[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015056303A1 - Semiconductor-element manufacturing method and wafer mounting device - Google Patents

Semiconductor-element manufacturing method and wafer mounting device Download PDF

Info

Publication number
WO2015056303A1
WO2015056303A1 PCT/JP2013/077989 JP2013077989W WO2015056303A1 WO 2015056303 A1 WO2015056303 A1 WO 2015056303A1 JP 2013077989 W JP2013077989 W JP 2013077989W WO 2015056303 A1 WO2015056303 A1 WO 2015056303A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
dicing tape
flat
ring portion
dicing
Prior art date
Application number
PCT/JP2013/077989
Other languages
French (fr)
Japanese (ja)
Inventor
民雄 松村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to DE112013007505.9T priority Critical patent/DE112013007505B4/en
Priority to US14/906,286 priority patent/US9659808B2/en
Priority to JP2015542431A priority patent/JP6156509B2/en
Priority to PCT/JP2013/077989 priority patent/WO2015056303A1/en
Priority to KR1020167009742A priority patent/KR101787926B1/en
Priority to CN201380080265.0A priority patent/CN105637618B/en
Priority to TW102142595A priority patent/TWI609418B/en
Publication of WO2015056303A1 publication Critical patent/WO2015056303A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67092Apparatus for mechanical treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67132Apparatus for placing on an insulating substrate, e.g. tape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6838Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping with gripping and holding devices using a vacuum; Bernoulli devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68721Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by edge clamping, e.g. clamping ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
    • H01L2221/68336Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding involving stretching of the auxiliary support post dicing

Definitions

  • the present invention relates to a method for manufacturing a semiconductor element such as an IGBT (Insulated Gate Bipolar Transistor), and a wafer mount apparatus used in the manufacturing method.
  • a semiconductor element such as an IGBT (Insulated Gate Bipolar Transistor)
  • IGBT Insulated Gate Bipolar Transistor
  • Patent Document 1 discloses that after a surface structure such as a transistor is formed on the surface of an FZ wafer, the back surface of the wafer is ground. By this grinding, the center part of the back surface of the wafer is made thinner than the outer peripheral end part. Thereby, a rib part is formed in the outer peripheral edge part of the back surface of a wafer.
  • the ground wafer is subjected to processing such as ion implantation and formation of a metal electrode film.
  • the wafer warps from several mm to several tens of mm due to stress of the electrode film. A warped wafer cannot be transferred. Therefore, by leaving an area of several mm on the outer periphery of the wafer without grinding, a ring portion thicker than the central portion of the wafer may be provided to suppress warpage of the wafer.
  • a dicing tape is attached to the wafer.
  • a gap is generated between the wafer and the dicing tape, resulting in a problem that the number of effective chips (number of effective semiconductor elements) decreases.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a method for manufacturing a semiconductor element and a wafer mount apparatus capable of dicing a wafer without adverse effects such as a decrease in the number of effective chips.
  • a ring portion thicker than a central portion is formed on the outer periphery, and the first surface of a wafer having a first surface and a second surface opposite to the first surface. While the surface is adsorbed to the adsorption stage, the ring portion is separated from the wafer with a laser beam to form a flat wafer, and the flat surface while adsorbing the second surface of the flat wafer to the adsorption hand
  • the method includes an attaching step of separating the wafer from the suction stage and attaching the first surface to a dicing tape, and a dicing step of dicing the flat wafer attached to the dicing tape.
  • a ring portion thicker than the central portion is formed on the outer periphery, and the first surface of the wafer having a first surface and a second surface opposite to the first surface is provided.
  • a suction hand that moves the flat wafer from the suction stage and sticks it to the dicing tape while vacuum-sucking two surfaces.
  • the ring portion is removed from the wafer by the laser beam to form a flat wafer, and then the flat wafer is attached to the dicing tape, so that the wafer can be diced without any harmful effects.
  • FIG. 1 It is a figure explaining a comparative example. It is a figure explaining a comparative example. It is a figure explaining the affixing of the dicing tape with respect to the wafer in a comparative example. It is a figure explaining the dicing in a comparative example. It is a figure which shows the clearance gap of a comparative example. It is a figure which shows the expand stage etc. in a comparative example. It is a figure explaining the fracture
  • FIG. It is a figure which shows the cut part of the wafer mount apparatus which concerns on Embodiment 4.
  • FIG. It is a figure which shows the cut part of the wafer mount apparatus which concerns on Embodiment 5.
  • FIG. It is a figure which shows the cut part which concerns on a modification. It is a figure which shows the cut part which concerns on a modification.
  • FIG. 1 is a cross-sectional view of a wafer having a first surface 10a and a second surface 10b opposite to the first surface 10a.
  • the wafer 10 has a central portion 10A and a ring portion 10B.
  • the central portion 10A has a thickness of, for example, 100 ⁇ m or less by grinding the first surface 10a side.
  • an element such as a transistor is formed as a surface structure of the device.
  • the ring part 10B is a thicker part than the central part 10A located on the outer periphery of the central part 10A.
  • the ring portion 10B is formed to increase the strength of the wafer 10 and prevent the wafer 10 from warping.
  • a wafer having a thick portion on the outer periphery is referred to as a TAIKO (registered trademark) wafer.
  • FIG. 2 is a cross-sectional view showing that the wafer 10 is placed on the suction stage.
  • the suction hand 12 is attracted to the second surface 10 b of the wafer 10 to move the wafer 10, and the wafer 10 is placed on the suction stage 14.
  • the first surface 10 a of the wafer 10 comes into contact with the suction stage 14.
  • FIG. 3 is a cross-sectional view showing that the ring portion 10B is removed.
  • the ring portion 10B is separated from the wafer 10 with the laser beam 16a while the first surface 10a of the wafer 10 is adsorbed to the adsorption stage 14.
  • the laser beam 16a is applied to the boundary between the central portion 10A and the ring portion 10B.
  • Laser light 16 a is emitted from the laser oscillator 16.
  • a YAG laser it is not particularly limited to this.
  • FIG. 4 is a cross-sectional view showing the wafer after the cutting process.
  • the ring portion 10B is cut from the wafer 10, and only the central portion 10A remains.
  • a wafer having a constant thickness formed only by the central portion 10 ⁇ / b> A is referred to as a flat wafer 11.
  • the flat wafer 11 is separated from the suction stage 14. Specifically, the flat wafer 11 is separated from the suction stage 14 while the second surface 10 b of the flat wafer 11 is sucked by the suction hand 12.
  • the suction hand 12 can be prevented from warping by the suction hand 12 by setting the suction hand 12 to a size that can contact most of the second surface 10 b of the flat wafer 11.
  • the flat wafer 11 is attached to the dicing tape 20.
  • the dicing tape 20 has a structure in which the paste material 20A and the base material 20B are in close contact with each other.
  • the outer periphery of the dicing tape 20 is attached to an annular mount frame 22.
  • the first surface 10 a of the flat wafer 11 is attached to the glue material 20 ⁇ / b> A of the dicing tape 20.
  • the step of attaching the first surface 10a to the dicing tape 20 while separating the flat wafer 11 from the suction stage 14 while the second surface 10b of the flat wafer 11 is sucked by the suction hand 12 is referred to as a pasting step. .
  • the suction hand is retracted from the flat wafer 11.
  • the flat wafer 11 is not warped because it is attached to the dicing tape 20.
  • a structure in which the mount frame 22, the dicing tape 20, and the flat wafer 11 shown in FIG. 7 are integrated is referred to as a dicing structure.
  • the flat wafer 11 attached to the dicing tape 20 is diced.
  • This process is called a dicing process.
  • the dicing process first, the structure to be diced is placed on the adsorption stage 40 of the dicer. Then, the flat wafer 11 is diced by the dicing blade 42 in a state where the dicing tape 20 is adsorbed on the adsorption stage 40 of the dicer. Thereby, the flat wafer 11 is divided into individual semiconductor elements 11A (chips). Then, a groove 44 is formed in the dicing tape 20 by the dicing blade 42.
  • FIG. 9 is a plan view of the wafer and the like after the dicing process.
  • the flat wafer 11 is divided into individual semiconductor elements 11A by the vertical grooves 44A and the horizontal grooves 44B.
  • the method for manufacturing a semiconductor element according to the first embodiment of the present invention includes the above-described steps.
  • FIG. 10 is a plan view of the wafer mount apparatus 50.
  • the wafer mount apparatus 50 is an apparatus that mainly performs a cutting process and an attaching process.
  • the wafer mount apparatus 50 includes a stage 52.
  • a mount frame cassette 54 that houses the mount frame 22 is provided on the stage 52.
  • the mount frame 22 in the mount frame cassette 54 is conveyed to the dicing tape attaching unit 60.
  • the transport direction is indicated by an arrow 56.
  • the dicing tape attaching part 60 is a place where the mount frame 22 is attached to the dicing tape 20. After the mount frame 22 is attached to the dicing tape 20, the outer peripheral portion of the dicing tape 20 is cut. The mount frame 22 to which the dicing tape 20 is attached is conveyed to the attaching unit 70. The conveyance direction is indicated by an arrow 62.
  • the wafer mount apparatus 50 includes a stage 80.
  • a wafer cassette 82 that accommodates the wafer 10 is provided on the stage 80.
  • the wafer 10 in the wafer cassette 82 is transferred to the cutting unit 90 using the suction hand 12.
  • the conveyance direction is indicated by an arrow 84.
  • the cut unit 90 includes an adsorption stage 14 and a laser oscillator 16.
  • the cut part 90 cuts the ring part 10B as described with reference to FIGS. 2-4. Since the flat wafer 11 having a constant thickness formed by cutting the ring portion 10B is held by the suction stage 14, it does not warp.
  • the flat wafer 11 is transferred in the transfer direction indicated by the arrow 92. Specifically, the suction wafer 12 moves the flat wafer 11 from the suction stage 14 to the attaching unit 70 while vacuum-sucking the second surface 10 b of the flat wafer 11. Then, the mounting frame 22 on which the dicing tape 20 is affixed stands by in the affixing unit 70, and the flat wafer 11 is affixed to the dicing tape 20 as described with reference to FIG. At this time, it is preferable that the flat wafer 11 and the dicing tape 20 are brought into close contact with each other by applying a roller pressure in a direction toward the dicing tape 20 or a vacuum-atmospheric pressure to the flat wafer 11.
  • a structure to be diced in which the mount frame 22, the dicing tape 20, and the flat wafer 11 are integrated in the pasting portion 70 is completed.
  • the structure to be diced is transferred to the stage 100.
  • the transport direction is indicated by an arrow 94.
  • a cassette 102 for accommodating the structure to be diced is provided on the stage 100.
  • the structure to be diced is accommodated in the cassette 102, and the processing by the wafer mount apparatus 50 is completed.
  • the mount frame 22 with the dicing tape 20 attached and the wafer 10 are transferred into the chamber 200.
  • the chamber 200 is evacuated. The evacuation is performed by exhausting the air in the chamber 200 from the pipe 202 communicating with the chamber 200.
  • the ring portion 10B of the wafer 10 and the dicing tape 20 are brought into close contact with each other as shown in FIG.
  • the inside of the chamber 200 is returned to atmospheric pressure.
  • the atmospheric pressure 204 causes the dicing tape 20 to adhere to the first surface 10a of the wafer 10 as shown in FIG.
  • a gap 206 is formed between the stepped portion of the wafer 10 and the dicing tape 20.
  • the structure to be diced in the comparative example includes the wafer 10 in which the ring portion 10B is not cut.
  • the ring portion 10B is cut. Specifically, as shown in FIG. 14, the structure to be diced is placed on the suction stage 210, and the wafer 10 is cut into a circumferential shape by a dicing blade 212.
  • the rotating direction of the dicing blade 212 is indicated by a direction 214, and the moving direction is indicated by a direction 216 (a direction along the outer periphery of the wafer 10).
  • the suction stage 210 must be immediately below the dicing blade 212. If there is no suction stage 210 immediately below the dicing blade 212, the dicing blade 212 bends and breaks the wafer 10. Therefore, in consideration of variations in the width of the ring portion 10B, the thickness of the dicing tape 20, the center shift between the suction stage 210 and the wafer 10, the inside of the ring portion 10B must be cut by about a distance X1 (about 1.5 mm). Don't be.
  • the first problem can be solved. That is, in the first embodiment, since the laser beam is used, the ring portion 10B can be removed by cutting the boundary between the ring portion 10B and the central portion 10A. Therefore, since the ring portion 10B can be cut without substantially cutting the center portion 10A, the number of effective chips is not reduced. Such an effect can be obtained by providing the laser oscillator 16 in the cut portion 90 of the wafer mount apparatus 50 shown in FIG.
  • FIG. 15 is a view showing that a gap 206 between the wafer 10 and the dicing tape 20 is formed large.
  • a cross-sectional view is shown on the upper side of FIG. 15, and a plan view is shown on the lower side of FIG.
  • the semiconductor device manufacturing method according to the first embodiment of the present invention can solve the second problem. That is, in the first embodiment, since the flat wafer 11 is attached to the dicing tape 20, there is no gap between the flat wafer 11 and the dicing tape 20. Therefore, the semiconductor device manufacturing method according to the first embodiment does not cause the second problem.
  • FIG. 16 is a cross-sectional view showing expanding a dicing tape.
  • the separated semiconductor element 10 ⁇ / b> C is bonded to the dicing tape 20.
  • the dicing tape 20 is formed with an annular groove 302 formed when the ring portion is cut and a groove 304 generated when the wafer 10 is divided into individual semiconductor elements 10C.
  • FIG. 17 is a cross-sectional view showing that the dicing tape 20 is cut along the groove 302.
  • the dicing tape 20 is cut along the groove 302.
  • the third problem can be solved. That is, in the first embodiment, the ring portion 10B is cut before the wafer 10 is attached to the dicing tape 20, so that the annular groove due to the ring portion cut is not formed in the dicing tape 20. Therefore, the third problem does not occur in the method of manufacturing the semiconductor element of the first embodiment.
  • the manufacturing method of the semiconductor element according to the first embodiment of the present invention increases the number of effective chips compared to the method of the comparative example, the wafer does not fly during dicing, and the dicing tape 20 of the expanding state is expanded. Breakage can be avoided.
  • the flat wafer 11 may be warped.
  • the flat surface 11 is warped because the ring portion 10B is separated from the wafer 10 with the laser beam while the first surface 10a of the wafer 10 is adsorbed to the adsorption stage 14. There is no.
  • the second surface 10b of the flat wafer 11 is adsorbed by the adsorption hand 12, while the flat wafer 11 is separated from the adsorption stage 14, and the first surface 10a is adhered to the dicing tape 20, so that the flat wafer 11 is adhered. Will not warp.
  • the flat wafer 11 can always be kept flat from the time when the ring portion 10B is cut until the flat wafer 11 is attached to the dicing tape 20.
  • the laser oscillator 16 it is preferable to use a YAG laser that is easy to handle with a solid-state laser and has high efficiency and a long lifetime.
  • other laser elements may be used as the laser oscillator 16.
  • the polished surface of the wafer 10 is the first surface 10a
  • the opposite surface is the second surface 10b.
  • the effect of the present invention can be obtained even if the above-described treatment is performed by defining the second surface as the polished surface and defining the opposite surface as the first surface.
  • the semiconductor element manufacturing method and the wafer mount apparatus according to the following embodiment have many points that are the same as those of the first embodiment, and therefore, differences from the first embodiment will be mainly described.
  • FIG. FIG. 18 is a diagram showing a cut portion of the wafer mount apparatus according to the second embodiment of the present invention.
  • a water-soluble protective film 400 is formed on the second surface 10b.
  • the ring portion 10B is separated from the wafer 10 with the laser beam 16a.
  • the protective film 400 can prevent the laser cut waste 402 from adhering to the wafer 10.
  • FIG. FIG. 19 is a diagram showing a cut portion of the wafer mount apparatus according to the third embodiment of the present invention.
  • the central portion of the second surface 10 b is covered with the rubber ring 410 and the dust cover 412.
  • the ring portion 10B is separated from the wafer 10 with the laser beam 16a.
  • the rubber ring 410 and the dust cover 412 can prevent the laser cut waste 402 from adhering to the wafer 10. This method can be realized with fewer steps than forming a water-soluble protective film on the second surface 10b.
  • FIG. 20 is a diagram showing a cut portion of the wafer mount apparatus according to the fourth embodiment of the present invention.
  • the airflow generation device 420 is set so as to cover the rubber ring 410 and the dustproof cover 412.
  • the airflow generation device 420 there is a cavity 420a through which an airflow in the arrow direction flows.
  • the airflow generation device 420 generates an airflow 422 from the center portion of the second surface 10b toward the outer peripheral portion via the cavity 420a.
  • the ring portion 10B is separated from the wafer 10 with the laser beam 16a while the air flow 422 is generated. According to this method, the laser cut waste 402 can be prevented from adhering to the edge of the wafer 10.
  • FIG. FIG. 21 is a diagram showing a cut portion of the wafer mount apparatus according to the fifth embodiment of the present invention.
  • the cut portion includes a high water pressure pump 450.
  • a pipe 452 is connected to the high water pressure pump 450.
  • a nozzle 454 is connected to the pipe 452.
  • the cut portion is configured such that water discharged from the high water pressure pump 450 is sprayed onto the wafer 10 via the pipe 452 and the nozzle 454.
  • the diameter of the water column 458 ejected from the nozzle 454 is, for example, several tens of ⁇ m.
  • Laser light 16a emitted from the laser oscillator 16 is introduced into the water column 458 through the optical fiber 456 and the nozzle 454, and is irradiated to the boundary between the central portion 10A and the ring portion 10B.
  • water water column 458 is sprayed onto the irradiated portion of the laser light, so that an increase in temperature of the irradiated portion can be suppressed.
  • the laser cut waste 402 can be discharged to the outside by this water.
  • a rubber ring 410 and a dustproof cover 412 may be added to the configuration of the fifth embodiment.
  • a rubber ring 410, a dustproof cover 412, and an airflow generation device 420 may be added to the configuration of the fifth embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Dicing (AREA)
  • Laser Beam Processing (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

This semiconductor-element manufacturing method is characterized by having the following steps: a cutting step in which, with the first surface of a wafer attached to a vacuum stage via a pressure differential, said wafer also having a second surface on the opposite side from said first surface and a ring section that is provided at the edge of the wafer and is thicker than the middle of the wafer, laser light is used to cut the ring section away from the rest of the wafer so as to form a flat wafer; an adhering step in which, with the second surface of the flat wafer attached to a vacuum end-effector via a pressure differential, the flat wafer is detached from the vacuum stage and the first surface of the flat wafer is adhered to a dicing tape; and a dicing step in which the flat wafer adhered to the dicing tape is diced.

Description

半導体素子の製造方法、ウエハマウント装置Semiconductor device manufacturing method and wafer mount apparatus
 この発明は、例えばIGBT(Insulated Gate Bipolar Transistor)などの半導体素子の製造方法、及びその製造方法で用いるウエハマウント装置に関する。 The present invention relates to a method for manufacturing a semiconductor element such as an IGBT (Insulated Gate Bipolar Transistor), and a wafer mount apparatus used in the manufacturing method.
 特許文献1には、FZウエハの表面にトランジスタなどの表面構造を形成した後に、当該ウエハの裏面を研削することが開示されている。この研削により、ウエハの裏面の中央部を外周端部よりも薄くする。これによりウエハの裏面の外周端部にリブ部が形成される。研削後のウエハにはイオン注入及び金属電極膜の形成等の処理が施される。 Patent Document 1 discloses that after a surface structure such as a transistor is formed on the surface of an FZ wafer, the back surface of the wafer is ground. By this grinding, the center part of the back surface of the wafer is made thinner than the outer peripheral end part. Thereby, a rib part is formed in the outer peripheral edge part of the back surface of a wafer. The ground wafer is subjected to processing such as ion implantation and formation of a metal electrode film.
日本特開2009-283636号公報Japanese Unexamined Patent Publication No. 2009-283636 日本特表平10-500903号公報Japanese National Table 10-500903
 例えばウエハを100μm以下の厚さになるまで研削すると、電極膜の応力等によりウエハが数mmから数十mm反ってしまう。反ったウエハは搬送できない。そこで、ウエハの外周の数mmの領域を研削せずに残しておくことでウエハの中央部よりも厚いリング部を設けウエハの反りを抑制することがある。 For example, if the wafer is ground to a thickness of 100 μm or less, the wafer warps from several mm to several tens of mm due to stress of the electrode film. A warped wafer cannot be transferred. Therefore, by leaving an area of several mm on the outer periphery of the wafer without grinding, a ring portion thicker than the central portion of the wafer may be provided to suppress warpage of the wafer.
 ダイシングブレードを用いてウエハをダイシングする場合、ウエハにダイシングテープを貼り付ける。しかしながら、リング部を有するウエハをダイシングテープに貼り付けようとするとウエハとダイシングテープの間に隙間が生じ、有効チップ数(有効半導体素子数)が低下するなどの弊害があった。 When dicing a wafer using a dicing blade, a dicing tape is attached to the wafer. However, when a wafer having a ring portion is to be attached to the dicing tape, a gap is generated between the wafer and the dicing tape, resulting in a problem that the number of effective chips (number of effective semiconductor elements) decreases.
 本発明は上述の課題を解決するためになされたものであり、有効チップ数が低下するなどの弊害なくウエハをダイシングできる半導体素子の製造方法、及びウエハマウント装置を提供することを目的とする。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a method for manufacturing a semiconductor element and a wafer mount apparatus capable of dicing a wafer without adverse effects such as a decrease in the number of effective chips.
 本願の発明にかかる半導体素子の製造方法は、外周に中央部より厚いリング部が形成され、第1面と、該第1面と反対の面である第2面とを有するウエハの該第1面を吸着ステージに吸着させつつ、レーザ光で該ウエハから該リング部を切り離すことで、平坦ウエハを形成するカット工程と、該平坦ウエハの該第2面を吸着ハンドに吸着させつつ、該平坦ウエハを該吸着ステージから離し、該第1面をダイシングテープに貼り付ける貼り付け工程と、該ダイシングテープに貼り付けられた該平坦ウエハをダイシングするダイシング工程と、を備えたことを特徴とする。 In the method for manufacturing a semiconductor device according to the present invention, a ring portion thicker than a central portion is formed on the outer periphery, and the first surface of a wafer having a first surface and a second surface opposite to the first surface. While the surface is adsorbed to the adsorption stage, the ring portion is separated from the wafer with a laser beam to form a flat wafer, and the flat surface while adsorbing the second surface of the flat wafer to the adsorption hand The method includes an attaching step of separating the wafer from the suction stage and attaching the first surface to a dicing tape, and a dicing step of dicing the flat wafer attached to the dicing tape.
 本願の発明に係るウエハマウント装置は、外周に中央部より厚いリング部が形成され、第1面と、該第1面と反対の面である第2面とを有するウエハの該第1面を吸着する吸着ステージと、レーザ光で該ウエハから該リング部を切り離すレーザ発振器とを有し、平坦ウエハを形成するカット部と、ダイシングテープが設けられた貼り付け部と、該平坦ウエハの該第2面を真空吸着しつつ、該平坦ウエハを該吸着ステージから移動させ該ダイシングテープに貼り付ける吸着ハンドと、を備えたことを特徴とする。 In the wafer mount device according to the present invention, a ring portion thicker than the central portion is formed on the outer periphery, and the first surface of the wafer having a first surface and a second surface opposite to the first surface is provided. A suction stage for suction; a laser oscillator for separating the ring portion from the wafer by laser light; a cut portion for forming a flat wafer; an attaching portion provided with a dicing tape; and a first portion of the flat wafer. And a suction hand that moves the flat wafer from the suction stage and sticks it to the dicing tape while vacuum-sucking two surfaces.
 本発明のその他の特徴は以下に明らかにする。 Other features of the present invention will be clarified below.
 この発明によれば、レーザ光によりウエハからリング部を除去して平坦ウエハを形成してから、平坦ウエハをダイシングテープに付着させるので、弊害なくウエハをダイシングできる。 According to the present invention, the ring portion is removed from the wafer by the laser beam to form a flat wafer, and then the flat wafer is attached to the dicing tape, so that the wafer can be diced without any harmful effects.
ウエハの断面図である。It is sectional drawing of a wafer. ウエハと吸着ステージの断面図である。It is sectional drawing of a wafer and an adsorption | suction stage. レーザ発振器等を示す図である。It is a figure which shows a laser oscillator etc. カット工程後のウエハを示す断面図である。It is sectional drawing which shows the wafer after a cutting process. 平坦ウエハを吸着ステージから離すことを示す図である。It is a figure which shows separating a flat wafer from an adsorption | suction stage. 平坦ウエハをダイシングテープに貼り付けることを示す断面図である。It is sectional drawing which shows affixing a flat wafer on a dicing tape. 被ダイシング構造を示す断面図である。It is sectional drawing which shows a to-be-diced structure. 平坦ウエハをダイシングすることを示す断面図である。It is sectional drawing which shows dicing a flat wafer. ダイシング工程後の平坦ウエハ等の平面図である。It is a top view of the flat wafer etc. after a dicing process. 実施の形態1に係るウエハマウント装置の平面図である。1 is a plan view of a wafer mount device according to a first embodiment. 比較例を説明する図である。It is a figure explaining a comparative example. 比較例を説明する図である。It is a figure explaining a comparative example. 比較例におけるウエハに対するダイシングテープの貼り付けを説明する図である。It is a figure explaining the affixing of the dicing tape with respect to the wafer in a comparative example. 比較例におけるダイシングを説明する図である。It is a figure explaining the dicing in a comparative example. 比較例の隙間を示す図である。It is a figure which shows the clearance gap of a comparative example. 比較例におけるエキスパンドステージ等を示す図である。It is a figure which shows the expand stage etc. in a comparative example. 比較例におけるダイシングテープの破断を説明する図である。It is a figure explaining the fracture | rupture of the dicing tape in a comparative example. 実施の形態2に係るウエハマウント装置のカット部を示す図である。It is a figure which shows the cut part of the wafer mount apparatus which concerns on Embodiment 2. FIG. 実施の形態3に係るウエハマウント装置のカット部を示す図である。It is a figure which shows the cut part of the wafer mount apparatus which concerns on Embodiment 3. FIG. 実施の形態4に係るウエハマウント装置のカット部を示す図である。It is a figure which shows the cut part of the wafer mount apparatus which concerns on Embodiment 4. FIG. 実施の形態5に係るウエハマウント装置のカット部を示す図である。It is a figure which shows the cut part of the wafer mount apparatus which concerns on Embodiment 5. FIG. 変形例に係るカット部を示す図である。It is a figure which shows the cut part which concerns on a modification. 変形例に係るカット部を示す図である。It is a figure which shows the cut part which concerns on a modification.
 本発明の実施の形態に係る半導体素子の製造方法とウエハマウント装置について図面を参照して説明する。同じ又は対応する構成要素には同じ符号を付し、説明の繰り返しを省略する場合がある。 A method for manufacturing a semiconductor device and a wafer mount apparatus according to an embodiment of the present invention will be described with reference to the drawings. The same or corresponding components are denoted by the same reference numerals, and repeated description may be omitted.
実施の形態1.
 本発明の実施の形態1に係る半導体素子の製造方法について説明する。図1は、第1面10aと、第1面10aと反対の面である第2面10bとを有するウエハの断面図である。ウエハ10は、中央部10Aとリング部10Bを有している。中央部10Aは第1面10a側が研削されて例えば100μm以下の厚さとなっている。中央部10Aの第2面10b側にはデバイスの表面構造として例えばトランジスタなどの素子が形成されている。
Embodiment 1 FIG.
A method for manufacturing a semiconductor device according to the first embodiment of the present invention will be described. FIG. 1 is a cross-sectional view of a wafer having a first surface 10a and a second surface 10b opposite to the first surface 10a. The wafer 10 has a central portion 10A and a ring portion 10B. The central portion 10A has a thickness of, for example, 100 μm or less by grinding the first surface 10a side. On the second surface 10b side of the central portion 10A, an element such as a transistor is formed as a surface structure of the device.
 リング部10Bは、中央部10Aの外周に位置する中央部10Aより厚い部分である。リング部10Bは、ウエハ10の強度を高め、ウエハ10の反りを防止するために形成されている。なお、外周に厚い部分を有するウエハは、TAIKO(登録商標)ウエハと称されている。 The ring part 10B is a thicker part than the central part 10A located on the outer periphery of the central part 10A. The ring portion 10B is formed to increase the strength of the wafer 10 and prevent the wafer 10 from warping. Note that a wafer having a thick portion on the outer periphery is referred to as a TAIKO (registered trademark) wafer.
 図2は、ウエハ10を吸着ステージにのせることを示す断面図である。ウエハ10の第2面10bに吸着ハンド12を吸着させてウエハ10を移動させ、ウエハ10を吸着ステージ14にのせる。これにより、ウエハ10の第1面10aが吸着ステージ14に接触する。 FIG. 2 is a cross-sectional view showing that the wafer 10 is placed on the suction stage. The suction hand 12 is attracted to the second surface 10 b of the wafer 10 to move the wafer 10, and the wafer 10 is placed on the suction stage 14. As a result, the first surface 10 a of the wafer 10 comes into contact with the suction stage 14.
 次いで、リング部10Bを除去する。図3は、リング部10Bを除去することを示す断面図である。この工程では、ウエハ10の第1面10aを吸着ステージ14に吸着させつつ、レーザ光16aでウエハ10からリング部10Bを切り離す。このとき、レーザ光16aは、中央部10Aとリング部10Bの境界に照射する。レーザ光16aはレーザ発振器16から放出する。レーザ発振器16としてYAGレーザを用いることが好ましいが、特にこれに限定されない。 Next, the ring part 10B is removed. FIG. 3 is a cross-sectional view showing that the ring portion 10B is removed. In this step, the ring portion 10B is separated from the wafer 10 with the laser beam 16a while the first surface 10a of the wafer 10 is adsorbed to the adsorption stage 14. At this time, the laser beam 16a is applied to the boundary between the central portion 10A and the ring portion 10B. Laser light 16 a is emitted from the laser oscillator 16. Although it is preferable to use a YAG laser as the laser oscillator 16, it is not particularly limited to this.
 このように、ウエハ10からリング部10Bを切り離す工程をカット工程と称する。図4はカット工程後のウエハを示す断面図である。カット工程により、ウエハ10からリング部10Bがカットされ、中央部10Aだけが残る。中央部10Aだけで形成された厚みが一定のウエハを平坦ウエハ11と称する。 Thus, the process of separating the ring portion 10B from the wafer 10 is referred to as a cutting process. FIG. 4 is a cross-sectional view showing the wafer after the cutting process. By the cutting process, the ring portion 10B is cut from the wafer 10, and only the central portion 10A remains. A wafer having a constant thickness formed only by the central portion 10 </ b> A is referred to as a flat wafer 11.
 次いで、図5に示すように、平坦ウエハ11を吸着ステージ14から離す。具体的には、平坦ウエハ11の第2面10bを吸着ハンド12に吸着させつつ、平坦ウエハ11を吸着ステージ14から離す。ここで、吸着ハンド12を平坦ウエハ11の第2面10bの殆どの部分と接触できる大きさとしておくことで、平坦ウエハ11の反りを吸着ハンド12で防止できる。 Next, as shown in FIG. 5, the flat wafer 11 is separated from the suction stage 14. Specifically, the flat wafer 11 is separated from the suction stage 14 while the second surface 10 b of the flat wafer 11 is sucked by the suction hand 12. Here, the suction hand 12 can be prevented from warping by the suction hand 12 by setting the suction hand 12 to a size that can contact most of the second surface 10 b of the flat wafer 11.
 次いで、図6に示すように、平坦ウエハ11をダイシングテープ20に貼り付ける。ダイシングテープ20は糊材20Aと基材20Bが密着した構造を有している。ダイシングテープ20の外周は環状のマウントフレーム22に付着している。この工程では、平坦ウエハ11の第1面10aをダイシングテープ20の糊材20Aに貼り付ける。このように、平坦ウエハ11の第2面10bを吸着ハンド12に吸着させつつ、平坦ウエハ11を吸着ステージ14から離し、第1面10aをダイシングテープ20に貼り付ける工程を、貼り付け工程と称する。 Next, as shown in FIG. 6, the flat wafer 11 is attached to the dicing tape 20. The dicing tape 20 has a structure in which the paste material 20A and the base material 20B are in close contact with each other. The outer periphery of the dicing tape 20 is attached to an annular mount frame 22. In this step, the first surface 10 a of the flat wafer 11 is attached to the glue material 20 </ b> A of the dicing tape 20. As described above, the step of attaching the first surface 10a to the dicing tape 20 while separating the flat wafer 11 from the suction stage 14 while the second surface 10b of the flat wafer 11 is sucked by the suction hand 12 is referred to as a pasting step. .
 次いで、図7に示すように、吸着ハンドを平坦ウエハ11から退避させる。この状態では、平坦ウエハ11はダイシングテープ20に貼り付けられているので反らない。図7に示すマウントフレーム22、ダイシングテープ20、及び平坦ウエハ11が一体となった構造を被ダイシング構造と称する。 Next, as shown in FIG. 7, the suction hand is retracted from the flat wafer 11. In this state, the flat wafer 11 is not warped because it is attached to the dicing tape 20. A structure in which the mount frame 22, the dicing tape 20, and the flat wafer 11 shown in FIG. 7 are integrated is referred to as a dicing structure.
 次いで、図8に示すように、ダイシングテープ20に貼り付けられた平坦ウエハ11をダイシングする。この工程をダイシング工程と称する。ダイシング工程では、まず、被ダイシング構造をダイサーの吸着ステージ40の上に置く。そして、ダイシングテープ20をダイサーの吸着ステージ40に吸着させた状態で、ダイシングブレード42により平坦ウエハ11をダイシングする。これにより、平坦ウエハ11は個々の半導体素子11A(チップ)に分割される。そして、ダイシングブレード42によりダイシングテープ20に溝44が形成される。 Next, as shown in FIG. 8, the flat wafer 11 attached to the dicing tape 20 is diced. This process is called a dicing process. In the dicing process, first, the structure to be diced is placed on the adsorption stage 40 of the dicer. Then, the flat wafer 11 is diced by the dicing blade 42 in a state where the dicing tape 20 is adsorbed on the adsorption stage 40 of the dicer. Thereby, the flat wafer 11 is divided into individual semiconductor elements 11A (chips). Then, a groove 44 is formed in the dicing tape 20 by the dicing blade 42.
 図9は、ダイシング工程後のウエハ等の平面図である。縦方向の溝44Aと横方向の溝44Bによって、平坦ウエハ11が個々の半導体素子11Aに分割されている。本発明の実施の形態1に係る半導体素子の製造方法は、上述の工程を備える。 FIG. 9 is a plan view of the wafer and the like after the dicing process. The flat wafer 11 is divided into individual semiconductor elements 11A by the vertical grooves 44A and the horizontal grooves 44B. The method for manufacturing a semiconductor element according to the first embodiment of the present invention includes the above-described steps.
 続いて、被ダイシング構造を形成するための装置であるウエハマウント装置について説明する。図10は、ウエハマウント装置50の平面図である。ウエハマウント装置50は、主としてカット工程と貼り付け工程を実施する装置である。ウエハマウント装置50はステージ52を備えている。ステージ52の上にはマウントフレーム22を収容するマウントフレームカセット54が設けられている。マウントフレームカセット54内のマウントフレーム22は、ダイシングテープ貼り付け部60へ搬送される。搬送方向は矢印56で示されている。 Subsequently, a wafer mount apparatus that is an apparatus for forming a structure to be diced will be described. FIG. 10 is a plan view of the wafer mount apparatus 50. The wafer mount apparatus 50 is an apparatus that mainly performs a cutting process and an attaching process. The wafer mount apparatus 50 includes a stage 52. A mount frame cassette 54 that houses the mount frame 22 is provided on the stage 52. The mount frame 22 in the mount frame cassette 54 is conveyed to the dicing tape attaching unit 60. The transport direction is indicated by an arrow 56.
 ダイシングテープ貼り付け部60は、マウントフレーム22をダイシングテープ20に貼り付ける場所である。マウントフレーム22をダイシングテープ20に貼り付けた後にダイシングテープ20の外周部をカットする。ダイシングテープ20が貼り付けられたマウントフレーム22は、貼り付け部70へ搬送される。搬送方向は矢印62で示されている。 The dicing tape attaching part 60 is a place where the mount frame 22 is attached to the dicing tape 20. After the mount frame 22 is attached to the dicing tape 20, the outer peripheral portion of the dicing tape 20 is cut. The mount frame 22 to which the dicing tape 20 is attached is conveyed to the attaching unit 70. The conveyance direction is indicated by an arrow 62.
 貼り付け部70の説明の前にウエハの処理について説明する。ウエハマウント装置50は、ステージ80を備えている。ステージ80の上には、ウエハ10を収容するウエハカセット82が設けられている。ウエハカセット82のウエハ10は吸着ハンド12を用いてカット部90へ搬送される。搬送方向は矢印84で示されている。 Prior to the description of the pasting unit 70, processing of the wafer will be described. The wafer mount apparatus 50 includes a stage 80. A wafer cassette 82 that accommodates the wafer 10 is provided on the stage 80. The wafer 10 in the wafer cassette 82 is transferred to the cutting unit 90 using the suction hand 12. The conveyance direction is indicated by an arrow 84.
 カット部90は、吸着ステージ14とレーザ発振器16を備えている。カット部90で、図2-4を参照しつつ説明したとおり、リング部10Bをカットする。リング部10Bをカットすることで形成された厚みが一定の平坦ウエハ11は、吸着ステージ14に保持されているので反ることはない。 The cut unit 90 includes an adsorption stage 14 and a laser oscillator 16. The cut part 90 cuts the ring part 10B as described with reference to FIGS. 2-4. Since the flat wafer 11 having a constant thickness formed by cutting the ring portion 10B is held by the suction stage 14, it does not warp.
 平坦ウエハ11は、矢印92で示す搬送方向へ搬送する。具体的には、吸着ハンド12で、平坦ウエハ11の第2面10bを真空吸着しつつ、平坦ウエハ11を吸着ステージ14から貼り付け部70へ移動させる。そして、貼り付け部70ではダイシングテープ20が貼り付けられたマウントフレーム22が待機しており、図6を参照しつつ説明したとおり、平坦ウエハ11をダイシングテープ20に貼り付ける。この時、平坦ウエハ11に対しダイシングテープ20に向かう方向のローラー加圧、又は真空-大気加圧等を印加して、平坦ウエハ11とダイシングテープ20を密着させることが好ましい。 The flat wafer 11 is transferred in the transfer direction indicated by the arrow 92. Specifically, the suction wafer 12 moves the flat wafer 11 from the suction stage 14 to the attaching unit 70 while vacuum-sucking the second surface 10 b of the flat wafer 11. Then, the mounting frame 22 on which the dicing tape 20 is affixed stands by in the affixing unit 70, and the flat wafer 11 is affixed to the dicing tape 20 as described with reference to FIG. At this time, it is preferable that the flat wafer 11 and the dicing tape 20 are brought into close contact with each other by applying a roller pressure in a direction toward the dicing tape 20 or a vacuum-atmospheric pressure to the flat wafer 11.
 こうして、貼り付け部70において、マウントフレーム22、ダイシングテープ20、及び平坦ウエハ11が一体となった被ダイシング構造が完成する。被ダイシング構造は、ステージ100へ搬送される。搬送方向は矢印94で示されている。ステージ100の上には、被ダイシング構造を収容するカセット102が設けられている。被ダイシング構造がカセット102に収容されて、ウエハマウント装置50による処理が終了する。 Thus, a structure to be diced in which the mount frame 22, the dicing tape 20, and the flat wafer 11 are integrated in the pasting portion 70 is completed. The structure to be diced is transferred to the stage 100. The transport direction is indicated by an arrow 94. On the stage 100, a cassette 102 for accommodating the structure to be diced is provided. The structure to be diced is accommodated in the cassette 102, and the processing by the wafer mount apparatus 50 is completed.
 次に、本発明の意義の理解を容易にするために、比較例について説明する。比較例の半導体素子の製造方法ではまず、図11に示すようにダイシングテープ20が貼り付けられたマウントフレーム22、及びウエハ10をチャンバー200内に搬送する。次いで、チャンバー200内を真空引きする。真空引きは、チャンバー200に通じる配管202からチャンバー200内の空気を排気して行う。真空になったら、図12に示すように、ウエハ10のリング部10Bとダイシングテープ20を密着させる。 Next, comparative examples will be described in order to facilitate understanding of the significance of the present invention. In the semiconductor device manufacturing method of the comparative example, first, as shown in FIG. 11, the mount frame 22 with the dicing tape 20 attached and the wafer 10 are transferred into the chamber 200. Next, the chamber 200 is evacuated. The evacuation is performed by exhausting the air in the chamber 200 from the pipe 202 communicating with the chamber 200. When the vacuum is reached, the ring portion 10B of the wafer 10 and the dicing tape 20 are brought into close contact with each other as shown in FIG.
 次いで、チャンバー200内を大気圧に戻す。そうすると、図13に示すように大気圧204がウエハ10の第1面10aにダイシングテープ20を付着させる。このとき、ウエハ10の段差部とダイシングテープ20の間に隙間206が生じる。こうして比較例の被ダイシング構造が完成する。比較例の被ダイシング構造は、リング部10Bをカットしていないウエハ10を有する。 Next, the inside of the chamber 200 is returned to atmospheric pressure. Then, the atmospheric pressure 204 causes the dicing tape 20 to adhere to the first surface 10a of the wafer 10 as shown in FIG. At this time, a gap 206 is formed between the stepped portion of the wafer 10 and the dicing tape 20. Thus, the structure to be diced of the comparative example is completed. The structure to be diced in the comparative example includes the wafer 10 in which the ring portion 10B is not cut.
 次いで、リング部10Bをカットする。具体的には、図14に示すように、被ダイシング構造を吸着ステージ210にのせ、ダイシングブレード212でウエハ10を周状にカットする。ダイシングブレード212の回転方向は方向214で示され、移動方向は方向216(ウエハ10の外周に沿った方向)で示されている。 Next, the ring portion 10B is cut. Specifically, as shown in FIG. 14, the structure to be diced is placed on the suction stage 210, and the wafer 10 is cut into a circumferential shape by a dicing blade 212. The rotating direction of the dicing blade 212 is indicated by a direction 214, and the moving direction is indicated by a direction 216 (a direction along the outer periphery of the wafer 10).
 この時、ダイシングブレード212の直下には吸着ステージ210がなければならない。もし、ダイシングブレード212の直下に吸着ステージ210がなければ、ダイシングブレード212がウエハ10を曲げ押して割ってしまう。そのため、リング部10Bの幅のばらつき、ダイシングテープ20の厚み、吸着ステージ210とウエハ10の中心ズレ等を考慮すると、リング部10Bよりも距離X1(1.5mm程度)程度内側をカットしなければならない。 At this time, the suction stage 210 must be immediately below the dicing blade 212. If there is no suction stage 210 immediately below the dicing blade 212, the dicing blade 212 bends and breaks the wafer 10. Therefore, in consideration of variations in the width of the ring portion 10B, the thickness of the dicing tape 20, the center shift between the suction stage 210 and the wafer 10, the inside of the ring portion 10B must be cut by about a distance X1 (about 1.5 mm). Don't be.
 このように、比較例では、リング部10Bをカットする際に、中央部10Aの一部もカットしなければならないので、その分有効チップ数が減る。この問題を第1の問題と称する。 Thus, in the comparative example, when the ring portion 10B is cut, a part of the central portion 10A must also be cut, so that the number of effective chips is reduced accordingly. This problem is referred to as the first problem.
 本発明の実施の形態1に係る半導体素子の製造方法によれば、第1の問題を解消できる。つまり、実施の形態1では、レーザ光を用いるので、リング部10Bと中央部10Aの境界をカットしてリング部10Bを除去することができる。よって、実質的に中央部10Aをカットすることなく、リング部10Bをカットできるので、有効チップ数が減ることは無い。このような効果は、図10に示すウエハマウント装置50のカット部90にレーザ発振器16を設けたことで得られる。 According to the method for manufacturing a semiconductor element according to the first embodiment of the present invention, the first problem can be solved. That is, in the first embodiment, since the laser beam is used, the ring portion 10B can be removed by cutting the boundary between the ring portion 10B and the central portion 10A. Therefore, since the ring portion 10B can be cut without substantially cutting the center portion 10A, the number of effective chips is not reduced. Such an effect can be obtained by providing the laser oscillator 16 in the cut portion 90 of the wafer mount apparatus 50 shown in FIG.
 ところで、比較例において、ウエハ10とダイシングテープ20の密着性が悪い場合は、これらの間の隙間が大きくなる。図15は、ウエハ10とダイシングテープ20の隙間206が大きく形成されたことを示す図である。図15の上側には断面図が示され、図15の下側には平面図が示されている。隙間206が大きいと、リング部10Bからカットを行う場所までの距離X1を大きくしなければならないので、有効チップ数が減ってしまう。具体的には、円220で囲まれた部分のみがダイシング工程に進むので、無駄になるチップ(半導体素子)が多い。しかも、ウエハ10とダイシングテープ20の接着面積が小さくなるので、ダイシング中にウエハ10が飛びやすい。隙間206が大きくなることで生じるこれらの問題を第2の問題という。 By the way, in the comparative example, when the adhesion between the wafer 10 and the dicing tape 20 is poor, the gap between them becomes large. FIG. 15 is a view showing that a gap 206 between the wafer 10 and the dicing tape 20 is formed large. A cross-sectional view is shown on the upper side of FIG. 15, and a plan view is shown on the lower side of FIG. If the gap 206 is large, the distance X1 from the ring portion 10B to the place where the cutting is performed must be increased, and the number of effective chips is reduced. Specifically, since only the portion surrounded by the circle 220 proceeds to the dicing process, many chips (semiconductor elements) are wasted. Moreover, since the bonding area between the wafer 10 and the dicing tape 20 is reduced, the wafer 10 is likely to fly during dicing. These problems caused by the increase in the gap 206 are referred to as a second problem.
 本発明の実施の形態1に係る半導体素子の製造方法によれば、第2の問題を解消できる。つまり、実施の形態1では、平坦ウエハ11をダイシングテープ20に貼り付けるので、平坦ウエハ11とダイシングテープ20の間に隙間ができることはない。従って、実施の形態1に係る半導体素子の製造方法では、第2の問題は生じない。 The semiconductor device manufacturing method according to the first embodiment of the present invention can solve the second problem. That is, in the first embodiment, since the flat wafer 11 is attached to the dicing tape 20, there is no gap between the flat wafer 11 and the dicing tape 20. Therefore, the semiconductor device manufacturing method according to the first embodiment does not cause the second problem.
 ウエハをダイシングして個々の半導体素子に分割した後に、半導体素子をピックアップし易くするために、ダイシングテープをエキスパンド(伸ばす)することが一般的である。図16はダイシングテープをエキスパンドすることを示す断面図である。個片化された半導体素子10Cがダイシングテープ20に接着している。ダイシングテープ20には、リング部カット時に形成された環状の溝302、及びウエハ10を個々の半導体素子10Cに分割したときに生じた溝304が形成されている。エキスパンドステージ300を上昇させてダイシングテープ20を伸ばすことで、ダイシングライン(溝304)の幅が拡張されて半導体素子10Cをピックアップし易くなる。 In general, after dicing and dividing the wafer into individual semiconductor elements, the dicing tape is generally expanded (stretched) so that the semiconductor elements can be easily picked up. FIG. 16 is a cross-sectional view showing expanding a dicing tape. The separated semiconductor element 10 </ b> C is bonded to the dicing tape 20. The dicing tape 20 is formed with an annular groove 302 formed when the ring portion is cut and a groove 304 generated when the wafer 10 is divided into individual semiconductor elements 10C. By raising the expanding stage 300 and extending the dicing tape 20, the width of the dicing line (groove 304) is expanded and the semiconductor element 10C can be easily picked up.
 ここで、溝302は環状に形成され、平面視したエキスパンドステージ300も円形であるので、エキスパンド時にダイシングテープ20の溝302の周辺に力が集中し、溝302に沿ってダイシングテープ20が切れることがある。図17は溝302に沿ってダイシングテープ20が切れたことを示す断面図である。当然ながら、ダイシングテープ20が切れると半導体素子10Cをピックアップしづらくなる。これを第3の問題という。 Here, since the groove 302 is formed in an annular shape and the expanded stage 300 in plan view is also circular, the force concentrates around the groove 302 of the dicing tape 20 during expansion, and the dicing tape 20 is cut along the groove 302. There is. FIG. 17 is a cross-sectional view showing that the dicing tape 20 is cut along the groove 302. Naturally, when the dicing tape 20 is cut, it becomes difficult to pick up the semiconductor element 10C. This is called the third problem.
 本発明の実施の形態1に係る半導体素子の製造方法によれば、第3の問題を解消できる。つまり、実施の形態1では、ウエハ10をダイシングテープ20に貼り付ける前にリング部10Bをカットするので、ダイシングテープ20にリング部カットに起因する環状の溝は形成されない。従って、実施の形態1の半導体素子の製造方法では、第3の問題は生じない。 According to the method for manufacturing a semiconductor element according to the first embodiment of the present invention, the third problem can be solved. That is, in the first embodiment, the ring portion 10B is cut before the wafer 10 is attached to the dicing tape 20, so that the annular groove due to the ring portion cut is not formed in the dicing tape 20. Therefore, the third problem does not occur in the method of manufacturing the semiconductor element of the first embodiment.
 上記のとおり、本発明の実施の形態1に係る半導体素子の製造方法は、比較例の方法と比べて有効チップ数が増え、ダイシング中にウエハが飛ぶことがなく、エキスパンド時におけるダイシングテープ20の破断を回避できるものである。 As described above, the manufacturing method of the semiconductor element according to the first embodiment of the present invention increases the number of effective chips compared to the method of the comparative example, the wafer does not fly during dicing, and the dicing tape 20 of the expanding state is expanded. Breakage can be avoided.
 ところで、ウエハ10をダイシングテープ20に貼り付ける前にリング部10Bをカットすると、平坦ウエハ11の反りが懸念される。しかしながら、本発明の実施の形態1のカット工程では、ウエハ10の第1面10aを吸着ステージ14に吸着させつつ、レーザ光でウエハ10からリング部10Bを切り離すので、平坦ウエハ11が反ることはない。さらに、貼り付け工程では、平坦ウエハ11の第2面10bを吸着ハンド12に吸着させつつ、平坦ウエハ11を吸着ステージ14から離し、第1面10aをダイシングテープ20に貼り付けるので、平坦ウエハ11が反ることはない。このように、リング部10Bをカットする時から、平坦ウエハ11をダイシングテープ20に貼り付けるまで、常に、平坦ウエハ11を平坦に保つことができる。 Incidentally, if the ring portion 10B is cut before the wafer 10 is attached to the dicing tape 20, the flat wafer 11 may be warped. However, in the cutting process according to the first embodiment of the present invention, the flat surface 11 is warped because the ring portion 10B is separated from the wafer 10 with the laser beam while the first surface 10a of the wafer 10 is adsorbed to the adsorption stage 14. There is no. Further, in the attaching process, the second surface 10b of the flat wafer 11 is adsorbed by the adsorption hand 12, while the flat wafer 11 is separated from the adsorption stage 14, and the first surface 10a is adhered to the dicing tape 20, so that the flat wafer 11 is adhered. Will not warp. As described above, the flat wafer 11 can always be kept flat from the time when the ring portion 10B is cut until the flat wafer 11 is attached to the dicing tape 20.
 レーザ発振器16としては、固体レーザで扱いやすい上に高効率で寿命が長いYAGレーザを用いることが好ましい。しかし、レーザ発振器16として他のレーザ素子を用いても良い。また、本発明の実施の形態1では、ウエハ10のうち研磨されて表れた面を第1面10aとし、その反対の面を第2面10bとした。しかし、研磨されて表れた面を第2面とし、その反対の面を第1面と定義して、上記の処理を実施しても本発明の効果を得ることができる。なお、これらの変形は以下の実施の形態に係る半導体素子の製造方法及びウエハマウント装置にも応用できる。 As the laser oscillator 16, it is preferable to use a YAG laser that is easy to handle with a solid-state laser and has high efficiency and a long lifetime. However, other laser elements may be used as the laser oscillator 16. In the first embodiment of the present invention, the polished surface of the wafer 10 is the first surface 10a, and the opposite surface is the second surface 10b. However, the effect of the present invention can be obtained even if the above-described treatment is performed by defining the second surface as the polished surface and defining the opposite surface as the first surface. These modifications can also be applied to semiconductor device manufacturing methods and wafer mount apparatuses according to the following embodiments.
 以下の実施の形態に係る半導体素子の製造方法とウエハマウント装置については、実施の形態1と一致する点が多いので、実施の形態1との相違点を中心に説明する。 The semiconductor element manufacturing method and the wafer mount apparatus according to the following embodiment have many points that are the same as those of the first embodiment, and therefore, differences from the first embodiment will be mainly described.
実施の形態2.
 図18は、本発明の実施の形態2に係るウエハマウント装置のカット部を示す図である。カット部を用いたカット工程では、まず、第2面10bに水溶性の保護膜400を形成する。その後、レーザ光16aでウエハ10からリング部10Bを切り離す。保護膜400により、レーザカット屑402がウエハ10に付着することを防止できる。
Embodiment 2. FIG.
FIG. 18 is a diagram showing a cut portion of the wafer mount apparatus according to the second embodiment of the present invention. In the cutting process using the cut portion, first, a water-soluble protective film 400 is formed on the second surface 10b. Thereafter, the ring portion 10B is separated from the wafer 10 with the laser beam 16a. The protective film 400 can prevent the laser cut waste 402 from adhering to the wafer 10.
実施の形態3.
 図19は、本発明の実施の形態3に係るウエハマウント装置のカット部を示す図である。カット部を用いたカット工程では、まず、ゴムリング410と防塵カバー412で第2面10bの中央部を覆う。その後、レーザ光16aでウエハ10からリング部10Bを切り離す。ゴムリング410と防塵カバー412によりレーザカット屑402がウエハ10に付着することを防止できる。この方法は、第2面10bに水溶性の保護膜を形成するよりは少ない工程で実現できる。
Embodiment 3 FIG.
FIG. 19 is a diagram showing a cut portion of the wafer mount apparatus according to the third embodiment of the present invention. In the cutting process using the cut portion, first, the central portion of the second surface 10 b is covered with the rubber ring 410 and the dust cover 412. Thereafter, the ring portion 10B is separated from the wafer 10 with the laser beam 16a. The rubber ring 410 and the dust cover 412 can prevent the laser cut waste 402 from adhering to the wafer 10. This method can be realized with fewer steps than forming a water-soluble protective film on the second surface 10b.
実施の形態4.
 図20は、本発明の実施の形態4に係るウエハマウント装置のカット部を示す図である。カット部を用いたカット工程では、まず、ゴムリング410と防塵カバー412で第2面10bの中央部を覆う。その後、ゴムリング410と防塵カバー412を覆うように気流生成装置420をセットする。気流生成装置420の中には、矢印方向の気流が流れる空洞420aがある。気流生成装置420は、空洞420aを経由して第2面10bの中央部から外周部へ向かう気流422を生じさせるものである。そして、気流422を生じさせつつ、レーザ光16aでウエハ10からリング部10Bを切り離す。この方法によれば、レーザカット屑402がウエハ10のエッジに付着することを防止できる。
Embodiment 4 FIG.
FIG. 20 is a diagram showing a cut portion of the wafer mount apparatus according to the fourth embodiment of the present invention. In the cutting process using the cut portion, first, the central portion of the second surface 10 b is covered with the rubber ring 410 and the dust cover 412. Thereafter, the airflow generation device 420 is set so as to cover the rubber ring 410 and the dustproof cover 412. In the airflow generation device 420, there is a cavity 420a through which an airflow in the arrow direction flows. The airflow generation device 420 generates an airflow 422 from the center portion of the second surface 10b toward the outer peripheral portion via the cavity 420a. Then, the ring portion 10B is separated from the wafer 10 with the laser beam 16a while the air flow 422 is generated. According to this method, the laser cut waste 402 can be prevented from adhering to the edge of the wafer 10.
実施の形態5.
 図21は、本発明の実施の形態5に係るウエハマウント装置のカット部を示す図である。カット部は高水圧ポンプ450を備えている。高水圧ポンプ450には配管452が接続されている。配管452にはノズル454が接続されている。このカット部は、高水圧ポンプ450から放出された水が、配管452及びノズル454を経由して、ウエハ10に噴きつけられるように構成されている。ノズル454から噴出する水柱458の直径は例えば数10μmである。
Embodiment 5 FIG.
FIG. 21 is a diagram showing a cut portion of the wafer mount apparatus according to the fifth embodiment of the present invention. The cut portion includes a high water pressure pump 450. A pipe 452 is connected to the high water pressure pump 450. A nozzle 454 is connected to the pipe 452. The cut portion is configured such that water discharged from the high water pressure pump 450 is sprayed onto the wafer 10 via the pipe 452 and the nozzle 454. The diameter of the water column 458 ejected from the nozzle 454 is, for example, several tens of μm.
 レーザ発振器16から放出されるレーザ光16aは、光ファイバー456とノズル454を通って水柱458内に導入され、中央部10Aとリング部10Bの境界に照射される。このように、カット工程において、レーザ光の照射部分に水(水柱458)を噴きつけることで、当該照射部分の温度上昇を抑えることができる。また、この水によりレーザカット屑402を外部へ排出することができる。 Laser light 16a emitted from the laser oscillator 16 is introduced into the water column 458 through the optical fiber 456 and the nozzle 454, and is irradiated to the boundary between the central portion 10A and the ring portion 10B. As described above, in the cutting step, water (water column 458) is sprayed onto the irradiated portion of the laser light, so that an increase in temperature of the irradiated portion can be suppressed. Moreover, the laser cut waste 402 can be discharged to the outside by this water.
 なお、上記の各実施の形態に係る半導体素子の製造方法とウエハマウント装置の特徴を適宜に組み合わせて、本発明の効果を高めても良い。例えば、図22に示すように、実施の形態5の構成に、ゴムリング410と防塵カバー412を付加してもよい。また、図23に示すように、実施の形態5の構成にゴムリング410、防塵カバー412、及び気流生成装置420を付加してもよい。 It should be noted that the effects of the present invention may be enhanced by appropriately combining the semiconductor element manufacturing method and the wafer mount apparatus according to each of the above embodiments. For example, as shown in FIG. 22, a rubber ring 410 and a dustproof cover 412 may be added to the configuration of the fifth embodiment. Further, as shown in FIG. 23, a rubber ring 410, a dustproof cover 412, and an airflow generation device 420 may be added to the configuration of the fifth embodiment.
 10 ウエハ、 10A 中央部、 10B リング部、 10C 半導体素子、 10a 第1面、 10b 第2面、 11 平坦ウエハ、 11A 半導体素子、 12 吸着ハンド、 14 吸着ステージ、 16 レーザ発振器、 20 ダイシングテープ、 20A 糊材、 20B 基材、 22 マウントフレーム、 40 ダイサーの吸着ステージ、 42 ダイシングブレード、 44 溝、 50 ウエハマウント装置、 52 ステージ、 54 マウントフレームカセット、 60 ダイシングテープ貼り付け部、 70 貼り付け部、 80 ステージ、 82 ウエハカセット、 90 カット部、 100 ステージ、 102 カセット、 200 チャンバー、 202 配管、 206 隙間、 300 エキスパンドステージ、 302,304 溝、 400 保護膜、 402 レーザカット屑、 410 ゴムリング、 412 防塵カバー、 420 気流生成装置、 422 気流、 450 高水圧ポンプ、 452 配管、 454 ノズル、 456 光ファイバー 10 wafer, 10A central part, 10B ring part, 10C semiconductor element, 10a first side, 10b second side, 11 flat wafer, 11A semiconductor element, 12 suction hand, 14 suction stage, 16 laser oscillator, 20 dicing tape, 20A Adhesive, 20B base material, 22 mount frame, 40 dicer suction stage, 42 dicing blade, 44 groove, 50 wafer mount device, 52 stage, 54 mount frame cassette, 60 dicing tape affixing part, 70 affixing part, 80 Stage, 82 wafer cassette, 90 cut section, 100 stage, 102 cassette, 200 chamber, 202 piping, 206 gap, 00 expanding stage, 302, 304 groove, 400 a protective film, 402 a laser-cut chips, 410 rubber ring 412 dust cover, 420 air flow generating device, 422 a stream 450 high pressure pump, 452 pipe, 454 nozzles, 456 optical fiber

Claims (8)

  1.  外周に中央部より厚いリング部が形成され、第1面と、前記第1面と反対の面である第2面とを有するウエハの前記第1面を吸着ステージに吸着させつつ、レーザ光で前記ウエハから前記リング部を切り離すことで、平坦ウエハを形成するカット工程と、
     前記平坦ウエハの前記第2面を吸着ハンドに吸着させつつ、前記平坦ウエハを前記吸着ステージから離し、前記第1面をダイシングテープに貼り付ける貼り付け工程と、
     前記ダイシングテープに貼り付けられた前記平坦ウエハをダイシングするダイシング工程と、を備えたことを特徴とする半導体素子の製造方法。
    A ring portion thicker than the central portion is formed on the outer periphery, and the first surface of the wafer having the first surface and the second surface opposite to the first surface is adsorbed to the adsorption stage, and the laser beam is used. A cutting step of forming a flat wafer by separating the ring portion from the wafer;
    An adhering step of adhering the first surface to a dicing tape while separating the flat wafer from the adsorption stage while adsorbing the second surface of the flat wafer to an adsorption hand;
    And a dicing step of dicing the flat wafer attached to the dicing tape.
  2.  前記カット工程では、YAGレーザを用いることを特徴とする請求項1に記載の半導体素子の製造方法。 The method for manufacturing a semiconductor device according to claim 1, wherein a YAG laser is used in the cutting step.
  3.  前記カット工程では、前記第2面に水溶性の保護膜を形成した後に、前記ウエハから前記リング部を切り離すことを特徴とする請求項1又は2に記載の半導体素子の製造方法。 3. The method of manufacturing a semiconductor element according to claim 1, wherein, in the cutting step, the ring portion is separated from the wafer after a water-soluble protective film is formed on the second surface.
  4.  前記カット工程では、ゴムリングと防塵カバーで前記第2面の中央部を覆った後に、前記ウエハから前記リング部を切り離すことを特徴とする請求項1又は2に記載の半導体素子の製造方法。 3. The method of manufacturing a semiconductor device according to claim 1, wherein, in the cutting step, the ring portion is separated from the wafer after the central portion of the second surface is covered with a rubber ring and a dust-proof cover.
  5.  前記カット工程では、前記第2面の中央部から外周部に向かう気流を生じさせつつ、前記ウエハから前記リング部を切り離すことを特徴とする請求項1~4のいずれか1項に記載の半導体素子の製造方法。 The semiconductor according to any one of claims 1 to 4, wherein, in the cutting step, the ring portion is separated from the wafer while generating an air flow from a central portion of the second surface toward an outer peripheral portion. Device manufacturing method.
  6.  前記カット工程では、前記レーザ光の照射部分に水を噴きつけることを特徴とする請求項1~5のいずれか1項に記載の半導体素子の製造方法。 6. The method of manufacturing a semiconductor element according to claim 1, wherein, in the cutting step, water is sprayed onto a portion irradiated with the laser light.
  7.  前記カット工程では、前記中央部と前記リング部の境界に前記レーザ光を照射することを特徴とする請求項1~6のいずれか1項に記載の半導体素子の製造方法。 7. The method of manufacturing a semiconductor element according to claim 1, wherein, in the cutting step, the laser beam is irradiated to a boundary between the central portion and the ring portion.
  8.  外周に中央部より厚いリング部が形成され、第1面と、前記第1面と反対の面である第2面とを有するウエハの前記第1面を吸着する吸着ステージと、レーザ光で前記ウエハから前記リング部を切り離すレーザ発振器とを有し、平坦ウエハを形成するカット部と、
     ダイシングテープが設けられた貼り付け部と、
     前記平坦ウエハの前記第2面を真空吸着しつつ、前記平坦ウエハを前記吸着ステージから移動させ前記ダイシングテープに貼り付ける吸着ハンドと、を備えたことを特徴とするウエハマウント装置。
    An adsorption stage that adsorbs the first surface of a wafer having a first surface and a second surface opposite to the first surface, wherein a ring portion thicker than the center portion is formed on the outer periphery; A laser oscillator that separates the ring portion from the wafer, and a cut portion that forms a flat wafer;
    An affixing part provided with a dicing tape;
    A wafer mounting apparatus comprising: a suction hand that moves the flat wafer from the suction stage and sticks the second surface of the flat wafer to the dicing tape while vacuum suctioning the second surface of the flat wafer.
PCT/JP2013/077989 2013-10-15 2013-10-15 Semiconductor-element manufacturing method and wafer mounting device WO2015056303A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DE112013007505.9T DE112013007505B4 (en) 2013-10-15 2013-10-15 Semiconductor Element Manufacturing Process
US14/906,286 US9659808B2 (en) 2013-10-15 2013-10-15 Semiconductor-element manufacturing method and wafer mounting device using a vacuum end-effector
JP2015542431A JP6156509B2 (en) 2013-10-15 2013-10-15 Manufacturing method of semiconductor device
PCT/JP2013/077989 WO2015056303A1 (en) 2013-10-15 2013-10-15 Semiconductor-element manufacturing method and wafer mounting device
KR1020167009742A KR101787926B1 (en) 2013-10-15 2013-10-15 Semiconductor-element manufacturing method and wafer mounting device
CN201380080265.0A CN105637618B (en) 2013-10-15 2013-10-15 Method for manufacturing semiconductor element and wafer mounting device
TW102142595A TWI609418B (en) 2013-10-15 2013-11-22 Method for manufacturing semiconductor device and wafer mounting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/077989 WO2015056303A1 (en) 2013-10-15 2013-10-15 Semiconductor-element manufacturing method and wafer mounting device

Publications (1)

Publication Number Publication Date
WO2015056303A1 true WO2015056303A1 (en) 2015-04-23

Family

ID=52827777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077989 WO2015056303A1 (en) 2013-10-15 2013-10-15 Semiconductor-element manufacturing method and wafer mounting device

Country Status (7)

Country Link
US (1) US9659808B2 (en)
JP (1) JP6156509B2 (en)
KR (1) KR101787926B1 (en)
CN (1) CN105637618B (en)
DE (1) DE112013007505B4 (en)
TW (1) TWI609418B (en)
WO (1) WO2015056303A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110770892A (en) * 2017-06-23 2020-02-07 三井化学东赛璐株式会社 Component manufacturing apparatus and component manufacturing method
DE102017110086B4 (en) 2016-05-13 2022-05-12 Infineon Technologies Ag Method and device for manufacturing semiconductor chips
WO2022264546A1 (en) * 2021-06-16 2022-12-22 日東電工株式会社 Electroconductive sheet and dicing/die bonding film
JP7431052B2 (en) 2020-02-13 2024-02-14 株式会社ディスコ Wafer processing method

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9633883B2 (en) 2015-03-20 2017-04-25 Rohinni, LLC Apparatus for transfer of semiconductor devices
JP2017212255A (en) * 2016-05-23 2017-11-30 株式会社ジェイデバイス Semiconductor manufacturing device and manufacturing method
DE102016110378B4 (en) * 2016-06-06 2023-10-26 Infineon Technologies Ag Removing a reinforcement ring from a wafer
DE102016111629B4 (en) * 2016-06-24 2022-10-27 Infineon Technologies Ag Method of manufacturing a semiconductor device
US10504767B2 (en) * 2016-11-23 2019-12-10 Rohinni, LLC Direct transfer apparatus for a pattern array of semiconductor device die
CN110087820B (en) * 2016-12-22 2021-12-24 三菱电机株式会社 Laser processing apparatus, laser processing method, and method for manufacturing semiconductor device
JP6938084B2 (en) * 2017-07-26 2021-09-22 株式会社ディスコ Blade holder
US11538711B2 (en) * 2018-07-23 2022-12-27 Micron Technology, Inc. Methods for edge trimming of semiconductor wafers and related apparatus
CN112638573B (en) * 2018-09-13 2023-08-22 东京毅力科创株式会社 Processing system and processing method
US11094571B2 (en) 2018-09-28 2021-08-17 Rohinni, LLC Apparatus to increase transferspeed of semiconductor devices with micro-adjustment
TWI716931B (en) * 2019-07-10 2021-01-21 昇陽國際半導體股份有限公司 Taiko wafer ring cut process method
CN111070448A (en) * 2019-12-30 2020-04-28 成都先进功率半导体股份有限公司 Wafer ring cutting method
US11791192B2 (en) * 2020-01-19 2023-10-17 Taiwan Semiconductor Manufacturing Company, Ltd. Workpiece holder, wafer chuck, wafer holding method
TWI821679B (en) * 2020-08-25 2023-11-11 南韓商杰宜斯科技有限公司 Wafer processing apparatus and wafer processing method
CN112475627A (en) * 2020-11-17 2021-03-12 华虹半导体(无锡)有限公司 Ring removing method for Taiko thinned wafer
US11551923B2 (en) * 2021-01-15 2023-01-10 Phoenix Silicon International Corp. Taiko wafer ring cut process method
CN118692959B (en) * 2024-08-29 2024-11-08 允哲半导体科技(浙江)有限公司 TAIKO wafer vacuum film pasting device and method

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08330196A (en) * 1995-05-30 1996-12-13 Miyazaki Oki Electric Co Ltd Method and apparatus for marking semiconductor wafer with laser
JPH0966386A (en) * 1995-08-31 1997-03-11 Amada Co Ltd Laser beam machine
JP2004268080A (en) * 2003-03-07 2004-09-30 Sumitomo Heavy Ind Ltd Device and method for laser beam machining
JP2004322168A (en) * 2003-04-25 2004-11-18 Disco Abrasive Syst Ltd Laser machining apparatus
JP2006032419A (en) * 2004-07-12 2006-02-02 Disco Abrasive Syst Ltd Laser processing method for wafer
JP2007069249A (en) * 2005-09-07 2007-03-22 Disco Abrasive Syst Ltd Laser beam machining device
JP2007281095A (en) * 2006-04-04 2007-10-25 Tokyo Seimitsu Co Ltd Workpiece carrying device
JP2010212608A (en) * 2009-03-12 2010-09-24 Disco Abrasive Syst Ltd Method of machining wafer
JP2011125871A (en) * 2009-12-15 2011-06-30 Disco Abrasive Syst Ltd Laser beam machining apparatus
JP2011189400A (en) * 2010-03-16 2011-09-29 Disco Corp Laser beam machining apparatus
JP2012054275A (en) * 2010-08-31 2012-03-15 Disco Abrasive Syst Ltd Wafer processing method
JP2012101230A (en) * 2010-11-08 2012-05-31 Disco Corp Laser beam machining device
JP2013172107A (en) * 2012-02-22 2013-09-02 Disco Abrasive Syst Ltd Chuck table and wafer laser processing method using the same

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3866398A (en) 1973-12-20 1975-02-18 Texas Instruments Inc In-situ gas-phase reaction for removal of laser-scribe debris
DE4418845C5 (en) 1994-05-30 2012-01-05 Synova S.A. Method and device for material processing using a laser beam
US5543365A (en) * 1994-12-02 1996-08-06 Texas Instruments Incorporated Wafer scribe technique using laser by forming polysilicon
JP3784202B2 (en) * 1998-08-26 2006-06-07 リンテック株式会社 Double-sided adhesive sheet and method of using the same
US20050163598A1 (en) 2002-02-27 2005-07-28 Tokyou Electron Limited Method for carrying substrate
JP2004214359A (en) * 2002-12-27 2004-07-29 Tokyo Seimitsu Co Ltd Substrate working method and device thereof
JP2004221187A (en) 2003-01-10 2004-08-05 Toshiba Corp Manufacturing apparatus and method of semiconductor device
CN101290907B (en) 2003-12-26 2010-12-08 瑞萨电子株式会社 Fabrication method of semiconductor integrated circuit device
JP4860113B2 (en) 2003-12-26 2012-01-25 ルネサスエレクトロニクス株式会社 Manufacturing method of semiconductor integrated circuit device
WO2006010289A2 (en) 2004-07-30 2006-02-02 Synova S.A. Method for separating circuit units (chips) arranged on a semiconductor wafer
JP2006286900A (en) 2005-03-31 2006-10-19 Furukawa Electric Co Ltd:The Method of manufacturing chip
SG126885A1 (en) 2005-04-27 2006-11-29 Disco Corp Semiconductor wafer and processing method for same
JP2007134510A (en) 2005-11-10 2007-05-31 Tokyo Seimitsu Co Ltd Wafer mounter
JP2008283025A (en) 2007-05-11 2008-11-20 Disco Abrasive Syst Ltd Method of dividing wafer
US20080302480A1 (en) * 2007-06-07 2008-12-11 Berger Michael A Method and apparatus for using tapes to remove materials from substrate surfaces
JP4989498B2 (en) 2008-01-18 2012-08-01 株式会社ディスコ Wafer transfer device and processing device
JP2008177600A (en) 2008-03-26 2008-07-31 Nitto Denko Corp Method and device for attaching adhesive tape to back side of semiconductor wafer
WO2009137447A2 (en) * 2008-05-06 2009-11-12 Applied Materials, Inc. Debris-extraction exhaust system
JP5839768B2 (en) 2008-05-21 2016-01-06 富士電機株式会社 Manufacturing method of semiconductor device
JP5471064B2 (en) 2009-06-24 2014-04-16 富士電機株式会社 Manufacturing method of semiconductor device

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08330196A (en) * 1995-05-30 1996-12-13 Miyazaki Oki Electric Co Ltd Method and apparatus for marking semiconductor wafer with laser
JPH0966386A (en) * 1995-08-31 1997-03-11 Amada Co Ltd Laser beam machine
JP2004268080A (en) * 2003-03-07 2004-09-30 Sumitomo Heavy Ind Ltd Device and method for laser beam machining
JP2004322168A (en) * 2003-04-25 2004-11-18 Disco Abrasive Syst Ltd Laser machining apparatus
JP2006032419A (en) * 2004-07-12 2006-02-02 Disco Abrasive Syst Ltd Laser processing method for wafer
JP2007069249A (en) * 2005-09-07 2007-03-22 Disco Abrasive Syst Ltd Laser beam machining device
JP2007281095A (en) * 2006-04-04 2007-10-25 Tokyo Seimitsu Co Ltd Workpiece carrying device
JP2010212608A (en) * 2009-03-12 2010-09-24 Disco Abrasive Syst Ltd Method of machining wafer
JP2011125871A (en) * 2009-12-15 2011-06-30 Disco Abrasive Syst Ltd Laser beam machining apparatus
JP2011189400A (en) * 2010-03-16 2011-09-29 Disco Corp Laser beam machining apparatus
JP2012054275A (en) * 2010-08-31 2012-03-15 Disco Abrasive Syst Ltd Wafer processing method
JP2012101230A (en) * 2010-11-08 2012-05-31 Disco Corp Laser beam machining device
JP2013172107A (en) * 2012-02-22 2013-09-02 Disco Abrasive Syst Ltd Chuck table and wafer laser processing method using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017110086B4 (en) 2016-05-13 2022-05-12 Infineon Technologies Ag Method and device for manufacturing semiconductor chips
CN110770892A (en) * 2017-06-23 2020-02-07 三井化学东赛璐株式会社 Component manufacturing apparatus and component manufacturing method
CN110770892B (en) * 2017-06-23 2024-02-23 三井化学东赛璐株式会社 Component manufacturing apparatus and component manufacturing method
JP7431052B2 (en) 2020-02-13 2024-02-14 株式会社ディスコ Wafer processing method
WO2022264546A1 (en) * 2021-06-16 2022-12-22 日東電工株式会社 Electroconductive sheet and dicing/die bonding film

Also Published As

Publication number Publication date
JP6156509B2 (en) 2017-07-05
DE112013007505T5 (en) 2016-07-14
TWI609418B (en) 2017-12-21
CN105637618B (en) 2020-07-24
US9659808B2 (en) 2017-05-23
KR20160055265A (en) 2016-05-17
US20160155656A1 (en) 2016-06-02
TW201515079A (en) 2015-04-16
JPWO2015056303A1 (en) 2017-03-09
DE112013007505B4 (en) 2023-06-07
CN105637618A (en) 2016-06-01
KR101787926B1 (en) 2017-10-18

Similar Documents

Publication Publication Date Title
JP6156509B2 (en) Manufacturing method of semiconductor device
JP4818187B2 (en) Manufacturing method of semiconductor device
JP6367084B2 (en) Semiconductor chip bonding method and semiconductor chip bonding apparatus
JP5895676B2 (en) Manufacturing method of semiconductor device
JP2001035817A (en) Method of dividing wafer and manufacture of semiconductor device
JP6013806B2 (en) Wafer processing method
JP2013161863A (en) Method of manufacturing semiconductor device
JPWO2019009123A1 (en) Substrate processing method and substrate processing system
JP2009253019A (en) Pickup apparatus of semiconductor chip, and pickup method of semiconductor chip
JP5197037B2 (en) Wafer processing method for processing a wafer on which bumps are formed
JP2016100346A (en) Wafer processing method
JP6017388B2 (en) Manufacturing method of semiconductor device
JP2011181951A (en) Method of manufacturing semiconductor device
JP2005045023A (en) Manufacturing method of semiconductor device and manufacturing device for semiconductor
JP5704602B2 (en) Thin semiconductor device manufacturing method and support for brittle member
JP5530203B2 (en) Sheet sticking device and sheet sticking method
JP2018133497A (en) Method for manufacturing device chip
JP2015008191A (en) Method of manufacturing semiconductor device
JP2018133496A (en) Method for manufacturing device chip
JP7171138B2 (en) Device chip manufacturing method
JP2008085354A (en) Semiconductor manufacturing device
JP2023114541A (en) Semiconductor manufacturing device, and method of manufacturing semiconductor device
JP2000195878A (en) Wafer transfer/fixing jig and manufacture of semiconductor device
JPH04180650A (en) Tape for full-cut dicing
JP2007073852A (en) Method of manufacturing semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13895532

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015542431

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14906286

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20167009742

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112013007505

Country of ref document: DE

Ref document number: 1120130075059

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13895532

Country of ref document: EP

Kind code of ref document: A1