[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015059833A1 - スクロール流体機械 - Google Patents

スクロール流体機械 Download PDF

Info

Publication number
WO2015059833A1
WO2015059833A1 PCT/JP2013/079033 JP2013079033W WO2015059833A1 WO 2015059833 A1 WO2015059833 A1 WO 2015059833A1 JP 2013079033 W JP2013079033 W JP 2013079033W WO 2015059833 A1 WO2015059833 A1 WO 2015059833A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
frame
scroll
valve
hole
Prior art date
Application number
PCT/JP2013/079033
Other languages
English (en)
French (fr)
Inventor
祐司 ▲高▼村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2015543680A priority Critical patent/JP6120982B2/ja
Priority to PCT/JP2013/079033 priority patent/WO2015059833A1/ja
Publication of WO2015059833A1 publication Critical patent/WO2015059833A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/028Means for improving or restricting lubricant flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/023Lubricant distribution through a hollow driving shaft

Definitions

  • the present invention relates to a scroll fluid machine such as a scroll compressor and a scroll pump.
  • the scroll compressor is provided with an oil pump that is operated by the rotation of the main shaft and pumps up the oil stored in the oil sump at the bottom of the shell.
  • the oil pumped up by the oil pump is supplied to sliding parts such as a rocking bearing, a main bearing, and a sub-bearing through an oil supply vertical hole penetrating the main shaft in the longitudinal direction.
  • the oil that has finished lubricating the rocking bearing is stored inside the frame and used for lubrication of the Oldham coupling and the thrust surface of the rocking scroll, cooling the rocking bearing, and the main bearing.
  • Patent Document 1 discloses a scroll compressor provided with a bypass hole that branches from an oil supply hole of a main shaft and opens to the outside of the main shaft, and a valve that opens and closes the bypass hole with a predetermined hydraulic pressure.
  • the valve is opened with a hydraulic pressure exceeding a predetermined pressure, and excess oil is discharged from the bypass hole and returned to the oil sump.
  • the fluid taken into the shell from the suction pipe is taken into the frame through the suction port.
  • the space in the frame is provided with fixed vortex and oscillating vortex that are alternately combined, and the oscillating vortex oscillates with respect to the fixed vortex.
  • the fluid taken into the frame is compressed in a compression chamber formed by a fixed vortex and an oscillating vortex, and is discharged to the outside of the scroll compressor through a discharge chamber, a muffler, and a discharge pipe.
  • the driving force for compressing the fluid is applied to the oscillating spiral by the rotation of the main shaft integrated with the rotor of the electric motor.
  • the main shaft and the oscillating vortex are connected via an oscillating bearing, and the rotation of the oscillating vortex is regulated by an Oldham coupling.
  • the main shaft is supported by a main bearing and a sub bearing.
  • the frame is a housing for storing a fixed spiral and a swing spiral, and has a thrust bearing and a main bearing that support an axial load acting on the swing spiral.
  • the main bearing, the rocking bearing, the auxiliary bearing, the thrust bearing, and the Oldham coupling are lubricated with oil.
  • the oil is pumped from the bottom of the shell by an oil pump that uses the rotation of the main shaft as a driving force.
  • the oil pump is connected to the lower end of the main shaft, and supplies the oil pumped up from the bottom of the shell to each sliding portion through an oil supply vertical hole formed in the main shaft.
  • the amount of oil pumped up by the oil pump increases as the rotational speed of the compressor increases.
  • Oil supply to the rocking bearing is performed by an oil supply vertical hole in the main shaft.
  • Oil supply to the main bearing and the sub-bearing is performed by an oil supply vertical hole and an oil supply horizontal hole branched in an orthogonal direction from the oil supply vertical hole in the main shaft.
  • the oil that has lubricated the main and sub bearings drips down and returns to the sump at the bottom of the shell.
  • the oil that has lubricated the rocking bearing is stored in the space in the frame.
  • the oil accumulated in the space in the frame is lubricated to the thrust bearing, lubricated to the Oldham coupling, lubricated to the spiral sliding part (sliding part of the fixed spiral and swinging spiral), lubricated to the main bearing, It plays a role of cooling the dynamic bearing and the main bearing.
  • An oil drain pipe is connected to the space in the frame. Excess oil in the space in the frame is returned from the space in the frame to the oil sump at the bottom of the shell through the oil drain pipe.
  • the present invention has been made to solve the above-described problems, and provides a scroll fluid machine capable of appropriately discharging excess oil in a frame and suppressing an increase in oil rising. With the goal.
  • a scroll fluid machine is formed between a fixed scroll and a swing scroll provided in a container, a frame that supports the swing scroll in a swingable manner, and the frame and the swing scroll.
  • the oil drain valve opens when the hydraulic pressure in the space in the frame rises, excess oil in the frame can be discharged out of the frame from the oil drain hole. Therefore, even if the rotation speed of the main shaft increases and the amount of oil pumped up increases, it is possible to prevent an excessive increase in the hydraulic pressure in the space in the frame.
  • the centrifugal force does not act on the oil drain valve unlike the configuration in which the oil drain valve is provided on the rotating parts such as the main shaft. Therefore, since it is not necessary to consider a centrifugal force as a load which acts on a drain valve, the opening degree characteristic of a drain valve can be adjusted easily. Further, since centrifugal force does not act on the oil discharge valve, the strength and reliability of the oil discharge valve can be ensured. Therefore, according to the present invention, surplus oil in the frame can be appropriately discharged out of the frame.
  • the oil drain hole is fixed to the container, it is possible to prevent the oil from being scattered as compared with a configuration in which oil is discharged from the outer peripheral surface of the rotating main shaft. Therefore, it is possible to suppress the oil from being wound up by the refrigerant, and it is possible to suppress an increase in the oil.
  • FIG. 1 is a schematic cross-sectional view showing an overall configuration of a scroll compressor according to Embodiment 1 of the present invention. It is sectional drawing which expands and shows a part of scroll compressor which concerns on Embodiment 1 of this invention. It is a figure which shows the flow of the oil in the scroll compressor which concerns on Embodiment 1 of this invention. It is a figure which shows the flow of the oil in space 6c vicinity in the frame in the scroll compressor which concerns on Embodiment 1 of this invention. It is sectional drawing which expands and shows a part of scroll compressor which concerns on Embodiment 2 of this invention. It is sectional drawing which expands and shows a part of scroll compressor which concerns on the modification of Embodiment 2 of this invention.
  • FIG. 1 is a schematic cross-sectional view showing the overall configuration of the scroll compressor according to the present embodiment.
  • FIG. 2 is an enlarged cross-sectional view of a part of the scroll compressor according to the present embodiment.
  • the scroll compressor sucks a fluid (for example, a refrigerant), compresses the fluid, and discharges it as a high-temperature and high-pressure state.
  • a scroll compressor becomes one of the components of the refrigerating cycle apparatus used for various industrial machines, such as a refrigerator, a freezer, a vending machine, an air conditioning apparatus, a freezing apparatus, or a water heater.
  • the dimensional relationship and shape of each component may differ from the actual ones.
  • the scroll compressor has a configuration in which a compression mechanism portion 40 that compresses a fluid and an electric motor portion 50 that drives the compression mechanism portion 40 are accommodated in an airtight container 60 (shell).
  • the sealed container 60 has a configuration in which the upper shell 24, the middle shell 25, and the lower shell 26 are airtightly joined by welding or the like.
  • An oil sump 18 is formed at the bottom of the lower shell 26.
  • the oil sump 18 stores oil (refrigeration machine oil) that lubricates each sliding part in the scroll compressor.
  • a suction pipe 7 is connected to the middle shell 25 as a suction port for sucking low-pressure refrigerant into the sealed container 60.
  • a discharge pipe 1 is connected to the upper shell 24 as a discharge port for discharging the compressed refrigerant to the outside of the sealed container 60.
  • the electric motor unit 50 drives the rocking scroll 5 of the compression mechanism unit 40 via the main shaft 14 in order to compress the refrigerant gas by the compression mechanism unit 40.
  • the electric motor unit 50 includes a stator 11 fixed to the inner peripheral surface of the sealed container 60 and a rotor 12 fixed to the main shaft 14.
  • the rotor 12 is rotationally driven by energizing the stator 11 and rotates the main shaft 14 that transmits the driving force to the orbiting scroll 5.
  • a power source for supplying power to the stator 11 for example, an inverter power source is used that can change the driving rotational speed within a predetermined range in order to make the refrigerant circulation amount variable.
  • an eccentric shaft portion 29 that is rotatably fitted to the rocking bearing 21 of the rocking scroll 5 is formed.
  • an oil supply vertical hole 14 a serving as a supply channel for oil stored in the oil sump 18 is provided so as to penetrate from the lower end to the upper end along the longitudinal direction (axial direction) of the main shaft 14. Yes.
  • oil supply lateral holes 14 b and 14 c that branch in an orthogonal direction from the oil supply vertical hole 14 a and extend to the outer peripheral surface of the main shaft 14 along the radial direction of the main shaft 14 are provided in the main shaft 14.
  • the oil supply lateral hole 14b is provided near or above a main bearing 19 described later
  • the oil supply horizontal hole 14c is provided near or above a ball bearing 16 (sub bearing) described later.
  • An oil pump 17 is provided at the lower end of the main shaft 14.
  • the oil pump 17 pumps up the oil in the oil sump 18 using the rotation of the main shaft 14 as a driving force.
  • the amount of oil pumped up by the oil pump 17 increases as the rotational speed of the main shaft 14 increases.
  • the pumped-up oil is supplied to each sliding portion in the scroll compressor and a frame inner space 6c described later through the oil supply vertical holes 14a and the oil supply horizontal holes 14b and 14c.
  • a first balancer 10 is provided above the main shaft 14.
  • a second balancer 13 is provided below the rotor 12.
  • the first balancer 10 and the second balancer 13 rotate together with the main shaft 14 and the rotor 12, and have a function of balancing the rocking scroll 5 with respect to the rotation center of the main shaft 14.
  • the first balancer 10 is covered with a balancer cover 9 attached to the lower part of the frame 6.
  • the compression mechanism unit 40 has a fixed scroll 4 and a swing scroll 5.
  • the fixed scroll 4 is fixed to the frame 6 fixedly supported by the middle shell 25.
  • the fixed scroll 4 includes an end plate 4a and a spiral portion 4b that is an involute curved projection provided on the lower surface of the end plate 4a.
  • a discharge port 30 is formed at the center of the fixed scroll 4 to discharge the refrigerant gas that has been compressed to a high pressure.
  • a discharge chamber 3 and a muffler 2 are provided on the outlet side of the discharge port 30.
  • the oscillating scroll 5 performs an oscillating motion (revolving orbiting motion) without rotating with respect to the fixed scroll 4.
  • the orbiting scroll 5 includes an end plate 5a and a spiral portion 5b that is an involute curved projection provided on the upper surface of the end plate 5a.
  • a thrust bearing 31 is provided on the surface of the orbiting scroll 5 opposite to the surface where the spiral portion 5b is formed (on the side opposite to the compression chamber).
  • the orbiting scroll 5 is supported in the axial direction by the thrust surface of the frame 6 via the thrust bearing 31.
  • a bottomed cylindrical rocking bearing 21 is formed at a substantially central portion of the surface of the rocking scroll 5 on the side opposite to the compression chamber.
  • the rocking bearing 21 accommodates a slider 22 that supports the rocking scroll 5 so that the rocking scroll 5 can revolve.
  • An eccentric shaft portion 29 provided at the upper end of the main shaft 14 is inserted into the slider 22.
  • the fixed scroll 4 and the orbiting scroll 5 are mounted in the sealed container 60 in a state in which the spiral part 4b and the spiral part 5b whose winding directions are opposite to each other are meshed with each other.
  • the volume changes between the spiral portion 4b and the spiral portion 5b as the swing scroll 5 swings.
  • a compression chamber is formed.
  • An Oldham joint 23 is disposed between the orbiting scroll 5 and the frame 6 for preventing the rotation of the orbiting scroll 5 during the orbiting movement.
  • the key portion formed on the upper surface of the Oldham joint 23 is slidably received in the Oldham groove provided in the swing scroll 5, and the key portion formed on the lower surface is provided by the Oldham provided in the frame 6. It is slidably received in the groove.
  • the frame 6 is fixed to the inner peripheral surface of the sealed container 60.
  • the frame 6 fixedly supports the fixed scroll 4 and supports the swing scroll 5 through a thrust bearing 31 so as to be swingable. Between the frame 6 and the orbiting scroll 5, an in-frame space 6c is formed. A predetermined amount of the oil supplied through the oil supply vertical hole 14a can be stored in the frame internal space 6c.
  • an oil drain hole 6a for discharging excess oil in the frame internal space 6c is formed.
  • One end of an oil drain pipe 8a for returning the oil to the oil sump 18 is connected to the oil drain hole 6a.
  • the other end of the oil drain pipe 8 a extends through the stator 11 and above the oil sump 18.
  • the oil discharge hole 6a and the oil discharge pipe 8a are not provided with an oil discharge valve. That is, the oil drain hole 6a and the oil drain pipe 8a constitute an oil drain passage that is always open.
  • the oil receiver 27 is attached to the outside of the frame 6.
  • the space 6c in the frame and the space in the oil receiver 27 communicate with each other via an oil drain hole 6b formed through the frame 6 at a different location from the oil drain hole 6a.
  • the oil drain hole 6 b is configured to discharge excess oil in the frame inner space 6 c to the oil receiver 27 outside the frame 6.
  • the oil receiver 27 is configured to temporarily receive the oil discharged from the oil discharge hole 6 b without being exposed to the flow of the fluid (refrigerant) in the sealed container 60.
  • An outlet on the oil receiver 27 side of the oil drain hole 6 b is formed on a vertical surface outside the frame 6.
  • An oil discharge valve 28 having a reed valve structure in which one end of a rigid leaf spring portion is fixed is provided at the oil receiver 27 side outlet of the oil discharge hole 6b.
  • the oil drain hole 6b is closed from the oil receiver 27 side by a drain valve 28 having a reed valve structure.
  • the oil discharge valve 28 is adjusted so as to start to open when the hydraulic pressure P in the frame internal space 6c increases to reach a predetermined pressure P ′ by deforming the leaf spring portion with a predetermined deformation amount, for example. ing.
  • One end of an oil drain pipe 8 b for returning oil to the oil sump 18 is connected to the bottom of the oil receiver 27.
  • the oil drain pipe 8 b is provided between the oil receiver 27 and the oil reservoir 18, and the other end of the oil drain pipe 8 b extends through the stator 11 and above the oil reservoir 18.
  • the oil drain hole 6b and the oil drain pipe 8b constitute an oil drain passage that is opened only when the hydraulic pressure P in the frame inner space 6c rises above the pressure P '.
  • the frame 6 rotatably supports an upper portion of the main shaft 14 in the vicinity of the eccentric shaft portion 29 via a main bearing 19 provided in a through hole in the center portion.
  • a sleeve 20 for smoothly rotating the main shaft 14 penetrating the main bearing 19 is rotatably accommodated in the main bearing 19.
  • the subframe 15 is provided below the frame 6 and is fixed to the inner peripheral surface of the sealed container 60.
  • the sub-frame 15 rotatably supports the lower part of the main shaft 14 through a through hole formed in the center.
  • An outer ring of a ball bearing 16 for rotatably supporting the main shaft 14 is press-fitted and fixed in the through hole of the sub frame 15.
  • the low-pressure gas refrigerant in the refrigerant circuit is sucked into the sealed container 60 through the suction pipe 7 and flows into the compression chamber through a suction port (not shown) provided in the frame 6.
  • the refrigerant that has flowed into the compression chamber is compressed along with the swing of the swing scroll 5 to be in a high temperature and high pressure state, flows out of the compression chamber through the discharge port 30, and flows into the discharge chamber 3.
  • the high-pressure gas refrigerant that has flowed into the discharge chamber 3 pushes open a discharge valve provided in the discharge chamber 3 due to a pressure difference, passes through the muffler 2 and the discharge space in the sealed container 60, and passes from the discharge pipe 1 to the sealed container 60. It is discharged outside.
  • the discharged refrigerant circulates in the refrigerant circuit of the refrigeration cycle apparatus and returns to the suction pipe 7 of the scroll compressor as a low-pressure gas refrigerant.
  • FIG. 3 is a diagram illustrating the flow of oil in the scroll compressor.
  • FIG. 4 is a diagram showing the flow of oil in the vicinity of the space 6c in the frame.
  • the arrow in FIG.3 and FIG.4 represents the example of the flow of oil.
  • the oil in the oil sump 18 is pumped up by the oil pump 17 using the rotation of the main shaft 14 as a driving force.
  • the pumped oil flows upward through the oil supply vertical hole 14a.
  • Part of the oil flowing through the oil supply vertical hole 14a lubricates the main bearing 19 through the oil supply lateral hole 14b, and the other part lubricates the ball bearing 16 through the oil supply horizontal hole 14c.
  • the oil after lubricating the main bearing 19 and the ball bearing 16 hangs downward and returns to the oil sump 18.
  • the remaining oil that has not flowed into the oil supply horizontal holes 14b and 14c rises to the upper end in the oil supply vertical hole 14a and lubricates the rocking bearing 21.
  • the ratio between the flow rate of oil flowing into the feed oil horizontal holes 14b and 14c in the middle of the feed oil vertical hole 14a and the flow rate of oil rising to the upper end of the feed oil vertical hole 14a is affected by the pressure state on the downstream side, The flow rate flowing toward the lower pressure side on the downstream side is relatively large.
  • the oil after lubricating the rocking bearing 21 is stored in the space 6c in the frame.
  • the oil stored in the frame inner space 6c plays a role of lubrication of the Oldham joint 23 and the thrust bearing 31, cooling of the rocking bearing 21 and the main bearing 19, and the like.
  • the surplus is discharged to the outside of the frame inner space 6c (outside the frame 6) via the oil discharge hole 6a and the oil discharge pipe 8a that are always open, and the oil reservoir 18 Return to.
  • the amount of oil supplied to the frame inner space 6c through the oil supply vertical hole 14a increases as the rotational speed of the main shaft 14 increases. Further, as the amount of oil supplied increases, the flow rate of the oil discharged through the oil drain hole 6a and the oil drain pipe 8a also increases. When the flow rate of the oil discharged through the oil drain hole 6a and the oil drain pipe 8a increases, the pressure due to the throttle near the inlet of the oil drain hole 6a and the oil drain pipe 8a, the wall friction inside the oil drain pipe 8a, etc. Due to the loss, the hydraulic pressure P in the frame internal space 6c increases. That is, during the high speed operation of the scroll compressor, the rotational speed of the main shaft 14 increases, so that the hydraulic pressure P in the frame inner space 6c increases.
  • the opening characteristic of the oil discharge valve 28 including the pressure P ′ at which the oil discharge valve 28 starts to open and the opening degree change of the oil discharge valve 28 with respect to the increase in the hydraulic pressure in the frame internal space 6c, It can be arbitrarily adjusted depending on the rigidity and the initial deformation amount. At this time, since only the oil pressure P needs to be considered as the load acting on the oil discharge valve 28, the opening degree of the oil discharge valve 28 is compared with a configuration in which the oil discharge valve is attached to the main shaft 14 or the like that is a rotating part. The characteristics can be easily adjusted. The mounting position and mounting direction of the oil drain hole 6a and the oil drain valve 28 can be freely selected.
  • the scroll fluid machine includes the fixed scroll 4 and the swing scroll 5 provided in the hermetic container 60, the frame 6 that supports the swing scroll 5 so as to be swingable, A frame inner space 6c formed between the frame 6 and the orbiting scroll 5, a main shaft 14 for transmitting a driving force to the orbiting scroll 5, and the oil in the oil reservoir 18 by the rotation of the main shaft 14 causes the oil in the oil sump 18 to flow.
  • An oil pump 17 that is pumped up, an oil drain hole 6b that passes through the frame 6 and discharges excess oil in the frame inner space 6c to the outside of the frame 6, and an oil drain hole based on the hydraulic pressure P of the frame inner space 6c.
  • an oil discharge valve 28 that opens and closes 6b.
  • the oil discharge valve 28 opens when the hydraulic pressure P in the frame internal space 6c increases, so that excess oil in the frame internal space 6c can be discharged out of the frame 6 through the oil discharge holes 6b. Therefore, even if the rotation speed of the main shaft 14 increases and the amount of oil pumped up by the oil pump 17 increases, it is possible to prevent an excessive increase in the hydraulic pressure in the frame inner space 6c.
  • the opening characteristic of the oil discharge valve 28 can be arbitrarily adjusted by the rigidity of the leaf spring portion of the oil discharge valve 28 and the initial deformation amount. Since the oil drain valve 28 is provided in the oil drain hole 6b of the frame 6 fixed to the sealed container 60, the oil drain valve 28 is different from the configuration in which the oil drain valve is provided in a rotating part such as a main shaft. Centrifugal force does not act on. Thereby, it is not necessary to consider the centrifugal force as a load acting on the oil discharge valve 28, and for example, only the oil pressure P needs to be considered. Therefore, the opening characteristic of the oil discharge valve 28 can be easily adjusted. Further, it is possible to prevent the opening characteristic of the oil discharge valve 28 from changing depending on the rotation speed of the main shaft 14. Furthermore, since centrifugal force does not act on the oil discharge valve 28, the strength and reliability of the oil discharge valve 28 can be ensured. Therefore, according to the present embodiment, excess oil in the frame inner space 6c can be discharged out of the frame 6 appropriately.
  • the oil drain hole 6b is provided fixed to the sealed container 60, it is possible to prevent the oil from being scattered as compared with the configuration in which the oil is discharged from the outer peripheral surface of the rotating main shaft. Therefore, it is possible to suppress the oil from being wound up by the refrigerant, and it is possible to suppress an increase in the oil.
  • the scroll fluid machine according to the present embodiment is characterized in that the oil discharge valve 28 has a reed valve structure that is opened and closed by the hydraulic pressure P. According to this configuration, the configuration of the oil discharge valve 28 can be simplified.
  • the scroll fluid machine is attached to the outside of the frame 6 and receives an oil receiver 27 that receives oil discharged from the oil drain hole 6b, an oil receiver 27, and an oil sump 18 at the bottom of the sealed container 60. And an oil drain pipe 8b for returning the oil received by the oil receiver 27 to the oil sump 18 at the bottom of the sealed container 60.
  • the oil discharged from the oil discharge hole 6b can be returned to the oil sump 18 without being exposed to the flow of the fluid (refrigerant) in the sealed container 60, thereby further suppressing an increase in oil rise. Can do.
  • FIG. 5 is an enlarged sectional view showing a part of the scroll compressor according to the present embodiment.
  • symbol is attached
  • the oil drain valve 28 of the present embodiment includes a valve body 28a and a coil spring 28b that biases the valve body 28a.
  • the oil drain hole 6b is provided on the frame inner space 6c side (upstream side) and extends in the horizontal direction, and is provided on the oil receiver 27 side (downstream side). And a downstream portion 6e.
  • the valve body 28a is provided between the upstream portion 6d and the downstream portion 6e of the oil discharge hole 6b.
  • the valve body 28a is provided so as to be slidable in the horizontal direction coaxial with the upstream portion 6d.
  • the valve body 28a takes at least a closed position for closing the oil drain hole 6b and an open position for opening the oil drain hole 6b.
  • the opening degree of the oil drain hole 6b depends on the position of the valve body 28a. Is changing.
  • the upstream portion 6d is provided with a stopper 32 that regulates the closed position (initial position) of the valve body 28a.
  • the coil spring 28b biases the valve body 28a in the direction from the open position to the closed position.
  • the coil spring 28b is contracted and deformed by a predetermined contraction amount when the valve element 28a is in the closed position.
  • a hydraulic pressure P of the frame inner space 6c acts on the valve body 28a in a direction from the closed position toward the open position (counter biasing direction).
  • the biasing force of the coil spring 28b is adjusted so that the valve element 28a starts to slide in the counter-biasing direction when the hydraulic pressure P in the frame inner space 6c increases to reach a predetermined pressure P ′. .
  • valve body 28a When the valve body 28a is in the closed position, the upstream portion 6d and the downstream portion 6e are closed by the valve body 28a, and the oil drain valve 28 is in a closed state.
  • the hydraulic pressure P in the frame inner space 6c increases to reach the pressure P ′, the hydraulic pressure P acting on the valve body 28a overcomes the urging force of the coil spring 28b, and the valve body 28a slides in the direction from the closed position toward the open position. Start moving. As a result, the upstream portion 6d and the downstream portion 6e communicate with each other, and the oil drain valve 28 is opened.
  • the hydraulic pressure P increases, the amount of contraction of the coil spring 28b increases, and the opening degree of the oil discharge valve 28 increases.
  • FIG. 6 is an enlarged cross-sectional view showing a part of a scroll compressor according to a modification of the present embodiment.
  • the moving direction of the valve element 28a of the oil discharge valve 28 is horizontal, but the moving direction of the valve element 28a may be vertical as in the configuration shown in FIG. .
  • the upper surface of the valve body 28a is inclined toward the frame internal space 6c so that the hydraulic pressure P is likely to act on the valve body 28a from the closed position toward the open position. Also good.
  • the oil discharge valve 28 has the valve body 28a and the coil spring 28b, and the valve body 28a is closed to close the oil discharge hole 6b.
  • the coil spring 28b urges the valve body 28a in the direction from the open position to the closed position, and takes the valve body 28a. Is characterized in that the hydraulic pressure P acts in the direction from the closed position toward the open position.
  • FIG. 7 is an enlarged cross-sectional view of a part of the scroll compressor according to the present embodiment.
  • symbol is attached
  • the oil drain valve 28 of the present embodiment has a valve body 28a that is slidable in the vertical direction.
  • the oil drain hole 6b extends in the horizontal direction as a whole, and has an upstream portion 6d provided on the frame internal space 6c side and a downstream portion 6e provided on the oil receiver 27 side.
  • the valve body 28a is provided between the upstream portion 6d and the downstream portion 6e of the oil discharge hole 6b.
  • a vertical hole 28c is formed above the valve body 28a so that the valve body 28a can be slid in the vertical direction (for example, the vertical vertical direction).
  • the valve body 28a has at least a lower closed position for closing the oil drain hole 6b and an upper open position for opening the oil drain hole 6b.
  • the oil drain hole depends on the position of the valve body 28a.
  • the opening degree of 6b changes.
  • the space in the vertical hole 28 c and the outside of the frame 6 communicate with each other through a pressure equalizing hole 33.
  • the pressure P 0 in the space in the vertical hole 28 c is equalized with the pressure outside the frame 6 (for example, the suction space in the sealed container 60).
  • a downward force (F + P 0 ⁇ A) from the open position to the closed position is applied to the valve body 28a by its own weight F and the pressure P 0 acting on the upper surface.
  • an upward force (P ⁇ A) from the closed position to the open position is applied to the valve body 28a by the hydraulic pressure P of the frame internal space 6c acting on the lower surface.
  • the hydraulic pressure P in the frame inner space 6c is low, the downward force is greater than the upward force, and thus the valve body 28a is located at the lower closed position. In this state, the upstream portion 6d and the downstream portion 6e are closed by the valve body 28a, and the oil drain valve 28 is closed.
  • the oil drain valve 28 has the valve body 28a, and the valve body 28a has a closed position in which the oil drain hole 6b is closed, and a closed position. And at least an open position that opens the oil drain hole 6b.
  • Gravity acts on the valve body 28a in a direction from the open position toward the closed position, and from the closed position.
  • the hydraulic pressure P acts in the direction toward the open position.
  • FIG. 8 is an enlarged cross-sectional view of a part of the scroll compressor according to the present embodiment.
  • symbol is attached
  • this embodiment is characterized in that the oil drain hole 6a (and the oil drain pipe 8a) that is always open is not provided.
  • the surplus portion of the oil stored in the frame internal space 6c is discharged out of the frame 6 only from the oil drain hole 6b provided with the oil drain valve 28.
  • the oil discharged from the oil drain hole 6b is received by the oil receiver 27 and returns to the oil sump 18 through the oil drain pipe 8b.
  • the oil discharge valve 28 of this example has a reed valve structure similar to that of the first embodiment, but may have a configuration similar to that of the second or third embodiment. Further, a plurality of oil drain holes 6b may be provided, and the oil drain valve 28 may be provided in all of the plurality of oil drain holes 6b.
  • FIG. 9 is an enlarged cross-sectional view of a part of the scroll compressor according to the present embodiment.
  • symbol is attached
  • an oil drain hole 6b provided with an oil drain valve 28 and an oil drain hole 6a that is always open are provided and discharged from the oil drain hole 6b.
  • the oil receiver 27 receives not only the oil but also the oil discharged from the oil drain hole 6a. The oil received by the oil receiver 27 returns to the oil sump 18 through the oil drain pipe 8b.
  • a plurality of oil drain holes 6a that are always open may be provided.
  • the present invention is not limited to the above embodiment, and various modifications can be made.
  • the scroll compressor is taken as an example of the scroll fluid machine, but the present invention can also be applied to other scroll fluid machines such as a scroll pump.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

 スクロール流体機械は、密閉容器60内に設けられた固定スクロール4及び揺動スクロール5と、揺動スクロール5を揺動自在に支持するフレーム6と、フレーム6と揺動スクロール5との間に形成されたフレーム内空間6cと、揺動スクロール5に駆動力を伝達する主軸14と、フレーム6を貫通して設けられ、フレーム内空間6cの余剰の油をフレーム6外に排出する排油孔6bと、排油孔6bに設けられ、フレーム内空間6cの油圧Pに基づいて排油孔6bを開閉する排油弁28と、を有することを特徴とするものである。

Description

スクロール流体機械
 本発明は、スクロール圧縮機及びスクロールポンプなどのスクロール流体機械に関するものである。
 スクロール圧縮機には、主軸の回転により作動し、シェル底部の油溜めに貯留された油を汲み上げるオイルポンプが設けられている。オイルポンプによって汲み上げられた油は、主軸を長手方向に貫通する給油縦孔を通って、揺動軸受、主軸受、副軸受等の各摺動部に給油される。また、揺動軸受を潤滑し終えた油は、フレーム内部に蓄えられ、オルダム継手及び揺動スクロールのスラスト面等の潤滑、揺動軸受及び主軸受の冷却等に用いられる。
 フレーム内部には排油パイプが接続されている。フレーム内部の余剰の油は、排油パイプを通ってシェル底部の油溜めに戻される。高速運転時には、フレーム内部に供給される油量が多くなるため、排油パイプ入口での絞りや排油パイプ内部の壁面摩擦等による圧力損失の影響で排油能力が不足し、フレーム内部の油圧が上昇する。フレーム内部の油圧が上昇すると、オイルポンプの駆動入力の上昇や、排油パイプを通過せずにシェル底部に垂れ落ちる油量の増加等が生じる。シェル底部に垂れ落ちる油量が増加すると、大量の油が冷媒によって巻き上げられ、冷媒と共に圧縮室に吸入されて外部に吐出されてしまい、スクロール圧縮機の油上がりが増加してしまう。
 特許文献1には、主軸の給油孔から分岐して主軸外に開口するバイパス孔と、このバイパス孔を所定油圧で開閉する弁と、を設けたスクロール圧縮機が開示されている。このスクロール圧縮機では、主軸の回転数が増加して遠心力が増加すると、所定圧力を越えた油圧で弁が開き、余分の油はバイパス孔から排出されて油溜めに戻るようになっている。
特開平2-5787号公報
 従来のスクロール圧縮機では、吸入管からシェル内に取り込まれた流体は、吸入ポートを通じてフレーム内に取り込まれる。フレーム内の空間には、互い違いに組み合わされた固定渦巻と揺動渦巻とが設けられており、揺動渦巻は、固定渦巻に対して揺動運動している。フレーム内に取り込まれた流体は、固定渦巻及び揺動渦巻により形成される圧縮室で圧縮され、吐出チャンバ、マフラー及び吐出管を通ってスクロール圧縮機の外部に吐出される。
 流体を圧縮するための駆動力は、電動機のロータと一体化した主軸の回転によって揺動渦巻に与えられる。主軸と揺動渦巻は揺動軸受を介して接続されており、揺動渦巻の自転はオルダム継手によって規制されている。これにより、主軸の回転運動が揺動渦巻の揺動運動に変換されている。主軸は、主軸受と副軸受によって支持されている。フレームは、固定渦巻と揺動渦巻を格納するハウジングであり、揺動渦巻に作用する軸方向の荷重を支持するスラスト軸受と主軸受とを持っている。主軸受、揺動軸受、副軸受、スラスト軸受及びオルダム継手は、油で潤滑されている。油は、主軸の回転を駆動力としたオイルポンプでシェル底部から汲み上げられる。オイルポンプは、主軸の下端に接続されており、シェル底部から汲み上げた油を、主軸内に形成された給油縦孔を通じて各摺動部に供給する。オイルポンプが汲み上げる油量は、圧縮機の回転数が大きくなるにつれて大きくなる。
 ここで、油の流路について説明を行う。揺動軸受への給油は、主軸内の給油縦孔によって行われる。主軸受及び副軸受への給油は、給油縦孔と、主軸内で給油縦孔から直交方向に分岐した給油横孔とによって行われる。主軸受及び副軸受を潤滑した油は下に垂れ落ち、シェル底部の油溜めに戻る。揺動軸受を潤滑した油は、フレーム内空間に溜められる。フレーム内空間に溜められた油は、スラスト軸受への給油、オルダム継手への給油、渦巻摺動部(固定渦巻と揺動渦巻との摺動部)への給油、主軸受への給油、揺動軸受及び主軸受の冷却などの役割を果たす。フレーム内空間には、排油パイプが接続されている。フレーム内空間の余剰の油は、この排油パイプを通ってフレーム内空間からシェル底部の油溜めに戻される。
 高速運転時には、オイルポンプによって汲み上げられる油量が非常に多くなり、それに従ってフレーム内に供給される油の量も多くなる。その場合、排油パイプを通って排油される油の流量も大きくなる。しかしながら、排油される油の流量が増加すると、排油パイプ入口での絞りの影響や排油パイプ内部の管摩擦の影響により、排油パイプで圧力損失が発生し、フレーム内の油圧が上昇する。フレーム内の油圧が過度に上昇すると、オイルポンプで汲み上げられる油は、比較的流路抵抗の低い給油横孔から出ようとするため、主軸受又は副軸受からシェル底部に垂れ落ちる油の量が増える。この主軸受又は副軸受から垂れ落ちる油が冷媒によって巻き上げられることにより、上述のような油上がりの増加が起こる。また、給油流路における下流側の圧力が高くなるため、オイルポンプの駆動入力の増加が生じる。
 特許文献1のスクロール圧縮機では、油圧が上昇するとバイパス孔の弁が開かれるため、余分の油はバイパス孔から排出される。これにより、高速運転時における各軸受及びフレーム内空間への過度な給油を防止している。しかしながら、特許文献1のスクロール圧縮機における弁は、回転する主軸の外周面に取り付けられているため、弁に遠心力が作用する。このため、弁の強度や信頼性の確保が困難になる。また、弁自身及び流体に働く遠心力が弁の開度特性に影響を与えるため、弁の開度特性を調整するのが困難になる。したがって、フレーム内の余剰の油を適度に排出するのが困難であるという問題点があった。
 さらに、特許文献1のスクロール圧縮機では、バイパス孔から油を排出する際に、回転する主軸の外周面からシェル内の空間にスプリンクラーのように油を撒き散らすことになる。このため、油が冷媒によって巻き上げられやすくなり、油上がりの増加を招くおそれがあるという問題点があった。
 本発明は、上述のような問題点を解決するためになされたものであり、フレーム内の余剰の油を適度に排出できるとともに、油上がりの増加を抑えることができるスクロール流体機械を提供することを目的とする。
 本発明に係るスクロール流体機械は、容器内に設けられた固定スクロール及び揺動スクロールと、前記揺動スクロールを揺動自在に支持するフレームと、前記フレームと前記揺動スクロールとの間に形成されたフレーム内空間と、前記揺動スクロールに駆動力を伝達する主軸と、前記フレームを貫通して設けられ、前記フレーム内空間の余剰の油を前記フレーム外に排出する排油孔と、前記排油孔に設けられ、前記フレーム内空間の油圧に基づいて前記排油孔を開閉する排油弁と、を有することを特徴とするものである。
 本発明によれば、フレーム内空間の油圧が上昇したときに排油弁が開くため、フレーム内の余剰の油を排油孔からフレーム外に排出することができる。したがって、主軸の回転数が増加し、汲み上げられる油量が増加したとしても、フレーム内空間の油圧の過度の上昇を防止することができる。
 排油弁は、フレームの排油孔に設けられているため、主軸等の回転部品に排油弁を設けた構成とは異なり、排油弁には遠心力が作用しない。これにより、排油弁に作用する荷重として遠心力を考慮する必要がないため、排油弁の開度特性を容易に調整することができる。また、排油弁には遠心力が作用しないため、排油弁の強度や信頼性を確保することができる。したがって、本発明によれば、フレーム内の余剰の油を適度にフレーム外に排出することができる。
 また、排油孔は容器に対して固定して設けられているため、回転する主軸の外周面から油を排出する構成と比較して、油が撒き散らされるのを防ぐことができる。したがって、油が冷媒によって巻き上げられるのを抑制することができ、油上がりの増加を抑えることができる。
本発明の実施の形態1に係るスクロール圧縮機の全体構成を示す概略の断面図である。 本発明の実施の形態1に係るスクロール圧縮機の一部を拡大して示す断面図である。 本発明の実施の形態1に係るスクロール圧縮機内の油の流れを示す図である。 本発明の実施の形態1に係るスクロール圧縮機内のフレーム内空間6c近傍での油の流れを示す図である。 本発明の実施の形態2に係るスクロール圧縮機の一部を拡大して示す断面図である。 本発明の実施の形態2の変形例に係るスクロール圧縮機の一部を拡大して示す断面図である。 本発明の実施の形態3に係るスクロール圧縮機の一部を拡大して示す断面図である。 本発明の実施の形態4に係るスクロール圧縮機の一部を拡大して示す断面図である。 本発明の実施の形態5に係るスクロール圧縮機の一部を拡大して示す断面図である。
実施の形態1.
 本発明の実施の形態1に係るスクロール圧縮機(スクロール流体機械の一例)について説明する。図1は、本実施の形態に係るスクロール圧縮機の全体構成を示す概略の断面図である。図2は、本実施の形態に係るスクロール圧縮機の一部を拡大して示す断面図である。スクロール圧縮機は、流体(例えば、冷媒)を吸入し、その流体を圧縮して高温高圧の状態として吐出するものである。スクロール圧縮機は、例えば、冷蔵庫、冷凍庫、自動販売機、空気調和装置、冷凍装置、又は給湯器等の各種産業機械に用いられる冷凍サイクル装置の構成要素の1つとなる。なお、図1及び図2を含む以下の図面では、各構成部材の寸法の関係や形状等が実際のものとは異なる場合がある。
 図1及び図2に示すように、スクロール圧縮機は、流体を圧縮する圧縮機構部40と、圧縮機構部40を駆動する電動機部50とが、密閉容器60(シェル)内に収容された構成を有している。密閉容器60は、アッパーシェル24、ミドルシェル25及びロアーシェル26が溶接等により気密に接合された構成を有している。ロアーシェル26の底部には、スクロール圧縮機内の各摺動部を潤滑する油(冷凍機油)を貯留する油溜め18が形成されている。ミドルシェル25には、低圧冷媒を密閉容器60内に吸入する吸入口として吸入管7が接続されている。またミドルシェル25のうち、上部にはフレーム6が固定支持されており、その下方には電動機部50のステータ11が固定支持されており、その下方の下部にはサブフレーム15が固定支持されている。アッパーシェル24には、圧縮した冷媒を密閉容器60の外部に吐き出す吐出口として吐出管1が接続されている。
 電動機部50は、圧縮機構部40で冷媒ガスを圧縮するために、主軸14を介して圧縮機構部40の揺動スクロール5を駆動するようになっている。電動機部50は、密閉容器60の内周面に固定されたステータ11と、主軸14に固定されたロータ12とを有している。ロータ12は、ステータ11に通電されることによって回転駆動し、揺動スクロール5に駆動力を伝達する主軸14を回転させるようになっている。ステータ11に電力を供給する電源としては、例えば、冷媒循環量を可変とするために所定範囲で駆動回転数を変化させることができるインバータ電源が使用されている。主軸14の上端部には、揺動スクロール5の揺動軸受21に回転自在に嵌合する偏心軸部29が形成されている。主軸14の内部には、油溜め18に貯留されている油の供給流路となる給油縦孔14aが、主軸14の長手方向(軸方向)に沿って下端から上端まで貫通して設けられている。また、主軸14の内部には、給油縦孔14aから直交方向に分岐し、主軸14の径方向に沿って当該主軸14の外周面まで延伸した給油横孔14b、14cが設けられている。給油横孔14bは、後述する主軸受19の近傍又はそれより上方に設けられており、給油横孔14cは、後述するボールベアリング16(副軸受)の近傍又はそれより上方に設けられている。
 主軸14の下端部には、オイルポンプ17が設けられている。オイルポンプ17は、主軸14の回転を駆動力として油溜め18内の油を汲み上げるようになっている。オイルポンプ17によって汲み上げられる油量は、主軸14の回転数が大きくなるほど多くなる。汲み上げられた油は、給油縦孔14a及び給油横孔14b、14cを介して、スクロール圧縮機内の各摺動部及び後述するフレーム内空間6cに供給される。
 主軸14の上部には、第1バランサ10が設けられている。ロータ12の下部には、第2バランサ13が設けられている。第1バランサ10及び第2バランサ13は、主軸14及びロータ12と共に回転し、主軸14の回転中心に対して揺動スクロール5とバランスをとる機能を有している。第1バランサ10は、フレーム6の下部に取り付けられたバランサカバー9によって覆われている。
 圧縮機構部40は、固定スクロール4と揺動スクロール5とを有している。固定スクロール4は、ミドルシェル25に固定支持されたフレーム6に対して固定されている。固定スクロール4は、鏡板4aと、鏡板4aの下面に立設されたインボリュート曲線状の突起である渦巻部4bと、を有している。固定スクロール4の中央部には、圧縮されて高圧となった冷媒ガスを吐出する吐出ポート30が形成されている。吐出ポート30の出口側には、吐出チャンバ3及びマフラー2が設けられている。
 揺動スクロール5は、固定スクロール4に対して自転運動することなく揺動運動(公転旋回運動)を行うようになっている。揺動スクロール5は、鏡板5aと、鏡板5aの上面に立設されたインボリュート曲線状の突起である渦巻部5bと、を有している。揺動スクロール5の渦巻部5b形成面とは反対側(反圧縮室側)の面には、スラスト軸受31が設けられている。揺動スクロール5は、スラスト軸受31を介して、フレーム6のスラスト面によって軸方向に支承されるようになっている。揺動スクロール5の反圧縮室側の面の略中央部には、有底円筒状の揺動軸受21が形成されている。揺動軸受21には、揺動スクロール5を公転旋回運動させるために揺動スクロール5を支承するスライダ22が回転自在に収められている。スライダ22には、主軸14の上端に設けられた偏心軸部29が挿入されている。
 固定スクロール4と揺動スクロール5とは、巻き方向が互いに逆になる渦巻部4bと渦巻部5bとを噛み合わせた状態で密閉容器60内に装着されている。固定スクロール4の渦巻部4bと揺動スクロール5の渦巻部5bとが組み合わされることにより、渦巻部4bと渦巻部5bとの間には、揺動スクロール5の揺動運動に伴って容積が変化する圧縮室が形成される。揺動スクロール5とフレーム6との間には、揺動スクロール5の揺動運動中における自転運動を阻止するためのオルダム継手23が配設されている。オルダム継手23の上面に形成されたキー部は、揺動スクロール5に設けられたオルダム溝内に摺動自在に収容されており、下面に形成されたキー部は、フレーム6に設けられたオルダム溝内に摺動自在に収容されている。
 フレーム6は、密閉容器60の内周面に固定されている。フレーム6は、固定スクロール4を固定支持するとともに、揺動スクロール5をスラスト軸受31を介して揺動自在に支持している。フレーム6と揺動スクロール5との間には、フレーム内空間6cが形成されている。フレーム内空間6cには、給油縦孔14aを介して供給された油のうち所定量の油を溜めることができるようになっている。
 フレーム6のスラスト面には、フレーム内空間6cの余剰の油を排出する排油孔6aが形成されている。排油孔6aには、油を油溜め18に戻すための排油パイプ8aの一端が接続されている。排油パイプ8aの他端側は、ステータ11を貫通して油溜め18の上方まで延びている。排油孔6a及び排油パイプ8aには、後述する排油孔6bとは異なり、排油弁が設けられていない。すなわち、排油孔6a及び排油パイプ8aは、常時開放された排油流路を構成する。
 フレーム6の外側には、油受27が取り付けられている。フレーム内空間6cと油受27内の空間とは、排油孔6aとは別箇所でフレーム6を貫通して形成された排油孔6bを介して連通している。排油孔6bは、フレーム内空間6cの余剰の油をフレーム6外の油受27に排出するようになっている。油受27は、排油孔6bから排出された油を、密閉容器60内の流体(冷媒)の流れに晒さずに一時的に受けるようになっている。排油孔6bの油受27側の出口は、フレーム6の外側の鉛直な面に形成されている。排油孔6bの油受27側の出口には、剛性を持った板ばね部の一端を固定したリード弁構造を有する排油弁28が設けられている。排油孔6bは、リード弁構造の排油弁28によって油受27側から閉じられている。排油弁28は、例えば板ばね部を所定の変形量で変形させておくことにより、フレーム内空間6cにおける油圧Pが上昇して所定の圧力P’に達したときに開き始めるように調節されている。油受27の底部には、油溜め18に油を戻すための排油パイプ8bの一端が接続されている。排油パイプ8bは、油受27と油溜め18との間に設けられており、排油パイプ8bの他端側は、ステータ11を貫通して油溜め18の上方まで延びている。排油孔6b及び排油パイプ8bは、フレーム内空間6cにおける油圧Pが圧力P’以上に上昇した際にのみ開放される排油流路を構成する。
 また、フレーム6は、中心部の貫通孔に設けられた主軸受19を介して、偏心軸部29の近傍にある主軸14の上方部分を回転自在に支持している。主軸受19には、当該主軸受19を貫通する主軸14を円滑に回転させるためのスリーブ20が回転自在に収められている。
 サブフレーム15は、フレーム6よりも下方に設けられており、密閉容器60の内周面に固定されている。サブフレーム15は、中心部に形成された貫通孔を介して、主軸14の下方部分を回転自在に支持するものである。サブフレーム15の貫通孔には、主軸14を回転自在に支持するためのボールベアリング16の外輪が圧入固定されている。
 次に、本実施の形態に係るスクロール圧縮機の動作について説明する。まず、スクロール圧縮機の基本動作について説明する。インバータ電源等によりステータ11に電力が供給されると、ロータ12により主軸14が回転駆動される。主軸14が回転駆動されると、主軸14の上端に設けられた偏心軸部29がスライダ22を介して揺動軸受21内で回転し、駆動力が揺動スクロール5に伝達される。このとき、オルダム継手23の各キー部は、揺動スクロール5のオルダム溝内及びフレーム6のオルダム溝内でそれぞれ往復運動する。これにより、揺動スクロール5は自転を規制されて揺動運動(公転旋回運動)を行う。すなわち、偏心軸部29から揺動スクロール5へは、揺動運動のみが伝達される。
 冷媒回路中の低圧のガス冷媒は、吸入管7を介して密閉容器60内に吸入され、フレーム6に設けられた吸入ポート(図示せず)を介して圧縮室内に流入する。圧縮室内に流入した冷媒は、揺動スクロール5の揺動に伴って圧縮されて高温高圧状態となり、吐出ポート30を通って圧縮室から流出し、吐出チャンバ3に流入する。吐出チャンバ3に流入した高圧のガス冷媒は、吐出チャンバ3に設けられた吐出弁を圧力差によって押し開けて、マフラー2、及び密閉容器60内の吐出空間を通り、吐出管1から密閉容器60外に吐出される。吐出された冷媒は、冷凍サイクル装置の冷媒回路内を循環して、低圧のガス冷媒としてスクロール圧縮機の吸入管7に戻る。
 次に、スクロール圧縮機内の油の流れについて図3及び図4を用いて説明する。図3は、スクロール圧縮機内の油の流れを示す図である。図4は、フレーム内空間6c近傍での油の流れを示す図である。図3及び図4中の矢印は、油の流れの例を表している。図3及び図4に示すように、油溜め18内の油は、主軸14の回転を駆動力としてオイルポンプ17によって汲み上げられる。汲み上げられた油は、給油縦孔14aを通って上方に向かって流れる。給油縦孔14aを流れる油の一部は、給油横孔14bを通って主軸受19を潤滑し、他の一部は、給油横孔14cを通ってボールベアリング16を潤滑する。主軸受19及びボールベアリング16を潤滑した後の油は、下方に垂れて油溜め18に戻る。給油横孔14b、14cに流入しなかった残りの油は、給油縦孔14a内を上端まで上昇し、揺動軸受21を潤滑する。給油縦孔14aの途中で給油横孔14b、14cに流入する油の流量と、給油縦孔14aの上端まで上昇する油の流量との比率は、それぞれの下流側の圧力状態の影響を受け、下流側の圧力の低い方に流れる流量が相対的に大きくなる。揺動軸受21を潤滑した後の油は、フレーム内空間6cに溜められる。フレーム内空間6cに溜められた油は、オルダム継手23及びスラスト軸受31の潤滑、揺動軸受21及び主軸受19の冷却等の役割を果たす。フレーム内空間6cに溜められた油のうち余剰分は、常時開放されている排油孔6a及び排油パイプ8aを介してフレーム内空間6cの外側(フレーム6外)に排出され、油溜め18に戻る。
 給油縦孔14aを通ってフレーム内空間6cに供給される給油量は、主軸14の回転数が高くなるほど増加する。また、この給油量の増加に伴い、排油孔6a及び排油パイプ8aを介して排出される油の流量も増加する。排油孔6a及び排油パイプ8aを介して排出される油の流量が大きくなると、排油孔6a及び排油パイプ8aの入口付近での絞り、及び排油パイプ8a内部の壁面摩擦等による圧力損失の影響で、フレーム内空間6cの油圧Pが上昇する。すなわち、スクロール圧縮機の高速運転時には、主軸14の回転数が増加するため、フレーム内空間6cの油圧Pが上昇する。油圧Pが上昇して圧力P’に達すると、排油孔6bの排油弁28が油圧Pにより押し開けられる。これにより、フレーム内空間6cの油は、排油孔6a(排油パイプ8a)に加えて、排油孔6bを通ってフレーム6外に排出され始める。排油孔6bを通ってフレーム6外に排出された油は、油受27で受けられた後、排油パイプ8bを通って密閉容器60底部の油溜め18に戻る。フレーム内空間6cの油圧Pがさらに上昇すると、排油弁28の開度がより大きくなり、排油孔6bからより多くの油が排出される。これにより、フレーム内空間6cに油を蓄えた状態を維持しつつ、フレーム内空間6cの油圧の上昇を防止することができる。
 排油弁28が開き始める圧力P’、及びフレーム内空間6cの油圧上昇に対する排油弁28の開度変化等を含む排油弁28の開度特性は、排油弁28の板ばね部の剛性や初期変形量によって、任意に調整することが可能である。この際、排油弁28に作用する荷重としては例えば油圧Pのみを考慮すればよいため、回転部品である主軸14等に排油弁を取り付けた構成と比較すると、排油弁28の開度特性を容易に調整することができる。排油孔6a及び排油弁28の取付け位置及び取付け方向は自由に選択できる。
 以上説明したように、本実施の形態に係るスクロール流体機械は、密閉容器60内に設けられた固定スクロール4及び揺動スクロール5と、揺動スクロール5を揺動自在に支持するフレーム6と、フレーム6と揺動スクロール5との間に形成されたフレーム内空間6cと、揺動スクロール5に駆動力を伝達する主軸14と、主軸14の回転により油溜め18内の油をフレーム内空間6cに汲み上げるオイルポンプ17と、フレーム6を貫通して設けられ、フレーム内空間6cの余剰の油をフレーム6外に排出する排油孔6bと、フレーム内空間6cの油圧Pに基づいて排油孔6bを開閉する排油弁28と、を有することを特徴とするものである。
 この構成によれば、フレーム内空間6cの油圧Pが上昇したときに排油弁28が開くため、フレーム内空間6cの余剰の油を排油孔6bからフレーム6外に排出することができる。したがって、主軸14の回転数が増加してオイルポンプ17が汲み上げる油量が増加しても、フレーム内空間6cの油圧の過度の上昇を防止することができる。
 排油弁28の開度特性は、排油弁28の板ばね部の剛性や初期変形量によって、任意に調整することが可能である。排油弁28は、密閉容器60に対して固定されたフレーム6の排油孔6bに設けられているため、主軸等の回転部品に排油弁を設けた構成とは異なり、排油弁28には遠心力が作用しない。これにより、排油弁28に作用する荷重として遠心力を考慮する必要がなく、例えば油圧Pのみを考慮すればよいため、排油弁28の開度特性を容易に調整することができる。また、主軸14の回転数によって排油弁28の開度特性が変化してしまうことを防ぐことができる。さらに、排油弁28には遠心力が作用しないため、排油弁28の強度や信頼性を確保することができる。したがって、本実施の形態によれば、フレーム内空間6cの余剰の油を適度にフレーム6外に排出することができる。
 また、排油孔6bは密閉容器60に対して固定して設けられているため、回転する主軸の外周面から油を排出する構成と比較して油が撒き散らされるのを防ぐことができる。したがって、油が冷媒によって巻き上げられるのを抑制することができ、油上がりの増加を抑えることができる。
 また、本実施の形態に係るスクロール流体機械は、排油弁28は、油圧Pにより開閉するリード弁構造を有することを特徴とするものである。この構成によれば、排油弁28の構成を簡素化することができる。
 また、本実施の形態に係るスクロール流体機械は、フレーム6の外側に取り付けられ、排油孔6bから排出された油を受ける油受27と、油受27と密閉容器60底部の油溜め18との間に設けられ、油受27で受けた油を密閉容器60底部の油溜め18に戻す排油パイプ8bと、をさらに有することを特徴とするものである。
 この構成によれば、排油孔6bから排出された油を密閉容器60内での流体(冷媒)の流れに晒さずに油溜め18に戻すことができるため、油上がりの増加をさらに抑えることができる。
実施の形態2.
 本発明の実施の形態2に係るスクロール圧縮機について説明する。図5は、本実施の形態に係るスクロール圧縮機の一部を拡大して示す断面図である。なお、実施の形態1のスクロール圧縮機と同一の機能及び作用を有する構成要素については、同一の符号を付してその説明を省略する。
 図5に示すように、本実施の形態の排油弁28は、弁体28aと、弁体28aを付勢するコイルばね28bとを有している。排油孔6bは、フレーム内空間6c側(上流側)に設けられて水平方向に延びる上流部6dと、油受27側(下流側)に設けられ、上流部6dから曲折して下方に延びる下流部6eと、を有している。弁体28aは、排油孔6bの上流部6dと下流部6eとの間に設けられている。弁体28aは、上流部6dと同軸の水平方向にスライド移動が可能となるように設けられている。弁体28aは、排油孔6bを閉状態にする閉位置と、排油孔6bを開状態にする開位置とを少なくともとるものであり、弁体28aの位置によって排油孔6bの開度が変化するようになっている。上流部6dには、弁体28aの閉位置(初期位置)を規制するストッパ32が設けられている。コイルばね28bは、弁体28aを開位置から閉位置に向かう方向に付勢している。また、コイルばね28bは、弁体28aが閉位置にあるとき、所定の縮み量で縮み変形している。弁体28aには、閉位置から開位置に向かう方向(反付勢方向)に、フレーム内空間6cの油圧Pが作用する。コイルばね28bの付勢力は、フレーム内空間6cの油圧Pが上昇して所定の圧力P’に達したときに弁体28aが反付勢方向へのスライド移動を開始するように調節されている。
 弁体28aが閉位置にあるとき、上流部6dと下流部6eとの間は弁体28aによって閉塞されており、排油弁28は閉状態となっている。フレーム内空間6cの油圧Pが上昇して圧力P’に達すると、弁体28aに作用する油圧Pがコイルばね28bによる付勢力に打ち勝ち、弁体28aが閉位置から開位置に向かう方向にスライド移動を開始する。これにより、上流部6dと下流部6eとが連通し、排油弁28は開状態となる。油圧Pが大きくなるほどコイルばね28bの縮み量が大きくなり、排油弁28の開度が大きくなる。
 図6は、本実施の形態の変形例に係るスクロール圧縮機の一部を拡大して示す断面図である。図5に示した上述の構成では、排油弁28の弁体28aの移動方向が水平方向であるが、図6に示す構成のように弁体28aの移動方向は鉛直方向であってもよい。なお、図6に示す構成において、弁体28aに対して閉位置から開位置に向かう方向に油圧Pが作用しやすいように、弁体28aの上面をフレーム内空間6c側に傾斜させるようにしてもよい。
 以上説明したように、本実施の形態に係るスクロール流体機械は、排油弁28は、弁体28aとコイルばね28bとを有し、弁体28aは、排油孔6bを閉状態にする閉位置と、排油孔6bを開状態にする開位置とを少なくともとるものであり、コイルばね28bは、開位置から閉位置に向かう方向に弁体28aを付勢するものであり、弁体28aには、閉位置から開位置に向かう方向に油圧Pが作用するものであることを特徴とする。
 この構成によれば、実施の形態1と同様の効果が得られるとともに、排油弁28の構成を簡素化することができる。
実施の形態3.
 本発明の実施の形態3に係るスクロール圧縮機について説明する。図7は、本実施の形態に係るスクロール圧縮機の一部を拡大して示す断面図である。なお、実施の形態1のスクロール圧縮機と同一の機能及び作用を有する構成要素については、同一の符号を付してその説明を省略する。
 図7に示すように、本実施の形態の排油弁28は、上下方向にスライド自在な弁体28aを有している。排油孔6bは全体として水平方向に延伸しており、フレーム内空間6c側に設けられた上流部6dと、油受27側に設けられた下流部6eと、を有している。弁体28aは、排油孔6bの上流部6dと下流部6eとの間に設けられている。弁体28aの上方には、当該弁体28aを上下方向(例えば、鉛直上下方向)にスライド移動させることが可能な縦穴28cが形成されている。弁体28aは、排油孔6bを閉状態にする下方の閉位置と、排油孔6bを開状態にする上方の開位置とを少なくともとるものであり、弁体28aの位置によって排油孔6bの開度が変化するようになっている。縦穴28c内の空間と、フレーム6の外部(本例では、油受27内の空間)との間は、均圧孔33を介して連通している。これにより、縦穴28c内の空間の圧力Pは、フレーム6の外部(例えば、密閉容器60内の吸入空間)の圧力と均圧されている。
 弁体28aの断面積をAとすると、弁体28aには、自重Fと上面に作用する圧力Pとによって、開位置から閉位置に向かう下向きの力(F+P×A)が加えられる。また、弁体28aには、下面に作用するフレーム内空間6cの油圧Pによって、閉位置から開位置に向かう上向きの力(P×A)が加えられるようになっている。フレーム内空間6cの油圧Pが低いときには、上向きの力よりも下向きの力の方が大きくなるため、弁体28aは下方の閉位置に位置している。この状態では、上流部6dと下流部6eとの間は弁体28aによって閉塞され、排油弁28は閉状態となっている。フレーム内空間6cの油圧Pが上昇し、圧力(P+F/A)に達すると、下向きの力よりも上向きの力の方が大きくなるため、弁体28aが縦穴28c上方にスライド移動する。これにより、上流部6dと下流部6eとが連通し、排油弁28は開状態となる。油圧Pが大きいほど弁体28aがより上方にスライド移動するため、排油弁28の開度は、油圧Pが大きくなるほど大きくなる。
 以上説明したように、本実施の形態に係るスクロール流体機械は、排油弁28は、弁体28aを有し、弁体28aは、排油孔6bを閉状態にする閉位置と、閉位置よりも上方に位置し、排油孔6bを開状態にする開位置とを少なくともとるものであり、弁体28aには、開位置から閉位置に向かう方向に重力が作用するとともに、閉位置から開位置に向かう方向に油圧Pが作用するものであることを特徴とする。
 この構成によれば、実施の形態1と同様の効果が得られるとともに、排油弁28の構成を簡素化することができる。
実施の形態4.
 本発明の実施の形態4に係るスクロール圧縮機について説明する。図8は、本実施の形態に係るスクロール圧縮機の一部を拡大して示す断面図である。なお、実施の形態1のスクロール圧縮機と同一の機能及び作用を有する構成要素については、同一の符号を付してその説明を省略する。
 図8に示すように、本実施の形態は、常時開放されている排油孔6a(及び排油パイプ8a)が設けられていない点に特徴を有している。すなわち、本実施の形態では、フレーム内空間6cに溜められた油のうちの余剰分は、排油弁28が設けられた排油孔6bからのみフレーム6外に排出されるようになっている。排油孔6bから排出された油は、油受27で受けられ、排油パイプ8bを通って油溜め18に戻る。なお、本例の排油弁28は、実施の形態1と同様のリード弁構造を有しているが、実施の形態2又は3と同様の構成を有していてもよい。また、排油孔6bは複数設けられていてもよく、複数の排油孔6bの全てに排油弁28を設けるようにしてもよい。
実施の形態5.
 本発明の実施の形態5に係るスクロール圧縮機について説明する。図9は、本実施の形態に係るスクロール圧縮機の一部を拡大して示す断面図である。なお、実施の形態1のスクロール圧縮機と同一の機能及び作用を有する構成要素については、同一の符号を付してその説明を省略する。
 図9に示すように、本実施の形態では、排油弁28が設けられた排油孔6bと、常時開放されている排油孔6aとが設けられており、排油孔6bから排出された油だけでなく排油孔6aから排出された油も油受27で受けるようになっている。油受27で受けられた油は、排油パイプ8bを通って油溜め18に戻る。常時開放されている排油孔6aは、複数設けられていてもよい。
その他の実施の形態.
 本発明は、上記実施の形態に限らず種々の変形が可能である。
 例えば、上記実施の形態では、スクロール流体機械としてスクロール圧縮機を例に挙げたが、本発明はスクロールポンプ等の他のスクロール流体機械にも適用可能である。
 上記の各実施の形態や変形例は、互いに組み合わせて実施することが可能である。
 1 吐出管、2 マフラー、3 吐出チャンバ、4 固定スクロール、4a、5a 鏡板、4b、5b 渦巻部、5 揺動スクロール、6 フレーム、6a、6b 排油孔、6c フレーム内空間、6d 上流部、6e 下流部、7 吸入管、8a、8b 排油パイプ、9 バランサカバー、10 第1バランサ、11 ステータ、12 ロータ、13 第2バランサ、14 主軸、14a 給油縦孔、14b、14c 給油横孔、15 サブフレーム、16 ボールベアリング、17 オイルポンプ、18 油溜め、19 主軸受、20 スリーブ、21 揺動軸受、22 スライダ、23 オルダム継手、24 アッパーシェル、25 ミドルシェル、26 ロアーシェル、27 油受、28 排油弁、28a 弁体、 28b コイルばね、28c 縦穴、29 偏心軸部、30 吐出ポート、31 スラスト軸受、32 ストッパ、33 均圧孔、40 圧縮機構部、50 電動機部、60 密閉容器(容器)。

Claims (7)

  1.  容器内に設けられた固定スクロール及び揺動スクロールと、
     前記揺動スクロールを揺動自在に支持するフレームと、
     前記フレームと前記揺動スクロールとの間に形成されたフレーム内空間と、
     前記揺動スクロールに駆動力を伝達する主軸と、
     前記フレームを貫通して設けられ、前記フレーム内空間の余剰の油を前記フレーム外に排出する排油孔と、
     前記排油孔に設けられ、前記フレーム内空間の油圧に基づいて前記排油孔を開閉する排油弁と、を有することを特徴とするスクロール流体機械。
  2.  前記排油弁は、前記油圧により開閉するリード弁構造を有することを特徴とする請求項1に記載のスクロール流体機械。
  3.  前記排油弁は、弁体とコイルばねとを有し、
     前記弁体は、前記排油孔を閉状態にする閉位置と、前記排油孔を開状態にする開位置とを少なくともとるものであり、
     前記コイルばねは、前記開位置から前記閉位置に向かう方向に前記弁体を付勢するものであり、
     前記弁体には、前記閉位置から前記開位置に向かう方向に前記油圧が作用するものであることを特徴とする請求項1に記載のスクロール流体機械。
  4.  前記排油弁は、弁体を有し、
     前記弁体は、前記排油孔を閉状態にする閉位置と、前記閉位置よりも上方に位置し、前記排油孔を開状態にする開位置とを少なくともとるものであり、
     前記弁体には、前記開位置から前記閉位置に向かう方向に重力が作用するとともに、前記閉位置から前記開位置に向かう方向に前記油圧が作用するものであることを特徴とする請求項1に記載のスクロール流体機械。
  5.  前記フレームの外側に取り付けられ、前記排油孔から排出された油を受ける油受と、
     前記油受と前記容器の底部との間に設けられ、前記油受で受けた油を前記容器の底部に戻す排油パイプと、をさらに有することを特徴とする請求項1~請求項4のいずれか一項に記載のスクロール流体機械。
  6.  前記排油孔とは別に、前記フレーム内空間の余剰の油を前記フレーム外に排出する第2の排油孔をさらに有し、
     前記第2の排油孔は、常時開放されていることを特徴とする請求項1~請求項5のいずれか一項に記載のスクロール流体機械。
  7.  前記排油孔の全てに前記排油弁が設けられていることを特徴とする請求項1~請求項5のいずれか一項に記載のスクロール流体機械。
PCT/JP2013/079033 2013-10-25 2013-10-25 スクロール流体機械 WO2015059833A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015543680A JP6120982B2 (ja) 2013-10-25 2013-10-25 スクロール流体機械
PCT/JP2013/079033 WO2015059833A1 (ja) 2013-10-25 2013-10-25 スクロール流体機械

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/079033 WO2015059833A1 (ja) 2013-10-25 2013-10-25 スクロール流体機械

Publications (1)

Publication Number Publication Date
WO2015059833A1 true WO2015059833A1 (ja) 2015-04-30

Family

ID=52992465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/079033 WO2015059833A1 (ja) 2013-10-25 2013-10-25 スクロール流体機械

Country Status (2)

Country Link
JP (1) JP6120982B2 (ja)
WO (1) WO2015059833A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018220747A1 (ja) * 2017-05-31 2018-12-06 三菱電機株式会社 スクロール圧縮機および冷凍サイクル装置
WO2023181141A1 (ja) * 2022-03-23 2023-09-28 三菱電機株式会社 横形スクロール圧縮機およびこの横形スクロール圧縮機を備えた冷凍サイクル装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58160583A (ja) * 1982-03-19 1983-09-24 Hitachi Ltd スクロ−ル式流体機械
JP2001336485A (ja) * 2000-05-29 2001-12-07 Mitsubishi Electric Corp スクロール圧縮機
JP2003214364A (ja) * 2001-11-13 2003-07-30 Mitsubishi Electric Corp スクロール圧縮機
JP2009270433A (ja) * 2008-04-30 2009-11-19 Hitachi Appliances Inc スクロール圧縮機
JP2010106780A (ja) * 2008-10-31 2010-05-13 Hitachi Appliances Inc スクロール圧縮機
JP2010138758A (ja) * 2008-12-10 2010-06-24 Hitachi Appliances Inc スクロール圧縮機
WO2012039109A1 (ja) * 2010-09-21 2012-03-29 株式会社ヴァレオジャパン スクロール型圧縮機
JP2013204476A (ja) * 2012-03-28 2013-10-07 Hitachi Appliances Inc スクロール圧縮機

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58160583A (ja) * 1982-03-19 1983-09-24 Hitachi Ltd スクロ−ル式流体機械
JP2001336485A (ja) * 2000-05-29 2001-12-07 Mitsubishi Electric Corp スクロール圧縮機
JP2003214364A (ja) * 2001-11-13 2003-07-30 Mitsubishi Electric Corp スクロール圧縮機
JP2009270433A (ja) * 2008-04-30 2009-11-19 Hitachi Appliances Inc スクロール圧縮機
JP2010106780A (ja) * 2008-10-31 2010-05-13 Hitachi Appliances Inc スクロール圧縮機
JP2010138758A (ja) * 2008-12-10 2010-06-24 Hitachi Appliances Inc スクロール圧縮機
WO2012039109A1 (ja) * 2010-09-21 2012-03-29 株式会社ヴァレオジャパン スクロール型圧縮機
JP2013204476A (ja) * 2012-03-28 2013-10-07 Hitachi Appliances Inc スクロール圧縮機

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018220747A1 (ja) * 2017-05-31 2018-12-06 三菱電機株式会社 スクロール圧縮機および冷凍サイクル装置
WO2023181141A1 (ja) * 2022-03-23 2023-09-28 三菱電機株式会社 横形スクロール圧縮機およびこの横形スクロール圧縮機を備えた冷凍サイクル装置

Also Published As

Publication number Publication date
JPWO2015059833A1 (ja) 2017-03-09
JP6120982B2 (ja) 2017-04-26

Similar Documents

Publication Publication Date Title
KR101013085B1 (ko) 스크롤 장치
JP4051401B2 (ja) ロータリ型流体機械および冷凍サイクル装置
US9617996B2 (en) Compressor
WO2010087179A1 (ja) スクロール圧縮機
JP5006444B2 (ja) 圧縮機及びそのオイル供給構造
WO2014103204A1 (ja) スクロール型圧縮機
KR101971819B1 (ko) 스크롤 압축기
JP5014346B2 (ja) 膨張機一体型圧縮機およびそれを備えた冷凍サイクル装置
JP2010163877A (ja) 回転式圧縮機
JP2010285930A (ja) スクロール圧縮機
JP6425744B2 (ja) 圧縮機
JP6120982B2 (ja) スクロール流体機械
WO2016092688A1 (ja) 圧縮機
JP6704526B2 (ja) 冷凍サイクル装置
JP6167417B2 (ja) スクロール圧縮機及び空気調和装置
JP2007085297A (ja) スクロール圧縮機
JP5493958B2 (ja) 圧縮機
JP6138625B2 (ja) 密閉型圧縮機及びこれを用いた冷蔵庫
WO2021149180A1 (ja) 圧縮機
JP5693185B2 (ja) 横形スクロール圧縮機
JP5304679B2 (ja) 圧縮機
EP1954944A1 (en) A compressor
JP2014105692A (ja) スクロール圧縮機
JP7130133B2 (ja) スクロール圧縮機および冷凍サイクル装置
JP2012017682A (ja) 圧縮機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13895967

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015543680

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13895967

Country of ref document: EP

Kind code of ref document: A1