[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015063920A1 - 共振型高周波電源装置 - Google Patents

共振型高周波電源装置 Download PDF

Info

Publication number
WO2015063920A1
WO2015063920A1 PCT/JP2013/079549 JP2013079549W WO2015063920A1 WO 2015063920 A1 WO2015063920 A1 WO 2015063920A1 JP 2013079549 W JP2013079549 W JP 2013079549W WO 2015063920 A1 WO2015063920 A1 WO 2015063920A1
Authority
WO
WIPO (PCT)
Prior art keywords
resonance
high frequency
power supply
supply device
frequency power
Prior art date
Application number
PCT/JP2013/079549
Other languages
English (en)
French (fr)
Inventor
阿久澤 好幸
酒井 清秀
俊裕 江副
有基 伊藤
Original Assignee
三菱電機エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機エンジニアリング株式会社 filed Critical 三菱電機エンジニアリング株式会社
Priority to JP2015544718A priority Critical patent/JPWO2015063920A1/ja
Priority to PCT/JP2013/079549 priority patent/WO2015063920A1/ja
Priority to US15/030,949 priority patent/US9871416B2/en
Publication of WO2015063920A1 publication Critical patent/WO2015063920A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/20Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/4815Resonant converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/4815Resonant converters
    • H02M7/4818Resonant converters with means for adaptation of resonance frequency, e.g. by modification of capacitance or inductance of resonance circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to a resonance type high frequency power supply device that performs power transmission at a high frequency.
  • Non-Patent Document 1 is configured such that the amplitude of the output voltage Vout is adjusted by adjusting the capacitance of the variable capacitor C2 (see, for example, Non-Patent Document 1).
  • variable capacitor C2 is used to adjust the amplitude of the output voltage Vout, and there is a problem that the size of the parts increases and the cost increases.
  • This variable capacitor has a problem that it is difficult to maintain stable performance, such as a large capacitance value variation due to a temperature change and weakness against mechanical shock.
  • the present invention has been made to solve the above-described problems. By adjusting the amplitude of the output voltage without using a variable capacitor, the device can be reduced in size and cost, and the temperature change can be achieved. Another object of the present invention is to provide a resonance type high frequency power supply device that is excellent in mechanical environment resistance, can maintain stable performance, and can operate at a high frequency exceeding 2 MHz.
  • a resonance type high frequency power supply device is a resonance type high frequency power supply device including a power element that performs a switching operation at a high frequency exceeding 2 MHz, and includes a variable inductor that adjusts the amplitude of the device output voltage. Is.
  • the present invention since it is configured as described above, it is possible to reduce the size and cost of the apparatus by adjusting the amplitude of the output voltage without using a variable capacitor, and also to withstand temperature changes and mechanical environment resistance. Excellent and stable performance can be maintained, and operation at a high frequency exceeding 2 MHz is possible.
  • FIG. 1 is a diagram showing a configuration of a resonance type high frequency power supply device according to Embodiment 1 of the present invention.
  • FIG. 1 shows a circuit when the power element Q1 has a single configuration.
  • the resonance type high frequency power supply device includes a power element Q1, a resonance circuit element (capacitors C1, C2 and an inductor L2), an inductor L1, a high frequency pulse drive circuit 1, a variable pulse signal generation circuit 2, and a bias circuit.
  • the power supply circuit 3 is configured.
  • the resonant transmitting antenna (power transmitting transmitting antenna) 10 is a power transmitting resonant antenna having LC resonance characteristics (not limited to a non-contact type).
  • the resonant transmission antenna 10 may be any of a magnetic field resonance type, an electric field resonance type, and an electromagnetic induction type.
  • the power element Q1 is a switching element that performs a switching operation in order to convert the input DC voltage Vin into AC.
  • the power element Q1 is not limited to an RF FET, and for example, an element such as Si-MOSFET, SiC-MOSFET, or GaN-FET can be used.
  • the resonant circuit elements are elements for resonant switching of the switching operation of the power element Q1. Resonance conditions can be matched with the resonant transmission antenna 10 by the resonant circuit element including the capacitors C1 and C2 and the inductor L2.
  • the inductor L2 is an element having a variable inductance value (L value). Then, by varying the L value of the inductor L2, the voltage amplitude of the output voltage Vout of the resonance type high frequency power supply device can be set to an arbitrary value.
  • FIG. 2 shows a variable inductor L2 of a type that can change the magnetic path length (L value) of the coil 21 manually or automatically.
  • the number of turns of the coil 21 is the same.
  • FIGS. 2A and 2B show a case where the magnetic path length (L value) of the coil 21 is varied by a magnetic path length adjustment mechanism (manually or a mechanism that can be automatically varied by a motor) 22.
  • c) shows a case where the L value is varied by electromagnetic induction by the L value control power source 23.
  • FIG. 3 shows a variable inductor L2 of a type in which a magnetic body 24 is installed on the projection surface of the coil 21.
  • the coil 21 shown in FIG. 3 is formed in a spiral shape with a pattern of a printed board.
  • the L value can be adjusted by changing the area covering the projection surface of the coil 21.
  • the inductor L1 functions to temporarily hold the energy of the input DC voltage Vin for each switching operation of the power element Q1.
  • the high-frequency pulse drive circuit 1 is a circuit for driving the power element Q1 by sending a high-frequency pulsed voltage signal exceeding 2 MHz to the G terminal of the power element Q1.
  • the high-frequency pulse drive circuit 1 is a circuit configured so that a high-speed ON / OFF output can be performed by using an FET element or the like as an output portion and a totem pole circuit configuration.
  • the variable pulse signal generation circuit 2 is a circuit that drives the high-frequency pulse drive circuit 1 by sending a high-frequency pulsed voltage signal exceeding 2 MHz, such as a logic signal, to the high-frequency pulse drive circuit 1.
  • the variable pulse signal generation circuit 2 includes a frequency setting oscillator and a logic IC such as a flip-flop or an inverter, and has functions such as a pulse width change and an inverted pulse output.
  • the bias power supply circuit 3 supplies drive power to the variable pulse signal generation circuit 2 and the high-frequency pulse drive circuit 1.
  • the input DC voltage Vin is applied to the D terminal of the power element Q1 through the inductor L1.
  • the power element Q1 converts the voltage into a positive AC voltage by an ON / OFF switching operation.
  • the inductor L1 temporarily holds energy to assist in converting power from direct current to alternating current.
  • the switching operation of the power element Q1 is a resonance circuit element including capacitors C1 and C2 and an inductor L2 so that ZVS (zero voltage switching) is established so that the switching loss due to the Ids current and the Vds voltage product is minimized.
  • Resonant switching conditions are set.
  • an AC voltage with the RTN voltage as an axis is output as the output voltage Vout.
  • the voltage amplitude of the output voltage Vout can be set to an arbitrary value as shown in FIG.
  • the power element Q1 is driven by inputting a pulsed voltage signal output from the high-frequency pulse drive circuit 1 that receives an arbitrary pulsed voltage signal from the variable pulse signal generation circuit 2 to the G terminal of the power element Q1. Is going on. At this time, the drive frequency of the power element Q1 becomes the operating frequency of the resonance type high frequency power supply device and is determined by the setting of the oscillator circuit in the variable pulse signal generation circuit 2.
  • variable inductor L2 that can set the voltage amplitude of the output voltage Vout to an arbitrary value by adjusting the L value is provided.
  • Capacitors are not required, and the device can be reduced in size and cost in operation at a high frequency exceeding 2 MHz. Further, it is excellent in temperature change and mechanical environment resistance, and stable performance can be maintained.
  • FIG. 1 shows the case where the high-frequency pulse drive circuit 1, the variable pulse signal generation circuit 2, and the bias power supply circuit 3 are used to drive the power element Q1, but the present invention is not limited to this.
  • the transformer type drive circuit 101, the RF power amplifier circuit 102, and the multi-output type power supply circuit 103 may be used.
  • the present invention shows a circuit in the case where the power element Q1 has a single configuration, but the present invention is not limited to this.
  • the present invention also applies to a case where the power element Q1 has a push-pull configuration. Is applicable.
  • the resonance condition variable LC circuit 4 that makes the resonance condition variable may be used.
  • a resonance condition variable circuit 5 that varies the resonance condition by the resonance circuit elements (capacitors C1, C2 and inductor L2) may be provided separately.
  • the present invention can be modified with any component of the embodiment or omitted with any component of the embodiment.
  • the resonance type high frequency power supply device can reduce the size and cost of the device by adjusting the amplitude of the output voltage without using a variable capacitor, and is excellent in temperature change and mechanical environment resistance and stable.
  • the high-frequency operation exceeding 2 MHz is possible, and it is suitable for use in a resonance type high-frequency power supply device that performs power transmission at a high frequency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

 2MHzを超える高周波数でスイッチング動作を行うパワー素子を備えた共振型高周波電源装置であって、装置出力電圧の振幅調整を行う可変型のインダクタを備えた。

Description

共振型高周波電源装置
 この発明は、高周波数で電力伝送を行う共振型高周波電源装置に関するものである。
 図8に示す従来の共振型高周波電源装置では、出力電圧Voutの振幅調整は可変コンデンサC2の容量調整で行うように構成している(例えば非特許文献1参照)。
トランジスタ技術2005年2月号13章
 しかしながら、非特許文献1に開示された従来技術では、出力電圧Voutの振幅調整を行うために可変コンデンサC2を用いており、部品が大型化し、さらにはコスト増加の原因となるという課題がある。この可変コンデンサは、温度変化による容量値変動が大きく、また、機械的衝撃に弱いなど、安定した性能を維持することが難しいという課題もある。
 この発明は、上記のような課題を解決するためになされたもので、可変コンデンサを用いずに出力電圧の振幅調整を行うことで、装置の小型化、低コスト化を図り、また、温度変化及び機械環境耐性に優れ、安定した性能を維持することができ、2MHzを超える高周波数の動作が可能な共振型高周波電源装置を提供することを目的としている。
 この発明に係る共振型高周波電源装置は、2MHzを超える高周波数でスイッチング動作を行うパワー素子を備えた共振型高周波電源装置であって、装置出力電圧の振幅調整を行う可変型のインダクタを備えたものである。
 この発明によれば、上記のように構成したので、可変コンデンサを用いずに出力電圧の振幅調整を行うことで、装置の小型化、低コスト化を図り、また、温度変化及び機械環境耐性に優れ、安定した性能を維持することができ、2MHzを超える高周波数の動作が可能となる。
この発明の実施の形態1に係る共振型高周波電源装置の構成を示す図である(パワー素子がシングル構成の場合)。 この発明の実施の形態1に係る共振型高周波電源装置の可変型のインダクタの構成を示す図である。 この発明の実施の形態1に係る共振型高周波電源装置の可変型のインダクタの別の構成を示す図である。 この発明の実施の形態1に係る共振型高周波電源装置によるVout波形を示す図である。 この発明の実施の形態1に係る共振型高周波電源装置の別の構成を示す図である(パワー素子がプッシュプル構成)。 この発明の実施の形態1に係る共振型高周波電源装置の別の構成を示す図である(共振条件可変型LC回路を設けた場合)。 この発明の実施の形態1に係る共振型高周波電源装置の別の構成を示す図である(共振条件可変回路を設けた場合)。 従来の共振型高周波電源装置の構成を示す図である。
 以下、この発明の実施の形態について図面を参照しながら詳細に説明する。
実施の形態1.
 図1はこの発明の実施の形態1に係る共振型高周波電源装置の構成を示す図である。なお図1では、パワー素子Q1がシングル構成の場合の回路を示している。
 共振型高周波電源装置は、図1に示すように、パワー素子Q1、共振回路素子(コンデンサC1,C2及びインダクタL2)、インダクタL1、高周波パルスドライブ回路1、可変型パルス信号発生回路2及びバイアス用電源回路3から構成されている。
 なお、共振型送信アンテナ(電力伝送用送信アンテナ)10は、LC共振特性を持つ電力伝送用の共振型アンテナである(非接触型のみに限定されない)。この共振型送信アンテナ10は、磁界共鳴型、電界共鳴型、電磁誘導型のいずれであってもよい。
 パワー素子Q1は、入力の直流電圧Vinを交流に変換するためにスイッチング動作を行うスイッチング素子である。このパワー素子Q1としては、RF用のFETに限らず、例えばSi-MOSFETやSiC-MOSFET、GaN-FETなどの素子を用いることが可能である。
 共振回路素子(コンデンサC1,C2及びインダクタL2)は、パワー素子Q1のスイッチング動作を共振スイッチングさせるための素子である。このコンデンサC1,C2及びインダクタL2からなる共振回路素子により、共振型送信アンテナ10との間で共振条件を合わせることができる。また、インダクタL2はインダクタンス値(L値)可変型の素子である。そして、インダクタL2のL値を可変することで、共振型高周波電源装置の出力電圧Voutの電圧振幅を任意の値に設定することができる。
 ここで、可変型のインダクタL2の構成としては、例えば図2,3に示すものが挙げられる。
 図2はコイル21の磁路長(L値)を手動又は自動で可変するタイプの可変型のインダクタL2を示している。なお図2において、コイル21のターン数は同じである。図2(a),(b)は、磁路長調整機構(手動、又はモータにより自動で可変させる機構)22によりコイル21の磁路長(L値)を可変する場合を示し、図2(c)は、L値制御電源23により電磁誘導でL値を可変する場合を示している。
 また、図3はコイル21の投影面に磁性体24を設置するタイプの可変型のインダクタL2を示している。図3に示すコイル21は、プリント基板のパターンによりスパイラル状に形成される。この可変型のインダクタL2では、コイル21の投影面を覆う面積を変更することでL値を調整することができる。
 インダクタL1は、入力の直流電圧Vinのエネルギーを、パワー素子Q1のスイッチング動作ごとに一時的に保持する働きをするものである。
 高周波パルスドライブ回路1は、パワー素子Q1のG端子に2MHzを超える高周波数のパルス状の電圧信号を送り、パワー素子Q1を駆動させる回路である。この高周波パルスドライブ回路1は、出力部をFET素子などでトーテンポール回路構成にして高速のON/OFF出力ができるように構成した回路である。
 可変型パルス信号発生回路2は、高周波パルスドライブ回路1にロジック信号などの2MHzを超える高周波数のパルス状の電圧信号を送り、高周波パルスドライブ回路1を駆動させる回路である。この可変型パルス信号発生回路2は、周波数設定用のオシレータとフリップフロップやインバータなどのロジックICで構成され、パルス幅の変更や反転パルス出力などの機能を持つ。
 バイアス用電源回路3は、可変型パルス信号発生回路2及び高周波パルスドライブ回路1への駆動電力の供給を行うものである。
 次に、上記のように構成された共振型高周波電源装置の動作について説明する。
 まず、入力の直流電圧VinはインダクタL1を通してパワー素子Q1のD端子に印加される。そして、パワー素子Q1は、その電圧をON/OFFのスイッチング動作により正電圧の交流状電圧へ変換する。この変換動作のときに、インダクタL1は一時的にエネルギーを保持する働きをして、直流を交流へ電力変換する手助けを行う。
 ここで、パワー素子Q1のスイッチング動作は、Ids電流とVds電圧積によるスイッチング損失が最も小さくなるように、ZVS(ゼロボルテージスイッチング)が成立するようコンデンサC1,C2及びインダクタL2からなる共振回路素子で共振スイッチング条件が設定されている。この共振スイッチング動作により、出力電圧VoutにはRTN電圧を軸にした交流電圧が出力される。
 また、可変型のインダクタL2のL値を調整することで、図4に示すように、出力電圧Voutの電圧振幅を任意の値に設定することができる。
 パワー素子Q1の駆動は、可変型パルス信号発生回路2からの任意のパルス状の電圧信号を受けた高周波パルスドライブ回路1が出力する、パルス状の電圧信号をパワー素子Q1のG端子へ入力することで行っている。このとき、パワー素子Q1の駆動周波数は共振型高周波電源装置の動作周波数となり、可変型パルス信号発生回路2内部のオシレータ回路の設定により決まる。
 以上のように、この実施の形態1によれば、L値を調整することで出力電圧Voutの電圧振幅を任意の値に設定することができる可変型のインダクタL2を備えるよう構成したので、可変コンデンサが不要となり、2MHzを超える高周波数の動作において、装置の小型化、低コスト化を図ることができ、また、温度変化及び機械環境耐性に優れ、安定した性能を維持することができる。
 また図1では、パワー素子Q1を駆動させるため、高周波パルスドライブ回路1、可変型パルス信号発生回路2及びバイアス用電源回路3を用いた場合について示したが、これに限るものではなく、例えば従来技術のように、トランス型ドライブ回路101、RFパワーアンプ回路102及び多出力型電源回路103を用いるようにしてもよい。
 また図1では、パワー素子Q1がシングル構成の場合の回路について示したが、これに限るものではなく、例えば図5に示すように、パワー素子Q1がプッシュプル構成の場合にも同様に本発明を適用可能である。
 また図1では、共振回路素子(コンデンサC1,C2及びインダクタL2)の定数が固定であり、共振条件が固定であるとして説明を行ったが、これに限るものではなく、例えば図6に示すように、共振条件を可変とする共振条件可変型LC回路4を用いてもよい。また、例えば図7に示すように、上記共振回路素子(コンデンサC1,C2及びインダクタL2)による共振条件を可変させる共振条件可変回路5を別途設けるようにしてもよい。
 また、本願発明はその発明の範囲内において、実施の形態の任意の構成要素の変形、もしくは実施の形態の任意の構成要素の省略が可能である。
 この発明に係る共振型高周波電源装置は、可変コンデンサを用いずに出力電圧の振幅調整を行うことで、装置の小型化、低コスト化を図り、また、温度変化及び機械環境耐性に優れ、安定した性能を維持することができ、2MHzを超える高周波数の動作が可能となり、高周波数で電力伝送を行う共振型高周波電源装置等に用いるのに適している。
 1 高周波パルスドライブ回路、2 可変型パルス信号発生回路、3 バイアス用電源回路、4 共振条件可変型LC回路、5 共振条件可変回路、10 共振型送信アンテナ(電力伝送用送信アンテナ)、21 コイル、22 磁路長調整機構、23 L値制御電源、24 磁性体。

Claims (12)

  1.  2MHzを超える高周波数でスイッチング動作を行うパワー素子を備えた共振型高周波電源装置であって、
     装置出力電圧の振幅調整を行う可変型のインダクタを備えた
     ことを特徴とする共振型高周波電源装置。
  2.  前記パワー素子は、RF(Radio Frequency)用のFET(Field Effect Transistor)以外のFETである
     ことを特徴とする請求項1記載の共振型高周波電源装置。
  3.  前記パワー素子は、プッシュプル構成又はシングル構成である
     ことを特徴とする請求項1記載の共振型高周波電源装置。
  4.  磁界共鳴による電力伝送用送信アンテナとの間で共振条件を合わせるコンデンサ及びインダクタからなる共振回路素子を備えた
     ことを特徴とする請求項1記載の共振型高周波電源装置。
  5.  電界共鳴による電力伝送用送信アンテナとの間で共振条件を合わせるコンデンサ及びインダクタからなる共振回路素子を備えた
     ことを特徴とする請求項1記載の共振型高周波電源装置。
  6.  電磁誘導による電力伝送用送信アンテナとの間で共振条件を合わせるコンデンサ及びインダクタからなる共振回路素子を備えた
     ことを特徴とする請求項1記載の共振型高周波電源装置。
  7.  前記共振回路素子は共振条件を可変とする
     ことを特徴とする請求項4記載の共振型高周波電源装置。
  8.  前記共振回路素子は共振条件を可変とする
     ことを特徴とする請求項5記載の共振型高周波電源装置。
  9.  前記共振回路素子は共振条件を可変とする
     ことを特徴とする請求項6記載の共振型高周波電源装置。
  10.  前記共振回路素子の共振条件を可変とする共振条件可変回路を備えた
     ことを特徴とする請求項4記載の共振型高周波電源装置。
  11.  前記共振回路素子の共振条件を可変とする共振条件可変回路を備えた
     ことを特徴とする請求項5記載の共振型高周波電源装置。
  12.  前記共振回路素子の共振条件を可変とする共振条件可変回路を備えた
     ことを特徴とする請求項6記載の共振型高周波電源装置。
PCT/JP2013/079549 2013-10-31 2013-10-31 共振型高周波電源装置 WO2015063920A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015544718A JPWO2015063920A1 (ja) 2013-10-31 2013-10-31 共振型高周波電源装置
PCT/JP2013/079549 WO2015063920A1 (ja) 2013-10-31 2013-10-31 共振型高周波電源装置
US15/030,949 US9871416B2 (en) 2013-10-31 2013-10-31 Resonant type high frequency power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/079549 WO2015063920A1 (ja) 2013-10-31 2013-10-31 共振型高周波電源装置

Publications (1)

Publication Number Publication Date
WO2015063920A1 true WO2015063920A1 (ja) 2015-05-07

Family

ID=53003564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/079549 WO2015063920A1 (ja) 2013-10-31 2013-10-31 共振型高周波電源装置

Country Status (3)

Country Link
US (1) US9871416B2 (ja)
JP (1) JPWO2015063920A1 (ja)
WO (1) WO2015063920A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108781002A (zh) * 2015-10-22 2018-11-09 韦特里西提公司 无线能量传输系统中的动态调谐

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160077196A (ko) * 2013-10-31 2016-07-01 미쓰비시 덴끼 엔지니어링 가부시키가이샤 공진형 고주파 전원 장치
US11569690B2 (en) * 2019-01-24 2023-01-31 Etherdyne Technologies, Inc. Series distributed radio frequency (RF) generator for use in wireless power transfer
FR3099313B1 (fr) * 2019-07-25 2022-12-16 Valeo Equip Electr Moteur Dispositif de transmission de puissance sans contact par couplage inductif à résonance pour recharger un véhicule automobile
JP7341249B2 (ja) 2019-03-15 2023-09-08 ヴァレオ エキプマン エレクトリク モトゥール 自動車両を再充電するために共振誘導結合を介して非接触で電力を伝送する装置
FR3093872A1 (fr) * 2019-03-15 2020-09-18 Valeo Equipements Electriques Moteur Dispositif de transmission de puissance sans contact par couplage inductif a résonance pour recharger un véhicule automobile
KR20210127495A (ko) * 2020-04-14 2021-10-22 엘지이노텍 주식회사 영 전압 스위칭 회로 및 이를 포함하는 컨버터
US20240056036A1 (en) * 2022-08-15 2024-02-15 Spreadtrum Communications Usa Inc. Tunable matching network for pushpull power amplifier

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011078299A (ja) * 2009-09-03 2011-04-14 Tdk Corp ワイヤレス給電装置およびワイヤレス電力伝送システム
JP2013027129A (ja) * 2011-07-20 2013-02-04 Toyota Industries Corp 給電側設備及び共鳴型非接触給電システム
WO2013080285A1 (ja) * 2011-11-28 2013-06-06 富士通株式会社 非接触型充電装置および非接触型充電方法
WO2013133028A1 (ja) * 2012-03-06 2013-09-12 株式会社村田製作所 電力伝送システム

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5821792B2 (ja) 1978-08-02 1983-05-04 松下電器産業株式会社 誘導加熱装置
JPS5517262A (en) 1978-07-24 1980-02-06 Hitachi Ltd Intermittent dc stabilizing power supply device
JPS6011418U (ja) * 1983-07-05 1985-01-25 パイオニア株式会社 可変インダクタンス装置
JPS60177596A (ja) 1984-02-23 1985-09-11 三洋電機株式会社 誘導加熱調理器
JPH07107393A (ja) 1993-10-06 1995-04-21 Hewtec:Kk 固体撮像装置
JP2673876B2 (ja) * 1994-12-05 1997-11-05 ティーディーケイ株式会社 電磁誘導コイルの駆動回路及び該駆動回路を用いた充電装置
JPH08264327A (ja) * 1995-03-17 1996-10-11 Kokusai Electric Co Ltd ソレノイドコイル形可変インダクタ
US6191724B1 (en) 1999-01-28 2001-02-20 Mcewan Thomas E. Short pulse microwave transceiver
JP2004103840A (ja) 2002-09-10 2004-04-02 Tdk Corp 被覆シート、該シートを用いたトリプレート線路、該シートを用いたコンピュータ用信号バス及び該シートを用いた電子回路被覆構造
JP4192775B2 (ja) * 2003-12-05 2008-12-10 株式会社ダイフク 無接触給電設備
KR101107823B1 (ko) * 2004-11-23 2012-02-08 센소매틱 일렉트로닉스, 엘엘씨 통합된 eas/rfid 장치 및 이를 비활성화하는 장치
JP2008091433A (ja) 2006-09-29 2008-04-17 Tdk Corp 積層型電子部品及びその製造方法
JP4843569B2 (ja) * 2007-06-28 2011-12-21 株式会社ダイヘン インダクタ
US8532724B2 (en) * 2008-09-17 2013-09-10 Qualcomm Incorporated Transmitters for wireless power transmission
JP2010178608A (ja) 2009-02-02 2010-08-12 Lenovo Singapore Pte Ltd Dc/dcコンバータおよび携帯式コンピュータ
US20110049997A1 (en) 2009-09-03 2011-03-03 Tdk Corporation Wireless power feeder and wireless power transmission system
WO2012086051A1 (ja) * 2010-12-24 2012-06-28 トヨタ自動車株式会社 非接触給電システム、車両、給電設備および非接触給電システムの制御方法
JP2012235050A (ja) 2011-05-09 2012-11-29 Nec Tokin Corp アンテナ、送電装置および非接触電力伝送システム
JP5998465B2 (ja) * 2011-12-07 2016-09-28 株式会社Ihi ピッチ可変コイル及び共振回路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011078299A (ja) * 2009-09-03 2011-04-14 Tdk Corp ワイヤレス給電装置およびワイヤレス電力伝送システム
JP2013027129A (ja) * 2011-07-20 2013-02-04 Toyota Industries Corp 給電側設備及び共鳴型非接触給電システム
WO2013080285A1 (ja) * 2011-11-28 2013-06-06 富士通株式会社 非接触型充電装置および非接触型充電方法
WO2013133028A1 (ja) * 2012-03-06 2013-09-12 株式会社村田製作所 電力伝送システム

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108781002A (zh) * 2015-10-22 2018-11-09 韦特里西提公司 无线能量传输系统中的动态调谐
US10141788B2 (en) 2015-10-22 2018-11-27 Witricity Corporation Dynamic tuning in wireless energy transfer systems
US10651689B2 (en) 2015-10-22 2020-05-12 Witricity Corporation Dynamic tuning in wireless energy transfer systems
US10651688B2 (en) 2015-10-22 2020-05-12 Witricity Corporation Dynamic tuning in wireless energy transfer systems
EP3365958B1 (en) * 2015-10-22 2020-05-27 WiTricity Corporation Dynamic tuning in wireless energy transfer systems
CN108781002B (zh) * 2015-10-22 2021-07-06 韦特里西提公司 无线能量传输系统中的动态调谐

Also Published As

Publication number Publication date
US9871416B2 (en) 2018-01-16
US20160254702A1 (en) 2016-09-01
JPWO2015063920A1 (ja) 2017-03-09

Similar Documents

Publication Publication Date Title
WO2015063920A1 (ja) 共振型高周波電源装置
EP3001551B1 (en) Non-contact power supply device
JP6177351B2 (ja) 高周波電源用自動整合回路
WO2015097805A1 (ja) 高周波整流回路用自動整合回路
JP6305439B2 (ja) 共振型電力伝送装置
JP6305438B2 (ja) 共振型電力伝送装置
JP5832702B1 (ja) 共振型電力伝送装置
WO2015063919A1 (ja) 共振型高周波電源装置及び共振型高周波電源装置用スイッチング回路
JP6545104B2 (ja) 共振型電力伝送装置
JP6091643B2 (ja) 共振型高周波電源装置及び共振型高周波電源装置用スイッチング回路
Kiran et al. Analysis and experimental verification of three-coil inductive resonant coupled wireless power transfer system
Jamal et al. The experimental analysis of Class E converter circuit for inductive power transfer applications
WO2015063921A1 (ja) 共振型高周波電源装置
WO2015063916A1 (ja) 共振型高周波電源装置及び共振型高周波電源装置用スイッチング回路
JP5207390B2 (ja) Em級増幅器及びこれを備えた機器
JP2013106490A (ja) ワイヤレス給電装置およびワイヤレス給電システムならびに電力信号の送信方法
KR20230166712A (ko) 유전 가열 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13896550

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015544718

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15030949

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13896550

Country of ref document: EP

Kind code of ref document: A1