[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015059995A1 - タッチセンサ付き表示装置 - Google Patents

タッチセンサ付き表示装置 Download PDF

Info

Publication number
WO2015059995A1
WO2015059995A1 PCT/JP2014/072048 JP2014072048W WO2015059995A1 WO 2015059995 A1 WO2015059995 A1 WO 2015059995A1 JP 2014072048 W JP2014072048 W JP 2014072048W WO 2015059995 A1 WO2015059995 A1 WO 2015059995A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch sensor
display device
electrode
liquid crystal
sensor according
Prior art date
Application number
PCT/JP2014/072048
Other languages
English (en)
French (fr)
Inventor
憲史 多田
小川 裕之
杉田 靖博
山岸 慎治
ジョン ムジラネザ
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201480058034.4A priority Critical patent/CN105765498B/zh
Priority to US15/030,927 priority patent/US9864457B2/en
Publication of WO2015059995A1 publication Critical patent/WO2015059995A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134336Matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136209Light shielding layers, e.g. black matrix, incorporated in the active matrix substrate, e.g. structurally associated with the switching element
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04111Cross over in capacitive digitiser, i.e. details of structures for connecting electrodes of the sensing pattern where the connections cross each other, e.g. bridge structures comprising an insulating layer, or vias through substrate

Definitions

  • the present invention relates to a display device with a touch sensor, and more particularly to a display device with a touch sensor of a capacitive type.
  • a display device having a capacitive touch panel function capable of intuitive operation and capable of multipoint detection has attracted attention.
  • the thickness of the display device is increased by the touch panel substrate, or the display quality is deteriorated due to a decrease in transmittance due to the touch panel substrate.
  • substrate becomes separate from a display apparatus, and there also exists a subject that a connection is difficult.
  • an in-cell type touch panel that incorporates a touch sensor function in the liquid crystal display device itself has been studied, but its introduction has not progressed. This is because the touch sensor electrode is provided inside the liquid crystal display device, which complicates the manufacturing method of the display device, the touch sensor electrode affects the display quality, and the drive frequency is not increased and the enlargement is limited. This is because there are issues such as.
  • Patent Document 1 discloses a configuration in which a common electrode is also used as a drive electrode of a touch sensor and a detection electrode is formed on the side opposite to the liquid crystal layer of the counter substrate in a liquid crystal display device.
  • the common drive signal applied to the common electrode determines the display voltage of each pixel together with the pixel voltage applied to the pixel electrode, but is also used as a drive signal for the touch sensor.
  • the common electrode is driven by a common drive signal for image display, and the common drive signal is also used as a drive signal for the touch sensor, so that the drive signal for the touch sensor is limited. For example, it is difficult to realize a method of driving a plurality of drive electrodes simultaneously using orthogonal code signals.
  • the present invention has been made to solve at least one of the above-described problems, and an object of the present invention is to provide a high-accuracy display device with a touch sensor that suppresses deterioration in display quality caused by touch sensor electrodes. .
  • a display device with a touch sensor is a display device with a touch sensor that includes a pixel substrate having a plurality of pixel electrodes and a counter substrate facing the pixel substrate, the display device with a touch sensor. Further includes a black matrix extending in a first direction and a second direction different from the first direction, and a touch sensor electrode extending in the first direction, and the counter substrate from a direction perpendicular to a planar direction of the counter substrate In plan view, the width of the line extending in the first direction of the black matrix is wider than the width of the line extending in the second direction of the black matrix in the first direction.
  • the width of the line extending in the first direction of the touch sensor electrode in the second direction is the second direction of the line extending in the first direction of the black matrix. Narrower than the width, and the line extending in the first direction of the touch sensor electrode, the line extending in the first direction of the black matrix overlap.
  • the line extending in the first direction of the touch sensor electrode is located inside both ends of the second direction of the line extending in the first direction of the black matrix. It may overlap.
  • the touch sensor electrode may be covered with a transparent resin.
  • the touch sensor electrode may be a transparent electrode, and a sheet resistance value of the touch sensor electrode may be 1 to 100 ⁇ / ⁇ .
  • an electrically floating dummy electrode may be provided in a pixel region where the touch sensor electrode is not provided among the plurality of pixel portions of the counter substrate.
  • the touch sensor electrode may be provided on the counter substrate and used as a drive electrode of the touch sensor, and a common electrode provided on the pixel substrate may be used as a detection electrode of the touch sensor.
  • the common electrode may be separated on a signal wiring provided on the pixel substrate.
  • the circuit further includes an integration circuit to which a signal corresponding to the charge amount of the common electrode is input, and the reference voltage of the integration circuit may be the same as the voltage applied to the common electrode during an image writing period. Good.
  • the integration circuit may include a single-ended operational amplifier.
  • the integration circuit may include a fully differential operational amplifier, and the fully differential operational amplifier may receive a signal corresponding to the charge amount of the common electrode adjacent to each other.
  • an auxiliary wiring electrically connected to the common electrode may be provided so as to overlap with a signal wiring provided on the pixel substrate.
  • the display device with a touch sensor may be a horizontal electric field type liquid crystal display device.
  • the display device with a touch sensor may be a liquid crystal display device that drives a negative type liquid crystal by a lateral electric field method.
  • the drive electrode wiring of the touch sensor and the detection electrode wiring of the touch sensor may be provided on the pixel substrate.
  • an auxiliary wiring electrically connected to the common electrode is provided so as to overlap a signal wiring provided on the pixel substrate, and the driving electrode wiring and the detection electrode wiring are It may be provided in the same layer as the auxiliary wiring.
  • the drive electrode wiring may be provided so as to overlap a gate driver provided on the pixel substrate.
  • the detection electrode wiring may be provided so as to overlap a signal line connection wiring provided on the pixel substrate.
  • a seal portion that bonds the pixel substrate and the counter substrate includes a conductive material, and the drive electrode wiring provided on the pixel substrate; and the drive electrode provided on the counter substrate; May be electrically connected through the seal portion.
  • an image display terminal and a touch sensor driving terminal may be provided at one end of the pixel substrate.
  • the touch sensor electrode may be one of a metal electrode and a laminate of a transparent electrode and a metal layer.
  • the touch position detection operation may be synchronized with the image display operation, and the touch position detection operation may be performed during a period when there is no image writing.
  • the touch position detection operation may be performed using an orthogonal code signal formed in an M sequence.
  • the touch sensor electrode is provided on the counter substrate, is used as a drive electrode of the touch sensor, and is located on the touch surface side of the counter substrate with respect to the drive electrode of the touch sensor.
  • a detection electrode may be provided.
  • the display device with a touch sensor may be a horizontal electric field type liquid crystal display device.
  • the display device with a touch sensor may be a liquid crystal display device that drives a negative type liquid crystal by a lateral electric field method.
  • the display device with a touch sensor may be a liquid crystal display device that drives a positive type liquid crystal by a horizontal electric field method.
  • the display device with a touch sensor may be a liquid crystal display device that drives a negative type liquid crystal by a vertical electric field method.
  • a highly accurate display device with a touch sensor that suppresses deterioration in display quality caused by touch sensor electrodes is provided.
  • FIG. 1 It is a figure which shows the display apparatus with a touch sensor by embodiment of this invention. It is a figure explaining the method to detect the touch by embodiment of this invention.
  • A is a figure which shows the principal part of the TFT substrate by embodiment of this invention
  • (b) is a figure which shows the principal part of the counter substrate by embodiment of this invention. It is a figure which shows the structure which bonded together the TFT substrate and counter substrate by embodiment of this invention.
  • (A) is sectional drawing corresponding to the AA 'line shown in FIG. 4
  • (b) is sectional drawing corresponding to the BB' line shown in FIG.
  • (A) is a figure which shows the principal part of the opposing board
  • (b) is a figure which shows the touch sensor basic pattern by embodiment of this invention.
  • (A) is a figure which shows the principal part of the TFT substrate by embodiment of this invention
  • (b) is a figure which shows the TFT substrate by embodiment of this invention.
  • (A) is a figure which shows the principal part of the structure which bonded the counter substrate and TFT substrate by embodiment of this invention
  • (b) is the figure which shows the structure which bonded the counter substrate and TFT substrate by embodiment of this invention. It is.
  • (A) And (b) is a figure which shows the behavior of the liquid crystal at the time of using the positive type liquid crystal by embodiment of this invention.
  • (A) And (b) is a figure which shows the behavior of the liquid crystal at the time of using the negative type liquid crystal by embodiment of this invention.
  • (A) is a figure which shows the touch detection circuit by embodiment of this invention
  • (b) is a figure which shows the drive timing of each electrode and switching element by embodiment of this invention.
  • (A) is a figure which shows the principal part of the opposing board
  • (b) is a figure which shows the touch sensor basic pattern by embodiment of this invention.
  • (A) is a figure which shows the TFT substrate by embodiment of this invention
  • (b) is a figure which shows the structure which bonded the counter substrate and TFT substrate by embodiment of this invention.
  • (A) And (b) is a figure which shows the display apparatus with a touch sensor by embodiment of this invention. It is a figure which shows the TFT substrate by embodiment of this invention.
  • (A) is a cross-sectional view corresponding to the AA 'line shown in FIG. 17, and (b) is a cross-sectional view corresponding to the BB' line shown in FIG. It is a figure which shows the TFT substrate by embodiment of this invention.
  • (A) is a cross-sectional view corresponding to the AA 'line shown in FIG.
  • FIG. 19 is a cross-sectional view corresponding to the BB' line shown in FIG.
  • (A) is a figure which shows the counter substrate by embodiment of this invention
  • (b) is a figure which shows the principal part of the counter substrate by embodiment of this invention.
  • (A) is a figure which shows the TFT substrate by embodiment of this invention
  • (b) is a figure which shows the structure which bonded the opposing board
  • (A) is a figure which shows the principal part of the structure which bonded the counter substrate and TFT substrate by embodiment of this invention
  • (b) is the figure which shows the structure which bonded the counter substrate and TFT substrate by embodiment of this invention. It is.
  • (A) is a figure which shows the board
  • (b) is a figure which shows the structure which bonded together the board
  • (A) And (b) is a figure which shows the display apparatus with a touch sensor using the negative type liquid crystal by embodiment of this invention.
  • (A) And (b) is a figure which shows the display apparatus with a touch sensor using the positive type liquid crystal by embodiment of this invention.
  • (A) And (b) is a figure which shows the display apparatus with a touch sensor using the negative type liquid crystal in the vertical electric field mode by embodiment of this invention. It is a figure which shows the display apparatus with a touch sensor using the negative type liquid crystal in the vertical electric field mode by embodiment of this invention.
  • (A) is a figure which shows the drive electrode provided with the width
  • (b) is the same as the magnitude
  • a display device with a touch sensor according to an embodiment of the present invention will be described with reference to the drawings. Note that components having substantially the same function are denoted by common reference numerals and description thereof may be omitted.
  • a TFT type LCD is exemplified as the display device, but the display panel is not limited to the TFT type LCD, and has a display medium layer other than the liquid crystal layer as a display medium layer, for example, an organic EL display panel or an electrophoretic display panel Needless to say, various display panels are used.
  • the present invention can be applied to each of a vertical electric field mode liquid crystal display device and a horizontal electric field mode liquid crystal display device.
  • FIG. 1 is a diagram illustrating a display device 100 with a touch sensor according to an embodiment of the present invention.
  • the display device with a touch sensor 100 includes a TFT substrate (pixel substrate) 20, a counter substrate 10 disposed on the viewer side of the TFT substrate 20, and a liquid crystal layer 30 provided between the TFT substrate 20 and the counter substrate 10.
  • TFT substrate pixel substrate
  • counter substrate 10 disposed on the viewer side of the TFT substrate
  • liquid crystal layer 30 provided between the TFT substrate 20 and the counter substrate 10.
  • the TFT substrate 20 includes a glass substrate 21 and a pixel electrode 2 and a common electrode 4 for applying a voltage to the liquid crystal layer 30.
  • An insulating layer 25 is provided between the glass substrate 21 and the common electrode 4, and an insulating layer 23 is provided between the common electrode 4 and the pixel electrode 2.
  • the common electrode 4 is also used as a detection electrode of the touch sensor.
  • the counter substrate 10 includes a glass substrate 11, a color filter layer 13, and a resin layer 15.
  • a drive electrode 6 (FIG. 3) of the touch sensor is provided at a position on the liquid crystal layer 30 side of the color filter layer 13.
  • the display device with a touch sensor 100 supplies a gate driver 31 that supplies a scanning signal to the TFT element provided in the pixel region via the scanning signal line GL, and supplies a pixel signal to the TFT element via the pixel signal line SL.
  • a configuration in which at least one of these circuits 31, 33, 35, and 37 is not provided, and a configuration in which the TFT substrate 20 and the counter substrate 10 are bonded to each other through the liquid crystal layer 30 is indicated. It may be called the display device 100 with a touch sensor.
  • the touch sensor includes a drive electrode 6 provided on the counter substrate 10 and a detection electrode 4 provided on the TFT substrate 20.
  • the counter substrate 10 is provided with a plurality of drive electrodes 6 extending in the left-right direction in the figure.
  • the drive signal V1 is sequentially supplied from the drive electrode driver 35 to each drive electrode 6, and the scan drive is sequentially performed in a time division manner.
  • Each of the plurality of detection electrodes 4 extends in a direction crossing the drive electrode 6 and is connected to the touch detection unit 37. Capacitance is formed where the drive electrode 6 and the detection electrode 4 intersect each other.
  • the touch detection signal Vdet is output from the detection electrode 4 to the touch detection unit 37, and touch detection is performed.
  • the electrode patterns intersecting each other constitute a capacitive touch sensor in a matrix, and by scanning over the entire touch detection surface, it is possible to detect the presence of touch and specify the coordinates of the touch position. ing.
  • FIG. 3A is a diagram showing the main part of the TFT substrate 20, and FIG. 3B is a diagram showing the main part of the counter substrate 10.
  • FIG. 4 shows a state in which the TFT substrate 20 and the counter substrate 10 are bonded together.
  • 5A is a cross-sectional view corresponding to the line AA ′ shown in FIG. 4
  • FIG. 5B is a cross-sectional view corresponding to the line BB ′ shown in FIG. 4.
  • the drive electrode 6 and the detection electrode 4 are respectively formed on the counter substrate 10 and the TFT substrate 20 on the liquid crystal layer 30 side.
  • the TFT substrate 20 is formed so that the scanning signal line GL for inputting a liquid crystal display signal to the pixel electrode 2 and the pixel signal line SL are orthogonal to each other, and each pixel electrode between them.
  • a TFT serving as a switch is formed in 2.
  • the TFT is an inverted stagger type TFT, and the gate electrode is positioned closer to the glass substrate than the active layer, but a stagger type TFT may be used.
  • the common electrode 4 is formed in a region including each pixel electrode 2, and is divided by a slit 4b on the pixel signal line SL as shown in FIG.
  • the common electrode 4 also functions as a detection electrode of the touch sensor.
  • the common electrode 4 is formed between the pixel electrode 2 and the glass substrate 21.
  • the pixel electrode 2 and the common electrode 4 are each formed of a transparent electrode.
  • a black matrix 8 serving as a light shielding area is formed on the counter substrate 10 on the liquid crystal layer 30 side to divide unit cells for liquid crystal display.
  • color filters 13C such as R, G, and B are formed.
  • the common electrode 4 is provided with an auxiliary wiring 4a.
  • the arrangement position of the auxiliary wiring 4a may be on the liquid crystal layer side of the common electrode 4 or on the opposite side.
  • the drive electrode 6 is formed of a transparent electrode.
  • the sheet resistance of the transparent electrode forming the drive electrode 6 is, for example, 1 to 100 ⁇ / ⁇ .
  • the drive electrode 6 is formed so as to be included in a thick line in the horizontal direction (x direction) of the black matrix 8.
  • the black matrix 8 extends in the x direction and the y direction, and the width of the line extending in the x direction of the black matrix 8 in the y direction is wider than the width of the line extending in the y direction of the black matrix 8 in the x direction. Yes.
  • the width W1 in the y direction of the line extending in the x direction of the drive electrode 6 is a black matrix.
  • the line extending in the x direction of the line 8 is narrower than the width W2 in the y direction, and the line extending in the x direction of the drive electrode 6 and the line extending in the x direction of the black matrix 8 overlap. More specifically, in a plan view, the line extending in the x direction of the drive electrode 6 overlaps with the inner side of both ends of the black matrix 8 extending in the x direction in the y direction. It is completely covered by the black matrix 8.
  • the driving electrode 6 is arranged under the thick black matrix pattern in the scanning line direction of the counter substrate 10 so as to be thinner than the black matrix pattern. By doing so, it is possible to form the touch sensor electrode pattern on the counter substrate where high-definition patterning is difficult. Further, the influence of display quality due to the touch sensor electrode can be eliminated. Compared with the conventional method, in the embodiment of the present invention, the light passing through the pixel region does not pass through the drive electrode formed of the transparent conductive film, so that the display quality can be improved.
  • the drive electrode 6 is disposed under the black matrix 8
  • the drive electrode 6 formed on the counter substrate 10 can be formed of a material having a low resistance value, and the apparatus can be increased in size.
  • the drive electrode 6 it is possible to form the drive electrode 6 with a metal wiring such as aluminum that has a low resistance value but shields light, and the size of the device can be increased.
  • the drive electrode 6 may be formed so as to overlap a line extending in the y direction of the black matrix 8.
  • the common electrode on the TFT substrate side is used as the detection electrode.
  • all the electrodes necessary for the touch sensor operation can be arranged in the liquid crystal display device, and the liquid crystal display signal and the touch sensor signal can be connected at one mounting portion.
  • the common electrode is patterned in a direction orthogonal to the drive electrode 6.
  • high-definition patterning corresponding to the thin line of the black matrix 8 can be performed, and a high-definition display with a thin black matrix 8 can also be supported.
  • auxiliary wiring 4a it is also desirable to arrange the auxiliary wiring 4a so as to overlap the signal wiring on the common electrode 4 on the TFT substrate side. By doing so, the resistance value of the detection electrode can be reduced, and the apparatus can be made larger without affecting the display.
  • an integration circuit may be used as the touch detection circuit, and the reference voltage may be the image display voltage Vcom.
  • the potential of the common electrode 4 becomes constant at Vcom both during image writing and during the touch sensor operation, and the potential difference between the pixel electrode and the common electrode is maintained during the touch detection operation.
  • FIG. 6B shows the touch sensor basic pattern TBP
  • FIG. 6A is an enlarged view of a part P1 of FIG. 6B.
  • the size of the touch sensor basic pattern TBP formed from each drive electrode and each detection electrode of the touch sensor is, for example, about 1 mm to 6 mm.
  • the drive electrode position detection unit 6u includes a plurality of pieces extending along the black matrix 8.
  • a drive electrode 6 is included.
  • the common electrode 4 is used as the detection electrode, and the common electrode 4 is divided on the display signal wiring, and each of the divided common electrodes serves as a position detection unit 4u of the detection electrode.
  • a floating electrode 6d that is not electrically connected to another location may be provided in a pixel region where the drive electrode 6 is not provided.
  • FIG. 7 (b) shows the TFT substrate 20
  • FIG. 7 (a) is an enlarged view of a part P2 of FIG. 7 (b).
  • the wiring 43 for the drive electrode 6 is provided on the TFT substrate 20.
  • the drive electrode wiring 43 on the TFT substrate may be provided so as to pass over the gate driver 31 formed on the TFT substrate.
  • FIG. 8B shows a state where the counter substrate 10 and the TFT substrate 20 are bonded together, and FIG. 8A is an enlarged view of a part P3 of FIG. 8B.
  • a conductive seal 45 (including conductive beads) 45 that conducts only in the crimping direction at the time of crimping is used, and the TFT substrate 20 side wiring 43 and the counter substrate 10 side driving electrode 6 are used when the TFT substrate 20 and the counter substrate 10 are bonded together. And are connected. Further, the liquid crystal display wiring and the touch sensor wiring are connected to a terminal portion at one end of the liquid crystal display device after being bonded.
  • the touch sensor drive electrode wiring and the touch sensor detection electrode wiring on the TFT substrate 20 may be formed of auxiliary wiring. Further, the touch sensor detection electrode wiring on the TFT substrate may pass over the signal line connection wiring 41 formed on the TFT substrate.
  • the liquid crystal is driven in the transverse electric field mode.
  • FIG. 9 shows the behavior of the liquid crystal when a positive type liquid crystal having a dielectric anisotropy ⁇ > 0 is used.
  • the major axis direction of the liquid crystal is oriented in the direction of the electric field.
  • FIG. 9A shows a state in which a voltage is applied to the drive electrode 6 and the common electrode 4
  • FIG. 9B shows a state in which a voltage is further applied to the pixel electrode 2 and the common electrode 4.
  • the direction of the liquid crystal changes along the electric field connected to the common electrode 4 through the slit of the pixel electrode 2.
  • FIG. 10 shows the behavior of the liquid crystal when a negative type liquid crystal having a dielectric anisotropy ⁇ ⁇ 0 is used.
  • the major axis direction of the liquid crystal is perpendicular to the direction of the electric field.
  • 10A shows a state where a voltage is applied to the drive electrode 6 and the common electrode 4
  • FIG. 10B shows a state where a voltage is further applied to the pixel electrode 2 and the common electrode 4.
  • FIG. 10 As shown in FIG. 10, in the negative type liquid crystal, the orientation of the liquid crystal changes so as to be perpendicular to the electric field.
  • the liquid crystal When a voltage is applied to the drive electrode 6, in the case of a positive type liquid crystal, the liquid crystal is directed in a different direction from the surrounding liquid crystal by the lines of electric force between the drive electrode 6 and the common electrode (detection electrode) 4 as shown in FIG.
  • the major axis direction of the liquid crystal is perpendicular to the direction of the electric lines of force between the drive electrode 6 and the common electrode 4, so that there is no change.
  • the area is shielded from light by the black matrix 8 it is preferable to use a negative type liquid crystal that has little influence on the display, but the touch sensor drive does not substantially affect the behavior of the liquid crystal.
  • FIG. 11A shows the touch detection circuit 51
  • FIG. 11B shows the drive timing of each electrode and the switching element.
  • the touch detection circuit 51 is an integration circuit using a single-ended operational amplifier 53, for example.
  • the touch detection operation is performed during image signal writing in synchronization with the liquid crystal display. For example, it is performed every horizontal period or every vertical period. In the example of FIG. 11B, it is performed every vertical period.
  • the reference voltage of the integrating circuit 51 is the common voltage Vcom as shown in the figure
  • the common electrode (detection electrode) 4 is constant at Vcom during both the image writing period and the touch panel drive period, as will be described later. It is possible to always keep the common electrode potential constant.
  • Cm in FIG. 11A is a capacitance between the drive electrode 6 and the detection electrode 4.
  • the image writing period of one vertical period is constant at Vcom for both the drive electrode 6 and the detection electrode 4.
  • a positive voltage and a negative voltage are applied to the drive electrode 6 around Vcom.
  • the drive electrode 6 is set to + V1 while the switch ⁇ 1 is on, and Q charge is stored in the capacitance Cm.
  • the capacitance Cm at the time of touch is small, Vout does not increase compared to the case of non-touch, and the touch can be detected. Since the reference voltage of the integration circuit 51 is Vcom, the common electrode and detection electrode connected to the integration circuit 51 are constant at Vcom during the touch panel drive period.
  • a fully differential amplifier 55 as shown in FIG. 12 may be used as an integration circuit to detect touch / non-touch based on the difference between adjacent detection electrodes. Detection can be performed.
  • an orthogonal code method may be used in which each drive electrode is driven simultaneously by M-sequence generation, and simultaneous detection and decoding are performed.
  • the drive electrode 6 of the touch sensor is different from the common electrode 4, it is possible to drive the drive electrode 6 of the touch sensor independently of the display drive.
  • the orthogonal code signal By simultaneously driving a plurality of drive electrodes, it is possible to form a touch sensor with high noise resistance.
  • liquid crystal display device 100 with a touch sensor that drives liquid crystal by a vertical electric field method will be described.
  • FIG. 13 is a diagram illustrating a liquid crystal display device 100 with a touch sensor that drives a liquid crystal by a vertical electric field method according to an embodiment of the present invention.
  • a common electrode (counter electrode) 7 for image display is provided on the liquid crystal layer 30 side of the resin layer 15 of the counter substrate 10. Similar to the common electrode 4 of the TFT substrate 20, the common electrode 7 is divided by slits 7b on the display signal wiring.
  • the common electrode 7 is electrically connected to the common electrode (detection electrode) 4 of the TFT substrate 20 by the conductive seal 44 (FIG. 15), and thus the common electrode 7 functions as a detection electrode of the touch sensor. .
  • the presence or absence of a touch can be detected by detecting a change in capacitance between the drive electrode 6 and the common electrode 7.
  • FIG. 14B is a diagram showing the touch sensor basic pattern TBP
  • FIG. 14A is an enlarged view of a part P1 of FIG. 14B.
  • the size of the touch sensor basic pattern TBP formed from each drive electrode and each detection electrode of the touch sensor is, for example, about 1 mm to 6 mm.
  • the drive electrode position detection unit 6 u includes a plurality of pieces extending along the black matrix 8. A drive electrode 6 is included.
  • the common electrode 7 which is a detection electrode is divided on the display signal wiring, and the divided common electrodes 4 and 7 are respectively detected by the position detection units 4u and 7u of the detection electrode. It becomes.
  • FIG. 15A shows the TFT substrate 20, and FIG. 15B shows a configuration in which the counter substrate 10 and the TFT substrate 20 are bonded together.
  • a common electrode 4 on the TFT substrate 20 side and the common electrode on the counter substrate 10 side are used by using a conductive seal (including conductive beads) 44 or the like that conducts only in the pressing direction during the pressing.
  • the electrode 7 is electrically connected. Since the common electrode 7 is coupled to the common electrode 4 by the capacitance of the liquid crystal layer 30 and the insulating layer 23, the time constant until the signal detected by the common electrode 7 reaches the touch detection unit 37 through the FPC is greatly increased. Can be made smaller. Further, the time constant can be further reduced by lowering the resistance value of the common electrode 4 by the auxiliary wiring 4a.
  • FIG. 16 is a diagram illustrating the display device 100 with a vertical electric field type touch sensor according to the present embodiment.
  • 16A shows a state where no voltage is applied between the pixel electrode 2 and the common electrode 7 (an electric field is not generated)
  • FIG. 16B shows a state where the pixel electrode 2 and the common electrode 7 are not applied.
  • a state in which a voltage is applied between the two (electric field is generated) is shown.
  • the liquid crystal is tilted by the lines of electric force between the pixel electrode 2 and the common electrode 7 as shown in FIG.
  • the drive electrode 6 since the drive electrode 6 is provided above the common electrode 7, there is no influence on the display by the drive electrode 6, and the display quality can be improved.
  • FIG. 17 is a view showing the TFT substrate 20 of the display device with a touch sensor 100 of the present embodiment
  • FIG. 18A is a cross-sectional view corresponding to the line AA ′ shown in FIG. 17, and
  • FIG. 18 is a cross-sectional view corresponding to the line BB ′ shown in FIG.
  • the common electrode 4 is provided closer to the liquid crystal layer 30 than the pixel electrode 2. Since there is no pixel electrode 2 between the drive electrode 6 and the detection electrode (common electrode) 4 of the touch sensor, the difference in capacitance between the pixel electrode 2 and the common electrode 4 due to liquid crystal display does not affect the touch detection operation. Thereby, the accuracy of the touch detection operation by the output voltage Vout shown in FIG. 11B can be increased.
  • FIG. 19 is a view showing the TFT substrate 20 of the display device with a touch sensor 100 of the present embodiment
  • FIG. 20A is a cross-sectional view corresponding to the line AA ′ shown in FIG. 19
  • FIG. 20 is a cross-sectional view corresponding to the line BB ′ shown in FIG. 19.
  • the drive electrode 6 is provided on the liquid crystal layer side of the resin layer 15 provided on the color filter layer 13. Further, the partial pattern 4C of the detection electrode (common electrode) 4 facing the drive electrode 6 is removed. That is, in a plan view, a region that overlaps the drive electrode of the detection electrode on the TFT substrate side is patterned, whereby the capacitive load with the drive electrode 6 can be reduced. Since the resin layer 15 is provided on the color filter layer 13 and the surface is flattened, and the drive electrode 6 is formed thereon, the patterning on the counter substrate 10 can be performed with high accuracy.
  • FIG. 21A is a diagram showing the counter substrate 10 of the present embodiment
  • FIG. 21B is an enlarged view of a portion P4 of FIG.
  • FIG. 22A is a diagram showing the TFT substrate 20 of this embodiment
  • FIG. 22B is a diagram showing a configuration in which the counter substrate 10 and the TFT substrate 20 are bonded together.
  • Wiring for the touch sensor electrode on the counter substrate 10 side is performed with metal wiring.
  • Examples of the metal wiring include wiring of Mo, Al, Ti, Ag, Cu, and W, and wiring obtained by stacking these materials.
  • the detection electrode wiring provided on the TFT substrate 20 side and the auxiliary wiring layer used for reducing the resistance of the common electrode are removed, and the touch sensor driving electrode wiring 43 and the common electrode auxiliary are provided on the counter substrate 10.
  • a wiring 47a is formed. Further, the drive electrode pad 43p and the detection electrode auxiliary wiring pad 47p are formed on the counter substrate 10.
  • the drive electrode wiring 43 and the detection electrode wiring 47 on the TFT substrate 20 side are preferably formed in the same layer as the scanning line wiring.
  • the drive electrode wiring 43 and the detection electrode wiring 47 of the TFT substrate 20 are formed on the counter substrate 10 using a conductive seal (including conductive beads) that conducts only in the crimping direction when crimping. It is connected to the common electrode auxiliary wiring 47a.
  • the wiring for liquid crystal display and the wiring for touch panel are connected to a terminal portion at one end of the liquid crystal display device after bonding.
  • the drive electrode wiring 43 on the counter substrate may pass over the gate driver formed on the TFT substrate 20. Further, the detection electrode wiring 47 on the TFT substrate 20 may pass through a region overlapping with the signal line connection wiring formed on the TFT substrate 20.
  • the resistance value can be reduced to 1/10 to 1/1000 compared to the case where the drive electrode is formed of a transparent electrode, an in-cell type touch panel can be formed on a large liquid crystal display device. is there.
  • the auxiliary wiring provided for the driving wiring on the TFT substrate 20 can be formed in the same layer as the touch sensor electrode of the counter substrate 10 in this embodiment.
  • FIG. 23 (b) shows a configuration in which the counter substrate 10 and the TFT substrate 20 of the present embodiment are bonded together
  • FIG. 23 (a) is an enlarged view of a part P5 of FIG. 23 (b).
  • FIG. 24A is a diagram showing the detection electrode 5 formed on a separately prepared substrate 12 (glass substrate or resin substrate such as PET) and the floating electrode 17 corresponding to the drive electrode pattern.
  • FIG. 24B is a diagram showing a configuration in which the substrate 12 is bonded to the configuration of FIG.
  • the touch sensor drive electrode 6 is arranged under the thick wiring of the black matrix 8 in the display area.
  • a wiring for a touch panel drive electrode is formed on the TFT substrate 20, and the TFT substrate 20 and the counter substrate 10 are connected by a conductive seal with a liquid crystal layer interposed therebetween.
  • the touch sensor drive electrode wiring is preferably formed on a gate driver formed on the TFT substrate 20.
  • the detection electrode 5 is provided on a separately prepared substrate 12.
  • the detection electrode 5 is formed of a transparent electrode.
  • the floating electrode 17 that does not conduct with other electrodes may be provided on the substrate 12 in a shape corresponding to the drive electrode pattern.
  • FIG. 25A is a diagram illustrating the display device 100 with a touch sensor using the negative type liquid crystal according to the present embodiment.
  • FIG. 26A is a diagram illustrating the display device 100 with a touch sensor using the positive type liquid crystal according to the present embodiment.
  • FIG. 27A is a diagram showing the display device 100 with a touch sensor using negative type liquid crystal in the vertical electric field mode of the present embodiment.
  • the common electrode 7 for image display may be provided on the counter substrate 10 side, and the auxiliary capacitor 9 may be provided on the TFT substrate.
  • the substrate 12 provided with the detection electrode 5 is provided on the viewer side of the counter substrate 10 via the adhesive layer 16.
  • the detection electrode 5 and the drive electrode 6 provided on the counter substrate 10 constitute a touch sensor to perform touch detection.
  • the detection electrode 5 may be provided directly on the glass substrate 11 as shown in FIGS. 25 (b), 26 (b), and 28.
  • the liquid crystal When a voltage is applied to the drive electrode 6, in the case of a positive type liquid crystal, the liquid crystal is directed in a different direction from the surrounding liquid crystal by the lines of electric force between the drive electrode 6 and the common electrode 4 as shown in FIG. As shown in FIG. 25, since the major axis direction of the liquid crystal is perpendicular to the direction of the lines of electric force between the drive electrode 6 and the common electrode 4, there is no change. In either case, since the area is shielded from light by the black matrix 8, it is preferable to use a negative type liquid crystal that has little influence on the display, but the touch sensor drive does not substantially affect the behavior of the liquid crystal.
  • the liquid crystal in the vertical electric field mode when used, the liquid crystal is tilted by the electric lines of force between the pixel electrode 2 and the common electrode 7 as shown in FIG.
  • the drive electrode 6 since the drive electrode 6 is provided above the common electrode 7, the display by the drive electrode 6 is not affected, and the display quality can be improved.
  • the touch sensor drive electrode 6 is preferably formed of a transparent electrode having a sheet resistance of 100 ⁇ or less, or a metal layer of Mo, Al, Ti, Ag, Cu, W, or a laminate thereof. Further, as the detection electrode 5, a transparent electrode may be used, or a mesh electrode formed of metal may be used.
  • FIG. 29B is a diagram showing the drive electrode 6 provided with the same width as the size of the touch sensor basic pattern TBP (FIG. 6), and FIG. 29A shows the touch sensor basic pattern TBP (FIG. 6). It is a figure which shows the drive electrode 6 provided with the width
  • the width W3 of the drive electrode 6 may be narrower than the size of the touch sensor basic pattern TBP, for example, 10 to 100% of the size of the touch sensor basic pattern TBP. desirable. In this case, the floating electrode may not be provided in the region where the drive electrode 6 is not provided.
  • every other drive electrode 6 may be provided for the horizontal line of the black matrix 8.
  • the width W3 of the drive electrode 6 may be the same as or narrower than the size of the touch sensor basic pattern TBP.
  • FIG. 31 is a diagram showing lines of electric force 61 generated between the drive electrode 6 and the detection electrode 4. Since the drive electrode 6 provided on the counter substrate 10 has a pattern formed only under the thick wiring of the black matrix 8, even if the drive electrode 6 is provided on the entire surface, the detection electrode 4 of the TFT substrate and the electric lines of force are coupled through the gap. . Therefore, by changing the density of the drive electrodes 6, it is possible to adjust so that the change in capacitance is easily detected with respect to the distance for performing touch / non-touch detection. Further, by changing the density and width of the drive electrode pattern, the height of the touch detection position from the counter substrate 10 can be adjusted.
  • the floating pattern in the first embodiment may be removed.
  • the floating pattern can be prevented from being charged with static electricity.
  • This specification discloses a display device with a touch sensor described in the following items.
  • a display device with a touch sensor comprising: a pixel substrate having a plurality of pixel electrodes; and a counter substrate facing the pixel substrate,
  • the display device with a touch sensor is: A black matrix extending in a first direction and a second direction different from the first direction; A touch sensor electrode extending in the first direction, and In a plan view when viewing the counter substrate from a direction perpendicular to the plane direction of the counter substrate, The width of the line extending in the first direction of the black matrix in the second direction is wider than the width of the line extending in the second direction of the black matrix in the first direction, The width in the second direction of the line extending in the first direction of the touch sensor electrode is narrower than the width in the second direction of the line extending in the first direction of the black matrix,
  • the display device with a touch sensor wherein a line extending in the first direction of the touch sensor electrode and a line extending in the first direction of the black matrix overlap each other.
  • the display device with a touch sensor described in Item 1 it is possible to suppress a decrease in display quality caused by the touch sensor electrode.
  • the display device with a touch sensor described in Item 2 it is possible to suppress a decrease in display quality caused by the touch sensor electrode.
  • the influence of the driving voltage of the touch sensor electrode on the liquid crystal layer can be reduced.
  • the touch sensor electrode since the touch sensor electrode does not affect the display because the touch sensor electrode is formed under the black matrix, the thickness of the transparent electrode is increased to reduce the sheet resistance. I can do things.
  • Item 4 The display device with a touch sensor according to Item 1, wherein among the plurality of pixel portions of the counter substrate, an electrically floating dummy electrode is provided in a pixel region where the touch sensor electrode is not provided.
  • the touch sensor electrode is provided on the counter substrate and is used as a drive electrode of the touch sensor.
  • Item 4. The display device with a touch sensor according to item 1, wherein a common electrode provided on the pixel substrate is used as a detection electrode of the touch sensor.
  • Item 7 The display device with a touch sensor according to Item 6, wherein the common electrode is separated on a signal wiring provided on the pixel substrate.
  • Item 8 An integration circuit to which a signal corresponding to the charge amount of the common electrode is input; Item 8. The display device with a touch sensor according to Item 6 or 7, wherein a reference voltage of the integration circuit is the same as a voltage applied to the common electrode during an image writing period.
  • the display device with a touch sensor described in Item 8 since the potential of the common electrode does not change even when the touch sensor is driven, the influence on the image can be reduced.
  • Item 9 The display device with a touch sensor according to Item 8, wherein the integration circuit includes a single-ended operational amplifier.
  • the integrating circuit has a fully differential operational amplifier, Item 9.
  • the display device with a touch sensor described in Item 11 it is possible to stably send an image signal to a common electrode having a large capacitive load, and to respond at high speed even when the touch sensor is driven.
  • An auxiliary wiring electrically connected to the common electrode is provided so as to overlap with a signal wiring provided on the pixel substrate, Item 15.
  • the seal part for bonding the pixel substrate and the counter substrate includes a conductive material, The drive electrode wiring provided on the pixel substrate and the drive electrode provided on the counter substrate are electrically connected via the seal portion, according to any one of items 14 to 17. Display device with touch sensor.
  • Item 19 The display device with a touch sensor according to any one of items 14 to 18, wherein an image display terminal and a touch sensor driving terminal are provided at one end of the pixel substrate.
  • the FPC mounting part can be provided only in part.
  • the display device with a touch sensor described in Item 20 it is possible to transmit a drive signal with a short response time and to deal with a large liquid crystal display device.
  • Item 22 The display device with a touch sensor according to any one of Items 1 to 21, wherein the touch position detection operation is performed using an orthogonal code signal formed in an M series.
  • the touch sensor electrode is provided on the counter substrate and is used as a drive electrode of the touch sensor.
  • Item 24 The display device with a touch sensor according to Item 23, wherein the display device with a touch sensor is a horizontal electric field type liquid crystal display device.
  • Item 25 The display device with a touch sensor according to Item 23 or 24, wherein the display device with a touch sensor is a liquid crystal display device that drives a negative liquid crystal by a horizontal electric field method.
  • Item 25 The display device with a touch sensor according to Item 23 or 24, wherein the display device with a touch sensor is a liquid crystal display device that drives a positive type liquid crystal by a lateral electric field method.
  • Item 24 The display device with a touch sensor according to Item 23, wherein the display device with a touch sensor is a liquid crystal display device that drives a negative liquid crystal by a vertical electric field method.
  • the apparatus of the present invention is particularly useful in the field of electronic devices that detect touch operations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Geometry (AREA)
  • Position Input By Displaying (AREA)

Abstract

 本発明のある実施形態によるタッチセンサ付き表示装置(100)は、複数の画素電極(2)を有する画素基板(20)と、画素基板(20)に対向する対向基板(10)と、第1方向および第1方向とは異なる第2方向に延びるブラックマトリクス(8)と、第1方向に延びるタッチセンサ電極(6)とを備える。対向基板(10)の平面方向に垂直な方向から対向基板(10)を見たときの平面視において、ブラックマトリクス(8)の第1方向に延びる線の第2方向の幅は、ブラックマトリクス(8)の第2方向に延びる線の第1方向の幅よりも広く、タッチセンサ電極(6)の第1方向に延びる線の第2方向の幅(W1)は、ブラックマトリクス(8)の第1方向に延びる線の第2方向の幅(W2)よりも狭く、タッチセンサ電極(6)の第1方向に延びる線と、ブラックマトリクス(8)の第1方向に延びる線とは重なっている。

Description

タッチセンサ付き表示装置
 本発明は、タッチセンサ付き表示装置に関し、特に静電容量方式のタッチセンサ付き表示装置に関する。
 近年、直観的な操作が可能で多点検出が可能な静電容量方式のタッチパネル機能を有する表示装置が注目されている。しかし、そのような表示装置では、タッチパネル用の基板の分だけ表示装置の厚さが厚くなったり、タッチパネル基板による透過率の低下から表示品位が損なわれたりするといった課題がある。また、タッチパネル基板の端子実装部が表示装置とは別になり、接続が難しいという課題もある。
 それらの課題を解決する方式として、タッチセンサ機能を液晶表示装置そのものに内蔵するインセル型タッチパネルが検討されるようになったが、導入は進んでいない。これは、液晶表示装置内部にタッチセンサ用電極を設ける事で、表示装置の製造方法が複雑化する、タッチセンサ用電極が表示品位に影響する、駆動周波数が高められずに大型化が制限されるといった課題があるからである。
 特許文献1は、液晶表示装置において、共通電極をタッチセンサの駆動電極としても利用し、検出電極を対向基板の液晶層とは逆側に形成した構成を開示している。共通電極に印加されるコモン駆動信号は、画素電極に印加される画素電圧とともに各画素の表示電圧を決定するものであるが、タッチセンサの駆動信号としても兼用される。
特開2009-244958号公報
 上記特許文献1の液晶表示装置では、駆動電極及び検出電極が画素部分を完全に覆う領域があるため、駆動電極及び検出電極として透明電極以外を使用することができず、抵抗値が高くなり、大型化が困難であるという課題がある。また、画像表示の為に共通電極をコモン駆動信号で駆動すると共に、そのコモン駆動信号をタッチセンサの駆動信号としても用いる為、タッチセンサの駆動信号に制約がある。例えば、直交符号信号を用いて同時に複数の駆動電極を駆動する方式等を実現する事が困難である。
 本発明は、上記課題の少なくとも1つを解決するためになされたものであり、タッチセンサ電極に起因する表示品位の低下を抑制した高精度なタッチセンサ付き表示装置を提供することを目的とする。
 本発明による実施形態のタッチセンサ付き表示装置は、複数の画素電極を有する画素基板と、前記画素基板に対向する対向基板とを備えたタッチセンサ付き表示装置であって、前記タッチセンサ付き表示装置は、第1方向および前記第1方向とは異なる第2方向に延びるブラックマトリクスと、前記第1方向に延びるタッチセンサ電極とをさらに備え、前記対向基板の平面方向に垂直な方向から前記対向基板を見たときの平面視において、前記ブラックマトリクスの前記第1方向に延びる線の前記第2方向の幅は、前記ブラックマトリクスの前記第2方向に延びる線の前記第1方向の幅よりも広く、前記タッチセンサ電極の前記第1方向に延びる線の前記第2方向の幅は、前記ブラックマトリクスの前記第1方向に延びる線の前記第2方向の幅よりも狭く、前記タッチセンサ電極の前記第1方向に延びる線と、前記ブラックマトリクスの前記第1方向に延びる線とは重なっている。
 ある実施形態において、前記平面視において、前記タッチセンサ電極の前記第1方向に延びる線は、前記ブラックマトリクスの前記第1方向に延びる線の前記第2方向の両端部よりも内側に位置して重なっていてもよい。
 ある実施形態において、前記タッチセンサ電極は透明樹脂で覆われていてもよい。
 ある実施形態において、前記タッチセンサ電極は透明電極であり、前記タッチセンサ電極のシート抵抗値は1から100Ω/□であってもよい。
 ある実施形態において、前記対向基板の複数の画素部のうち、前記タッチセンサ電極が設けられていない画素領域には、電気的にフローティングしたダミー電極が設けられていてもよい。
 ある実施形態において、前記タッチセンサ電極は前記対向基板に設けられており、タッチセンサの駆動電極として用い、前記画素基板に設けられた共通電極を前記タッチセンサの検出電極として用いてもよい。
 ある実施形態において、前記画素基板に設けられた信号配線上において前記共通電極は分離されていてもよい。
 ある実施形態において、前記共通電極の電荷量に対応した信号が入力される積分回路をさらに備え、前記積分回路の基準電圧は、画像書き込み期間に前記共通電極に印加する電圧と同じであってもよい。
 ある実施形態において、前記積分回路は、シングルエンド型のオペアンプを有してもよい。
 ある実施形態において、前記積分回路は、完全差動オペアンプを有し、前記完全差動オペアンプは、互いに隣接する前記共通電極の電荷量に対応した信号が入力されてもよい。
 ある実施形態において、前記共通電極に電気的に接続された補助配線が、前記画素基板に設けられた信号配線と重なるように設けられていてもよい。
 ある実施形態において、前記タッチセンサ付き表示装置は、横電界方式の液晶表示装置であってもよい。
 ある実施形態において、前記タッチセンサ付き表示装置は、横電界方式でネガ型液晶を駆動する液晶表示装置であってもよい。
 ある実施形態において、前記タッチセンサの駆動電極用配線および前記タッチセンサの検出電極用配線が、前記画素基板に設けられていてもよい。
 ある実施形態において、前記共通電極に電気的に接続された補助配線が、前記画素基板に設けられた信号配線と重なるように設けられており、前記駆動電極用配線および前記検出電極用配線は、前記補助配線と同じ層に設けられていてもよい。
 ある実施形態において、前記駆動電極用配線は、前記画素基板に設けられたゲートドライバと重なるように設けられていてもよい。
 ある実施形態において、前記検出電極用配線は、前記画素基板に設けられた信号線接続配線と重なるように設けられていてもよい。
 ある実施形態において、前記画素基板と前記対向基板とを接着するシール部は導電性材料を含み、前記画素基板に設けられた前記駆動電極用配線と、前記対向基板に設けられた前記駆動電極とは、前記シール部を介して電気的に接続されていてもよい。
 ある実施形態において、前記画素基板の一端に画像表示用端子およびタッチセンサ駆動用端子が設けられていてもよい。
 ある実施形態において、前記タッチセンサ電極は、メタル電極、および透明電極とメタル層の積層体のうちの一方であってもよい。
 ある実施形態において、タッチ位置検出動作は画像表示動作と同期し、画像書き込みが無い期間に前記タッチ位置検出動作を行ってもよい。
 ある実施形態において、前記タッチ位置検出動作はM系列で形成した直交符号信号を用いて行ってもよい。
 ある実施形態において、前記タッチセンサ電極は前記対向基板に設けられており、タッチセンサの駆動電極として用い、前記対向基板における前記タッチセンサの駆動電極よりもタッチ面側の位置に、前記タッチセンサの検出電極が設けられていてもよい。
 ある実施形態において、前記タッチセンサ付き表示装置は、横電界方式の液晶表示装置であってもよい。
 ある実施形態において、前記タッチセンサ付き表示装置は、横電界方式でネガ型液晶を駆動する液晶表示装置であってもよい。
 ある実施形態において、前記タッチセンサ付き表示装置は、横電界方式でポジ型液晶を駆動する液晶表示装置であってもよい。
 ある実施形態において、前記タッチセンサ付き表示装置は、縦電界方式でネガ型液晶を駆動する液晶表示装置であってもよい。
 本発明のある実施形態によれば、タッチセンサ電極に起因する表示品位の低下を抑制した高精度なタッチセンサ付き表示装置が提供される。
本発明の実施形態によるタッチセンサ付き表示装置を示す図である。 本発明の実施形態によるタッチを検出する方法を説明する図である。 (a)は本発明の実施形態によるTFT基板の要部を示す図であり、(b)は本発明の実施形態による対向基板の要部を示す図である。 本発明の実施形態によるTFT基板および対向基板を張り合わせた構成を示す図である。 (a)は図4に示すAA’線に対応した断面図であり、(b)は図4に示すBB’線に対応した断面図である。 (a)は本発明の実施形態による対向基板の要部を示す図であり、(b)は本発明の実施形態によるタッチセンサ基本パターンを示す図である。 (a)は本発明の実施形態によるTFT基板の要部を示す図であり、(b)は本発明の実施形態によるTFT基板を示す図である。 (a)は本発明の実施形態による対向基板とTFT基板を張り合わせた構成の要部を示す図であり、(b)は本発明の実施形態による対向基板とTFT基板を張り合わせた構成を示す図である。 (a)および(b)は、本発明の実施形態によるポジタイプの液晶を用いた場合の液晶の挙動を示す図である。 (a)および(b)は、本発明の実施形態によるネガタイプの液晶を用いた場合の液晶の挙動を示す図である。 (a)は本発明の実施形態によるタッチ検出回路を示す図であり、(b)は本発明の実施形態による各電極およびスイッチング素子の駆動タイミングを示す図である。 本発明の実施形態による完全差動アンプを積分回路として用いたタッチ検出回路を示す図である。 本発明の実施形態によるタッチセンサ付き表示装置を示す図である。 (a)は本発明の実施形態による対向基板の要部を示す図であり、(b)は本発明の実施形態によるタッチセンサ基本パターンを示す図である。 (a)は本発明の実施形態によるTFT基板を示す図であり、(b)は本発明の実施形態による対向基板とTFT基板を張り合わせた構成を示す図である。 (a)および(b)は、本発明の実施形態によるタッチセンサ付き表示装置を示す図である。 本発明の実施形態によるTFT基板を示す図である。 (a)は図17に示すAA’線に対応した断面図であり、(b)は図17に示すBB’線に対応した断面図である。 本発明の実施形態によるTFT基板を示す図である。 (a)は図19に示すAA’線に対応した断面図であり、(b)は図19に示すBB’線に対応した断面図である。 (a)は本発明の実施形態による対向基板を示す図であり、(b)は本発明の実施形態による対向基板の要部を示す図である。 (a)は本発明の実施形態によるTFT基板を示す図であり、(b)は本発明の実施形態による対向基板とTFT基板とを張り合わせた構成を示す図である。 (a)は本発明の実施形態による対向基板とTFT基板を張り合わせた構成の要部を示す図であり、(b)は本発明の実施形態による対向基板とTFT基板を張り合わせた構成を示す図である。 (a)は、本発明の実施形態による別に用意した基板を示す図であり、(b)は図23(b)の構成に別に用意した基板を張り合わせた構成を示す図である。 (a)および(b)は、本発明の実施形態によるネガタイプの液晶を用いたタッチセンサ付き表示装置を示す図である。 (a)および(b)は、本発明の実施形態によるポジタイプの液晶を用いたタッチセンサ付き表示装置を示す図である。 (a)および(b)は、本発明の実施形態による縦電界モードでネガタイプの液晶を用いたタッチセンサ付き表示装置を示す図である。 本発明の実施形態による縦電界モードでネガタイプの液晶を用いたタッチセンサ付き表示装置を示す図である。 (a)は、本発明の実施形態によるタッチセンサ基本パターンの大きさより狭い幅で設けた駆動電極を示す図であり、(b)は、本発明の実施形態によるタッチセンサ基本パターンの大きさと同じ幅で設けた駆動電極を示す図である。 本発明の実施形態によるブラックマトリクスと駆動電極との配置関係を示す図である。 本発明の実施形態による駆動電極と検出電極との間に発生する電気力線を示す図である。
 以下、図面を参照して、本発明の実施形態によるタッチセンサ付き表示装置を説明する。なお、実質的に同じ機能を有する構成要素には共通の参照符号を付し、その説明を省略することがある。以下では、表示装置として、TFT型LCDを例示するが、表示パネルはTFT型LCDに限られず、表示媒体層として液晶層以外の表示媒体層を有する、例えば有機EL表示パネルや、電気泳動表示パネルなど、種々の表示パネルが用いられることは言うまでもない。また、表示装置として液晶表示装置を用いる場合、本発明は、縦電界方式の液晶表示装置と横電界方式の液晶表示装置それぞれに適用することができる。
 (実施形態1)
 図1は、本発明の実施形態によるタッチセンサ付き表示装置100を示す図である。タッチセンサ付き表示装置100は、TFT基板(画素基板)20と、TFT基板20の観察者側に配置された対向基板10と、TFT基板20と対向基板10との間に設けられた液晶層30とを備える。
 TFT基板20は、ガラス基板21と、液晶層30に電圧を印加するための画素電極2および共通電極4とを備える。ガラス基板21と共通電極4との間には絶縁層25が設けられ、共通電極4と画素電極2との間には絶縁層23が設けられている。共通電極4は、タッチセンサの検出電極としても用いる。
 対向基板10は、ガラス基板11と、カラーフィルタ層13と、樹脂層15とを備える。カラーフィルタ層13の液晶層30側の位置にはタッチセンサの駆動電極6(図3)が設けられている。
 また、タッチセンサ付き表示装置100は、画素領域に設けられたTFT素子に走査信号線GLを介して走査信号を供給するゲートドライバ31と、TFT素子に画素信号線SLを介して画素信号を供給するソースドライバ33と、駆動電極6に駆動信号を供給する駆動電極ドライバ35と、共通電極4(検出電極)から供給される信号を受け取ってタッチを検出するタッチ検出部37を備える。なお、本明細書では、これらの回路31、33、35、37の少なくとも1つを備えない構成であって、液晶層30を介してTFT基板20と対向基板10とを張り合わせた構成を指してタッチセンサ付き表示装置100と称することもある。
 次に、図2を参照して、タッチを検出する方法を説明する。タッチセンサは、対向基板10に設けられた駆動電極6と、TFT基板20に設けられた検出電極4とを有する。対向基板10には図の左右方向に延びる複数の駆動電極6が設けられている。タッチ検出動作を行う場合、各駆動電極6には、駆動電極ドライバ35から駆動信号V1が順次供給され、時分割的に順次走査駆動が行われる。複数の検出電極4はそれぞれ、駆動電極6と交差する方向に延びており、タッチ検出部37に接続されている。駆動電極6と検出電極4が互いに交差した部分には静電容量が形成される。
 駆動電極ドライバ35が駆動電極6に駆動信号V1を供給することにより、検出電極4からタッチ検出部37にタッチ検出信号Vdetが出力され、タッチ検出が行われる。互いに交差した電極パターンは、静電容量式タッチセンサをマトリックス状に構成しており、タッチ検出面全体に亘って走査することにより、タッチの有無の検出およびタッチ位置の座標の特定が可能となっている。
 次に、本実施形態の駆動電極6についてより詳細に説明する。図3(a)はTFT基板20の要部を示す図であり、図3(b)は対向基板10の要部を示す図である。図4はそれらTFT基板20および対向基板10を張り合わせた状態を示している。図5(a)は図4に示すAA’線に対応した断面図であり、図5(b)は図4に示すBB’線に対応した断面図である。
 図5に示すように、駆動電極6及び検出電極4はそれぞれ対向基板10とTFT基板20の液晶層30側に形成されている。図3(a)に示すように、TFT基板20には、液晶表示用信号を画素電極2に入力する走査信号線GLと画素信号線SLが直交するように形成され、その間にある各画素電極2にはスイッチとなるTFTが形成されている。図の例ではTFTは逆スタガ型のTFTであり、ゲート電極がアクティブ層よりもガラス基板側に位置するが、スタガ型のTFTが用いられてもよい。
 共通電極4は各画素電極2を含む領域に形成されており、図3(a)のように画素信号線SL上にスリット4bがあり、分割されている。共通電極4はそれぞれタッチセンサの検出電極としても機能する。共通電極4は、画素電極2とガラス基板21の間に形成されている。また、画素電極2および共通電極4はそれぞれ透明電極で形成されている。
 図3(b)に示すように、対向基板10には遮光領域となるブラックマトリクス8が液晶層30側に形成されており、液晶表示の単位セルを区切っている。カラーフィルタ層13の各画素部にはR、G、B等のカラーフィルタ13Cが形成されている。
 図5(b)に示すように、共通電極4には補助配線4aが設けられている。補助配線4aの配置位置は共通電極4の液晶層側でもその逆側でもよい。
 駆動電極6は透明電極で形成されている。駆動電極6を形成する透明電極のシート抵抗は、例えば1~100Ω/□である。図3(b)に示すように、駆動電極6はブラックマトリクス8の横方向(x方向)の太い線に含まれるように形成されている。ブラックマトリクス8は、x方向およびy方向に延びており、ブラックマトリクス8のx方向に延びる線のy方向の幅は、ブラックマトリクス8のy方向に延びる線のx方向の幅よりも広くなっている。対向基板10の平面方向(xy方向)に垂直な方向(z方向)から対向基板10を見たときの平面視において、駆動電極6のx方向に延びる線のy方向の幅W1は、ブラックマトリクス8のx方向に延びる線のy方向の幅W2よりも狭く、これら駆動電極6のx方向に延びる線と、ブラックマトリクス8のx方向に延びる線とは重なっている。より詳細には、平面視において、駆動電極6のx方向に延びる線は、ブラックマトリクス8のx方向に延びる線のy方向の両端部よりも内側に位置して重なっており、駆動電極6はブラックマトリクス8に完全に覆い隠されている。
 駆動電極6は、対向基板10の走査線方向の太いブラックマトリクスパターン下にブラックマトリクスパターンより細く配置されている。こうすることで、高精細なパターニングが困難な対向基板上にタッチセンサ電極パターンを形成する事が出来る。また、タッチセンサ電極による表示品位の影響を無くす事が出来る。従来の方式と比較して、本発明の実施形態では、画素領域を通る光は透明導電膜で形成される駆動電極を通らない為、表示品位を高くする事が出来る。
 また、駆動電極6は、ブラックマトリクス8下に配置するので、対向基板10に形成する駆動電極6を抵抗値の低い材料で形成する事が可能となり、装置の大型化が可能となる。例えば、抵抗値は低いが光を遮蔽するアルミニウム等の金属配線で駆動電極6を形成する事が可能となり、装置の大型化が可能となる。
 なお、駆動電極6は、ブラックマトリクス8のy方向に延びる線と重なるように形成されていてもよい。
 また、液晶表示方式がFFS、IPSモードの場合には、TFT基板側の共通電極を検出電極として用いる。こうする事で液晶表示装置内にタッチセンサ動作に必要な電極を全て配置する事ができ、一か所の実装部で液晶表示用信号、タッチセンサ用信号を接続する事が可能である。尚、共通電極は駆動電極6と直交する向きにパターニングする。TFT基板側では、ブラックマトリクス8の細い側の線に対応した高精細パターニングを行う事が可能であり、ブラックマトリクス8の細い高精細ディスプレイでも対応可能である。
 また、TFT基板側の共通電極4上に補助配線4aを信号配線と重なるよう配置する事が望ましい。こうすることで検出電極の抵抗値を低減させ、表示に影響する事なく、装置の大型化に対応させることができる。
 また、詳細は後述するが、タッチ検出回路に積分回路を用い、基準電圧を画像表示電圧Vcomとしてもよい。こうする事で、共通電極4の電位は画像書込み時及びタッチセンサ動作時共にVcomで一定となり、画素電極と共通電極間の電位差がタッチ検出動作時も保持される。
 次に、図6から図8を参照して、タッチセンサ基本パターンのサイズおよび電極配線について説明する。
 図6(b)はタッチセンサ基本パターンTBPを示し、図6(a)は図6(b)の一部P1を拡大した図である。タッチセンサの各駆動電極と各検出電極から形成されるタッチセンサ基本パターンTBPのサイズは、例えば1mm~6mm程度であり、駆動電極の位置検出単位6uには、ブラックマトリックス8に沿って延びる複数の駆動電極6が含まれる。また、検出電極を共通電極4とし、共通電極4の分割を表示用信号配線の上で行っており、分割された共通電極それぞれが、検出電極の位置検出単位4uとなる。また、駆動電極6が設けられていない画素領域には、電気的に他の場所に接続しないフローティング電極6dが設けられていてもよい。
 図7(b)はTFT基板20を示し、図7(a)は図7(b)の一部P2を拡大した図である。図7に示すように、駆動電極6用の配線43はTFT基板20に設けられている。このTFT基板上の駆動電極配線43は、TFT基板上に形成されたゲートドライバ31上を通るように設けられてもよい。図8(b)は、対向基板10とTFT基板20を張り合わせた状態を示しており、図8(a)は図8(b)の一部P3を拡大した図である。圧着時に圧着方向にのみ導電する導電性シール(導電性ビーズを含む)45等を用い、TFT基板20と対向基板10の貼り合せ時にTFT基板20側の配線43と対向基板10側の駆動電極6とが接続される。また、液晶表示用の配線及びタッチセンサ用の配線を貼り合せ後の液晶表示装置の一端の端子部に接続される。
 なお、TFT基板20上のタッチセンサ駆動電極配線及びタッチセンサ検出電極配線は、補助配線で形成されてもよい。また、TFT基板上のタッチセンサ検出電極用配線はTFT基板上に形成された信号線接続配線41上を通ってもよい。
 次に、図9、図10を参照して、タッチセンサ駆動電極6の配置と液晶の挙動との関係を説明する。この例では、液晶は横電界モードで駆動する。
 図9は、誘電率異方性Δε>0のポジタイプの液晶を用いた場合の液晶の挙動を示している。ポジタイプの液晶では、電界の方向に液晶の長軸方向が向く。図9(a)は駆動電極6と共通電極4に電圧を印加した状態を示し、図9(b)はさらに画素電極2と共通電極4に電圧を印加した状態を示している。画素電極2と共通電極4に電圧を印加すると、画素電極2のスリットを通って共通電極4に接続する電界に沿って液晶の向きが変化する。
 図10は、誘電率異方性Δε<0のネガタイプの液晶を用いた場合の液晶の挙動を示している。ネガタイプの液晶では、電界の方向に垂直に液晶の長軸方向が向く。図10(a)は駆動電極6と共通電極4に電圧を印加した状態を示し、図10(b)はさらに画素電極2と共通電極4に電圧を印加した状態を示している。図10のように、ネガタイプの液晶では、電界と垂直になるように液晶の向きが変化する。
 駆動電極6に電圧を印加すると、ポジタイプの液晶の場合は図9のように駆動電極6と共通電極(検出電極)4間の電気力線によって液晶が周辺の液晶と異なる向きに向かうが、ネガタイプの液晶の場合、駆動電極6と共通電極4間の電気力線の方向に液晶の長軸方向が垂直である為、変化しない。いずれの場合もブラックマトリクス8で遮光された領域なので、表示への影響は少ないが、タッチセンサ駆動が液晶の挙動にほぼ影響しないネガタイプの液晶を用いることが好ましい。
 次に、タッチ検出回路について説明する。図11(a)は、タッチ検出回路51を示しており、図11(b)は各電極およびスイッチング素子の駆動タイミングを示している。
 タッチ検出回路51は例えば、シングルエンド接続のオペアンプ53を用いた積分回路である。タッチ検出動作は液晶表示と同期し、画像信号書込みの間に行う。例えば1水平期間毎、もしくは1垂直期間毎に行う。図11(b)の例では1垂直期間毎に行っている。積分回路51の基準電圧を図のようにコモン電圧Vcomとすると、後述の通り、共通電極(検出電極)4は、画像書込み期間もタッチパネル駆動期間もVcomで一定となり、液晶表示を決めるTFT基板の共通電極電位を常に一定に保つ事が可能である。
 タッチ検出動作をより詳細に説明する。図11(a)中のCmは駆動電極6と検出電極4間の容量である。1垂直期間の画像書込み期間は、駆動電極6、検出電極4共にVcomで一定とする。画像書込み期間が終了すると、駆動電極6にVcomを中心にプラス電圧およびマイナス電圧を印加する。スイッチΦ1がオンの間に駆動電極6を+V1としてキャパシタンスCmにQの電荷が蓄えられた後、スイッチΦ1をオフにしてスイッチΦ2を接続する。その後、駆動電極6を-V1とすると、積分器のCintに2Qが蓄積され、Vout=2Q/Cintが出力される。尚、タッチ検出動作開始時に積分回路の積分容量Cintはリセットされている事が望ましい。
 上記動作を所望の回数行うと、タッチ時の容量Cmが小さい為、非タッチ時に比べVoutが大きくならず、タッチを検出することができる。積分回路51の基準電圧をVcomとしたので、これに接続する共通電極かつ検出電極はタッチパネル駆動期間もVcomで一定である。
 また、図12に示すような完全差動アンプ55を積分回路として用いて、隣接検出電極間の差分でタッチ/非タッチを検出してもよく、この場合はノイズに強くなるので、精度よくタッチ検出を行うことができる。
 また各駆動電極に対してM系列発生による同時駆動を行い、同時検出とデコードを行う直交符号方式を用いてもよい。本発明の実施形態では、タッチセンサの駆動電極6は共通電極4とは異なる為、表示用の駆動と独立してタッチセンサの駆動電極6を駆動する事が可能であり、例えば、直交符号信号で同時に複数の駆動電極を駆動することで、耐ノイズ性の高いタッチセンサを形成することができる。
 次に、本発明の実施形態による縦電界方式で液晶を駆動するタッチセンサ付き液晶表示装置100を説明する。
 図13は、本発明の実施形態による縦電界方式で液晶を駆動するタッチセンサ付き液晶表示装置100を示す図である。図13に示すタッチセンサ付き液晶表示装置100では、画像表示用の共通電極(対向電極)7が、対向基板10の樹脂層15の液晶層30側に設けられている。TFT基板20の共通電極4と同様に、共通電極7は、表示用信号配線の上でスリット7bによって分割されている。この共通電極7は、TFT基板20の共通電極(検出電極)4と導電性シール44(図15)によって電気的に接続されており、これにより、共通電極7はタッチセンサの検出電極として機能する。この例では、駆動電極6と共通電極7の間の容量の変化を検出することで、タッチの有無を検出することができる。
 図14(b)はタッチセンサ基本パターンTBPを示す図であり、図14(a)は図14(b)の一部P1を拡大した図である。タッチセンサの各駆動電極と各検出電極から形成されるタッチセンサ基本パターンTBPのサイズは、例えば1mm~6mm程度であり、駆動電極の位置検出単位6uには、ブラックマトリックス8に沿って延びる複数の駆動電極6が含まれる。また、共通電極4と同様に、検出電極である共通電極7の分割を表示用信号配線の上で行っており、分割された共通電極4および7それぞれが、検出電極の位置検出単位4uおよび7uとなる。
 図15(a)はTFT基板20を示し、図15(b)は、対向基板10とTFT基板20を張り合わせた構成を示している。圧着時に圧着方向にのみ導電する導電性シール(導電性ビーズを含む)44等を用い、TFT基板20と対向基板10の貼り合せ時に、TFT基板20側の共通電極4と対向基板10側の共通電極7とが電気的に接続される。共通電極7は、共通電極4と液晶層30および絶縁層23によるキャパシタンスで結合しているため、共通電極7で検出される信号がFPCを通ってタッチ検出部37に届くまでの時定数を大幅に小さくすることができる。また、補助配線4aによって共通電極4の抵抗値を下げることにより、時定数をさらに小さくすることができる。
 図16は、本実施形態の縦電界方式のタッチセンサ付き表示装置100を示す図である。図16(a)は、画素電極2と共通電極7との間に電圧を印加していない(電界が発生していない)状態を示し、図16(b)は、画素電極2と共通電極7との間に電圧を印加した(電界が発生している)状態を示している。画素電極2と共通電極7との間に電圧を印加したとき、図16(b)のように画素電極2と共通電極7の間の電気力線によって液晶が傾き、表示を変化させる。また、この構成では、共通電極7よりも上層に駆動電極6がある為、駆動電極6による表示への影響は無く、表示品位を高くすることができる。
 (実施形態2)
 次に、本発明の実施形態2に係るタッチセンサ付き表示装置100を説明する。図17は、本実施形態のタッチセンサ付き表示装置100のTFT基板20を示す図であり、図18(a)は図17に示すAA’線に対応した断面図であり、図18(b)は図17に示すBB’線に対応した断面図である。
 この例では、共通電極4が画素電極2よりも液晶層30側に設けられている。タッチセンサの駆動電極6と検出電極(共通電極)4の間に画素電極2が無い為、液晶表示によって画素電極2と共通電極4間の容量が異なることがタッチ検出動作に影響しない。これにより、図11(b)に示す出力電圧Voutによるタッチ検出動作の精度を高くすることができる。
 (実施形態3)
 次に、本発明の実施形態3に係るタッチセンサ付き表示装置100を説明する。図19は、本実施形態のタッチセンサ付き表示装置100のTFT基板20を示す図であり、図20(a)は図19に示すAA’線に対応した断面図であり、図20(b)は図19に示すBB’線に対応した断面図である。
 この例では、カラーフィルタ層13上に設けた樹脂層15の液晶層側に駆動電極6を設けている。また、駆動電極6と対向する検出電極(共通電極)4の一部パターン4Cを取り除いている。すなわち、平面視で、TFT基板側の検出電極の駆動電極と重なる領域をパターニングしており、これにより駆動電極6との容量負荷を低減させることができる。カラーフィルタ層13の上に樹脂層15を設けて表面を平たん化した後、その上に駆動電極6を形成する為、対向基板10上でのパターニングを高精度に行う事ができる。
 (実施形態4)
 次に、本発明の実施形態4に係るタッチセンサ付き表示装置100を説明する。図21(a)は本実施形態の対向基板10を示す図であり、図21(b)は図21(a)の部分P4を拡大した図である。図22(a)は本実施形態のTFT基板20を示す図であり、図22(b)は、対向基板10とTFT基板20とを張り合わせた構成を示す図である。
 対向基板10側のタッチセンサ電極用の配線を金属配線で行う。金属配線としては、例えばMo、Al、Ti、Ag、Cu、Wの配線や、これらの材料を積層した配線が挙げられる。
 上記実施形態1~3においてTFT基板20側に設けていた検出電極配線および共通電極の低抵抗化に用いた補助配線層を除去し、対向基板10上にタッチセンサ駆動電極配線43と共通電極補助配線47aを形成する。また、対向基板10上に駆動電極パッド43pおよび検出電極補助配線パッド47pを形成する。
 TFT基板20側の駆動電極配線43、検出電極配線47は、走査線配線と同一層で形成されている事が望ましい。TFT基板20の駆動電極配線43、検出電極配線47は、圧着時に圧着方向にのみ導電する導電性シール(導電性ビーズを含む)を用いて、対向基板10上に用意される駆動電極配線43、共通電極補助配線47aに接続される。液晶表示用の配線及びタッチパネル用の配線は、貼り合せ後の液晶表示装置の一端の端子部に接続する。
 なお、対向基板上の駆動電極配線43はTFT基板20上に形成されたゲートドライバ上を通ってもよい。また、TFT基板20上の検出電極配線47はTFT基板20上に形成された信号線接続配線と重なる領域を通ってもよい。
 本実施形態では、駆動電極を透明電極で形成した場合に比べ、抵抗値を1/10~1/1000にする事が出来るので、大型の液晶表示装置にインセル型タッチパネルを形成する事が可能である。また、TFT基板20に駆動配線用に設けていた補助配線を、本実施形態では対向基板10のタッチセンサ電極と同一層に形成する事が可能である。
 (実施形態5)
 次に、本発明の実施形態5に係るタッチセンサ付き表示装置100を説明する。図23(b)は本実施形態の対向基板10とTFT基板20を張り合わせた構成を示し、図23(a)は図23(b)の一部P5を拡大した図である。図24(a)は、別に用意した基板12(ガラス基板もしくはPET等の樹脂基板)上に形成された検出電極5と、駆動電極パターンに対応したフローティング電極17とを示す図である。図24(b)は、図23(b)の構成に基板12を張り合わせた構成を示す図である。
 本実施形態においても、表示領域ではタッチセンサ駆動電極6をブラックマトリクス8の太い配線下に配置する。TFT基板20にタッチパネル駆動電極用の配線を形成し、液晶層を挟んでTFT基板20と対向基板10を接着する導電性シールによって接続する。タッチセンサ駆動電極用配線は、TFT基板20に形成されたゲートドライバ上に形成する事が望ましい。
 本実施形態では、別に用意した基板12に検出電極5を設ける。検出電極5は透明電極で形成される。また、他の電極と導通しないフローティング電極17を、駆動電極パターンに対応した形状で基板12に設けてもよい。
 図25(a)は、本実施形態のネガタイプの液晶を用いたタッチセンサ付き表示装置100を示す図である。図26(a)は、本実施形態のポジタイプの液晶を用いたタッチセンサ付き表示装置100を示す図である。図27(a)は、本実施形態の縦電界モードでネガタイプの液晶を用いたタッチセンサ付き表示装置100を示す図である。図27(a)の例では、画像表示用の共通電極7を対向基板10側に設け、TFT基板には補助容量9を設けてもよい。
 本実施形態では、対向基板10の観察者側に、上記検出電極5が設けられた基板12が接着層16を介して設けられている。本実施形態では、これら対向基板10に設けられた検出電極5と駆動電極6とでタッチセンサを構成し、タッチ検出を行う。なお、図25(b)、図26(b)、図28に示すように、検出電極5がガラス基板11に直接設けられていてもよい。
 駆動電極6に電圧を印加すると、ポジタイプの液晶の場合は図26のように駆動電極6と共通電極4間の電気力線によって液晶が周辺の液晶と異なる向きに向かうが、ネガタイプの液晶の場合、図25のように駆動電極6と共通電極4間の電気力線の方向に液晶の長軸方向が垂直である為、変化しない。いずれの場合もブラックマトリクス8で遮光された領域なので、表示への影響は少ないが、タッチセンサ駆動が液晶の挙動にほぼ影響しないネガタイプの液晶を用いることが好ましい。
 また、縦電界モードの液晶を用いた場合、図27(b)のように画素電極2と共通電極7の間の電気力線によって液晶が傾き、表示を変化させる。また、共通電極7よりも上層に駆動電極6がある為、駆動電極6による表示への影響は無く、表示品位を高くすることができる。
 なお、タッチセンサ駆動電極6はシート抵抗100Ω以下の透明電極で形成されるか、Mo、Al、Ti、Ag、Cu、Wのメタル層や、これらの積層で形成される事が望ましい。また、検出電極5としては、透明電極を用いてもよいし、金属で形成されたメッシュ電極を用いてもよい。
 (実施形態6)
 次に、図29から図31を参照して、駆動電極パターンについて説明する。
 図29(b)は、タッチセンサ基本パターンTBP(図6)の大きさと同じ幅で設けた駆動電極6を示す図であり、図29(a)は、タッチセンサ基本パターンTBP(図6)の大きさより狭い幅で設けた駆動電極6を示す図である。図29(a)に示すように、駆動電極6の幅W3は、タッチセンサ基本パターンTBPの大きさより狭くてもよく、例えば、タッチセンサ基本パターンTBPの大きさの10から100%であることが望ましい。また、この場合、駆動電極6が設けられていない領域にはフローティング電極を設けなくてもよい。
 また、図30に示すように、ブラックマトリクス8の横方向の線に対して、1本おきに駆動電極6を設けてもよい。また、この場合の駆動電極6の幅W3は、タッチセンサ基本パターンTBPの大きさと同じでもよいし狭くてもよい。
 図31は、駆動電極6と検出電極4との間に発生する電気力線61を示す図である。対向基板10に設けた駆動電極6は、ブラックマトリクス8の太い配線下にのみパターンを形成した為、駆動電極6を全面に設けても隙間を通してTFT基板の検出電極4と電気力線が結合する。そこで、駆動電極6の密度を変化させる事で、タッチ/非タッチ検出を行う距離に対して容量変化が検出しやすいように調整することができる。また、駆動電極パターンの密度、幅を変更する事で、対向基板10からのタッチ検出位置高さを調整する事が可能となる。
 なお、本実施形態では、実施形態1におけるフローティングパターンを除去してもよい。これにより、フローティングパターンが静電気を帯びる事を避けることができる。
 本明細書は、以下の項目に記載のタッチセンサ付き表示装置を開示している。
[項目1]
 複数の画素電極を有する画素基板と、前記画素基板に対向する対向基板とを備えたタッチセンサ付き表示装置であって、
 前記タッチセンサ付き表示装置は、
 第1方向および前記第1方向とは異なる第2方向に延びるブラックマトリクスと、
 前記第1方向に延びるタッチセンサ電極と
 をさらに備え、
 前記対向基板の平面方向に垂直な方向から前記対向基板を見たときの平面視において、
  前記ブラックマトリクスの前記第1方向に延びる線の前記第2方向の幅は、前記ブラックマトリクスの前記第2方向に延びる線の前記第1方向の幅よりも広く、
  前記タッチセンサ電極の前記第1方向に延びる線の前記第2方向の幅は、前記ブラックマトリクスの前記第1方向に延びる線の前記第2方向の幅よりも狭く、
  前記タッチセンサ電極の前記第1方向に延びる線と、前記ブラックマトリクスの前記第1方向に延びる線とは重なっている、タッチセンサ付き表示装置。
 項目1に記載のタッチセンサ付き表示装置によれば、タッチセンサ電極に起因する表示品位の低下を抑制することができる。
[項目2]
 前記平面視において、前記タッチセンサ電極の前記第1方向に延びる線は、前記ブラックマトリクスの前記第1方向に延びる線の前記第2方向の両端部よりも内側に位置して重なっている、項目1に記載のタッチセンサ付き表示装置。
 項目2に記載のタッチセンサ付き表示装置によれば、タッチセンサ電極に起因する表示品位の低下を抑制することができる。
[項目3]
 前記タッチセンサ電極は透明樹脂で覆われている、項目1に記載のタッチセンサ付き表示装置。
 項目3に記載のタッチセンサ付き表示装置によれば、タッチセンサ電極の駆動電圧の液晶層への影響を小さくすることができる。
[項目4]
 前記タッチセンサ電極は透明電極であり、前記タッチセンサ電極のシート抵抗値は1から100Ω/□である、項目1に記載のタッチセンサ付き表示装置。
 項目4に記載のタッチセンサ付き表示装置によれば、ブラックマトリクス下にタッチセンサ電極を形成したことでタッチセンサ電極は表示に影響しないので、透明電極の厚さを厚くしてシート抵抗を小さくする事ができる。
[項目5]
 前記対向基板の複数の画素部のうち、前記タッチセンサ電極が設けられていない画素領域には、電気的にフローティングしたダミー電極が設けられている、項目1に記載のタッチセンサ付き表示装置。
[項目6]
 前記タッチセンサ電極は前記対向基板に設けられており、タッチセンサの駆動電極として用い、
 前記画素基板に設けられた共通電極を前記タッチセンサの検出電極として用いる、項目1に記載のタッチセンサ付き表示装置。
[項目7]
 前記画素基板に設けられた信号配線上において前記共通電極は分離されている、項目6に記載のタッチセンサ付き表示装置。
[項目8]
 前記共通電極の電荷量に対応した信号が入力される積分回路をさらに備え、
 前記積分回路の基準電圧は、画像書き込み期間に前記共通電極に印加する電圧と同じである、項目6または7に記載のタッチセンサ付き表示装置。
 項目8に記載のタッチセンサ付き表示装置によれば、共通電極の電位がタッチセンサ駆動時にも変化しないので画像への影響を小さくすることができる。
[項目9]
 前記積分回路は、シングルエンド型のオペアンプを有する、項目8に記載のタッチセンサ付き表示装置。
[項目10]
 前記積分回路は、完全差動オペアンプを有し、
 前記完全差動オペアンプは、互いに隣接する前記共通電極の電荷量に対応した信号が入力される、項目8に記載のタッチセンサ付き表示装置。
[項目11]
 前記共通電極に電気的に接続された補助配線が、前記画素基板に設けられた信号配線と重なるように設けられている、項目6から10のいずれかに記載のタッチセンサ付き表示装置。
 項目11に記載のタッチセンサ付き表示装置によれば、容量負荷の大きい共通電極に安定して画像信号を送ることができるとともに、タッチセンサ駆動時にも高速に応答することができる。
[項目12]
 前記タッチセンサ付き表示装置は、横電界方式の液晶表示装置である、項目1から10のいずれかに記載のタッチセンサ付き表示装置。
[項目13]
 前記タッチセンサ付き表示装置は、横電界方式でネガ型液晶を駆動する液晶表示装置である、項目1から12のいずれかに記載のタッチセンサ付き表示装置。
[項目14]
 前記タッチセンサの駆動電極用配線および前記タッチセンサの検出電極用配線が、前記画素基板に設けられている、項目6から13のいずれかに記載のタッチセンサ付き表示装置。
[項目15]
 前記共通電極に電気的に接続された補助配線が、前記画素基板に設けられた信号配線と重なるように設けられており、
 前記駆動電極用配線および前記検出電極用配線は、前記補助配線と同じ層に設けられている、項目14に記載のタッチセンサ付き表示装置。
[項目16]
 前記駆動電極用配線は、前記画素基板に設けられたゲートドライバと重なるように設けられている、項目14または15に記載のタッチセンサ付き表示装置。
[項目17]
 前記検出電極用配線は、前記画素基板に設けられた信号線接続配線と重なるように設けられている、項目14から16のいずれかに記載のタッチセンサ付き表示装置。
[項目18]
 前記画素基板と前記対向基板とを接着するシール部は導電性材料を含み、
 前記画素基板に設けられた前記駆動電極用配線と、前記対向基板に設けられた前記駆動電極とは、前記シール部を介して電気的に接続される、項目14から17のいずれかに記載のタッチセンサ付き表示装置。
 項目18に記載のタッチセンサ付き表示装置によれば、タッチセンサ用配線による額縁増を防ぐことができる。
[項目19]
 前記画素基板の一端に画像表示用端子およびタッチセンサ駆動用端子が設けられている、項目14から18のいずれかに記載のタッチセンサ付き表示装置。
 項目19に記載のタッチセンサ付き表示装置によれば、FPC実装部を一部のみに設けることができる。
[項目20]
 前記タッチセンサ電極は、メタル電極、および透明電極とメタル層の積層体のうちの一方である、項目1から19のいずれかに記載のタッチセンサ付き表示装置。
 項目20に記載のタッチセンサ付き表示装置によれば、応答時間が短い駆動信号を送信することができるとともに、大型液晶表示装置に対応することができる。
[項目21]
 タッチ位置検出動作は画像表示動作と同期し、画像書き込みが無い期間に前記タッチ位置検出動作を行う、項目1から20のいずれかに記載のタッチセンサ付き表示装置。
[項目22]
 前記タッチ位置検出動作はM系列で形成した直交符号信号を用いて行う、項目1から21のいずれかに記載のタッチセンサ付き表示装置。
[項目23]
 前記タッチセンサ電極は前記対向基板に設けられており、タッチセンサの駆動電極として用い、
 前記対向基板における前記タッチセンサの駆動電極よりもタッチ面側の位置に、前記タッチセンサの検出電極が設けられている、項目1から5のいずれかに記載のタッチセンサ付き表示装置。
[項目24]
 前記タッチセンサ付き表示装置は、横電界方式の液晶表示装置である、項目23に記載のタッチセンサ付き表示装置。
[項目25]
 前記タッチセンサ付き表示装置は、横電界方式でネガ型液晶を駆動する液晶表示装置である、項目23または24に記載のタッチセンサ付き表示装置。
[項目26]
 前記タッチセンサ付き表示装置は、横電界方式でポジ型液晶を駆動する液晶表示装置である、項目23または24に記載のタッチセンサ付き表示装置。
[項目27]
 前記タッチセンサ付き表示装置は、縦電界方式でネガ型液晶を駆動する液晶表示装置である、項目23に記載のタッチセンサ付き表示装置。
 本発明の装置は、タッチ操作を検出する電子機器の分野において特に有用である。
 100 タッチセンサ付き表示装置
 2 画素電極
 4 共通電極(検出電極)
 5 検出電極
 4a 補助配線
 4b スリット
 4u 検出電極の位置検出単位
 6 駆動電極
 6u 駆動電極の位置検出単位
 6d ダミー電極
 7 共通電極(対向電極)
 8 ブラックマトリクス
 9 補助容量
 10 対向基板
 11、21 ガラス基板
 12 ガラス基板もしくはPET等の樹脂基板
 13 カラーフィルタ層
 15 樹脂層
 16 接着層
 17 フローティング電極
 20 画素基板
 23、25 絶縁層
 30 液晶層
 31 ゲートドライバ
 33 ソースドライバ
 35 駆動電極ドライバ
 37 タッチ検出部
 41 信号線接続配線
 43 駆動電極配線
 43p 駆動電極パッド
 45 導電性シール
 47 検出電極配線
 47a 検出電極補助配線
 47p 駆動電極パッド
 51 積分回路
 53 オペアンプ
 55 完全差動アンプ
 61 電気力線
 SL 画素信号線
 GL 走査信号線

Claims (27)

  1.  複数の画素電極を有する画素基板と、前記画素基板に対向する対向基板とを備えたタッチセンサ付き表示装置であって、
     前記タッチセンサ付き表示装置は、
     第1方向および前記第1方向とは異なる第2方向に延びるブラックマトリクスと、
     前記第1方向に延びるタッチセンサ電極と
     をさらに備え、
     前記対向基板の平面方向に垂直な方向から前記対向基板を見たときの平面視において、
      前記ブラックマトリクスの前記第1方向に延びる線の前記第2方向の幅は、前記ブラックマトリクスの前記第2方向に延びる線の前記第1方向の幅よりも広く、
      前記タッチセンサ電極の前記第1方向に延びる線の前記第2方向の幅は、前記ブラックマトリクスの前記第1方向に延びる線の前記第2方向の幅よりも狭く、
      前記タッチセンサ電極の前記第1方向に延びる線と、前記ブラックマトリクスの前記第1方向に延びる線とは重なっている、タッチセンサ付き表示装置。
  2.  前記平面視において、前記タッチセンサ電極の前記第1方向に延びる線は、前記ブラックマトリクスの前記第1方向に延びる線の前記第2方向の両端部よりも内側に位置して重なっている、請求項1に記載のタッチセンサ付き表示装置。
  3.  前記タッチセンサ電極は透明樹脂で覆われている、請求項1に記載のタッチセンサ付き表示装置。
  4.  前記タッチセンサ電極は透明電極であり、前記タッチセンサ電極のシート抵抗値は1から100Ω/□である、請求項1に記載のタッチセンサ付き表示装置。
  5.  前記対向基板の複数の画素部のうち、前記タッチセンサ電極が設けられていない画素領域には、電気的にフローティングしたダミー電極が設けられている、請求項1に記載のタッチセンサ付き表示装置。
  6.  前記タッチセンサ電極は前記対向基板に設けられており、タッチセンサの駆動電極として用い、
     前記画素基板に設けられた共通電極を前記タッチセンサの検出電極として用いる、請求項1に記載のタッチセンサ付き表示装置。
  7.  前記画素基板に設けられた信号配線上において前記共通電極は分離されている、請求項6に記載のタッチセンサ付き表示装置。
  8.  前記共通電極の電荷量に対応した信号が入力される積分回路をさらに備え、
     前記積分回路の基準電圧は、画像書き込み期間に前記共通電極に印加する電圧と同じである、請求項6または7に記載のタッチセンサ付き表示装置。
  9.  前記積分回路は、シングルエンド型のオペアンプを有する、請求項8に記載のタッチセンサ付き表示装置。
  10.  前記積分回路は、完全差動オペアンプを有し、
     前記完全差動オペアンプは、互いに隣接する前記共通電極の電荷量に対応した信号が入力される、請求項8に記載のタッチセンサ付き表示装置。
  11.  前記共通電極に電気的に接続された補助配線が、前記画素基板に設けられた信号配線と重なるように設けられている、請求項6から10のいずれかに記載のタッチセンサ付き表示装置。
  12.  前記タッチセンサ付き表示装置は、横電界方式の液晶表示装置である、請求項1から10のいずれかに記載のタッチセンサ付き表示装置。
  13.  前記タッチセンサ付き表示装置は、横電界方式でネガ型液晶を駆動する液晶表示装置である、請求項1から12のいずれかに記載のタッチセンサ付き表示装置。
  14.  前記タッチセンサの駆動電極用配線および前記タッチセンサの検出電極用配線が、前記画素基板に設けられている、請求項6から13のいずれかに記載のタッチセンサ付き表示装置。
  15.  前記共通電極に電気的に接続された補助配線が、前記画素基板に設けられた信号配線と重なるように設けられており、
     前記駆動電極用配線および前記検出電極用配線は、前記補助配線と同じ層に設けられている、請求項14に記載のタッチセンサ付き表示装置。
  16.  前記駆動電極用配線は、前記画素基板に設けられたゲートドライバと重なるように設けられている、請求項14または15に記載のタッチセンサ付き表示装置。
  17.  前記検出電極用配線は、前記画素基板に設けられた信号線接続配線と重なるように設けられている、請求項14から16のいずれかに記載のタッチセンサ付き表示装置。
  18.  前記画素基板と前記対向基板とを接着するシール部は導電性材料を含み、
     前記画素基板に設けられた前記駆動電極用配線と、前記対向基板に設けられた前記駆動電極とは、前記シール部を介して電気的に接続される、請求項14から17のいずれかに記載のタッチセンサ付き表示装置。
  19.  前記画素基板の一端に画像表示用端子およびタッチセンサ駆動用端子が設けられている、請求項14から18のいずれかに記載のタッチセンサ付き表示装置。
  20.  前記タッチセンサ電極は、メタル電極、および透明電極とメタル層の積層体のうちの一方である、請求項1から19のいずれかに記載のタッチセンサ付き表示装置。
  21.  タッチ位置検出動作は画像表示動作と同期し、画像書き込みが無い期間に前記タッチ位置検出動作を行う、請求項1から20のいずれかに記載のタッチセンサ付き表示装置。
  22.  前記タッチ位置検出動作はM系列で形成した直交符号信号を用いて行う、請求項1から21のいずれかに記載のタッチセンサ付き表示装置。
  23.  前記タッチセンサ電極は前記対向基板に設けられており、タッチセンサの駆動電極として用い、
     前記対向基板における前記タッチセンサの駆動電極よりもタッチ面側の位置に、前記タッチセンサの検出電極が設けられている、請求項1から5のいずれかに記載のタッチセンサ付き表示装置。
  24.  前記タッチセンサ付き表示装置は、横電界方式の液晶表示装置である、請求項23に記載のタッチセンサ付き表示装置。
  25.  前記タッチセンサ付き表示装置は、横電界方式でネガ型液晶を駆動する液晶表示装置である、請求項23または24に記載のタッチセンサ付き表示装置。
  26.  前記タッチセンサ付き表示装置は、横電界方式でポジ型液晶を駆動する液晶表示装置である、請求項23または24に記載のタッチセンサ付き表示装置。
  27.  前記タッチセンサ付き表示装置は、縦電界方式でネガ型液晶を駆動する液晶表示装置である、請求項23に記載のタッチセンサ付き表示装置。
PCT/JP2014/072048 2013-10-22 2014-08-22 タッチセンサ付き表示装置 WO2015059995A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480058034.4A CN105765498B (zh) 2013-10-22 2014-08-22 带触摸传感器的显示装置
US15/030,927 US9864457B2 (en) 2013-10-22 2014-08-22 Display device with touch sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-219660 2013-10-22
JP2013219660 2013-10-22

Publications (1)

Publication Number Publication Date
WO2015059995A1 true WO2015059995A1 (ja) 2015-04-30

Family

ID=52992603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072048 WO2015059995A1 (ja) 2013-10-22 2014-08-22 タッチセンサ付き表示装置

Country Status (3)

Country Link
US (1) US9864457B2 (ja)
CN (1) CN105765498B (ja)
WO (1) WO2015059995A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105224131A (zh) * 2015-10-08 2016-01-06 上海中航光电子有限公司 阵列基板、触控屏和触控显示装置
WO2016189426A1 (ja) * 2015-05-28 2016-12-01 株式会社半導体エネルギー研究所 タッチパネル
WO2017013844A1 (ja) * 2015-07-17 2017-01-26 パナソニック液晶ディスプレイ株式会社 タッチ検出機能付表示装置
WO2017043421A1 (ja) * 2015-09-09 2017-03-16 シャープ株式会社 位置入力機能付き表示装置
JP2017207614A (ja) * 2016-05-18 2017-11-24 株式会社ジャパンディスプレイ 表示装置及びセンサ装置
JP2017227840A (ja) * 2016-06-24 2017-12-28 株式会社ジャパンディスプレイ 表示装置
WO2018092758A1 (ja) * 2016-11-21 2018-05-24 シャープ株式会社 タッチセンサ付き液晶表示装置およびその駆動方法
JP2018156588A (ja) * 2017-03-21 2018-10-04 株式会社ジャパンディスプレイ 表示装置
US10388676B2 (en) 2015-08-10 2019-08-20 Sharp Kabushiki Kaisha Active matrix substrate and method for producing same, and in-cell touch panel-type display device
US10651209B2 (en) 2016-01-27 2020-05-12 Sharp Kabushiki Kaisha Semiconductor device and method for manufacturing same
JP2020107334A (ja) * 2018-12-27 2020-07-09 エルジー ディスプレイ カンパニー リミテッド タッチディスプレイ装置、共通駆動回路、及び駆動方法
JP2020529640A (ja) * 2017-08-09 2020-10-08 京東方科技集團股▲ふん▼有限公司Boe Technology Group Co.,Ltd. タッチ制御表示パネル
JP2021006919A (ja) * 2015-05-29 2021-01-21 株式会社半導体エネルギー研究所 半導体装置
US10991730B2 (en) 2018-07-31 2021-04-27 Sharp Kabushiki Kaisha Active matrix substrate
US11143900B2 (en) 2019-10-28 2021-10-12 Sharp Kabushiki Kaisha Active matrix substrate, method for manufacturing same and in-cell touch panel display device

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016024292A (ja) 2014-07-18 2016-02-08 株式会社ジャパンディスプレイ センサ付き表示装置
US9293102B1 (en) 2014-10-01 2016-03-22 Apple, Inc. Display having vertical gate line extensions and minimized borders
TWI573055B (zh) * 2015-03-26 2017-03-01 鴻海精密工業股份有限公司 內嵌式觸控顯示面板
JP6605146B2 (ja) * 2016-07-28 2019-11-13 シャープ株式会社 タッチパネル付き表示装置
KR102006095B1 (ko) * 2016-09-17 2019-07-31 선전 구딕스 테크놀로지 컴퍼니, 리미티드 압력 검출 장치 및 스마트 단말기
CN106339134B (zh) * 2016-11-25 2020-11-24 京东方科技集团股份有限公司 一种触控基板、触控面板及触控显示装置
KR102477579B1 (ko) * 2017-11-15 2022-12-13 엘지디스플레이 주식회사 터치 센서를 갖는 전자장치 및 표시장치
US10747358B2 (en) 2018-02-22 2020-08-18 Wacom Co., Ltd. Position detection circuit and position detection method
CN110187531B (zh) * 2019-05-29 2020-12-08 深圳市华星光电半导体显示技术有限公司 显示面板及其检测方式
CN111474785A (zh) * 2020-05-12 2020-07-31 深圳市华星光电半导体显示技术有限公司 液晶显示面板
TWI828127B (zh) 2022-04-27 2024-01-01 元太科技工業股份有限公司 觸控顯示裝置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009259063A (ja) * 2008-04-18 2009-11-05 Gunze Ltd タッチパネルおよびその製造方法
JP2012079238A (ja) * 2010-10-05 2012-04-19 Fujifilm Corp センサー電極アレイ、センサー電極アレイの使用方法及び静電容量方式タッチパネル
WO2013018625A1 (ja) * 2011-07-29 2013-02-07 シャープ株式会社 表示装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7502088B2 (en) * 2005-03-17 2009-03-10 Fujifilm Corporation Liquid crystal display device having an antiglare layer
JP4816668B2 (ja) 2008-03-28 2011-11-16 ソニー株式会社 タッチセンサ付き表示装置
KR20120017616A (ko) * 2010-08-19 2012-02-29 엘지디스플레이 주식회사 터치 스크린이 내장된 액정 표시장치
KR101230196B1 (ko) * 2010-10-29 2013-02-06 삼성디스플레이 주식회사 터치 스크린 패널 내장형 액정표시장치
JP5659073B2 (ja) 2011-04-22 2015-01-28 株式会社ジャパンディスプレイ タッチ検出器付き表示パネル、および電子機器
US20130027317A1 (en) * 2011-07-28 2013-01-31 Raydium Semiconductor Corporation Method for providing digital sensing data for touch panel apparatus
KR101805923B1 (ko) * 2011-08-04 2017-12-08 엘지디스플레이 주식회사 터치센서 일체형 표시장치
KR101859478B1 (ko) * 2011-11-30 2018-06-29 엘지디스플레이 주식회사 터치패널을 구비한 액정표시소자
CN103293780B (zh) * 2012-08-10 2016-12-21 上海天马微电子有限公司 触控液晶显示装置
CN102830556B (zh) * 2012-08-31 2015-08-19 北京京东方光电科技有限公司 一种触摸显示面板及显示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009259063A (ja) * 2008-04-18 2009-11-05 Gunze Ltd タッチパネルおよびその製造方法
JP2012079238A (ja) * 2010-10-05 2012-04-19 Fujifilm Corp センサー電極アレイ、センサー電極アレイの使用方法及び静電容量方式タッチパネル
WO2013018625A1 (ja) * 2011-07-29 2013-02-07 シャープ株式会社 表示装置

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10613690B2 (en) 2015-05-28 2020-04-07 Semiconductor Energy Laboratory Co., Ltd. Touch panel
WO2016189426A1 (ja) * 2015-05-28 2016-12-01 株式会社半導体エネルギー研究所 タッチパネル
JPWO2016189426A1 (ja) * 2015-05-28 2018-03-29 株式会社半導体エネルギー研究所 タッチパネル
JP7062734B2 (ja) 2015-05-29 2022-05-06 株式会社半導体エネルギー研究所 半導体装置
JP2021006919A (ja) * 2015-05-29 2021-01-21 株式会社半導体エネルギー研究所 半導体装置
WO2017013844A1 (ja) * 2015-07-17 2017-01-26 パナソニック液晶ディスプレイ株式会社 タッチ検出機能付表示装置
JP2017027224A (ja) * 2015-07-17 2017-02-02 パナソニック液晶ディスプレイ株式会社 タッチ検出機能付表示装置
US10795514B2 (en) 2015-07-17 2020-10-06 Panasonic Liquid Crystal Display Co., Ltd. Display device having touch detection function
US10388676B2 (en) 2015-08-10 2019-08-20 Sharp Kabushiki Kaisha Active matrix substrate and method for producing same, and in-cell touch panel-type display device
WO2017043421A1 (ja) * 2015-09-09 2017-03-16 シャープ株式会社 位置入力機能付き表示装置
JPWO2017043421A1 (ja) * 2015-09-09 2018-07-26 シャープ株式会社 位置入力機能付き表示装置
CN105224131A (zh) * 2015-10-08 2016-01-06 上海中航光电子有限公司 阵列基板、触控屏和触控显示装置
US10651209B2 (en) 2016-01-27 2020-05-12 Sharp Kabushiki Kaisha Semiconductor device and method for manufacturing same
US10564747B2 (en) 2016-05-18 2020-02-18 Japan Display Inc. Display device and sensor device
JP2017207614A (ja) * 2016-05-18 2017-11-24 株式会社ジャパンディスプレイ 表示装置及びセンサ装置
JP2017227840A (ja) * 2016-06-24 2017-12-28 株式会社ジャパンディスプレイ 表示装置
US10866449B2 (en) 2016-11-21 2020-12-15 Sharp Kabushiki Kaisha Liquid crystal display apparatus with touch sensor and method for driving same
WO2018092758A1 (ja) * 2016-11-21 2018-05-24 シャープ株式会社 タッチセンサ付き液晶表示装置およびその駆動方法
US10838247B2 (en) 2017-03-21 2020-11-17 Japan Display Inc. Display device
US11269226B2 (en) 2017-03-21 2022-03-08 Japan Display Inc. Display device
JP2018156588A (ja) * 2017-03-21 2018-10-04 株式会社ジャパンディスプレイ 表示装置
US11747683B2 (en) 2017-03-21 2023-09-05 Japan Display Inc. Display device
JP2020529640A (ja) * 2017-08-09 2020-10-08 京東方科技集團股▲ふん▼有限公司Boe Technology Group Co.,Ltd. タッチ制御表示パネル
JP7052966B2 (ja) 2017-08-09 2022-04-12 京東方科技集團股▲ふん▼有限公司 タッチ制御表示パネル
US10991730B2 (en) 2018-07-31 2021-04-27 Sharp Kabushiki Kaisha Active matrix substrate
JP2020107334A (ja) * 2018-12-27 2020-07-09 エルジー ディスプレイ カンパニー リミテッド タッチディスプレイ装置、共通駆動回路、及び駆動方法
US10955951B2 (en) 2018-12-27 2021-03-23 Lg Display Co., Ltd. Touch display device, common driving circuit, and driving method
US11143900B2 (en) 2019-10-28 2021-10-12 Sharp Kabushiki Kaisha Active matrix substrate, method for manufacturing same and in-cell touch panel display device

Also Published As

Publication number Publication date
CN105765498B (zh) 2018-11-20
CN105765498A (zh) 2016-07-13
US9864457B2 (en) 2018-01-09
US20160253030A1 (en) 2016-09-01

Similar Documents

Publication Publication Date Title
WO2015059995A1 (ja) タッチセンサ付き表示装置
KR102594555B1 (ko) 터치 디스플레이 장치
US10409416B2 (en) Array substrate, color filter substrate, touch control display device and methods for driving the same
CN102841716B (zh) 一种电容式内嵌触摸屏及显示装置
KR101520546B1 (ko) 정전식 인셀 터치 패널 및 표시 장치
EP2728450B1 (en) Capacitive in-cell touch screen, driving method for the same, and display apparatus
CN103164076B (zh) 具有集成式触摸屏的显示装置
JP5138529B2 (ja) タッチパネル
JP5968243B2 (ja) 入力装置、表示装置および電子機器
JP6710531B2 (ja) センサ付き表示装置及びセンサ装置
US20140168154A1 (en) Capacitive in-cell touch panel and display device
TWI514214B (zh) 觸控顯示面板及其驅動方法
WO2018092758A1 (ja) タッチセンサ付き液晶表示装置およびその駆動方法
KR101360782B1 (ko) 터치 스크린 일체형 표시장치
KR102411579B1 (ko) 터치 디스플레이 장치
JP2008009750A (ja) タッチパネル付き液晶表示素子
JP2009086184A (ja) タッチパネル付き液晶表示装置
JP2010113498A (ja) 表示装置
JP5408681B2 (ja) 表示装置
JP5063561B2 (ja) タッチパネル
JP2010128676A (ja) 表示装置および表示装置の製造方法
CN202711227U (zh) 一种电容式内嵌触摸屏及显示装置
TWI633369B (zh) 顯示裝置
JP2014021865A (ja) タッチパネル付液晶表示装置及びタッチパネル付液晶表示装置の製造方法
CN102472908B (zh) 输入功能一体化液晶显示装置及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14856290

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15030927

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14856290

Country of ref document: EP

Kind code of ref document: A1