  • the printed layer (A) is disposed outside the range in which the printed layer (B) is disposed,
  • the infrared absorption rate of the printing layer (A) and the printing layer (B) is different,
  • the printing layer (A) and / or the printing layer (B) contains antimony-doped tin oxide, and the antimony-doped tin oxide contains tin oxide and antimony oxide, and the following (a) and / or (b Meet):
  • the antimony-doped tin oxide pigment used in the present invention is an inorganic pigment and hardly deteriorates due to light such as ultraviolet rays. Therefore, according to the present invention, the antimony-doped tin oxide pigment includes an infrared absorption printing layer having high weather resistance and infrared absorption. A printed matter is obtained.
  • the printed matter of the present invention has a lightness and a light white color of the antimony-doped tin oxide pigment, various colors, particularly bright colors, are provided by mixing the antimony-doped tin oxide pigment with other colorants. can do. Therefore, according to the present invention, it is possible to provide printed matter such as banknotes, securities, and cards that are excellent in forgery prevention effect and design.
  • the production cost of antimony-doped tin oxide pigments is lower than that of tin-doped indium oxide pigments.
  • an antimony-doped tin oxide pigment having a lower content of antimony oxide than a conventional antimony-doped tin oxide pigment can be used in a printed matter. Therefore, according to the present invention, it is possible to provide an anti-counterfeit printed matter excellent in economy while complying with safety regulations regarding the amount of antimony used in a wide range of industries.
  • FIG. 1 is a process diagram showing one embodiment of a method for producing antimony-doped tin oxide.
  • FIG. 2 (A) is a diagram showing the results of X-ray diffraction of antimony-doped tin oxide of Example 1 (antimony oxide content: 0.7% by weight, with aerated firing / cooling), and
  • FIG. 4 is a graph showing the results of X-ray diffraction of antimony-doped tin oxide of Example 2 (antimony oxide content: 2.8% by weight, with aerated firing / cooling).
  • FIG. 2 (A) is a diagram showing the results of X-ray diffraction of antimony-doped tin oxide of Example 1 (antimony oxide content: 0.7% by weight, with aerated firing / cooling)
  • FIG. 4 is a graph showing the results of X-ray diffraction of antimony-doped tin oxide of Example 2 (antimony oxide content: 2.8% by weight, with aerated
  • FIG. 3 (A) is a diagram showing the results of X-ray diffraction of antimony-doped tin oxide of Example 3 (antimony oxide content: 5.3% by weight, with aerated firing / cooling), and FIG. FIG. 6 is a graph showing the results of X-ray diffraction by antimony-doped tin oxide of Example 4 (antimony oxide content: 9.3 wt%, with aerated firing / cooling).
  • FIG. 4 (A) shows the X-ray diffraction pattern of antimony-doped tin oxide of Example 5 (ventilated and cooled by commercial cooling, cooling rate of 200 [° C./hour] or more, antimony oxide content 2.7% by weight).
  • FIG. 4 (B) shows the results, and FIG.
  • FIG. 4 shows antimony-doped tin oxide of Example 6 (commercially manufactured product by air firing and cooling, cooling rate of less than 200 [° C./hour], antimony oxide content 2.7 wt. %) Shows the result of X-ray diffraction.
  • FIG. 5 is a diagram showing the results of X-ray diffraction of antimony-doped tin oxide of Example 7 (aerated firing / cooling of a mixture of metastannic acid and antimony trioxide, antimony oxide content 4.2% by weight).
  • 6A is a diagram showing the results of X-ray diffraction of antimony-doped tin oxide of Comparative Example 1 (antimony oxide content: 9.9% by weight, commercially available product), and FIG.
  • FIG. 6B is a comparative example. It is a figure which shows the result of the X-ray diffraction of antimony dope tin oxide 2 (antimony oxide content rate 2.8 weight%, aeration baking and no cooling).
  • FIG. 7 is a conceptual diagram schematically showing a method for calculating the crystallinity.
  • FIG. 8 is a graph showing the influence of the antimony oxide content rate on the reflectance at a wavelength of 200 nm to 2500 nm.
  • FIG. 9 is a graph showing the influence of the ventilation firing process on the reflectance at a wavelength of 200 nm to 2500 nm and an antimony oxide content of 2.7 to 2.8% by weight.
  • FIG. 10 is a graph showing the influence of the air-fired process on the reflectance and antimony content of a commercially available antimony-doped tin oxide material at a wavelength of 200 nm to 2500 nm.
  • FIG. 11 is a graph showing the influence of the aeration firing process on the reflectance of a mixture of metastannic acid and antimony trioxide at a wavelength of 200 nm to 2500 nm.
  • FIG. 12 is a graph showing the reflectance of indigo / red / yellow (CMY) process ink at wavelengths of 350 nm to 1500 nm.
  • FIG. 13 is a schematic diagram illustrating a detection pattern when the printed material according to the embodiment of the present invention is observed, and FIG. 13A illustrates the detection pattern when the printed material is observed visually or with a visible light detector.
  • FIG. 13B shows a detection pattern when the printed material is observed with an infrared light detector.
  • the printed matter of the present invention includes a substrate, a printed layer (A), and a printed layer (B). Moreover, the infrared absorption factor of a printing layer (A) and a printing layer (B) differs. Furthermore, on the base material, the printing layer (A) is disposed outside the range in which the printing layer (B) is disposed. Therefore, the printing layer (A) and the printing layer (B) are arranged on the substrate so as not to overlap each other.
  • At least one of the printing layer (A) and the printing layer (B) contains antimony-doped tin oxide. Since antimony-doped tin oxide has infrared absorptivity, at least one of the printed layer (A) and the printed layer (B) is an infrared absorbing printed layer.
  • the printed matter of the present invention can be for anti-counterfeit due to the infrared absorptivity of the infrared absorbing printing layer.
  • the antimony dope tin oxide used by embodiment of this invention is mentioned later.
  • the substrate, the printing layer (A) and the printing layer (B) will be described below.
  • a base material is a component holding a printing layer (A) and a printing layer (B). Further, the substrate may be a substrate to be printed on the printing layer (A) and the printing layer (B).
  • the substrate may be planar or three-dimensional.
  • the base material may be in the form of a sheet, a film, a sphere, a rectangular parallelepiped, a cube, or the like. Therefore, the substrate may have a flat surface, a curved surface, or irregularities depending on the desired form of the printed material.
  • Examples of the substrate include paper, carton board, metal plate, resin film, fabric, clothing, glass, wallpaper, flooring, card, label, and seal.
  • the printing layer (A) can have one or a plurality of regions.
  • the infrared absorption rates of the plurality of regions may be the same or different.
  • the printing layer (B) can have a single region or a plurality of regions.
  • the infrared absorption rates of the plurality of regions may be the same or different.
  • the infrared absorption rate in the pattern “1” region and the pattern “2” region may be the same. And may be different.
  • the infrared absorption rate of the printing layer (A) and the printing layer (B) is different. Therefore, the infrared absorptivity of the printing layer (A) and the printing layer (B) is also different.
  • one of the print layer (A) and the print layer (B) may have a specific infrared absorption rate, while the other may have an infrared absorption rate different from the infrared absorption rate. Further, if one of the print layer (A) and the print layer (B) has a positive infrared absorption rate, the other infrared absorption rate may be 0.
  • the printing layer (A) is disposed outside the range where the printing layer (B) is disposed. Moreover, the range in which the printing layer (A) is disposed and the range in which the printing layer (B) is disposed may be adjacent to each other or may be separated from each other. Therefore, when the printed material is observed from a direction perpendicular to the printing surface of the printed material, the range in which the printed layer (A) is arranged and the range in which the printed layer (B) are arranged do not overlap.
  • the print layer (A) is arranged and the range in which the print layer (B) are arranged do not overlap
  • layers other than the print layer (A) and the print layer (B) It may be arranged on the substrate, under the printing layer (A) or under the printing layer (B).
  • the other infrared non-absorbing layer may be arrange
  • the printing layer (A) and the printing layer (B) are obtained by partially printing ink on a substrate.
  • partial printing is printed as a pattern such as a character, a picture, a pattern, a background pattern, or a line drawing on a part or the entire surface of the substrate, or the entire surface (a part of the substrate is covered with ink ( Solid)
  • the printing layer (A) and the printing layer (B) can be formed as a pattern such as a character, a picture, a pattern, a background pattern, and a line drawing.
  • the printing layer (A) and the printing layer (B) may be arranged in a donut shape so as not to overlap each other.
  • the printing layer (A) and the printing layer (B) contains antimony-doped tin oxide, it is an infrared absorption printing layer.
  • the printing layer (A) and the printing layer (B) contain antimony-doped tin oxide
  • the printing layer (A) and the printing layer (B) are infrared absorbing printing layers, but different infrared absorptions. Therefore, the content of antimony-doped tin oxide in the print layer (A) and the print layer (B) is different.
  • the printed layer (A) and / or the printed layer (B) may contain an infrared absorbing material other than antimony-doped tin oxide as long as the printed layer (A) and / or the printed layer (B) have different infrared absorption rates.
  • one of the printing layer (A) and the printing layer (B) may not contain antimony-doped tin oxide.
  • the layer not containing antimony-doped tin oxide becomes an infrared non-absorbing print layer if it does not contain other infrared absorbing materials.
  • the printed layer (A) and the printed layer (B) may have the same color tone when observed visually or with a visible light detector. Therefore, the printing layer (A) and the printing layer (B) can be formed in a color-matched state.
  • the printing layer (A) and the printing layer (B) can be formed by printing ink on a substrate, the ink will be described below.
  • an ink containing antimony-doped tin oxide is used in order to give the printed layer (A) and / or the printed layer (B) infrared absorption.
  • the ink since the antimony-doped tin oxide has infrared absorptivity, the ink is an infrared absorbing ink. This infrared absorbing ink can be used to prevent forgery of printed matter by utilizing the infrared absorbing property of antimony-doped tin oxide.
  • the content of the infrared absorbing material such as antimony-doped tin oxide in the ink or the presence or absence of the infrared absorbing material in the ink so that the printing layer (A) and the printing layer (B) have different infrared absorption rates. is preferably determined.
  • an ink that does not contain an infrared absorbing material such as antimony-doped tin oxide can be used.
  • the ink may be an infrared non-absorbing ink.
  • infrared absorption is performed.
  • An ink containing a functional material other than the material may be used.
  • a chromic material can be included in the ink as a functional material.
  • the ink includes antimony-doped tin oxide and / or a colorant and a vehicle.
  • the ink may also contain adjuvants as well as antimony-doped tin oxide, colorants and vehicles.
  • the ink can be used as an oxidation polymerization ink, an ultraviolet curable ink, an oxidation polymerization / ultraviolet curable ink, or a solvent-containing ink depending on the type of vehicle component.
  • oil-based ink is an ink that can be cured by oxidative polymerization of a vehicle component.
  • oil-based inks contain a resin, a crosslinking agent or a gelling agent, a drying oil or a semi-drying oil, a solvent and the like as a vehicle component.
  • UV curable ink is an ink that can be cured by photopolymerization of a vehicle component.
  • a UV ink contains a photopolymerizable resin, a photopolymerization initiator, and the like as a vehicle component, but may not contain a volatile component such as a solvent.
  • oil-based / ultraviolet-curing combined ink (hereinafter abbreviated as “oil-based / UV combined ink”) is an ink having curing characteristics of both oil-based ink and UV ink.
  • the solvent-containing ink is an ink containing a solvent and antimony-doped tin oxide and / or a colorant.
  • the solvent-containing ink can fix the antimony-doped tin oxide and / or the colorant to the substrate by evaporation of the solvent or penetration of the solvent into the printing medium.
  • the solvent-containing ink is preferably used as an aqueous ink containing water as a main solvent or an organic solvent-containing ink containing an organic solvent as a main solvent.
  • the water-based ink is an ink containing water as a main solvent, but may contain an organic solvent. Furthermore, the water-based ink is preferable because it can contain various resins such as a water-soluble resin, a colloidal dispersion resin, and an emulsion resin in addition to water.
  • the organic solvent-containing ink is an ink containing an organic solvent as a main solvent, but does not need to contain water substantially. “Substantially free of water” means that the content of water in the ink is 0% by mass, or that the ink inevitably contains 1% by mass or less of water.
  • Antimony-doped tin oxide, vehicle, auxiliary agent and coloring agent will be described below.
  • Antimony-doped tin oxide is a substance in which tin oxide is doped with antimony.
  • the antimony-doped tin oxide may be in the form of a pigment containing tin oxide and antimony oxide.
  • the antimony-doped tin oxide used in the present invention contains tin oxide and antimony oxide.
  • the content of antimony oxide is about 0.5% by weight or more, about 1.0% by weight or more, about 1.5% by weight or more, about 2.0% by weight or more based on the weight of antimony-doped tin oxide.
  • the content is preferably 2.5% by weight or more, or about 2.8% by weight or more, and the content thereof is about 10.0% by weight or less, about 9.5% by weight or less, and about 9.3% by weight. Or less, about 8.0% or less, about 7.0% or less, about 6.0% or less, about 5.5% or less, about 5.0% or less, about 4.0% or less, It is preferably about 3.5% by weight or less, or about 3.0% by weight or less.
  • the content of antimony oxide is about 2.5 to about 9.3 wt%, about 2.8 to about 9.3 wt%, and about 2.8 to about 5 based on the weight of antimony-doped tin oxide. More preferably, it is 0.5 wt%, or about 2.8 to about 3.5 wt%.
  • Conventional antimony-doped tin oxide needs to contain more than 10% by weight of antimony oxide in order to obtain a transparent conductive material having sufficient conductivity.
  • the antimony dope tin oxide used for this invention can reduce the usage-amount of antimony oxide compared with the conventional antimony dope tin oxide as above-mentioned.
  • antimony oxide is considered to play a role of absorbing infrared rays by entering into the crystal lattice of tin oxide, so if the amount used is simply reduced, the infrared absorption effect is reduced accordingly. Will do.
  • the infrared absorption effect is an effect that occurs when antimony oxide is dissolved (enters) into the crystal lattice of tin oxide, which is the main component. That is, when manufacturing antimony-doped tin oxide, antimony oxide is contained in tin oxide as the main component.
  • antimony oxide not dissolved in the tin oxide crystal lattice is present as an impurity as in conventional antimony-doped tin oxide, it is considered that the impurity did not contribute to the infrared absorption effect.
  • the portion of antimony oxide that does not contribute to the infrared absorption effect remains as a waste material (impurity).
  • the usage-amount of antimony oxide has increased more than necessary. Therefore, the inventors of the present invention have conducted research on this impurity, and as a result, the half-value width ( ⁇ 2 ⁇ ) of antimony-doped tin oxide is wide and / or the crystallinity (the crystallization of the whole material when the material is crystallized).
  • the ratio of the portion is low, antimony oxide as an impurity increases.
  • the half width ( ⁇ 2 ⁇ ) is narrow and / or the degree of crystallinity is high, antimony oxide as an impurity decreases. I found it.
  • examples of means for improving the crystallinity of antimony-doped tin oxide while removing antimony oxide as an impurity include aeration firing described later and vaporization purification described later.
  • the present invention provides an antimony-doped tin oxide having a narrowed half width ( ⁇ 2 ⁇ ) and / or an increased crystallinity in order to minimize the amount of antimony oxide used.
  • the half width ( ⁇ 2 ⁇ ) is narrowed or the crystallinity is increased, impurities are reduced, and antimony oxide can be effectively dissolved and the infrared absorption effect can be improved.
  • a commercially available X-ray diffractometer may be used to select an arbitrary scan speed, but the number of integrations is set to one.
  • it is preferably 0.25 or less, 0.21 or less, 0.20 or less, or 0.19 or less.
  • the crystallinity of antimony-doped tin oxide is 58427 or more, particularly 78020 or more, impurities can be further reduced, and antimony oxide can be effectively solid-solved to further improve the infrared absorption effect. Therefore, according to the present invention, the infrared absorption effect can be sufficiently exhibited while reducing the amount of antimony oxide used.
  • the antimony-doped tin oxide is dissolved in a varnish containing an acrylic polymer and silicone, applied to a substrate, dried, and a solid content weight ratio of antimony-doped tin oxide having a thickness of 70 ⁇ m and about 11.6% by weight.
  • the solar reflectance of this coating film is measured according to JIS K5602 when a coating film having a thickness of 380 is formed, the average reflectance in the wavelength range of 780 to 1100 nm is subtracted from the average reflectance in the wavelength range of 380 to 780 nm.
  • the obtained value is preferably about 3.00% or more.
  • the antimony-doped tin oxide Visible light absorption is relatively low, that is, the visible light transparency of antimony-doped tin oxide is relatively high. Therefore, antimony-doped tin oxide can be used in a wide range of applications without being restricted by the color exhibited by antimony-doped tin oxide.
  • the value obtained by subtracting the average reflectance in the wavelength range of 780 to 1100 nm from the average reflectance in the wavelength range of 380 to 780 nm is about 4.80% or more, or about 4.85% or more. And more preferably about 99% or less, about 90% or less, or about 80% or less.
  • the infrared absorbing material used in the present invention may be an infrared absorbing pigment made of the above antimony-doped tin oxide.
  • the action and effect of the antimony-doped tin oxide described above can be realized by the infrared absorbing material. For this reason, while reducing the usage-amount of antimony oxide, the infrared absorption effect can fully be exhibited, and the high quality infrared absorption material which followed the predetermined safety standard etc. can be provided.
  • the printed matter of the present invention has a peak reflectance value of 28.776 in the infrared wavelength region of 780 to 1100 nm. % Or less is preferable.
  • infrared absorbing printing layer having a low infrared reflectance
  • antimony oxide contained in the infrared absorbing printing layer can be reduced, and the infrared absorbing effect can be sufficiently exhibited.
  • the antimony-doped tin oxide used in the present invention can be produced, for example, by the following method.
  • the method for producing antimony-doped tin oxide used in the present invention includes an aeration firing step of firing the antimony-doped tin oxide raw material under ventilation.
  • aeration firing or cooling is performed not only by firing or cooling while circulating a firing or cooling atmosphere, but also by firing or cooling in an open space (hereinafter also referred to as “open system”) that does not block outside air. Including.
  • the method for producing antimony-doped tin oxide used in the present invention can make the half-value width of antimony-doped tin oxide narrower than that of the conventional product and / or increase the crystallinity of antimony-doped tin oxide than that of the conventional product.
  • the method for producing antimony-doped tin oxide used in the present invention includes an antimony-doped tin oxide that can sufficiently exhibit an infrared absorption effect while reducing the amount of antimony oxide used by including an aeration firing step. Can be manufactured.
  • the inventors of the present invention have found that the removal of excess antimony oxide can be achieved by performing an aeration firing process and a subsequent cooling process.
  • the antimony dope tin oxide obtained by the said manufacturing method has a narrow half value width and / or a high crystallinity degree, It is thought that this originates in there being few antimony oxides of an impurity.
  • extra antimony oxide is present in the antimony-doped tin oxide, it is considered that X-rays are scattered during measurement by X-ray diffraction and the peak is lowered.
  • a method for producing antimony-doped tin oxide including at least an aeration firing step and a subsequent aeration cooling step is referred to as a “vaporization purification method”.
  • the above-described manufacturing method can maintain the crystal structure appropriately while removing a part thereof by the aeration firing process, so that a high infrared absorption effect Can be maintained. For this reason, a high infrared absorption effect can be obtained while reducing the amount of antimony oxide used by passing through the aeration firing step.
  • tin compound examples include metastannic acid, sodium stannate trihydrate, niobium tritin, fenbutane oxide, tin oxide, and tin hydride.
  • antimony compound examples include antimony oxide, indium antimonide, and stibine.
  • the method for producing antimony-doped tin oxide used in the present invention may include the following steps after the aeration firing step: A ventilation cooling step of cooling the obtained antimony-doped tin oxide under ventilation; and / or a cooling step of cooling the obtained antimony-doped tin oxide at a cooling rate of 200 [° C./hour] or more.
  • the aeration cooling process can be performed, for example, by sending air into the furnace (specifically, it is possible to set the number of hours and how many times it is cooled by setting the cooling device).
  • the air cooling process may be performed in an earlier time (for example, about 5 hours). For this reason, the ventilation cooling process is more actively cooling than natural cooling.
  • the cooling rate is preferably 200 [° C./hour] or more, 215 [° C./hour] or more, or 216 [° C./hour] or more.
  • the manufacturing method of the antimony dope tin oxide used for this invention includes the following mixing processes and closed baking processes before a ventilation baking process: A mixing step of mixing a tin compound and an antimony compound to obtain a mixture; and a closed baking step of firing the mixture in a closed system to obtain an antimony-doped tin oxide raw material.
  • the manufacturing method of the antimony dope tin oxide used for this invention includes the closed cooling process which cools an antimony dope tin oxide raw material by a closed system between a closed baking process and an aeration baking process.
  • the antimony-doped tin oxide raw material satisfying the above (i) to (iii) can be obtained by the mixing step, the closed firing step, and the closed cooling step, respectively.
  • the content of antimony trioxide is preferably 10% by weight, but may be about 5 to 20% by weight.
  • Step S102 In this step, the material mixed in the previous raw material mixing step (step S100) is dried at 320 ° C. Thereby, the water used when mixing materials in the previous raw material mixing step (step S100) can be removed.
  • Step S104 the material dried in the first drying step (step S102) is pulverized. Specifically, the dried material is pulverized into a powder by a fine pulverizer.
  • Step S106 the material pulverized in the first pulverization step (step S104) is baked. Specifically, the material pulverized in the first pulverization step (step S104) is fired at 1000 to 1300 ° C. for 1 hour or longer in a closed system. In the closed baking process, since baking is performed in a closed system, the content of antimony oxide (solid solution ratio) is maintained at about 10% by weight.
  • Step S107 the material fired in the previous closed firing step (step S106) is cooled. Specifically, cooling is started simultaneously with the end of the closed firing step, and the fired material is cooled in a closed system. Thereby, an antimony-doped tin oxide raw material in which tin (Sn) and antimony (Sb) are combined is generated. The antimony-doped tin oxide raw material is generated through a closed firing process (step S106) and a closed cooling process (step S107). In addition, although natural cooling may be sufficient as cooling, you may cool the baked material under ventilation similarly to the ventilation cooling process mentioned later.
  • this step may be performed to pulverize the material cooled in the previous closed cooling step (step S107).
  • the fired material can be pulverized using a bead mill while using water as a medium until the particle diameter (median diameter in the laser diffraction scattering method) reaches about 100 nm.
  • the process may be continuously performed in the apparatus used in the process before this process (for example, step S106, step S107, etc.).
  • Step S110 the material pulverized in the first pulverization step (step S108) may be dried by heating to 320 ° C. Thereby, the water used when the material is pulverized in the first fine pulverization step (step S108) can be removed.
  • the process may be continuously performed in the apparatus used in the process before this process (for example, step S106, step S107, etc.).
  • this step may be performed to pulverize the material dried in the second drying step (step S110). Specifically, the dried material can be pulverized with a fine pulverizer. In the case where this process is omitted, the process may be continuously performed in the apparatus used in the process before this process (for example, step S106, step S107, etc.).
  • Step S114 the material pulverized in the second pulverization step (step S112) is baked. Specifically, the material pulverized in the second pulverization step (step S112) is fired in a furnace under ventilation (a state in which ventilation is maintained inside the furnace).
  • the firing temperature may be 1000 ° C. or more, 1050 ° C. or more, 1100 ° C. or more, or 1150 ° C. or more, and the firing temperature may be 1300 ° C. or less, 1250 ° C. or less, or 1200 ° C. or less.
  • the firing time may be 1 hour or more, 2 hours or more, 3 hours or more, 4 hours or more, 5 hours or more, 6 hours or more, 7 hours or more, or 8 hours or more. It may be 12 hours or less, 11 hours or less, 10 hours or less, or 9 hours or less.
  • Step S116 In this step, the antimony-doped tin oxide fired in the previous aeration firing step (step S114) is cooled under ventilation.
  • cooling is started simultaneously with the end of the aeration firing process, and the temperature in the firing furnace is set to room temperature (for example, about 20 to 25 ° C.) within 300 minutes. Cooling.
  • the aeration cooling step is performed under aeration.
  • an aeration cooling process (step S116) can be performed after an aeration baking process (step S114).
  • Step S118 the purified material cooled in the previous air cooling process (step S116) is pulverized. Specifically, using water as a medium, the purified material is pulverized using a bead mill until the particle size (median diameter in the laser diffraction scattering method) becomes about 100 nm.
  • Step S120 the impurities of the material whose particle size has been adjusted in the second fine pulverization step (step S118) are removed by washing with water.
  • Impurities are minute amounts of electrolyte (for example, sodium (Na), potassium (K), etc.) contained in the raw material, and whether or not the impurities are sufficiently removed can be confirmed by conductivity.
  • Step S122 the material cleaned in the previous cleaning step (step S120) is dried by heating to 145 ° C. Thereby, while being able to remove the water used when wash
  • Step S124 the material dried in the third drying step (step S122) is pulverized. Specifically, the dried material is pulverized with a fine pulverizer so that the particle diameter (median diameter by laser diffraction scattering method) is about several tens of nm to 100 ⁇ m.
  • antimony dope tin oxide used for this invention is manufactured by passing through each said process.
  • the vehicle is a medium in which antimony-doped tin oxide and / or colorant is dispersed and adhered to the substrate.
  • the ink may contain known vehicle components used in printing. Since the ink can be formed as oil-based ink, UV ink, oil-based / UV combined ink, or solvent-containing ink, vehicles suitable for each ink will be described below.
  • Vehicle suitable for oil-based ink for example, a resin, an oxidation polymerization catalyst, a solvent, or the like can be used alone or in combination.
  • the resin, the oxidation polymerization catalyst, and the solvent will be described below.
  • Resins contained in oil-based inks include linseed oil, tung oil and other drying oils, soybean oil, rapeseed oil and other semi-drying oils, alkyd resins produced by modification from semi-drying oils, and other modified alkyd resins, especially Use phenol-modified alkyd resin, epoxy-modified alkyd resin, urethane-modified alkyd resin, silicone-modified alkyd resin, acrylic-modified alkyd resin, vinyl-modified alkyd resin, neutralized acid alkyd resin, etc. Can do.
  • oxidation polymerization catalyst As the oxidation polymerization catalyst, a metal compound such as cobalt, vanadium, manganese, zirconium, lead, iron, cerium, or a salt of a long chain fatty acid may be used alone or in combination of two or more.
  • oxidation polymerization catalyst include cobalt borate, cobalt octylate, manganese octylate, zircon octylate, cobalt naphthenate, lead monoxide and the like.
  • a known solvent used for the ink may be selected in consideration of the boiling point of the solvent, the compatibility between the solvent and the resin, the drying property of the ink, the permeability to the printing material, and the like.
  • the solvent include mineral oil; aromatic oil such as toluene and xylene; ester such as ethyl acetate; ketone such as methyl ethyl ketone; alcohol such as isopropyl alcohol; glycol such as ethylene glycol, diethylene glycol and triethylene glycol; cellulose solvent; and high boiling mineral oil such as n-dodecane mineral oil.
  • Vehicle suitable for UV ink examples include photopolymerizable resins such as monomers, oligomers and binder polymers; photopolymerization initiators and the like.
  • photopolymerizable resins such as monomers, oligomers and binder polymers
  • photopolymerization initiators and the like.
  • the photopolymerizable resin and the photopolymerization initiator will be described below.
  • Photopolymerizable resins include epoxy acrylate, urethane acrylate, polyester acrylate, silicone acrylate, acrylated amine, acrylic saturated resin and acrylic acrylate, bisphenol A type epoxy acrylate acid anhydride addition acrylate, phenol novolac epoxy acrylate acid Carboxylic acid acrylates with hydroxyl anhydrides added to hydroxylated acrylates such as anhydride added acrylates, acid anhydride added acrylates of dipentaerythritol pentaacrylate, and carboxyls with acid anhydrides added to urethane acrylates with hydroxyl groups
  • Group-containing acrylate, polyethylene glycol diacrylate, polypropylene glycol diacrylate, polyglycerin epoxy Relate, water-soluble acrylates such as polyglycerol acrylate, monomers and oligomers such as acryloyl morpholine, may be used in combination either alone or two or more.
  • the oligomer is a resin that governs the basic physical properties of the UV ink, and the monomer mainly acts as a diluent and affects the curability and adhesiveness as well as the viscosity adjustment of the ink.
  • the photopolymerization initiator is a compound that generates radicals such as active oxygen when irradiated with ultraviolet rays.
  • the UV ink may contain a known photopolymerization initiator used for printing.
  • photopolymerization initiator examples include, but are not limited to, acetophenone, ⁇ -aminoacetophenone, 2,2-diethoxyacetophenone, p-dimethylaminoacetophenone, 2-hydroxy-2-methyl-1-phenylpropane -1-one, benzyldimethyl ketal, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, 4- (2-hydroxyethoxy) phenyl- (2-hydroxy-2-methylpropyl) ) Ketone, 4- (2-hydroxyethoxy) phenyl- (2-hydroxy-2-propyl) ketone, 1-hydroxycyclohexyl-phenylketone, 2-methyl-2-morpholino (4-thiomethylphenyl) propane-1- ON, 2-benzyl-2-dimethylamino-1- (4-mol Acetophenones such as linophenyl) -butanone; bezoin, beizoin methyl ether, be
  • a photopolymerization initiation assistant such as ethyl 4-dimethylaminobenzoate or isoamyl 4-dimethylaminobenzoate may be used in combination with the photopolymerization initiator.
  • an oil-based ink and a UV ink may be used in combination to form an oil-based / UV combined ink.
  • antimony-doped tin oxide is added to a vehicle for oil-based inks other than the solvent, and optionally a solvent comprising a vegetable oil component, a radically polymerizable monomer and / or oligomer, or a pigment dispersant is added to the bead mill or three-roll mill.
  • An ink mill base is obtained by dispersing the kneaded meat with a dispersing machine such as the above.
  • a photopolymerization initiator is added to the mill base for the ink, and if desired, other materials can be added to obtain an oil-based / UV combined ink.
  • the oil-based ink vehicle is obtained by dissolving the components described above as a vehicle suitable for oil-based inks, and the UV ink vehicle is prepared by dissolving the components described above as vehicles suitable for UV ink. Is. Further, a colorant may be added to the oil-based / UV combined ink.
  • Suitable vehicles for solvent-containing inks include at least a solvent.
  • a suitable vehicle for water-based ink includes water.
  • the vehicle suitable for the water-based ink may contain an organic solvent, a resin, or the like alone or in combination.
  • vehicles suitable for organic solvent-containing inks contain organic solvents and are substantially free of water. Further, the vehicle suitable for the organic solvent-containing ink may contain a resin.
  • the resin contained in the solvent-containing ink a resin described as a vehicle suitable for the oil-based ink or the UV ink may be used.
  • the resin contained in the water-based ink is preferably in the form of a water-soluble resin, a colloidal dispersion resin, or an emulsion resin.
  • a solvent described as a vehicle suitable for the oil-based ink may be used.
  • the ink may contain known adjuvants used in printing.
  • auxiliary agents include extender pigments, waxes, antifoaming agents, dispersants, plasticizers, crosslinking agents, leveling agents, conductivity imparting agents, penetrating agents, pH adjusting agents, preservatives or fungicides, and oxygen scavengers. And other additives. These adjuvants will be described below.
  • Extender pigments are frequently used when the viscosity of the ink is high and it is difficult to wipe the ink from the intaglio plate.
  • the extender pigment for example, barium sulfate, calcium carbonate, calcium sulfate, kaolin, talc, silica, corn starch, titanium dioxide, or a mixture thereof can be used.
  • the wax is an additive for imparting properties such as friction resistance, anti-blocking property, slipperiness and anti-scratch properties to the ink, and examples thereof include polyethylene wax and fluorinated wax.
  • the defoaming agent is an auxiliary agent used to suppress the generation of bubbles in the ink or reduce the bubbles generated in the ink.
  • the antifoaming agent for example, silicone compounds, polysiloxanes, polyglycols, polyalkoxy compounds and the like can be used alone or in combination.
  • examples of the antifoaming agent include BYK (registered trademark) -019, BYK (registered trademark) -022, BYK (registered trademark) -024, and BYK (registered trademark) -065 manufactured by Byk-Chemie. , And BYK (registered trademark) -088.
  • the dispersant is an auxiliary agent for improving the leveling property, stability and dispersibility of the ink. Specifically, the dispersant improves the wetting of the antimony-doped tin oxide or colorant by the vehicle component, or adsorbs the antimony-doped tin oxide or colorant to the vehicle component and / or is dispersed in the ink. It can be used to prevent reagglomeration of the antimony doped tin oxide or colorant.
  • dispersant examples include a low molecular dispersant, a polymer dispersant, a pigment derivative, and a coupling agent.
  • low molecular weight dispersant examples include soap, ⁇ -sulfo fatty acid ester salt (MES), alkylbenzene sulfonate (ABS), linear alkylbenzene sulfonate (LAS), alkyl sulfate (AS), and alkyl ether sulfate.
  • MES ⁇ -sulfo fatty acid ester salt
  • ABS alkylbenzene sulfonate
  • LAS linear alkylbenzene sulfonate
  • AS alkyl sulfate
  • alkyl ether sulfate examples include soap, ⁇ -sulfo fatty acid ester salt (MES), alkylbenzene sulfonate (ABS), linear alkylbenzene sulfonate (LAS), alkyl sulfate (AS), and alkyl ether sulfate.
  • Anionic compounds such as salts (AES) and alkylsulfuric acid triethanolamine; cationic compounds such as alkyltrimethylammonium salts, dialkyldimethylammonium chloride and alkylpyridinium chloride; amphoteric compounds such as amino acids, alkylcarboxybetaines, sulfobetaines and lecithins; Nonionic compounds such as fatty acid diethanolamide, polyoxyethylene alkyl ether (AE), and polyoxyethylene alkyl phenyl ether (APE) are exemplified.
  • a polymer having a portion corresponding to an anchor group and a barrier group may be arbitrarily used.
  • a non-aqueous polymer dispersant such as a partial alkyl ester of polyacrylic acid or a polyalkylene polyamine for the organic solvent-containing ink.
  • Water-based inks include naphthalene sulfonate formalin condensates, polystyrene sulfonates, polyacrylates, copolymers of vinyl compounds and carboxylic acid-containing monomers, and water-based polymers such as carboxymethyl cellulose. It is preferred to use a dispersant.
  • the pigment derivative is obtained by introducing a polar group such as a carboxyl group, a sulfone group, or a tertiary amino group into the pigment skeleton.
  • a polar group such as a carboxyl group, a sulfone group, or a tertiary amino group.
  • the pigment skeleton portion of the pigment derivative is easily adsorbed with the corresponding pigment, while the introduced polar group is excellent in affinity with the vehicle or other dispersant.
  • the pigment derivative can be synthesized by a known method according to the skeleton of the pigment contained in the ink.
  • dialkylaminomethylene copper phthalocyanine, amine salt copper phthalocyanine, and the like are used to form flexographic printing inks that contain phthalocyanine as a colorant.
  • the coupling agent is a material that adsorbs to the surface of the antimony-doped tin oxide or the colorant or chemically bonds to improve the adhesion between the antimony-doped tin oxide or the colorant and the vehicle.
  • the coupling agent include a silane coupling agent and a titanate coupling agent.
  • the plasticizer is an auxiliary agent for adjusting the film formability of the ink or the flexibility of the ink coating film.
  • plasticizers include aliphatic hydrocarbon oils such as naphthene oil and paraffin oil; liquid polydienes such as liquid polybutadiene and liquid polyisoprene; polystyrene; poly- ⁇ -methylstyrene; ⁇ -methylstyrene-vinylstyrene copolymer Hydrogenated rosin pentaerythritol ester; polyterpene resin; ester resin and the like.
  • the crosslinking agent is an auxiliary agent necessary for chemically bonding a plurality of substances, and is also called a gelling agent or a curing agent.
  • the crosslinking agent include isocyanate compounds such as tolylene diisocyanate, diphenylmethane diisocyanate, isophorone diisocyanate, hexamethylene diisocyanate, tetramethylxylylene diisocyanate, polymethylene polyphenyl polyisocyanate; trimethylolpropane-tris- ⁇ -N-aziridini Aziridine compounds such as lupropionate and pentaerythritol propane-tris- ⁇ -N-aziridinylpropionate; epoxy compounds such as glycerol polyglycidyl ether and trimethylolpropane polyglycidyl ether; aluminum triisopropoxide, mono- sec-Butoxyaluminum diisopropoxide, Aluminum tri-sec-butoxide
  • a leveling agent is an additive that, when added to an ink, lowers the surface tension of the ink and improves the surface smoothness of the coating film.
  • the leveling agent include silicone polymers, polyacrylate polymers, and polyvinyl ether polymers.
  • leveling agent for example, “BYK-310”, “BYK-323”, “BYK-320”, “BYK-377”, “BYK-UV3510”, “BYK-Silclean 3700”, “BYK” -UV3500 "and” BYK-UV3570 “” (both manufactured by Big Chemie Japan).
  • the conductivity imparting agent is an additive that imparts conductivity to the ink.
  • the conductivity imparting agent is preferably used in continuous ink jet printing.
  • Examples of the conductivity imparting agent include alkali metal salts such as lithium, sodium and potassium; alkaline earth metal salts such as magnesium and calcium; and simple ammonium salts or quaternary ammonium salts. These salts are halogenated compounds (eg chloride, bromide, iodide, fluoride, etc.), perchlorate, nitrate, thiocyanate, formate, acetate, sulfate, sulfonate, propionate , Trifluoroacetate, triflate (trifluoro-methanesulfonate), hexafluorophosphate (eg potassium hexafluorophosphate), hexafluoro-antimonate, tetrafluoroborate, picrate and It may be a carboxylate or the like.
  • alkali metal salts such as lithium, sodium and potassium
  • alkaline earth metal salts such as magnesium and calcium
  • the penetrating agent is an additive for penetrating and fixing the ink to the printing medium.
  • the penetrant include potassium hydroxide, ethanol, isopropanol and the like.
  • the pH adjuster is an additive for controlling the pH of the ink within a predetermined range.
  • the pH adjuster include inorganic acids such as hydrochloric acid, sulfuric acid, and phosphoric acid; organic acids such as acetic acid and benzoic acid; hydroxides such as sodium hydroxide and potassium hydroxide; halides such as ammonium chloride; sodium sulfate and the like. Sulfate such as potassium carbonate, potassium hydrogen carbonate, sodium hydrogen carbonate, etc .; phosphates such as sodium hydrogen phosphate and sodium dihydrogen phosphate; organic acid salts such as ammonium acetate and sodium benzoate; tributylamine, And organic amines such as triethanolamine.
  • Preservatives or fungicides are additives for suppressing the generation or growth of microorganisms in the ink.
  • the antiseptic or fungicide include sodium benzoate, potassium sorbitanate, thiabendazole, benzimidazole, siabendazole, thiazosulfamide, pyridinethiol oxide, and the like. Further, it is preferable to contain a preservative or a fungicide in the water-based ink.
  • the oxygen scavenger is an additive used to remove dissolved oxygen in the ink.
  • the oxygen scavenger include organic oxygen scavengers such as ascorbic acid, catechol, erythorbic acid, pyrogallol, hydroquinone, reducing sugars, and tannic acid; and organic acid salts such as sodium ascorbate.
  • a polymerization inhibitor such as phenothiazine and t-butylhydroxytoluene; a sensitizer; a thermal stabilizer; an ultraviolet absorber; a light stabilizer; a light absorber; Anti-skinning agent; Antistatic agent; Conductive agent; Flame retardant; Transferability improver; Liquid repellent; Dry retarder; Antioxidant; Anti-set-off agent; or Nonionic surfactant An activator or the like may be included.
  • the adjuvants listed above can be used alone or in combination of two or more.
  • the colorant is a component that adds color to the ink.
  • the ink used in the present invention may contain a known colorant used for printing.
  • Examples of the colorant include inorganic pigments, organic pigments, dyes, organic pigments for toners, and the like.
  • inorganic pigments include chrome yellow, zinc yellow, bitumen, barium sulfate, cadmium red, titanium oxide, zinc white, alumina white, calcium carbonate, ultramarine, graphite, aluminum powder, bengara, barium ferrite, copper and zinc alloy. Examples thereof include powder, glass powder, and carbon black.
  • organic pigments examples include soluble azo pigments such as ⁇ -naphthol pigments, ⁇ -oxynaphthoic acid pigments, ⁇ -oxynaphthoic acid anilide pigments, acetoacetate anilide pigments, and pyrazolone pigments; ⁇ -naphthol pigments Insoluble azo pigments such as pigments, ⁇ -oxynaphthoic acid anilide pigments, acetoacetanilide monoazos, acetoacetanilide disazos, pyrazolone pigments; copper phthalocyanine blue, halogenated (eg chlorine or brominated) copper phthalocyanine blue, Phthalocyanine pigments such as sulfonated copper phthalocyanine blue and metal-free phthalocyanine; quinacridone pigments, dioxazine pigments, selenium pigments (pyrantron, anthrone, indanthrone, anthrapyrimidine
  • the dye examples include azo dyes, complex salts of azo dyes and chromium, anthraquinone dyes, indigo dyes, phthalocyanine dyes, xanthene dyes, thiazine dyes, and the like.
  • the organic pigment includes a lake pigment.
  • a lake pigment is obtained by dyeing a dye on an inorganic pigment or extender, and the lake pigment also has water insolubility according to the water insolubility of the inorganic pigment or extender.
  • lake pigments include the fanal (FANAL (registered trademark)) color series available from BASF.
  • the organic dye for toner is an organic dye that can be contained in the toner, and has charging properties in addition to the general characteristics of the colorant.
  • a dye or an organic pigment may be used, but a dye is preferred from the viewpoint of transparency and coloring power.
  • the colorant can be used to adjust the color tone of the printing layer (A) and the printing layer (B).
  • a color matching dye examples include "Microlith (registered trademark) red” manufactured by Sakuramiya Chemical Co., Ltd., "Microlith (registered trademark) blue” manufactured by Sakuramiya Chemical Co., Ltd., and "Microlith (registered trademark) yellow” manufactured by Sakuramiya Chemical Co., Ltd. Etc.
  • the functional material may be inorganic or organic, and may be an additive that imparts functionality to the ink.
  • chromic materials examples include chromic materials, magnetic pigments, ultraviolet absorbers, optically variable materials, pearl pigments, and the like.
  • a chromic material is a material that develops a color in response to energy such as light, heat, electricity, and fades when the energy is blocked or lost.
  • the chromic material include fluorescent pigments, excited luminescent pigments, temperature-sensitive color changing materials, photochromic materials, and stress luminescent materials.
  • the colorants listed above can be used alone or in combination of two or more.
  • the blending ratio of each component contained in the ink is preferably about 0 to 20% by weight of the colorant when the viscosity of the ink is adjusted to about 50 to 1000 poise.
  • the vehicle is preferably about 10 to 90% by weight
  • the adjuvant is preferably 0 to about 10% by weight
  • the antimony-doped tin oxide is preferably about 1 to 50% by weight. .
  • the blending ratio of each component contained in the ink is about 1 to 50% by weight of the colorant when the viscosity of the ink is adjusted to about 50 to 1000 poise.
  • the vehicle is about 10-90% by weight and the adjuvant is preferably 0-about 10% by weight.
  • the viscosity of the ink can be arbitrarily adjusted as long as it is within the viscosity range suitable for the printing method used.
  • Infrared absorbing inks are obtained by dispersing antimony-doped tin oxide and / or colorants in a vehicle, optionally with auxiliary colorants.
  • a mixer such as a single-screw mixer or a twin-screw mixer; a two-roller mill, a three-roller mill, a bead mill, a ball mill, a sand grinder, an attritor, or the like, an antimony-doped tin oxide and The colorant can be dispersed in the vehicle.
  • the average particle diameter of the antimony-doped tin oxide in the ink is 200 ⁇ m or less, 150 ⁇ m or less, 100 ⁇ m or less, 80 ⁇ m or less, 60 ⁇ m or less, 40 ⁇ m or less, 20 ⁇ m or less, 15 ⁇ m or less, 10 ⁇ m or less, It may be 5 ⁇ m or less, 2.5 ⁇ m or less, 1 ⁇ m or less, 0.5 ⁇ m or less, 0.1 ⁇ m or less, 0.05 ⁇ m or less, or 0.025 ⁇ m or less, and the average particle diameter is 0.001 ⁇ m or more, 0 It may be 0.01 ⁇ m or more, or 0.015 ⁇ m or more.
  • the average particle diameter refers to the median diameter of the laser diffraction / scattering method.
  • Means for adjusting the average particle size of the antimony-doped tin oxide in the ink to a range of 0.001 ⁇ m to 200 ⁇ m is not limited, but means for pulverizing the antimony-doped tin oxide during the production of the antimony-doped tin oxide; It is considered to be a combination with means for dispersing antimony-doped tin oxide in the vehicle during the production of the ink.
  • the antimony-doped tin oxide is sufficiently pulverized by the step S118 or S124.
  • the antimony-doped tin oxide is sufficiently dispersed in the vehicle by a mixer or a meat grinder.
  • a printing layer (A) and a printing layer (B) are formed by printing ink on a substrate by a known printing method, and the printing layer (A) is disposed on the printing layer (B). It is obtained by arranging outside the range.
  • the printing layer (A) and the printing layer (B) can be formed on the substrate by the same or different printing methods. Furthermore, the printing layer (A) can be formed by printing before, during, or after the formation of the printing layer (B).
  • the printing method may be plate printing or non-plate printing.
  • plate printing for example, relief printing such as flexographic printing and letterpress printing; lithographic printing such as offset printing; gravure printing; intaglio printing such as direct printing plate printing and etching printing; stencil printing such as screen printing; Is mentioned.
  • flexographic printing is a printing method in which ink is adhered to a roll having a concave portion, the ink in the concave portion is transferred to the convex portion of the relief cylinder, and then the ink on the convex portion is transferred to the printing medium.
  • Typographical printing is a printing method that prints using letterpress.
  • the letterpress is a plate obtained by forming or assembling line drawing parts such as type letters, ruled lines, patterns, and photographs as convex parts.
  • Offset printing is a printing method in which the ink attached to the plate is transferred to a transfer body, and then the ink attached to the transfer body is transferred to a substrate. Further, a rubber blanket is generally used as the transfer body.
  • Gravure printing is a printing method in which cells with recesses are formed in a plate cylinder, ink is put into the cells, and excess ink on the surface of the plate cylinder is scraped off with a doctor blade while the ink in the cells is transferred to the substrate. It is.
  • Intaglio printing forms depressions on the plate surface by line printing or etching, deposits ink on the entire plate, wipes ink adhering to the plate surface other than the depressions, and In this printing method, the printing medium is pressed against the printing medium, and the ink in the recesses is transferred to the printing medium.
  • the plate may be not only a flat plate but also a body plate.
  • the recesses formed on the printing plate correspond to the line drawing part, and the line drawing part is composed of a line drawing recessed from the surroundings. Further, a portion other than the concave portion on the printing plate is called a non-line drawing portion. Therefore, the cells used for gravure printing are not formed on the intaglio plate surface.
  • Screen printing is a printing method in which ink is put on a screen plate and ink is pushed out from the screen plate by sliding of a squeezee.
  • the screen plate is formed by applying a screen to the frame and providing an image area and a non-image area on the image by a resist method.
  • the non-image area is closed with a resin or the like by a resist method.
  • plateless printing examples include inkjet printing; other plateless printing such as electrophotography, thermal printing, and thermal transfer printing.
  • Inkjet printing is a printing method in which ink is ejected as ink droplets from a nozzle and deposited on a substrate. Inkjet printing does not use a plate, does not apply pressure to the substrate, and the nozzle and the substrate do not contact each other, so printing is faster without damaging the substrate compared to printing methods that use plates. It can be performed.
  • the method of ejecting ink from a nozzle is roughly divided into a continuous method and an on-demand method.
  • the continuous method is a method for electrically controlling the flight trajectory of the ink liquid by continuously discharging the ink liquid.
  • the on-demand method is a method for ejecting a necessary amount of ink during printing.
  • the on-demand method is roughly classified into a piezo method, a thermal method, and an electrostatic induction method, depending on a method in which ink is pressurized and ejected.
  • the printed matter of the present invention can be obtained by using a single or a combination of the printing methods described above.
  • the printing layer (A) and / or the printing layer (B) contains the antimony-doped tin oxide
  • the printing layer (A) and / or the printing layer (B) is an infrared absorption printing layer. . Therefore, when one of the printing layer (A) and the printing layer (B) is an infrared absorbing printing layer and the other is an infrared non-absorbing printing layer, the printed matter is observed with an infrared detector, and the infrared absorbing printing layer A pattern is seen.
  • the printed matter (1) in which the infrared non-absorbing printing layer (3) and the infrared absorbing printing layer (4) are arranged side by side on the substrate (2) is visually observed. Or when it observes with a visible light detector, the pattern of an infrared non-absorption printing layer (3) and an infrared absorption printing layer (4) is seen.
  • FIG. 13B when the printed matter (1) is observed with an infrared light detector such as an infrared camera, a pattern of the infrared absorbing printed layer (3) is seen.
  • both layers become infrared absorption printing layers, but the antimony-doped oxidation in the printing layer (A) and the printing layer (B).
  • the tin content is different.
  • the density of the detection pattern varies depending on the range in which the print layer (A) or the print layer (B) is disposed.
  • the authenticity of the printed matter can be determined using the presence or absence of the infrared absorption pattern or the density gradient of the infrared absorption pattern.
  • Another determination method may be combined with the determination method based on the presence or absence of the infrared absorption pattern or the density of the infrared absorption pattern.
  • Other determination methods include, for example, other functional materials such as chromic materials, magnetic pigments, ultraviolet absorbers, optical variable materials, and pearl pigments described above in the infrared non-absorbing print layer and / or infrared absorbing print layer. The method of making it contain and utilizing the functionality of a functional material is mentioned.
  • the used firing furnace is a shuttle-type firing furnace with a cooling device (manufactured by Tsuji Electric Furnace).
  • Steps 100-124 were performed as described in FIG. 1 using 118.8 g of metastannic acid and 1 g of antimony trioxide.
  • the aerated firing step (S114) was performed for about 8 hours with the temperature in the aerated furnace set to about 1100 ° C.
  • the aeration cooling step (S116) was performed at a cooling rate of about 200 [° C./hour] or more.
  • Examples 2 to 7 and Comparative Examples 1 and 2 were performed as described in Table 1 below.
  • the content of antimony oxide in the obtained antimony-doped tin oxide was changed by changing the weight of metastannic acid and antimony trioxide and / or the time of the aeration firing step (S114). I let you.
  • Comparative Example 1 a commercially available antimony-doped tin oxide raw material was prepared.
  • Example 5 and 6 the commercial item of the comparative example 1 was used for the ventilation baking process (S114) and the ventilation cooling process (S116).
  • the cooling rate in the ventilation cooling step (S116) was 200 [° C./h] or more in Example 5, and less than 200 [° C./h] in Example 6.
  • Example 7 a simple mixture of metastannic acid and antimony trioxide was subjected to an aeration firing step (S114) and an aeration cooling step (S116).
  • the content of antimony oxide in the product is measured by an order analysis method using a fluorescent X-ray analyzer RIX-1000 (manufactured by Rigaku Corporation). Moreover, as measurement conditions, the measurement is performed using antimony-doped tin oxide as a powder. The powder is measured under the condition that the particle diameter (median diameter by laser diffraction scattering method) is 120 nm.
  • FIGS. 2 to 5 are diagrams showing the results of X-ray diffraction by the antimony-doped tin oxide of the example
  • FIG. 6 is a diagram showing the results of X-ray diffraction of the comparative example.
  • the vertical axis indicates “intensity (CPS)” of reflected light when X-rays are irradiated
  • the horizontal axis indicates “2 ⁇ (deg)”.
  • CPS Counterbalance Per Second
  • “2 ⁇ ” indicates an irradiation angle when the measurement object is irradiated with X-rays.
  • the reason for “2 ⁇ ” is that if the angle (incident angle) for irradiating X-rays is ⁇ , the reflection angle is also ⁇ , and the sum of the incident angle and the reflection angle is 2 ⁇ . It is.
  • the graph of FIG. 2 (B) is a graph showing the result of X-ray diffraction by antimony-doped tin oxide of Example 2.
  • points where the intensity of reflected light greatly increases are generated at a plurality of locations.
  • the crystallinity is calculated using the measured values of 2 ⁇ (deg) and intensity (CPS) at the point where the intensity of the reflected light is the highest among the points where the intensity of the reflected light increases.
  • FIG. 7 is a conceptual diagram schematically showing a method for calculating the crystallinity.
  • the crystallinity can be calculated from the measurement result of X-ray diffraction (XRD).
  • XRD X-ray diffraction
  • CPS Since CPS is the intensity (level) of reflected light, it has a waveform height in the illustrated example.
  • ⁇ 2 ⁇ is the width of the half width corresponding to a half value of the maximum value (peak value) of CPS obtained by the X-ray diffraction measurement (in FIG. 7, the length A1 is the same as the length A2. Length).
  • Example 2A is a graph showing the result of X-ray diffraction by the antimony-doped tin oxide of Example 1.
  • the maximum value of CPS is about 15000, and the waveform appearing at the point where the intensity of the reflected light is the highest is sharp and the width of the skirt portion is narrow. It has a sharp waveform.
  • the graph of FIG. 6 (A) is a graph showing the result of X-ray diffraction by the commercially available product of Comparative Example 1.
  • ⁇ 2 ⁇ the width of the bottom part of the waveform at which the CPS value reaches its peak is wider than those of the above-described Examples 1 to 7. This is considered to be caused by a large amount of impurities because it is antimony-doped tin oxide produced without using a vaporization purification method.
  • the graph of FIG. 6 (B) is a graph showing the result of X-ray diffraction by the product of Comparative Example 2.
  • the width of the bottom part of the waveform at which the CPS value reaches its peak is wider than those of the above-described Examples 1 to 7. This is considered to be caused by a large amount of impurities because it is antimony-doped tin oxide manufactured without using the above-described vaporization purification method.
  • This can also be seen from the fact that the crystallinity of Comparative Example 2 is lower than that of Example 2 even though Comparative Example 2 has the same antimony oxide content as Example 2.
  • the infrared absorption effect was measured by measuring the light reflectance using a spectrophotometer.
  • the equipment used, the measurement conditions, and the measurement method are as follows.
  • the infrared absorption pigment of an Example and a comparative example all are measuring by making a particle size (median diameter in a laser diffraction scattering method) into 120 nm. Further, the reflectance of the standard white plate was set as a standard value of about 100%. In addition, the said measuring method is based on "How to obtain
  • the acrylic / silicone varnish described in the above (2) includes a solid content such as a resin and a solvent that volatilizes and disappears when dried.
  • the acrylic / silicone varnish solids weight ratio is 40% by weight, the acrylic / silicone varnish solids content is 38 parts, the infrared absorbing pigment is 5 parts, and the infrared absorbing pigment solids weight ratio is 11.6. % By weight. The remaining 88.4% by weight is resin and / or other additives.
  • FIG. 8 shows that antimony-doped tin oxide in which antimony oxide is dissolved in the crystal lattice of tin oxide has an infrared absorption effect.
  • the infrared absorption effect is high, and the solid content of the antimony-doped tin oxide pigment, which is a particularly general printing condition, is desirable.
  • the weight ratio is 11.6% by weight and the reflectance is 30% or less, when a printed matter is observed with an authenticity determination device such as an infrared camera, a printed part containing antimony-doped tin oxide and other parts The difference is large and 10 out of 10 people can be distinguished, so it is easy to use for authenticity determination and is preferred.
  • Examples 2 to 4 having an antimony oxide content of 2.8% by weight or more maintain a reflectance of 30% or less in that region.
  • the comparative example 2 that has not undergone the aeration firing process is compared with the examples 2, 5 and 6 that have undergone the aeration firing process. It is clear that the infrared absorption effect is low. That is, the aeration firing process can improve the crystallinity of the antimony-doped tin oxide, thereby improving the infrared absorption effect. This is supported by comparing the crystallinity of Examples 2, 5, and 6 and Comparative Example 2 in Table 1 below.
  • Example 5 performed at a cooling rate of 200 [° C./hour] or higher was more than Example 6 performed at a cooling rate of less than 200 [° C./hour].
  • the half width ( ⁇ 2 ⁇ ) is narrow and the degree of crystallinity is high.
  • adjusting the cooling rate to 200 [° C./hour] or more in the ventilation cooling step contributes to the improvement in crystallinity of the antimony-doped tin oxide.
  • Examples 1 to 6 have an average reflectance in the visible light wavelength range (380 nm to 780 nm) and an infrared wavelength range (780 to 1100 nm) than Example 7. )
  • the average reflectance difference is large. Therefore, it can be seen that the antimony-doped tin oxides of Examples 1 to 6 can be used in a wide range of applications without being restricted by the color exhibited by antimony-doped tin oxide as compared with the antimony-doped tin oxide of Example 7. .
  • the crystallinity can be improved with the minimum content of antimony oxide, and antimony-doped tin oxide having a sufficient infrared absorption effect is produced. can do.
  • the obtained antimony-doped tin oxide has an antimony oxide content of 9.3 wt% or less and an antimony oxide tin oxide having a content of 9.9 wt% is substantially equal to or higher than that. Infrared absorption effect is obtained.
  • Resin Mixture of vinyl chloride-vinyl acetate copolymer and polyester resin (weight ratio 1: 1) 30 g; Solvent: 15 g of a mixture of methyl ethyl ketone (MEK) and toluene (weight ratio 1: 1); and colorant for color matching: “Microlith (registered trademark) blue” (diluted 1/100) by Sakuramiya Chemical Co., Ltd. 4 g
  • the printed surface of the infrared absorbing printing layer appeared black because it absorbed infrared light, whereas infrared non-absorbing printing.
  • the printed surface of the layer appeared white because it transmitted or reflected infrared radiation.
  • Print sample preparation conditions Offset printing machine RI tester Ink volume: 0.125cc Ink film thickness: about 1 ⁇ m
  • the light reflectance of three types of printed samples was measured according to the following measurement conditions: (Measurement condition) Measuring device: UV-visible spectrophotometer U-4000 (manufactured by Hitachi, Ltd.) Measurement item: Reflectance (%) Measurement wavelength: 350-2500 nm
  • FIG. 12 shows the reflectance in the wavelength range of 350 to 1500 nm for the indigo (C), red (M), and yellow (Y) process inks.
  • FIG. 12 is a graph showing the reflectance of a printed matter obtained by offset printing of CMY process inks.
  • the reflectance of the printed matter obtained by gravure printing, flexographic printing, screen printing, or inkjet printing is the same as the reflectance of the printed matter obtained by offset printing. it is conceivable that. Therefore, by combining the reflectance graph of the CMY process ink shown in FIG. 12 and the reflectance graphs of Examples 1 to 7 shown in FIGS. 8 to 11, various infrared absorbing printing layers are formed in the printed matter of the present invention. The relationship between color tone and infrared absorptivity when formed by a printing method can be expected.
  • the red and yellow process inks do not absorb light in the infrared wavelength region (780 to 1100 nm).
  • the reflectance graphs of Examples 1 to 7 shown in FIGS. 8 to 11 since the average reflectance in the infrared wavelength region is lower than the average reflectance in the visible light wavelength region (380 nm to 780 nm), it is higher than that of visible light. Infrared light is also considered to be absorbed. Therefore, if the antimony-doped tin oxide used in the present invention is contained in red or yellow ink, or if the infrared absorbing ink used in the present invention is used as red or yellow ink, the color tone of red or yellow is affected. It can be seen that the ink can be provided with infrared absorptivity.
  • the indigo process ink slightly absorbs light in the infrared wavelength region (780 to 1100 nm).
  • the ratio of the indigo process ink to absorb infrared light is so low that it does not need to be considered.
  • the infrared absorbing ink containing antimony-doped tin oxide obtained in Examples 1 to 7 and containing no colorant does not correspond to black, indigo, red or yellow ink.
  • the infrared-absorbing ink containing antimony-doped tin oxide obtained in Examples 1 to 7 and containing no colorant has high brightness and a light white color. The effect on the color tone of yellow ink is considered to be small. Therefore, the infrared absorbing ink containing antimony-doped tin oxide obtained in Examples 1 to 7 and containing no colorant can be grasped as a special color ink or functional ink suitable for various printing methods. In that case, the reflectance graphs of Examples 1 to 7 shown in FIGS. 8 to 11 can be regarded as graphs representing the light reflection characteristics of the special color ink used in the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided is a printed article in which a printed layer (A) and a printed layer (B) are disposed on a base material. The printed layer (A) is disposed outside an area in which the printed layer (B) is disposed. The infrared absorbance of the printed layer (A) and the infrared absorbance of the printed layer (B) are different. The printed layer (A) and/or the printed layer (B) include antimony-doped tin oxide. The antimony-doped tin oxide includes tin oxide and antimony oxide, and satisfies (a) and/or (b): (a) the half-value width (∆2θ) of a peak in the vicinity of 2θ=27˚ obtained from an X-ray diffraction measurement is not more than 0.30; and/or (b) the antimony oxide content is 0.5-10.0 wt% using the weight of the antimony-doped tin oxide as a reference, and the degree of crystallization, i.e. a value obtained by dividing, by the half-value width (∆2θ), the peak value of the peak in the vicinity of 2θ=27˚ obtained from the X-ray diffraction measurement, is at least 58427.

Description

印刷物Printed matter
 本発明は、印刷物に関し、特に、偽造防止用の赤外線吸収性印刷物に関する。 The present invention relates to a printed matter, and particularly to an infrared absorbing printed matter for preventing counterfeiting.
 従来、有価証券などの印刷物の偽造防止又は真偽判定を目的として、赤外線を吸収する領域を印刷物に設ける手法が利用されていた。 Conventionally, for the purpose of preventing forgery of printed matter such as securities or determining the authenticity, a method of providing a region that absorbs infrared rays on the printed matter has been used.
 この印刷物では、赤外線吸収インキの領域は、目視では一般インキ(赤外線非吸収インキ)の領域と同じように観察される。一方で、印刷物を赤外領域で確認すると、一般インキの領域は観察されないのに対して、赤外線吸収インキの領域は確認されることができる。 In this printed matter, the area of the infrared absorbing ink is visually observed in the same manner as the area of the general ink (infrared non-absorbing ink). On the other hand, when the printed matter is confirmed in the infrared region, the region of the infrared absorbing ink can be confirmed while the region of the general ink is not observed.
 したがって、印刷デザインの一部を赤外線吸収インキで形成し、かつ残りの部分を赤外線非吸収インキで形成して印刷物を得ると、印刷物を赤外線判定器で確認することにより赤外線吸収インキの部分のみを確認することができる。 Therefore, when part of the print design is formed with infrared absorbing ink and the remaining part is formed with infrared non-absorbing ink to obtain a printed matter, only the infrared absorbing ink portion is confirmed by checking the printed matter with an infrared detector. Can be confirmed.
 赤外線吸収剤としては、シアニン系化合物、フタロシアニン系化合物などの赤外線吸収性有機材料;又はカーボンブラック、酸化タングステン、酸化鉛などの赤外線吸収性無機材料が、知られている。 As infrared absorbers, infrared absorbing organic materials such as cyanine compounds and phthalocyanine compounds; or infrared absorbing inorganic materials such as carbon black, tungsten oxide, and lead oxide are known.
 例えば、特許文献1には、赤外線吸収材料としてカーボンブラックを含む赤外線吸収インキを使用して印刷物を得ることが、記述されている。 For example, Patent Document 1 describes that a printed matter is obtained using an infrared absorbing ink containing carbon black as an infrared absorbing material.
 また、特許文献2には、従来のアンチモンドープ酸化錫を含む赤外線吸収印刷層と、赤外線反射(赤外線非吸収)印刷層とを、互いの色を合わせた状態で、基材上に並べた印刷物が、記述されている。 Patent Document 2 discloses a printed matter in which an infrared absorbing printing layer containing a conventional antimony-doped tin oxide and an infrared reflecting (infrared non-absorbing) printing layer are arranged on a base material in a state in which the colors are matched. Is described.
特開2005-219356号公報JP 2005-219356 A 特開2009-6528号公報JP 2009-6528 A
 しかしながら、赤外線吸収剤として赤外線吸収性有機材料を含む赤外線吸収印刷層は、この材料の色が多彩であるため、様々な色を呈することができるが、耐候性が低いという問題が指摘されている。 However, an infrared absorbing printing layer containing an infrared absorbing organic material as an infrared absorber can exhibit various colors because of the variety of colors of this material, but the problem of low weather resistance has been pointed out. .
 一方、赤外線吸収性無機材料としてカーボンブラックを含む赤外線吸収インキで形成された赤外線吸収印刷層は、耐候性が赤外線吸収性有機材料含有インキより優れているものの、カーボンブラックが濃い暗色系の色調を有する顔料であるため、印刷層の色は、黒色系又は明度の低いものに限られていた。このため、赤外線吸収性無機材料としてカーボンブラックを用いた場合、他の色を有する顔料又は染料と混合して、バリエーションに富んだ色彩を有する赤外線吸収印刷層を得ることができなかった。中でも明色、特に淡色系の明色の赤外線吸収印刷層を得ることは不可能であった。仮に、カーボンブラックを含む赤外線吸収印刷層の明度を高くするために、この層に酸化チタン、酸化亜鉛などの白色顔料を添加しても、白色顔料は赤外線を反射する特性を有するので、印刷層の赤外線吸収性が阻害されることになり、偽造防止用の印刷物としての機能に悪影響を及ぼすことになる。 On the other hand, the infrared absorbing printing layer formed with an infrared absorbing ink containing carbon black as an infrared absorbing inorganic material is superior to the ink containing the infrared absorbing organic material in weather resistance, but the carbon black has a dark color tone. Since it is a pigment which has, the color of the printing layer was restricted to the thing of a black type or a low brightness. For this reason, when carbon black was used as the infrared absorbing inorganic material, it was not possible to obtain an infrared absorbing printing layer having a variety of colors by mixing with pigments or dyes having other colors. In particular, it was impossible to obtain a light-colored, particularly light-colored, light-colored infrared absorbing printing layer. Even if a white pigment such as titanium oxide or zinc oxide is added to this layer in order to increase the brightness of the infrared absorption printing layer containing carbon black, the white pigment has the property of reflecting infrared rays, so the printing layer Infrared absorptivity is inhibited, and the function as a printed matter for preventing counterfeiting is adversely affected.
 また、酸化タングステン、酸化鉛などの金属酸化物を赤外線吸収性無機材料として含む赤外線吸収印刷層は、透明度が高いものの赤外線吸収効果が低いという問題がある。 Also, an infrared absorbing printing layer containing a metal oxide such as tungsten oxide or lead oxide as an infrared absorbing inorganic material has a problem that the infrared absorbing effect is low although the transparency is high.
 また、金属酸化物の中でも、酸化インジウム錫(ITO)は、比較的吸収効果が高いことで知られている。しかしながら、インジウムがレアメタルであるために、ITOのコストは高い。 Among metal oxides, indium tin oxide (ITO) is known for its relatively high absorption effect. However, since indium is a rare metal, the cost of ITO is high.
 また、金属酸化物の中でも、酸化アンチモン錫(ATO)は、透明性及び耐候性において優れているが、各業界の規制(例えば、化学物質排出移動量届出制度(PRTR)、玩具安全基準など)があるため、アンチモンの量を低減することが望まれていた。また、アンチモンもレアメタルであるため、ATO中に含まれるアンチモンの量を低減してATO含有インキの製造コストを抑制することが望まれていた。 Among metal oxides, antimony tin oxide (ATO) is excellent in transparency and weather resistance, but regulations of each industry (for example, chemical substance release and transfer notification system (PRTR), toy safety standards, etc.) Therefore, it has been desired to reduce the amount of antimony. Moreover, since antimony is also a rare metal, it has been desired to reduce the production cost of ATO-containing ink by reducing the amount of antimony contained in ATO.
 これに関連して、従来のアンチモンドープ酸化錫に含まれる酸化アンチモンの量については検討の余地があった。また、従来のアンチモンドープ酸化錫を含む赤外線吸収印刷層は、基材上の配置の態様などについて詳細な検討が行われていなかった。 In this connection, there was room for study on the amount of antimony oxide contained in the conventional antimony-doped tin oxide. Moreover, the infrared rays absorption printing layer containing the conventional antimony dope tin oxide has not been examined in detail about the aspect of arrangement | positioning on a base material.
 したがって、本発明は、赤外線吸収性、透明性、耐候性、安全性及びコストに優れ、かつ様々な色の着色剤を含むことによりバリエーションに富んだ色彩を呈し得る印刷物を提供することを目的とする。 Accordingly, an object of the present invention is to provide a printed matter that is excellent in infrared absorptivity, transparency, weather resistance, safety and cost, and can exhibit a variety of colors by including colorants of various colors. To do.
 上記課題を解決するために、本発明は以下の解決手段を採用する:
[1] 印刷層(A)及び印刷層(B)が基材上に配置されている印刷物であって、
 前記印刷層(A)は、前記印刷層(B)が配置されている範囲外に配置されており、
 前記印刷層(A)と前記印刷層(B)の赤外線吸収率が、異なり、
 前記印刷層(A)及び/又は前記印刷層(B)はアンチモンドープ酸化錫を含み、かつ
 前記アンチモンドープ酸化錫は、酸化錫と酸化アンチモンを含有し、かつ下記(a)及び/又は(b)を満たす:
  (a)X線回折測定により得られた2θ=27°付近のピークの半値幅(Δ2θ)が、0.30以下である;及び/又は
  (b)前記酸化アンチモンの含有量が、前記アンチモンドープ酸化錫の重量を基準として、0.5~10.0重量%であり、かつ、X線回折測定により得られた2θ=27°付近のピークのピーク値を半値幅(Δ2θ)で除算した値である結晶化度が、58427以上である、
 印刷物。
[2] 偽造防止用である、[1]に記載の印刷物。
[3] 前記(a)において、前記半値幅(Δ2θ)は、0.21以下である、[1]又は[2]に記載の印刷物。
[4] 前記(b)において、前記酸化アンチモンの含有量は、前記アンチモンドープ酸化錫の重量を基準として、2.8~9.3重量%である、[1]又は[2]に記載の印刷物。
[5] 前記結晶化度が78020以上である、[1]又は[2]に記載の印刷物。
[6] 前記アンチモンドープ酸化錫の平均粒径が、200μm以下である、[1]~[5]のいずれか1項に記載の印刷物。
[7] 前記印刷層(A)及び前記印刷層(B)は、前記アンチモンドープ酸化錫を含み、かつ前記印刷層(A)と前記印刷層(B)における前記アンチモンドープ酸化錫の含有率が、異なる、[1]~[6]のいずれか1項に記載の印刷物。
[8] 前記印刷層(A)が配置されている範囲と前記印刷層(B)が配置されている範囲は、隣接しているか、又は離間している、[1]~[7]のいずれか1項に記載の印刷物。
[9] 前記印刷層(A)及び/又は前記印刷層(B)の下に他の層が配置されている、[1]~[8]のいずれか1項に記載の印刷物。
[10] 前記基材は、平面、曲面又は凹凸を有する、[1]~[9]のいずれか1項に記載の印刷物。
[11] 前記印刷層(A)及び前記印刷層(B)は、部分印刷で前記基材上に形成されている、[1]~[10]のいずれか1項に記載の印刷物。
[12] 前記印刷層(A)は、オフセット印刷、フレキソ印刷、活版印刷、凹版印刷、グラビア印刷、スクリーン印刷、及びインクジェット印刷から成る群から選択される少なくとも1つにより形成されている、[1]~[11]のいずれか1項に記載の印刷物。
[13] 前記印刷層(B)は、オフセット印刷、フレキソ印刷、活版印刷、凹版印刷、グラビア印刷、スクリーン印刷、及びインクジェット印刷から成る群から選択される少なくとも1つにより形成されている、[1]~[12]のいずれか1項に記載の印刷物。
[14] 前記印刷層(A)及び/又は前記印刷層(B)は、クロミック材料、磁性顔料、紫外線吸収剤、光学可変材料及びパール顔料から成る群から選択される少なくとも1つをさらに含む、[1]~[13]のいずれか1項に記載の印刷物。
[15] 印刷層(A)及び印刷層(B)を基材上に印刷で形成する印刷物の製造方法であって、
 前記印刷層(A)は、前記印刷層(B)が配置されている範囲外に配置されており、
 前記印刷層(A)と前記印刷層(B)の赤外線吸収率が、異なり、
 前記印刷層(A)及び/又は前記印刷層(B)はアンチモンドープ酸化錫を含み、かつ
 前記アンチモンドープ酸化錫は、酸化錫と酸化アンチモンを含有し、かつ下記(a)及び/又は(b)を満たす:
  (a)X線回折測定により得られた2θ=27°付近のピークの半値幅(Δ2θ)が、0.30以下である;及び/又は
  (b)前記酸化アンチモンの含有量が、前記アンチモンドープ酸化錫の重量を基準として、0.5~10.0重量%であり、かつ、X線回折測定により得られた2θ=27°付近のピークのピーク値を半値幅(Δ2θ)で除算した値である結晶化度が、58427以上である、
 印刷物の製造方法。
In order to solve the above problems, the present invention adopts the following solutions:
[1] A printed matter in which the printing layer (A) and the printing layer (B) are arranged on a substrate,
The printed layer (A) is disposed outside the range in which the printed layer (B) is disposed,
The infrared absorption rate of the printing layer (A) and the printing layer (B) is different,
The printing layer (A) and / or the printing layer (B) contains antimony-doped tin oxide, and the antimony-doped tin oxide contains tin oxide and antimony oxide, and the following (a) and / or (b Meet):
(A) The half width (Δ2θ) of a peak around 2θ = 27 ° obtained by X-ray diffraction measurement is 0.30 or less; and / or (b) the content of the antimony oxide is the antimony dope A value obtained by dividing the peak value of the peak around 2θ = 27 ° obtained by X-ray diffraction measurement by the half-value width (Δ2θ), based on the weight of tin oxide, from 0.5 to 10.0% by weight. The degree of crystallinity is 58427 or more.
Printed matter.
[2] The printed matter according to [1], which is for forgery prevention.
[3] The printed matter according to [1] or [2], wherein, in (a), the full width at half maximum (Δ2θ) is 0.21 or less.
[4] In (b), the content of the antimony oxide is 2.8 to 9.3 wt% based on the weight of the antimony-doped tin oxide, according to [1] or [2] Printed matter.
[5] The printed material according to [1] or [2], wherein the crystallinity is 78020 or more.
[6] The printed matter according to any one of [1] to [5], wherein the antimony-doped tin oxide has an average particle size of 200 μm or less.
[7] The printing layer (A) and the printing layer (B) contain the antimony-doped tin oxide, and the content of the antimony-doped tin oxide in the printing layer (A) and the printing layer (B) is The printed matter according to any one of [1] to [6], which is different.
[8] The range in which the print layer (A) is disposed and the range in which the print layer (B) is disposed are adjacent to or separated from each other. The printed matter according to claim 1.
[9] The printed material according to any one of [1] to [8], wherein another layer is disposed below the printed layer (A) and / or the printed layer (B).
[10] The printed material according to any one of [1] to [9], wherein the substrate has a flat surface, a curved surface, or unevenness.
[11] The printed matter according to any one of [1] to [10], wherein the printed layer (A) and the printed layer (B) are formed on the substrate by partial printing.
[12] The printing layer (A) is formed by at least one selected from the group consisting of offset printing, flexographic printing, letterpress printing, intaglio printing, gravure printing, screen printing, and inkjet printing. ] To [11].
[13] The printing layer (B) is formed by at least one selected from the group consisting of offset printing, flexographic printing, letterpress printing, intaglio printing, gravure printing, screen printing, and inkjet printing. ] To [12].
[14] The printing layer (A) and / or the printing layer (B) further includes at least one selected from the group consisting of a chromic material, a magnetic pigment, an ultraviolet absorber, an optical variable material, and a pearl pigment. The printed material according to any one of [1] to [13].
[15] A method for producing a printed material, in which the printed layer (A) and the printed layer (B) are formed on a substrate by printing,
The printed layer (A) is disposed outside the range in which the printed layer (B) is disposed,
The infrared absorption rate of the printing layer (A) and the printing layer (B) is different,
The printing layer (A) and / or the printing layer (B) contains antimony-doped tin oxide, and the antimony-doped tin oxide contains tin oxide and antimony oxide, and the following (a) and / or (b Meet):
(A) The half width (Δ2θ) of a peak around 2θ = 27 ° obtained by X-ray diffraction measurement is 0.30 or less; and / or (b) the content of the antimony oxide is the antimony dope A value obtained by dividing the peak value of the peak around 2θ = 27 ° obtained by X-ray diffraction measurement by the half-value width (Δ2θ), based on the weight of tin oxide, from 0.5 to 10.0% by weight. The degree of crystallinity is 58427 or more.
Manufacturing method of printed matter.
 本発明に使用されるアンチモンドープ酸化錫顔料は、無機顔料であり、紫外線等の光線による劣化が起こり難いため、本発明によれば、高い耐候性及び赤外線吸収性を有する赤外線吸収印刷層を備える印刷物が得られる。 The antimony-doped tin oxide pigment used in the present invention is an inorganic pigment and hardly deteriorates due to light such as ultraviolet rays. Therefore, according to the present invention, the antimony-doped tin oxide pigment includes an infrared absorption printing layer having high weather resistance and infrared absorption. A printed matter is obtained.
 また、本発明の印刷物は、アンチモンドープ酸化錫顔料の明度が高く、かつ淡い白色を呈するので、アンチモンドープ酸化錫顔料と他の着色剤を混合することによって、様々な色彩、特に明るい色彩を提供することができる。したがって、本発明によれば、偽造防止効果及びデザイン性に優れた紙幣、有価証券、カード等の印刷物を提供できる。 In addition, since the printed matter of the present invention has a lightness and a light white color of the antimony-doped tin oxide pigment, various colors, particularly bright colors, are provided by mixing the antimony-doped tin oxide pigment with other colorants. can do. Therefore, according to the present invention, it is possible to provide printed matter such as banknotes, securities, and cards that are excellent in forgery prevention effect and design.
 また、アンチモンドープ酸化錫顔料は、スズドープ酸化インジウム顔料に比べて製造コストが低い。さらに、本発明によれば、従来のアンチモンドープ酸化錫顔料と比べて酸化アンチモン含有率の低いアンチモンドープ酸化錫顔料を印刷物に使用することができる。したがって、本発明によれば、幅広い業界において、アンチモンの使用量に関する安全規制を遵守しながら、経済性に優れた偽造防止用の印刷物を提供できる。 Moreover, the production cost of antimony-doped tin oxide pigments is lower than that of tin-doped indium oxide pigments. Furthermore, according to the present invention, an antimony-doped tin oxide pigment having a lower content of antimony oxide than a conventional antimony-doped tin oxide pigment can be used in a printed matter. Therefore, according to the present invention, it is possible to provide an anti-counterfeit printed matter excellent in economy while complying with safety regulations regarding the amount of antimony used in a wide range of industries.
図1は、アンチモンドープ酸化錫を製造する方法の一態様を示す工程図である。FIG. 1 is a process diagram showing one embodiment of a method for producing antimony-doped tin oxide. 図2(A)は、実施例1のアンチモンドープ酸化錫(酸化アンチモン含有率0.7重量%、通気焼成・冷却あり)のX線回折の結果を示す図であり、図2(B)は、実施例2のアンチモンドープ酸化錫(酸化アンチモン含有率2.8重量%、通気焼成・冷却あり)のX線回折の結果を示す図である。FIG. 2 (A) is a diagram showing the results of X-ray diffraction of antimony-doped tin oxide of Example 1 (antimony oxide content: 0.7% by weight, with aerated firing / cooling), and FIG. FIG. 4 is a graph showing the results of X-ray diffraction of antimony-doped tin oxide of Example 2 (antimony oxide content: 2.8% by weight, with aerated firing / cooling). 図3(A)は、実施例3のアンチモンドープ酸化錫(酸化アンチモン含有率5.3重量%、通気焼成・冷却あり)のX線回折の結果を示す図であり、図3(B)は、実施例4のアンチモンドープ酸化錫(酸化アンチモン含有率9.3重量%、通気焼成・冷却あり)によるX線回折の結果を示す図である。FIG. 3 (A) is a diagram showing the results of X-ray diffraction of antimony-doped tin oxide of Example 3 (antimony oxide content: 5.3% by weight, with aerated firing / cooling), and FIG. FIG. 6 is a graph showing the results of X-ray diffraction by antimony-doped tin oxide of Example 4 (antimony oxide content: 9.3 wt%, with aerated firing / cooling). 図4(A)は、実施例5のアンチモンドープ酸化錫(市販品の通気焼成・冷却、200[℃/時間]以上の冷却速度、酸化アンチモン含有率2.7重量%)のX線回折の結果を示す図であり、図4(B)は、実施例6のアンチモンドープ酸化錫(市販品の通気焼成・冷却、200[℃/時間]未満の冷却速度、酸化アンチモン含有率2.7重量%)によるX線回折の結果を示す図である。FIG. 4 (A) shows the X-ray diffraction pattern of antimony-doped tin oxide of Example 5 (ventilated and cooled by commercial cooling, cooling rate of 200 [° C./hour] or more, antimony oxide content 2.7% by weight). FIG. 4 (B) shows the results, and FIG. 4 (B) shows antimony-doped tin oxide of Example 6 (commercially manufactured product by air firing and cooling, cooling rate of less than 200 [° C./hour], antimony oxide content 2.7 wt. %) Shows the result of X-ray diffraction. 図5は、実施例7のアンチモンドープ酸化錫(メタ錫酸と三酸化アンチモンの混合物の通気焼成・冷却、酸化アンチモン含有率4.2重量%)のX線回折の結果を示す図である。FIG. 5 is a diagram showing the results of X-ray diffraction of antimony-doped tin oxide of Example 7 (aerated firing / cooling of a mixture of metastannic acid and antimony trioxide, antimony oxide content 4.2% by weight). 図6(A)は、比較例1のアンチモンドープ酸化錫(酸化アンチモン含有率9.9重量%、市販品)のX線回折の結果を示す図であり、図6(B)は、比較例2のアンチモンドープ酸化錫(酸化アンチモン含有率2.8重量%、通気焼成・冷却なし)のX線回折の結果を示す図である。6A is a diagram showing the results of X-ray diffraction of antimony-doped tin oxide of Comparative Example 1 (antimony oxide content: 9.9% by weight, commercially available product), and FIG. 6B is a comparative example. It is a figure which shows the result of the X-ray diffraction of antimony dope tin oxide 2 (antimony oxide content rate 2.8 weight%, aeration baking and no cooling). 図7は、結晶化度の算出方法を概略的に示す概念図である。FIG. 7 is a conceptual diagram schematically showing a method for calculating the crystallinity. 図8は、200nm~2500nmの波長において酸化アンチモン含有率が反射率に与える影響を示すグラフである。FIG. 8 is a graph showing the influence of the antimony oxide content rate on the reflectance at a wavelength of 200 nm to 2500 nm. 図9は、200nm~2500nmの波長及び2.7~2.8重量%の酸化アンチモン含有率において、通気焼成工程が反射率に与える影響を示すグラフである。FIG. 9 is a graph showing the influence of the ventilation firing process on the reflectance at a wavelength of 200 nm to 2500 nm and an antimony oxide content of 2.7 to 2.8% by weight. 図10は、200nm~2500nmの波長において、通気焼成工程が、市販のアンチモンドープ酸化錫原料の反射率及びアンチモン含有率に与える影響を示すグラフである。FIG. 10 is a graph showing the influence of the air-fired process on the reflectance and antimony content of a commercially available antimony-doped tin oxide material at a wavelength of 200 nm to 2500 nm. 図11は、200nm~2500nmの波長において、通気焼成工程が、メタ錫酸と三酸化アンチモンの混合物の反射率に与える影響を示すグラフである。FIG. 11 is a graph showing the influence of the aeration firing process on the reflectance of a mixture of metastannic acid and antimony trioxide at a wavelength of 200 nm to 2500 nm. 図12は、350nm~1500nmの波長における藍・紅・黄(CMY)プロセスインキの反射率を示すグラフである。FIG. 12 is a graph showing the reflectance of indigo / red / yellow (CMY) process ink at wavelengths of 350 nm to 1500 nm. 図13は、本発明の実施形態に係る印刷物を観察したときの検出パターンを示す模式図であり、図13(A)は、印刷物を目視又は可視光検出器で観察したときの検出パターンを示し、かつ図13(B)は、印刷物を赤外光検知器で観察したときの検出パターンを示す。FIG. 13 is a schematic diagram illustrating a detection pattern when the printed material according to the embodiment of the present invention is observed, and FIG. 13A illustrates the detection pattern when the printed material is observed visually or with a visible light detector. FIG. 13B shows a detection pattern when the printed material is observed with an infrared light detector.
<印刷物>
 本発明の印刷物は、基材、印刷層(A)及び印刷層(B)を備える。また、印刷層(A)と印刷層(B)の赤外線吸収率が、異なる。さらに、基材上において、印刷層(A)は、印刷層(B)が配置されている範囲外に配置されている。したがって、印刷層(A)及び印刷層(B)は、基材上に、互いに重ならないように配置されている。
<Printed matter>
The printed matter of the present invention includes a substrate, a printed layer (A), and a printed layer (B). Moreover, the infrared absorption factor of a printing layer (A) and a printing layer (B) differs. Furthermore, on the base material, the printing layer (A) is disposed outside the range in which the printing layer (B) is disposed. Therefore, the printing layer (A) and the printing layer (B) are arranged on the substrate so as not to overlap each other.
 本発明の印刷物では、印刷層(A)及び印刷層(B)の少なくとも1つが、アンチモンドープ酸化錫を含む。アンチモンドープ酸化錫は、赤外線吸収性を有するので、印刷層(A)及び印刷層(B)の少なくとも1つは、赤外線吸収印刷層である。本発明の印刷物は、赤外線吸収印刷層の赤外線吸収性のために、偽造防止用であることができる。なお、本発明の実施形態で使用されるアンチモンドープ酸化錫については後述する。 In the printed matter of the present invention, at least one of the printing layer (A) and the printing layer (B) contains antimony-doped tin oxide. Since antimony-doped tin oxide has infrared absorptivity, at least one of the printed layer (A) and the printed layer (B) is an infrared absorbing printed layer. The printed matter of the present invention can be for anti-counterfeit due to the infrared absorptivity of the infrared absorbing printing layer. In addition, the antimony dope tin oxide used by embodiment of this invention is mentioned later.
 基材、印刷層(A)及び印刷層(B)について以下に説明する。 The substrate, the printing layer (A) and the printing layer (B) will be described below.
<基材>
 基材は、印刷層(A)及び印刷層(B)を保持する構成要素である。また、基材は、印刷層(A)及び印刷層(B)を印刷される被印刷体でよい。
<Base material>
A base material is a component holding a printing layer (A) and a printing layer (B). Further, the substrate may be a substrate to be printed on the printing layer (A) and the printing layer (B).
 さらに、基材は、平面的でも立体的でもよい。例えば、基材は、シート、フィルム、球体、直方体、立方体などの形態でよい。したがって、基材は、印刷物の所望の形態に応じて、平面、曲面又は凹凸を有してよい。 Furthermore, the substrate may be planar or three-dimensional. For example, the base material may be in the form of a sheet, a film, a sphere, a rectangular parallelepiped, a cube, or the like. Therefore, the substrate may have a flat surface, a curved surface, or irregularities depending on the desired form of the printed material.
 基材としては、例えば、紙、カートンボード、金属板、樹脂フィルム、布地、衣類、ガラス、壁紙、床材、カード、ラベル、シールなどが挙げられる。 Examples of the substrate include paper, carton board, metal plate, resin film, fabric, clothing, glass, wallpaper, flooring, card, label, and seal.
<印刷層(A)及び印刷層(B)>
 印刷層(A)は、単数又は複数の領域を有することができる。また、印刷層(A)が複数の領域を有するときには、複数の領域の赤外線吸収率は、同一でもよいし、異なっていてもよい。
<Print layer (A) and print layer (B)>
The printing layer (A) can have one or a plurality of regions. When the print layer (A) has a plurality of regions, the infrared absorption rates of the plurality of regions may be the same or different.
 印刷層(B)は、単数又は複数の領域を有することができる。また、印刷層(B)が複数の領域を有するときには、複数の領域の赤外線吸収率は、同一でもよいし、異なっていてもよい。 The printing layer (B) can have a single region or a plurality of regions. When the print layer (B) has a plurality of regions, the infrared absorption rates of the plurality of regions may be the same or different.
 例えば、印刷層(A)又は印刷層(B)が、「12」という数字パターンとして形成されているときには、パターン「1」の領域とパターン「2」の領域における赤外線吸収率は、同一でもよいし、異なっていてもよい。 For example, when the print layer (A) or the print layer (B) is formed as a number pattern “12”, the infrared absorption rate in the pattern “1” region and the pattern “2” region may be the same. And may be different.
 印刷層(A)と印刷層(B)の赤外線吸収率は、異なる。したがって、印刷層(A)と印刷層(B)の赤外線吸収性も異なる。 The infrared absorption rate of the printing layer (A) and the printing layer (B) is different. Therefore, the infrared absorptivity of the printing layer (A) and the printing layer (B) is also different.
 例えば、印刷層(A)と印刷層(B)の一方が、特定の赤外線吸収率を有するのに対して、他方が、前記赤外線吸収率とは異なる赤外線吸収率を有してよい。また、印刷層(A)と印刷層(B)の一方が、正数の赤外線吸収率を有するのであれば、他方の赤外線吸収率は、0でもよい。 For example, one of the print layer (A) and the print layer (B) may have a specific infrared absorption rate, while the other may have an infrared absorption rate different from the infrared absorption rate. Further, if one of the print layer (A) and the print layer (B) has a positive infrared absorption rate, the other infrared absorption rate may be 0.
 印刷層(A)は、印刷層(B)が配置されている範囲外に配置されている。また、印刷層(A)が配置されている範囲と印刷層(B)が配置されている範囲は、隣接しているか、又は離間していてよい。したがって、印刷物の印刷面と垂直な方向から印刷物を観察すると、印刷層(A)が配置されている範囲と印刷層(B)が配置されている範囲は、重なっていない。 The printing layer (A) is disposed outside the range where the printing layer (B) is disposed. Moreover, the range in which the printing layer (A) is disposed and the range in which the printing layer (B) is disposed may be adjacent to each other or may be separated from each other. Therefore, when the printed material is observed from a direction perpendicular to the printing surface of the printed material, the range in which the printed layer (A) is arranged and the range in which the printed layer (B) are arranged do not overlap.
 また、印刷層(A)が配置されている範囲と印刷層(B)が配置されている範囲とが、重なっていないのであれば、印刷層(A)及び印刷層(B)以外の層が、基材上に、印刷層(A)の下に、又は印刷層(B)の下に配置されていてもよい。また、他の赤外線非吸収層が、印刷層(A)又は印刷層(B)の上に配置されていてもよい。 If the range in which the print layer (A) is arranged and the range in which the print layer (B) are arranged do not overlap, layers other than the print layer (A) and the print layer (B) It may be arranged on the substrate, under the printing layer (A) or under the printing layer (B). Moreover, the other infrared non-absorbing layer may be arrange | positioned on the printing layer (A) or the printing layer (B).
 印刷層(A)及び印刷層(B)は、インキを基材に部分印刷することにより得られる。ここで、部分印刷とは、基材上の一部又は全面に文字、絵、模様、地紋、線画などのパターンとして印刷されるか、或いは基材上の一部をインキで覆うように全面(ベタ)印刷することをいう。例えば、印刷層(A)と印刷層(B)は、文字、絵、模様、地紋、線画などのパターンとして形成されることができる。また、印刷層(A)及び印刷層(B)は、互いに重ならないように、ドーナツ型に配置されてもよい。 The printing layer (A) and the printing layer (B) are obtained by partially printing ink on a substrate. Here, partial printing is printed as a pattern such as a character, a picture, a pattern, a background pattern, or a line drawing on a part or the entire surface of the substrate, or the entire surface (a part of the substrate is covered with ink ( Solid) Refers to printing. For example, the printing layer (A) and the printing layer (B) can be formed as a pattern such as a character, a picture, a pattern, a background pattern, and a line drawing. Moreover, the printing layer (A) and the printing layer (B) may be arranged in a donut shape so as not to overlap each other.
 印刷層(A)及び印刷層(B)の少なくとも1つは、アンチモンドープ酸化錫を含むので、赤外線吸収印刷層である。これに関連して、印刷層(A)及び印刷層(B)がアンチモンドープ酸化錫を含むときには、印刷層(A)及び印刷層(B)は赤外線吸収印刷層であるが、互いに異なる赤外線吸収率を有するために、印刷層(A)と印刷層(B)におけるアンチモンドープ酸化錫の含有率が異なる。なお、印刷層(A)及び/又は印刷層(B)は、互いに異なる赤外線吸収率を有する限り、アンチモンドープ酸化錫以外の赤外線吸収材料を含んでもよい。 Since at least one of the printing layer (A) and the printing layer (B) contains antimony-doped tin oxide, it is an infrared absorption printing layer. In this connection, when the printing layer (A) and the printing layer (B) contain antimony-doped tin oxide, the printing layer (A) and the printing layer (B) are infrared absorbing printing layers, but different infrared absorptions. Therefore, the content of antimony-doped tin oxide in the print layer (A) and the print layer (B) is different. The printed layer (A) and / or the printed layer (B) may contain an infrared absorbing material other than antimony-doped tin oxide as long as the printed layer (A) and / or the printed layer (B) have different infrared absorption rates.
 また、印刷層(A)と印刷層(B)の一方は、アンチモンドープ酸化錫を含まなくてもよい。その場合、アンチモンドープ酸化錫を含まない層は、他の赤外線吸収材料を含まないのであれば、赤外線非吸収印刷層になる。 Further, one of the printing layer (A) and the printing layer (B) may not contain antimony-doped tin oxide. In that case, the layer not containing antimony-doped tin oxide becomes an infrared non-absorbing print layer if it does not contain other infrared absorbing materials.
 さらに、印刷層(A)及び印刷層(B)は、互いに異なる赤外線吸収率を有する限り、目視又は可視光検出器で観察されたときに、同じ色調を有していてもよい。したがって、印刷層(A)及び印刷層(B)は、色合わせされた状態で、形成されることができる。 Furthermore, as long as the printed layer (A) and the printed layer (B) have different infrared absorption rates, they may have the same color tone when observed visually or with a visible light detector. Therefore, the printing layer (A) and the printing layer (B) can be formed in a color-matched state.
 印刷層(A)及び印刷層(B)は、基材にインキを印刷することにより形成されることができるので、インキについて以下に説明する。 Since the printing layer (A) and the printing layer (B) can be formed by printing ink on a substrate, the ink will be described below.
<インキ>
 本発明の実施形態では、印刷層(A)及び/又は印刷層(B)に赤外線吸収性を持たせるために、アンチモンドープ酸化錫を含むインキを使用する。その場合、アンチモンドープ酸化錫が赤外線吸収性を有するので、インキは赤外線吸収インキである。この赤外線吸収インキは、アンチモンドープ酸化錫の赤外線吸収性を利用して印刷物の偽造を防止するために、使用されることができる。
<Ink>
In the embodiment of the present invention, an ink containing antimony-doped tin oxide is used in order to give the printed layer (A) and / or the printed layer (B) infrared absorption. In that case, since the antimony-doped tin oxide has infrared absorptivity, the ink is an infrared absorbing ink. This infrared absorbing ink can be used to prevent forgery of printed matter by utilizing the infrared absorbing property of antimony-doped tin oxide.
 また、印刷層(A)及び印刷層(B)が、互いに異なる赤外線吸収率を有するように、インキ中におけるアンチモンドープ酸化錫などの赤外線吸収材料の含有率、又はインキ中の赤外線吸収材料の有無を決定することが好ましい。 Further, the content of the infrared absorbing material such as antimony-doped tin oxide in the ink or the presence or absence of the infrared absorbing material in the ink so that the printing layer (A) and the printing layer (B) have different infrared absorption rates. Is preferably determined.
 また、印刷層(A)と印刷層(B)の一方を赤外線非吸収印刷層にするためには、アンチモンドープ酸化錫などの赤外線吸収材料を含まないインキを使用することができる。その場合、インキは、赤外線非吸収インキでよい。 Also, in order to make one of the printing layer (A) and the printing layer (B) an infrared non-absorbing printing layer, an ink that does not contain an infrared absorbing material such as antimony-doped tin oxide can be used. In that case, the ink may be an infrared non-absorbing ink.
 さらに、印刷層(A)、印刷層(B)、又は印刷層(A)及び印刷層(B)以外の他の印刷層に対して、赤外線吸収性以外の性質を付与するために、赤外線吸収材料以外の機能性材料を含むインキを使用してもよい。例えば、機能性材料としてクロミック材料をインキに含有させることができる。 Further, in order to impart properties other than infrared absorption to the printing layer (A), the printing layer (B), or other printing layers other than the printing layer (A) and the printing layer (B), infrared absorption is performed. An ink containing a functional material other than the material may be used. For example, a chromic material can be included in the ink as a functional material.
 本発明の実施形態では、インキは、アンチモンドープ酸化錫及び/又は着色剤と、ビヒクルとを含む。また、インキは、アンチモンドープ酸化錫、着色剤及びビヒクルだけでなく、補助剤も含んでよい。 In an embodiment of the present invention, the ink includes antimony-doped tin oxide and / or a colorant and a vehicle. The ink may also contain adjuvants as well as antimony-doped tin oxide, colorants and vehicles.
 一般に、インキは、ビヒクル成分の種類に応じて、酸化重合型インキ、紫外線硬化型インキ、酸化重合型・紫外線硬化型併用インキ、又は溶剤含有インキとして使用されることができる。 In general, the ink can be used as an oxidation polymerization ink, an ultraviolet curable ink, an oxidation polymerization / ultraviolet curable ink, or a solvent-containing ink depending on the type of vehicle component.
 ここで、酸化重合型インキ(以下、「油性インキ」と略記する)は、ビヒクル成分の酸化重合により硬化可能なインキである。一般に、油性インキは、ビヒクル成分として、樹脂、架橋剤又はゲル化剤、乾性油又は半乾性油、溶剤などを含む。 Here, the oxidation polymerization type ink (hereinafter abbreviated as “oil-based ink”) is an ink that can be cured by oxidative polymerization of a vehicle component. In general, oil-based inks contain a resin, a crosslinking agent or a gelling agent, a drying oil or a semi-drying oil, a solvent and the like as a vehicle component.
 紫外線硬化型インキ(以下、「UVインキ」と略記する)は、ビヒクル成分の光重合により硬化可能なインキである。一般に、UVインキは、ビヒクル成分として、光重合性樹脂、光重合開始剤などを含むが、溶剤などの揮発成分を含まなくてよい。 UV curable ink (hereinafter abbreviated as “UV ink”) is an ink that can be cured by photopolymerization of a vehicle component. In general, a UV ink contains a photopolymerizable resin, a photopolymerization initiator, and the like as a vehicle component, but may not contain a volatile component such as a solvent.
 油性・紫外線硬化型併用インキ(以下、「油性・UV併用インキ」と略記する)は、油性インキとUVインキの両方の硬化特性を備えたインキである。 The oil-based / ultraviolet-curing combined ink (hereinafter abbreviated as “oil-based / UV combined ink”) is an ink having curing characteristics of both oil-based ink and UV ink.
 溶剤含有インキは、溶剤とアンチモンドープ酸化錫及び/又は着色剤とを含むインキである。溶剤含有インキは、溶剤の蒸発又は溶剤の被印刷体への浸透によりアンチモンドープ酸化錫及び/又は着色剤を基材に定着させることができる。一般に、溶剤含有インキは、水を主溶剤とする水性インキ、又は有機溶剤を主溶剤とする有機溶剤含有インキとして使用されることが好ましい。 The solvent-containing ink is an ink containing a solvent and antimony-doped tin oxide and / or a colorant. The solvent-containing ink can fix the antimony-doped tin oxide and / or the colorant to the substrate by evaporation of the solvent or penetration of the solvent into the printing medium. In general, the solvent-containing ink is preferably used as an aqueous ink containing water as a main solvent or an organic solvent-containing ink containing an organic solvent as a main solvent.
 ここで、水性インキは、水を主溶剤とするインキであるが、有機溶剤を含んでもよい。さらに、水性インキは、水に加えて、例えば、水溶性樹脂、コロイダルディスパージョン樹脂、エマルション樹脂などの様々な樹脂を含むことができるので好ましい。 Here, the water-based ink is an ink containing water as a main solvent, but may contain an organic solvent. Furthermore, the water-based ink is preferable because it can contain various resins such as a water-soluble resin, a colloidal dispersion resin, and an emulsion resin in addition to water.
 一方で、有機溶剤含有インキは、有機溶剤を主溶剤とするインキであるが、実質的に水を含まなくてよい。なお、「実質的に水を含まない」とは、インキ中の水の含有率が0質量%であること、又はインキが1質量%以下の水を不可避的に含むことをいう。 On the other hand, the organic solvent-containing ink is an ink containing an organic solvent as a main solvent, but does not need to contain water substantially. “Substantially free of water” means that the content of water in the ink is 0% by mass, or that the ink inevitably contains 1% by mass or less of water.
 アンチモンドープ酸化錫、ビヒクル、補助剤及び着色剤について以下に説明する。 Antimony-doped tin oxide, vehicle, auxiliary agent and coloring agent will be described below.
[アンチモンドープ酸化錫]
 アンチモンドープ酸化錫は、酸化錫にアンチモンがドープされている物質である。また、アンチモンドープ酸化錫は、酸化錫と酸化アンチモンを含む顔料の形態でよい。
[Antimony-doped tin oxide]
Antimony-doped tin oxide is a substance in which tin oxide is doped with antimony. The antimony-doped tin oxide may be in the form of a pigment containing tin oxide and antimony oxide.
 本発明に使用されるアンチモンドープ酸化錫は、酸化錫と酸化アンチモンを含む。酸化アンチモンの含有量は、アンチモンドープ酸化錫の重量を基準として、約0.5重量%以上、約1.0重量%以上、約1.5重量%以上、約2.0重量%以上、約2.5重量%以上、又は約2.8重量%以上であることが好ましく、また、この含有量は、約10.0重量%以下、約9.5重量%以下、約9.3重量%以下、約8.0重量%以下、約7.0重量%以下、約6.0重量%以下、約5.5重量%以下、約5.0重量%以下、約4.0重量%以下、約3.5重量%以下、又は約3.0重量%以下であることが好ましい。また、酸化アンチモンの含有量は、アンチモンドープ酸化錫の重量を基準として、約2.5~約9.3重量%、約2.8~約9.3重量%、約2.8~約5.5重量%、又は約2.8~約3.5重量%であることがより好ましい。 The antimony-doped tin oxide used in the present invention contains tin oxide and antimony oxide. The content of antimony oxide is about 0.5% by weight or more, about 1.0% by weight or more, about 1.5% by weight or more, about 2.0% by weight or more based on the weight of antimony-doped tin oxide. The content is preferably 2.5% by weight or more, or about 2.8% by weight or more, and the content thereof is about 10.0% by weight or less, about 9.5% by weight or less, and about 9.3% by weight. Or less, about 8.0% or less, about 7.0% or less, about 6.0% or less, about 5.5% or less, about 5.0% or less, about 4.0% or less, It is preferably about 3.5% by weight or less, or about 3.0% by weight or less. The content of antimony oxide is about 2.5 to about 9.3 wt%, about 2.8 to about 9.3 wt%, and about 2.8 to about 5 based on the weight of antimony-doped tin oxide. More preferably, it is 0.5 wt%, or about 2.8 to about 3.5 wt%.
 従来のアンチモンドープ酸化錫は、十分な導電性を有する透明導電材料を得るために、10重量%を超える酸化アンチモンを含む必要があった。一方で、本発明に使用されるアンチモンドープ酸化錫は、上記の通り、従来のアンチモンドープ酸化錫と比較して、酸化アンチモンの使用量を低減させることができる。 Conventional antimony-doped tin oxide needs to contain more than 10% by weight of antimony oxide in order to obtain a transparent conductive material having sufficient conductivity. On the other hand, the antimony dope tin oxide used for this invention can reduce the usage-amount of antimony oxide compared with the conventional antimony dope tin oxide as above-mentioned.
 ただし、酸化アンチモンは、酸化錫の結晶格子中に入り込むことにより、赤外線を吸収する役割を発揮すると考えられているため、その使用量を単純に低減させるだけだと、その分赤外線吸収効果が低下することになる。 However, antimony oxide is considered to play a role of absorbing infrared rays by entering into the crystal lattice of tin oxide, so if the amount used is simply reduced, the infrared absorption effect is reduced accordingly. Will do.
 そこで、本発明に使用されるアンチモンドープ酸化錫は、赤外線吸収効果の低下を抑制するために、X線回折測定により得られた2θ=27°付近の半値幅(Δ2θ)が、0.35以下であり、かつ/又はX線回折測定により得られた2θ=27°付近のピークのピーク値を半値幅(Δ2θ)で除算した値である結晶化度が、18092以上である。 Therefore, the antimony-doped tin oxide used in the present invention has a half-value width (Δ2θ) in the vicinity of 2θ = 27 ° obtained by X-ray diffraction measurement of 0.35 or less in order to suppress a decrease in infrared absorption effect. And / or the crystallinity, which is a value obtained by dividing the peak value of the peak around 2θ = 27 ° obtained by X-ray diffraction measurement by the half-value width (Δ2θ), is 18092 or more.
 赤外線吸収効果は、主成分である酸化錫の結晶格子中に、酸化アンチモンが固溶される(入り込む)ことで、発生する効果である。つまり、アンチモンドープ酸化錫を製造する際には、主成分である酸化錫に酸化アンチモンを含有させることになる。 The infrared absorption effect is an effect that occurs when antimony oxide is dissolved (enters) into the crystal lattice of tin oxide, which is the main component. That is, when manufacturing antimony-doped tin oxide, antimony oxide is contained in tin oxide as the main component.
 したがって、酸化錫の結晶格子中に酸化アンチモンが適切に固溶されている場合、本発明に使用されるアンチモンドープ酸化錫は、結晶構造を適切に維持することによって、アンチモンドープ酸化錫中の酸化アンチモン含有量が微量(例えば、少なくとも0.5重量%)であったとしても、赤外線吸収効果を発揮することができる。このとき、例えば、X線回折測定において、2θ=27°付近に鋭いピークが見られる。 Therefore, when antimony oxide is appropriately solid-solved in the crystal lattice of tin oxide, the antimony-doped tin oxide used in the present invention is oxidized in the antimony-doped tin oxide by maintaining the crystal structure appropriately. Even if the antimony content is very small (for example, at least 0.5% by weight), the infrared absorption effect can be exhibited. At this time, for example, in the X-ray diffraction measurement, a sharp peak is observed in the vicinity of 2θ = 27 °.
 一方で、例えば従来のアンチモンドープ酸化錫のように、酸化錫の結晶格子中に固溶されない酸化アンチモンが不純物として存在していると、不純物は、赤外線吸収効果に寄与していなかったと考えられる。 On the other hand, for example, when antimony oxide not dissolved in the tin oxide crystal lattice is present as an impurity as in conventional antimony-doped tin oxide, it is considered that the impurity did not contribute to the infrared absorption effect.
 その場合、赤外線吸収効果に寄与していない部分の酸化アンチモンは、無駄な原料(不純物)としてそのまま残存することになる。このため、アンチモンドープ酸化錫を製造する際には、必要以上に酸化アンチモンの使用量が増加してしまっていた。そこで本発明の発明者等は、この不純物について研究を重ねた結果、アンチモンドープ酸化錫の半値幅(Δ2θ)が広く、かつ/又は結晶化度(物質が結晶化した際の物質全体に対する結晶化部分の割合)が低い場合には不純物としての酸化アンチモンが多くなり、一方で、半値幅(Δ2θ)が狭く、かつ/又は結晶化度が高い場合には不純物としての酸化アンチモンが少なくなることを突き止めた。 In this case, the portion of antimony oxide that does not contribute to the infrared absorption effect remains as a waste material (impurity). For this reason, when manufacturing antimony dope tin oxide, the usage-amount of antimony oxide has increased more than necessary. Therefore, the inventors of the present invention have conducted research on this impurity, and as a result, the half-value width (Δ2θ) of antimony-doped tin oxide is wide and / or the crystallinity (the crystallization of the whole material when the material is crystallized). When the ratio of the portion is low, antimony oxide as an impurity increases. On the other hand, when the half width (Δ2θ) is narrow and / or the degree of crystallinity is high, antimony oxide as an impurity decreases. I found it.
 なお、不純物としての酸化アンチモンを除去しながらアンチモンドープ酸化錫の結晶性を向上させる手段としては、例えば、後述する通気焼成、後述する気化精製などが挙げられる。 In addition, examples of means for improving the crystallinity of antimony-doped tin oxide while removing antimony oxide as an impurity include aeration firing described later and vaporization purification described later.
 そのため、本発明では、酸化アンチモンの使用量を必要最低限に抑えるために、半値幅(Δ2θ)を狭めたか、かつ/又は結晶化度を高めたアンチモンドープ酸化錫が提供される。この点、半値幅(Δ2θ)を狭めるか、又は結晶化度を高めると、不純物が少なくなり、効果的に酸化アンチモンを固溶した状態にすることができ、赤外線吸収効果を向上させることができる。 Therefore, the present invention provides an antimony-doped tin oxide having a narrowed half width (Δ2θ) and / or an increased crystallinity in order to minimize the amount of antimony oxide used. In this respect, when the half width (Δ2θ) is narrowed or the crystallinity is increased, impurities are reduced, and antimony oxide can be effectively dissolved and the infrared absorption effect can be improved. .
 したがって、X線回折測定において、2θ=27°付近の半値幅(Δ2θ)を0.35以下に調整し、かつ/又は2θ=27°付近の結晶化度を18092以上に調整することにより、酸化アンチモンの使用量を抑えても、十分な赤外線吸収効果を発揮することができる。 Therefore, in the X-ray diffraction measurement, by adjusting the half width (Δ2θ) near 2θ = 27 ° to 0.35 or less and / or adjusting the crystallinity near 2θ = 27 ° to 18092 or more, Even if the amount of antimony used is suppressed, a sufficient infrared absorption effect can be exhibited.
 なお、本明細書では、X線回折を測定するときに、市販のX線回折装置を用いて、任意のスキャン速度を選択してよいが、積算回数を1回に設定するものとする。 In this specification, when measuring X-ray diffraction, a commercially available X-ray diffractometer may be used to select an arbitrary scan speed, but the number of integrations is set to one.
 本発明に使用されるアンチモンドープ酸化錫では、酸化アンチモンの使用量を低減させながらも、赤外線吸収効果を十分に発揮させるために、2θ=27°付近の半値幅(Δ2θ)は、0.30以下、0.25以下、0.21以下、0.20以下、又は0.19以下であることが好ましい。 In the antimony-doped tin oxide used in the present invention, the half-value width (Δ2θ) near 2θ = 27 ° is 0.30 in order to sufficiently exhibit the infrared absorption effect while reducing the amount of antimony oxide used. Hereinafter, it is preferably 0.25 or less, 0.21 or less, 0.20 or less, or 0.19 or less.
 また、本発明に使用されるアンチモンドープ酸化錫は、2θ=27°付近の結晶化度が58427以上、特に78020以上であることが好ましい。 Further, the antimony-doped tin oxide used in the present invention preferably has a crystallinity of around 2427 = 27 °, 58427 or more, particularly 78020 or more.
 アンチモンドープ酸化錫の結晶化度を58427以上、特に78020以上とすると、不純物をより減らし、効果的に酸化アンチモンを固溶した状態にして、赤外線吸収効果をより向上させることができる。それ故に、本発明によれば、酸化アンチモンの使用量を低減させながらも、赤外線吸収効果を十分に発揮させることができる。 When the crystallinity of antimony-doped tin oxide is 58427 or more, particularly 78020 or more, impurities can be further reduced, and antimony oxide can be effectively solid-solved to further improve the infrared absorption effect. Therefore, according to the present invention, the infrared absorption effect can be sufficiently exhibited while reducing the amount of antimony oxide used.
 また、上記アンチモンドープ酸化錫を、アクリルポリマー及びシリコーンを含むワニスに溶解させ、基材に塗布し、乾燥し、70μmの厚さ及び約11.6重量%のアンチモンドープ酸化錫の固形分重量比を有する塗膜を形成したときに、この塗膜の日射反射率をJIS K5602に従って測定すると、380~780nmの波長域における平均反射率から780~1100nmの波長域における平均反射率を引くことにより得られた値が、約3.00%以上であることが好ましい。 The antimony-doped tin oxide is dissolved in a varnish containing an acrylic polymer and silicone, applied to a substrate, dried, and a solid content weight ratio of antimony-doped tin oxide having a thickness of 70 μm and about 11.6% by weight. When the solar reflectance of this coating film is measured according to JIS K5602 when a coating film having a thickness of 380 is formed, the average reflectance in the wavelength range of 780 to 1100 nm is subtracted from the average reflectance in the wavelength range of 380 to 780 nm. The obtained value is preferably about 3.00% or more.
 これに関連して、380~780nmの波長域における平均反射率から780~1100nmの波長域における平均反射率を引くことにより得られた値が3.00%以上であれば、アンチモンドープ酸化錫の可視光吸収性が相対的に低く、すなわち、アンチモンドープ酸化錫の可視光透明性が相対的に高くなる。したがって、アンチモンドープ酸化錫の呈する色に束縛されることなく、アンチモンドープ酸化錫を幅広い用途で使用することができる。 In this connection, if the value obtained by subtracting the average reflectance in the wavelength region of 780 to 1100 nm from the average reflectance in the wavelength region of 380 to 780 nm is 3.00% or more, the antimony-doped tin oxide Visible light absorption is relatively low, that is, the visible light transparency of antimony-doped tin oxide is relatively high. Therefore, antimony-doped tin oxide can be used in a wide range of applications without being restricted by the color exhibited by antimony-doped tin oxide.
 また、380~780nmの波長域における平均反射率から780~1100nmの波長域における平均反射率を引くことにより得られた値は、約4.80%以上、又は約4.85%以上であることがより好ましく、また約99%以下、約90%以下、又は約80%以下であることがより好ましい。 The value obtained by subtracting the average reflectance in the wavelength range of 780 to 1100 nm from the average reflectance in the wavelength range of 380 to 780 nm is about 4.80% or more, or about 4.85% or more. And more preferably about 99% or less, about 90% or less, or about 80% or less.
 本発明に使用される赤外線吸収材料は、上記のアンチモンドープ酸化錫からなる赤外線吸収顔料でよい。 The infrared absorbing material used in the present invention may be an infrared absorbing pigment made of the above antimony-doped tin oxide.
 本発明に使用される赤外線吸収材料によれば、上述したアンチモンドープ酸化錫の作用・効果を赤外線吸収材料にて実現することができる。このため、酸化アンチモンの使用量を低下させつつ、赤外線吸収効果も十分に発揮することができるとともに、所定の安全基準等を遵守した高品質の赤外線吸収材料を提供することができる。 According to the infrared absorbing material used in the present invention, the action and effect of the antimony-doped tin oxide described above can be realized by the infrared absorbing material. For this reason, while reducing the usage-amount of antimony oxide, the infrared absorption effect can fully be exhibited, and the high quality infrared absorption material which followed the predetermined safety standard etc. can be provided.
 本発明の印刷物は、赤外線吸収印刷層に含有されるアンチモンドープ酸化錫の固形分重量比が11.6重量%である場合、780~1100nmの赤外線波長域における反射率のピーク値が28.776%以下であることが好ましい。 When the solid matter weight ratio of antimony-doped tin oxide contained in the infrared absorption printing layer is 11.6% by weight, the printed matter of the present invention has a peak reflectance value of 28.776 in the infrared wavelength region of 780 to 1100 nm. % Or less is preferable.
 このように、赤外線の反射率が低い赤外線吸収印刷層とすることにより、赤外線吸収印刷層に含有される酸化アンチモンを低減することができると共に、赤外線吸収効果を十分に発揮させることができる。 Thus, by using an infrared absorbing printing layer having a low infrared reflectance, antimony oxide contained in the infrared absorbing printing layer can be reduced, and the infrared absorbing effect can be sufficiently exhibited.
 本発明に使用されるアンチモンドープ酸化錫は、例えば、以下の方法により製造されることができる。 The antimony-doped tin oxide used in the present invention can be produced, for example, by the following method.
〔アンチモンドープ酸化錫の製造方法〕
 本発明に使用されるアンチモンドープ酸化錫の製造方法は、アンチモンドープ酸化錫原料を通気下で焼成する通気焼成工程を含む。
[Method for producing antimony-doped tin oxide]
The method for producing antimony-doped tin oxide used in the present invention includes an aeration firing step of firing the antimony-doped tin oxide raw material under ventilation.
 本発明において、通気焼成又は冷却は、焼成又は冷却雰囲気を流通させながら焼成又は冷却を行うことだけでなく、外気を遮断しない開放空間(以下、「開放系」とも呼ぶ)で焼成又は冷却を行うことも含む。 In the present invention, aeration firing or cooling is performed not only by firing or cooling while circulating a firing or cooling atmosphere, but also by firing or cooling in an open space (hereinafter also referred to as “open system”) that does not block outside air. Including.
 本発明に使用されるアンチモンドープ酸化錫の製造方法は、アンチモンドープ酸化錫の半値幅を従来品よりも狭め、かつ/又はアンチモンドープ酸化錫の結晶化度を従来品よりも高めることができる。 The method for producing antimony-doped tin oxide used in the present invention can make the half-value width of antimony-doped tin oxide narrower than that of the conventional product and / or increase the crystallinity of antimony-doped tin oxide than that of the conventional product.
 本発明に使用されるアンチモンドープ酸化錫の製造方法は、通気焼成工程を含むことにより、酸化アンチモンの使用量を低減させながらも、赤外線吸収効果を十分に発揮させることができるアンチモンドープ酸化錫を製造することができる。 The method for producing antimony-doped tin oxide used in the present invention includes an antimony-doped tin oxide that can sufficiently exhibit an infrared absorption effect while reducing the amount of antimony oxide used by including an aeration firing step. Can be manufactured.
 本明細書では、「アンチモンドープ酸化錫原料」は、通気焼成により本発明のアンチモンドープ酸化錫になる原料であり、例えば、下記(i)~(v)の少なくとも1つを満たす原料である:
(i)錫化合物とアンチモン化合物の混合物;
(ii)上記(i)の混合物を閉鎖系(外気を遮断する密閉空間)で焼成することにより得られる生成物;
(iii)上記(ii)の生成物を閉鎖系で冷却することにより得られる生成物;
(iv)錫化合物及びアンチモン化合物を原料として用いる共沈焼成法により得られる粗アンチモンドープ酸化錫;及び
(v)X線回折測定により得られた2θ=27°付近の半値幅(Δ2θ)が、0.35を超えており、かつ/又は、X線回折測定により得られた2θ=27°付近のピークのピーク値を半値幅(Δ2θ)で除算した値である結晶化度が、18092未満である粗アンチモンドープ酸化錫。
In the present specification, the “antimony-doped tin oxide raw material” is a raw material that becomes the antimony-doped tin oxide of the present invention by aeration firing, for example, a raw material that satisfies at least one of the following (i) to (v):
(I) a mixture of a tin compound and an antimony compound;
(Ii) a product obtained by firing the mixture of (i) above in a closed system (closed space that blocks outside air);
(Iii) a product obtained by cooling the product of (ii) above in a closed system;
(Iv) a crude antimony-doped tin oxide obtained by a coprecipitation firing method using a tin compound and an antimony compound as raw materials; and (v) a half width (Δ2θ) near 2θ = 27 ° obtained by X-ray diffraction measurement, The crystallinity, which is a value exceeding 0.35 and / or the peak value of the peak around 2θ = 27 ° obtained by X-ray diffraction measurement, divided by the half width (Δ2θ) is less than 18092 Some crude antimony-doped tin oxide.
 上記(ii)及び(iii)からも明らかな通り、従来は閉鎖系で焼成工程及び冷却工程を行っていたため、従来のアンチモンドープ酸化錫では、酸化錫の結晶格子中に固溶されない酸化アンチモンが不純物として存在しており、赤外線吸収効果に寄与していないにもかかわらず、酸化アンチモンの多いアンチモンドープ酸化錫となっていた。 As apparent from the above (ii) and (iii), since the firing process and the cooling process are conventionally performed in a closed system, in the conventional antimony-doped tin oxide, antimony oxide that is not solid-solved in the crystal lattice of tin oxide is present. Despite being present as an impurity and not contributing to the infrared absorption effect, it was antimony-doped tin oxide with a large amount of antimony oxide.
 そこで、本件発明者等は、通気焼成工程、及びその後の冷却工程を行うことにより、余分な酸化アンチモンの除去を達成できることを見出した。そして、上記製造方法により得られるアンチモンドープ酸化錫は、半値幅が狭く、かつ/又は結晶化度が高くなるが、これは不純物の酸化アンチモンが少ないことに起因しているものと考えられる。一方、アンチモンドープ酸化錫の中に、余分な酸化アンチモンが存在していると、X線回折での測定時にX線が散乱され、ピークが低くなるものと考えられる。 Therefore, the inventors of the present invention have found that the removal of excess antimony oxide can be achieved by performing an aeration firing process and a subsequent cooling process. And the antimony dope tin oxide obtained by the said manufacturing method has a narrow half value width and / or a high crystallinity degree, It is thought that this originates in there being few antimony oxides of an impurity. On the other hand, if extra antimony oxide is present in the antimony-doped tin oxide, it is considered that X-rays are scattered during measurement by X-ray diffraction and the peak is lowered.
 なお、本明細書では、通気焼成工程、及びその後の通気冷却工程を少なくとも含むアンチモンドープ酸化錫の製造方法を「気化精製法」と呼ぶ。 In the present specification, a method for producing antimony-doped tin oxide including at least an aeration firing step and a subsequent aeration cooling step is referred to as a “vaporization purification method”.
 また、結晶格子中に固溶されている酸化アンチモンについては、上記製造方法では、通気焼成工程により、その一部を除去しつつ、結晶構造を適切に維持することができるため、高い赤外線吸収効果を維持することができる。このため、通気焼成工程を経ることにより、酸化アンチモンの使用量を低減させながら、高い赤外線吸収効果を得ることができる。 In addition, for antimony oxide dissolved in the crystal lattice, the above-described manufacturing method can maintain the crystal structure appropriately while removing a part thereof by the aeration firing process, so that a high infrared absorption effect Can be maintained. For this reason, a high infrared absorption effect can be obtained while reducing the amount of antimony oxide used by passing through the aeration firing step.
 「錫化合物」としては、例えば、メタ錫酸、錫酸ナトリウム三水和物、ニオブ三錫、酸化フェンブタ錫、酸化錫、水素化錫を挙げることができる。 Examples of the “tin compound” include metastannic acid, sodium stannate trihydrate, niobium tritin, fenbutane oxide, tin oxide, and tin hydride.
 「アンチモン化合物」としては、例えば、酸化アンチモン、アンチモン化インジウム、スチビンを挙げることができる。 Examples of the “antimony compound” include antimony oxide, indium antimonide, and stibine.
 所望により、本発明に使用されるアンチモンドープ酸化錫の製造方法は、通気焼成工程の後に、以下の工程を含んでよい:
 得られたアンチモンドープ酸化錫を、通気下で冷却する通気冷却工程;及び/又は
 得られたアンチモンドープ酸化錫を200[℃/時間]以上の冷却速度で冷却する冷却工程。
If desired, the method for producing antimony-doped tin oxide used in the present invention may include the following steps after the aeration firing step:
A ventilation cooling step of cooling the obtained antimony-doped tin oxide under ventilation; and / or a cooling step of cooling the obtained antimony-doped tin oxide at a cooling rate of 200 [° C./hour] or more.
 通気冷却工程は、例えば、炉の中に空気を送り込むことにより行なわれることができる(具体的には、冷却装置の設定により何時間後に何度まで冷却するという設定が可能である)。 The aeration cooling process can be performed, for example, by sending air into the furnace (specifically, it is possible to set the number of hours and how many times it is cooled by setting the cooling device).
 仮に密閉冷却工程(いわゆる自然冷却)に要する時間が10時間であるとすれば、通気冷却工程では、それよりも早い時間(例えば5時間程度)で冷却させてよい。このため、通気冷却工程は、自然冷却よりも積極的に冷却していることになる。 If the time required for the hermetic cooling process (so-called natural cooling) is 10 hours, the air cooling process may be performed in an earlier time (for example, about 5 hours). For this reason, the ventilation cooling process is more actively cooling than natural cooling.
 通気冷却工程又は単なる冷却工程において、冷却速度は、200[℃/時間]以上、215[℃/時間]以上、又は216[℃/時間]以上であることが好ましい。 In the ventilation cooling process or the simple cooling process, the cooling rate is preferably 200 [° C./hour] or more, 215 [° C./hour] or more, or 216 [° C./hour] or more.
 また、本発明に使用されるアンチモンドープ酸化錫の製造方法は、通気焼成工程の前に、以下の混合工程及び閉鎖焼成工程を含むことが好ましい:
 錫化合物とアンチモン化合物を混合して、混合物を得る混合工程;及び
 混合物を閉鎖系で焼成して、アンチモンドープ酸化錫原料を得る閉鎖焼成工程。
Moreover, it is preferable that the manufacturing method of the antimony dope tin oxide used for this invention includes the following mixing processes and closed baking processes before a ventilation baking process:
A mixing step of mixing a tin compound and an antimony compound to obtain a mixture; and a closed baking step of firing the mixture in a closed system to obtain an antimony-doped tin oxide raw material.
 さらに、本発明に使用されるアンチモンドープ酸化錫の製造方法は、閉鎖焼成工程と通気焼成工程の間に、アンチモンドープ酸化錫原料を閉鎖系で冷却する閉鎖冷却工程を含むことが好ましい。 Furthermore, it is preferable that the manufacturing method of the antimony dope tin oxide used for this invention includes the closed cooling process which cools an antimony dope tin oxide raw material by a closed system between a closed baking process and an aeration baking process.
 混合工程、閉鎖焼成工程、及び閉鎖冷却工程によって、それぞれ上記(i)~(iii)を満たすアンチモンドープ酸化錫原料を得ることができる。 The antimony-doped tin oxide raw material satisfying the above (i) to (iii) can be obtained by the mixing step, the closed firing step, and the closed cooling step, respectively.
 本発明の一実施形態に係るアンチモンドープ酸化錫の製造方法の各工程について、図1を参照して、以下に説明する。 Each process of the manufacturing method of the antimony dope tin oxide which concerns on one Embodiment of this invention is demonstrated below with reference to FIG.
〔原料混合工程:ステップS100〕
 この工程では、アンチモンドープ酸化錫の原料となる錫化合物とアンチモン化合物と混合する。具体的には、粉末状のメタ錫酸(HSnO)と粉末状の三酸化アンチモン(Sb)とを混合する。配合の割合は、「メタ錫酸(HSnO)=90重量%、三酸化アンチモン(Sb)=10重量%」の割合とし、水を媒体としてボールミルで砕混合を行う。なお、三酸化アンチモンの含有量は、10重量%が好ましいが、5~20重量%程度であってもよい。
[Raw material mixing step: Step S100]
In this step, a tin compound and an antimony compound as raw materials for antimony-doped tin oxide are mixed. Specifically, powdered metastannic acid (H 2 SnO 3 ) and powdered antimony trioxide (Sb 2 O 3 ) are mixed. The proportions of blending were “metastannic acid (H 2 SnO 3 ) = 90 wt%, antimony trioxide (Sb 2 O 3 ) = 10 wt%”, and pulverized and mixed with a ball mill using water as a medium. The content of antimony trioxide is preferably 10% by weight, but may be about 5 to 20% by weight.
〔第1乾燥工程:ステップS102〕
 この工程では、先の原料混合工程(ステップS100)で混合された材料を320℃にて乾燥させる。これにより、先の原料混合工程(ステップS100)にて材料を混合する際に使用した水を除去することができる。
[First drying step: Step S102]
In this step, the material mixed in the previous raw material mixing step (step S100) is dried at 320 ° C. Thereby, the water used when mixing materials in the previous raw material mixing step (step S100) can be removed.
〔第1粉砕工程:ステップS104〕
 この工程では、先の第1乾燥工程(ステップS102)にて乾燥された材料を粉砕する。具体的には、乾燥された材料を微粉砕機で粉末状に粉砕する。
[First grinding step: Step S104]
In this step, the material dried in the first drying step (step S102) is pulverized. Specifically, the dried material is pulverized into a powder by a fine pulverizer.
〔閉鎖焼成工程:ステップS106〕
 この工程では、先の第1粉砕工程(ステップS104)にて粉砕された材料を焼成する。具体的には、先の第1粉砕工程(ステップS104)にて粉砕された材料を閉鎖系にて1000~1300℃で1時間以上焼成する。閉鎖焼成工程では、閉鎖系にて焼成しているため、酸化アンチモンの含有率(固溶比率)は、10重量%程度に維持される。
[Closed firing process: Step S106]
In this step, the material pulverized in the first pulverization step (step S104) is baked. Specifically, the material pulverized in the first pulverization step (step S104) is fired at 1000 to 1300 ° C. for 1 hour or longer in a closed system. In the closed baking process, since baking is performed in a closed system, the content of antimony oxide (solid solution ratio) is maintained at about 10% by weight.
〔閉鎖冷却工程:ステップS107〕
 この工程では、先の閉鎖焼成工程(ステップS106)で焼成された材料を冷却する。具体的には、閉鎖焼成工程の終了と同時に冷却を開始して、焼成された材料を閉鎖系で冷却する。これにより、錫(Sn)とアンチモン(Sb)とを複合させたアンチモンドープ酸化錫原料が生成される。アンチモンドープ酸化錫原料は、閉鎖焼成工程(ステップS106)及び閉鎖冷却工程(ステップS107)を経て生成される。なお、冷却は自然冷却でもよいが、後述する通気冷却工程と同様に、焼成された材料を通気下で冷却してもよい。
[Closed cooling process: Step S107]
In this step, the material fired in the previous closed firing step (step S106) is cooled. Specifically, cooling is started simultaneously with the end of the closed firing step, and the fired material is cooled in a closed system. Thereby, an antimony-doped tin oxide raw material in which tin (Sn) and antimony (Sb) are combined is generated. The antimony-doped tin oxide raw material is generated through a closed firing process (step S106) and a closed cooling process (step S107). In addition, although natural cooling may be sufficient as cooling, you may cool the baked material under ventilation similarly to the ventilation cooling process mentioned later.
〔第1微粉砕工程:ステップS108〕
 所望により、この工程を行なって、先の閉鎖冷却工程(ステップS107)にて冷却された材料を粉砕してよい。具体的には、水を媒体としつつ、ビーズミルを用いて、焼成後の材料を粒径(レーザー回折散乱法でのメディアン径)が100nm程度になるまで粉砕することができる。なお、この工程を省略する場合には、この工程より前の工程(例えば、ステップS106、ステップS107など)で使用された装置内において、連続的に後の工程に進んでよい。
[First fine grinding step: Step S108]
If desired, this step may be performed to pulverize the material cooled in the previous closed cooling step (step S107). Specifically, the fired material can be pulverized using a bead mill while using water as a medium until the particle diameter (median diameter in the laser diffraction scattering method) reaches about 100 nm. In the case where this process is omitted, the process may be continuously performed in the apparatus used in the process before this process (for example, step S106, step S107, etc.).
〔第2乾燥工程:ステップS110〕
 所望により、この工程を行なって、先の第1微粉砕工程(ステップS108)で粉砕された材料を、320℃に加熱することにより乾燥させてよい。これにより、先の第1微粉砕工程(ステップS108)にて材料を粉砕する際に使用した水を除去することができる。なお、この工程を省略する場合には、この工程より前の工程(例えば、ステップS106、ステップS107など)で使用された装置内において、連続的に後の工程に進んでよい。
[Second drying step: Step S110]
If desired, this step may be performed, and the material pulverized in the first pulverization step (step S108) may be dried by heating to 320 ° C. Thereby, the water used when the material is pulverized in the first fine pulverization step (step S108) can be removed. In the case where this process is omitted, the process may be continuously performed in the apparatus used in the process before this process (for example, step S106, step S107, etc.).
〔第2粉砕工程:ステップS112〕
 所望により、この工程を行なって、先の第2乾燥工程(ステップS110)にて乾燥された材料を粉砕してよい。具体的には、乾燥された材料を微粉砕機で粉末状に粉砕することができる。なお、この工程を省略する場合には、この工程より前の工程(例えば、ステップS106、ステップS107など)で使用された装置内において、連続的に後の工程に進んでよい。
[Second grinding step: Step S112]
If desired, this step may be performed to pulverize the material dried in the second drying step (step S110). Specifically, the dried material can be pulverized with a fine pulverizer. In the case where this process is omitted, the process may be continuously performed in the apparatus used in the process before this process (for example, step S106, step S107, etc.).
〔通気焼成工程:ステップS114〕
 この工程では、先の第2粉砕工程(ステップS112)にて粉砕された材料を焼成する。具体的には、先の第2粉砕工程(ステップS112)にて粉砕された材料を、炉において通気下(炉内部に通気を保った状態)にて焼成する。この工程では、焼成温度は、1000℃以上、1050℃以上、1100℃以上、又は1150℃以上でよく、また、この焼成温度は、1300℃以下、1250℃以下、又は1200℃以下でよい。この工程では、焼成時間は、1時間以上、2時間以上、3時間以上、4時間以上、5時間以上、6時間以上、7時間以上、又は8時間以上でよく、また、この焼成時間は、12時間以下、11時間以下、10時間以下、又は9時間以下でよい。この通気焼成工程により、閉鎖焼成工程により生成されたアンチモンドープ酸化錫原料を通気下で再び焼成することになる。また、通気焼成工程では、通気下にて焼成しているため、酸化錫(SnO)中の余分な酸化アンチモンを気化させて消失させることができる。そして、最終的な酸化アンチモンの含有量(固溶比率)は、約0.5~10.0重量%になる。
[Ventilation firing process: Step S114]
In this step, the material pulverized in the second pulverization step (step S112) is baked. Specifically, the material pulverized in the second pulverization step (step S112) is fired in a furnace under ventilation (a state in which ventilation is maintained inside the furnace). In this step, the firing temperature may be 1000 ° C. or more, 1050 ° C. or more, 1100 ° C. or more, or 1150 ° C. or more, and the firing temperature may be 1300 ° C. or less, 1250 ° C. or less, or 1200 ° C. or less. In this step, the firing time may be 1 hour or more, 2 hours or more, 3 hours or more, 4 hours or more, 5 hours or more, 6 hours or more, 7 hours or more, or 8 hours or more. It may be 12 hours or less, 11 hours or less, 10 hours or less, or 9 hours or less. By this aeration firing process, the antimony-doped tin oxide raw material produced by the closed firing process is fired again under ventilation. Further, in the aeration firing process, since the firing is performed under ventilation, excess antimony oxide in tin oxide (SnO 2 ) can be vaporized and eliminated. The final content of antimony oxide (solid solution ratio) is about 0.5 to 10.0% by weight.
〔通気冷却工程:ステップS116〕
 この工程では、先の通気焼成工程(ステップS114)で焼成されたアンチモンドープ酸化錫を、通気下にて冷却する。
[Ventilation cooling step: Step S116]
In this step, the antimony-doped tin oxide fired in the previous aeration firing step (step S114) is cooled under ventilation.
 具体的には、通気焼成工程の終了と同時に冷却を開始し、300分以内に焼成炉内の温度を室温(例えば20~25℃程度)にすることにより、再び焼成されたアンチモンドープ酸化錫を冷却する。なお、通気冷却工程は通気下で行われる。 Specifically, cooling is started simultaneously with the end of the aeration firing process, and the temperature in the firing furnace is set to room temperature (for example, about 20 to 25 ° C.) within 300 minutes. Cooling. The aeration cooling step is performed under aeration.
 なお、実施形態において気化精製法を行う場合には、通気焼成工程(ステップS114)の後に、通気冷却工程(ステップS116)を行うことができる。 In addition, when performing the vaporization refinement | purification method in embodiment, an aeration cooling process (step S116) can be performed after an aeration baking process (step S114).
〔第2微粉砕工程:ステップS118〕
 この工程では、先の通気冷却工程(ステップS116)にて冷却された精製後の材料を粉砕する。具体的には、水を媒体としつつ、ビーズミルを用いて、精製後の材料を粒径(レーザー回折散乱法でのメディアン径)が100nm程度になるまで粉砕する。
[Second fine grinding step: Step S118]
In this process, the purified material cooled in the previous air cooling process (step S116) is pulverized. Specifically, using water as a medium, the purified material is pulverized using a bead mill until the particle size (median diameter in the laser diffraction scattering method) becomes about 100 nm.
〔洗浄工程:ステップS120〕
 この工程では、先の第2微粉砕工程(ステップS118)にて粒度調整された材料の不純物を水洗により除去する。不純物は、原材料に含まれる微量の電解質(例えば、ナトリウム(Na)、カリウム(K)など)であり、不純物が十分に除去されたか否かは、導電率で確認することができる。
[Washing process: Step S120]
In this step, the impurities of the material whose particle size has been adjusted in the second fine pulverization step (step S118) are removed by washing with water. Impurities are minute amounts of electrolyte (for example, sodium (Na), potassium (K), etc.) contained in the raw material, and whether or not the impurities are sufficiently removed can be confirmed by conductivity.
〔第3乾燥工程:ステップS122〕
 この工程では、先の洗浄工程(ステップS120)で洗浄された材料を145℃に加熱することにより乾燥させる。これにより、先の洗浄工程(ステップS120)にて材料を洗浄する際に使用した水を除去することができるとともに、洗浄後の材料を乾燥させることができる。
[Third drying step: Step S122]
In this step, the material cleaned in the previous cleaning step (step S120) is dried by heating to 145 ° C. Thereby, while being able to remove the water used when wash | cleaning material by the previous washing | cleaning process (step S120), the material after washing | cleaning can be dried.
〔仕上粉砕工程:ステップS124〕
 この工程では、先の第3乾燥工程(ステップS122)にて乾燥された材料を粉砕する。具体的には、乾燥された材料を微粉砕機で、粒径(レーザー回折散乱法でのメディアン径)が数10nm~100μm程度になるように仕上粉砕する。
[Finish grinding process: Step S124]
In this step, the material dried in the third drying step (step S122) is pulverized. Specifically, the dried material is pulverized with a fine pulverizer so that the particle diameter (median diameter by laser diffraction scattering method) is about several tens of nm to 100 μm.
 そして、上記の各工程を経ることにより、本発明に使用されるアンチモンドープ酸化錫が製造される。 And antimony dope tin oxide used for this invention is manufactured by passing through each said process.
[ビヒクル]
 ビヒクルは、アンチモンドープ酸化錫及び/又は着色剤を分散させて、基材に付着させる媒体である。インキには、印刷に使用されている既知のビヒクル成分を含有させてよい。インキは、油性インキ、UVインキ、油性・UV併用インキ、又は溶剤含有インキとして形成されることができるので、それぞれのインキに適したビヒクルについて以下に説明する。
[Vehicle]
The vehicle is a medium in which antimony-doped tin oxide and / or colorant is dispersed and adhered to the substrate. The ink may contain known vehicle components used in printing. Since the ink can be formed as oil-based ink, UV ink, oil-based / UV combined ink, or solvent-containing ink, vehicles suitable for each ink will be described below.
(油性インキに適したビヒクル)
 油性インキに適したビヒクルとしては、例えば、樹脂、酸化重合触媒、溶剤などを単独または複数組み合わせて使用することができる。樹脂、酸化重合触媒及び溶剤について以下に説明する。
(Vehicle suitable for oil-based ink)
As a vehicle suitable for the oil-based ink, for example, a resin, an oxidation polymerization catalyst, a solvent, or the like can be used alone or in combination. The resin, the oxidation polymerization catalyst, and the solvent will be described below.
〔樹脂〕
 油性インキに含まれる樹脂としては、あまに油、桐油等の乾性油、大豆油、なたね油等の半乾性油、半乾性油から変性して製造されるアルキド樹脂、およびその他の変性アルキド樹脂、特にフェノール変性アルキド樹脂、エポキシ変性アルキド樹脂、ウレタン変性アルキド樹脂、シリコーン変性アルキド樹脂、アクリル変性アルキド樹脂、およびビニル変性アルキド樹脂、中和酸アルキド樹脂等を1種または2種以上混合して使用することができる。
〔resin〕
Resins contained in oil-based inks include linseed oil, tung oil and other drying oils, soybean oil, rapeseed oil and other semi-drying oils, alkyd resins produced by modification from semi-drying oils, and other modified alkyd resins, especially Use phenol-modified alkyd resin, epoxy-modified alkyd resin, urethane-modified alkyd resin, silicone-modified alkyd resin, acrylic-modified alkyd resin, vinyl-modified alkyd resin, neutralized acid alkyd resin, etc. Can do.
〔酸化重合触媒〕
 酸化重合触媒としては、コバルト、バナジウム、マンガン、ジルコニウム、鉛、鉄、セリウム等の金属化合物、又は長鎖脂肪酸の塩を単独又は2種以上を組み合わせて使用することができる。酸化重合触媒としては、例えば、ホウ酸コバルト、オクチル酸コバルト、オクチル酸マンガン、オクチル酸ジルコン、ナフテン酸コバルト、一酸化鉛等が挙げられる。
[Oxidation polymerization catalyst]
As the oxidation polymerization catalyst, a metal compound such as cobalt, vanadium, manganese, zirconium, lead, iron, cerium, or a salt of a long chain fatty acid may be used alone or in combination of two or more. Examples of the oxidation polymerization catalyst include cobalt borate, cobalt octylate, manganese octylate, zircon octylate, cobalt naphthenate, lead monoxide and the like.
〔溶剤〕
 溶剤の沸点、溶剤と樹脂の相溶性、インキの乾燥性、被印刷物への浸透性などを考慮して、インキに使用される既知の溶剤を選択してよい。溶剤としては、例えば、鉱物油;トルエン、キシレンなどの芳香族油;酢酸エチルなどのエステル;メチルエチルケトンなどのケトン;イソプロピルアルコールなどのアルコール;エチレングリコール、ジエチレングリコール、トリエチレングリコールなどのグリコール;セルロース溶剤;n-ドデカン鉱油等の高沸点鉱油などが挙げられる。
〔solvent〕
A known solvent used for the ink may be selected in consideration of the boiling point of the solvent, the compatibility between the solvent and the resin, the drying property of the ink, the permeability to the printing material, and the like. Examples of the solvent include mineral oil; aromatic oil such as toluene and xylene; ester such as ethyl acetate; ketone such as methyl ethyl ketone; alcohol such as isopropyl alcohol; glycol such as ethylene glycol, diethylene glycol and triethylene glycol; cellulose solvent; and high boiling mineral oil such as n-dodecane mineral oil.
(UVインキに適したビヒクル)
 UVインキに適したビヒクルとしては、例えば、モノマー、オリゴマー、バインダーポリマーなどの光重合性樹脂;光重合開始剤などが挙げられる。光重合性樹脂及び光重合開始剤について以下に説明する。
(Vehicle suitable for UV ink)
Examples of the vehicle suitable for the UV ink include photopolymerizable resins such as monomers, oligomers and binder polymers; photopolymerization initiators and the like. The photopolymerizable resin and the photopolymerization initiator will be described below.
〔モノマー・オリゴマー〕
 光重合性樹脂としては、エポキシアクリレート、ウレタンアクリレート、ポリエステルアクリレート、シリコーンアクリレート、アクリル化されたアミン、アクリル飽和樹脂およびアクリルアクリレート、ビスフェノールA型エポキシアクリレートの酸無水物付加アクリレート、フェノールノボラックエポキシアクリレートの酸無水物付加アクリレート、ジペンタエリスリトールペンタアクリレートの酸無水物付加アクリレート等の水酸基を有するアクリレートに酸無水物を付加させたカルボキシル基を有するアクリレート、水酸基を有するウレタンアクリレートに酸無水物を付加させたカルボキシル基を有するアクリレート、ポリエチレングリコールジアクリレート、ポリプロピレングリコールジアクリレート、ポリグリセリンエポキシアクリレート、ポリグリセリンポリアクリレート等の水溶性アクリレート、アクリロイルモルホリン等のモノマー及びオリゴマーを、それぞれ単独又は2種以上組み合わせて使用することができる。
[Monomer / Oligomer]
Photopolymerizable resins include epoxy acrylate, urethane acrylate, polyester acrylate, silicone acrylate, acrylated amine, acrylic saturated resin and acrylic acrylate, bisphenol A type epoxy acrylate acid anhydride addition acrylate, phenol novolac epoxy acrylate acid Carboxylic acid acrylates with hydroxyl anhydrides added to hydroxylated acrylates such as anhydride added acrylates, acid anhydride added acrylates of dipentaerythritol pentaacrylate, and carboxyls with acid anhydrides added to urethane acrylates with hydroxyl groups Group-containing acrylate, polyethylene glycol diacrylate, polypropylene glycol diacrylate, polyglycerin epoxy Relate, water-soluble acrylates such as polyglycerol acrylate, monomers and oligomers such as acryloyl morpholine, may be used in combination either alone or two or more.
 なお、オリゴマーはUVインキの基本物性を支配する樹脂であり、モノマーは主に希釈剤として作用し、インキの粘度調整用の他、硬化性、接着性などに影響する。 The oligomer is a resin that governs the basic physical properties of the UV ink, and the monomer mainly acts as a diluent and affects the curability and adhesiveness as well as the viscosity adjustment of the ink.
〔光重合開始剤〕
 光重合開始剤は、紫外線照射によって活性酸素等のラジカルを発生する化合物である。UVインキには、印刷に使用されている既知の光重合開始剤を含有させてよい。
(Photopolymerization initiator)
The photopolymerization initiator is a compound that generates radicals such as active oxygen when irradiated with ultraviolet rays. The UV ink may contain a known photopolymerization initiator used for printing.
 光重合開始剤としては、限定されるものではないが、例えば、アセトフェノン、α-アミノアセトフェノン、2,2-ジエトキシアセトフェノン、p-ジメチルアミノアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、ベンジルジメチルケタール、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、4-(2-ヒドロキシエトキシ)フェニル-(2-ヒドロキシ-2-メチルプロピル)ケトン、4-(2-ヒドロキシエトキシ)フェニル-(2-ヒドロキシ-2-プロピル)ケトン、1-ヒドロキシシクロヘキシル-フェニルケトン、2-メチル-2-モルホリノ(4-チオメチルフェニル)プロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノンなどのアセトフェノン類;ベイゾイン、ベイゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾイン-n-プロピルエーテル、ベイゾインイソプロピルエーテル、ベンゾイン-n-ブチルエーテル、ベンゾインイソブチルエーテル、ベンゾインジメチルケタール、ベンゾインパーオキサイドなどのベンゾイン類;2,4,6-トリメトキシベンゾインジフェニルホスフィンオキサイドなどのアシルホフィンオキサイド類;ベンジル及びメチルフェニル-グリオキシエステル;ベンゾフェノン、メチル-4-フェニルベンゾフェノン、o-ベンゾイルベンゾエート、2-クロロベンゾフェノン、4,4’-ジクロロベンゾフェノン、ヒドロキシベンゾフェノン、4-ベンゾイル-4’-メチル-ジフェニルスルフィド、アクリル-ベンゾフェノン、3,3’4,4’-テトラ(t-ブチルペルオキシカルボニル)ベンゾフェノン、3,3’-ジメチル-4-メトキシベンゾフェノンなどのベンゾフェノン類;2-メチルチオキサントン、2-イソプロピルチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2-クロロチオキサントン、2,4-ジクロロチオキサントンなどのチオキサントン類;ミヒラーケトン、4,4’-ジエチルアミノベンゾフェノンなどのアミノベンゾフェノン類;テトラメチルチウラムモノスルフィド;アゾビスイソブチロニトリル;ジ-tert-ブチルパーオキサイド;10-ブチル-2-クロロアクリドン;2-エチルアントラキノン;9,10-フェナントレンキノン;カンファキノンなどが挙げられる。 Examples of the photopolymerization initiator include, but are not limited to, acetophenone, α-aminoacetophenone, 2,2-diethoxyacetophenone, p-dimethylaminoacetophenone, 2-hydroxy-2-methyl-1-phenylpropane -1-one, benzyldimethyl ketal, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, 4- (2-hydroxyethoxy) phenyl- (2-hydroxy-2-methylpropyl) ) Ketone, 4- (2-hydroxyethoxy) phenyl- (2-hydroxy-2-propyl) ketone, 1-hydroxycyclohexyl-phenylketone, 2-methyl-2-morpholino (4-thiomethylphenyl) propane-1- ON, 2-benzyl-2-dimethylamino-1- (4-mol Acetophenones such as linophenyl) -butanone; bezoin, beizoin methyl ether, benzoin ethyl ether, benzoin-n-propyl ether, beizoin isopropyl ether, benzoin-n-butyl ether, benzoin isobutyl ether, benzoin dimethyl ketal, benzoin per Benzoins such as oxides; acyl phosphine oxides such as 2,4,6-trimethoxybenzoin diphenylphosphine oxide; benzyl and methylphenyl-glyoxyesters; benzophenone, methyl-4-phenylbenzophenone, o-benzoylbenzoate, 2 -Chlorobenzophenone, 4,4'-dichlorobenzophenone, hydroxybenzophenone, 4-benzoyl-4'-methyl-diphenyls Benzophenones such as luffide, acrylic-benzophenone, 3,3'4,4'-tetra (t-butylperoxycarbonyl) benzophenone, 3,3'-dimethyl-4-methoxybenzophenone; 2-methylthioxanthone, 2-isopropylthioxanthone Thioxanthones such as 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, 2-chlorothioxanthone, 2,4-dichlorothioxanthone; aminobenzophenones such as Michler ketone, 4,4′-diethylaminobenzophenone; tetramethylthiuram mono Sulfide; Azobisisobutyronitrile; Di-tert-butyl peroxide; 10-butyl-2-chloroacridone; 2-ethylanthraquinone; 9,10-phenanthrenequinone; Such as quinone, and the like.
 また、4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸イソアミルなどの光重合開始助剤を上記光重合開始剤と併用してもよい。 Further, a photopolymerization initiation assistant such as ethyl 4-dimethylaminobenzoate or isoamyl 4-dimethylaminobenzoate may be used in combination with the photopolymerization initiator.
(油性・UV併用インキに適したビヒクル)
 本発明の実施形態では、油性インキとUVインキを併用して、油性・UV併用インキを形成してもよい。その場合、溶剤以外の油性インキ用ビヒクルに、アンチモンドープ酸化錫を加え、所望により、植物油成分から成る溶剤、ラジカル重合性モノマー及び/若しくはオリゴマー、又は顔料分散剤も加えて、ビーズミル又は3本ロールミルなどの分散機で練肉分散させることによりインキ用ミルベースを得る。さらに、インキ用ミルベースに、光重合開始剤を加え、所望により、その他の材料も加えて、油性・UV併用インキを得ることができる。
(Vehicle suitable for oil-based and UV combined ink)
In the embodiment of the present invention, an oil-based ink and a UV ink may be used in combination to form an oil-based / UV combined ink. In that case, antimony-doped tin oxide is added to a vehicle for oil-based inks other than the solvent, and optionally a solvent comprising a vegetable oil component, a radically polymerizable monomer and / or oligomer, or a pigment dispersant is added to the bead mill or three-roll mill. An ink mill base is obtained by dispersing the kneaded meat with a dispersing machine such as the above. Furthermore, a photopolymerization initiator is added to the mill base for the ink, and if desired, other materials can be added to obtain an oil-based / UV combined ink.
 なお、油性インキビヒクルは、油性インキに適したビヒクルとして上記で説明された成分を溶解させたものであり、UVインキビヒクルは、UVインキに適したビヒクルとして上記で説明された成分を溶解させたものである。また、油性・UV併用インキに着色剤を加えてもよい。 The oil-based ink vehicle is obtained by dissolving the components described above as a vehicle suitable for oil-based inks, and the UV ink vehicle is prepared by dissolving the components described above as vehicles suitable for UV ink. Is. Further, a colorant may be added to the oil-based / UV combined ink.
(溶剤含有インキに適したビヒクル)
 溶剤含有インキに適したビヒクルは、少なくとも溶剤を含む。例えば、水性インキに適したビヒクルは、水を含む。また、水性インキに適したビヒクルには、有機溶剤、樹脂などを単独または複数組み合わせて含有させてよい。一方で、有機溶剤含有インキに適したビヒクルは、有機溶剤を含み、かつ水を実質的に含まない。また、有機溶剤含有インキに適したビヒクルには、樹脂を含有させてよい。
(Vehicle suitable for solvent-containing ink)
Suitable vehicles for solvent-containing inks include at least a solvent. For example, a suitable vehicle for water-based ink includes water. The vehicle suitable for the water-based ink may contain an organic solvent, a resin, or the like alone or in combination. On the other hand, vehicles suitable for organic solvent-containing inks contain organic solvents and are substantially free of water. Further, the vehicle suitable for the organic solvent-containing ink may contain a resin.
 溶剤含有インキに含まれる樹脂としては、上記油性インキ又はUVインキに適したビヒクルとして説明された樹脂を使用してよい。また、水性インキに含まれる樹脂は、水溶性樹脂、コロイダルディスパージョン樹脂、又はエマルション樹脂の形態であることが好ましい。 As the resin contained in the solvent-containing ink, a resin described as a vehicle suitable for the oil-based ink or the UV ink may be used. The resin contained in the water-based ink is preferably in the form of a water-soluble resin, a colloidal dispersion resin, or an emulsion resin.
 溶剤含有インキに含まれる有機溶剤としては、上記油性インキに適したビヒクルとして説明された溶剤を使用してよい。 As the organic solvent contained in the solvent-containing ink, a solvent described as a vehicle suitable for the oil-based ink may be used.
[補助剤]
 本発明の実施形態では、印刷に使用されている既知の補助剤をインキに含有させてよい。補助剤としては、例えば、体質顔料、ワックス、消泡剤、分散剤、可塑剤、架橋剤、レベリング剤、導電性付与剤、浸透剤、pH調整剤、防腐剤又は防かび剤、脱酸素剤、その他の添加剤などが挙げられる。これらの補助剤について以下に説明する。
[Adjuvant]
In an embodiment of the present invention, the ink may contain known adjuvants used in printing. Examples of auxiliary agents include extender pigments, waxes, antifoaming agents, dispersants, plasticizers, crosslinking agents, leveling agents, conductivity imparting agents, penetrating agents, pH adjusting agents, preservatives or fungicides, and oxygen scavengers. And other additives. These adjuvants will be described below.
 体質顔料は、インキの粘度が高く、凹版の版面からインキを拭き取ることが困難であるときに、多用される。体質顔料としては、例えば、硫酸バリウム、炭酸カルシウム、硫酸カルシウム、カオリン、タルク、シリカ、コーン澱粉、二酸化チタン、又はこれらの混合物を用いることができる。 Extender pigments are frequently used when the viscosity of the ink is high and it is difficult to wipe the ink from the intaglio plate. As the extender pigment, for example, barium sulfate, calcium carbonate, calcium sulfate, kaolin, talc, silica, corn starch, titanium dioxide, or a mixture thereof can be used.
 ワックスは、耐摩擦性、ブロッキング防止性、すべり性、スリキズ防止性等の性質をインキに付与するための添加剤であり、ポリエチレンワックス、フッ素化ワックス等を例示することができる。 The wax is an additive for imparting properties such as friction resistance, anti-blocking property, slipperiness and anti-scratch properties to the ink, and examples thereof include polyethylene wax and fluorinated wax.
 消泡剤は、インキ中の泡の発生を抑制するか、又はインキ中に発生した泡を減少させるために使用される補助剤である。消泡剤としては、例えば、シリコーン化合物、ポリシロキサン、ポリグリコール、ポリアルコキシ化合物などを単独または複数組み合わせて使用することができる。具体的には、消泡剤としては、例えば、Byk-Chemie社製のBYK(登録商標)-019、BYK(登録商標)-022、BYK(登録商標)-024、BYK(登録商標)-065、及びBYK(登録商標)-088などが挙げられる。 The defoaming agent is an auxiliary agent used to suppress the generation of bubbles in the ink or reduce the bubbles generated in the ink. As the antifoaming agent, for example, silicone compounds, polysiloxanes, polyglycols, polyalkoxy compounds and the like can be used alone or in combination. Specifically, examples of the antifoaming agent include BYK (registered trademark) -019, BYK (registered trademark) -022, BYK (registered trademark) -024, and BYK (registered trademark) -065 manufactured by Byk-Chemie. , And BYK (registered trademark) -088.
 分散剤は、インキのレベリング性、安定性及び分散性を向上させるための補助剤である。具体的には、分散剤は、ビヒクル成分によるアンチモンドープ酸化錫又は着色剤の濡れを向上させるか、アンチモンドープ酸化錫又は着色剤をビヒクル成分に吸着させるか、かつ/又は、インキ中に分散しているアンチモンドープ酸化錫又は着色剤の再凝集を防ぐために、使用されることができる。 The dispersant is an auxiliary agent for improving the leveling property, stability and dispersibility of the ink. Specifically, the dispersant improves the wetting of the antimony-doped tin oxide or colorant by the vehicle component, or adsorbs the antimony-doped tin oxide or colorant to the vehicle component and / or is dispersed in the ink. It can be used to prevent reagglomeration of the antimony doped tin oxide or colorant.
 分散剤としては、例えば、低分子分散剤、高分子分散剤、顔料誘導体、カップリング剤などが挙げられる。 Examples of the dispersant include a low molecular dispersant, a polymer dispersant, a pigment derivative, and a coupling agent.
 低分子分散剤としては、例えば、石けん、α-スルホ脂肪酸エステル塩(MES)、アルキルベンゼンスルホン酸塩(ABS)、直鎖アルキルベンゼンスルホン酸塩(LAS)、アルキル硫酸塩(AS)、アルキルエーテル硫酸エステル塩(AES)、アルキル硫酸トリエタノールアミンなどのアニオン性化合物;アルキルトリメチルアンモニウム塩、ジアルキルジメチルアンモニウムクロリド、アルキルピリジニウムクロリドなどのカチオン性化合物;アミノ酸、アルキルカルボキシベタイン、スルホベタイン、レシチンなどの両性化合物;脂肪酸ジエタノールアミド、ポリオキシエチレンアルキルエーテル(AE)、ポリオキシエチレンアルキルフェニルエーテル(APE)などのノニオン性化合物などが挙げられる。 Examples of the low molecular weight dispersant include soap, α-sulfo fatty acid ester salt (MES), alkylbenzene sulfonate (ABS), linear alkylbenzene sulfonate (LAS), alkyl sulfate (AS), and alkyl ether sulfate. Anionic compounds such as salts (AES) and alkylsulfuric acid triethanolamine; cationic compounds such as alkyltrimethylammonium salts, dialkyldimethylammonium chloride and alkylpyridinium chloride; amphoteric compounds such as amino acids, alkylcarboxybetaines, sulfobetaines and lecithins; Nonionic compounds such as fatty acid diethanolamide, polyoxyethylene alkyl ether (AE), and polyoxyethylene alkyl phenyl ether (APE) are exemplified.
 高分子分散剤としては、アンカー基とバリアー基に対応する部分を有するポリマーを任意に使用してよい。例えば、有機溶剤含有インキには、ポリアクリル酸の部分アルキルエステル、ポリアルキレンポリアミンなどの非水系高分子分散剤を使用することが好ましい。また、水性インキには、ナフタレンスルホン酸塩のホルマリン縮合物、ポリスチレンスルホン酸塩、ポリアクリル酸塩、ビニル化合物とカルボン酸含有単量体との共重合体の塩、カルボキシメチルセルロースなどの水系高分子分散剤を使用することが好ましい。 As the polymer dispersant, a polymer having a portion corresponding to an anchor group and a barrier group may be arbitrarily used. For example, it is preferable to use a non-aqueous polymer dispersant such as a partial alkyl ester of polyacrylic acid or a polyalkylene polyamine for the organic solvent-containing ink. Water-based inks include naphthalene sulfonate formalin condensates, polystyrene sulfonates, polyacrylates, copolymers of vinyl compounds and carboxylic acid-containing monomers, and water-based polymers such as carboxymethyl cellulose. It is preferred to use a dispersant.
 顔料誘導体は、顔料骨格にカルボキシル基、スルホン基、三級アミノ基などの極性基を導入することにより得られる。顔料誘導体の顔料骨格部分は、対応する顔料と吸着し易く、一方で、導入された極性基は、ビヒクル又は他の分散剤との親和性に優れる。 The pigment derivative is obtained by introducing a polar group such as a carboxyl group, a sulfone group, or a tertiary amino group into the pigment skeleton. The pigment skeleton portion of the pigment derivative is easily adsorbed with the corresponding pigment, while the introduced polar group is excellent in affinity with the vehicle or other dispersant.
 顔料誘導体は、インキに含まれる顔料の骨格に応じて、既知の方法により合成されることができる。例えば、ジアルキルアミノメチレン銅フタロシアニン、アミン塩銅フタロシアニンなどが、フタロシアニンを着色剤として含むフレキソ印刷インキを形成するために使用される。 The pigment derivative can be synthesized by a known method according to the skeleton of the pigment contained in the ink. For example, dialkylaminomethylene copper phthalocyanine, amine salt copper phthalocyanine, and the like are used to form flexographic printing inks that contain phthalocyanine as a colorant.
 カップリング剤は、アンチモンドープ酸化錫又は着色剤の表面に吸着するか、又は化学結合して、アンチモンドープ酸化錫又は着色剤とビヒクルとの接着性を向上させる材料である。カップリング剤としては、例えば、シランカップリング剤、チタネートカップリング剤などが挙げられる。 The coupling agent is a material that adsorbs to the surface of the antimony-doped tin oxide or the colorant or chemically bonds to improve the adhesion between the antimony-doped tin oxide or the colorant and the vehicle. Examples of the coupling agent include a silane coupling agent and a titanate coupling agent.
 可塑剤は、インキのフィルム形成性又はインキ塗膜の柔軟性を調整するための補助剤である。可塑剤としては、例えば、ナフテン油、パラフィン油などの脂肪族炭化水素油;液状ポリブタジエン、液状ポリイソプレンなどの液状ポリジエン;ポリスチレン;ポリ-α-メチルスチレン;α-メチルスチレン-ビニルスチレン共重合体;水添ロジンのペンタエリトリトールエステル;ポリテルペン樹脂;エステル樹脂などが挙げられる。 The plasticizer is an auxiliary agent for adjusting the film formability of the ink or the flexibility of the ink coating film. Examples of plasticizers include aliphatic hydrocarbon oils such as naphthene oil and paraffin oil; liquid polydienes such as liquid polybutadiene and liquid polyisoprene; polystyrene; poly-α-methylstyrene; α-methylstyrene-vinylstyrene copolymer Hydrogenated rosin pentaerythritol ester; polyterpene resin; ester resin and the like.
 架橋剤は、複数の物質を化学的に結合させるために必要な補助剤であり、ゲル化剤又は硬化剤とも呼ばれる。架橋剤としては、例えば、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、イソホロンジイソシアネート、ヘキサメチレンジイソシアネート、テトラメチルキシリレンジイソシアネート、ポリメチレンポリフェニルポリイソシアネートなどのイソシアネート化合物;トリメチロールプロパン-トリス-β-N-アジリジニルプロピオネート、ペンタエリスリトールプロパン-トリス-β-N-アジリジニルプロピオネートなどのアジリジン化合物;グリセロールポリグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテルなどのエポキシ化合物;アルミニウムトリイソプロポキシド、モノ-sec-ブトキシアルミニウムジイソプロポキシド、アルミニウムトリ-sec-ブトキシド、エチルアセトアセテートアルミニウムジイソプロポキシド、アルミニウムトリスエチルアセトアセテートなどのアルミニウムアルコラート類;アルミニウムキレート化合物;ステアリン酸アルミニウム、オクタン酸アルミニウムなどの金属セッケン;金属セッケンのオリゴマー又はキレート化合物;ベントナイトなどが挙げられる。 The crosslinking agent is an auxiliary agent necessary for chemically bonding a plurality of substances, and is also called a gelling agent or a curing agent. Examples of the crosslinking agent include isocyanate compounds such as tolylene diisocyanate, diphenylmethane diisocyanate, isophorone diisocyanate, hexamethylene diisocyanate, tetramethylxylylene diisocyanate, polymethylene polyphenyl polyisocyanate; trimethylolpropane-tris-β-N-aziridini Aziridine compounds such as lupropionate and pentaerythritol propane-tris-β-N-aziridinylpropionate; epoxy compounds such as glycerol polyglycidyl ether and trimethylolpropane polyglycidyl ether; aluminum triisopropoxide, mono- sec-Butoxyaluminum diisopropoxide, Aluminum tri-sec-butoxide, Ethyl acetoacetate Aluminum alcoholates such as aluminum diisopropoxide and aluminum trisethyl acetoacetate; aluminum chelate compounds; metal soaps such as aluminum stearate and aluminum octoate; oligomers or chelate compounds of metal soaps; bentonite and the like.
 レベリング剤は、インキに添加することでそのインキの表面張力を低下させ、塗膜の表面平滑性を向上させる添加剤である。レベリング剤としては、例えば、シリコーン系ポリマー、ポリアクリレート系ポリマー、ポリビニルエーテル系ポリマーなどが挙げられる。 A leveling agent is an additive that, when added to an ink, lowers the surface tension of the ink and improves the surface smoothness of the coating film. Examples of the leveling agent include silicone polymers, polyacrylate polymers, and polyvinyl ether polymers.
 具体的には、レベリング剤としては、例えば、「BYK-310」、「BYK-323」、「BYK-320」、「BYK-377」、「BYK-UV3510」、「BYK-Silclean3700」、「BYK-UV3500」及び「BYK-UV3570」」(いずれもビックケミー・ジャパン社製)などが挙げられる。 Specifically, as the leveling agent, for example, “BYK-310”, “BYK-323”, “BYK-320”, “BYK-377”, “BYK-UV3510”, “BYK-Silclean 3700”, “BYK” -UV3500 "and" BYK-UV3570 "" (both manufactured by Big Chemie Japan).
 導電性付与剤は、インクに導電性を与える添加剤である。また、導電性付与剤は、コンティニュアス方式インクジェット印刷に使用されることが好ましい。 The conductivity imparting agent is an additive that imparts conductivity to the ink. The conductivity imparting agent is preferably used in continuous ink jet printing.
 導電性付与剤としては、例えば、リチウム、ナトリウム及びカリウムなどのアルカリ金属塩;マグネシウム及びカルシウムなどのアルカリ土類金属塩;及び単純アンモニウム塩または第4級アンモニウム塩が挙げられる。これらの塩は、ハロゲン化合物(例えば、塩化物、臭化物、ヨウ化物、フッ化物など)、過塩素酸塩、硝酸塩、チオシアン酸塩、ギ酸塩、酢酸塩、硫酸塩、スルホン酸塩、プロピオン酸塩、トリフルオロ酢酸塩、トリフラート(トリフルオロ-メタンスルホン酸塩)、ヘキサフルオロリン酸塩(例えば、ヘキサフルオロリン酸カリウムなど)、ヘキサフルオロ‐アンチモン酸塩、テトラフルオロホウ酸塩、ピクリン酸塩及びカルボン酸塩等でよい。 Examples of the conductivity imparting agent include alkali metal salts such as lithium, sodium and potassium; alkaline earth metal salts such as magnesium and calcium; and simple ammonium salts or quaternary ammonium salts. These salts are halogenated compounds (eg chloride, bromide, iodide, fluoride, etc.), perchlorate, nitrate, thiocyanate, formate, acetate, sulfate, sulfonate, propionate , Trifluoroacetate, triflate (trifluoro-methanesulfonate), hexafluorophosphate (eg potassium hexafluorophosphate), hexafluoro-antimonate, tetrafluoroborate, picrate and It may be a carboxylate or the like.
 浸透剤は、インクを被印刷体に浸透させて、定着させるための添加剤である。浸透剤としては、例えば、水酸化カリウム、エタノール、イソプロパノールなどが挙げられる。 The penetrating agent is an additive for penetrating and fixing the ink to the printing medium. Examples of the penetrant include potassium hydroxide, ethanol, isopropanol and the like.
 pH調整剤は、インクのpHを所定の範囲に制御するための添加剤である。pH調整剤としては、例えば、塩酸、硫酸又は燐酸などの無機酸;酢酸又は安息香酸などの有機酸;水酸化ナトリウム、水酸化カリウムなどの水酸化物;塩化アンモニウムなどのハロゲン化物;硫酸ナトリウムなどの硫酸塩;炭酸カリウム、炭酸水素カリウム、炭酸水素ナトリウムなどの炭酸塩;リン酸水素ナトリウム、リン酸二水素ナトリウムなどのリン酸塩;酢酸アンモニウム、安息香酸ナトリウムなどの有機酸塩;トリブチルアミン、トリエタノールアミンなどの有機アミンなどが挙げられる。 The pH adjuster is an additive for controlling the pH of the ink within a predetermined range. Examples of the pH adjuster include inorganic acids such as hydrochloric acid, sulfuric acid, and phosphoric acid; organic acids such as acetic acid and benzoic acid; hydroxides such as sodium hydroxide and potassium hydroxide; halides such as ammonium chloride; sodium sulfate and the like. Sulfate such as potassium carbonate, potassium hydrogen carbonate, sodium hydrogen carbonate, etc .; phosphates such as sodium hydrogen phosphate and sodium dihydrogen phosphate; organic acid salts such as ammonium acetate and sodium benzoate; tributylamine, And organic amines such as triethanolamine.
 防腐剤又は防かび剤は、インク中における微生物の発生又は増殖を抑制するための添加剤である。防腐剤又は防かび剤としては、例えば、安息香酸ナトリウム、ソルビタン酸カリウム、チアベンダゾール、ベンズイミダゾール、サイアベンダゾール、チアゾスルファミド、ピリジンチオールオキシドなどが挙げられる。また、水性インクに防腐剤又は防かび剤を含有させることが好ましい。 Preservatives or fungicides are additives for suppressing the generation or growth of microorganisms in the ink. Examples of the antiseptic or fungicide include sodium benzoate, potassium sorbitanate, thiabendazole, benzimidazole, siabendazole, thiazosulfamide, pyridinethiol oxide, and the like. Further, it is preferable to contain a preservative or a fungicide in the water-based ink.
 脱酸素剤は、インク中の溶存酸素を除くために使用される添加剤である。脱酸素剤としては、例えば、アスコルビン酸、カテコール、エリソルビン酸、ピロガロール、ヒドロキノン、還元性糖類、タンニン酸などの有機脱酸素剤;アスコルビン酸ナトリウムなどの有機酸塩などが挙げられる。 The oxygen scavenger is an additive used to remove dissolved oxygen in the ink. Examples of the oxygen scavenger include organic oxygen scavengers such as ascorbic acid, catechol, erythorbic acid, pyrogallol, hydroquinone, reducing sugars, and tannic acid; and organic acid salts such as sodium ascorbate.
 本発明に使用されるインキには、所望により、フェノチアジン、t-ブチルヒドロキシトルエンなどの重合禁止剤;増感剤;熱安定剤;紫外線吸収剤;光安定剤;光吸収材;沈降防止剤;増粘剤;皮張り防止剤;帯電防止剤;導電剤;難燃剤;転移性向上剤;撥液剤;乾燥遅延剤;酸化防止剤;裏移り防止剤;又は非イオン系界面活性剤などの界面活性剤などを含有させてよい。 In the ink used in the present invention, a polymerization inhibitor such as phenothiazine and t-butylhydroxytoluene; a sensitizer; a thermal stabilizer; an ultraviolet absorber; a light stabilizer; a light absorber; Anti-skinning agent; Antistatic agent; Conductive agent; Flame retardant; Transferability improver; Liquid repellent; Dry retarder; Antioxidant; Anti-set-off agent; or Nonionic surfactant An activator or the like may be included.
 上記で列挙された補助剤は、それぞれ単独で、又は2種以上を組み合わせて使用されることができる。 The adjuvants listed above can be used alone or in combination of two or more.
[着色剤]
 着色剤は、インキに色を付ける成分である。本発明に使用されるインキには、印刷に使用されている既知の着色剤を含有させてよい。着色剤としては、例えば、無機顔料、有機顔料、染料、トナー用有機色素などが挙げられる。
[Colorant]
The colorant is a component that adds color to the ink. The ink used in the present invention may contain a known colorant used for printing. Examples of the colorant include inorganic pigments, organic pigments, dyes, organic pigments for toners, and the like.
 無機顔料としては、例えば、黄鉛、亜鉛黄、紺青、硫酸バリウム、カドミウムレッド、酸化チタン、亜鉛華、アルミナホワイト、炭酸カルシウム、群青、グラファイト、アルミニウム粉、ベンガラ、バリウムフェライト、銅と亜鉛の合金粉、ガラス粉、カーボンブラックなどが挙げられる。 Examples of inorganic pigments include chrome yellow, zinc yellow, bitumen, barium sulfate, cadmium red, titanium oxide, zinc white, alumina white, calcium carbonate, ultramarine, graphite, aluminum powder, bengara, barium ferrite, copper and zinc alloy. Examples thereof include powder, glass powder, and carbon black.
 有機顔料としては、例えば、β-ナフトール系顔料、β-オキシナフトエ酸系顔料、β-オキシナフトエ酸系アニリド系顔料、アセト酢酸アニリド系顔料、ピラゾロン系顔料などの溶性アゾ顔料;β-ナフトール系顔料、β-オキシナフトエ酸アニリド系顔料、アセト酢酸アニリド系モノアゾ、アセト酢酸アニリド系ジスアゾ、ピラゾロン系顔料などの不溶性アゾ顔料;銅フタロシアニンブルー、ハロゲン化(例えば、塩素又は臭素化)銅フタロシアニンブルー、スルホン化銅フタロシアニンブルー、金属フリーフタロシアニンなどのフタロシアニン系顔料;キナクリドン系顔料、ジオキサジン系顔料、スレン系顔料(ピラントロン、アントアントロン、インダントロン、アントラピリミジン、フラバントロン、チオインジゴ、アントラキノン、ペリノン、ペリレンなど)、イソインドリノン系顔料、金属錯体系顔料、キノフタロン系顔料などの多環式又は複素環式顔料などが挙げられる。 Examples of organic pigments include soluble azo pigments such as β-naphthol pigments, β-oxynaphthoic acid pigments, β-oxynaphthoic acid anilide pigments, acetoacetate anilide pigments, and pyrazolone pigments; β-naphthol pigments Insoluble azo pigments such as pigments, β-oxynaphthoic acid anilide pigments, acetoacetanilide monoazos, acetoacetanilide disazos, pyrazolone pigments; copper phthalocyanine blue, halogenated (eg chlorine or brominated) copper phthalocyanine blue, Phthalocyanine pigments such as sulfonated copper phthalocyanine blue and metal-free phthalocyanine; quinacridone pigments, dioxazine pigments, selenium pigments (pyrantron, anthrone, indanthrone, anthrapyrimidine, flavantron, thioindigo, anthraquinone , Perinone, perylene, etc.), isoindolinone pigments, metal complex pigments, polycyclic or heterocyclic pigments such as quinophthalone pigments.
 染料としては、例えば、アゾ染料、アゾ染料とクロムの錯塩、アントラキノン染料、インジゴ染料、フタロシアニン染料、キサンテン系染料、チアジン系染料などが挙げられる。 Examples of the dye include azo dyes, complex salts of azo dyes and chromium, anthraquinone dyes, indigo dyes, phthalocyanine dyes, xanthene dyes, thiazine dyes, and the like.
 ここで、有機顔料は、レーキ顔料を含むものとする。一般に、レーキ顔料は、染料を無機顔料又は体質顔料に染め付けることにより得られるものであり、無機顔料又は体質顔料の水不溶性に応じて、レーキ顔料も水不溶性を有する。レーキ顔料としては、例えば、BASF社から入手可能なファナル(FANAL、登録商標)カラーシリーズなどが挙げられる。 Here, the organic pigment includes a lake pigment. In general, a lake pigment is obtained by dyeing a dye on an inorganic pigment or extender, and the lake pigment also has water insolubility according to the water insolubility of the inorganic pigment or extender. Examples of lake pigments include the fanal (FANAL (registered trademark)) color series available from BASF.
 トナー用有機色素は、トナーに含有させることができる有機色素であり、着色剤の一般的な特性に加えて帯電性を有する。トナー用有機色素としては、染料又は有機顔料を使用してよいが、透明性及び着色力の観点から染料が好ましい。 The organic dye for toner is an organic dye that can be contained in the toner, and has charging properties in addition to the general characteristics of the colorant. As the organic pigment for toner, a dye or an organic pigment may be used, but a dye is preferred from the viewpoint of transparency and coloring power.
 また、着色剤は、印刷層(A)と印刷層(B)の色調を合わせるために使用されることができる。その場合、着色剤としては、色合わせ用染料を使用することが好ましい。色合わせ用染料としては、例えば、桜宮化学社製「マイクロリス(登録商標)レッド」、桜宮化学社製「マイクロリス(登録商標)ブルー」、桜宮化学社製「マイクロリス(登録商標)イエロー」などが挙げられる。 Also, the colorant can be used to adjust the color tone of the printing layer (A) and the printing layer (B). In that case, it is preferable to use a color matching dye as the colorant. Examples of color matching dyes include "Microlith (registered trademark) red" manufactured by Sakuramiya Chemical Co., Ltd., "Microlith (registered trademark) blue" manufactured by Sakuramiya Chemical Co., Ltd., and "Microlith (registered trademark) yellow" manufactured by Sakuramiya Chemical Co., Ltd. Etc.
 さらに、上記で説明した着色剤以外に、機能性顔料、機能性染料などの他の機能性材料を、本発明に使用されるインキに配合してもよい。ここで、機能性材料は、無機でも有機でもよく、またインキに機能性を付与する添加剤でもよい。 Furthermore, in addition to the colorant described above, other functional materials such as functional pigments and functional dyes may be blended in the ink used in the present invention. Here, the functional material may be inorganic or organic, and may be an additive that imparts functionality to the ink.
 機能性材料としては、例えば、クロミック材料、磁性顔料、紫外線吸収剤、光学可変材料、パール顔料などが挙げられる。一般に、クロミック材料は、光・熱・電気などのエネルギーに反応して呈色し、かつ該エネルギーが遮られるか、又は失われると、退色する材料である。クロミック材料としては、例えば、蛍光顔料、励起発光顔料、感温変色材料、フォトクロミック材料、応力発光体などが挙げられる。 Examples of functional materials include chromic materials, magnetic pigments, ultraviolet absorbers, optically variable materials, pearl pigments, and the like. In general, a chromic material is a material that develops a color in response to energy such as light, heat, electricity, and fades when the energy is blocked or lost. Examples of the chromic material include fluorescent pigments, excited luminescent pigments, temperature-sensitive color changing materials, photochromic materials, and stress luminescent materials.
 なお、上記で列挙した着色剤は、それぞれ単独で、又は2種類以上を併用して、使用されることができる。 The colorants listed above can be used alone or in combination of two or more.
<インキ中の含有物の配合比>
 インキがアンチモンドープ酸化錫を含むときには、インキに含まれる各成分の配合比率は、インキの粘度を約50~1000Poiseに調整したときに、着色剤が、約0~20重量%であることが好ましく、ビヒクルが、約10~90重量%であることが好ましく、補助剤が、0~約10重量%であることが好ましく、かつアンチモンドープ酸化錫が、約1~50重量%であることが好ましい。
<Combination ratio of contents in ink>
When the ink contains antimony-doped tin oxide, the blending ratio of each component contained in the ink is preferably about 0 to 20% by weight of the colorant when the viscosity of the ink is adjusted to about 50 to 1000 poise. The vehicle is preferably about 10 to 90% by weight, the adjuvant is preferably 0 to about 10% by weight, and the antimony-doped tin oxide is preferably about 1 to 50% by weight. .
 一方で、インキがアンチモンドープ酸化錫を含まないときには、インキに含まれる各成分の配合比率は、インキの粘度を約50~1000Poiseに調整したときに、着色剤が、約1~50重量%であることが好ましく、ビヒクルが、約10~90重量%であることが好ましく、補助剤が、0~約10重量%であることが好ましい。 On the other hand, when the ink does not contain antimony-doped tin oxide, the blending ratio of each component contained in the ink is about 1 to 50% by weight of the colorant when the viscosity of the ink is adjusted to about 50 to 1000 poise. Preferably, the vehicle is about 10-90% by weight and the adjuvant is preferably 0-about 10% by weight.
 なお、インキの粘度は、使用する印刷方式に適した粘度範囲内である限り、任意に調整されることができる。 The viscosity of the ink can be arbitrarily adjusted as long as it is within the viscosity range suitable for the printing method used.
<インキの製造方法>
 赤外線吸収インキは、アンチモンドープ酸化錫及び/又は着色剤を、所望により補助剤着色剤とともに、ビヒクルに分散することにより得られる。例えば、一軸ミキサー、二軸ミキサーなどのミキサー;2本ローラーミル、3本ローラーミル、ビーズミル、ボールミル、サンドグラインダー、アトライターなどの練肉機(ink mill)などを用いて、アンチモンドープ酸化錫及び/又は着色剤をビヒクルに分散することができる。
<Ink production method>
Infrared absorbing inks are obtained by dispersing antimony-doped tin oxide and / or colorants in a vehicle, optionally with auxiliary colorants. For example, using a mixer such as a single-screw mixer or a twin-screw mixer; a two-roller mill, a three-roller mill, a bead mill, a ball mill, a sand grinder, an attritor, or the like, an antimony-doped tin oxide and The colorant can be dispersed in the vehicle.
<インキ中のアンチモンドープ酸化錫の粒径>
 インキがアンチモンドープ酸化錫を含むときには、インキ中のアンチモンドープ酸化錫の平均粒径は、200μm以下、150μm以下、100μm以下、80μm以下、60μm以下、40μm以下、20μm以下、15μm以下、10μm以下、5μm以下、2.5μm以下、1μm以下、0.5μm以下、0.1μm以下、0.05μm以下、又は0.025μm以下であってよく、また、この平均粒径は、0.001μm以上、0.01μm以上、又は0.015μm以上であってよい。なお、平均粒径とは、レーザー回析・散乱法のメディアン径を指す。
<Particle size of antimony-doped tin oxide in ink>
When the ink contains antimony-doped tin oxide, the average particle diameter of the antimony-doped tin oxide in the ink is 200 μm or less, 150 μm or less, 100 μm or less, 80 μm or less, 60 μm or less, 40 μm or less, 20 μm or less, 15 μm or less, 10 μm or less, It may be 5 μm or less, 2.5 μm or less, 1 μm or less, 0.5 μm or less, 0.1 μm or less, 0.05 μm or less, or 0.025 μm or less, and the average particle diameter is 0.001 μm or more, 0 It may be 0.01 μm or more, or 0.015 μm or more. The average particle diameter refers to the median diameter of the laser diffraction / scattering method.
 インキ中のアンチモンドープ酸化錫の平均粒径を0.001μm~200μmの範囲に調整する手段は、限定されるものではないが、アンチモンドープ酸化錫の製造時にアンチモンドープ酸化錫を粉砕する手段と、インキの製造時にアンチモンドープ酸化錫をビヒクルに分散する手段との組み合わせであると考えられる。例えば、上記ステップS118又はS124により、アンチモンドープ酸化錫は、十分に粉砕される。また、上記で説明した通り、アンチモンドープ酸化錫は、ミキサー又は練肉機でビヒクルに十分に分散される。 Means for adjusting the average particle size of the antimony-doped tin oxide in the ink to a range of 0.001 μm to 200 μm is not limited, but means for pulverizing the antimony-doped tin oxide during the production of the antimony-doped tin oxide; It is considered to be a combination with means for dispersing antimony-doped tin oxide in the vehicle during the production of the ink. For example, the antimony-doped tin oxide is sufficiently pulverized by the step S118 or S124. Further, as described above, the antimony-doped tin oxide is sufficiently dispersed in the vehicle by a mixer or a meat grinder.
<印刷方法>
 本発明の印刷物は、既知の印刷方法でインキを基材に印刷して印刷層(A)及び印刷層(B)を形成し、かつ印刷層(A)を、印刷層(B)が配置されている範囲外に配置することにより得られる。
<Printing method>
In the printed matter of the present invention, a printing layer (A) and a printing layer (B) are formed by printing ink on a substrate by a known printing method, and the printing layer (A) is disposed on the printing layer (B). It is obtained by arranging outside the range.
 また、印刷層(A)及び印刷層(B)は、同一の又は異なる印刷方法で基材上に形成されることができる。さらに、印刷層(A)は、印刷層(B)の形成前、形成中、又は形成後に、印刷により形成されることができる。 Also, the printing layer (A) and the printing layer (B) can be formed on the substrate by the same or different printing methods. Furthermore, the printing layer (A) can be formed by printing before, during, or after the formation of the printing layer (B).
 本発明の実施形態では、印刷方法は、有版印刷又は無版印刷でよい。 In the embodiment of the present invention, the printing method may be plate printing or non-plate printing.
 有版印刷としては、例えば、フレキソ印刷、活版印刷などの凸版印刷;オフセット印刷などの平版印刷;グラビア印刷;直刻版面印刷、食刻版面印刷などの凹版印刷;スクリーン印刷などの孔版印刷;などが挙げられる。 As the plate printing, for example, relief printing such as flexographic printing and letterpress printing; lithographic printing such as offset printing; gravure printing; intaglio printing such as direct printing plate printing and etching printing; stencil printing such as screen printing; Is mentioned.
 ここで、フレキソ印刷は、凹部を有するロールにインキを付着させ、凹部内のインキを凸版胴の凸部に移してから、凸部上のインキを被印刷体に移す印刷方式である。 Here, flexographic printing is a printing method in which ink is adhered to a roll having a concave portion, the ink in the concave portion is transferred to the convex portion of the relief cylinder, and then the ink on the convex portion is transferred to the printing medium.
 活版印刷(typographical printing)は、活版(type matter)を用いて印刷する印刷方式である。活版は、活字、罫線、模様、写真などの線画部を凸部として、形成するか、又は組み並べることにより得られる版である。 Typographical printing is a printing method that prints using letterpress. The letterpress is a plate obtained by forming or assembling line drawing parts such as type letters, ruled lines, patterns, and photographs as convex parts.
 オフセット印刷は、版に付着させたインキを転写体に移してから、転写体に付着したインキを被印刷物に移す印刷方式である。また、転写体としては、一般にゴムブランケットが使用される。 Offset printing is a printing method in which the ink attached to the plate is transferred to a transfer body, and then the ink attached to the transfer body is transferred to a substrate. Further, a rubber blanket is generally used as the transfer body.
 グラビア印刷は、凹部を有するセルを版胴に形成し、セルにインキを入れて、版胴表面上の余分なインキをドクターブレードでかき取りながら、セル内のインキを被印刷体に移す印刷方式である。 Gravure printing is a printing method in which cells with recesses are formed in a plate cylinder, ink is put into the cells, and excess ink on the surface of the plate cylinder is scraped off with a doctor blade while the ink in the cells is transferred to the substrate. It is.
 凹版印刷(intaglio printing)は、直刻(line engraving)又は食刻(etching)により版面に凹部を形成し、インキを版全体に着肉し、版面上の凹部以外に付着したインキを拭き取り、版面に被印刷体を押し付けて、凹部内のインキを被印刷体に移す印刷方式である。また、版は、平版だけでなく、胴版でもよい。 Intaglio printing (intaglio printing) forms depressions on the plate surface by line printing or etching, deposits ink on the entire plate, wipes ink adhering to the plate surface other than the depressions, and In this printing method, the printing medium is pressed against the printing medium, and the ink in the recesses is transferred to the printing medium. The plate may be not only a flat plate but also a body plate.
 凹版印刷では、版面に形成された凹部は、線画部と対応しており、そして線画部は、周囲より凹んだ線画で構成されている。また、版面において、凹部以外の部分は、非線画部と呼ばれる。したがって、凹版の版面には、グラビア印刷に使用されるようなセルが形成されていない。 In intaglio printing, the recesses formed on the printing plate correspond to the line drawing part, and the line drawing part is composed of a line drawing recessed from the surroundings. Further, a portion other than the concave portion on the printing plate is called a non-line drawing portion. Therefore, the cells used for gravure printing are not formed on the intaglio plate surface.
 スクリーン印刷は、スクリーン版にインキを乗せて、スキージ(squeezee)の摺動(sliding)によりスクリーン版からインキを押し出して印刷する印刷方式である。スクリーン版は、枠に紗(screen)を張り、レジスト法で紗の上に画線部と非画線部を設けることにより形成される。一般に、非画線部はレジスト法により樹脂などで塞がれる。 Screen printing is a printing method in which ink is put on a screen plate and ink is pushed out from the screen plate by sliding of a squeezee. The screen plate is formed by applying a screen to the frame and providing an image area and a non-image area on the image by a resist method. Generally, the non-image area is closed with a resin or the like by a resist method.
 無版印刷としては、例えば、インクジェット印刷;電子写真、感熱印刷、熱転写印刷などの他の無版印刷;などが挙げられる。 Examples of plateless printing include inkjet printing; other plateless printing such as electrophotography, thermal printing, and thermal transfer printing.
 インクジェット印刷は、ノズルからインクをインク滴として吐出して、被印刷体上に堆積させる印刷方式である。インクジェット印刷では、版を使用せず、被印刷体に圧力を掛けず、かつノズルと被印刷体が接触しないので、版を使用する印刷法と比べて、被印刷体を傷めることなく高速な印刷を行うことができる。 Inkjet printing is a printing method in which ink is ejected as ink droplets from a nozzle and deposited on a substrate. Inkjet printing does not use a plate, does not apply pressure to the substrate, and the nozzle and the substrate do not contact each other, so printing is faster without damaging the substrate compared to printing methods that use plates. It can be performed.
 一般に、インクジェット印刷機において、ノズルからインクを吐出する方式は、コンティニュアス方式とオンデマンド方式に大別される。 Generally, in an ink jet printer, the method of ejecting ink from a nozzle is roughly divided into a continuous method and an on-demand method.
 コンティニュアス方式は、インク液を連続的に吐出させて、インク液の飛行軌道を電気的に制御する方式である。一方で、オンデマンド方式は、印刷時に必要な量のインクを吐出する方式である。一般に、オンデマンド方式は、インクを加圧して吐出させる方法によって、ピエゾ方式、サーマル方式、及び静電誘導方式に大別される。 The continuous method is a method for electrically controlling the flight trajectory of the ink liquid by continuously discharging the ink liquid. On the other hand, the on-demand method is a method for ejecting a necessary amount of ink during printing. In general, the on-demand method is roughly classified into a piezo method, a thermal method, and an electrostatic induction method, depending on a method in which ink is pressurized and ejected.
 本発明の印刷物は、上記で説明された印刷方式を単数で又は組み合わせて使用することにより得られることができる。 The printed matter of the present invention can be obtained by using a single or a combination of the printing methods described above.
<判定方法>
 本発明の印刷物では、印刷層(A)及び/又は印刷層(B)が上記アンチモンドープ酸化錫を含むので、印刷層(A)及び/又は印刷層(B)は、赤外線吸収印刷層である。したがって、印刷層(A)と印刷層(B)の一方が、赤外線吸収印刷層であり、かつ他方が、赤外線非吸収印刷層であるときには、印刷物を赤外線検出器で観察すると赤外線吸収印刷層のパターンが見られる。
<Judgment method>
In the printed matter of the present invention, since the printing layer (A) and / or the printing layer (B) contains the antimony-doped tin oxide, the printing layer (A) and / or the printing layer (B) is an infrared absorption printing layer. . Therefore, when one of the printing layer (A) and the printing layer (B) is an infrared absorbing printing layer and the other is an infrared non-absorbing printing layer, the printed matter is observed with an infrared detector, and the infrared absorbing printing layer A pattern is seen.
 例えば、図13(A)に示されるように、赤外線非吸収印刷層(3)と赤外線吸収印刷層(4)が基材(2)上に並んで配置されている印刷物(1)を、目視又は可視光検出器で観察すると、赤外線非吸収印刷層(3)及び赤外線吸収印刷層(4)のパターンが見られる。一方で、図13(B)に示されるように、赤外線カメラなどの赤外光検知器で印刷物(1)を観察すると、赤外線吸収印刷層(3)のパターンが見られる。 For example, as shown in FIG. 13A, the printed matter (1) in which the infrared non-absorbing printing layer (3) and the infrared absorbing printing layer (4) are arranged side by side on the substrate (2) is visually observed. Or when it observes with a visible light detector, the pattern of an infrared non-absorption printing layer (3) and an infrared absorption printing layer (4) is seen. On the other hand, as shown in FIG. 13B, when the printed matter (1) is observed with an infrared light detector such as an infrared camera, a pattern of the infrared absorbing printed layer (3) is seen.
 また、印刷層(A)及び印刷層(B)が、アンチモンドープ酸化錫を含むときには、両方の層は赤外線吸収印刷層になるが、印刷層(A)と印刷層(B)におけるアンチモンドープ酸化錫の含有率が異なる。その場合、本発明の印刷物を赤外線検出器で観察すると、印刷層(A)又は印刷層(B)が配置されている範囲に応じて、検出パターンの濃度が異なる。 Moreover, when the printing layer (A) and the printing layer (B) contain antimony-doped tin oxide, both layers become infrared absorption printing layers, but the antimony-doped oxidation in the printing layer (A) and the printing layer (B). The tin content is different. In that case, when the printed matter of the present invention is observed with an infrared detector, the density of the detection pattern varies depending on the range in which the print layer (A) or the print layer (B) is disposed.
 以上の通り、赤外線吸収パターンの有無、又は赤外線吸収パターンの濃度勾配を利用して、印刷物の真贋を判定することができる。 As described above, the authenticity of the printed matter can be determined using the presence or absence of the infrared absorption pattern or the density gradient of the infrared absorption pattern.
 また、赤外線吸収パターンの有無又は赤外線吸収パターンの濃度による判定方法に他の判定方法を組み合わせてもよい。他の判定方法としては、例えば、上記で説明したクロミック材料、磁性顔料、紫外線吸収剤、光学可変材料、パール顔料などの他の機能性材料を赤外線非吸収印刷層及び/又は赤外線吸収印刷層に含有させて、機能性材料の機能性を利用する方法などが挙げられる。 Further, another determination method may be combined with the determination method based on the presence or absence of the infrared absorption pattern or the density of the infrared absorption pattern. Other determination methods include, for example, other functional materials such as chromic materials, magnetic pigments, ultraviolet absorbers, optical variable materials, and pearl pigments described above in the infrared non-absorbing print layer and / or infrared absorbing print layer. The method of making it contain and utilizing the functionality of a functional material is mentioned.
<アンチモンドープ酸化錫の作製>
 使用した材料は、以下の通りである:
 メタ錫酸:日本化学産業株式会社製のメタ錫酸
 三酸化アンチモン:PATOX-CF(登録商標;日本精鉱株式会社製)
 アンチモンドープ酸化錫原料(市販品):日揮触媒化成株式会社製のELCOM(登録商標) P-特殊品(酸化アンチモンの含有量:9.9重量%、通気焼成なし、通気冷却なし)
<Preparation of antimony-doped tin oxide>
The materials used are as follows:
Metastannic acid: Metastannic acid manufactured by Nippon Chemical Industry Co., Ltd. Antimony trioxide: PATOX-CF (registered trademark; manufactured by Nippon Seiko Co., Ltd.)
Antimony-doped tin oxide raw material (commercially available): ELCOM (registered trademark) P-specialized product manufactured by JGC Catalysts & Chemicals Co., Ltd. (antimony oxide content: 9.9% by weight, no air firing, no air cooling)
 使用した焼成炉は、冷却装置付きシャトル式焼成炉(司電気炉製作所製)である。 The used firing furnace is a shuttle-type firing furnace with a cooling device (manufactured by Tsuji Electric Furnace).
[実施例1]
 118.8gのメタ錫酸及び1gの三酸化アンチモンを用いて、図1に記載の通りに、ステップ100~ステップ124を行なった。
[Example 1]
Steps 100-124 were performed as described in FIG. 1 using 118.8 g of metastannic acid and 1 g of antimony trioxide.
 具体的には、下記表1に記載の通りに、混合工程(S100)、閉鎖焼成工程(S106)、閉鎖冷却工程(S107)、通気焼成工程(S114)及び通気冷却工程(S116)を含む方法により、酸化アンチモン含有量が0.7重量%であるアンチモンドープ酸化錫を得た。 Specifically, as described in Table 1 below, a method including a mixing step (S100), a closed firing step (S106), a closed cooling step (S107), an aeration firing step (S114), and an aeration cooling step (S116). Thus, antimony-doped tin oxide having an antimony oxide content of 0.7% by weight was obtained.
 なお、通気焼成工程(S114)は、通気された炉内の温度を約1100℃に設定して、約8時間に亘って行われた。また、通気冷却工程(S116)は、約200[℃/時間]以上の冷却速度で行われた。 The aerated firing step (S114) was performed for about 8 hours with the temperature in the aerated furnace set to about 1100 ° C. The aeration cooling step (S116) was performed at a cooling rate of about 200 [° C./hour] or more.
[実施例2~7並びに比較例1及び2]
 下記表1に記載の通りに、実施例2~7並びに比較例1及び2を行なった。実施例2~4については、メタ錫酸及び三酸化アンチモンの重量、及び/又は通気焼成工程(S114)の時間を変化させることによって、得られたアンチモンドープ酸化錫中の酸化アンチモン含有量を変化させた。
[Examples 2 to 7 and Comparative Examples 1 and 2]
Examples 2 to 7 and Comparative Examples 1 and 2 were performed as described in Table 1 below. For Examples 2 to 4, the content of antimony oxide in the obtained antimony-doped tin oxide was changed by changing the weight of metastannic acid and antimony trioxide and / or the time of the aeration firing step (S114). I let you.
 一方で、比較例2では、混合工程(S100)、閉鎖焼成工程(S106)及び閉鎖冷却工程(S107)を実施例1と同様に行なったが、通気焼成工程(S114)及び通気冷却工程(S116)を行わずに、実施例2と同じ酸化アンチモン含有量を有する生成物を得た。 On the other hand, in Comparative Example 2, the mixing step (S100), the closed firing step (S106), and the closed cooling step (S107) were performed in the same manner as in Example 1, but the aeration firing step (S114) and the aeration cooling step (S116). ), A product having the same antimony oxide content as in Example 2 was obtained.
 比較例1では、市販品のアンチモンドープ酸化錫原料を用意した。一方で、実施例5及び6では、比較例1の市販品を通気焼成工程(S114)及び通気冷却工程(S116)に供した。通気冷却工程(S116)の冷却速度は、実施例5では200[℃/h]以上であり、実施例6では200[℃/h]未満であった。 In Comparative Example 1, a commercially available antimony-doped tin oxide raw material was prepared. On the other hand, in Example 5 and 6, the commercial item of the comparative example 1 was used for the ventilation baking process (S114) and the ventilation cooling process (S116). The cooling rate in the ventilation cooling step (S116) was 200 [° C./h] or more in Example 5, and less than 200 [° C./h] in Example 6.
 実施例7では、メタ錫酸と三酸化アンチモンの単なる混合物を通気焼成工程(S114)及び通気冷却工程(S116)に供した。 In Example 7, a simple mixture of metastannic acid and antimony trioxide was subjected to an aeration firing step (S114) and an aeration cooling step (S116).
〔生成物中の酸化アンチモン含有量の測定方法〕
 生成物中の酸化アンチモン含有量の測定は、蛍光X線分析装置RIX-1000(株式会社リガク製)のオーダー分析法にて行っている。また、測定条件としては、アンチモンドープ酸化錫を粉末にして測定を行っている。粉末は、粒径(レーザー回折散乱法でのメディアン径)が120nmの条件で測定を行っている。
[Method for measuring content of antimony oxide in product]
The content of antimony oxide in the product is measured by an order analysis method using a fluorescent X-ray analyzer RIX-1000 (manufactured by Rigaku Corporation). Moreover, as measurement conditions, the measurement is performed using antimony-doped tin oxide as a powder. The powder is measured under the condition that the particle diameter (median diameter by laser diffraction scattering method) is 120 nm.
〔生成物のX線回折測定〕
 そして、実施例及び比較例の各生成物についてX線回折を行い、その測定結果から結晶化度の値を算出した。
[X-ray diffraction measurement of product]
And X-ray diffraction was performed about each product of the Example and the comparative example, and the value of crystallinity was computed from the measurement result.
 表1に示す通り、図2~5は、実施例のアンチモンドープ酸化錫によるX線回折の結果を示す図であり、図6は、比較例のX線回折の結果を示す図である。なお、各図において、縦軸はX線を照射した際の反射光の「強度(CPS)」を示しており、横軸は「2θ(deg)」を示している。 As shown in Table 1, FIGS. 2 to 5 are diagrams showing the results of X-ray diffraction by the antimony-doped tin oxide of the example, and FIG. 6 is a diagram showing the results of X-ray diffraction of the comparative example. In each figure, the vertical axis indicates “intensity (CPS)” of reflected light when X-rays are irradiated, and the horizontal axis indicates “2θ (deg)”.
〔CPS〕
 ここで、「CPS(Count Per Second)」とは、測定対象物にX線を照射した際の1秒あたりの光子の反射量を示しており、反射光の強度(レベル)として捉えることもできる。
[CPS]
Here, “CPS (Count Per Second)” indicates the amount of reflected photons per second when the measurement object is irradiated with X-rays, and can also be regarded as the intensity (level) of reflected light. .
〔2θ〕
 また、「2θ」は、測定対象物にX線を照射する際の照射角度を示している。なお、「2θ」としている理由は、X線を照射する角度(入射角)がθであれば、反射角もθとなるため、この入射角と反射角とを合計した角度は2θとなるからである。
[2θ]
Further, “2θ” indicates an irradiation angle when the measurement object is irradiated with X-rays. The reason for “2θ” is that if the angle (incident angle) for irradiating X-rays is θ, the reflection angle is also θ, and the sum of the incident angle and the reflection angle is 2θ. It is.
〔結晶化度の算出方法〕
 結晶化度は、X線回折(XRD)の測定結果に基づいて算出している。使用機器及び測定条件は、以下の通りである。
(1)使用機器:株式会社リガク製 MultiFlex(X線回折装置)
(2)測定条件:
    スキャン速度:4.0°/min.
    線源:40kV、30mA
    積算回数:1回
[Calculation method of crystallinity]
The degree of crystallinity is calculated based on the measurement result of X-ray diffraction (XRD). The equipment used and the measurement conditions are as follows.
(1) Equipment used: Rigaku Corporation MultiFlex (X-ray diffractometer)
(2) Measurement conditions:
Scan speed: 4.0 ° / min.
Radiation source: 40 kV, 30 mA
Integration count: 1 time
 例えば、図2(B)のグラフは、実施例2のアンチモンドープ酸化錫によるX線回折の結果を示すグラフである。実施例2のアンチモンドープ酸化錫では、反射光の強度が大きく上昇する地点(波形が立ち上がる地点)が複数箇所にわたって発生している。 For example, the graph of FIG. 2 (B) is a graph showing the result of X-ray diffraction by antimony-doped tin oxide of Example 2. In the antimony-doped tin oxide of Example 2, points where the intensity of reflected light greatly increases (points where the waveform rises) are generated at a plurality of locations.
 具体的には、「2θ=27°」付近の地点、「2θ=34°」付近の地点、「2θ=38°」付近の地点、「2θ=52°」付近の地点、「2θ=55°」付近の地点、「2θ=58°」付近の地点である。
 そして、反射光の強度が上昇する地点のうち、反射光の強度が最も高い地点での2θ(deg)と強度(CPS)の測定値を用いて結晶化度を算出する。アンチモンドープ酸化錫で反射光の強度が最も高い地点は、「2θ=27°」付近の地点である。
Specifically, a point near “2θ = 27 °”, a point near “2θ = 34 °”, a point near “2θ = 38 °”, a point near “2θ = 52 °”, “2θ = 55 ° ”And a point near“ 2θ = 58 ° ”.
Then, the crystallinity is calculated using the measured values of 2θ (deg) and intensity (CPS) at the point where the intensity of the reflected light is the highest among the points where the intensity of the reflected light increases. The point where the intensity of reflected light is the highest in antimony-doped tin oxide is a point near “2θ = 27 °”.
 図7は、結晶化度の算出方法を概略的に示す概念図である。
 結晶化度は、物質が結晶化した際の物質全体に対する結晶化部分の割合を示しており、ここでは、結晶化度=CPS/Δ2θ(半値幅)と定義している。すなわち、結晶化度は、2θ=27°付近の地点における数値で定義している。これにより、X線回折(XRD)の測定結果から結晶化度を算出することができる。また、図示のグラフにおいて、規則正しい結晶構造を持ち、不純物がない程、波形のピークは大きく、波形の先端がシャープになる。
FIG. 7 is a conceptual diagram schematically showing a method for calculating the crystallinity.
The crystallinity indicates the ratio of the crystallized portion with respect to the entire material when the material is crystallized, and is defined here as crystallinity = CPS / Δ2θ (half-value width). That is, the crystallinity is defined by a numerical value at a point near 2θ = 27 °. Thereby, the crystallinity can be calculated from the measurement result of X-ray diffraction (XRD). In the illustrated graph, the peak of the waveform is larger and the tip of the waveform becomes sharper as the crystal structure is regular and there are no impurities.
〔CPS〕
 CPSは、反射光の強度(レベル)であるため、図示の例では波形の高さとなる。
[CPS]
Since CPS is the intensity (level) of reflected light, it has a waveform height in the illustrated example.
〔Δ2θ〕
 また、Δ2θは、X線回折測定により得られたCPSの最大値(ピーク値)の半分の値に対応する半値幅の広さとなる(図7において、長さA1と、長さA2とは同じ長さである)。
[Δ2θ]
Further, Δ2θ is the width of the half width corresponding to a half value of the maximum value (peak value) of CPS obtained by the X-ray diffraction measurement (in FIG. 7, the length A1 is the same as the length A2. Length).
 このため、CPSの値が大きいほど(波形のピークが高いほど)、結晶化度の値は大きくなる。また、Δ2θの値が小さいほど(半値幅が狭いほど)、結晶化度の値は大きくなる。 For this reason, the larger the CPS value (the higher the peak of the waveform), the larger the crystallinity value. Further, the smaller the value of Δ2θ (the narrower the half width), the larger the crystallinity value.
 ここで、検査対象となる材料にX線を照射する場合、X線を照射する角度によって、反射光が発生する角度と反射光が発生しない角度とがある。反射光が発生する角度は、物質によって一定したものとなっており、同じ物質であれば、波形の立ち上がり又は立ち下がりの傾向はおおむね一致する。本実施形態では、各実施例及び各比較例において、同じ物質であるアンチモンドープ酸化錫を用いているため、CPSの値が最大となる2θの位置は「2θ=27°」で統一されている。 Here, when X-rays are applied to the material to be inspected, there are an angle at which the reflected light is generated and an angle at which the reflected light is not generated depending on the angle at which the X-ray is applied. The angle at which the reflected light is generated is constant depending on the material. If the material is the same, the rising or falling tendency of the waveform is almost the same. In the present embodiment, since antimony-doped tin oxide, which is the same material, is used in each example and each comparative example, the position of 2θ at which the CPS value is maximum is unified as “2θ = 27 °”. .
 実施例1~7並びに比較例1及び2について、2θ=27°付近の半値幅(Δ2θ)、2θ=27°付近の強度(CPS)、結晶化度(CPS/Δ2θ)及びX線回折グラフの図面番号を下記表1に示す。 For Examples 1 to 7 and Comparative Examples 1 and 2, the full width at half maximum (Δ2θ) near 2θ = 27 °, the intensity (CPS) near 2θ = 27 °, the crystallinity (CPS / Δ2θ), and the X-ray diffraction graph The drawing numbers are shown in Table 1 below.
 図2(A)のグラフは、実施例1のアンチモンドープ酸化錫によるX線回折の結果を示すグラフである。実施例1のアンチモンドープ酸化錫は、「2θ=27°」付近の地点で反射光の強度が最も高く、CPSの最大値が12000程度である。Δ2θに関しても、CPSの値がピークとなる波形の裾部分の幅が、上記実施例2~4のものと比較してほとんど変わらない。したがって、実施例1は、アンチモンドープ酸化錫として十分な結晶度であると考えられる。ただし、酸化アンチモンの含有量が0.7重量%であり、酸化錫の結晶格子中に固溶されている酸化アンチモンの量が少ないため、実施例2~4よりも赤外線吸収効果が低いと考えられる。 2A is a graph showing the result of X-ray diffraction by the antimony-doped tin oxide of Example 1. FIG. The antimony-doped tin oxide of Example 1 has the highest reflected light intensity at a point near “2θ = 27 °”, and the maximum value of CPS is about 12,000. Also regarding Δ2θ, the width of the bottom part of the waveform where the CPS value reaches a peak is almost the same as that in Examples 2 to 4 described above. Therefore, Example 1 is considered to have sufficient crystallinity as antimony-doped tin oxide. However, since the content of antimony oxide is 0.7% by weight and the amount of antimony oxide dissolved in the crystal lattice of tin oxide is small, the infrared absorption effect is considered to be lower than those of Examples 2 to 4. It is done.
 図3(A)及び(B)のグラフは、それぞれ実施例3及び4のアンチモンドープ酸化錫によるX線回折の結果を示すグラフである。実施例3及び4のアンチモンドープ酸化錫でも、反射光の強度が最も高い地点は、「2θ=27°」付近の地点である。 3 (A) and 3 (B) are graphs showing the results of X-ray diffraction using antimony-doped tin oxide of Examples 3 and 4, respectively. Even in the antimony-doped tin oxides of Examples 3 and 4, the point where the intensity of the reflected light is the highest is a point near “2θ = 27 °”.
 また、図4(A)及び(B)のグラフは、それぞれ実施例5及び6のアンチモンドープ酸化錫によるX線回折の結果を示すグラフであり、そして図5のグラフは、実施例7のアンチモンドープ酸化錫によるX線回折の結果を示すグラフである。実施例5~7のアンチモンドープ酸化錫でも、反射光の強度が最も高い地点は、「2θ=27°」付近の地点である。 4A and 4B are graphs showing the results of X-ray diffraction by antimony-doped tin oxide of Examples 5 and 6, respectively, and the graph of FIG. 5 is the antimony of Example 7. It is a graph which shows the result of the X-ray diffraction by dope tin oxide. Even in the antimony-doped tin oxides of Examples 5 to 7, the point where the intensity of the reflected light is the highest is a point in the vicinity of “2θ = 27 °”.
 実施例2~4のアンチモンドープ酸化錫は、いずれもCPSの最大値が15000程度であり、反射光の強度が最も高い地点に出現する波形に関しても、先が尖っており裾部分の幅が狭いシャープな波形となっている。 In each of the antimony-doped tin oxides of Examples 2 to 4, the maximum value of CPS is about 15000, and the waveform appearing at the point where the intensity of the reflected light is the highest is sharp and the width of the skirt portion is narrow. It has a sharp waveform.
 図6(A)のグラフは、比較例1の市販品によるX線回折の結果を示すグラフである。比較例1の市販品は、反射光の強度が最も高いのは「2θ=27°」付近の地点であるが、CPSの値が上記実施例1~7のものと比較して極端に小さい(2000程度)。また、Δ2θに関しても、CPSの値がピークとなる波形の裾部分の幅が、上記実施例1~7のものと比較して広くなっている。これは、気化精製法を用いずに製造したアンチモンドープ酸化錫であるため、不純物が多いことが原因であると考えられる。 The graph of FIG. 6 (A) is a graph showing the result of X-ray diffraction by the commercially available product of Comparative Example 1. In the commercially available product of Comparative Example 1, the intensity of reflected light is highest at a point in the vicinity of “2θ = 27 °”, but the CPS value is extremely small compared to those of Examples 1 to 7 above ( About 2000). As for Δ2θ, the width of the bottom part of the waveform at which the CPS value reaches its peak is wider than those of the above-described Examples 1 to 7. This is considered to be caused by a large amount of impurities because it is antimony-doped tin oxide produced without using a vaporization purification method.
 図6(B)のグラフは、比較例2の生成物によるX線回折の結果を示すグラフである。比較例2の生成物は、反射光の強度が最も高いのは「2θ=27°」付近の地点であるが、CPSの値が上記実施例1~7のものと比較して小さい(CPS=6860.0)。また、Δ2θに関しても、CPSの値がピークとなる波形の裾部分の幅が、上記実施例1~7のものと比較して広くなっている。これは、上述した気化精製法を用いずに製造したアンチモンドープ酸化錫であるため、不純物が多いことが原因であると考えられる。これは、比較例2が実施例2と同じ酸化アンチモン含有量であるにもかかわらず、実施例2に比べて比較例2の結晶化度が低いことからもわかる。 The graph of FIG. 6 (B) is a graph showing the result of X-ray diffraction by the product of Comparative Example 2. In the product of Comparative Example 2, the intensity of reflected light is highest at a point in the vicinity of “2θ = 27 °”, but the CPS value is smaller than those in Examples 1 to 7 (CPS = 6860.0). As for Δ2θ, the width of the bottom part of the waveform at which the CPS value reaches its peak is wider than those of the above-described Examples 1 to 7. This is considered to be caused by a large amount of impurities because it is antimony-doped tin oxide manufactured without using the above-described vaporization purification method. This can also be seen from the fact that the crystallinity of Comparative Example 2 is lower than that of Example 2 even though Comparative Example 2 has the same antimony oxide content as Example 2.
〔赤外線吸収効果の測定〕
 赤外線吸収効果の測定は、分光光度計を用いて光反射率を測定することによって行った。使用機器、測定条件、及び測定方法は、以下の通りである。
[Measurement of infrared absorption effect]
The infrared absorption effect was measured by measuring the light reflectance using a spectrophotometer. The equipment used, the measurement conditions, and the measurement method are as follows.
(1)使用機器:日本分光株式会社製 分光光度計V570
(2)試料作成条件:アクリル/シリコーン系ワニス(ウレタン技研工業株式会社製 水性セフコート #800 クリアー)95部に、実施例及び比較例の赤外線吸収顔料5部を添加し、遊星式分散ミルを用いて分散させて赤外線吸収インキを作成し、厚さ200μmのPETフィルム上にフィルムアプリケーターで塗工して、乾燥させ、乾燥状態で膜厚70μmの印刷部を形成し、塗工フィルム(試料印刷物)を作成した。
(3)測定方法:塗工フィルムの背面に標準白色板を装着し、200~2500nmの波長範囲での反射率を測定した。なお、実施例及び比較例の赤外線吸収顔料については、いずれも粒径(レーザー回折散乱法でのメディアン径)を120nmにして測定している。
 また、標準白色板の反射率を、約100%の標準値として設定した。
 なお、上記測定方法は「JISK5602 塗膜の日射反射率の求め方」に準拠している。また、印刷部に含有される赤外線吸収顔料の固形分重量比(顔料比)については、次のように計算する。上記(2)記載のアクリル/シリコーン系ワニスには樹脂等の固形分のほか、乾燥時に揮発して消失する溶剤等が含まれる。アクリル/シリコーン系ワニスの固形分重量比が40重量%であるため、アクリル/シリコーン系ワニスの固形分が38部、赤外線吸収顔料が5部となり、赤外線吸収顔料の固形分重量比は11.6重量%である。なお、残りの88.4重量%は、樹脂及び/又はその他の添加剤である。
(1) Equipment used: Spectrophotometer V570 manufactured by JASCO Corporation
(2) Sample preparation conditions: 95 parts of acrylic / silicone varnish (Aqueous Cefcote # 800 Clear manufactured by Urethane Giken Co., Ltd.) is added with 5 parts of the infrared absorbing pigments of Examples and Comparative Examples, and a planetary dispersion mill is used. Infrared absorbing ink is prepared by dispersing and coated on a 200 μm thick PET film with a film applicator and dried to form a printed part with a film thickness of 70 μm in a dry state. It was created.
(3) Measuring method: A standard white plate was attached to the back of the coated film, and the reflectance in the wavelength range of 200 to 2500 nm was measured. In addition, about the infrared absorption pigment of an Example and a comparative example, all are measuring by making a particle size (median diameter in a laser diffraction scattering method) into 120 nm.
Further, the reflectance of the standard white plate was set as a standard value of about 100%.
In addition, the said measuring method is based on "How to obtain | require the solar reflectance of a coating film". Moreover, about the solid content weight ratio (pigment ratio) of the infrared rays absorption pigment contained in a printing part, it calculates as follows. The acrylic / silicone varnish described in the above (2) includes a solid content such as a resin and a solvent that volatilizes and disappears when dried. Since the acrylic / silicone varnish solids weight ratio is 40% by weight, the acrylic / silicone varnish solids content is 38 parts, the infrared absorbing pigment is 5 parts, and the infrared absorbing pigment solids weight ratio is 11.6. % By weight. The remaining 88.4% by weight is resin and / or other additives.
 実施例1~7並びに比較例1及び2について、200nm~2500nmの波長と反射率の関係を図8~11に示し、かつ380nm~780nm及び/又は780~1100nmの波長域において、平均反射率、最大反射率、及び最大反射率を示す波長を下記表1に示す。 For Examples 1 to 7 and Comparative Examples 1 and 2, the relationship between the wavelength of 200 nm to 2500 nm and the reflectance is shown in FIGS. 8 to 11, and the average reflectance in the wavelength range of 380 nm to 780 nm and / or 780 to 1100 nm, Table 1 below shows the maximum reflectivity and the wavelength indicating the maximum reflectivity.
 図8から、酸化アンチモンが酸化錫の結晶格子中に固溶しているアンチモンドープ酸化錫は、赤外線吸収効果を奏することが分かる。 FIG. 8 shows that antimony-doped tin oxide in which antimony oxide is dissolved in the crystal lattice of tin oxide has an infrared absorption effect.
 また、一般的な真贋判定に用いられる近赤外領域(波長が780~1100nmの領域)では、赤外線吸収効果が高いことが望ましく、特に一般的な印刷条件であるアンチモンドープ酸化錫顔料の固形分重量比が11.6重量%のときに、反射率が30%以下であると、赤外線カメラ等の真贋判定装置で印刷物を観察した場合、アンチモンドープ酸化錫を含有する印刷部と他の部分との差が大きく、10人中10人が区別できるため、真贋判定に用い易く、好まれる。これに関連して、図8に示されるように、2.8重量%以上の酸化アンチモン含有率を有する実施例2~4は、その領域で反射率30%以下を保っている。 In the near infrared region (wavelength region of 780 to 1100 nm) used for general authenticity determination, it is desirable that the infrared absorption effect is high, and the solid content of the antimony-doped tin oxide pigment, which is a particularly general printing condition, is desirable. When the weight ratio is 11.6% by weight and the reflectance is 30% or less, when a printed matter is observed with an authenticity determination device such as an infrared camera, a printed part containing antimony-doped tin oxide and other parts The difference is large and 10 out of 10 people can be distinguished, so it is easy to use for authenticity determination and is preferred. In this connection, as shown in FIG. 8, Examples 2 to 4 having an antimony oxide content of 2.8% by weight or more maintain a reflectance of 30% or less in that region.
 図9から、2.7~2.8重量%の酸化アンチモン含有率を有するとしても、通気焼成工程を経ていない比較例2は、通気焼成工程を経た実施例2、5及び6に比べて、赤外線吸収効果が低いことが明らかである。つまり、通気焼成工程は、アンチモンドープ酸化錫の結晶性を高め、それによって、赤外線吸収効果を向上させることができる。これは、下記表1において、実施例2、5及び6と比較例2の結晶性を対比することにより裏付けられる。 From FIG. 9, even if it has an antimony oxide content of 2.7 to 2.8% by weight, the comparative example 2 that has not undergone the aeration firing process is compared with the examples 2, 5 and 6 that have undergone the aeration firing process. It is clear that the infrared absorption effect is low. That is, the aeration firing process can improve the crystallinity of the antimony-doped tin oxide, thereby improving the infrared absorption effect. This is supported by comparing the crystallinity of Examples 2, 5, and 6 and Comparative Example 2 in Table 1 below.
 また、実施例5及び6は、通気冷却工程(S116)の冷却速度を除いて、ほぼ同じ条件下で行われた。しかしながら、下記表1に示されるように、200[℃/時間]以上の冷却速度で行われた実施例5は、200[℃/時間]未満の冷却速度で行われた実施例6よりも、半値幅(Δ2θ)が狭く、かつ結晶化度が高い。これに関連して、通気焼成によって、酸化錫の結晶格子中に固溶されていない余分な酸化アンチモンとともに、その結晶格子中に固溶されている酸化アンチモンも微量ながら除去されるとしても、通気焼成後に積極的に冷却することによって、その結晶格子は維持されることが予想される。したがって、通気冷却工程において冷却速度を200[℃/時間]以上に調整することは、アンチモンドープ酸化錫の結晶性の向上に寄与するものと考えられる。 Further, Examples 5 and 6 were performed under substantially the same conditions except for the cooling rate in the aeration cooling step (S116). However, as shown in Table 1 below, Example 5 performed at a cooling rate of 200 [° C./hour] or higher was more than Example 6 performed at a cooling rate of less than 200 [° C./hour]. The half width (Δ2θ) is narrow and the degree of crystallinity is high. In this connection, even if a small amount of antimony oxide dissolved in the crystal lattice is removed together with excess antimony oxide not dissolved in the crystal lattice of tin oxide by aeration baking, By actively cooling after firing, it is expected that the crystal lattice will be maintained. Therefore, it is considered that adjusting the cooling rate to 200 [° C./hour] or more in the ventilation cooling step contributes to the improvement in crystallinity of the antimony-doped tin oxide.
 図10から、酸化アンチモンの含有率が9.9重量%である市販品のアンチモンドープ酸化錫顔料(比較例1)であったとしても、通気焼成工程を経ることによって、十分な赤外線吸収効果を有し、かつ酸化アンチモンの含有率が2.7重量%であるアンチモンドープ酸化錫(実施例5)になることが分かる。つまり、通気焼成工程によって、結晶格子中に固溶されていない余分な酸化アンチモン(すなわち、赤外線吸収効果に寄与していない不純物)を除去することができる。 From FIG. 10, even if it is a commercially available antimony-doped tin oxide pigment (Comparative Example 1) having an antimony oxide content of 9.9% by weight, a sufficient infrared absorption effect can be obtained through the aeration firing process. It can be seen that the antimony-doped tin oxide (Example 5) has an antimony oxide content of 2.7% by weight. That is, excess antimony oxide that is not dissolved in the crystal lattice (that is, impurities that do not contribute to the infrared absorption effect) can be removed by the aeration firing process.
 図11から、閉鎖焼成工程及び閉鎖冷却工程を省略しても、つまり、混合工程、通気焼成工程及び通気冷却工程しか行わなくても、十分な赤外線吸収効果を有するアンチモンドープ酸化錫が得られることが分かる。 From FIG. 11, even if the closed firing step and the closed cooling step are omitted, that is, only the mixing step, the aeration firing step and the aeration cooling step are performed, an antimony-doped tin oxide having a sufficient infrared absorption effect can be obtained. I understand.
 ここで、下記表1について実施例1~7を対比すると、実施例1~6は、実施例7よりも、可視光波長域(380nm~780nm)の平均反射率と赤外線波長域(780~1100nm)の平均反射率の差が大きい。したがって、実施例1~6のアンチモンドープ酸化錫は、実施例7のアンチモンドープ酸化錫と比べて、アンチモンドープ酸化錫の呈する色に束縛されることなく、幅広い用途で使用可能であることが分かる。 Here, when comparing Examples 1 to 7 with respect to Table 1 below, Examples 1 to 6 have an average reflectance in the visible light wavelength range (380 nm to 780 nm) and an infrared wavelength range (780 to 1100 nm) than Example 7. ) The average reflectance difference is large. Therefore, it can be seen that the antimony-doped tin oxides of Examples 1 to 6 can be used in a wide range of applications without being restricted by the color exhibited by antimony-doped tin oxide as compared with the antimony-doped tin oxide of Example 7. .
 したがって、通気焼成工程を用いてアンチモンドープ酸化錫を製造することにより、必要最低限の酸化アンチモンの含有量で結晶性を向上させることができ、十分な赤外線吸収効果を有するアンチモンドープ酸化錫を製造することができる。 Therefore, by producing antimony-doped tin oxide using an aerated firing process, the crystallinity can be improved with the minimum content of antimony oxide, and antimony-doped tin oxide having a sufficient infrared absorption effect is produced. can do.
 しかも、得られたアンチモンドープ酸化錫は、酸化アンチモンの含有量が9.3重量%以下でありながら、酸化アンチモンの含有量が9.9重量%であるアンチモンドープ酸化錫と略同等又はそれ以上の赤外線吸収効果が得られている。 In addition, the obtained antimony-doped tin oxide has an antimony oxide content of 9.3 wt% or less and an antimony oxide tin oxide having a content of 9.9 wt% is substantially equal to or higher than that. Infrared absorption effect is obtained.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<赤外線吸収インキの作製>
 以下の材料をミキサーで攪拌して均一に溶解させた後に濾過して、赤外線吸収性インキを得た:
赤外線吸収顔料:実施例2の赤外線吸収顔料 3g;
樹脂:塩化ビニル-酢酸ビニル共重合体とポリエステル樹脂との混合物(重量比1:1) 30g;
溶剤:メチルエチルケトン(MEK)とトルエンの混合物(重量比1:1) 15g;及び
色合わせ用着色剤:桜宮化学社製「マイクロリス(登録商標)ブルー」(1/100希釈品) 4g
<Preparation of infrared absorbing ink>
The following materials were stirred with a mixer and dissolved uniformly, followed by filtration to obtain an infrared absorbing ink:
Infrared absorbing pigment: 3 g of the infrared absorbing pigment of Example 2;
Resin: Mixture of vinyl chloride-vinyl acetate copolymer and polyester resin (weight ratio 1: 1) 30 g;
Solvent: 15 g of a mixture of methyl ethyl ketone (MEK) and toluene (weight ratio 1: 1); and colorant for color matching: “Microlith (registered trademark) blue” (diluted 1/100) by Sakuramiya Chemical Co., Ltd. 4 g
<赤外線非吸収インキの作製>
 以下の材料をミキサーで攪拌して均一に溶解させた後に濾過して、赤外線非吸収性インキを得た:
染料:桜宮化学社製「マイクロリス(登録商標)レッド」(1/100希釈品)0.39gと桜宮化学社製「マイクロリス(登録商標)ブルー」(1/100希釈品)0.16gと桜宮化学社製「マイクロリス(登録商標)イエロー」(1/100希釈品)0.76gとの混合物 1.31g;
樹脂:塩化ビニル-酢酸ビニル共重合体とポリエステル樹脂との混合物(重量比1:1) 30g;
溶剤:メチルエチルケトン(MEK)とトルエンの混合物(重量比1:1) 15g;及び
色合わせ用着色剤:桜宮化学社製「マイクロリス(登録商標)ブルー」(1/100希釈品) 4g
<Production of infrared non-absorbing ink>
The following materials were stirred to dissolve uniformly and then filtered to obtain an infrared non-absorbing ink:
Dye: “Microlith (registered trademark) red” (1/100 diluted product) 0.39 g manufactured by Sakuramiya Chemical Co., Ltd. “Microlith (registered trademark) blue” (1/100 diluted product) 0.16 g manufactured by Sakuramiya Chemical Co., Ltd. A mixture with 0.76 g of “Microlith (registered trademark) yellow” (1/100 diluted product) manufactured by Sakuramiya Chemical Co., Ltd. 1.31 g;
Resin: Mixture of vinyl chloride-vinyl acetate copolymer and polyester resin (weight ratio 1: 1) 30 g;
Solvent: 15 g of a mixture of methyl ethyl ketone (MEK) and toluene (weight ratio 1: 1); and colorant for color matching: “Microlith (registered trademark) blue” (diluted 1/100) by Sakuramiya Chemical Co., Ltd. 4 g
〔印刷物の赤外線吸収効果〕
 上記赤外線吸収性インキで形成された赤外線吸収印刷層と上記赤外線非吸収インキで形成された上記赤外線非吸収印刷層とが並んで配置されるように、上記赤外線吸収性インキ及び上記赤外線非吸収インキをグラビア印刷機(松尾産業株式会社製 Kプリンティングプルーファー)で上質紙(日本製紙製 しらおい上質紙)に印刷し、乾燥させて、印刷物を得た。
[Infrared absorption effect of printed matter]
The infrared absorbing ink and the infrared non-absorbing ink so that the infrared absorbing printing layer formed of the infrared absorbing ink and the infrared non-absorbing printing layer formed of the infrared non-absorbing ink are arranged side by side. Was printed on fine paper (Nippon Paper Shiraoi fine paper) with a gravure printing machine (K Printing Proofer, Matsuo Sangyo Co., Ltd.) and dried to obtain a printed matter.
 上記印刷物を赤外線カメラ(ANMO社製Dino-Lite Pro)を用いて観察したところ、赤外線吸収印刷層の印刷面は、赤外光を吸収するために黒く見えたのに対して、赤外線非吸収印刷層の印刷面は、赤外線を透過又は反射するために、白く見えた。 When the printed matter was observed using an infrared camera (Dino-Lite Pro manufactured by ANMO), the printed surface of the infrared absorbing printing layer appeared black because it absorbed infrared light, whereas infrared non-absorbing printing. The printed surface of the layer appeared white because it transmitted or reflected infrared radiation.
〔赤外線吸収印刷層の色調と赤外線吸収性の関係〕
 以下に示される基材及びインキを用意した:
  基材:一般紙(王子製紙株式会社製 OKプリンス上質 斤量90kg)
  プロセスインキ(3色):
   藍色(C):スーパーテックGTシリーズ 藍(株式会社T&K TOKA製)
   紅色(M):スーパーテックGTシリーズ 紅(株式会社T&K TOKA製)
   黄色(Y):スーパーテックGTシリーズ 黄(株式会社T&K TOKA製)
[Relationship between color tone of infrared absorbing printing layer and infrared absorptivity]
The following substrates and inks were prepared:
Base material: General paper (OK Prince fine quality 90 kg)
Process ink (3 colors):
Indigo (C): Super Tech GT Series Indigo (T & K TOKA Co., Ltd.)
Crimson (M): Super Tech GT Series Crimson (T & K TOKA Co., Ltd.)
Yellow (Y): Super Tech GT Series Yellow (manufactured by T & K TOKA Corporation)
 以下の印刷サンプル作製条件に従って、基材に上記3色のプロセスインキをそれぞれ印刷して、3種類の印刷サンプルを得た:
(印刷サンプル作製条件)
 印刷機:オフセット印刷機 RIテスター
 インキ盛量:0.125cc
 インキ膜厚:約1μm
According to the following print sample preparation conditions, the above three color process inks were respectively printed on the substrate to obtain three types of print samples:
(Print sample preparation conditions)
Printing machine: Offset printing machine RI tester Ink volume: 0.125cc
Ink film thickness: about 1 μm
 以下の測定条件に従って、3種類の印刷サンプルの光反射率を測定した:
(測定条件)
 測定装置:紫外可視分光光度計 U-4000 (株式会社日立製作所製)
 測定項目:反射率(%)
 測定波長:350~2500nm
The light reflectance of three types of printed samples was measured according to the following measurement conditions:
(Measurement condition)
Measuring device: UV-visible spectrophotometer U-4000 (manufactured by Hitachi, Ltd.)
Measurement item: Reflectance (%)
Measurement wavelength: 350-2500 nm
 藍(C)、紅(M)及び黄(Y)プロセスインキについて、350~1500nmの波長域における反射率を図12に示す。 FIG. 12 shows the reflectance in the wavelength range of 350 to 1500 nm for the indigo (C), red (M), and yellow (Y) process inks.
 図12は、CMYプロセスインクのオフセット印刷により得られた印刷物の反射率を示すグラフである。また、着色剤濃度、膜厚及び測定条件を揃える限り、グラビア印刷、フレキソ印刷、スクリーン印刷又はインクジェット印刷により得られた印刷物の反射率は、オフセット印刷により得られた印刷物の反射率と同じであると考えられる。したがって、図12に示されるCMYプロセスインクの反射率グラフと、図8~11に示される実施例1~7の反射率グラフとを組み合わせることにより、本発明の印刷物において赤外線吸収印刷層を各種の印刷方式により形成したときの色調と赤外線吸収性の関係を予想できる。 FIG. 12 is a graph showing the reflectance of a printed matter obtained by offset printing of CMY process inks. In addition, as long as the colorant concentration, film thickness, and measurement conditions are uniform, the reflectance of the printed matter obtained by gravure printing, flexographic printing, screen printing, or inkjet printing is the same as the reflectance of the printed matter obtained by offset printing. it is conceivable that. Therefore, by combining the reflectance graph of the CMY process ink shown in FIG. 12 and the reflectance graphs of Examples 1 to 7 shown in FIGS. 8 to 11, various infrared absorbing printing layers are formed in the printed matter of the present invention. The relationship between color tone and infrared absorptivity when formed by a printing method can be expected.
 例えば、図12では、紅及び黄プロセスインキが、赤外線波長域(780~1100nm)の光を吸収していない。一方で、図8~11に示される実施例1~7の反射率グラフでは、可視光波長域(380nm~780nm)の平均反射率よりも赤外線波長域の平均反射率が低いので、可視光よりも赤外光が吸収されていると考えられる。したがって、本発明に使用されるアンチモンドープ酸化錫を紅又は黄インキに含有させるか、又は本発明に使用される赤外線吸収インキを紅又は黄インキとして使用すると、紅色又は黄色の色調に影響を与えることなく、インキに赤外線吸収性を付与できることが分かる。 For example, in FIG. 12, the red and yellow process inks do not absorb light in the infrared wavelength region (780 to 1100 nm). On the other hand, in the reflectance graphs of Examples 1 to 7 shown in FIGS. 8 to 11, since the average reflectance in the infrared wavelength region is lower than the average reflectance in the visible light wavelength region (380 nm to 780 nm), it is higher than that of visible light. Infrared light is also considered to be absorbed. Therefore, if the antimony-doped tin oxide used in the present invention is contained in red or yellow ink, or if the infrared absorbing ink used in the present invention is used as red or yellow ink, the color tone of red or yellow is affected. It can be seen that the ink can be provided with infrared absorptivity.
 また、図12から、藍プロセスインキが、赤外線波長域(780~1100nm)の光を僅かに吸収していると考えることもできる。しかしながら、図8~11において実施例1~7の赤外線吸収インキが赤外光を吸収する割合と比べれば、藍プロセスインキが赤外光を吸収する割合は、考慮しなくてよいほど低い。したがって、本発明に使用されるアンチモンドープ酸化錫を藍インキに含有させるか、又は本発明に使用される赤外線吸収インキを藍インキとして使用しても、藍色の色調に影響を与えることなく、インキに赤外線吸収性を付与できることが分かる。 Further, from FIG. 12, it can be considered that the indigo process ink slightly absorbs light in the infrared wavelength region (780 to 1100 nm). However, in FIGS. 8 to 11, compared with the ratio of the infrared absorbing inks of Examples 1 to 7 to absorb infrared light, the ratio of the indigo process ink to absorb infrared light is so low that it does not need to be considered. Therefore, even if antimony-doped tin oxide used in the present invention is contained in the indigo ink, or the infrared absorbing ink used in the present invention is used as the indigo ink, without affecting the color tone of the indigo color, It can be seen that infrared absorptivity can be imparted to the ink.
 さらに、実施例1~7で得られたアンチモンドープ酸化錫を含み、かつ着色剤を含まない赤外線吸収インキは、墨、藍、紅又は黄インキに該当しない。これに関連して、実施例1~7で得られたアンチモンドープ酸化錫を含み、かつ着色剤を含まない赤外線吸収インキは、明度が高く、かつ淡い白色を呈するので、墨、藍、紅又は黄インキの色調に与える影響は少ないと考えられる。したがって、実施例1~7で得られたアンチモンドープ酸化錫を含み、かつ着色剤を含まない赤外線吸収インキを、各種の印刷方式に適した特色インキ又は機能性インキとして把握することができる。その場合、図8~11に示される実施例1~7の反射率グラフを、本発明に使用される特色インキの光反射特性を表すグラフとして見なすことができる。 Furthermore, the infrared absorbing ink containing antimony-doped tin oxide obtained in Examples 1 to 7 and containing no colorant does not correspond to black, indigo, red or yellow ink. In this connection, the infrared-absorbing ink containing antimony-doped tin oxide obtained in Examples 1 to 7 and containing no colorant has high brightness and a light white color. The effect on the color tone of yellow ink is considered to be small. Therefore, the infrared absorbing ink containing antimony-doped tin oxide obtained in Examples 1 to 7 and containing no colorant can be grasped as a special color ink or functional ink suitable for various printing methods. In that case, the reflectance graphs of Examples 1 to 7 shown in FIGS. 8 to 11 can be regarded as graphs representing the light reflection characteristics of the special color ink used in the present invention.
 本発明は、上述した実施形態及び実施例に制約されることなく、各種の変形又は置換を伴って実施することができる。また、上述した実施形態及び実施例で挙げた構成又は材料はいずれも好ましい例示であり、これらを適宜変形して実施可能であることを理解されたい。 The present invention can be implemented with various modifications or replacements without being limited to the above-described embodiments and examples. In addition, it should be understood that any of the configurations and materials described in the above-described embodiments and examples are preferable examples and can be implemented by appropriately modifying them.
 1  印刷物
 2  基材
 3  赤外線吸収印刷層
 4  赤外線非吸収印刷層
DESCRIPTION OF SYMBOLS 1 Printed material 2 Base material 3 Infrared absorption printing layer 4 Infrared non-absorption printing layer

Claims (15)

  1.  印刷層(A)及び印刷層(B)が基材上に配置されている印刷物であって、
     前記印刷層(A)は、前記印刷層(B)が配置されている範囲外に配置されており、
     前記印刷層(A)と前記印刷層(B)の赤外線吸収率が、異なり、
     前記印刷層(A)及び/又は前記印刷層(B)はアンチモンドープ酸化錫を含み、かつ
     前記アンチモンドープ酸化錫は、酸化錫と酸化アンチモンを含有し、かつ下記(a)及び/又は(b)を満たす:
      (a)X線回折測定により得られた2θ=27°付近のピークの半値幅(Δ2θ)が、0.30以下である;及び/又は
      (b)前記酸化アンチモンの含有量が、前記アンチモンドープ酸化錫の重量を基準として、0.5~10.0重量%であり、かつ、X線回折測定により得られた2θ=27°付近のピークのピーク値を半値幅(Δ2θ)で除算した値である結晶化度が、58427以上である、
     印刷物。
    A printed matter in which the printed layer (A) and the printed layer (B) are arranged on a substrate,
    The printed layer (A) is disposed outside the range in which the printed layer (B) is disposed,
    The infrared absorption rate of the printing layer (A) and the printing layer (B) is different,
    The printing layer (A) and / or the printing layer (B) contains antimony-doped tin oxide, and the antimony-doped tin oxide contains tin oxide and antimony oxide, and the following (a) and / or (b Meet):
    (A) The half width (Δ2θ) of a peak around 2θ = 27 ° obtained by X-ray diffraction measurement is 0.30 or less; and / or (b) the content of the antimony oxide is the antimony dope A value obtained by dividing the peak value of the peak around 2θ = 27 ° obtained by X-ray diffraction measurement by the half-value width (Δ2θ), based on the weight of tin oxide, from 0.5 to 10.0% by weight. The degree of crystallinity is 58427 or more.
    Printed matter.
  2.  偽造防止用である、請求項1に記載の印刷物。 The printed matter according to claim 1, which is used for preventing forgery.
  3.  前記(a)において、前記半値幅(Δ2θ)は、0.21以下である、請求項1又は2に記載の印刷物。 The printed matter according to claim 1 or 2, wherein, in (a), the half width (Δ2θ) is 0.21 or less.
  4.  前記(b)において、前記酸化アンチモンの含有量は、前記アンチモンドープ酸化錫の重量を基準として、2.8~9.3重量%である、請求項1又は2に記載の印刷物。 3. The printed matter according to claim 1, wherein in (b), the content of the antimony oxide is 2.8 to 9.3 wt% based on the weight of the antimony-doped tin oxide.
  5.  前記結晶化度が78020以上である、請求項1又は2に記載の印刷物。 The printed matter according to claim 1 or 2, wherein the crystallinity is 78020 or more.
  6.  前記アンチモンドープ酸化錫の平均粒径が、200μm以下である、請求項1~5のいずれか1項に記載の印刷物。 The printed matter according to any one of claims 1 to 5, wherein the antimony-doped tin oxide has an average particle size of 200 µm or less.
  7.  前記印刷層(A)及び前記印刷層(B)は、前記アンチモンドープ酸化錫を含み、かつ前記印刷層(A)と前記印刷層(B)における前記アンチモンドープ酸化錫の含有率が、異なる、請求項1~6のいずれか1項に記載の印刷物。 The printed layer (A) and the printed layer (B) contain the antimony-doped tin oxide, and the content of the antimony-doped tin oxide in the printed layer (A) and the printed layer (B) is different. The printed material according to any one of claims 1 to 6.
  8.  前記印刷層(A)が配置されている範囲と前記印刷層(B)が配置されている範囲は、隣接しているか、又は離間している、請求項1~7のいずれか1項に記載の印刷物。 The range in which the print layer (A) is disposed and the range in which the print layer (B) is disposed are adjacent to each other or spaced apart from each other. Prints.
  9.  前記印刷層(A)及び/又は前記印刷層(B)の下に他の層が配置されている、請求項1~8のいずれか1項に記載の印刷物。 The printed material according to any one of claims 1 to 8, wherein another layer is disposed under the printing layer (A) and / or the printing layer (B).
  10.  前記基材は、平面、曲面又は凹凸を有する、請求項1~9のいずれか1項に記載の印刷物。 The printed material according to any one of claims 1 to 9, wherein the substrate has a flat surface, a curved surface, or irregularities.
  11.  前記印刷層(A)及び前記印刷層(B)は、部分印刷で前記基材上に形成されている、請求項1~10のいずれか1項に記載の印刷物。 The printed matter according to any one of claims 1 to 10, wherein the printing layer (A) and the printing layer (B) are formed on the substrate by partial printing.
  12.  前記印刷層(A)は、オフセット印刷、フレキソ印刷、活版印刷、凹版印刷、グラビア印刷、スクリーン印刷、及びインクジェット印刷から成る群から選択される少なくとも1つにより形成されている、請求項1~11のいずれか1項に記載の印刷物。 The printing layer (A) is formed by at least one selected from the group consisting of offset printing, flexographic printing, letterpress printing, intaglio printing, gravure printing, screen printing, and inkjet printing. The printed matter according to any one of the above.
  13.  前記印刷層(B)は、オフセット印刷、フレキソ印刷、活版印刷、凹版印刷、グラビア印刷、スクリーン印刷、及びインクジェット印刷から成る群から選択される少なくとも1つにより形成されている、請求項1~12のいずれか1項に記載の印刷物。 The printing layer (B) is formed by at least one selected from the group consisting of offset printing, flexographic printing, letterpress printing, intaglio printing, gravure printing, screen printing, and inkjet printing. The printed matter according to any one of the above.
  14.  前記印刷層(A)及び/又は前記印刷層(B)は、クロミック材料、磁性顔料、紫外線吸収剤、光学可変材料及びパール顔料から成る群から選択される少なくとも1つをさらに含む、請求項1~13のいずれか1項に記載の印刷物。 The print layer (A) and / or the print layer (B) further includes at least one selected from the group consisting of a chromic material, a magnetic pigment, an ultraviolet absorber, an optical variable material, and a pearl pigment. 14. The printed material according to any one of 1 to 13.
  15.  印刷層(A)及び印刷層(B)を基材上に印刷で形成する印刷物の製造方法であって、
     前記印刷層(A)は、前記印刷層(B)が配置されている範囲外に配置されており、
     前記印刷層(A)と前記印刷層(B)の赤外線吸収率が、異なり、
     前記印刷層(A)及び/又は前記印刷層(B)はアンチモンドープ酸化錫を含み、かつ
     前記アンチモンドープ酸化錫は、酸化錫と酸化アンチモンを含有し、かつ下記(a)及び/又は(b)を満たす:
      (a)X線回折測定により得られた2θ=27°付近のピークの半値幅(Δ2θ)が、0.30以下である;及び/又は
      (b)前記酸化アンチモンの含有量が、前記アンチモンドープ酸化錫の重量を基準として、0.5~10.0重量%であり、かつ、X線回折測定により得られた2θ=27°付近のピークのピーク値を半値幅(Δ2θ)で除算した値である結晶化度が、58427以上である、
     印刷物の製造方法。
    A method for producing a printed material in which a printed layer (A) and a printed layer (B) are formed on a substrate by printing,
    The printed layer (A) is disposed outside the range in which the printed layer (B) is disposed,
    The infrared absorption rate of the printing layer (A) and the printing layer (B) is different,
    The printing layer (A) and / or the printing layer (B) contains antimony-doped tin oxide, and the antimony-doped tin oxide contains tin oxide and antimony oxide, and the following (a) and / or (b Meet):
    (A) The half width (Δ2θ) of a peak around 2θ = 27 ° obtained by X-ray diffraction measurement is 0.30 or less; and / or (b) the content of the antimony oxide is the antimony dope A value obtained by dividing the peak value of the peak around 2θ = 27 ° obtained by X-ray diffraction measurement by the half-value width (Δ2θ), based on the weight of tin oxide, from 0.5 to 10.0% by weight. The degree of crystallinity is 58427 or more.
    Manufacturing method of printed matter.
PCT/JP2013/080345 2013-11-08 2013-11-08 Printed article WO2015068291A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/080345 WO2015068291A1 (en) 2013-11-08 2013-11-08 Printed article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/080345 WO2015068291A1 (en) 2013-11-08 2013-11-08 Printed article

Publications (1)

Publication Number Publication Date
WO2015068291A1 true WO2015068291A1 (en) 2015-05-14

Family

ID=53041092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/080345 WO2015068291A1 (en) 2013-11-08 2013-11-08 Printed article

Country Status (1)

Country Link
WO (1) WO2015068291A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4349611A1 (en) * 2022-10-04 2024-04-10 Giesecke+Devrient Currency Technology GmbH Security element comprising a machine-readable code and method for checking the authenticity of the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08337500A (en) * 1995-04-10 1996-12-24 Sumitomo Chem Co Ltd Tin oxide whisker and its production
JPH10316425A (en) * 1997-05-12 1998-12-02 Tokuyama Corp Production of spherical composite tin oxide powder
JP2003176132A (en) * 2001-09-28 2003-06-24 Sumitomo Metal Mining Co Ltd Antimony-tin oxide particle for shielding insolation, coating solution for forming insolation shielding film and insolation shielding film
JP2009137088A (en) * 2007-12-05 2009-06-25 Kyodo Printing Co Ltd Printed matter and printing method using infrared absorptive ink
JP2013119204A (en) * 2011-12-07 2013-06-17 National Printing Bureau Printing medium having transmission latent image
WO2013146937A1 (en) * 2012-03-28 2013-10-03 共同印刷株式会社 Watermarked printing medium for forgery prevention
WO2013147033A1 (en) * 2012-03-29 2013-10-03 三菱マテリアル株式会社 Infrared cut material
WO2013147029A1 (en) * 2012-03-29 2013-10-03 三菱マテリアル株式会社 Antimony-doped tin oxide powder and process for manufacturing same
WO2013168812A1 (en) * 2012-05-11 2013-11-14 共同印刷株式会社 Antimony-doped tin oxide, infrared-ray-absorbable pigment, infrared-ray-absorbable ink, printed matter, and method for producing antimony-doped tin oxide

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08337500A (en) * 1995-04-10 1996-12-24 Sumitomo Chem Co Ltd Tin oxide whisker and its production
JPH10316425A (en) * 1997-05-12 1998-12-02 Tokuyama Corp Production of spherical composite tin oxide powder
JP2003176132A (en) * 2001-09-28 2003-06-24 Sumitomo Metal Mining Co Ltd Antimony-tin oxide particle for shielding insolation, coating solution for forming insolation shielding film and insolation shielding film
JP2009137088A (en) * 2007-12-05 2009-06-25 Kyodo Printing Co Ltd Printed matter and printing method using infrared absorptive ink
JP2013119204A (en) * 2011-12-07 2013-06-17 National Printing Bureau Printing medium having transmission latent image
WO2013146937A1 (en) * 2012-03-28 2013-10-03 共同印刷株式会社 Watermarked printing medium for forgery prevention
WO2013147033A1 (en) * 2012-03-29 2013-10-03 三菱マテリアル株式会社 Infrared cut material
WO2013147029A1 (en) * 2012-03-29 2013-10-03 三菱マテリアル株式会社 Antimony-doped tin oxide powder and process for manufacturing same
WO2013168812A1 (en) * 2012-05-11 2013-11-14 共同印刷株式会社 Antimony-doped tin oxide, infrared-ray-absorbable pigment, infrared-ray-absorbable ink, printed matter, and method for producing antimony-doped tin oxide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4349611A1 (en) * 2022-10-04 2024-04-10 Giesecke+Devrient Currency Technology GmbH Security element comprising a machine-readable code and method for checking the authenticity of the same

Similar Documents

Publication Publication Date Title
US9616675B2 (en) Ink set, ink-jet recording method, and recorded material
JP6403806B2 (en) Infrared absorbing ink
WO2015068292A1 (en) Printed article
JP6541400B2 (en) Anti-counterfeit ink and printed matter thereof
JP7358785B2 (en) Anti-counterfeiting ink composition, anti-counterfeiting ink, anti-counterfeiting printed matter
WO2015068282A1 (en) Infrared-absorptive inkjet printing ink
CN114207055A (en) Radiation curable intaglio ink
US11807766B2 (en) Anti-counterfeit ink composition, anti-counterfeit ink, anti-counterfeit printed matter, and method for producing the anti-counterfeit ink composition
WO2015068290A1 (en) Infrared-absorptive intaglio printing ink
WO2015068291A1 (en) Printed article
WO2015068289A1 (en) Infrared-absorptive letterpress printing ink
TW201518125A (en) Printed matter
JP6319642B1 (en) Aqueous pigment dispersion and method for producing aqueous pigment dispersion
WO2015068283A1 (en) Infrared-absorptive offset printing ink
WO2015068281A1 (en) Infrared-absorptive screen printing ink
WO2015068276A1 (en) Infrared-absorptive flexographic printing ink
WO2022163499A1 (en) Infrared-absorbing ultraviolet-curable ink, and infrared-absorbing printed matter
JP7367672B2 (en) Image forming method
WO2015068280A1 (en) Infrared-absorptive gravure printing ink
TW201518430A (en) Printed article
JP6886581B2 (en) Method for Producing Aqueous Pigment Dispersion and Aqueous Pigment Dispersion
TW201518427A (en) Infrared-absorptive flexographic printing ink
JP5234949B2 (en) Solvent-based inkjet ink composition and full-color image forming method using the same
TW201518428A (en) Infrared-absorptive gravure printing ink
KR20240061750A (en) Ink composition for aqueous flexographic printing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13897060

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13897060

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP