[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015056652A1 - Exhaust gas purification device - Google Patents

Exhaust gas purification device Download PDF

Info

Publication number
WO2015056652A1
WO2015056652A1 PCT/JP2014/077244 JP2014077244W WO2015056652A1 WO 2015056652 A1 WO2015056652 A1 WO 2015056652A1 JP 2014077244 W JP2014077244 W JP 2014077244W WO 2015056652 A1 WO2015056652 A1 WO 2015056652A1
Authority
WO
WIPO (PCT)
Prior art keywords
mat
exhaust gas
casing
opening
corner portion
Prior art date
Application number
PCT/JP2014/077244
Other languages
French (fr)
Japanese (ja)
Inventor
寿 安藤
将司 萩野
健蔵 斎木
Original Assignee
イビデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イビデン株式会社 filed Critical イビデン株式会社
Priority to JP2015542606A priority Critical patent/JP6419708B2/en
Publication of WO2015056652A1 publication Critical patent/WO2015056652A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2839Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration
    • F01N3/2853Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration using mats or gaskets between catalyst body and housing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2486Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure characterised by the shapes or configurations
    • B01D46/2496Circular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2422Mounting of the body within a housing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2455Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the whole honeycomb or segments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2476Monolithic structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2482Thickness, height, width, length or diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2486Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure characterised by the shapes or configurations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2486Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure characterised by the shapes or configurations
    • B01D46/2488Triangular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2486Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure characterised by the shapes or configurations
    • B01D46/249Quadrangular e.g. square or diamond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2486Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure characterised by the shapes or configurations
    • B01D46/2492Hexagonal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/944Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/0211Arrangements for mounting filtering elements in housing, e.g. with means for compensating thermal expansion or vibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2839Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration
    • F01N3/2853Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration using mats or gaskets between catalyst body and housing
    • F01N3/286Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration using mats or gaskets between catalyst body and housing the mats or gaskets having corrugations or cavities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2490/00Structure, disposition or shape of gas-chambers
    • F01N2490/16Chambers with particular shapes, e.g. spherical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2490/00Structure, disposition or shape of gas-chambers
    • F01N2490/18Dimensional characteristics of gas chambers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an exhaust gas purification apparatus.
  • the exhaust gas discharged from an internal combustion engine such as a diesel engine contains particulate matter (hereinafter also referred to as PM) such as soot, and in recent years, this PM has a problem that it harms the environment and the human body. It has become. Further, since the exhaust gas contains harmful gas components such as CO, HC and NOx, there is a concern about the influence of the harmful gas components on the environment and the human body.
  • PM particulate matter
  • an exhaust gas treatment body made of porous ceramics such as silicon carbide or cordierite, and a casing that houses the exhaust gas treatment body
  • Various types of exhaust gas purifying apparatuses have been proposed that are composed of an inorganic fiber mat disposed between an exhaust gas treating body and a casing.
  • the mat used in this exhaust gas purification device prevents the exhaust gas treating body from being damaged by contact with the casing covering the outer periphery due to vibrations or impacts caused by running of an automobile, etc., and holds the exhaust gas treating body firmly. Therefore, the main purpose is to prevent the exhaust gas treating body from coming out of the exhaust gas purifying apparatus and to prevent the exhaust gas from leaking between the exhaust gas treating body and the casing.
  • the conventional casing has a shape that is spaced from the outer peripheral surface of the exhaust gas treating body. Then, a mat slightly thicker than the gap between the casing and the exhaust gas treatment body is wound around the exhaust gas treatment body, and the exhaust gas treatment body around which the mat is wound is press-fitted into the casing having the above-described shape to form an exhaust gas purification device. (Patent Document 1).
  • the conventional exhaust gas treatment body is not only a circular cross section in the vertical direction of the cells constituting the exhaust gas treatment body, but is close to an elliptical shape or a shape in which a rectangular corner (corner portion) is chamfered.
  • the distance from the corner portion of the exhaust gas treatment body to the inner peripheral surface of the casing is from the portion other than the corner portion of the exhaust gas treatment body to the inner periphery of the casing. In some cases, the distance was smaller than the distance to the surface. In such a case, when the exhaust gas treating body around which the mat is wound is press-fitted into the casing, there is a problem that a load on the mat disposed at the corner portion increases, and the mat is likely to be cracked or crushed.
  • the present invention has been made in order to solve the above-described problem, and an exhaust gas purifying apparatus that is unlikely to cause cracks or crushing in the mat, can securely hold an exhaust gas treatment body by the mat, and can prevent leakage of exhaust gas.
  • the purpose is to provide.
  • an exhaust gas purification apparatus of the present invention is inserted between a columnar exhaust gas treatment body, a casing made of a tubular body that houses the exhaust gas treatment body, and the exhaust gas treatment body and the casing.
  • An exhaust gas purifying device comprising a mat made of inorganic fibers, wherein the outline of the cross section perpendicular to the longitudinal direction of the exhaust gas treating body has 3 to 6 corner portions and a connecting portion for connecting the corner portions to each other
  • the corner portion is made of a curve
  • the connecting portion is made of a straight line or a curve
  • the distance from the corner portion to the inner peripheral surface of the casing is from the connecting portion to the inner peripheral surface of the casing.
  • the surface specific gravity of the mat disposed in the corner portion is smaller than the surface specific gravity of the mat disposed in the connecting portion. That.
  • the corner portion of the exhaust gas treating body refers to the following portion.
  • the minimum value of the radius of curvature at the portion where the contour becomes a curve is obtained.
  • a continuous portion where the radius of curvature is not more than 8 times the minimum value of the radius of curvature is a corner portion of the exhaust gas treating body.
  • the connection part of an exhaust gas treatment body means the part of the curve or straight line which connects the said corner parts in the outline of a cross section perpendicular
  • the connecting part of the exhaust gas treating body may be composed of only a straight line or a curved line, or may be composed of both a straight line and a curved line.
  • the distance from the corner portion of the exhaust gas treating body to the inner peripheral surface of the casing is a distance obtained by the following method. First, in the outline of the cross section perpendicular to the longitudinal direction of the exhaust gas treating body, a normal line at one point with a corner portion is drawn. Next, the distance from the point where the corner portion and the normal line intersect to the point where the inner peripheral surface of the casing and the normal line intersect is obtained. Next, the point used to draw the normal line is moved along the corner portion of the exhaust gas treating body, and the normal line at each point is drawn. Next, the distance from each point to the point where the inner peripheral surface of the casing intersects the normal line is obtained. The maximum distance among the distances thus obtained is the distance from the corner portion to the inner peripheral surface of the casing.
  • the distance from the connection part of the exhaust gas treatment body to the inner peripheral surface of the casing is the minimum distance among the distances from the connection part of the exhaust gas treatment body to the inner peripheral surface of the casing.
  • the distance from the corner portion to the inner peripheral surface of the casing being smaller than the distance from the connecting portion to the inner peripheral surface of the casing means the following case. First, the distance from the corner portion to the inner peripheral surface of the casing is obtained by the above method. Next, two connecting portions adjacent to the corner portion are recognized. Next, in each of the certified connecting portions, the distance from the connecting portion to the inner peripheral surface of the casing is obtained by the above method. When the distance from the corner portion to the inner peripheral surface of the casing is smaller than the distance from any connecting portion to the inner peripheral surface of the casing, the distance from the corner portion to the inner peripheral surface of the casing is This means that the distance is smaller than the distance to the inner peripheral surface.
  • the distance from the corner portion to the inner peripheral surface of the casing is smaller than the distance from the connecting portion to the inner peripheral surface of the casing, and is disposed in the corner portion.
  • the surface specific gravity of the mat is smaller than the surface specific gravity of the mat disposed in the connecting portion.
  • the surface specific gravity of the mat disposed at the corner portion is smaller than the surface specific gravity of the mat disposed at the connecting portion. That is, the density of the fibers of the mat disposed in the corner portion is lower than the density of the fibers of the mat disposed in the connecting portion. Therefore, even if the pressure from the casing is received, the bulk density of the mat disposed at the corner portion is not easily increased. For this reason, cracks and crushing are unlikely to occur in the mat. Further, when the exhaust gas treating body around which the mat is wound is press-fitted into the casing, a load applied to the mat disposed at the corner portion is not easily increased, and the mat is not easily cracked or crushed.
  • the exhaust gas purifying apparatus of the present invention it is possible to prevent the exhaust gas treating body from being damaged by contact with the casing covering the outer periphery due to vibrations or impacts caused by traveling of the automobile or the like.
  • the holding capacity of the treatment body is high, and the exhaust gas treatment body can be prevented from coming out from the inside of the exhaust gas purification apparatus. Further, it is possible to prevent the exhaust gas from leaking firmly.
  • the inorganic fiber can easily move to the opening when the exhaust gas treating body around which the mat is wound is pressed, and the pressure applied to the mat disposed at the corner is reduced. be able to. Therefore, it is possible to prevent the bulk density of the mat disposed at the corner portion from increasing. As a result, it is possible to prevent the mat from being cracked or crushed.
  • two or more openings are formed in a part of the mat disposed in the corner portion in the width direction of the mat.
  • the inorganic fibers When two or more openings are formed in the width direction of the mat, the inorganic fibers easily move uniformly into the openings when the exhaust gas treating body around which the mat is wound is press-fitted. Therefore, it can prevent that the pressure received from a casing applies only to a part of mat
  • the shape of the opening is at least one shape selected from the group consisting of a substantially circular shape, a substantially elliptical shape, a substantially racetrack shape, a substantially hexagonal shape, a substantially pentagonal shape, a substantially rectangular shape, and a substantially triangular shape. It is desirable that
  • the shape of the opening according to the radius of curvature of the corner of the exhaust gas treatment body and the shape of the inner peripheral surface of the casing, when the exhaust gas treatment body around which the mat is wound is press-fitted, inorganic fibers are introduced into the opening. It can be moved easily. Thereby, the pressure which a mat receives from a casing can be disperse
  • the length of the opening in the width direction of the mat is 1/10 to 9/10 of the width of the mat.
  • the length of the opening in the width direction of the mat means that the distance from one end of the opening in the width direction of the mat to the other end is the length of the opening in the width direction of the mat. I mean.
  • the length of the opening in the width direction of the mat is less than 1/10 of the width of the mat, the surface specific gravity of the mat disposed in the corner portion is not easily lowered, and the opening is arranged in the corner portion.
  • the bulk density of the mat provided is not likely to be sufficiently low. Therefore, it becomes difficult to obtain the effect of preventing the mat from cracking or crushing. If the length of the opening in the width direction of the mat is more than 9/10 of the width of the mat, the mat surface gravity will be too small and the mat will be easily cut off become.
  • the length of the opening in the width direction of the mat is desirably 10 mm to 70 mm.
  • the length of the opening in the width direction of the mat is less than 10 mm, the surface specific gravity of the mat disposed in the corner portion is not easily lowered, and the mat disposed in the corner portion is not sufficiently low. Bulk density is unlikely to be sufficiently low. Therefore, it becomes difficult to obtain the effect of preventing the mat from being cracked or crushed. If the length of the opening in the width direction of the mat is more than 70 mm, the mat is easily cut off because the surface specific gravity of the mat disposed in the corner portion is too small.
  • the mat in the continuous area of the mat disposed in the corner portion, the mat is viewed in plan, and a first straight line perpendicular to the length direction of the mat is defined on the mat.
  • the second straight line perpendicular to the mat length direction is drawn with the other end of the mat length direction opening so as to come into contact with one end of the length length opening.
  • the surface specific gravity of the mat existing in the region between the first straight line and the second straight line is 30 of the surface specific gravity of the mat disposed in the connecting portion. It is desirable to be 99.5%.
  • the surface specific gravity of the mat existing in the region from the first straight line to the second straight line is less than 30% of the surface specific gravity of the mat disposed in the connecting portion, the first straight line to the second straight line Since the amount of inorganic fibers present in the region up to the straight line becomes too small, the mat is easily broken.
  • the surface specific gravity of the mat existing in the region between the first straight line and the second straight line exceeds 99.5% of the surface specific gravity of the mat disposed at the connecting portion, the mat is disposed at the corner portion. Since the inorganic fibers of the mat are difficult to move to the opening, the bulk density of the mat disposed at the corner is not sufficiently lowered. Therefore, it becomes difficult to obtain the effect of preventing the mat from cracking or crushing.
  • the density of the inorganic fibers of the mat disposed at the corner portion is lower than the density of the inorganic fibers of the mat disposed at the connecting portion.
  • the inorganic fibers can be easily moved to a lower density, and the pressure applied to the mat disposed in the corner portion can be reduced. Can do. Therefore, it is possible to prevent the bulk density of the mat disposed at the corner portion from increasing. As a result, it is possible to prevent the mat from being cracked or crushed.
  • the inorganic fiber is desirably at least one selected from the group consisting of alumina fiber, alumina-silica fiber, silica fiber, and biosoluble fiber.
  • the mat is further subjected to a needle punching process.
  • the exhaust gas purifying apparatus of the present invention by subjecting the mat to needle punching, entanglement of inorganic fibers occurs, and the strength of the mat is improved. Therefore, cracks and crushing are less likely to occur in the mat.
  • FIG. 1 is a perspective view schematically showing an example of the exhaust gas purifying apparatus of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing an example of the exhaust gas treating body constituting the exhaust gas purifying apparatus of the present invention, cut in a direction perpendicular to the longitudinal direction of the exhaust gas treating body.
  • FIGS. 3-1 (a) and (b) are cross-sectional views schematically showing an example of the exhaust gas treatment body constituting the exhaust gas purification apparatus of the present invention, cut in a direction perpendicular to the longitudinal direction of the exhaust gas treatment body.
  • FIG. 3-2 (c) and (d) are cross-sectional views schematically showing an example of the exhaust gas treatment body constituting the exhaust gas purification apparatus of the present invention, cut in a direction perpendicular to the longitudinal direction of the exhaust gas treatment body.
  • FIG. FIG. 4A is a perspective view schematically showing an example of a mat constituting the exhaust gas purifying apparatus of the present invention.
  • FIG. 4-2 (b) is a plan view of the mat shown in FIG. 4-1 (a).
  • FIG. 4-2 (c) is a diagram schematically showing a method for calculating the area of the mat in determining the surface specific gravity of the mat shown in FIG. 4-2 (b).
  • FIG. 5 is a cross-sectional view schematically showing an example of the exhaust gas purifying apparatus of the present invention cut perpendicularly to the longitudinal direction of the exhaust gas purifying apparatus.
  • 6 (a) to 6 (c) are enlarged views showing the broken line portion in FIG. 5, and schematically showing how to obtain the distance from the corner portion to the inner peripheral surface of the casing.
  • FIG. 7 is an enlarged view showing a broken line portion in FIG. 5 and is an explanatory view schematically showing a positional relationship between the exhaust gas treating body and the casing.
  • FIG. 8 is an enlarged view showing a broken line portion in FIG. 5, and is an explanatory view schematically showing a mat disposed in a corner portion.
  • FIG. 9A is a cross-sectional view schematically showing the broken line portion in FIG. 4-1A cut along the line AA so that the opening passes therethrough.
  • FIG.9 (b) is a schematic diagram which shows typically the state of the part shown to Fig.9 (a) of the mat
  • FIGS. 10A to 10G are plan views schematically showing an example of a mat constituting the exhaust gas purifying apparatus of the present invention, and show mats having openings of various shapes.
  • FIGS. 10 (h) and (i) are plan views schematically showing an example of a mat constituting the exhaust gas purifying apparatus of the present invention, and show a mat in which an opening is formed from the side.
  • FIG. 10A to 10G are plan views schematically showing an example of a mat constituting the exhaust gas purifying apparatus of the present invention, and show a mat in which an opening is formed from the side.
  • FIG. 11 is a diagram of a mat showing a region between the first straight line and the second straight line when the first straight line and the second straight line are drawn on an example of the mat constituting the exhaust gas purifying apparatus of the present invention. It is a top view.
  • FIG. 12 is a cross-sectional view schematically showing an example of the exhaust gas purification apparatus of the present invention when an exhaust gas purification filter is used as the exhaust gas treatment body, cut in parallel to the longitudinal direction of the exhaust gas purification apparatus.
  • FIG. 13 is a perspective view schematically showing an example of a process of housing the wound body constituting the exhaust gas purifying apparatus of the present invention in a casing.
  • FIG. 12 is a cross-sectional view schematically showing an example of the exhaust gas purification apparatus of the present invention when an exhaust gas purification filter is used as the exhaust gas treatment body, cut in parallel to the longitudinal direction of the exhaust gas purification apparatus.
  • FIG. 13 is a perspective view schematically showing an example of a process of housing the wound body constituting the exhaust gas
  • FIG. 14A shows dimensions (vertical, horizontal, diagonal 1, diagonal 2, and radius of curvature (r of the corner portion) for specifying the shape of a cross section perpendicular to the longitudinal direction of the exhaust gas purification filter. )) Is a cross-sectional view schematically showing.
  • FIG. 14B is a reference dimension for specifying the shape of the inner wall surface perpendicular to the longitudinal direction of the casing (vertical, horizontal, diagonal 1, diagonal 2, corner radius of curvature (R). Is a cross-sectional view schematically showing.
  • FIG. 15A is a top view schematically showing the experimental apparatus.
  • FIG. 15B is a cross-sectional view taken along the line BB.
  • the present invention is not limited to the following description, and can be appropriately modified and applied without departing from the scope of the present invention.
  • the present invention also includes a combination of two or more desirable configurations of the present invention described below.
  • the present invention will be described by taking the exhaust gas purification apparatus 1 which is the exhaust gas purification apparatus of the present invention as an example.
  • FIG. 1 is a perspective view schematically showing an example of the exhaust gas purifying apparatus of the present invention.
  • the exhaust gas purification apparatus 1 of the present invention includes a columnar exhaust gas treatment body 10, a casing 20 made of a tubular body that houses the exhaust gas treatment body 10, and the exhaust gas treatment body 10 and the casing 20.
  • Consists of a mat 30 made of inserted inorganic fibers the contour 11 of the cross section perpendicular to the longitudinal direction of the exhaust gas treating body 10 is composed of four corner portions and a connecting portion that connects the corner portions,
  • the corner portion is formed of a curved line
  • the connecting portion is formed of a straight line
  • the distance from each corner portion to the inner peripheral surface of the casing 20 is smaller than the distance from each connecting portion to the inner peripheral surface of the casing 20.
  • the surface specific gravity of the mat 30 disposed on the mat is smaller than the surface specific gravity of the mat 30 disposed on each connecting portion.
  • the exhaust gas treatment body 10 constituting the exhaust gas purification apparatus 1 of the present invention will be described.
  • the exhaust gas treating body 10 has a function of collecting PM in exhaust gas discharged from an internal combustion engine such as a diesel engine, or a function of converting harmful gas components in the exhaust gas into harmless gas components. However, it may have the two functions described above.
  • an exhaust gas purification filter what has the function of collecting PM in the exhaust gas
  • a catalytic converter what has the function of converting harmful gas components in the exhaust gas into harmless gas components
  • the exhaust gas purification filter is not particularly limited.
  • the exhaust gas purification filter is a so-called honeycomb filter made of a porous ceramic such as silicon carbide or cordierite.
  • a plate is used as a filter
  • a filter is formed of a metal porous body having a three-dimensional network structure, and a laminate of ceramic fibers And the like.
  • These filters are housed in a heat-resistant container of a predetermined shape, such as a filter made by stacking plate-like ones, one made of a metal porous body having a three-dimensional network structure, one made of a laminate of ceramic fibers, etc.
  • the heat-resistant container is columnar.
  • a honeycomb filter made of a porous ceramic such as silicon carbide or cordierite is provided with a large number of cells in the longitudinal direction, and either the exhaust gas inlet side or the outlet side of each cell is plugged. desirable.
  • the honeycomb filter is made of cordierite or the like, and may be an integrated honeycomb filter integrally formed from one porous ceramic, and a columnar porous ceramic made of silicon carbide or the like is mainly bonded to the ceramic.
  • a collective honeycomb filter formed by bundling a plurality of material layers may be used.
  • the catalytic converter is not particularly limited, for example, a catalyst in which a catalyst is supported on a porous ceramic in which a number of cells are provided in the longitudinal direction, a catalyst in which a catalyst is supported in a pellet-shaped porous ceramic, a metal A sheet obtained by processing a thin sheet in a wavy shape is used as a carrier, and a catalyst is supported on this carrier.
  • a catalyst in which a catalyst is supported in a pellet-shaped porous ceramic, a metal A sheet obtained by processing a thin sheet in a wavy shape is used as a carrier, and a catalyst is supported on this carrier.
  • these carriers are accommodated in a heat-resistant container.
  • the heat-resistant container is columnar.
  • a catalytic converter in which a catalyst is supported on a porous ceramic in which a large number of cells are provided in the longitudinal direction is desirable.
  • Examples of the catalyst supported on the exhaust gas treating body include noble metals such as platinum, palladium and rhodium, alkali metals such as potassium and sodium, alkaline earth metals such as barium, and metal oxides such as cerium oxide. can give. These catalysts may be used independently and may use 2 or more types together.
  • FIG. 2 is a cross-sectional view schematically showing an example of the exhaust gas treating body constituting the exhaust gas purifying apparatus of the present invention, cut in a direction perpendicular to the longitudinal direction of the exhaust gas treating body.
  • the outline 11 of the cross section perpendicular to the longitudinal direction of the exhaust gas treating body 10 has a shape in which square corners are rounded. That is, the contour 11 is composed of four curves 12a, 12b, 12c and 12d and four straight lines 13a, 13b, 13c and 13d connecting them.
  • the curves 12a and 12b, the curves 12b and 12c, the curves 12c and 12d, and the curves 12d and 12a are connected by straight lines 13a, 13b, 13c, and 13d, respectively.
  • the minimum value (r 10 ) min of the radius of curvature in the curves 12a, 12b, 12c and 12d is obtained.
  • the continuous portions where the radius of curvature is not more than 8 times the minimum value (r 10 ) min of the radius of curvature are the corner portions 14a, 14b, 14c and 14d of the exhaust gas treatment body. .
  • the curvature radius is an amount that represents the degree of bending of a curve or curved surface.
  • the degree of local bending can be approximated to a circle, and the radius of the approximated circle is called the curvature radius.
  • the curvature radius is 1 / r and the curvature radius is r. The tighter the curve, the larger the curvature and the smaller the radius of curvature.
  • the three-dimensional coordinate measuring machine RVA800A-X1, etc. by measuring the position of multiple points of the exhaust gas treatment body, it is possible to specify the curve, and when this curve is an arc Can determine the radius of curvature of the arc. Furthermore, if the curvature radius of the exhaust gas treatment body is designed to be a predetermined value, take a photograph of the cross section to check whether it matches the curvature radius curve at the time of design. Thus, the radius of curvature can be obtained.
  • the respective curves are corner portions 14a, 14b, 14c, and 14d. That is, the start point and end point of each curve are the start point and end point of each corner portion.
  • the straight lines 13a, 13b, 13c, and 13d are connecting portions 15a, 15b, 15c, and 15d, respectively.
  • the corner portions 14a and 14b, the corner portions 14b and 14c, the corner portions 14c and 14d, and the corner portions 14d and 14a are connected by connecting portions 15a, 15b, 15c, and 15d, respectively.
  • FIGS. 3-1 (a) and (b) are cross-sectional views schematically showing an example of the exhaust gas treatment body constituting the exhaust gas purification apparatus of the present invention, cut in a direction perpendicular to the longitudinal direction of the exhaust gas treatment body.
  • FIG. FIGS. 3-2 (c) and (d) are cross-sectional views schematically showing an example of the exhaust gas treatment body constituting the exhaust gas purification apparatus of the present invention, cut in a direction perpendicular to the longitudinal direction of the exhaust gas treatment body.
  • FIG. 3-1 (a) and (b) are cross-sectional views schematically showing an example of the exhaust gas treatment body constituting the exhaust gas purification apparatus of the present invention, cut in a direction perpendicular to the longitudinal direction of the exhaust gas treatment body.
  • the contour 111 of the cross section perpendicular to the longitudinal direction of the exhaust gas treating body 110 shown in FIG. 3-1 (a) is such that the corner of the square is rounded and the straight portion of the square is convex outward. It is a cut shape. That is, it is composed of four curves 112a, 112b, 112c and 112d having a large curvature, and four curves 113a, 113b, 113c and 113d having a small curvature connecting them.
  • the curves 112a and 112b, the curves 112b and 112c, the curves 112c and 112d, and the curves 112d and 112a are connected by curves 113a, 113b, 113c, and 113d, respectively.
  • the minimum value (r 110 ) min of the radius of curvature in the curves 112a, 112b, 112c, 112d, 113a, 113b, 113c, and 113d is obtained.
  • a continuous portion in which the radius of curvature is not more than 8 times the minimum value (r 110 ) min of the radius of curvature is the corner portion 114a of the exhaust gas treatment body.
  • the corner portions 114a and 114b, the corner portions 114b and 114c, the corner portions 114c and 114d, and the corner portions 114d and 114a are connected by connecting portions 115a, 115b, 115c, and 115d, respectively.
  • the connecting portion may be composed of only a straight line or only a curve.
  • the connection part may be comprised from both the straight line and the curve.
  • the exhaust gas treating body constituting the exhaust gas purifying apparatus of the present invention has a shape having 3 to 6 corner portions as shown in FIG. 3-1 (b) and FIGS. 3-2 (c) and (d).
  • FIG. 3-1 (b) and FIGS. 3-2 (c) and (d) have exhaust gas treatment bodies 210, 310, and 410 that are equilateral triangles in cross sections perpendicular to the longitudinal direction of the exhaust gas treatment bodies, respectively.
  • Each part of a regular pentagon and a regular hexagon is R-chamfered.
  • the shape of the exhaust gas treating body is not limited to the above-described shape, and it is desirable to select a suitable shape from the relationship with the accommodation space and the like.
  • FIG. 4A is a perspective view schematically showing an example of a mat constituting the exhaust gas purifying apparatus of the present invention.
  • FIG. 4-2 (b) is a plan view of the mat shown in FIG. 4-1 (a).
  • FIG. 4-2 (c) is a diagram schematically showing a method for calculating the area of the mat in determining the surface specific gravity of the mat shown in FIG. 4-2 (b).
  • the mat 30 has a predetermined length in the longitudinal direction (hereinafter also simply referred to as a total length; indicated by an arrow L in FIG. 4-1 (a)) and a width (FIG. 4).
  • -1 (a) is a mat having a rectangular shape in plan view including inorganic fibers having a thickness (indicated by an arrow W) and a thickness (indicated by an arrow T in FIG.
  • the mat 30 includes an end surface 31 on which a convex portion 31a is formed and an end surface 32 on which a concave portion 32a is formed. As will be described later, the mat 30 is wound around the exhaust gas treating body 10.
  • the convex portion 31a and the concave portion 32a are shaped so as to fit each other when the mat 30 is wound around the exhaust gas treating body 10.
  • the opening 33 in the mat 30 is a portion to be disposed at each corner portion of the exhaust gas treatment body 10 when the mat 30 is wound around the exhaust gas treatment body 10.
  • the mat 30 can be divided into a first region 34 in which the opening 33 is formed and a second region 35 in which the opening is not formed.
  • the first region 34 is a region disposed at each corner portion when the mat 30 is wound around the exhaust gas treating body 10.
  • the second region 35 is a region disposed in each connection portion when the mat 30 is wound around the exhaust gas treating body 10.
  • the surface specific gravity of the first region 34 is smaller than the surface specific gravity of the second region 35.
  • the weight of the portion of the second region 35 of the mat 30 to be disposed in each connecting portion of the exhaust gas treating body 10 is divided by the area of the second region 35 of the mat.
  • the value is the surface specific gravity.
  • the surface specific gravity is obtained as follows. An opening 33 is formed in the first region 34. When obtaining the surface specific gravity of the first region 34 of the mat 30, first, the area of the first region 34 is obtained assuming that the opening 33 has fibers or the like. Next, the weight of the portion of the first region 34 of the mat 30 is divided by the area of the first region 34 obtained by assuming that the opening 33 has fibers or the like.
  • This value is the surface specific gravity of the portion of the first region 34 of the mat 30. That is, in the first region 34, the “area of the first region 34” for obtaining the surface specific gravity of the mat is the area of the plane 33 ′ surrounded by the diagonally right oblique line in FIG. 4-2 (c). And the area of the plane 36 surrounded by the left diagonal line.
  • a plane 33 ′ in FIG. 4-2 (c) coincides with the opening 33 in the mat 30 in FIG. 4-2 (b).
  • a plane 36 in FIG. 4-2 (c) coincides with the portion of the first region 34 other than the opening 33 in the mat 30 in FIG. 4-2 (b).
  • the inorganic fiber constituting the mat according to the exhaust gas purification apparatus of the present invention is not particularly limited, but is at least one selected from the group consisting of alumina fiber, alumina-silica fiber, silica fiber, and biosoluble fiber. It is desirable to be a seed.
  • Mats using these types of inorganic fibers have excellent holding power and excellent mechanical properties of the inorganic fibers, so that the mats are not easily cracked or crushed, and the exhaust gas treating body is firmly held.
  • the type of inorganic fiber may be changed according to the characteristics required for the mat, such as heat resistance and wind erosion resistance, and large diameter fibers or fiber lengths that can meet the environmental regulations of each country should be used. Is desirable.
  • low crystalline alumina inorganic fibers are desirable, and low crystalline alumina inorganic fibers having a mullite composition are more desirable.
  • inorganic fibers containing spinel type compounds are more desirable.
  • a highly crystalline alumina material is hard and brittle, so it is not suitable for a mat used as a cushioning material.
  • the crystallization ratio is preferably in the range of 0.1 to 30%, and more preferably in the range of 0.4 to 20%. Mats made of inorganic fibers in this range have a high rebound force and a high restoration surface pressure after a durability test. However, when the crystallization ratio is less than 0.1% or more than 30%, the repulsive force and the restoring surface pressure are rapidly reduced.
  • the mat is subjected to a needle punching process on a base mat made of inorganic fibers.
  • the needle punching process refers to inserting and removing fiber entanglement means such as a needle with respect to the base mat.
  • the inorganic fiber desirably has a certain average fiber length.
  • the average fiber length of the inorganic fiber is desirably 4 mm to 120 mm.
  • the fibers are entangled at the location where the needle treatment is performed, and the strength of the mat is increased.
  • a preferable density of needle punches is 10 to 500 per 100 cm 2 .
  • the density of needle punches is less than 10 per 100 cm 2 , the mat is torn and separated.
  • the mat becomes difficult to bend, and when it is wound around the exhaust gas treatment body, the mat tends to be formed into a flat shape, and when the string-like member is applied, This is not preferable because a large tension is applied to the member and the string member is broken.
  • the surface specific gravity of the mat at the portion to be disposed at the connecting portion of the exhaust gas treating body is 400 g / m 2 to 2000 g / m 2 .
  • the surface specific gravity of the mat is less than 400 g / m 2 , the exhaust gas treating body cannot be sufficiently protected from vibrations when the exhaust gas purifying apparatus is operated, and thus there arises a problem that the exhaust gas treating body is lost or dropped from the casing.
  • 2000 g / m 2 the restoring force of the mat is too strong, so that it exceeds the strength of the exhaust gas treating body and is damaged.
  • the surface density of the mat portion which is to be disposed in a corner portion of the exhaust gas treating body and more desirably about 390g / m 2 ⁇ 1990g / m 2.
  • the mat may have a single layer structure or a multilayer structure.
  • the hooking portion is formed at the same position of the plurality of mats. By doing so, it is possible to prevent the mats having a plurality of string-like members from being peeled off.
  • stitches and adhesives are used, so there is concern about an increase in organic content, and the man-hours become complicated, leading to an increase in defects and a decrease in work efficiency.
  • the mat thickness T is desirably 5 to 15 mm.
  • the casing 20 is mainly made of a metal such as stainless steel, and the inside thereof has a tubular shape having a space slightly larger than the shape of the exhaust gas treatment body 10 so that the exhaust gas treatment body 10 can be accommodated therein.
  • the shape of the casing is not limited to a shape that can accommodate the exhaust gas treating body 10, and is preferably selected according to the shape of the exhaust gas treating body.
  • FIG. 5 is a cross-sectional view schematically showing an example of the exhaust gas purifying apparatus of the present invention cut perpendicularly to the longitudinal direction of the exhaust gas purifying apparatus.
  • the distance from each corner portion of the exhaust gas treatment body 10 to the inner peripheral surface of the casing 20 is smaller than the distance from each connection portion of the exhaust gas treatment body 10 to the inner peripheral surface of the casing 20.
  • 6 (a) to 6 (c) are enlarged views showing the broken line portion in FIG. 5, and schematically showing how to obtain the distance from the corner portion to the inner peripheral surface of the casing.
  • the distance from the corner portion 14a to the inner peripheral surface of the casing 20 refers to the following distance.
  • FIG. 6 (b) subtracting the normal alpha n at each point while moving along the point 14a n the corner portion 14a.
  • the maximum distance I max among the distances obtained by the above method is the distance from the corner portion 14 to the inner peripheral surface of the casing 20.
  • the distance from the connection part of the exhaust gas treatment body 10 to the inner peripheral surface of the casing 20 is the minimum distance i min among the distances from the connection parts of the exhaust gas treatment body 10 to the inner peripheral surface of the casing 20. It is.
  • FIG. 7 is an enlarged view showing a broken line portion in FIG. 5 and is an explanatory view schematically showing a positional relationship between the exhaust gas treating body and the casing. As shown in FIG. 7, the corner portion 14a is adjacent to the connecting portions 15a and 15d.
  • the distance from the corner portion 14a to the inner peripheral surface of the casing 20 is the distance (i 15a ) min from the connecting portion 15a to the inner peripheral surface of the casing 20, and the distance (i 15d ) from the connecting portion 15d to the casing. Smaller than any of min . In this case, the distance from each corner portion to the inner peripheral surface of the casing is smaller than the distance from the connecting portion adjacent to each corner portion to the inner peripheral surface of the casing 20.
  • the surface specific gravity of the mat 30 disposed at each corner portion is smaller than the surface specific gravity of the mat 30 disposed at each connection portion.
  • FIG. 8 is an enlarged view showing a broken line portion in FIG. 5, and is an explanatory view schematically showing a mat disposed in a corner portion.
  • a normal ⁇ 14a is drawn at both ends of the corner portion 14a.
  • the area delimited by the normal ⁇ 14a is the area of the mat 30 disposed in the corner portion 14a, that is, the first area 34 of the mat 30.
  • the exhaust gas purification apparatus when the distance from each corner portion to the inner peripheral surface of the casing 20 is smaller than the distance from each connection portion to the inner peripheral surface of the casing 20, and the surface specific gravity of the mat is constant, The pressure from the casing received by the mat disposed at the corner portion is greater than the pressure from the casing 20 received by the mat disposed at each connecting portion. In this case, the bulk density of the mat is increased, and cracks and crushing are likely to occur in the mat.
  • the surface specific gravity of the mat 30 disposed at each corner is smaller than the surface specific gravity of the mat 30 disposed at each connecting portion.
  • the density of the fibers of the mat 30 disposed at each corner is lower than the density of the fibers of the mat 30 disposed at each connecting portion. Therefore, even if the pressure from the casing 20 is received, the bulk density of the mat 30 disposed at each corner portion is not easily increased. For this reason, the mat 30 is not easily cracked or crushed. Further, when the exhaust gas treating body 10 around which the mat 30 is wound is press-fitted into the casing 20, the load applied to the mat 30 disposed in each corner portion is not easily increased, and the mat 30 is not easily cracked or crushed. .
  • the exhaust gas purifying apparatus 1 it is possible to prevent the exhaust gas treating body 1 from being damaged by contact with the casing 20 covering the outer periphery due to vibrations or impacts caused by traveling of the automobile or the like.
  • the holding ability of the exhaust gas treating body 10 is high, and the exhaust gas treating body 10 can be prevented from coming out of the exhaust gas purifying apparatus 1. Further, it is possible to prevent the exhaust gas from leaking firmly.
  • the density of the inorganic fibers of the mat 30 disposed at each corner portion is lower than the density of the inorganic fibers of the mat 30 disposed at each connection portion.
  • the inorganic fibers can be easily moved to a lower density, and the pressure applied to the mat 30 disposed at each corner portion is reduced. Can do. Therefore, it is possible to prevent the bulk density of the mat 30 disposed at each corner portion from increasing. As a result, it is possible to prevent the mat from being cracked or crushed.
  • the opening part 33 is formed in the mat 30 arrange
  • the inorganic fibers can easily move to the opening 33 when the exhaust gas treating body 10 around which the mat 30 is wound is press-fitted. That is, when the inorganic fiber easily moves to the opening 33, the thickness of the first region 34 of the mat 30 becomes thinner than the thickness of the second region 35 of the mat 30 as shown in FIG. Thereby, the pressure which the mat
  • FIG. 9A is a cross-sectional view schematically showing the broken line portion in FIG. 4-1A cut along the line AA so that the opening passes therethrough.
  • FIG.9 (b) is a schematic diagram which shows typically the state of the part shown to Fig.9 (a) of the mat
  • an opening 33 is formed in the first region 34 of the mat 30 and has a thickness T.
  • the inorganic fiber 37 is present around the opening 33 in the mat 30.
  • FIG. 9A is a cross-sectional view schematically showing the broken line portion in FIG. 4-1A cut along the line AA so that the opening passes therethrough.
  • FIG.9 (b) is a schematic diagram which shows typically the state of the part shown to Fig.9 (a) of the mat
  • an opening 33 is formed in the first region 34 of the mat 30 and has a thickness T.
  • the inorganic fiber 37 is
  • the bulk density of the mat 30 is difficult to increase.
  • the first region 34 of the mat 30 disposed at each corner portion receives a strong pressure.
  • the inorganic fibers 37 around the opening 33 can easily move into the space of the opening 33 in the first region 34 of the mat 30 as described above. Therefore, it is possible to prevent the bulk density of the mat 30 disposed at each corner portion from increasing. As a result, it is possible to prevent the mat 30 from being cracked or crushed.
  • only one opening 33 of the mat 30 is formed in the width direction of the mat 30, but in the mat constituting the exhaust gas purification apparatus of the present invention, it is disposed at each corner portion. Two or more openings may be formed in a part of the mat in the width direction of the mat.
  • the inorganic fibers When two or more openings are formed in the width direction of the mat, the inorganic fibers easily move uniformly into the openings when the exhaust gas treating body around which the mat is wound is press-fitted. Therefore, it can prevent that the pressure received from a casing applies only to a part of mat
  • the shape of the opening 33 when the mat 30 is viewed in plan is substantially rectangular.
  • the shape of the opening is However, it is not particularly limited, and it may be at least one shape selected from the group consisting of a substantially circular shape, a substantially elliptical shape, a substantially racetrack shape, a substantially hexagonal shape, a substantially pentagonal shape, a substantially quadrangular shape, and a substantially triangular shape.
  • FIGS. 10A to 10G are plan views schematically showing an example of a mat constituting the exhaust gas purifying apparatus of the present invention, and show mats having openings of various shapes. A mat 30a shown in FIG.
  • FIG. 10A has a substantially circular opening 33a.
  • the mat 30b shown in FIG. 10B has a substantially elliptical opening 33b.
  • a mat 30c shown in FIG. 10C has a substantially racetrack-shaped opening 33c.
  • a mat 30d shown in FIG. 10D has a substantially hexagonal opening 33d.
  • a mat 30e shown in FIG. 10E has a substantially pentagonal opening 33e.
  • a mat 30f shown in FIG. 10 (f) has a substantially parallelogram opening 33f.
  • a mat 30g shown in FIG. 10 (g) has a substantially triangular opening 33g.
  • FIGS. 10 (h) and (i) are plan views schematically showing an example of a mat constituting the exhaust gas purifying apparatus of the present invention, and show a mat in which an opening is formed from the side.
  • a substantially rectangular opening 33h is formed from one side surface of the mat 30h.
  • a substantially rectangular opening 33i is formed from both side surfaces of the mat 30i. That is, in the portion where the opening 33i exists in the width direction of the mat 30i, the mat 30i is connected to the center portion in the width direction of the mat 30i.
  • the shape of the opening according to the radius of curvature of the corner of the exhaust gas treatment body and the shape of the inner peripheral surface of the casing, when the exhaust gas treatment body around which the mat is wound is press-fitted, inorganic fibers are introduced into the opening. It can be moved easily. Thereby, the pressure which a mat receives from a casing can be disperse
  • the length of the opening 33 in the width direction of the mat 30 is desirably 1/10 to 9/10 of the width of the mat 30.
  • the length of the opening in the width direction of the mat refers to the distance from one end of the opening 33 in the width direction of the mat 30 to the other end.
  • the length of each opening in the width direction of the mat 30 is preferably within the above range.
  • the surface specific gravity of the mat 30 disposed in each corner portion is not easily lowered.
  • the bulk density of the mat 30 disposed at each corner is unlikely to be sufficiently low. Therefore, it becomes difficult to obtain the effect of preventing the mat 30 from being cracked or crushed. If the length of the opening 33 in the width direction of the mat 30 is longer than 9/10 of the width of the mat 30, the surface specific gravity of the mat 30 disposed in each corner portion becomes too small. The mat 30 is easily cut off.
  • the length of the opening 33 in the width direction of the mat 30 is desirably 10 mm to 70 mm.
  • the exhaust gas purifying apparatus 1 when the length of the opening 33 in the width direction of the mat 30 is less than 10 mm, the surface specific gravity of the mat 30 disposed at each corner portion is not sufficiently low, The bulk density of the mat 30 disposed at each corner is unlikely to be sufficiently low. Therefore, it becomes difficult to obtain the effect of preventing the mat 30 from being cracked or crushed. If the length of the opening 33 in the width direction of the mat 30 is more than 70 mm, the mat 30 is easily cut off because the surface specific gravity of the mat 30 disposed at each corner portion is too small. .
  • the mat 30 in a continuous area of the mats 30 arranged at each corner portion, the mat 30 is viewed in plan, and a first straight line 38 perpendicular to the length direction of the mat 30 is set to the length of the mat 30.
  • the second straight line 39 perpendicular to the longitudinal direction of the mat 30 is drawn with the other end of the longitudinal opening 33 of the mat 30 so as to come into contact with one end of the longitudinal opening 33.
  • the surface specific gravity of the mat 30 existing in the region between the first straight line 38 and the second straight line 39 is 30 of the surface specific gravity of the mat 30 disposed in each connecting portion. It is desirable to be 99.5%.
  • FIG. 11 is a diagram of a mat showing a region between the first straight line and the second straight line when the first straight line and the second straight line are drawn on an example of the mat constituting the exhaust gas purifying apparatus of the present invention. It is a top view.
  • an opening 33 is formed in the mat 30.
  • a first straight line 38 perpendicular to the length direction of the mat 30 is drawn so as to contact one end of the opening 33.
  • a second straight line 39 perpendicular to the length direction of the mat 30 is drawn so as to come into contact with one end of the opening 33.
  • the mat 30 existing in the region between the first straight line 38 and the second straight line 39 is a mat existing in a range divided by the first straight line 38 and the second straight line 39.
  • the surface specific gravity of the mat 30 existing in the region between the first straight line 38 and the second straight line 39 is less than 30% of the surface specific gravity of the mat 30 disposed in each connecting portion, the first Since the amount of inorganic fibers present in the region between the straight line 38 and the second straight line 39 becomes too small, the mat 30 is easily cut off.
  • the surface specific gravity of the mat 30 existing in the region between the first straight line 38 and the second straight line 39 exceeds 99.5% of the surface specific gravity of the mat 30 disposed in each connecting portion, Since the inorganic fibers of the mat 30 disposed in the corner portion are difficult to move to the opening 33, the bulk density of the mat 30 disposed in each corner portion is not easily lowered. Therefore, it becomes difficult to obtain the effect of preventing the mat 30 from being cracked or crushed.
  • FIG. 12 is a cross-sectional view schematically showing an example of the exhaust gas purification apparatus of the present invention when an exhaust gas purification filter is used as the exhaust gas treatment body, cut in parallel to the longitudinal direction of the exhaust gas purification apparatus.
  • the exhaust gas discharged from the internal combustion engine and flowing into the exhaust gas purification device 1 is an exhaust gas treatment body (honeycomb filter).
  • the exhaust gas purification filter 50 is mainly made of a porous ceramic such as silicon carbide and has a column shape, but the specific shape is not particularly limited, and for example, a substantially triangular column shape, a substantially square column shape, Examples include a pentagonal prism.
  • an outer peripheral coat layer 54 is provided on the side surface (outer periphery) of the exhaust gas purification filter 50 for the purpose of reinforcing the side surface of the exhaust gas purification filter 50, adjusting the shape, and improving the heat insulation of the exhaust gas purification filter 50. Is provided.
  • a mat constituting the exhaust gas purification apparatus is produced.
  • a mat material having a predetermined size is prepared. Since the mat material has been described above, the description thereof is omitted here.
  • a binder is attached to the mat material having the above-described configuration as necessary. By adhering the binder to the mat material, the entangled structure between the inorganic fibers can be strengthened, and the bulk of the mat material can be suppressed.
  • the amount of binder added is preferably 0.01 to 10.0% based on the weight of the mat material. 0.05 to 3.0% is more desirable, and the range of 0.1 to 1.5% is most desirable.
  • the binder an emulsion prepared by dispersing acrylic latex or rubber latex in water can be used.
  • the binder is sprayed uniformly on the entire mat material using a spray or the like, and the binder is adhered to the mat material.
  • the said binder is an organic component, the inorganic binder containing an alumina particle etc. may be used with the said organic binder, and only the inorganic binder may be used without using the said organic binder.
  • the mat material is dried to remove moisture in the binder.
  • drying conditions for example, drying may be performed at 95 to 150 ° C. for 1 to 30 minutes.
  • a mat member can be manufactured through a drying process.
  • a ventilation dryer is used for drying.
  • the drying speed of the mat material is increased, and further, the amount of binder attached is not uniform in the thickness direction of the mat material, and distribution can be achieved by resin migration.
  • it is possible to adjust the distribution such as increasing or decreasing the amount of resin in the central portion in the thickness direction of the mat material by setting various conditions such as the aeration speed and temperature of the aeration dryer. Further, it is possible to dry under compression or decompression environment, and the drying time can be reduced.
  • a punching process is performed, and for example, a mat 30 having a contour as shown in FIG. Further, in a later step, the mat 30 is punched so that the opening 33 is formed in a portion of the mat 30 disposed at each corner portion of the exhaust gas treating body 10.
  • the portion of the mat 30 disposed at each corner of the exhaust gas treatment body 10 can be calculated in advance from the size of the exhaust gas treatment body 10 and the like.
  • the convex portion 31a and the concave portion 32a of the mat 30 are fitted.
  • the mat 30 is wound around the exhaust gas treating body 10 to produce a wound body 40 shown in FIG.
  • the exhaust gas treating body 10 can be produced by a conventionally known method. Since the shape of the exhaust gas treating body to be manufactured has already been described, the description thereof is omitted here.
  • FIG. 13 is a perspective view schematically showing an example of a process of housing the wound body constituting the exhaust gas purifying apparatus of the present invention in a casing.
  • an exhaust gas treating body 10 wound body 40 around which a mat 30 is wound is press-fitted into a casing 20 having a predetermined size and mainly made of metal or the like.
  • the inner diameter of the casing 20 includes the thickness of the mat 30 of the exhaust gas treatment body 10 around which the mat 30 is wound. It is slightly smaller than the outermost diameter.
  • the method of accommodating the exhaust gas treating body around which the mat is wound in the casing 20 is not limited to the press-fitting method (stuffing method), and includes a sizing method (swaging method), a clamshell method, and the like.
  • a sizing method swaging method
  • an exhaust gas treating body around which a mat is wound is inserted into the casing, and then compressed from the outer peripheral side so as to reduce the inner diameter of the casing.
  • the casing is shaped so as to be separable into two parts, a first casing and a second casing, and after the exhaust gas treating body around which the mat is wound is placed on the first casing, the second Cover with a casing and seal.
  • the press-fitting method (stuffing method) or the sizing method (swaging method) is desirable. This is because in the press-fitting method (stuffing method) or the sizing method (swaging method), it is not necessary to use two parts as the casing, so the number of manufacturing processes can be reduced.
  • the distance from the corner portion to the inner peripheral surface of the casing is smaller than the distance from the connecting portion to the inner peripheral surface of the casing, and the mat surface disposed at the corner portion Specific gravity is smaller than the surface specific gravity of the mat
  • the exhaust gas purifying apparatus of the present invention it is possible to prevent the exhaust gas treating body from being damaged by contact with the casing covering the outer periphery due to vibrations or impacts caused by traveling of the automobile or the like.
  • the holding capacity of the treatment body is high, and the exhaust gas treatment body can be prevented from coming out from the inside of the exhaust gas purification apparatus. Further, it is possible to prevent the exhaust gas from leaking firmly.
  • the exhaust gas purifying apparatus of the present invention if two or more openings are formed in a part of the mat disposed in the corner portion in the width direction of the mat, the exhaust gas treatment in which the mat is wound When press-fitting the body, the inorganic fibers easily move to the openings. Therefore, it can prevent that the pressure received from a casing applies only to a part of mat
  • the shape of the opening is at least selected from the group consisting of a substantially circular shape, a substantially elliptical shape, a substantially racetrack shape, a substantially hexagonal shape, a substantially pentagonal shape, a substantially square shape, and a substantially triangular shape.
  • the shape of the opening can be selected in accordance with the radius of curvature of the corner portion of the exhaust gas treating body and the shape of the inner peripheral surface of the casing.
  • the inorganic fibers can easily move to the opening.
  • the pressure which a mat receives from a casing can be disperse
  • the mat disposed at the corner portion when the length of the opening in the width direction of the mat is 1/10 to 9/10 of the width of the mat, the mat disposed at the corner portion The surface specific gravity of the mat is sufficiently low, and the bulk density of the mat disposed in the corner portion is sufficiently low. Therefore, it is possible to obtain the effect of preventing the mat from being cracked or crushed. In addition, the surface specific gravity of the mat disposed in the corner portion does not become too small, and the mat becomes difficult to break.
  • the surface specific gravity of the mat disposed in the corner is sufficiently low, and the corner The bulk density of the mat disposed in the is sufficiently low. Therefore, it is possible to obtain the effect of preventing the mat from being cracked or crushed. In addition, the surface specific gravity of the mat disposed in the corner portion does not become too small, and the mat becomes difficult to break.
  • the mat in a continuous area of the mats arranged at the corner portions, the mat is viewed in plan, and the first straight line perpendicular to the length direction of the mat is the length of the mat.
  • the second straight line perpendicular to the mat length direction is drawn so as to contact the other end of the mat length opening.
  • the inorganic fibers of the mat disposed in the corner portion do not easily move to the opening, and the bulk density of the mat disposed in the corner portion is likely to be sufficiently low. Therefore, it is possible to obtain the effect of preventing the mat from being cracked or crushed.
  • the mat when the density of the inorganic fibers of the mat disposed in the corner portion is lower than the density of the inorganic fibers of the mat disposed in the connecting portion, the mat is wound.
  • the inorganic fibers When the exhaust gas treatment body is press-fitted, the inorganic fibers can be easily moved to a lower density, and the pressure applied to the mat disposed at the corner portion can be reduced. Therefore, it is possible to prevent the bulk density of the mat disposed at the corner portion from increasing. As a result, it is possible to prevent the mat from being cracked or crushed.
  • the inorganic fiber constituting the mat is at least one inorganic fiber selected from the group consisting of alumina fiber, alumina-silica fiber, silica fiber, and biosoluble fiber. If so, the mat using the inorganic fiber has excellent holding power and excellent mechanical properties of the inorganic fiber, so that the mat is not easily cracked or crushed, and the exhaust gas treating body is firmly held. .
  • an acrylic latex emulsion was prepared by sufficiently dispersing acrylic latex in water, and this was used as a binder.
  • the needle mat was cut into a total length of 1100 mm ⁇ width of 1280 mm in plan view.
  • the cut needle mat was impregnated with a binder so that the amount of alumina fiber of the cut needle mat was 1.0% by weight.
  • the mat material was produced by carrying out 6 minutes ventilation drying of the needle mat to which the binder was adhered at the temperature of 140 degreeC.
  • a mat material having a contour as shown in FIG. 4-1 (a) was punched from the mat material.
  • the mat material was punched using a Thomson blade and a hydraulic press.
  • the length from each side surface of the mat to the opening is 20 mm.
  • the opening length is the length of the opening in the longitudinal direction of the mat member.
  • the opening width is the length of the mat member in the width direction.
  • Table 1 shows the “percentage of the opening in the first region”, “ratio of the opening in the entire mat”, “surface specific gravity of the first region”, “second” of the mat according to the first embodiment. “Area specific gravity” and “surface specific gravity of the entire mat” are shown.
  • FIG. 14A shows dimensions (vertical, horizontal, diagonal 1, diagonal 2, and radius of curvature (r of the corner portion) for specifying the shape of a cross section perpendicular to the longitudinal direction of the exhaust gas purification filter. )) Is a cross-sectional view schematically showing.
  • FIG. 14B is a reference dimension for specifying the shape of the inner wall surface perpendicular to the longitudinal direction of the casing (vertical, horizontal, diagonal 1, diagonal 2, corner radius of curvature (R). Is a cross-sectional view schematically showing.
  • the exhaust gas purification filter made of SiC used in this example is represented by the reference shown in FIG.
  • the length is 143.8 mm
  • the width is 143.8 mm
  • the diagonal is 1: 179.6 mm
  • the diagonal is 2: 179.6 mm.
  • the radius of curvature of the corner is 20 mm.
  • the wound body was housed in the casing using a press-fitting method to manufacture an exhaust gas purification device.
  • the casing has a length of 151.8 mm, a width of 151.8 mm, a diagonal of 1: 186.8 mm, a diagonal of 2: 186.8 mm, and a corner radius of curvature R of 25 mm.
  • Example 1 As an endurance test regarding the holding property, Example 1 was used to perform a thermal cycle evaluation in which the engine speed was increased or decreased with a bench tester. Specifically, the engine speed was increased or decreased between 1000 rpm and 5000 rpm, and this was repeated 1000 cycles. The state of the exhaust gas treating body at this time was evaluated as follows. The results are shown in Table 2.
  • The exhaust gas treating body is moving, but the moving amount is 0.5 mm or more and less than 3.0 mm.
  • X The exhaust gas treating body is displaced, and the moving amount is 3.0 mm or more.
  • FIG. 15 is an explanatory diagram of the gas sealability test
  • FIG. 15A is a top view schematically showing the experimental apparatus
  • FIG. 15B is a cross-sectional view taken along the line BB.
  • an air pipe 61 is attached to the flat container 60, and air is allowed to flow into the flat container 60 through the air pipe 61.
  • a part of the mat is inserted into the flat container 60, and the static pressure of the space S when the air is injected into the space S surrounded by the flat container 60 and a part of the mat in that state. This is done by measuring with the pressure gauge 62.
  • the flat container 60 has a width of 110 mm, a height of 3.6 mm, and a depth of 120 mm. From the exhaust gas purifying apparatus of Example 1, the mat 24 hours after the press-fitting was taken out from the casing. Next, the portion disposed in the corner portion of the exhaust gas purification apparatus was cut and inserted into the flat container 60, and the static pressure was measured by the above method. Further, as a comparative sample, a mat that was not press-fitted into the exhaust gas purification device was prepared, cut in the same manner, inserted into the flat container 60, and the static pressure was measured by the above method. The gas sealability of the mat was evaluated as follows. The results are shown in Table 2.
  • (Double-circle) The static pressure using an Example is 90% or more of the static pressure using a comparative sample.
  • X The static pressure using an Example is less than 70% of the static pressure using a comparative sample.
  • Example 2 Exhaust gas purifying apparatus according to Example 2 was manufactured in the same manner as in Example 1 except that two openings having an opening length of 10 mm and an opening width of 25 mm were formed in the width direction of the mat. .
  • Example 3 Exhaust gas purifying apparatus according to Example 3 was manufactured in the same manner as in Example 1 except that in the punching of the opening, three openings having an opening length of 10 mm and an opening width of 10 mm were formed in the mat width direction. .
  • Example 4 Exhaust gas purifying apparatus according to Example 4 was manufactured in the same manner as in Example 1 except that three circular openings having a diameter of 10 mm were formed in the width direction of the mat in the punching of the openings.
  • Example 5 to 7 Exhaust gas purifying apparatuses according to Examples 5 to 7 were manufactured in the same manner as in Example 1 except that the size of the opening was changed as shown in Table 1 in punching the opening.
  • Comparative Example 1 Exhaust gas purifying apparatus according to Comparative Example 1 was manufactured in the same manner as Example 1 except that the opening was not punched.
  • Example 2 For Examples 2 to 7 and Comparative Example 1, as in Example 1, evaluation of the state of the mat after press-fitting, an endurance test on retention, and a gas sealability test were performed. The results are shown in Table 2.
  • the exhaust gas purification apparatus of the present invention includes a columnar exhaust gas treatment body, a casing made of a tubular body that houses the exhaust gas treatment body, and a mat made of inorganic fibers inserted between the exhaust gas treatment body and the casing.
  • the contour of the cross section perpendicular to the longitudinal direction of the exhaust gas treating body is composed of 3 to 6 corner portions and a connecting portion for connecting the corner portions, and the corner portion is a curve
  • the connecting portion is formed of a straight line or a curve, and the distance from the corner portion to the inner peripheral surface of the casing is smaller than the distance from the connecting portion to the inner peripheral surface of the casing, and is disposed in the corner portion.
  • the surface specific gravity of the mat is smaller than the surface specific gravity of the mat disposed in the connecting portion.
  • the essential components include various configurations detailed in the detailed description of the present invention (for example, formation of an opening, shape of the opening, length of the opening, surface specific gravity of the mat, density of inorganic fibers, inorganic
  • the desired effect can be obtained by appropriately combining the types of fibers, needle punching on the mat, and the like.
  • Exhaust gas purification apparatus 10 110, 210, 310, 410 Exhaust gas treatment body 11, 111 Contours 12a, 12b, 12c, 12d, 112a, 112b, 112c, 112d, 113a, 113b, 113c, 113d Curves 13a, 13b, 13c, 13d Straight lines 14a, 14b, 14c, 14d, 114a, 114b, 114c, 114d Corner portions 15a, 15b, 15c, 15d, 115a, 115b, 115c, 115d Connecting portion 20 Casing 30, 30a, 30b, 30c, 30d, 30e, 30f, 30g, 30h, 30i Mat 31, 32 End surface 31a Convex part 32a Concave part 33, 33a, 33b, 33c, 33d, 33e, 33f, 33g, 33h, 33i Opening part 33 ', 36 Flat surface 34 First region 35 First 2 region 37 inorganic fiber 38 First straight line 39 Second straight line 40

Landscapes

  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Toxicology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Catalysts (AREA)

Abstract

This exhaust gas purification device is provided with a columnar exhaust gas treatment body, a casing which comprises a tubular body that houses the exhaust gas treatment body, and a mat which comprises inorganic fibers and is inserted between the exhaust gas treatment body and the casing. This exhaust gas purification device is characterized in that the contour of the exhaust gas treatment body, in a cross section perpendicular to the longitudinal direction, comprises three to six corner sections and connecting sections which connect the corner sections; the corner sections are curved, the connecting sections are straight or curved; and the distance from the corner sections to the inner peripheral surface of the casing is less than the distance from the connecting sections to the inner peripheral surface of the casing, and the surface specific gravity of the mat arranged on the corner sections is less than the surface specific gravity of the mat arranged on the connecting sections.

Description

排ガス浄化装置Exhaust gas purification device
本発明は、排ガス浄化装置に関する。 The present invention relates to an exhaust gas purification apparatus.
ディーゼルエンジン等の内燃機関から排出される排ガス中には、スス等のパティキュレートマター(以下、PMともいう)が含まれており、近年、このPMが環境及び人体に害を及ぼすことが問題となっている。また、排ガス中には、CO、HC及びNOx等の有害なガス成分も含まれていることから、この有害なガス成分が環境及び人体に及ぼす影響についても懸念されている。 The exhaust gas discharged from an internal combustion engine such as a diesel engine contains particulate matter (hereinafter also referred to as PM) such as soot, and in recent years, this PM has a problem that it harms the environment and the human body. It has become. Further, since the exhaust gas contains harmful gas components such as CO, HC and NOx, there is a concern about the influence of the harmful gas components on the environment and the human body.
そこで、排ガス中のPMを捕集したり、有害なガス成分を浄化したりする排ガス浄化装置として、炭化ケイ素又はコージェライト等の多孔質セラミックからなる排ガス処理体と、排ガス処理体を収容するケーシングと、排ガス処理体とケーシングとの間に配設される無機繊維からなるマットとから構成される排ガス浄化装置が種々提案されている。 Therefore, as an exhaust gas purification device that collects PM in exhaust gas or purifies harmful gas components, an exhaust gas treatment body made of porous ceramics such as silicon carbide or cordierite, and a casing that houses the exhaust gas treatment body Various types of exhaust gas purifying apparatuses have been proposed that are composed of an inorganic fiber mat disposed between an exhaust gas treating body and a casing.
この排ガス浄化装置に用いられるマットは、自動車の走行等により生じる振動や衝撃により、排ガス処理体がその外周を覆うケーシングと接触して破損することを防止すること、排ガス処理体をしっかりと保持して排ガス浄化装置の内部から排ガス処理体が抜け出るのを防止すること、及び、排ガス処理体とケーシングとの間から排気ガスが漏れることを防止すること等を主な目的として配設されている。 The mat used in this exhaust gas purification device prevents the exhaust gas treating body from being damaged by contact with the casing covering the outer periphery due to vibrations or impacts caused by running of an automobile, etc., and holds the exhaust gas treating body firmly. Therefore, the main purpose is to prevent the exhaust gas treating body from coming out of the exhaust gas purifying apparatus and to prevent the exhaust gas from leaking between the exhaust gas treating body and the casing.
マットが上記した機能を発揮することができるように、従来のケーシングは、排ガス処理体の外周面から一定の間隔となるような形状としていた。そして、上記ケーシングと上記排ガス処理体との間隔より若干厚めのマットを排ガス処理体に巻き付け、このマットが巻き付けられた排ガス処理体を上記した形状のケーシングの内部に圧入し、排ガス浄化装置としていた(特許文献1)。 In order for the mat to exhibit the above-described functions, the conventional casing has a shape that is spaced from the outer peripheral surface of the exhaust gas treating body. Then, a mat slightly thicker than the gap between the casing and the exhaust gas treatment body is wound around the exhaust gas treatment body, and the exhaust gas treatment body around which the mat is wound is press-fitted into the casing having the above-described shape to form an exhaust gas purification device. (Patent Document 1).
特開2010-223082号公報JP 2010-228302 A
しかしながら、従来の排ガス処理体は、排ガス処理体を構成するセルの垂直方向の断面が円形のもののみでなく、楕円形のものや、長方形の角部(コーナー部)をR面取りした形状に近いものがある。特に長方形の角部(コーナー部)をR面取りした形状に近いものでは、排ガス処理体のコーナー部からケーシングの内周面までの距離が、排ガス処理体のコーナー部以外の部分からケーシングの内周面までの距離よりも小さくなる場合があった。
このような場合に、マットが巻き付けられた排ガス処理体をケーシングに圧入すると、上記コーナー部に配設されたマットに対する負荷が大きくなり、マットに亀裂や圧壊が発生しやすいという問題がある。
However, the conventional exhaust gas treatment body is not only a circular cross section in the vertical direction of the cells constituting the exhaust gas treatment body, but is close to an elliptical shape or a shape in which a rectangular corner (corner portion) is chamfered. There is something. In particular, when the rectangular corner (corner portion) is close to a rounded chamfered shape, the distance from the corner portion of the exhaust gas treatment body to the inner peripheral surface of the casing is from the portion other than the corner portion of the exhaust gas treatment body to the inner periphery of the casing. In some cases, the distance was smaller than the distance to the surface.
In such a case, when the exhaust gas treating body around which the mat is wound is press-fitted into the casing, there is a problem that a load on the mat disposed at the corner portion increases, and the mat is likely to be cracked or crushed.
このような問題が発生する結果、マットによる排ガス処理体の保持能力が低下し、また、排ガスの漏れを防止するガスシーリング性能も低下してしまう。 As a result of the occurrence of such a problem, the holding ability of the exhaust gas treating body by the mat is lowered, and the gas sealing performance for preventing the leakage of the exhaust gas is also lowered.
本発明は、上記問題を解決するためになされたものであり、マットに亀裂や圧壊が発生しにくく、マットにより排ガス処理体がしっかりと保持され、排ガスの漏れを防止することができる排ガス浄化装置を提供することを目的とする。 The present invention has been made in order to solve the above-described problem, and an exhaust gas purifying apparatus that is unlikely to cause cracks or crushing in the mat, can securely hold an exhaust gas treatment body by the mat, and can prevent leakage of exhaust gas. The purpose is to provide.
上記目的を達成するために、本発明の排ガス浄化装置は、柱状の排ガス処理体と、上記排ガス処理体を収容する管状体からなるケーシングと、上記排ガス処理体と上記ケーシングとの間に挿入された無機繊維からなるマットとからなる排ガス浄化装置であって、上記排ガス処理体の長手方向に対して垂直な断面の輪郭は、3~6個のコーナー部と上記コーナー部同士を連結する連結部とから構成され、上記コーナー部は曲線からなるとともに、上記連結部は直線又は曲線からなり、上記コーナー部から上記ケーシングの内周面までの距離は、上記連結部から上記ケーシングの内周面までの距離よりも小さく、上記コーナー部に配設されている上記マットの面比重は、上記連結部に配設されている上記マットの面比重よりも小さいことを特徴とする。 In order to achieve the above object, an exhaust gas purification apparatus of the present invention is inserted between a columnar exhaust gas treatment body, a casing made of a tubular body that houses the exhaust gas treatment body, and the exhaust gas treatment body and the casing. An exhaust gas purifying device comprising a mat made of inorganic fibers, wherein the outline of the cross section perpendicular to the longitudinal direction of the exhaust gas treating body has 3 to 6 corner portions and a connecting portion for connecting the corner portions to each other The corner portion is made of a curve, the connecting portion is made of a straight line or a curve, and the distance from the corner portion to the inner peripheral surface of the casing is from the connecting portion to the inner peripheral surface of the casing. The surface specific gravity of the mat disposed in the corner portion is smaller than the surface specific gravity of the mat disposed in the connecting portion. That.
本明細書において、排ガス処理体のコーナー部とは、以下の部分のことをいう。
まず、排ガス処理体の長手方向に対して垂直な断面において、輪郭が曲線となる部分における曲率半径の最小値を求める。該輪郭が曲線となる部分において、曲率半径が上記曲率半径の最小値の8倍以下である連続する部分が、排ガス処理体のコーナー部である。
また、本明細書において、排ガス処理体の連結部とは、排ガス処理体の長手方向に対して垂直な断面の輪郭において、上記コーナー部同士を連結する曲線の部分又は直線の部分のことをいう。排ガス処理体の連結部は、直線のみ又は曲線のみから構成されていてもよく、直線と曲線との両方から構成されていてもよい。
In the present specification, the corner portion of the exhaust gas treating body refers to the following portion.
First, in the cross section perpendicular to the longitudinal direction of the exhaust gas treating body, the minimum value of the radius of curvature at the portion where the contour becomes a curve is obtained. In a portion where the contour is a curve, a continuous portion where the radius of curvature is not more than 8 times the minimum value of the radius of curvature is a corner portion of the exhaust gas treating body.
Moreover, in this specification, the connection part of an exhaust gas treatment body means the part of the curve or straight line which connects the said corner parts in the outline of a cross section perpendicular | vertical with respect to the longitudinal direction of an exhaust gas treatment body. . The connecting part of the exhaust gas treating body may be composed of only a straight line or a curved line, or may be composed of both a straight line and a curved line.
本明細書において、排ガス処理体のコーナー部からケーシングの内周面までの距離とは、以下の方法により求めた距離のことである。
まず、排ガス処理体の長手方向に対して垂直な断面の輪郭において、コーナー部のある一点における法線を引く。次に、コーナー部と上記法線が交差する点から、ケーシングの内周面と上記法線が交差する点までの距離を求める。次に、法線を引くために用いた点を排ガス処理体のコーナー部に沿って移動させ、各点における法線を引く。次に各点から、ケーシングの内周面と法線が交差する点までの距離を求める。このように求めた距離のうち最大の距離が、コーナー部からケーシングの内周面までの距離である。
In the present specification, the distance from the corner portion of the exhaust gas treating body to the inner peripheral surface of the casing is a distance obtained by the following method.
First, in the outline of the cross section perpendicular to the longitudinal direction of the exhaust gas treating body, a normal line at one point with a corner portion is drawn. Next, the distance from the point where the corner portion and the normal line intersect to the point where the inner peripheral surface of the casing and the normal line intersect is obtained. Next, the point used to draw the normal line is moved along the corner portion of the exhaust gas treating body, and the normal line at each point is drawn. Next, the distance from each point to the point where the inner peripheral surface of the casing intersects the normal line is obtained. The maximum distance among the distances thus obtained is the distance from the corner portion to the inner peripheral surface of the casing.
本明細書において、排ガス処理体の連結部からケーシングの内周面までの距離とは、排ガス処理体の連結部からケーシングの内周面までの距離のうち最小となる距離のことである。 In this specification, the distance from the connection part of the exhaust gas treatment body to the inner peripheral surface of the casing is the minimum distance among the distances from the connection part of the exhaust gas treatment body to the inner peripheral surface of the casing.
本明細書において、コーナー部からケーシングの内周面までの距離が、連結部からケーシングの内周面までの距離よりも小さいとは以下の場合を意味する。
まず、上記方法により、コーナー部からケーシングの内周面までの距離を求める。次に、そのコーナー部に隣接する2つの連結部を認定する。次に、認定された各連結部において、上記方法により連結部からケーシングの内周面までの距離を求める。
コーナー部からケーシングの内周面までの距離が、いずれの連結部からケーシングの内周面までの距離よりも小さい場合が、コーナー部からケーシングの内周面までの距離が、連結部からケーシングの内周面までの距離よりも小さい場合であることを意味する。
In this specification, the distance from the corner portion to the inner peripheral surface of the casing being smaller than the distance from the connecting portion to the inner peripheral surface of the casing means the following case.
First, the distance from the corner portion to the inner peripheral surface of the casing is obtained by the above method. Next, two connecting portions adjacent to the corner portion are recognized. Next, in each of the certified connecting portions, the distance from the connecting portion to the inner peripheral surface of the casing is obtained by the above method.
When the distance from the corner portion to the inner peripheral surface of the casing is smaller than the distance from any connecting portion to the inner peripheral surface of the casing, the distance from the corner portion to the inner peripheral surface of the casing is This means that the distance is smaller than the distance to the inner peripheral surface.
本発明の排ガス浄化装置では、上記コーナー部から上記ケーシングの内周面までの距離が、上記連結部から上記ケーシングの内周面までの距離よりも小さく、上記コーナー部に配設されている上記マットの面比重は、上記連結部に配設されている上記マットの面比重よりも小さい。
コーナー部からケーシングの内周面までの距離が、連結部からケーシングの内周面までの距離よりも小さく、マットの面比重が一定である場合には、コーナー部に配設されたマットが受けるケーシングからの圧力は、連結部に配設されたマットが受けるケーシングからの圧力よりも大きくなる。この場合、マットの嵩密度が高くなり、マットに亀裂や圧壊が発生しやすくなる。しかし、本発明の排ガス浄化装置では、コーナー部に配設されているマットの面比重が、連結部に配設されているマットの面比重よりも小さい。すなわち、コーナー部に配設されているマットの繊維の密度は、連結部に配設されているマットの繊維の密度よりも低い。従って、ケーシングからの圧力を受けたとしても、コーナー部に配設されたマットの嵩密度が高くなりにくい。このため、マットに亀裂や圧壊が発生しにくい。
また、マットが巻き付けられた排ガス処理体をケーシングに圧入する際にも、コーナー部に配設されたマットにかかる負荷が大きくなりにくく、マットに亀裂や圧壊が発生しにくい。
In the exhaust gas purifying apparatus of the present invention, the distance from the corner portion to the inner peripheral surface of the casing is smaller than the distance from the connecting portion to the inner peripheral surface of the casing, and is disposed in the corner portion. The surface specific gravity of the mat is smaller than the surface specific gravity of the mat disposed in the connecting portion.
When the distance from the corner portion to the inner peripheral surface of the casing is smaller than the distance from the connecting portion to the inner peripheral surface of the casing, and the surface specific gravity of the mat is constant, the mat disposed at the corner portion receives The pressure from the casing is greater than the pressure from the casing received by the mat disposed at the connecting portion. In this case, the bulk density of the mat is increased, and cracks and crushing are likely to occur in the mat. However, in the exhaust gas purification apparatus of the present invention, the surface specific gravity of the mat disposed at the corner portion is smaller than the surface specific gravity of the mat disposed at the connecting portion. That is, the density of the fibers of the mat disposed in the corner portion is lower than the density of the fibers of the mat disposed in the connecting portion. Therefore, even if the pressure from the casing is received, the bulk density of the mat disposed at the corner portion is not easily increased. For this reason, cracks and crushing are unlikely to occur in the mat.
Further, when the exhaust gas treating body around which the mat is wound is press-fitted into the casing, a load applied to the mat disposed at the corner portion is not easily increased, and the mat is not easily cracked or crushed.
このため、本発明の排ガス浄化装置では、自動車の走行等により生じる振動や衝撃により、排ガス処理体がその外周を覆うケーシングと接触して破損することを防止することができることは勿論、マットによる排ガス処理体の保持能力が高く、排ガス浄化装置の内部から排ガス処理体が抜け出るのを防止することができる。また、排ガスの漏れをしっかりと防止することができる。 For this reason, in the exhaust gas purifying apparatus of the present invention, it is possible to prevent the exhaust gas treating body from being damaged by contact with the casing covering the outer periphery due to vibrations or impacts caused by traveling of the automobile or the like. The holding capacity of the treatment body is high, and the exhaust gas treatment body can be prevented from coming out from the inside of the exhaust gas purification apparatus. Further, it is possible to prevent the exhaust gas from leaking firmly.
本発明の排ガス浄化装置では、上記コーナー部に配設されている上記マットの一部には、開口部が形成されていることが望ましい。 In the exhaust gas purifying apparatus of the present invention, it is desirable that an opening is formed in a part of the mat disposed at the corner.
開口部が形成されていると、マットが巻き付けられた排ガス処理体を圧入する際、無機繊維が開口部に容易に移動することができ、コーナー部に配設されるマットが受ける圧力を軽減することができる。そのため、コーナー部に配設されたマットの嵩密度が高くなることを防止することができる。その結果、マットに亀裂や圧壊が発生することを防止することができる。 When the opening is formed, the inorganic fiber can easily move to the opening when the exhaust gas treating body around which the mat is wound is pressed, and the pressure applied to the mat disposed at the corner is reduced. be able to. Therefore, it is possible to prevent the bulk density of the mat disposed at the corner portion from increasing. As a result, it is possible to prevent the mat from being cracked or crushed.
本発明の排ガス浄化装置では、上記コーナー部に配設されている上記マットの一部には、上記マットの幅方向において、上記開口部が2つ以上形成されていることが望ましい。 In the exhaust gas purifying apparatus of the present invention, it is preferable that two or more openings are formed in a part of the mat disposed in the corner portion in the width direction of the mat.
マットの幅方向において、開口部が2つ以上形成されていると、マットが巻き付けられた排ガス処理体を圧入する際、無機繊維が開口部に均一に移動しやすくなる。
そのため、ケーシングから受ける圧力がマットの一部のみにかかることを防止することができる。すなわち、マットの一部の嵩密度が高くなることを防止することができる。その結果、マットに亀裂や圧壊が発生することを防止することができる。
When two or more openings are formed in the width direction of the mat, the inorganic fibers easily move uniformly into the openings when the exhaust gas treating body around which the mat is wound is press-fitted.
Therefore, it can prevent that the pressure received from a casing applies only to a part of mat | matte. That is, it is possible to prevent the bulk density of a part of the mat from increasing. As a result, it is possible to prevent the mat from being cracked or crushed.
本発明の排ガス浄化装置では、上記開口部の形状は、略円形、略楕円形、略レーストラック形、略六角形、略五角形、略四角形、略三角形からなる群から選択される少なくとも1つの形状であることが望ましい。 In the exhaust gas purification apparatus of the present invention, the shape of the opening is at least one shape selected from the group consisting of a substantially circular shape, a substantially elliptical shape, a substantially racetrack shape, a substantially hexagonal shape, a substantially pentagonal shape, a substantially rectangular shape, and a substantially triangular shape. It is desirable that
排ガス処理体のコーナー部の曲率半径や、ケーシングの内周面の形状に合わせ開口部の形状を選択することにより、マットが巻き付けられた排ガス処理体を圧入する際に、無機繊維が開口部に容易に移動することができる。これにより、ケーシングからマットが受ける圧力を分散することができ、マットの一部の嵩密度が高くなることを防止することができる。その結果、マットに亀裂や圧壊が発生することを防止することができる。
さらに開口部がこれらの形状であると、容易に開口部を形成することができ、排ガス浄化装置を製造する上で有利である。
By selecting the shape of the opening according to the radius of curvature of the corner of the exhaust gas treatment body and the shape of the inner peripheral surface of the casing, when the exhaust gas treatment body around which the mat is wound is press-fitted, inorganic fibers are introduced into the opening. It can be moved easily. Thereby, the pressure which a mat receives from a casing can be disperse | distributed, and it can prevent that the bulk density of a part of mat | matte becomes high. As a result, it is possible to prevent the mat from being cracked or crushed.
Furthermore, when the opening has these shapes, the opening can be easily formed, which is advantageous in manufacturing the exhaust gas purification device.
本発明の排ガス浄化装置では、上記マットの幅方向の上記開口部の長さは、上記マットの幅の1/10~9/10の長さであることが望ましい。 In the exhaust gas purification apparatus of the present invention, it is desirable that the length of the opening in the width direction of the mat is 1/10 to 9/10 of the width of the mat.
本明細書において、マットの幅方向の開口部の長さとは、マットの幅方向の開口部の一方の端部から、もう一方の端部までの距離がマットの幅方向の開口部の長さのことをいう。 In this specification, the length of the opening in the width direction of the mat means that the distance from one end of the opening in the width direction of the mat to the other end is the length of the opening in the width direction of the mat. I mean.
マットの幅方向の開口部の長さが、マットの幅の1/10未満の長さであると、コーナー部に配設されているマットの面比重が充分に低くなりにくく、コーナー部に配設されているマットの嵩密度が充分に低くなりにくい。そのため、マットに亀裂や圧壊が発生することを防止する効果を得られにくくなる。
マットの幅方向の開口部の長さが、マットの幅の9/10を超える長さであると、コーナー部に配設されているマットの面比重が小さくなりすぎるため、マットが千切れやすくなる。
When the length of the opening in the width direction of the mat is less than 1/10 of the width of the mat, the surface specific gravity of the mat disposed in the corner portion is not easily lowered, and the opening is arranged in the corner portion. The bulk density of the mat provided is not likely to be sufficiently low. Therefore, it becomes difficult to obtain the effect of preventing the mat from cracking or crushing.
If the length of the opening in the width direction of the mat is more than 9/10 of the width of the mat, the mat surface gravity will be too small and the mat will be easily cut off Become.
本発明の排ガス浄化装置では、上記マットの幅方向の上記開口部の長さは、10mm~70mmであることが望ましい。 In the exhaust gas purifying apparatus of the present invention, the length of the opening in the width direction of the mat is desirably 10 mm to 70 mm.
マットの幅方向の開口部の長さが、10mm未満の長さであると、コーナー部に配設されているマットの面比重が充分に低くなりにくく、コーナー部に配設されているマットの嵩密度が充分に低くなりにくい。そのため、マットに亀裂や圧壊が発生することを防止する効果が得られにくくなる。
マットの幅方向の開口部の長さが、70mmを超える長さであると、コーナー部に配設されているマットの面比重が小さくなりすぎるため、マットが千切れやすくなる。
When the length of the opening in the width direction of the mat is less than 10 mm, the surface specific gravity of the mat disposed in the corner portion is not easily lowered, and the mat disposed in the corner portion is not sufficiently low. Bulk density is unlikely to be sufficiently low. Therefore, it becomes difficult to obtain the effect of preventing the mat from being cracked or crushed.
If the length of the opening in the width direction of the mat is more than 70 mm, the mat is easily cut off because the surface specific gravity of the mat disposed in the corner portion is too small.
本発明の排ガス浄化装置では、上記コーナー部に配設されている上記マットの連続する領域において、上記マットを平面視して、上記マットの長さ方向に垂直な第1の直線を上記マットの長さ方向の上記開口部の一方の端部と接触するように引き、上記マットの長さ方向に垂直な第2の直線を上記マットの長さ方向の上記開口部のもう一方の端部と接触するように引いた場合、上記第1の直線から上記第2の直線までの間の領域に存在する上記マットの面比重は、上記連結部に配設されている上記マットの面比重の30~99.5%であることが望ましい。 In the exhaust gas purifying apparatus according to the present invention, in the continuous area of the mat disposed in the corner portion, the mat is viewed in plan, and a first straight line perpendicular to the length direction of the mat is defined on the mat. The second straight line perpendicular to the mat length direction is drawn with the other end of the mat length direction opening so as to come into contact with one end of the length length opening. When pulled so as to contact, the surface specific gravity of the mat existing in the region between the first straight line and the second straight line is 30 of the surface specific gravity of the mat disposed in the connecting portion. It is desirable to be 99.5%.
第1の直線から第2の直線までの間の領域に存在するマットの面比重が、連結部に配設されているマットの面比重の30%未満である場合、第1の直線から第2の直線までの間の領域に存在する無機繊維の量が少なくなりすぎるため、マットが千切れやすくなる。
第1の直線から第2の直線までの間の領域に存在するマットの面比重が、連結部に配設されているマットの面比重の99.5%を超える場合、コーナー部に配設されているマットの無機繊維が開口部に移動しにくくなるので、コーナー部に配設されているマットの嵩密度が充分に低くなりにくい。そのため、マットに亀裂や圧壊が発生することを防止する効果を得られにくくなる。
When the surface specific gravity of the mat existing in the region from the first straight line to the second straight line is less than 30% of the surface specific gravity of the mat disposed in the connecting portion, the first straight line to the second straight line Since the amount of inorganic fibers present in the region up to the straight line becomes too small, the mat is easily broken.
When the surface specific gravity of the mat existing in the region between the first straight line and the second straight line exceeds 99.5% of the surface specific gravity of the mat disposed at the connecting portion, the mat is disposed at the corner portion. Since the inorganic fibers of the mat are difficult to move to the opening, the bulk density of the mat disposed at the corner is not sufficiently lowered. Therefore, it becomes difficult to obtain the effect of preventing the mat from cracking or crushing.
本発明の排ガス浄化装置では、上記コーナー部に配設されている上記マットの上記無機繊維の密度は、上記連結部に配設されている上記マットの上記無機繊維の密度よりも低いことが望ましい。 In the exhaust gas purification apparatus of the present invention, it is desirable that the density of the inorganic fibers of the mat disposed at the corner portion is lower than the density of the inorganic fibers of the mat disposed at the connecting portion. .
上記構成であると、マットが巻き付けられた排ガス処理体を圧入する際、無機繊維が密度の低い方に容易に移動することができ、コーナー部に配設されるマットが受ける圧力を軽減することができる。そのため、コーナー部に配設されたマットの嵩密度が高くなることを防止することができる。その結果、マットに亀裂や圧壊が発生することを防止することができる。 With the above configuration, when the exhaust gas treating body around which the mat is wound is press-fitted, the inorganic fibers can be easily moved to a lower density, and the pressure applied to the mat disposed in the corner portion can be reduced. Can do. Therefore, it is possible to prevent the bulk density of the mat disposed at the corner portion from increasing. As a result, it is possible to prevent the mat from being cracked or crushed.
本発明の排ガス浄化装置では、上記無機繊維は、アルミナ繊維、アルミナ-シリカ繊維、シリカ繊維、及び、生体溶解性繊維からなる群から選択される少なくとも1種であることが望ましい。
本発明の排ガス浄化装置で上記した種類の無機繊維を使用することにより、上記無機繊維が使用されたマットは、保持力に優れ、無機繊維の機械的特性にも優れているので、マットに亀裂や圧壊が発生しにくく、排ガス処理体がしっかりと保持される。
In the exhaust gas purifying apparatus of the present invention, the inorganic fiber is desirably at least one selected from the group consisting of alumina fiber, alumina-silica fiber, silica fiber, and biosoluble fiber.
By using the inorganic fiber of the type described above in the exhaust gas purification apparatus of the present invention, the mat using the inorganic fiber has excellent holding power and excellent mechanical properties of the inorganic fiber. And crushing is difficult to occur, and the exhaust gas treatment body is firmly held.
本発明の排ガス浄化装置では、上記マットには、さらに、ニードルパンチング処理が施されていることが望ましい。 In the exhaust gas purifying apparatus of the present invention, it is desirable that the mat is further subjected to a needle punching process.
本発明の排ガス浄化装置では、マットにニードルパンチング処理を施すことにより、無機繊維同士の交絡が発生し、マットの強度が向上する。そのため、マットに亀裂や圧壊が発生しにくくなる。 In the exhaust gas purifying apparatus of the present invention, by subjecting the mat to needle punching, entanglement of inorganic fibers occurs, and the strength of the mat is improved. Therefore, cracks and crushing are less likely to occur in the mat.
図1は、本発明の排ガス浄化装置の一例を模式的に示す斜視図である。FIG. 1 is a perspective view schematically showing an example of the exhaust gas purifying apparatus of the present invention. 図2は、本発明の排ガス浄化装置を構成する排ガス処理体の一例を、排ガス処理体の長手方向に対して垂直な方向に切断して模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing an example of the exhaust gas treating body constituting the exhaust gas purifying apparatus of the present invention, cut in a direction perpendicular to the longitudinal direction of the exhaust gas treating body. 図3-1(a)及び(b)は、本発明の排ガス浄化装置を構成する排ガス処理体の一例を、排ガス処理体の長手方向に対して垂直な方向に切断して模式的に示す断面図である。FIGS. 3-1 (a) and (b) are cross-sectional views schematically showing an example of the exhaust gas treatment body constituting the exhaust gas purification apparatus of the present invention, cut in a direction perpendicular to the longitudinal direction of the exhaust gas treatment body. FIG. 図3-2(c)及び(d)は、本発明の排ガス浄化装置を構成する排ガス処理体の一例を、排ガス処理体の長手方向に対して垂直な方向に切断して模式的に示す断面図である。FIGS. 3-2 (c) and (d) are cross-sectional views schematically showing an example of the exhaust gas treatment body constituting the exhaust gas purification apparatus of the present invention, cut in a direction perpendicular to the longitudinal direction of the exhaust gas treatment body. FIG. 図4-1(a)は、本発明の排ガス浄化装置を構成するマットの一例を模式的に示す斜視図である。FIG. 4A is a perspective view schematically showing an example of a mat constituting the exhaust gas purifying apparatus of the present invention. 図4-2(b)は、図4-1(a)に示すマットの平面図である。図4-2(c)は、図4-2(b)に示すマットにおいて、マットの面比重を求めるにあたってのマットの面積の算出方法を模式的に示す図である。FIG. 4-2 (b) is a plan view of the mat shown in FIG. 4-1 (a). FIG. 4-2 (c) is a diagram schematically showing a method for calculating the area of the mat in determining the surface specific gravity of the mat shown in FIG. 4-2 (b). 図5は、本発明の排ガス浄化装置の一例を、排ガス浄化装置の長手方向に対して垂直に切断して模式的に示す断面図である。FIG. 5 is a cross-sectional view schematically showing an example of the exhaust gas purifying apparatus of the present invention cut perpendicularly to the longitudinal direction of the exhaust gas purifying apparatus. 図6(a)~(c)は、図5中の破線部を拡大して示す拡大図であり、コーナー部からケーシングの内周面までの距離の求め方を模式的に示す図である。6 (a) to 6 (c) are enlarged views showing the broken line portion in FIG. 5, and schematically showing how to obtain the distance from the corner portion to the inner peripheral surface of the casing. 図7は、図5中の破線部を拡大して示す拡大図であり、排ガス処理体及びケーシングの位置関係を模式的に示す説明図である。FIG. 7 is an enlarged view showing a broken line portion in FIG. 5 and is an explanatory view schematically showing a positional relationship between the exhaust gas treating body and the casing. 図8は、図5中の破線部を拡大して示す拡大図であり、コーナー部に配設されているマットを模式的に示す説明図である。FIG. 8 is an enlarged view showing a broken line portion in FIG. 5, and is an explanatory view schematically showing a mat disposed in a corner portion. 図9(a)は、図4-1(a)中の破線部を、開口部が通るようにA-A線で切断して模式的に示す断面図である。図9(b)は、本発明の排ガス浄化装置に配置されたマットの図9(a)に示す部分の状態を模式的に示す模式図である。FIG. 9A is a cross-sectional view schematically showing the broken line portion in FIG. 4-1A cut along the line AA so that the opening passes therethrough. FIG.9 (b) is a schematic diagram which shows typically the state of the part shown to Fig.9 (a) of the mat | matte arrange | positioned at the exhaust gas purification apparatus of this invention. 図10(a)~(g)は、本発明の排ガス浄化装置を構成するマットの一例を模式的に示す平面図であり、種々の形状の開口部を有するマットを示している。図10(h)及び(i)は、本発明の排ガス浄化装置を構成するマットの一例を模式的に示す平面図であり、側面から開口部が形成されているマットを示している。FIGS. 10A to 10G are plan views schematically showing an example of a mat constituting the exhaust gas purifying apparatus of the present invention, and show mats having openings of various shapes. FIGS. 10 (h) and (i) are plan views schematically showing an example of a mat constituting the exhaust gas purifying apparatus of the present invention, and show a mat in which an opening is formed from the side. 図11は、本発明の排ガス浄化装置を構成するマットの一例に第1の直線及び第2の直線を引いた際の、第1の直線から第2の直線までの間の領域を示すマットの平面図である。FIG. 11 is a diagram of a mat showing a region between the first straight line and the second straight line when the first straight line and the second straight line are drawn on an example of the mat constituting the exhaust gas purifying apparatus of the present invention. It is a top view. 図12は、排ガス処理体として排ガス浄化フィルタを用いた場合の本発明の排ガス浄化装置の一例を、排ガス浄化装置の長手方向に対して平行に切断して模式的に示す断面図である。FIG. 12 is a cross-sectional view schematically showing an example of the exhaust gas purification apparatus of the present invention when an exhaust gas purification filter is used as the exhaust gas treatment body, cut in parallel to the longitudinal direction of the exhaust gas purification apparatus. 図13は、本発明の排ガス浄化装置を構成する巻付体をケーシングに収納する工程の一例を模式的に示す斜視図である。FIG. 13 is a perspective view schematically showing an example of a process of housing the wound body constituting the exhaust gas purifying apparatus of the present invention in a casing. 図14(a)は、排ガス浄化フィルタの長手方向に対して垂直な断面の形状を特定するための基準となる寸法(縦、横、対角1、対角2、コーナー部の曲率半径(r))を模式的に示す断面図である。図14(b)は、ケーシングの長手方向に対して垂直な内壁面の形状を特定するための基準となる寸法(縦、横、対角1、対角2、コーナー部の曲率半径(R))を模式的に示す断面図である。FIG. 14A shows dimensions (vertical, horizontal, diagonal 1, diagonal 2, and radius of curvature (r of the corner portion) for specifying the shape of a cross section perpendicular to the longitudinal direction of the exhaust gas purification filter. )) Is a cross-sectional view schematically showing. FIG. 14B is a reference dimension for specifying the shape of the inner wall surface perpendicular to the longitudinal direction of the casing (vertical, horizontal, diagonal 1, diagonal 2, corner radius of curvature (R). Is a cross-sectional view schematically showing. 図15(a)は実験装置を模式的に示す上面図である。図15(b)はB-B線断面図である。FIG. 15A is a top view schematically showing the experimental apparatus. FIG. 15B is a cross-sectional view taken along the line BB.
(発明の詳細な説明)
以下、本発明について具体的に説明する。しかしながら、本発明は、以下の記載に限定されるものではなく、本発明の要旨を変更しない範囲において適宜変更して適用することができる。なお、以下において記載する本発明の個々の望ましい構成を2つ以上組み合わせたものもまた本発明である。
(Detailed description of the invention)
Hereinafter, the present invention will be specifically described. However, the present invention is not limited to the following description, and can be appropriately modified and applied without departing from the scope of the present invention. Note that the present invention also includes a combination of two or more desirable configurations of the present invention described below.
本発明の排ガス浄化装置である排ガス浄化装置1を例にあげ本発明を説明する。 The present invention will be described by taking the exhaust gas purification apparatus 1 which is the exhaust gas purification apparatus of the present invention as an example.
図1は、本発明の排ガス浄化装置の一例を模式的に示す斜視図である。
図1に示すように、本発明の排ガス浄化装置1は、柱状の排ガス処理体10と、排ガス処理体10を収容する管状体からなるケーシング20と、排ガス処理体10とケーシング20との間に挿入された無機繊維からなるマット30とからなり、排ガス処理体10の長手方向に対して垂直な断面の輪郭11は、4個のコーナー部とコーナー部同士を連結する連結部とから構成され、コーナー部は曲線からなるとともに、連結部は直線からなり、各コーナー部からケーシング20の内周面までの距離が、各連結部からケーシング20の内周面までの距離よりも小さく、各コーナー部に配設されているマット30の面比重は、各連結部に配設されているマット30の面比重よりも小さいことを特徴とする。
FIG. 1 is a perspective view schematically showing an example of the exhaust gas purifying apparatus of the present invention.
As shown in FIG. 1, the exhaust gas purification apparatus 1 of the present invention includes a columnar exhaust gas treatment body 10, a casing 20 made of a tubular body that houses the exhaust gas treatment body 10, and the exhaust gas treatment body 10 and the casing 20. Consists of a mat 30 made of inserted inorganic fibers, the contour 11 of the cross section perpendicular to the longitudinal direction of the exhaust gas treating body 10 is composed of four corner portions and a connecting portion that connects the corner portions, The corner portion is formed of a curved line, the connecting portion is formed of a straight line, and the distance from each corner portion to the inner peripheral surface of the casing 20 is smaller than the distance from each connecting portion to the inner peripheral surface of the casing 20. The surface specific gravity of the mat 30 disposed on the mat is smaller than the surface specific gravity of the mat 30 disposed on each connecting portion.
本発明の排ガス浄化装置1を構成する排ガス処理体10について説明する。
上記排ガス処理体10は、ディーゼルエンジン等の内燃機関から排出される排ガス中のPMを捕集する機能を有するもの、又は、上記排ガス中の有害なガス成分を無害なガス成分に転換する機能を有するものであるが、上述した2つの機能を有するものであってもよい。
The exhaust gas treatment body 10 constituting the exhaust gas purification apparatus 1 of the present invention will be described.
The exhaust gas treating body 10 has a function of collecting PM in exhaust gas discharged from an internal combustion engine such as a diesel engine, or a function of converting harmful gas components in the exhaust gas into harmless gas components. However, it may have the two functions described above.
本発明では、上記排ガス中のPMを捕集する機能を有するものを排ガス浄化フィルタといい、上記排ガス中の有害なガス成分を無害なガス成分に転換する機能を有するものを触媒コンバータということとする。 In the present invention, what has the function of collecting PM in the exhaust gas is called an exhaust gas purification filter, and what has the function of converting harmful gas components in the exhaust gas into harmless gas components is called a catalytic converter. To do.
上記排ガス浄化フィルタは、特に限定されるものではなく、例えば、炭化ケイ素又はコージェライト等の多孔質セラミックからなる、いわゆる、ハニカムフィルタと呼ばれるもので、長手方向に多数のセルが併設され、各セルの排ガスの入口側か出口側のいずれかが目封止されたもの、板状のものを重ねてフィルタとしたもの、3次元網目構造を有する金属多孔質体からなるもの、セラミックファイバの積層体からなるもの等があげられる。板状のものを重ねてフィルタとしたもの、3次元網目構造を有する金属多孔質体からなるもの、セラミックファイバの積層体からなるもの等は、これらの部材が所定形状の耐熱性容器に収容されており、この場合、上記耐熱性容器が柱状である。
これらのなかでは、炭化ケイ素又はコージェライト等の多孔質セラミックからなり、長手方向に多数のセルが併設され、各セルの排ガスの入口側か出口側のいずれかが目封止されたハニカムフィルタが望ましい。
The exhaust gas purification filter is not particularly limited. For example, the exhaust gas purification filter is a so-called honeycomb filter made of a porous ceramic such as silicon carbide or cordierite. Of which exhaust gas is sealed at either the inlet side or the outlet side thereof, a plate is used as a filter, a filter is formed of a metal porous body having a three-dimensional network structure, and a laminate of ceramic fibers And the like. These filters are housed in a heat-resistant container of a predetermined shape, such as a filter made by stacking plate-like ones, one made of a metal porous body having a three-dimensional network structure, one made of a laminate of ceramic fibers, etc. In this case, the heat-resistant container is columnar.
Among these, a honeycomb filter made of a porous ceramic such as silicon carbide or cordierite is provided with a large number of cells in the longitudinal direction, and either the exhaust gas inlet side or the outlet side of each cell is plugged. desirable.
上記ハニカムフィルタは、コージェライト等からなり、一つの多孔質セラミックから一体的に形成された一体型ハニカムフィルタであってもよく、炭化ケイ素等からなる柱状の多孔質セラミックを主にセラミックを含む接着材層を介して複数個結束してなる集合型ハニカムフィルタであってもよい。 The honeycomb filter is made of cordierite or the like, and may be an integrated honeycomb filter integrally formed from one porous ceramic, and a columnar porous ceramic made of silicon carbide or the like is mainly bonded to the ceramic. A collective honeycomb filter formed by bundling a plurality of material layers may be used.
上記触媒コンバータは、特に限定されるものではなく、例えば、長手方向に多数のセルが併設された多孔質セラミックに触媒を担持したもの、ペレット状の多孔質セラミックに触媒を担持したもの、金属製の薄いシートを波状に加工したものを担体とし、この担体に触媒を担持したものも等があげられる。ペレット状の担体や金属製のシートを担体としたものでは、これらの担体が耐熱性の容器に収容されており、この場合、上記耐熱性容器が柱状である。
これらのなかでは、長手方向に多数のセルが併設された多孔質セラミックに触媒を担持した触媒コンバータが望ましい。
The catalytic converter is not particularly limited, for example, a catalyst in which a catalyst is supported on a porous ceramic in which a number of cells are provided in the longitudinal direction, a catalyst in which a catalyst is supported in a pellet-shaped porous ceramic, a metal A sheet obtained by processing a thin sheet in a wavy shape is used as a carrier, and a catalyst is supported on this carrier. In the case of using a pellet-like carrier or a metal sheet as a carrier, these carriers are accommodated in a heat-resistant container. In this case, the heat-resistant container is columnar.
Among these, a catalytic converter in which a catalyst is supported on a porous ceramic in which a large number of cells are provided in the longitudinal direction is desirable.
排ガス処理体に担持されている触媒としては、例えば、白金、パラジウム、ロジウム等の貴金属、カリウム、ナトリウム等のアルカリ金属、バリウム等のアルカリ土類金属、又は、酸化セリウム等の金属酸化物等があげられる。これらの触媒は、単独で用いてもよいし、2種以上を併用してもよい。 Examples of the catalyst supported on the exhaust gas treating body include noble metals such as platinum, palladium and rhodium, alkali metals such as potassium and sodium, alkaline earth metals such as barium, and metal oxides such as cerium oxide. can give. These catalysts may be used independently and may use 2 or more types together.
本発明の排ガス浄化装置1を構成する排ガス処理体10の形状について説明する。
図2は、本発明の排ガス浄化装置を構成する排ガス処理体の一例を、排ガス処理体の長手方向に対して垂直な方向に切断して模式的に示す断面図である。
図2に示すように、排ガス処理体10の長手方向に対して垂直な断面の輪郭11は、正方形の角部がR面取りされた形状である。すなわち、輪郭11は、4つの曲線12a、12b、12c及び12dと、これらを連結する4つの直線13a、13b、13c及び13dとから構成されている。
曲線12a及び12b、曲線12b及び12c、曲線12c及び12d、並びに、曲線12d及び12aは、それぞれ、直線13a、13b、13c及び13dにより連結されている。
The shape of the exhaust gas treatment body 10 constituting the exhaust gas purification apparatus 1 of the present invention will be described.
FIG. 2 is a cross-sectional view schematically showing an example of the exhaust gas treating body constituting the exhaust gas purifying apparatus of the present invention, cut in a direction perpendicular to the longitudinal direction of the exhaust gas treating body.
As shown in FIG. 2, the outline 11 of the cross section perpendicular to the longitudinal direction of the exhaust gas treating body 10 has a shape in which square corners are rounded. That is, the contour 11 is composed of four curves 12a, 12b, 12c and 12d and four straight lines 13a, 13b, 13c and 13d connecting them.
The curves 12a and 12b, the curves 12b and 12c, the curves 12c and 12d, and the curves 12d and 12a are connected by straight lines 13a, 13b, 13c, and 13d, respectively.
ここで、排ガス処理体10のコーナー部を決定する方法を以下に説明する。
まず、曲線12a、12b、12c及び12dにおける曲率半径の最小値(r10minを求める。曲線12a、12b、12c及び12dにおいて、曲率半径が、曲率半径の最小値(r10minの8倍以下である連続する部分が、排ガス処理体のコーナー部14a、14b、14c及び14dである。
Here, a method for determining the corner portion of the exhaust gas treating body 10 will be described below.
First, the minimum value (r 10 ) min of the radius of curvature in the curves 12a, 12b, 12c and 12d is obtained. In the curves 12a, 12b, 12c and 12d, the continuous portions where the radius of curvature is not more than 8 times the minimum value (r 10 ) min of the radius of curvature are the corner portions 14a, 14b, 14c and 14d of the exhaust gas treatment body. .
なお、曲率半径とは、曲線や曲面の曲がり具合を表す量である。ある曲線において、その局所的な曲がり具合は円に近似することができ、近似した円の半径を曲率半径という。例えば、半径rの円周に近似できる場合は、曲率は1/rであり、曲率半径はrである。曲線の曲がり具合がきついほど曲率は大きくなり曲率半径は小さくなる。
また、株式会社東京精密の3次元座標測定機 RVA800A-X1等を使用し、排ガス処理体の複数点の位置を測定することにより、曲線を特定することができ、この曲線が円弧である場合には、円弧の曲率半径を求めることができる。
さらに、排ガス処理体の曲率半径を所定の値となるように設計している場合には、断面の写真を撮影して、設計時の曲率半径の曲線と一致しているか否かを確認することにより、曲率半径を得ることができる。
The curvature radius is an amount that represents the degree of bending of a curve or curved surface. In a certain curve, the degree of local bending can be approximated to a circle, and the radius of the approximated circle is called the curvature radius. For example, when it can be approximated to the circumference of the radius r, the curvature is 1 / r and the curvature radius is r. The tighter the curve, the larger the curvature and the smaller the radius of curvature.
In addition, by using the Tokyo Seimitsu Co., Ltd. three-dimensional coordinate measuring machine RVA800A-X1, etc., by measuring the position of multiple points of the exhaust gas treatment body, it is possible to specify the curve, and when this curve is an arc Can determine the radius of curvature of the arc.
Furthermore, if the curvature radius of the exhaust gas treatment body is designed to be a predetermined value, take a photograph of the cross section to check whether it matches the curvature radius curve at the time of design. Thus, the radius of curvature can be obtained.
排ガス処理体10では、曲線12a、12b、12c及び12dの曲率が一定のため、それぞれの曲線が、コーナー部14a、14b、14c及び14dである。すなわち、各曲線の始点及び終点が、各コーナー部の始点及び終点である。
また、直線13a、13b、13c及び13dがそれぞれ連結部15a、15b、15c及び15dである。
排ガス処理体10において、コーナー部14a及び14b、コーナー部14b及び14c、コーナー部14c及び14d、並びに、コーナー部14d及び14aは、それぞれ、連結部15a、15b、15c及び15dにより連結されている。
In the exhaust gas treating body 10, since the curvatures of the curves 12a, 12b, 12c, and 12d are constant, the respective curves are corner portions 14a, 14b, 14c, and 14d. That is, the start point and end point of each curve are the start point and end point of each corner portion.
The straight lines 13a, 13b, 13c, and 13d are connecting portions 15a, 15b, 15c, and 15d, respectively.
In the exhaust gas treating body 10, the corner portions 14a and 14b, the corner portions 14b and 14c, the corner portions 14c and 14d, and the corner portions 14d and 14a are connected by connecting portions 15a, 15b, 15c, and 15d, respectively.
また、本発明の排ガス浄化装置を構成する排ガス処理体は、図3-1(a)及び(b)並びに図3-2(c)及び(d)に示すような形状であってもよい。
図3-1(a)及び(b)は、本発明の排ガス浄化装置を構成する排ガス処理体の一例を、排ガス処理体の長手方向に対して垂直な方向に切断して模式的に示す断面図である。図3-2(c)及び(d)は、本発明の排ガス浄化装置を構成する排ガス処理体の一例を、排ガス処理体の長手方向に対して垂直な方向に切断して模式的に示す断面図である。
図3-1(a)に示す、排ガス処理体110の長手方向に対して垂直な断面の輪郭111は、正方形の角部がR面取りされ、該正方形の直線部が外側に凸になるように削られた形状である。すなわち、曲率が大きい4つの曲線112a、112b、112c及び112dと、これらを連結する曲率の小さい4つの曲線113a、113b、113c及び113dとから構成されている。
曲線112a及び112b、曲線112b及び112c、曲線112c及び112d、並びに、曲線112d及び112aは、それぞれ、曲線113a、113b、113c及び113dにより連結されている。
Further, the exhaust gas treating body constituting the exhaust gas purifying apparatus of the present invention may have a shape as shown in FIGS. 3-1 (a) and (b) and FIGS. 3-2 (c) and (d).
FIGS. 3-1 (a) and (b) are cross-sectional views schematically showing an example of the exhaust gas treatment body constituting the exhaust gas purification apparatus of the present invention, cut in a direction perpendicular to the longitudinal direction of the exhaust gas treatment body. FIG. FIGS. 3-2 (c) and (d) are cross-sectional views schematically showing an example of the exhaust gas treatment body constituting the exhaust gas purification apparatus of the present invention, cut in a direction perpendicular to the longitudinal direction of the exhaust gas treatment body. FIG.
The contour 111 of the cross section perpendicular to the longitudinal direction of the exhaust gas treating body 110 shown in FIG. 3-1 (a) is such that the corner of the square is rounded and the straight portion of the square is convex outward. It is a cut shape. That is, it is composed of four curves 112a, 112b, 112c and 112d having a large curvature, and four curves 113a, 113b, 113c and 113d having a small curvature connecting them.
The curves 112a and 112b, the curves 112b and 112c, the curves 112c and 112d, and the curves 112d and 112a are connected by curves 113a, 113b, 113c, and 113d, respectively.
ここで、排ガス処理体110のコーナー部を決定する方法を以下に説明する。
まず、曲線112a、112b、112c、112d、113a、113b、113c及び113dにおける曲率半径の最小値(r110minを求める。
曲線112a、112b、112c、112d、113a、113b、113c及び113dにおいて、曲率半径が、曲率半径の最小値(r110minの8倍以下である連続する部分が、排ガス処理体のコーナー部114a、114b、114c及び114dである。
Here, a method for determining the corner portion of the exhaust gas treating body 110 will be described below.
First, the minimum value (r 110 ) min of the radius of curvature in the curves 112a, 112b, 112c, 112d, 113a, 113b, 113c, and 113d is obtained.
In the curves 112a, 112b, 112c, 112d, 113a, 113b, 113c, and 113d, a continuous portion in which the radius of curvature is not more than 8 times the minimum value (r 110 ) min of the radius of curvature is the corner portion 114a of the exhaust gas treatment body. 114b, 114c and 114d.
排ガス処理体110において、コーナー部114a及び114b、コーナー部114b及び114c、コーナー部114c及び114d、並びに、コーナー部114d及び114aは、それぞれ、連結部115a、115b、115c及び115dにより連結されている。 In the exhaust gas treating body 110, the corner portions 114a and 114b, the corner portions 114b and 114c, the corner portions 114c and 114d, and the corner portions 114d and 114a are connected by connecting portions 115a, 115b, 115c, and 115d, respectively.
このように、本発明の排ガス浄化装置を構成する排ガス処理体において、連結部は、直線のみ又は曲線のみから構成されていてもよい。また、連結部は、直線と曲線との両方から構成されていてもよい。 Thus, in the exhaust gas treating body constituting the exhaust gas purifying apparatus of the present invention, the connecting portion may be composed of only a straight line or only a curve. Moreover, the connection part may be comprised from both the straight line and the curve.
また、本発明の排ガス浄化装置を構成する排ガス処理体は、図3-1(b)並びに図3-2(c)及び(d)に示すような3~6個のコーナー部を有する形状であってもよい。
図3-1(b)並びに図3-2(c)及び(d)に示す排ガス処理体210、310及び410は、排ガス処理体の長手方向に対して垂直な断面において、それぞれ、正三角形、正五角形、正六角形の各部がR面取りされた形状である。
Further, the exhaust gas treating body constituting the exhaust gas purifying apparatus of the present invention has a shape having 3 to 6 corner portions as shown in FIG. 3-1 (b) and FIGS. 3-2 (c) and (d). There may be.
3-1 (b) and FIGS. 3-2 (c) and (d) have exhaust gas treatment bodies 210, 310, and 410 that are equilateral triangles in cross sections perpendicular to the longitudinal direction of the exhaust gas treatment bodies, respectively. Each part of a regular pentagon and a regular hexagon is R-chamfered.
なお、排ガス処理体の形状は、上記の形状に限定されず、収容スペース等との関係から好適な形状を選択することが望ましい。 Note that the shape of the exhaust gas treating body is not limited to the above-described shape, and it is desirable to select a suitable shape from the relationship with the accommodation space and the like.
次に、排ガス浄化装置1を構成するマット30について説明する。 Next, the mat 30 constituting the exhaust gas purification device 1 will be described.
図4-1(a)は、本発明の排ガス浄化装置を構成するマットの一例を模式的に示す斜視図である。図4-2(b)は、図4-1(a)に示すマットの平面図である。図4-2(c)は、図4-2(b)に示すマットにおいて、マットの面比重を求めるにあたってのマットの面積の算出方法を模式的に示す図である。
図4-1(a)に示すように、マット30は、所定の長手方向の長さ(以下、単に全長ともいう。図4-1(a)中、矢印Lで示す)、幅(図4-1(a)中、矢印Wで示す)及び厚み(図4-1(a)中、矢印Tで示す)を有する無機繊維を含む平面視矩形のマットである。
FIG. 4A is a perspective view schematically showing an example of a mat constituting the exhaust gas purifying apparatus of the present invention. FIG. 4-2 (b) is a plan view of the mat shown in FIG. 4-1 (a). FIG. 4-2 (c) is a diagram schematically showing a method for calculating the area of the mat in determining the surface specific gravity of the mat shown in FIG. 4-2 (b).
As shown in FIG. 4-1 (a), the mat 30 has a predetermined length in the longitudinal direction (hereinafter also simply referred to as a total length; indicated by an arrow L in FIG. 4-1 (a)) and a width (FIG. 4). -1 (a) is a mat having a rectangular shape in plan view including inorganic fibers having a thickness (indicated by an arrow W) and a thickness (indicated by an arrow T in FIG.
また、マット30は、凸部31aが形成された端面31と、凹部32aが形成された端面32とを備えている。後述するように、マット30は排ガス処理体10に巻き付けられることになる。凸部31a及び凹部32aは、マット30を排ガス処理体10に巻き付けた際に、ちょうど互いに嵌合するような形状となっている。 The mat 30 includes an end surface 31 on which a convex portion 31a is formed and an end surface 32 on which a concave portion 32a is formed. As will be described later, the mat 30 is wound around the exhaust gas treating body 10. The convex portion 31a and the concave portion 32a are shaped so as to fit each other when the mat 30 is wound around the exhaust gas treating body 10.
さらに、マット30には略長方形の開口部33が4つ形成されている。マット30における開口部33は、マット30を排ガス処理体10に巻き付けた際に排ガス処理体10の各コーナー部に配置されることになる部分である。 Furthermore, four substantially rectangular openings 33 are formed in the mat 30. The opening 33 in the mat 30 is a portion to be disposed at each corner portion of the exhaust gas treatment body 10 when the mat 30 is wound around the exhaust gas treatment body 10.
このことを、以下に図面を用いて詳しく説明する。
図4-2(b)に示すように、マット30は開口部33が形成された第1の領域34と、開口部が形成されていない第2の領域35とに分けることができる。
第1の領域34は、マット30を排ガス処理体10に巻き付けた際に、各コーナー部に配設される領域である。
第2の領域35は、マット30を排ガス処理体10に巻き付けた際に、各接続部に配設される領域である。
This will be described in detail below with reference to the drawings.
As shown in FIG. 4B, the mat 30 can be divided into a first region 34 in which the opening 33 is formed and a second region 35 in which the opening is not formed.
The first region 34 is a region disposed at each corner portion when the mat 30 is wound around the exhaust gas treating body 10.
The second region 35 is a region disposed in each connection portion when the mat 30 is wound around the exhaust gas treating body 10.
マット30では、第1の領域34に開口部33が形成されているので、第1の領域34の面比重は、第2の領域35の面比重より小さい。 In the mat 30, since the opening 33 is formed in the first region 34, the surface specific gravity of the first region 34 is smaller than the surface specific gravity of the second region 35.
排ガス処理体10の各連結部に配設されることになるマット30の第2の領域35では、マット30の第2の領域35の部分の重量をマットの第2の領域35の面積で割った値が面比重である。
排ガス処理体10の各コーナー部に配設されることになるマット30の第1の領域34では、以下のように面比重を求める。
第1の領域34には開口部33が形成されている。マット30の第1の領域34の面比重を求める場合には、まず、開口部33に繊維等があるものとして第1の領域34の面積を求める。次に、マット30の第1の領域34の部分の重量を、開口部33に繊維等があるものとして求めた第1の領域34の面積で割る。この値がマット30の第1の領域34の部分の面比重である。
すなわち、第1の領域34において、マットの面比重を求めるにあたっての「第1の領域34の面積」とは、図4-2(c)において、右斜め斜線で囲まれた平面33´の面積と、左斜め斜線で囲まれた平面36の面積との合計である。図4-2(c)における平面33´は、図4-2(b)におけるマット30において、開口部33の部分と一致する。図4-2(c)における平面36は、図4-2(b)におけるマット30において、開口部33以外の第1の領域34の部分と一致する。
In the second region 35 of the mat 30 to be disposed in each connecting portion of the exhaust gas treating body 10, the weight of the portion of the second region 35 of the mat 30 is divided by the area of the second region 35 of the mat. The value is the surface specific gravity.
In the first region 34 of the mat 30 to be disposed at each corner portion of the exhaust gas treating body 10, the surface specific gravity is obtained as follows.
An opening 33 is formed in the first region 34. When obtaining the surface specific gravity of the first region 34 of the mat 30, first, the area of the first region 34 is obtained assuming that the opening 33 has fibers or the like. Next, the weight of the portion of the first region 34 of the mat 30 is divided by the area of the first region 34 obtained by assuming that the opening 33 has fibers or the like. This value is the surface specific gravity of the portion of the first region 34 of the mat 30.
That is, in the first region 34, the “area of the first region 34” for obtaining the surface specific gravity of the mat is the area of the plane 33 ′ surrounded by the diagonally right oblique line in FIG. 4-2 (c). And the area of the plane 36 surrounded by the left diagonal line. A plane 33 ′ in FIG. 4-2 (c) coincides with the opening 33 in the mat 30 in FIG. 4-2 (b). A plane 36 in FIG. 4-2 (c) coincides with the portion of the first region 34 other than the opening 33 in the mat 30 in FIG. 4-2 (b).
マットの面比重が小さい領域では、マットが圧力を受けたとしてもマットの嵩密度が高くなりにくい。このため、このような圧力を受けた場合であってもマットに亀裂や圧壊が発生しにくい。 In a region where the surface specific gravity of the mat is small, the bulk density of the mat is difficult to increase even if the mat is subjected to pressure. For this reason, even if it is a case where such a pressure is received, a crack and crushing are hard to generate | occur | produce in a mat.
なお、本発明の排ガス浄化装置に係るマットを構成する無機繊維としては、特に限定されないが、アルミナ繊維、アルミナ-シリカ繊維、シリカ繊維、及び、生体溶解性繊維からなる群から選択される少なくとも1種であることが望ましい。 The inorganic fiber constituting the mat according to the exhaust gas purification apparatus of the present invention is not particularly limited, but is at least one selected from the group consisting of alumina fiber, alumina-silica fiber, silica fiber, and biosoluble fiber. It is desirable to be a seed.
これら種類の無機繊維が使用されたマットは、保持力に優れ、無機繊維の機械的特性にも優れているので、マットに亀裂や圧壊が発生しにくく、排ガス処理体がしっかりと保持される。
無機繊維の種類は、耐熱性や耐風蝕性等、マットに要求される特性等に応じて変更すればよく、各国の環境規制に適合できるような太径繊維や繊維長のものを使用するのが望ましい。
Mats using these types of inorganic fibers have excellent holding power and excellent mechanical properties of the inorganic fibers, so that the mats are not easily cracked or crushed, and the exhaust gas treating body is firmly held.
The type of inorganic fiber may be changed according to the characteristics required for the mat, such as heat resistance and wind erosion resistance, and large diameter fibers or fiber lengths that can meet the environmental regulations of each country should be used. Is desirable.
この中でも、低結晶性アルミナ質の無機繊維が望ましく、ムライト組成の低結晶性アルミナ質の無機繊維がより望ましい。加えて、スピネル型化合物を含む無機繊維がさらに望ましい。高結晶性アルミナ質であると、硬く脆いため、クッション材として用いられるマットには不向きである。 Among these, low crystalline alumina inorganic fibers are desirable, and low crystalline alumina inorganic fibers having a mullite composition are more desirable. In addition, inorganic fibers containing spinel type compounds are more desirable. A highly crystalline alumina material is hard and brittle, so it is not suitable for a mat used as a cushioning material.
さらに低結晶性アルミナ質かつスピネル型化合物を含む無機繊維の場合、結晶化比率は0.1~30%の範囲が望ましく、さらには結晶化比率0.4~20%の範囲がさらに望ましい。この範囲の無機繊維で製作されたマットの反発力及び耐久試験後の復元面圧は高く、性能が良い。しかし、結晶化比率が0.1%未満又は30%を超えると、反発力や復元面圧は急激に低下してしまう。結晶化比率の測定方法は、ムライト回析線(2θ=26.4°)とγアルミナ回析線(2θ=45.4°)の積分強度比より算出することができる。 Further, in the case of inorganic fibers containing a low crystalline alumina material and a spinel type compound, the crystallization ratio is preferably in the range of 0.1 to 30%, and more preferably in the range of 0.4 to 20%. Mats made of inorganic fibers in this range have a high rebound force and a high restoration surface pressure after a durability test. However, when the crystallization ratio is less than 0.1% or more than 30%, the repulsive force and the restoring surface pressure are rapidly reduced. The method for measuring the crystallization ratio can be calculated from the integral intensity ratio of the mullite diffraction line (2θ = 26.4 °) and the γ-alumina diffraction line (2θ = 45.4 °).
マットは、無機繊維からなる素地マットに対してニードルパンチング処理が施されていることが望ましい。ニードルパンチング処理とは、ニードル等の繊維交絡手段を素地マットに対して抜き差しすることをいう。 It is desirable that the mat is subjected to a needle punching process on a base mat made of inorganic fibers. The needle punching process refers to inserting and removing fiber entanglement means such as a needle with respect to the base mat.
マットにニードルパンチング処理を施すことにより、無機繊維同士の交絡が発生し、マットの強度が向上する。そのため、マットに亀裂や圧壊が発生しにくくなる。 By subjecting the mat to needle punching, entanglement of inorganic fibers occurs, and the strength of the mat is improved. Therefore, cracks and crushing are less likely to occur in the mat.
なお、交絡構造を呈するために、無機繊維はある程度の平均繊維長を有していることが望ましく、例えば、無機繊維の平均繊維長は、4mm~120mmであることが望ましい。この範囲の平均繊維長であると、ニードル処理を施した箇所で繊維同士が絡まり、マットの強度を増加させる。好ましいニードルパンチの存在密度は、100cmあたり10~500個である。ニードルパンチの存在密度が100cmあたり10個未満であると、マットが引き裂かれて分離してしまう。また、ニードルパンチの存在密度が100cmあたり500個を超えるとマットを曲げにくくなり、排気ガス処理体への巻回時に平面状にマットがなろうとし、紐状部材を付与した際に、紐状部材に大きな張力がかかってしまい、紐状部材が破断したりするので好ましくはない。 In order to exhibit an entangled structure, the inorganic fiber desirably has a certain average fiber length. For example, the average fiber length of the inorganic fiber is desirably 4 mm to 120 mm. When the average fiber length is within this range, the fibers are entangled at the location where the needle treatment is performed, and the strength of the mat is increased. A preferable density of needle punches is 10 to 500 per 100 cm 2 . When the density of needle punches is less than 10 per 100 cm 2 , the mat is torn and separated. Further, when the density of needle punches exceeds 500 per 100 cm 2 , the mat becomes difficult to bend, and when it is wound around the exhaust gas treatment body, the mat tends to be formed into a flat shape, and when the string-like member is applied, This is not preferable because a large tension is applied to the member and the string member is broken.
また、排ガス処理体の連結部に配設されることになる部分のマットの面比重は、400g/m~2000g/mであることが望ましい。マットの面比重が400g/m未満であると排ガス浄化装置作動時の振動から排ガス処理体を充分に保護することができないため、排ガス処理体の欠損や、ケーシングから脱落するといった不具合が生じる。また、2000g/mを超えると、マットの復元力が強すぎるため、排ガス処理体の強度を上回って破損させてしまう。
また、排ガス処理体のコーナー部に配設されることになる部分のマットの面比重は、390g/m~1990g/mであることがより望ましい。
Further, it is desirable that the surface specific gravity of the mat at the portion to be disposed at the connecting portion of the exhaust gas treating body is 400 g / m 2 to 2000 g / m 2 . When the surface specific gravity of the mat is less than 400 g / m 2 , the exhaust gas treating body cannot be sufficiently protected from vibrations when the exhaust gas purifying apparatus is operated, and thus there arises a problem that the exhaust gas treating body is lost or dropped from the casing. On the other hand, if it exceeds 2000 g / m 2 , the restoring force of the mat is too strong, so that it exceeds the strength of the exhaust gas treating body and is damaged.
The surface density of the mat portion which is to be disposed in a corner portion of the exhaust gas treating body, and more desirably about 390g / m 2 ~ 1990g / m 2.
マットは、単層構造であってもよく、多層構造であってもよい。マットが多層構造からなる場合には、引掛け部は、複数のマットの同じ位置に形成されていることが望ましい。そうすることで、紐状部材が複数あるマット同士を、はがれないようにさせることができる。通常の多層マットでは、ステッチや接着剤を使用するなどするので、有機分の増加が懸念されるほか、工数が複雑となるので不良の増加や作業効率の低下を招く。
マットが単層構造のマットからなる場合は、マットの厚みTが5~15mmであることが望ましい。
The mat may have a single layer structure or a multilayer structure. When the mat has a multilayer structure, it is desirable that the hooking portion is formed at the same position of the plurality of mats. By doing so, it is possible to prevent the mats having a plurality of string-like members from being peeled off. In ordinary multilayer mats, stitches and adhesives are used, so there is concern about an increase in organic content, and the man-hours become complicated, leading to an increase in defects and a decrease in work efficiency.
When the mat is composed of a single-layered mat, the mat thickness T is desirably 5 to 15 mm.
次に、排ガス浄化装置1を構成するケーシング20について説明する。 Next, the casing 20 which comprises the exhaust gas purification apparatus 1 is demonstrated.
ケーシング20は、主にステンレス等の金属からなり、その内部に排ガス処理体10を収容できるように、内部は、排ガス処理体10の形状よりも若干大きな空間を有する管状体の形状となっている。
ケーシングの形状は、排ガス処理体10を収容できる形状に限られず、排ガス処理体の形状に合わせ選択することが望ましい。
The casing 20 is mainly made of a metal such as stainless steel, and the inside thereof has a tubular shape having a space slightly larger than the shape of the exhaust gas treatment body 10 so that the exhaust gas treatment body 10 can be accommodated therein. .
The shape of the casing is not limited to a shape that can accommodate the exhaust gas treating body 10, and is preferably selected according to the shape of the exhaust gas treating body.
次に、排ガス浄化装置1を構成する排ガス処理体10と、ケーシング20と、マット30との位置関係について図面を用いながら説明する。
なお、以下の排ガス浄化装置1の説明では、コーナー部14a付近の構造等に着目して説明する場合もあるが、特に断りがない場合には、他のコーナー部14b、14c及び14d付近の構造等は、コーナー部14a付近の構造等と同様である。
Next, the positional relationship among the exhaust gas treating body 10, the casing 20, and the mat 30 constituting the exhaust gas purification apparatus 1 will be described with reference to the drawings.
In the following description of the exhaust gas purifying apparatus 1, there are cases in which the description is focused on the structure in the vicinity of the corner portion 14 a, but unless otherwise specified, the structures in the vicinity of the other corner portions 14 b, 14 c, and 14 d. Are the same as the structure in the vicinity of the corner portion 14a.
図5は、本発明の排ガス浄化装置の一例を、排ガス浄化装置の長手方向に対して垂直に切断して模式的に示す断面図である。 FIG. 5 is a cross-sectional view schematically showing an example of the exhaust gas purifying apparatus of the present invention cut perpendicularly to the longitudinal direction of the exhaust gas purifying apparatus.
図5に示すように、排ガス処理体10の各コーナー部からケーシング20の内周面までの距離は、排ガス処理体10の各連結部からケーシング20の内周面までの距離よりも小さい。 As shown in FIG. 5, the distance from each corner portion of the exhaust gas treatment body 10 to the inner peripheral surface of the casing 20 is smaller than the distance from each connection portion of the exhaust gas treatment body 10 to the inner peripheral surface of the casing 20.
ここで、各コーナー部からケーシング20の内周面までの距離を、コーナー部14a付近に着目して説明する。
図6(a)~(c)は、図5中の破線部を拡大して示す拡大図であり、コーナー部からケーシングの内周面までの距離の求め方を模式的に示す図である。
Here, the distance from each corner part to the inner peripheral surface of the casing 20 will be described focusing on the vicinity of the corner part 14a.
6 (a) to 6 (c) are enlarged views showing the broken line portion in FIG. 5, and schematically showing how to obtain the distance from the corner portion to the inner peripheral surface of the casing.
コーナー部14aからケーシング20の内周面までの距離とは以下の距離のことをいう。
まず、図6(a)に示すように、排ガス処理体10の長手方向に対して垂直な断面において、コーナー部14aのある一点14aにおける法線αを引く。次に、コーナー部14aと法線αが交差する点14aから、ケーシング20の内周面と法線αが交差する点24aまでの距離Iを求める。
次に、図6(b)に示すように、点14aをコーナー部14aに沿って移動させながら各点における法線αを引く。点14aから、ケーシング20の内周面と法線αが交差する点までの距離Iを求める。
図6(c)に示すように、上記方法で求めた距離のうち最大の距離Imaxが、コーナー部14からケーシング20の内周面までの距離である。
The distance from the corner portion 14a to the inner peripheral surface of the casing 20 refers to the following distance.
First, as shown in FIG. 6 (a), in a cross section perpendicular to the longitudinal direction of the exhaust gas treating body 10, pulling the normal alpha 1 at a point 14a 1 with a corner section 14a. Then, from 14a 1 that corner portion 14a and the normal alpha 1 intersect, obtains a distance I 1 to 24a 1 that the inner peripheral surface and the normal alpha 1 of the casing 20 intersect.
Next, as shown in FIG. 6 (b), subtracting the normal alpha n at each point while moving along the point 14a n the corner portion 14a. From point 14a n, determine the distance I n to the point where the inner peripheral surface and the normal alpha n of the casing 20 intersect.
As shown in FIG. 6C, the maximum distance I max among the distances obtained by the above method is the distance from the corner portion 14 to the inner peripheral surface of the casing 20.
また、排ガス処理体10の連結部からケーシング20の内周面までの距離とは、排ガス処理体10の各連結部からケーシング20の内周面までの距離のうち最小となる距離iminのことである。 Moreover, the distance from the connection part of the exhaust gas treatment body 10 to the inner peripheral surface of the casing 20 is the minimum distance i min among the distances from the connection parts of the exhaust gas treatment body 10 to the inner peripheral surface of the casing 20. It is.
排ガス浄化装置1において、各コーナー部からケーシング20の内周面までの距離が、各コーナー部に隣接する連結部からケーシング20の内周面までの距離よりも小さいことを、コーナー部14a付近に着目して説明する。
図7は、図5中の破線部を拡大して示す拡大図であり、排ガス処理体及びケーシングの位置関係を模式的に示す説明図である。
図7に示すように、コーナー部14aは、連結部15a及び15dに隣接している。また、コーナー部14aからケーシング20の内周面までの距離は、連結部15aからケーシング20の内周面までの距離(i15amin、及び、連結部15dからケーシングまでの距離(i15dminのいずれよりも小さい。この場合、各コーナー部からケーシングの内周面までの距離が、各コーナー部に隣接する連結部からケーシング20の内周面までの距離よりも小さいことをいう。
In the exhaust gas purification apparatus 1, the fact that the distance from each corner portion to the inner peripheral surface of the casing 20 is smaller than the distance from the connecting portion adjacent to each corner portion to the inner peripheral surface of the casing 20 is near the corner portion 14a. Focus on the explanation.
FIG. 7 is an enlarged view showing a broken line portion in FIG. 5 and is an explanatory view schematically showing a positional relationship between the exhaust gas treating body and the casing.
As shown in FIG. 7, the corner portion 14a is adjacent to the connecting portions 15a and 15d. The distance from the corner portion 14a to the inner peripheral surface of the casing 20 is the distance (i 15a ) min from the connecting portion 15a to the inner peripheral surface of the casing 20, and the distance (i 15d ) from the connecting portion 15d to the casing. Smaller than any of min . In this case, the distance from each corner portion to the inner peripheral surface of the casing is smaller than the distance from the connecting portion adjacent to each corner portion to the inner peripheral surface of the casing 20.
また、排ガス浄化装置1では、各コーナー部に配設されているマット30の面比重は、各連結部に配設されているマット30の面比重よりも小さい。 Moreover, in the exhaust gas purification apparatus 1, the surface specific gravity of the mat 30 disposed at each corner portion is smaller than the surface specific gravity of the mat 30 disposed at each connection portion.
ここで、コーナー部に配設されているマット30について、コーナー部14a付近に着目して説明する。
図8は、図5中の破線部を拡大して示す拡大図であり、コーナー部に配設されているマットを模式的に示す説明図である。
Here, the mat 30 disposed in the corner portion will be described focusing on the vicinity of the corner portion 14a.
FIG. 8 is an enlarged view showing a broken line portion in FIG. 5, and is an explanatory view schematically showing a mat disposed in a corner portion.
コーナー部14aに配設されているマット30の領域を決定するには、まず、図8に示すように、コーナー部14aの両端部に法線α14aを引く。この法線α14aにより区切られる領域が、コーナー部14aに配設されているマット30の領域、すなわちマット30の第1の領域34である。 In order to determine the area of the mat 30 disposed in the corner portion 14a, first, as shown in FIG. 8, a normal α 14a is drawn at both ends of the corner portion 14a. The area delimited by the normal α 14a is the area of the mat 30 disposed in the corner portion 14a, that is, the first area 34 of the mat 30.
排ガス浄化装置において、各コーナー部からケーシング20の内周面までの距離が、各連結部からケーシングの20内周面までの距離よりも小さく、マットの面比重が一定である場合には、各コーナー部に配設されたマットが受けるケーシングからの圧力は、各連結部に配設されたマットが受けるケーシング20からの圧力よりも大きくなる。この場合、マットの嵩密度が高くなり、マットに亀裂や圧壊が発生しやすくなる。しかし、排ガス浄化装置1では、各コーナー部に配設されているマット30の面比重が、各連結部に配設されているマット30の面比重よりも小さい。すなわち、各コーナー部に配設されているマット30の繊維の密度は、各連結部に配設されているマット30の繊維の密度よりも低い。従って、ケーシング20からの圧力を受けたとしても、各コーナー部に配設されたマット30の嵩密度が高くなりにくい。このため、マット30に亀裂や圧壊が発生しにくい。
また、マット30が巻き付けられた排ガス処理体10をケーシング20に圧入する際にも、各コーナー部に配設されたマット30にかかる負荷が大きくなりにくく、マット30に亀裂や圧壊が発生しにくい。
In the exhaust gas purification apparatus, when the distance from each corner portion to the inner peripheral surface of the casing 20 is smaller than the distance from each connection portion to the inner peripheral surface of the casing 20, and the surface specific gravity of the mat is constant, The pressure from the casing received by the mat disposed at the corner portion is greater than the pressure from the casing 20 received by the mat disposed at each connecting portion. In this case, the bulk density of the mat is increased, and cracks and crushing are likely to occur in the mat. However, in the exhaust gas purification apparatus 1, the surface specific gravity of the mat 30 disposed at each corner is smaller than the surface specific gravity of the mat 30 disposed at each connecting portion. That is, the density of the fibers of the mat 30 disposed at each corner is lower than the density of the fibers of the mat 30 disposed at each connecting portion. Therefore, even if the pressure from the casing 20 is received, the bulk density of the mat 30 disposed at each corner portion is not easily increased. For this reason, the mat 30 is not easily cracked or crushed.
Further, when the exhaust gas treating body 10 around which the mat 30 is wound is press-fitted into the casing 20, the load applied to the mat 30 disposed in each corner portion is not easily increased, and the mat 30 is not easily cracked or crushed. .
このため、排ガス浄化装置1では、自動車の走行等により生じる振動や衝撃により、排ガス処理体1がその外周を覆うケーシング20と接触して破損することを防止することができることは勿論、マット30による排ガス処理体10の保持能力が高く、排ガス浄化装置1の内部から排ガス処理体10が抜け出るのを防止することができる。また、排ガスの漏れをしっかりと防止することができる。 For this reason, in the exhaust gas purifying apparatus 1, it is possible to prevent the exhaust gas treating body 1 from being damaged by contact with the casing 20 covering the outer periphery due to vibrations or impacts caused by traveling of the automobile or the like. The holding ability of the exhaust gas treating body 10 is high, and the exhaust gas treating body 10 can be prevented from coming out of the exhaust gas purifying apparatus 1. Further, it is possible to prevent the exhaust gas from leaking firmly.
すなわち、排ガス浄化装置1では、各コーナー部に配設されているマット30の無機繊維の密度は、各連結部に配設されているマット30の無機繊維の密度よりも低い。 That is, in the exhaust gas purifying apparatus 1, the density of the inorganic fibers of the mat 30 disposed at each corner portion is lower than the density of the inorganic fibers of the mat 30 disposed at each connection portion.
そのため、マット30が巻き付けられた排ガス処理体10を圧入する際、無機繊維が密度の低い方に容易に移動することができ、各コーナー部に配設されるマット30が受ける圧力を軽減することができる。そのため、各コーナー部に配設されたマット30の嵩密度が高くなることを防止することができる。その結果、マットに亀裂や圧壊が発生することを防止することができる。 Therefore, when press-fitting the exhaust gas treating body 10 around which the mat 30 is wound, the inorganic fibers can be easily moved to a lower density, and the pressure applied to the mat 30 disposed at each corner portion is reduced. Can do. Therefore, it is possible to prevent the bulk density of the mat 30 disposed at each corner portion from increasing. As a result, it is possible to prevent the mat from being cracked or crushed.
また、排ガス浄化装置1では、各コーナー部に配設されたマット30には開口部33が形成されている。このような開口部33が形成されていると、マット30が巻き付けられた排ガス処理体10を圧入する際、無機繊維が開口部33に容易に移動することができる。すなわち、また、無機繊維が開口部33に容易に移動すると、図8に示すように、マット30の第1の領域34の厚みは、マット30の第2の領域35の厚みより薄くなる。
これにより、各コーナー部に配設されるマット30が受ける圧力を軽減することができる。
そのため、各コーナー部に配設されたマット30の嵩密度が高くなることを防止することができる。その結果、マット30に亀裂や圧壊が発生することを防止することができる。
Moreover, in the exhaust gas purification apparatus 1, the opening part 33 is formed in the mat 30 arrange | positioned at each corner part. When such an opening 33 is formed, the inorganic fibers can easily move to the opening 33 when the exhaust gas treating body 10 around which the mat 30 is wound is press-fitted. That is, when the inorganic fiber easily moves to the opening 33, the thickness of the first region 34 of the mat 30 becomes thinner than the thickness of the second region 35 of the mat 30 as shown in FIG.
Thereby, the pressure which the mat | matte 30 arrange | positioned at each corner part receives can be reduced.
Therefore, it is possible to prevent the bulk density of the mat 30 disposed at each corner portion from increasing. As a result, it is possible to prevent the mat 30 from being cracked or crushed.
無機繊維が開口部33に容易に移動することができることを以下に図面を用いて説明する。
図9(a)は、図4-1(a)中の破線部を、開口部が通るようにA-A線で切断して模式的に示す断面図である。図9(b)は、本発明の排ガス浄化装置に配置されたマットの図9(a)に示す部分の状態を模式的に示す模式図である。
図9(a)に示すように、マット30の第1の領域34には開口部33が形成されており厚みTを有している。また、マット30には、無機繊維37が開口部33の周囲に存在している。
図9(b)に示すように、マット30が排ガス処理体10に巻き付けられ、ケーシング20に収容されると、マット30はこれらから圧力を受け圧縮される。排ガス浄化装置に配設されたマット30の厚みは薄くなる。
このような圧縮があった場合、マットに開口部が形成されていないと、マットの繊維が移動できる場所が少ないので、マットの嵩密度が高くなる。そのため、マットに亀裂や圧壊が発生しやすくなる。
しかし、マット30のように開口部33が形成されていると、開口部33の周囲の無機繊維37は、開口部33の空間に容易に移動することができる(図9(b)中、無機繊維37が移動する方向を矢印で示す)。すなわち、マットの厚み方向の中心部が窪んだ形になる。そのため、マット30の嵩密度が高くなりにくい。
特に、各コーナー部に配設されたマット30の第1の領域34では、強い圧力を受けることになる。
このような場合であっても、上記の説明のようにマット30の第1の領域34では、開口部33の周囲の無機繊維37が開口部33の空間に容易に移動することができる。そのため、各コーナー部に配設されたマット30の嵩密度が高くなることを防止することができる。その結果、マット30に亀裂や圧壊が発生することを防止することができる。
The fact that inorganic fibers can easily move to the opening 33 will be described below with reference to the drawings.
FIG. 9A is a cross-sectional view schematically showing the broken line portion in FIG. 4-1A cut along the line AA so that the opening passes therethrough. FIG.9 (b) is a schematic diagram which shows typically the state of the part shown to Fig.9 (a) of the mat | matte arrange | positioned at the exhaust gas purification apparatus of this invention.
As shown in FIG. 9A, an opening 33 is formed in the first region 34 of the mat 30 and has a thickness T. In addition, the inorganic fiber 37 is present around the opening 33 in the mat 30.
As shown in FIG. 9B, when the mat 30 is wound around the exhaust gas treating body 10 and accommodated in the casing 20, the mat 30 receives pressure from these and is compressed. The thickness of the mat 30 disposed in the exhaust gas purification device is reduced.
When there is such compression, if there are no openings in the mat, there are few places where the mat fibers can move, so the bulk density of the mat increases. Therefore, cracks and crushing are likely to occur in the mat.
However, when the opening 33 is formed like the mat 30, the inorganic fibers 37 around the opening 33 can easily move to the space of the opening 33 (in FIG. 9B, inorganic fibers 37 The direction in which the fiber 37 moves is indicated by an arrow). That is, the center part of the mat in the thickness direction is depressed. Therefore, the bulk density of the mat 30 is difficult to increase.
In particular, the first region 34 of the mat 30 disposed at each corner portion receives a strong pressure.
Even in such a case, the inorganic fibers 37 around the opening 33 can easily move into the space of the opening 33 in the first region 34 of the mat 30 as described above. Therefore, it is possible to prevent the bulk density of the mat 30 disposed at each corner portion from increasing. As a result, it is possible to prevent the mat 30 from being cracked or crushed.
排ガス浄化装置1では、マット30の開口部33は、マット30の幅方向において1つのみ形成されていたが、本発明の排ガス浄化装置を構成するマットでは、各コーナー部に配設されているマットの一部には、マットの幅方向において開口部が2つ以上形成されていてもよい。 In the exhaust gas purification apparatus 1, only one opening 33 of the mat 30 is formed in the width direction of the mat 30, but in the mat constituting the exhaust gas purification apparatus of the present invention, it is disposed at each corner portion. Two or more openings may be formed in a part of the mat in the width direction of the mat.
マットの幅方向において、開口部が2つ以上形成されていると、マットが巻き付けられた排ガス処理体を圧入する際、無機繊維が開口部に均一に移動しやすくなる。
そのため、ケーシングから受ける圧力がマットの一部のみにかかることを防止することができる。すなわち、マットの一部の嵩密度が高くなることを防止することができる。その結果、マットに亀裂や圧壊が発生することを防止することができる。
When two or more openings are formed in the width direction of the mat, the inorganic fibers easily move uniformly into the openings when the exhaust gas treating body around which the mat is wound is press-fitted.
Therefore, it can prevent that the pressure received from a casing applies only to a part of mat | matte. That is, it is possible to prevent the bulk density of a part of the mat from increasing. As a result, it is possible to prevent the mat from being cracked or crushed.
また、マット30を平面視した際の開口部33の形状は略長方形であったが、図10(a)~(g)に示すように、本発明の排ガス浄化装置では、開口部の形状は、特に限定されず、略円形、略楕円形、略レーストラック形、略六角形、略五角形、略四角形、略三角形からなる群から選択される少なくとも1つの形状であってもよい。
図10(a)~(g)は、本発明の排ガス浄化装置を構成するマットの一例を模式的に示す平面図であり、種々の形状の開口部を有するマットを示している。
図10(a)に示すマット30aは、略円形の開口部33aを有している。
図10(b)に示すマット30bは、略楕円形の開口部33bを有している。
図10(c)に示すマット30cは、略レーストラック形の開口部33cを有している。
図10(d)に示すマット30dは、略六角形の開口部33dを有している。
図10(e)に示すマット30eは、略五角形の開口部33eを有している。
図10(f)に示すマット30fは、略平行四辺形の開口部33fを有している。
図10(g)に示すマット30gは、略三角形の開口部33gを有している。
Further, the shape of the opening 33 when the mat 30 is viewed in plan is substantially rectangular. However, as shown in FIGS. 10A to 10G, in the exhaust gas purification apparatus of the present invention, the shape of the opening is However, it is not particularly limited, and it may be at least one shape selected from the group consisting of a substantially circular shape, a substantially elliptical shape, a substantially racetrack shape, a substantially hexagonal shape, a substantially pentagonal shape, a substantially quadrangular shape, and a substantially triangular shape.
FIGS. 10A to 10G are plan views schematically showing an example of a mat constituting the exhaust gas purifying apparatus of the present invention, and show mats having openings of various shapes.
A mat 30a shown in FIG. 10A has a substantially circular opening 33a.
The mat 30b shown in FIG. 10B has a substantially elliptical opening 33b.
A mat 30c shown in FIG. 10C has a substantially racetrack-shaped opening 33c.
A mat 30d shown in FIG. 10D has a substantially hexagonal opening 33d.
A mat 30e shown in FIG. 10E has a substantially pentagonal opening 33e.
A mat 30f shown in FIG. 10 (f) has a substantially parallelogram opening 33f.
A mat 30g shown in FIG. 10 (g) has a substantially triangular opening 33g.
また、本発明の排ガス浄化装置では、開口部が、マットの側面から形成されていてもよい。
図10(h)及び(i)は、本発明の排ガス浄化装置を構成するマットの一例を模式的に示す平面図であり、側面から開口部が形成されているマットを示している。
図10(h)では、マット30hの一方の側面から略長方形の開口部33hが形成されている。
図10(i)では、マット30iの両方の側面から略長方形の開口部33iが形成されている。すなわち、マット30iの幅方向において開口部33iが存在する部分では、マット30iは、マット30iの幅方向の中心部分が繋がっている。
In the exhaust gas purification apparatus of the present invention, the opening may be formed from the side surface of the mat.
FIGS. 10 (h) and (i) are plan views schematically showing an example of a mat constituting the exhaust gas purifying apparatus of the present invention, and show a mat in which an opening is formed from the side.
In FIG. 10H, a substantially rectangular opening 33h is formed from one side surface of the mat 30h.
In FIG. 10 (i), a substantially rectangular opening 33i is formed from both side surfaces of the mat 30i. That is, in the portion where the opening 33i exists in the width direction of the mat 30i, the mat 30i is connected to the center portion in the width direction of the mat 30i.
排ガス処理体のコーナー部の曲率半径や、ケーシングの内周面の形状に合わせ開口部の形状を選択することにより、マットが巻き付けられた排ガス処理体を圧入する際に、無機繊維が開口部に容易に移動することができる。これにより、ケーシングからマットが受ける圧力を分散することができ、マットの一部の嵩密度が高くなることを防止することができる。その結果、マットに亀裂や圧壊が発生することを防止することができる。
さらに開口部がこれらの形状であると、容易に開口部を形成することができ、排ガス浄化装置を製造する上で有利である。
By selecting the shape of the opening according to the radius of curvature of the corner of the exhaust gas treatment body and the shape of the inner peripheral surface of the casing, when the exhaust gas treatment body around which the mat is wound is press-fitted, inorganic fibers are introduced into the opening. It can be moved easily. Thereby, the pressure which a mat receives from a casing can be disperse | distributed, and it can prevent that the bulk density of a part of mat | matte becomes high. As a result, it is possible to prevent the mat from being cracked or crushed.
Furthermore, when the opening has these shapes, the opening can be easily formed, which is advantageous in manufacturing the exhaust gas purification device.
排ガス浄化装置1では、マット30の幅方向の開口部33の長さは、マット30の幅の1/10~9/10の長さであることが望ましい。
本明細書において、マットの幅方向の開口部の長さとは、マット30の幅方向の開口部33の一方の端部から、もう一方の端部までの距離のことをいう。
また、マットの幅方向において開口部が2つ以上ある場合には、マット30の幅方向の各開口部の長さが、上記範囲内であることが望ましい。
In the exhaust gas purification apparatus 1, the length of the opening 33 in the width direction of the mat 30 is desirably 1/10 to 9/10 of the width of the mat 30.
In this specification, the length of the opening in the width direction of the mat refers to the distance from one end of the opening 33 in the width direction of the mat 30 to the other end.
Further, when there are two or more openings in the width direction of the mat, the length of each opening in the width direction of the mat 30 is preferably within the above range.
マット30の幅方向の開口部33の長さが、マット30の幅の1/10未満の長さであると、各コーナー部に配設されているマット30の面比重が充分に低くなりにくく、各コーナー部に配設されているマット30の嵩密度が充分に低くなりにくい。そのため、マット30に亀裂や圧壊が発生することを防止する効果を得られにくくなる。
マット30の幅方向の開口部33の長さが、マット30の幅の9/10を超える長さであると、各コーナー部に配設されているマット30の面比重が小さくなりすぎるため、マット30が千切れやすくなる。
When the length of the opening 33 in the width direction of the mat 30 is less than 1/10 of the width of the mat 30, the surface specific gravity of the mat 30 disposed in each corner portion is not easily lowered. In addition, the bulk density of the mat 30 disposed at each corner is unlikely to be sufficiently low. Therefore, it becomes difficult to obtain the effect of preventing the mat 30 from being cracked or crushed.
If the length of the opening 33 in the width direction of the mat 30 is longer than 9/10 of the width of the mat 30, the surface specific gravity of the mat 30 disposed in each corner portion becomes too small. The mat 30 is easily cut off.
排ガス浄化装置1では、マット30の幅方向の開口部33の長さは、10mm~70mmであることが望ましい。 In the exhaust gas purification apparatus 1, the length of the opening 33 in the width direction of the mat 30 is desirably 10 mm to 70 mm.
排ガス浄化装置1では、マット30の幅方向の開口部33の長さが、10mm未満の長さであると、各コーナー部に配設されているマット30の面比重が充分に低くなりにくく、各コーナー部に配設されているマット30の嵩密度が充分に低くなりにくい。そのため、マット30に亀裂や圧壊が発生することを防止する効果を得られにくくなる。
マット30の幅方向の開口部33の長さが、70mmを超える長さであると、各コーナー部に配設されているマット30の面比重が小さくなりすぎるため、マット30が千切れやすくなる。
In the exhaust gas purifying apparatus 1, when the length of the opening 33 in the width direction of the mat 30 is less than 10 mm, the surface specific gravity of the mat 30 disposed at each corner portion is not sufficiently low, The bulk density of the mat 30 disposed at each corner is unlikely to be sufficiently low. Therefore, it becomes difficult to obtain the effect of preventing the mat 30 from being cracked or crushed.
If the length of the opening 33 in the width direction of the mat 30 is more than 70 mm, the mat 30 is easily cut off because the surface specific gravity of the mat 30 disposed at each corner portion is too small. .
排ガス浄化装置1では、各コーナー部に配設されているマット30の連続する領域において、マット30を平面視して、マット30の長さ方向に垂直な第1の直線38をマット30の長さ方向の開口部33の一方の端部と接触するように引き、マット30の長さ方向に垂直な第2の直線39をマット30の長さ方向の開口部33のもう一方の端部と接触するように引いた場合、第1の直線38から第2の直線39までの間の領域に存在するマット30の面比重は、各連結部に配設されているマット30の面比重の30~99.5%であることが望ましい。 In the exhaust gas purifying apparatus 1, in a continuous area of the mats 30 arranged at each corner portion, the mat 30 is viewed in plan, and a first straight line 38 perpendicular to the length direction of the mat 30 is set to the length of the mat 30. The second straight line 39 perpendicular to the longitudinal direction of the mat 30 is drawn with the other end of the longitudinal opening 33 of the mat 30 so as to come into contact with one end of the longitudinal opening 33. When pulled so as to come in contact, the surface specific gravity of the mat 30 existing in the region between the first straight line 38 and the second straight line 39 is 30 of the surface specific gravity of the mat 30 disposed in each connecting portion. It is desirable to be 99.5%.
このことを、図面を用いて説明する。
図11は、本発明の排ガス浄化装置を構成するマットの一例に第1の直線及び第2の直線を引いた際の、第1の直線から第2の直線までの間の領域を示すマットの平面図である。
This will be described with reference to the drawings.
FIG. 11 is a diagram of a mat showing a region between the first straight line and the second straight line when the first straight line and the second straight line are drawn on an example of the mat constituting the exhaust gas purifying apparatus of the present invention. It is a top view.
図11に示すように、マット30には開口部33が形成されている。上記範囲を求めるために、まず、開口部33の一方の端部と接触するよう、マット30の長さ方向に垂直な第1の直線38を引く。次に、開口部33の一方の端部と接触するよう、マット30の長さ方向に垂直な第2の直線39を引く。
第1の直線38から第2の直線39までの間の領域に存在するマット30とは、第1の直線38及び第2の直線39に区切られた範囲に存在するマットのことである。
As shown in FIG. 11, an opening 33 is formed in the mat 30. In order to obtain the above range, first, a first straight line 38 perpendicular to the length direction of the mat 30 is drawn so as to contact one end of the opening 33. Next, a second straight line 39 perpendicular to the length direction of the mat 30 is drawn so as to come into contact with one end of the opening 33.
The mat 30 existing in the region between the first straight line 38 and the second straight line 39 is a mat existing in a range divided by the first straight line 38 and the second straight line 39.
第1の直線38から第2の直線39までの間の領域に存在するマット30の面比重が、各連結部に配設されているマット30の面比重の30%未満である場合、第1の直線38から第2の直線39までの間の領域に存在する無機繊維の量が少なくなりすぎるため、マット30が千切れやすくなる。
第1の直線38から第2の直線39までの間の領域に存在するマット30の面比重が、各連結部に配設されているマット30の面比重の99.5%を超える場合、各コーナー部に配設されているマット30の無機繊維が開口部33に移動しにくくなるので、各コーナー部に配設されているマット30の嵩密度が充分に低くなりにくい。そのため、マット30に亀裂や圧壊が発生することを防止する効果を得られにくくなる。
When the surface specific gravity of the mat 30 existing in the region between the first straight line 38 and the second straight line 39 is less than 30% of the surface specific gravity of the mat 30 disposed in each connecting portion, the first Since the amount of inorganic fibers present in the region between the straight line 38 and the second straight line 39 becomes too small, the mat 30 is easily cut off.
When the surface specific gravity of the mat 30 existing in the region between the first straight line 38 and the second straight line 39 exceeds 99.5% of the surface specific gravity of the mat 30 disposed in each connecting portion, Since the inorganic fibers of the mat 30 disposed in the corner portion are difficult to move to the opening 33, the bulk density of the mat 30 disposed in each corner portion is not easily lowered. Therefore, it becomes difficult to obtain the effect of preventing the mat 30 from being cracked or crushed.
本発明の排ガス浄化装置を構成する排ガス処理体については、前に説明したが、排ガス処理体10として排ガス浄化フィルタ50を使用した場合について、図面を用いてさらに詳しく説明する。
図12は、排ガス処理体として排ガス浄化フィルタを用いた場合の本発明の排ガス浄化装置の一例を、排ガス浄化装置の長手方向に対して平行に切断して模式的に示す断面図である。
図12に示すように、内燃機関から排出され、排ガス浄化装置1に流入した排ガス(図12中、排ガスを矢印Gで示し、排ガスの流れを矢印で示す)は、排ガス処理体(ハニカムフィルタ)50の排ガス流入側端面50aに開口した一のセル51に流入し、セル51を隔てるセル隔壁52を通過する。この際、排ガス中のPMがセル隔壁52で捕集され、排ガスが浄化されることとなる。浄化された排ガスは、排ガス流出側端面50bに開口した他のセル51から流出し、外部に排出される。なお、53は、目封止部を示している。
Although the exhaust gas treating body constituting the exhaust gas purifying apparatus of the present invention has been described before, the case where the exhaust gas purifying filter 50 is used as the exhaust gas treating body 10 will be described in more detail with reference to the drawings.
FIG. 12 is a cross-sectional view schematically showing an example of the exhaust gas purification apparatus of the present invention when an exhaust gas purification filter is used as the exhaust gas treatment body, cut in parallel to the longitudinal direction of the exhaust gas purification apparatus.
As shown in FIG. 12, the exhaust gas discharged from the internal combustion engine and flowing into the exhaust gas purification device 1 (in FIG. 12, the exhaust gas is indicated by an arrow G and the flow of the exhaust gas is indicated by an arrow) is an exhaust gas treatment body (honeycomb filter). 50 flows into one cell 51 opened to the exhaust gas inflow side end face 50 a and passes through a cell partition wall 52 that separates the cells 51. At this time, PM in the exhaust gas is collected by the cell partition wall 52, and the exhaust gas is purified. The purified exhaust gas flows out from the other cells 51 opened in the exhaust gas outflow side end face 50b and is discharged to the outside. Reference numeral 53 denotes a plugged portion.
図12に示すように、排ガス浄化フィルタ50は、主に炭化ケイ素等の多孔質セラミックからなり、柱状であるが、具体的な形状は特に限定されず、例えば、略三角柱状、略四角柱状、略五角柱等があげられる。また、排ガス浄化フィルタ50の側面(外周)には、排ガス浄化フィルタ50の側面を補強したり、形状を整えたり、排ガス浄化フィルタ50の断熱性を向上させたりする目的で、外周コート層54が設けられている。 As shown in FIG. 12, the exhaust gas purification filter 50 is mainly made of a porous ceramic such as silicon carbide and has a column shape, but the specific shape is not particularly limited, and for example, a substantially triangular column shape, a substantially square column shape, Examples include a pentagonal prism. Further, on the side surface (outer periphery) of the exhaust gas purification filter 50, an outer peripheral coat layer 54 is provided for the purpose of reinforcing the side surface of the exhaust gas purification filter 50, adjusting the shape, and improving the heat insulation of the exhaust gas purification filter 50. Is provided.
次に、排ガス浄化装置1の製造方法の一例について説明する。 Next, an example of the manufacturing method of the exhaust gas purification apparatus 1 will be described.
本発明の排ガス浄化装置を製造するには、まず、排ガス浄化装置を構成するマットを作製する。
マットを作製する場合には、まず、所定の大きさのマット材を準備する。マット材の材料等については、上述したので、ここでは、その説明を省略する。
In order to manufacture the exhaust gas purification apparatus of the present invention, first, a mat constituting the exhaust gas purification apparatus is produced.
When producing a mat, first, a mat material having a predetermined size is prepared. Since the mat material has been described above, the description thereof is omitted here.
上述した構成のマット材には、必要に応じてバインダを付着させる。マット材にバインダを付着させることで、無機繊維同士の交絡構造をより強固なものとすることができるとともに、マット材の嵩高さを抑えることができる。バインダの添着量としては、マット材の重量を基準として、0.01~10.0%が望ましい。0.05~3.0%がさらに望ましく、0.1~1.5%の範囲が最も望ましい。 A binder is attached to the mat material having the above-described configuration as necessary. By adhering the binder to the mat material, the entangled structure between the inorganic fibers can be strengthened, and the bulk of the mat material can be suppressed. The amount of binder added is preferably 0.01 to 10.0% based on the weight of the mat material. 0.05 to 3.0% is more desirable, and the range of 0.1 to 1.5% is most desirable.
バインダとしては、アクリル系ラテックスやゴム系ラテックス等を水に分散させて調製したエマルジョンを用いることができる。このバインダをスプレー等を用いてマット材全体に均一に吹きかけて、バインダをマット材に付着させる。また、上記バインダは有機成分であるが、アルミナ粒子などを含んでいる無機バインダも上記有機バインダと一緒に使用しても良く、上記有機バインダを使用せずに無機バインダのみの使用でも良い。 As the binder, an emulsion prepared by dispersing acrylic latex or rubber latex in water can be used. The binder is sprayed uniformly on the entire mat material using a spray or the like, and the binder is adhered to the mat material. Moreover, although the said binder is an organic component, the inorganic binder containing an alumina particle etc. may be used with the said organic binder, and only the inorganic binder may be used without using the said organic binder.
その後、バインダ中の水分を除去するために、マット材を乾燥させる。乾燥条件としては、例えば、95~150℃で1~30分間乾燥させればよい。乾燥工程を経ることでマット材を作製することができる。乾燥は通気乾燥機を使用することが望ましい。通気乾燥機を使用することでマット材の乾燥速度が増加し、さらにマット材の厚み方向にバインダの添着量が一様にならずに樹脂のマイグレーションにより分布ができる。例えば、通気乾燥機の通気速度や温度など様々な条件設定により、マット材の厚み方向中央部に樹脂量を多く、又は少なくするなどの分布調節をすることも可能である。
また、圧縮や減圧環境下の乾燥でも可能であり、乾燥時間を削減することができる。
Thereafter, the mat material is dried to remove moisture in the binder. As drying conditions, for example, drying may be performed at 95 to 150 ° C. for 1 to 30 minutes. A mat member can be manufactured through a drying process. Desirably, a ventilation dryer is used for drying. By using a ventilation dryer, the drying speed of the mat material is increased, and further, the amount of binder attached is not uniform in the thickness direction of the mat material, and distribution can be achieved by resin migration. For example, it is possible to adjust the distribution such as increasing or decreasing the amount of resin in the central portion in the thickness direction of the mat material by setting various conditions such as the aeration speed and temperature of the aeration dryer.
Further, it is possible to dry under compression or decompression environment, and the drying time can be reduced.
次に、打ち抜き工程を行い、例えば、図4-1(a)に示すような輪郭のマット30を作製する。
さらに、後の工程において、排ガス処理体10の各コーナー部に配設されるマット30の部分に開口部33が形成されるようにマット30を打ち抜く。
排ガス処理体10の各コーナー部に配設されるマット30の部分は、排ガス処理体10の大きさ等からあらかじめ計算することができる。
Next, a punching process is performed, and for example, a mat 30 having a contour as shown in FIG.
Further, in a later step, the mat 30 is punched so that the opening 33 is formed in a portion of the mat 30 disposed at each corner portion of the exhaust gas treating body 10.
The portion of the mat 30 disposed at each corner of the exhaust gas treatment body 10 can be calculated in advance from the size of the exhaust gas treatment body 10 and the like.
本発明の排ガス浄化装置を作製する際には、図4-1(a)に示す形状のマット30を作製した後、マット30の凸部31aと凹部32aとが嵌合された状態となるようにマット30を排ガス処理体10の周囲に巻き付け、図13に示す巻付体40を作製する。
なお、排ガス処理体10は従来公知の方法により作製することができる。作製する排ガス処理体の形状は、既に述べているのでここでの説明では省略する。
When the exhaust gas purifying apparatus of the present invention is manufactured, after the mat 30 having the shape shown in FIG. 4A is manufactured, the convex portion 31a and the concave portion 32a of the mat 30 are fitted. The mat 30 is wound around the exhaust gas treating body 10 to produce a wound body 40 shown in FIG.
The exhaust gas treating body 10 can be produced by a conventionally known method. Since the shape of the exhaust gas treating body to be manufactured has already been described, the description thereof is omitted here.
この工程の後、収容工程を行う。
図13は、本発明の排ガス浄化装置を構成する巻付体をケーシングに収納する工程の一例を模式的に示す斜視図である。
図13に示すように、マット30を巻き付けた排ガス処理体10(巻付体40)を所定の大きさを有する円筒状であって、主に金属等からなるケーシング20に圧入する。
After this step, a housing step is performed.
FIG. 13 is a perspective view schematically showing an example of a process of housing the wound body constituting the exhaust gas purifying apparatus of the present invention in a casing.
As shown in FIG. 13, an exhaust gas treating body 10 (wound body 40) around which a mat 30 is wound is press-fitted into a casing 20 having a predetermined size and mainly made of metal or the like.
圧入後にマット30が圧縮して所定の反発力(すなわち、ハニカムフィルタを保持する力)を発揮するために、ケーシング20の内径は、マット30を巻き付けた排ガス処理体10のマット30の厚みを含めた最外径より少し小さくなっている。 In order for the mat 30 to compress after press-fitting and exhibit a predetermined repulsive force (that is, a force for holding the honeycomb filter), the inner diameter of the casing 20 includes the thickness of the mat 30 of the exhaust gas treatment body 10 around which the mat 30 is wound. It is slightly smaller than the outermost diameter.
マットを巻きつけた排ガス処理体をケーシング20内に収容させる方法は、圧入方式(スタッフィング方式)に限定されるものではなく、サイジング方式(スウェージング方式)、及び、クラムシェル方式等もあげられる。
サイジング方式(スウェージング方式)では、マットを巻きつけた排ガス処理体をケーシングの内部に挿入した後、ケーシングの内径を縮めるように外周側から圧縮する。クラムシェル方式では、ケーシングを、第1のケーシング及び第2のケーシングの2つの部品に分離可能な形状としておき、マットを巻きつけた排ガス処理体を第1のケーシング上に載置した後に第2のケーシングを被せて密封する。
マットを巻きつけた排ガス処理体をケーシングに収容する方法の中では、圧入方式(スタッフィング方式)又はサイジング方式(スウェージング方式)が望ましい。圧入方式(スタッフィング方式)又はサイジング方式(スウェージング方式)では、ケーシングとして2つの部品を用いる必要がないため、製造工程の数を少なくすることができるからである。
The method of accommodating the exhaust gas treating body around which the mat is wound in the casing 20 is not limited to the press-fitting method (stuffing method), and includes a sizing method (swaging method), a clamshell method, and the like.
In the sizing method (swaging method), an exhaust gas treating body around which a mat is wound is inserted into the casing, and then compressed from the outer peripheral side so as to reduce the inner diameter of the casing. In the clamshell method, the casing is shaped so as to be separable into two parts, a first casing and a second casing, and after the exhaust gas treating body around which the mat is wound is placed on the first casing, the second Cover with a casing and seal.
Of the methods for accommodating the exhaust gas treating body wrapped with the mat in the casing, the press-fitting method (stuffing method) or the sizing method (swaging method) is desirable. This is because in the press-fitting method (stuffing method) or the sizing method (swaging method), it is not necessary to use two parts as the casing, so the number of manufacturing processes can be reduced.
以下に、本発明の排ガス浄化装置の作用効果について列挙する。 Below, it enumerates about the effect of the exhaust gas purification apparatus of this invention.
(1)本発明の排ガス浄化装置では、コーナー部からケーシングの内周面までの距離が、連結部からケーシングの内周面までの距離よりも小さく、コーナー部に配設されているマットの面比重は、連結部に配設されているマットの面比重よりも小さい。
従って、ケーシングからの圧力を受けたとしても、コーナー部に配設されたマットの嵩密度が高くなりにくい。このため、マットに亀裂や圧壊が発生しにくい。
また、マットが巻き付けられた排ガス処理体をケーシングに圧入する際にも、コーナー部に配設されたマットにかかる負荷が大きくなりにくく、マットに亀裂や圧壊が発生しにくい。このため、本発明の排ガス浄化装置では、自動車の走行等により生じる振動や衝撃により、排ガス処理体がその外周を覆うケーシングと接触して破損することを防止することができることは勿論、マットによる排ガス処理体の保持能力が高く、排ガス浄化装置の内部から排ガス処理体が抜け出るのを防止することができる。また、排ガスの漏れをしっかりと防止することができる。
(1) In the exhaust gas purification apparatus of the present invention, the distance from the corner portion to the inner peripheral surface of the casing is smaller than the distance from the connecting portion to the inner peripheral surface of the casing, and the mat surface disposed at the corner portion Specific gravity is smaller than the surface specific gravity of the mat | matte arrange | positioned at the connection part.
Therefore, even if the pressure from the casing is received, the bulk density of the mat disposed at the corner portion is not easily increased. For this reason, cracks and crushing are unlikely to occur in the mat.
Further, when the exhaust gas treating body around which the mat is wound is press-fitted into the casing, a load applied to the mat disposed at the corner portion is not easily increased, and the mat is not easily cracked or crushed. For this reason, in the exhaust gas purifying apparatus of the present invention, it is possible to prevent the exhaust gas treating body from being damaged by contact with the casing covering the outer periphery due to vibrations or impacts caused by traveling of the automobile or the like. The holding capacity of the treatment body is high, and the exhaust gas treatment body can be prevented from coming out from the inside of the exhaust gas purification apparatus. Further, it is possible to prevent the exhaust gas from leaking firmly.
(2)本発明の排ガス浄化装置で、コーナー部に配設されているマットの一部に、開口部が形成されていると、マットが巻き付けられた排ガス処理体を圧入する際、無機繊維が開口部に容易に移動することができ、コーナー部に配設されるマットが受ける圧力を軽減することができる。そのため、コーナー部に配設されたマットの嵩密度が高くなることを防止することができる。その結果、マットに亀裂や圧壊が発生することを防止することができる。 (2) In the exhaust gas purifying apparatus of the present invention, when an opening is formed in a part of the mat disposed in the corner portion, when the exhaust gas treating body around which the mat is wound is press-fitted, the inorganic fibers It can be easily moved to the opening, and the pressure applied to the mat disposed at the corner can be reduced. Therefore, it is possible to prevent the bulk density of the mat disposed at the corner portion from increasing. As a result, it is possible to prevent the mat from being cracked or crushed.
(3)本発明の排ガス浄化装置で、コーナー部に配設されているマットの一部に、マットの幅方向において、開口部が2つ以上形成されていると、マットが巻き付けられた排ガス処理体を圧入する際、無機繊維が開口部に均一に移動しやすくなる。
そのため、ケーシングから受ける圧力がマットの一部のみにかかることを防止することができる。すなわち、マットの一部の嵩密度が高くなることを防止することができる。その結果、マットに亀裂や圧壊が発生することを防止することができる。
(3) In the exhaust gas purifying apparatus of the present invention, if two or more openings are formed in a part of the mat disposed in the corner portion in the width direction of the mat, the exhaust gas treatment in which the mat is wound When press-fitting the body, the inorganic fibers easily move to the openings.
Therefore, it can prevent that the pressure received from a casing applies only to a part of mat | matte. That is, it is possible to prevent the bulk density of a part of the mat from increasing. As a result, it is possible to prevent the mat from being cracked or crushed.
(4)本発明の排ガス浄化装置で、上記開口部の形状は、略円形、略楕円形、略レーストラック形、略六角形、略五角形、略四角形、略三角形からなる群から選択される少なくとも1つの形状であると、排ガス処理体のコーナー部の曲率半径や、ケーシングの内周面の形状に合わせ開口部の形状を選択することができる。この場合、マットが巻き付けられた排ガス処理体を圧入する際に、無機繊維が開口部に容易に移動することができる。これにより、ケーシングからマットが受ける圧力を分散することができ、マットの一部の嵩密度が高くなることを防止することができる。その結果、マットに亀裂や圧壊が発生することを防止することができる。 (4) In the exhaust gas purifying apparatus of the present invention, the shape of the opening is at least selected from the group consisting of a substantially circular shape, a substantially elliptical shape, a substantially racetrack shape, a substantially hexagonal shape, a substantially pentagonal shape, a substantially square shape, and a substantially triangular shape. When the shape is one, the shape of the opening can be selected in accordance with the radius of curvature of the corner portion of the exhaust gas treating body and the shape of the inner peripheral surface of the casing. In this case, when the exhaust gas treating body around which the mat is wound is press-fitted, the inorganic fibers can easily move to the opening. Thereby, the pressure which a mat receives from a casing can be disperse | distributed, and it can prevent that the bulk density of a part of mat | matte becomes high. As a result, it is possible to prevent the mat from being cracked or crushed.
(5)本発明の排ガス浄化装置で、マットの幅方向の開口部の長さが、マットの幅の1/10~9/10の長さであると、コーナー部に配設されているマットの面比重が充分に低くなり、コーナー部に配設されているマットの嵩密度が充分に低くなる。そのため、マットに亀裂や圧壊が発生することを防止する効果を得ることができる。また、コーナー部に配設されているマットの面比重が小さくなりすぎず、マットが千切れにくくなる。 (5) In the exhaust gas purifying apparatus of the present invention, when the length of the opening in the width direction of the mat is 1/10 to 9/10 of the width of the mat, the mat disposed at the corner portion The surface specific gravity of the mat is sufficiently low, and the bulk density of the mat disposed in the corner portion is sufficiently low. Therefore, it is possible to obtain the effect of preventing the mat from being cracked or crushed. In addition, the surface specific gravity of the mat disposed in the corner portion does not become too small, and the mat becomes difficult to break.
(6)本発明の排ガス浄化装置で、マットの幅方向の開口部の長さが、10mm~70mmであると、コーナー部に配設されているマットの面比重が充分に低くなり、コーナー部に配設されているマットの嵩密度が充分に低くなる。そのため、マットに亀裂や圧壊が発生することを防止する効果を得ることができる。また、コーナー部に配設されているマットの面比重が小さくなりすぎず、マットが千切れにくくなる。 (6) In the exhaust gas purifying apparatus of the present invention, if the length of the opening in the width direction of the mat is 10 mm to 70 mm, the surface specific gravity of the mat disposed in the corner is sufficiently low, and the corner The bulk density of the mat disposed in the is sufficiently low. Therefore, it is possible to obtain the effect of preventing the mat from being cracked or crushed. In addition, the surface specific gravity of the mat disposed in the corner portion does not become too small, and the mat becomes difficult to break.
(7)本発明の排ガス浄化装置で、コーナー部に配設されているマットの連続する領域において、マットを平面視して、マットの長さ方向に垂直な第1の直線をマットの長さ方向の開口部の一方の端部と接触するように引き、マットの長さ方向に垂直な第2の直線をマットの長さ方向の開口部のもう一方の端部と接触するように引いた場合、第1の直線から第2の直線までの間の領域に存在するマットの面比重が、連結部に配設されている上記マットの面比重の30~99.5%であると、第1の直線から第2の直線までの間の領域に存在する無機繊維の量が少なくなりすぎず、マットが千切れにくくなる。また、コーナー部に配設されているマットの無機繊維が開口部に移動しにくくならず、コーナー部に配設されているマットの嵩密度が充分に低くなりやすい。そのため、マットに亀裂や圧壊が発生することを防止する効果を得ることができる。 (7) In the exhaust gas purifying apparatus of the present invention, in a continuous area of the mats arranged at the corner portions, the mat is viewed in plan, and the first straight line perpendicular to the length direction of the mat is the length of the mat. The second straight line perpendicular to the mat length direction is drawn so as to contact the other end of the mat length opening. In this case, when the surface specific gravity of the mat existing in the region from the first straight line to the second straight line is 30 to 99.5% of the surface specific gravity of the mat disposed in the connecting portion, The amount of inorganic fibers present in the region between the first straight line and the second straight line does not become too small, and the mat is difficult to break. In addition, the inorganic fibers of the mat disposed in the corner portion do not easily move to the opening, and the bulk density of the mat disposed in the corner portion is likely to be sufficiently low. Therefore, it is possible to obtain the effect of preventing the mat from being cracked or crushed.
(8)本発明の排ガス浄化装置で、コーナー部に配設されているマットの無機繊維の密度が、連結部に配設されているマットの無機繊維の密度よりも低いと、マットが巻き付けられた排ガス処理体を圧入する際、無機繊維が密度の低い方に容易に移動することができ、コーナー部に配設されるマットが受ける圧力を軽減することができる。そのため、コーナー部に配設されたマットの嵩密度が高くなることを防止することができる。その結果、マットに亀裂や圧壊が発生することを防止することができる。 (8) In the exhaust gas purifying apparatus according to the present invention, when the density of the inorganic fibers of the mat disposed in the corner portion is lower than the density of the inorganic fibers of the mat disposed in the connecting portion, the mat is wound. When the exhaust gas treatment body is press-fitted, the inorganic fibers can be easily moved to a lower density, and the pressure applied to the mat disposed at the corner portion can be reduced. Therefore, it is possible to prevent the bulk density of the mat disposed at the corner portion from increasing. As a result, it is possible to prevent the mat from being cracked or crushed.
(9)本発明の排ガス浄化装置で、マットを構成する無機繊維が、アルミナ繊維、アルミナ-シリカ繊維、シリカ繊維、及び、生体溶解性繊維からなる群から選択される少なくとも1種の無機繊維であると、上記無機繊維が使用されたマットは、保持力に優れ、無機繊維の機械的特性にも優れているので、マットに亀裂や圧壊が発生しにくく、排ガス処理体がしっかりと保持される。 (9) In the exhaust gas purifying apparatus of the present invention, the inorganic fiber constituting the mat is at least one inorganic fiber selected from the group consisting of alumina fiber, alumina-silica fiber, silica fiber, and biosoluble fiber. If so, the mat using the inorganic fiber has excellent holding power and excellent mechanical properties of the inorganic fiber, so that the mat is not easily cracked or crushed, and the exhaust gas treating body is firmly held. .
(10)本発明の排ガス浄化装置で、マットに、さらに、ニードルパンチング処理が施されていると、無機繊維同士の交絡が発生し、無機繊維が移動しにくくなるので、排ガス処理体側面のコーナー部にマットが集まりにくくなり、マットに亀裂や圧壊が発生しにくくなる。 (10) In the exhaust gas purifying apparatus of the present invention, if the mat is further subjected to needle punching treatment, the entanglement between the inorganic fibers occurs and the inorganic fibers are difficult to move. This makes it difficult for the mat to gather at the portion, and it is difficult for the mat to crack or collapse.
(実施例)
以下に、本発明の実施形態をより具体的に開示した実施例を示すが、本発明の実施形態はこれらの実施例のみに限定されるものではない。
(Example)
Examples in which the embodiments of the present invention are disclosed more specifically are shown below, but the embodiments of the present invention are not limited to these examples.
(実施例1)
アルミナ-シリカ組成を有するアルミナ繊維製の素地マットとして、組成比がAl:SiO=72:28である素地マットを用意した。この素地マットに対し、ニードルパンチング処理を施すことで、嵩密度が0.20g/cm、目付量が1591g/mのニードルマットを作製した。
Example 1
A substrate mat having a composition ratio of Al 2 O 3 : SiO 2 = 72: 28 was prepared as an alumina fiber substrate mat having an alumina-silica composition. The base mat was subjected to needle punching to produce a needle mat having a bulk density of 0.20 g / cm 3 and a basis weight of 1591 g / m 2 .
別途、アクリル系ラテックスを水に充分に分散させることで、アクリル系ラテックスエマルジョンを調製しておき、これをバインダとして用いた。 Separately, an acrylic latex emulsion was prepared by sufficiently dispersing acrylic latex in water, and this was used as a binder.
次に、ニードルマットを平面視寸法で全長1100mm×幅1280mmに裁断した。裁断したニードルマットのアルミナ繊維量に対し1.0重量%となるように、裁断したニードルマットに対してバインダを含浸させた。 Next, the needle mat was cut into a total length of 1100 mm × width of 1280 mm in plan view. The cut needle mat was impregnated with a binder so that the amount of alumina fiber of the cut needle mat was 1.0% by weight.
その後、バインダを付着させたニードルマットを140℃の温度で6分間通気乾燥させることにより、マット材を作製した。 Then, the mat material was produced by carrying out 6 minutes ventilation drying of the needle mat to which the binder was adhered at the temperature of 140 degreeC.
続いて、マット材から図4-1(a)に示すような形状の輪郭を有するマット材の打ち抜きを行った。
マット材の打ち抜きは、トムソン刃及び油圧プレス機を用いて行った。
打ち抜いたマットの寸法は、長手方向の長さL=545mm、幅W=110mm、厚みT=9.1mm、凹形状及び凸形状の嵌合部の長手方向の長さがD=50mmである。
Subsequently, a mat material having a contour as shown in FIG. 4-1 (a) was punched from the mat material.
The mat material was punched using a Thomson blade and a hydraulic press.
The dimensions of the punched-out mat are such that the length L in the longitudinal direction is L = 545 mm, the width W is 110 mm, the thickness T is 9.1 mm, and the length in the longitudinal direction of the concave and convex fitting portions is D = 50 mm.
続いて、排ガス処理体のコーナー部に配設されることになるマット材の部分に、開口部が形成されるようマット材の打ち抜きを行いマットを作製した。
開口部の形状は略長方形であり、開口長さ=10mm、開口幅=70mmである。また、マットの両側面のそれぞれから開口部までの長さは20mmである。
なお、開口長さとは、マット材の長手方向の開口部の長さである。開口幅とはマット材の幅方向の長さである。
また、表1に実施例1に係るマットの「第1の領域に開口部が占める割合」、「マット全体に開口部が占める割合」、「第1の領域の面比重」、「第2の領域の面比重」及び「マット全体の面比重」を示す。
Subsequently, the mat material was punched out so that an opening was formed in the portion of the mat material to be disposed at the corner portion of the exhaust gas treating body, thereby producing a mat.
The shape of the opening is substantially rectangular, the opening length = 10 mm, and the opening width = 70 mm. The length from each side surface of the mat to the opening is 20 mm.
The opening length is the length of the opening in the longitudinal direction of the mat member. The opening width is the length of the mat member in the width direction.
Further, Table 1 shows the “percentage of the opening in the first region”, “ratio of the opening in the entire mat”, “surface specific gravity of the first region”, “second” of the mat according to the first embodiment. “Area specific gravity” and “surface specific gravity of the entire mat” are shown.
図14(a)は、排ガス浄化フィルタの長手方向に対して垂直な断面の形状を特定するための基準となる寸法(縦、横、対角1、対角2、コーナー部の曲率半径(r))を模式的に示す断面図である。
図14(b)は、ケーシングの長手方向に対して垂直な内壁面の形状を特定するための基準となる寸法(縦、横、対角1、対角2、コーナー部の曲率半径(R))を模式的に示す断面図である。
本実施例で使用したSiC製の排ガス浄化フィルタは、図14に示す基準で表わすと、縦:143.8mm、横:143.8mm、対角1:179.6mm、対角2:179.6mm、コーナー部の曲率半径:20mmである。
上記形状の排ガス浄化フィルタに上述の特性を有するマットを巻き付けた。
FIG. 14A shows dimensions (vertical, horizontal, diagonal 1, diagonal 2, and radius of curvature (r of the corner portion) for specifying the shape of a cross section perpendicular to the longitudinal direction of the exhaust gas purification filter. )) Is a cross-sectional view schematically showing.
FIG. 14B is a reference dimension for specifying the shape of the inner wall surface perpendicular to the longitudinal direction of the casing (vertical, horizontal, diagonal 1, diagonal 2, corner radius of curvature (R). Is a cross-sectional view schematically showing.
When the exhaust gas purification filter made of SiC used in this example is represented by the reference shown in FIG. 14, the length is 143.8 mm, the width is 143.8 mm, the diagonal is 1: 179.6 mm, and the diagonal is 2: 179.6 mm. The radius of curvature of the corner is 20 mm.
A mat having the above-described characteristics was wound around the exhaust gas purification filter having the above shape.
最後に、巻付体を、圧入方式を用いてケーシング内に収容し排ガス浄化装置を製造した。ケーシングの形状は、縦:151.8mm、横:151.8mm、対角1:186.8mm、対角2:186.8mm、コーナー部の曲率半径R:25mmである。 Finally, the wound body was housed in the casing using a press-fitting method to manufacture an exhaust gas purification device. The casing has a length of 151.8 mm, a width of 151.8 mm, a diagonal of 1: 186.8 mm, a diagonal of 2: 186.8 mm, and a corner radius of curvature R of 25 mm.
(マットの状態評価)
圧入の後、24時間後にマットをケーシングから取り出し、目視により観察し、以下のように評価した。結果を表2に示す。
◎:マットに切れが生じていない。
○:マットの繊維が押し潰されているものの、マットに切れが生じていない。
×:マットに切れが生じている。
(Matte condition evaluation)
24 hours after the press-fitting, the mat was taken out of the casing, visually observed, and evaluated as follows. The results are shown in Table 2.
A: The mat is not cut.
○: The mat fibers are crushed, but the mat is not cut.
X: The mat is cut.
(保持性に関する耐久試験)
保持性に関する耐久試験として、実施例1を用いて、台上試験機にてエンジン回転数をアップダウンさせるサーマルサイクル評価を実施した。具体的には、エンジン回転数を1000rpmと5000rpmとの間でアップダウンさせ、これを1000サイクル繰り返した。この際の排ガス処理体の状態を以下のように評価した。結果を表2に示す。
◎:排ガス処理体の移動量が、0.5mm未満である。
○:排ガス処理体が移動しているが、移動量が0.5mm以上~3.0mm未満である。
×:排ガス処理体がずれており、移動量が3.0mm以上である。
(Durability test on retention)
As an endurance test regarding the holding property, Example 1 was used to perform a thermal cycle evaluation in which the engine speed was increased or decreased with a bench tester. Specifically, the engine speed was increased or decreased between 1000 rpm and 5000 rpm, and this was repeated 1000 cycles. The state of the exhaust gas treating body at this time was evaluated as follows. The results are shown in Table 2.
A: The amount of movement of the exhaust gas treating body is less than 0.5 mm.
○: The exhaust gas treating body is moving, but the moving amount is 0.5 mm or more and less than 3.0 mm.
X: The exhaust gas treating body is displaced, and the moving amount is 3.0 mm or more.
(ガスシール性試験)
図15はガスシール性試験の説明図であり、図15(a)は実験装置を模式的に示す上面図である。図15(b)はB-B線断面図である。ここで用いた実験装置は、扁平容器60にエア配管61を取り付け、このエア配管61を通じて扁平容器60にエアを流入させるようにしたものである。ガスシール性試験とは、扁平容器60にマットの一部を挿入し、その状態で扁平容器60とマットの一部で囲まれたスペースSにエアを注入したときのそのスペースSの静圧を圧力計62で測定することにより行われる。なお、扁平容器60は幅110mm、高さ3.6mm、奥行き120mmとした。
実施例1の排ガス浄化装置から、圧入後24時間後のマットをケーシングから取り出した。
次に、排ガス浄化装置のコーナー部に配設されていた部分を切断し、扁平容器60に挿入し、上記方法により静圧を測定した。
また、比較試料として、排ガス浄化装置に圧入されていないマットを準備して同様に切断し、扁平容器60に挿入し、上記方法により静圧を測定した。
マットのガスシール性を以下のように評価した。結果を表2に示す。
◎:実施例を用いた静圧が、比較試料を用いた静圧の90%以上である。
○:実施例を用いた静圧が、比較試料を用いた静圧の70%以上、90%未満である。
×:実施例を用いた静圧が、比較試料を用いた静圧の70%未満である。
(Gas sealability test)
FIG. 15 is an explanatory diagram of the gas sealability test, and FIG. 15A is a top view schematically showing the experimental apparatus. FIG. 15B is a cross-sectional view taken along the line BB. In the experimental apparatus used here, an air pipe 61 is attached to the flat container 60, and air is allowed to flow into the flat container 60 through the air pipe 61. In the gas sealability test, a part of the mat is inserted into the flat container 60, and the static pressure of the space S when the air is injected into the space S surrounded by the flat container 60 and a part of the mat in that state. This is done by measuring with the pressure gauge 62. The flat container 60 has a width of 110 mm, a height of 3.6 mm, and a depth of 120 mm.
From the exhaust gas purifying apparatus of Example 1, the mat 24 hours after the press-fitting was taken out from the casing.
Next, the portion disposed in the corner portion of the exhaust gas purification apparatus was cut and inserted into the flat container 60, and the static pressure was measured by the above method.
Further, as a comparative sample, a mat that was not press-fitted into the exhaust gas purification device was prepared, cut in the same manner, inserted into the flat container 60, and the static pressure was measured by the above method.
The gas sealability of the mat was evaluated as follows. The results are shown in Table 2.
(Double-circle): The static pressure using an Example is 90% or more of the static pressure using a comparative sample.
(Circle): The static pressure using an Example is 70% or more and less than 90% of the static pressure using a comparative sample.
X: The static pressure using an Example is less than 70% of the static pressure using a comparative sample.
(実施例2)
開口部の打ち抜きにおいて、開口長さ=10mm、開口幅=25mmの開口部をマットの幅方向に2つ形成した以外は、実施例1と同様にして実施例2に係る排ガス浄化装置を製造した。
(Example 2)
Exhaust gas purifying apparatus according to Example 2 was manufactured in the same manner as in Example 1 except that two openings having an opening length of 10 mm and an opening width of 25 mm were formed in the width direction of the mat. .
(実施例3)
開口部の打ち抜きにおいて、開口長さ=10mm、開口幅=10mmの開口部をマットの幅方向に3つ形成した以外は、実施例1と同様にして実施例3に係る排ガス浄化装置を製造した。
Example 3
Exhaust gas purifying apparatus according to Example 3 was manufactured in the same manner as in Example 1 except that in the punching of the opening, three openings having an opening length of 10 mm and an opening width of 10 mm were formed in the mat width direction. .
(実施例4)
開口部の打ち抜きにおいて、直径10mmの円形の開口部をマットの幅方向に3つ形成した以外は、実施例1と同様にして実施例4に係る排ガス浄化装置を製造した。
Example 4
Exhaust gas purifying apparatus according to Example 4 was manufactured in the same manner as in Example 1 except that three circular openings having a diameter of 10 mm were formed in the width direction of the mat in the punching of the openings.
(実施例5~7)
開口部の打ち抜きにおいて、開口部の大きさを表1に示すように変更した以外は、実施例1と同様にして実施例5~7に係る排ガス浄化装置を製造した。
(Examples 5 to 7)
Exhaust gas purifying apparatuses according to Examples 5 to 7 were manufactured in the same manner as in Example 1 except that the size of the opening was changed as shown in Table 1 in punching the opening.
(比較例1)
開口部の打ち抜きを行わないこと以外は、実施例1と同様にして比較例1に係る排ガス浄化装置を製造した。
(Comparative Example 1)
Exhaust gas purifying apparatus according to Comparative Example 1 was manufactured in the same manner as Example 1 except that the opening was not punched.
実施例2~7及び比較例1について、実施例1と同様に圧入後のマットの状態の評価、保持性に関する耐久試験及びガスシール性試験を行った。結果を表2に示す。 For Examples 2 to 7 and Comparative Example 1, as in Example 1, evaluation of the state of the mat after press-fitting, an endurance test on retention, and a gas sealability test were performed. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
表2に示すように、圧入後のマットの状態評価において、実施例1~7ではマットの状態は良好であった。特に、実施例1及び2、並びに、5~6では、マットにほとんど変化がなかった。一方、比較例1では、マットに切れが生じていた。 As shown in Table 2, in the condition evaluation of the mat after press-fitting, in Examples 1 to 7, the condition of the mat was good. In particular, in Examples 1 and 2 and 5 to 6, there was almost no change in the mat. On the other hand, in Comparative Example 1, the mat was cut.
表2に示すように、保持性に関する耐久試験において、実施例1~7では排ガス処理体の保持性が良好であった。特に、実施例1~6では、排ガス処理体がずれた形跡がなかった。また、比較例1も保持性は良好であった。 As shown in Table 2, in the endurance test relating to retention, in Examples 1 to 7, the retention of the exhaust gas treating body was good. In particular, in Examples 1 to 6, there was no evidence of displacement of the exhaust gas treating body. In addition, Comparative Example 1 also had good retention.
表2に示すように、ガスシール性試験において、実施例1~7ではガスシール性が良好であった。一方、比較例1では、排ガス浄化装置に配設された後のマットのガスシール性が著しく低下していた。 As shown in Table 2, in Examples 1 to 7, the gas sealability was good in the gas sealability test. On the other hand, in Comparative Example 1, the gas sealability of the mat after being disposed in the exhaust gas purification device was significantly reduced.
本発明の排ガス浄化装置は、柱状の排ガス処理体と、上記排ガス処理体を収容する管状体からなるケーシングと、上記排ガス処理体と上記ケーシングとの間に挿入された無機繊維からなるマットとからなり、上記排ガス処理体の長手方向に対して垂直な断面の輪郭は、3~6個のコーナー部と上記コーナー部同士を連結する連結部とから構成され、上記コーナー部は曲線からなるとともに、上記連結部は直線又は曲線からなり、上記コーナー部から上記ケーシングの内周面までの距離は、上記連結部から上記ケーシングの内周面までの距離よりも小さく、上記コーナー部に配設されている上記マットの面比重は、上記連結部に配設されている上記マットの面比重よりも小さいことを必須の構成要件としている。
係る必須の構成要素に、本発明の詳細な説明で詳述した種々の構成(例えば、開口部の形成、開口部の形状、開口部の長さ、マットの面比重、無機繊維の密度、無機繊維の種類、マットへのニードルパンチング等)を適宜組み合わせることにより所望の効果を得ることができる。
The exhaust gas purification apparatus of the present invention includes a columnar exhaust gas treatment body, a casing made of a tubular body that houses the exhaust gas treatment body, and a mat made of inorganic fibers inserted between the exhaust gas treatment body and the casing. And the contour of the cross section perpendicular to the longitudinal direction of the exhaust gas treating body is composed of 3 to 6 corner portions and a connecting portion for connecting the corner portions, and the corner portion is a curve, The connecting portion is formed of a straight line or a curve, and the distance from the corner portion to the inner peripheral surface of the casing is smaller than the distance from the connecting portion to the inner peripheral surface of the casing, and is disposed in the corner portion. It is an essential constituent requirement that the surface specific gravity of the mat is smaller than the surface specific gravity of the mat disposed in the connecting portion.
The essential components include various configurations detailed in the detailed description of the present invention (for example, formation of an opening, shape of the opening, length of the opening, surface specific gravity of the mat, density of inorganic fibers, inorganic The desired effect can be obtained by appropriately combining the types of fibers, needle punching on the mat, and the like.
1 排ガス浄化装置
10、110、210、310、410 排ガス処理体
11、111 輪郭
12a、12b、12c、12d、112a、112b、112c、112d、113a、113b、113c、113d 曲線
13a、13b、13c、13d 直線
14a、14b、14c、14d、114a、114b、114c、114d コーナー部
15a、15b、15c、15d、115a、115b、115c、115d 連結部
20 ケーシング
30、30a、30b、30c、30d、30e、30f、30g、30h、30i マット
31、32 端面
31a 凸部
32a 凹部
33、33a、33b、33c、33d、33e、33f、33g、33h、33i 開口部
33´、36 平面
34 第1の領域
35 第2の領域
37 無機繊維
38 第1の直線
39 第2の直線
40 巻付体
50 排ガス浄化フィルタ
50a 排ガス流入側端面
50b 排ガス流出側端面
51 セル
52 セル壁
53 目封止部
54 外周コート層
60 扁平容器
61 エア配管
62 圧力計
1 Exhaust gas purification apparatus 10, 110, 210, 310, 410 Exhaust gas treatment body 11, 111 Contours 12a, 12b, 12c, 12d, 112a, 112b, 112c, 112d, 113a, 113b, 113c, 113d Curves 13a, 13b, 13c, 13d Straight lines 14a, 14b, 14c, 14d, 114a, 114b, 114c, 114d Corner portions 15a, 15b, 15c, 15d, 115a, 115b, 115c, 115d Connecting portion 20 Casing 30, 30a, 30b, 30c, 30d, 30e, 30f, 30g, 30h, 30i Mat 31, 32 End surface 31a Convex part 32a Concave part 33, 33a, 33b, 33c, 33d, 33e, 33f, 33g, 33h, 33i Opening part 33 ', 36 Flat surface 34 First region 35 First 2 region 37 inorganic fiber 38 First straight line 39 Second straight line 40 Wound body 50 Exhaust gas purification filter 50a Exhaust gas inflow side end face 50b Exhaust gas outflow side end face 51 Cell 52 Cell wall 53 Plugging portion 54 Outer peripheral coat layer 60 Flat vessel 61 Air piping 62 Pressure gauge

Claims (10)

  1. 柱状の排ガス処理体と、
    前記排ガス処理体を収容する管状体からなるケーシングと、
    前記排ガス処理体と前記ケーシングとの間に挿入された無機繊維からなるマットと
    からなる排ガス浄化装置であって、
    前記排ガス処理体の長手方向に対して垂直な断面の輪郭は、3~6個のコーナー部と前記コーナー部同士を連結する連結部とから構成され、前記コーナー部は曲線からなるとともに、前記連結部は直線又は曲線からなり、
    前記コーナー部から前記ケーシングの内周面までの距離は、前記連結部から前記ケーシングの内周面までの距離よりも小さく、
    前記コーナー部に配設されている前記マットの面比重は、前記連結部に配設されている前記マットの面比重よりも小さいことを特徴とする排ガス浄化装置。
    A columnar exhaust gas treatment body;
    A casing made of a tubular body containing the exhaust gas treating body;
    An exhaust gas purification apparatus comprising a mat made of inorganic fibers inserted between the exhaust gas treating body and the casing,
    The outline of the cross section perpendicular to the longitudinal direction of the exhaust gas treating body is composed of 3 to 6 corner portions and a connecting portion connecting the corner portions, and the corner portion is formed of a curve and the connecting portion. The part consists of straight lines or curves,
    The distance from the corner portion to the inner peripheral surface of the casing is smaller than the distance from the connecting portion to the inner peripheral surface of the casing,
    The exhaust gas purifying apparatus according to claim 1, wherein a surface specific gravity of the mat disposed in the corner portion is smaller than a surface specific gravity of the mat disposed in the connecting portion.
  2. 前記コーナー部に配設されている前記マットの一部には、開口部が形成されている請求項1に記載の排ガス浄化装置。 The exhaust gas purifying apparatus according to claim 1, wherein an opening is formed in a part of the mat disposed in the corner portion.
  3. 前記コーナー部に配設されている前記マットの一部には、前記マットの幅方向において、前記開口部が2つ以上形成されている請求項2に記載の排ガス浄化装置。 The exhaust gas purification apparatus according to claim 2, wherein two or more openings are formed in a part of the mat disposed in the corner portion in the width direction of the mat.
  4. 前記開口部の形状は、略円形、略楕円形、略レーストラック形、略六角形、略五角形、略四角形、略三角形からなる群から選択される少なくとも1つの形状である請求項2又は3に記載の排ガス浄化装置。 The shape of the opening is at least one shape selected from the group consisting of a substantially circular shape, a substantially elliptical shape, a substantially racetrack shape, a substantially hexagonal shape, a substantially pentagonal shape, a substantially rectangular shape, and a substantially triangular shape. The exhaust gas purification apparatus as described.
  5. 前記マットの幅方向の前記開口部の長さは、前記マットの幅の1/10~9/10の長さである請求項2~4のいずれかに記載の排ガス浄化装置。 The exhaust gas purifying apparatus according to any one of claims 2 to 4, wherein a length of the opening in the width direction of the mat is 1/10 to 9/10 of a width of the mat.
  6. 前記マットの幅方向の前記開口部の長さは、10mm~70mmである請求項2~5のいずれかに記載の排ガス浄化装置。 The exhaust gas purifying apparatus according to any one of claims 2 to 5, wherein a length of the opening in the width direction of the mat is 10 mm to 70 mm.
  7. 前記コーナー部に配設されている前記マットの連続する領域において、
    前記マットを平面視して、前記マットの長さ方向に垂直な第1の直線を前記マットの長さ方向の前記開口部の一方の端部と接触するように引き、前記マットの長さ方向に垂直な第2の直線を前記マットの長さ方向の前記開口部のもう一方の端部と接触するように引いた場合、
    前記第1の直線から前記第2の直線までの間の領域に存在する前記マットの面比重は、前記連結部に配設されている前記マットの面比重の30~99.5%である請求項2~6のいずれかに記載の排ガス浄化装置。
    In the continuous area of the mat disposed in the corner portion,
    In the plan view of the mat, a first straight line perpendicular to the length direction of the mat is drawn so as to contact one end of the opening in the length direction of the mat, and the length direction of the mat A second straight line perpendicular to the mat is brought into contact with the other end of the opening in the longitudinal direction of the mat,
    The surface specific gravity of the mat existing in a region between the first straight line and the second straight line is 30 to 99.5% of the surface specific gravity of the mat disposed in the connecting portion. Item 7. The exhaust gas purifying device according to any one of Items 2 to 6.
  8. 前記コーナー部に配設されている前記マットの前記無機繊維の密度は、前記連結部に配設されている前記マットの前記無機繊維の密度よりも低い請求項1~7のいずれかに記載の排ガス浄化装置。 The density of the inorganic fibers of the mat disposed in the corner portion is lower than the density of the inorganic fibers of the mat disposed in the connecting portion. Exhaust gas purification device.
  9. 前記無機繊維は、アルミナ繊維、アルミナ-シリカ繊維、シリカ繊維、及び、生体溶解性繊維からなる群から選択される少なくとも1種である請求項1~8のいずれかに記載の排ガス浄化装置。 The exhaust gas purifying apparatus according to any one of claims 1 to 8, wherein the inorganic fiber is at least one selected from the group consisting of alumina fiber, alumina-silica fiber, silica fiber, and biosoluble fiber.
  10. 前記マットには、さらに、ニードルパンチング処理が施されている請求項1~9のいずれかに記載の排ガス浄化装置。 The exhaust gas purifying apparatus according to any one of claims 1 to 9, wherein the mat is further subjected to a needle punching process.
PCT/JP2014/077244 2013-10-15 2014-10-10 Exhaust gas purification device WO2015056652A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015542606A JP6419708B2 (en) 2013-10-15 2014-10-10 Exhaust gas purification device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013214866 2013-10-15
JP2013-214866 2013-10-15

Publications (1)

Publication Number Publication Date
WO2015056652A1 true WO2015056652A1 (en) 2015-04-23

Family

ID=52828096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/077244 WO2015056652A1 (en) 2013-10-15 2014-10-10 Exhaust gas purification device

Country Status (2)

Country Link
JP (1) JP6419708B2 (en)
WO (1) WO2015056652A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016017412A1 (en) * 2014-08-01 2016-02-04 フタバ産業株式会社 Case shape

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51119007A (en) * 1975-04-11 1976-10-19 Ngk Spark Plug Co Method of squeezing lattice ceramic structures
JPS60162215U (en) * 1984-04-06 1985-10-28 スズキ株式会社 Catalyst holding structure in automobiles
JPH01247711A (en) * 1988-03-28 1989-10-03 Toshiba Corp Supporting device for ceramic honeycomb member
JPH0261313A (en) * 1988-08-29 1990-03-01 Matsushita Electric Ind Co Ltd Structure for purifying exhaust gas
JP2001523789A (en) * 1997-11-17 2001-11-27 ミネソタ マイニング アンド マニュファクチャリング カンパニー Mounting material without surface tension
JP2007332922A (en) * 2006-06-16 2007-12-27 Ibiden Co Ltd Holding sealant, exhaust gas processing system and its manufacturing method
JP2009085092A (en) * 2007-09-28 2009-04-23 Ibiden Co Ltd Mat member, exhaust gas treatment apparatus and muffler
JP2011137418A (en) * 2009-12-28 2011-07-14 Nichias Corp Catalyst converter holding material
JP2013144954A (en) * 2012-01-16 2013-07-25 Honda Motor Co Ltd Supporting structure of honeycomb carrier

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51119007A (en) * 1975-04-11 1976-10-19 Ngk Spark Plug Co Method of squeezing lattice ceramic structures
JPS60162215U (en) * 1984-04-06 1985-10-28 スズキ株式会社 Catalyst holding structure in automobiles
JPH01247711A (en) * 1988-03-28 1989-10-03 Toshiba Corp Supporting device for ceramic honeycomb member
JPH0261313A (en) * 1988-08-29 1990-03-01 Matsushita Electric Ind Co Ltd Structure for purifying exhaust gas
JP2001523789A (en) * 1997-11-17 2001-11-27 ミネソタ マイニング アンド マニュファクチャリング カンパニー Mounting material without surface tension
JP2007332922A (en) * 2006-06-16 2007-12-27 Ibiden Co Ltd Holding sealant, exhaust gas processing system and its manufacturing method
JP2009085092A (en) * 2007-09-28 2009-04-23 Ibiden Co Ltd Mat member, exhaust gas treatment apparatus and muffler
JP2011137418A (en) * 2009-12-28 2011-07-14 Nichias Corp Catalyst converter holding material
JP2013144954A (en) * 2012-01-16 2013-07-25 Honda Motor Co Ltd Supporting structure of honeycomb carrier

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016017412A1 (en) * 2014-08-01 2016-02-04 フタバ産業株式会社 Case shape

Also Published As

Publication number Publication date
JP6419708B2 (en) 2018-11-07
JPWO2015056652A1 (en) 2017-03-09

Similar Documents

Publication Publication Date Title
JP4511396B2 (en) Honeycomb structure and manufacturing method thereof
JP4948393B2 (en) Inorganic fiber aggregate, method for manufacturing inorganic fiber aggregate, honeycomb structure, and method for manufacturing honeycomb structure
US7041359B2 (en) Honeycomb structure and assembly thereof
US7655195B1 (en) Undulated-wall honeycomb structure and manufacturing method thereof
EP2594758B1 (en) Holding sealing material, method for producing the holding sealing material, and exhaust gas purifying apparatus
JP4959499B2 (en) Mat material, exhaust gas treatment device and silencer
JP5282030B2 (en) Plugged honeycomb structure
EP2730760A1 (en) Holding seal material, method of manufacturing holding seal material, and exhaust gas purifying device
JP5950578B2 (en) Mounting mat and anti-contamination device provided with the mounting mat
JP6419708B2 (en) Exhaust gas purification device
JP2015222064A (en) Holding material for contamination control element, method of manufacturing the same, and contamination control device
JP6393687B2 (en) Exhaust gas purification device
WO2016039325A1 (en) Honeycomb sintered body and honeycomb filter
JP6346742B2 (en) Sheet material cutting method
JP6346499B2 (en) Exhaust gas purification device and method for manufacturing the same
WO2015016097A1 (en) Exhaust gas purification device
JP2014034968A (en) Method for manufacturing exhaust gas purification device and exhaust gas purification device
JP6250414B2 (en) Exhaust gas purification device and holding sealing material
JP6161485B2 (en) Holding sealing material, manufacturing method of holding sealing material, manufacturing method of exhaust gas purification device, and exhaust gas purification device
KR100832208B1 (en) Inorganic fiber aggregate, method for producing inorganic fiber aggregate, honeycomb structure and method for producing honeycomb structure
EP4364937A1 (en) Mat material, exhaust gas purification device, and method for producing mat material
JP5916416B2 (en) Plugged honeycomb structure and honeycomb catalyst body using the same
JP6386342B2 (en) Method for manufacturing exhaust gas purification device
JP6491839B2 (en) Honeycomb filter
JP2022122669A (en) Mat material, exhaust gas purification device and manufacturing method for mat material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14853399

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015542606

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14853399

Country of ref document: EP

Kind code of ref document: A1