WO2015055004A1 - 显示面板及其制造方法和显示装置 - Google Patents
显示面板及其制造方法和显示装置 Download PDFInfo
- Publication number
- WO2015055004A1 WO2015055004A1 PCT/CN2014/077661 CN2014077661W WO2015055004A1 WO 2015055004 A1 WO2015055004 A1 WO 2015055004A1 CN 2014077661 W CN2014077661 W CN 2014077661W WO 2015055004 A1 WO2015055004 A1 WO 2015055004A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substrate
- solar cell
- display panel
- light
- sub
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 9
- 239000004020 conductor Substances 0.000 claims abstract description 5
- 239000000758 substrate Substances 0.000 claims description 237
- 239000010409 thin film Substances 0.000 claims description 39
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical class [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 11
- 239000002096 quantum dot Substances 0.000 claims description 11
- 239000002245 particle Substances 0.000 claims description 8
- 239000010408 film Substances 0.000 claims description 3
- 239000004973 liquid crystal related substance Substances 0.000 abstract description 14
- 238000003860 storage Methods 0.000 description 12
- 239000003086 colorant Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 5
- 239000003990 capacitor Substances 0.000 description 5
- 229910052744 lithium Inorganic materials 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 4
- 230000005684 electric field Effects 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000004146 energy storage Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/13306—Circuit arrangements or driving methods for the control of single liquid crystal cells
-
- H01L31/035218—
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/133345—Insulating layers
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/133509—Filters, e.g. light shielding masks
- G02F1/133514—Colour filters
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1343—Electrodes
- G02F1/13439—Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/136—Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
- G02F1/1362—Active matrix addressed cells
- G02F1/1368—Active matrix addressed cells in which the switching element is a three-electrode device
-
- H01L31/06—
-
- H01L31/153—
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/13306—Circuit arrangements or driving methods for the control of single liquid crystal cells
- G02F1/13324—Circuits comprising solar cells
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2202/00—Materials and properties
- G02F2202/10—Materials and properties semiconductor
- G02F2202/106—Cd×Se or Cd×Te and alloys
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2202/00—Materials and properties
- G02F2202/10—Materials and properties semiconductor
- G02F2202/108—Materials and properties semiconductor quantum wells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Definitions
- Display panel manufacturing method thereof and display device
- the present invention relates to the field of liquid crystal display technology, and in particular to a display panel, a manufacturing method thereof and a display device. Background technique
- the liquid crystal display device has the advantages of being thin and light, low in power consumption, digital, and the like, and is currently being widely used in the market. Since the liquid crystal itself does not emit light and cannot rely on natural light, a backlight must be used for a stable, clear display. In general, the power of the backlight comes from an external battery, such as a lithium battery, and the battery has a limited storage capacity, and needs to be charged after each use, which brings inconvenience to the user.
- an external battery such as a lithium battery
- Solar cells are a device that uses photovoltaic effects to convert solar energy into electrical energy.
- the conductive particles may diffuse and drift, thereby forming an N-type P-type at the interface of the two semiconductor materials.
- Built-in electric field When illuminated on the surface of the solar cell, the photons provide energy to excite new electron-hole pairs in the semiconductor material. These excited holes and electrons are separated by the built-in electric field and rapidly accumulate at the upper and lower poles of the solar cell. Based on the above principle, the load is connected to the two poles of the solar cell, so that the solar cell can supply the load.
- a conventional liquid crystal display device includes: a driving circuit, an array substrate, a color filter substrate, a liquid crystal layer disposed between the array substrate and the color filter substrate, and a backlight.
- the driving circuit controls the electric field distribution between the array substrate and the color filter substrate to control the rotation of the liquid crystal molecules in the liquid crystal layer, so that the backlight is emitted. Part or all of the light passes through the liquid crystal layer and is transmitted through the color filter substrate to realize display.
- a display including a solar cell is disposed at a position of a black matrix of a color filter substrate, which is equivalent to replacing the black matrix with a solar cell, thereby absorbing the backlight.
- the light of the source is used to convert the light energy into electrical energy to supply power to the liquid crystal display device.
- a display including a solar cell is disposed at a non-transparent part of the display. It will also absorb the light from the backlight, convert the light energy into electrical energy, and supply power to the liquid crystal display device.
- the technical problem to be solved by the present invention includes providing a display panel which can increase the power supply capability of a solar cell in view of the above problems existing in the conventional display panel.
- the technical solution adopted to solve the technical problem of the present invention is a display panel comprising a light transmissive area composed of sub-pixels and a solar cell, wherein the solar cell is disposed at least on a part of the light transmissive area of the display panel for The display panel is powered; the first electrode and the second electrode of the solar cell are both made of a transparent conductive material, and at least the same color as the sub-pixels at the transparent region can pass through the solar cell.
- the solar cell in the display panel of the present invention can transmit the same color of the sub-pixels at the light-transmitting area, and the solar cell can also absorb a certain amount of light different from the color of the sub-pixel to convert the light energy into electrical energy. Power is supplied to the driving unit of the display panel (for example, the gate driving unit, the source driving unit, etc.), thereby saving power consumption of other power supply devices. Moreover, the light-transmissive area of the display panel is much larger than the area of the light-shielding area of the display panel, and the amount of light to the light-transmitting area is larger than that of the light-shielding area, because the solar cell of the present invention is disposed on the display panel.
- the solar cell disposed in the light-transmitting region can absorb more light energy, and thus the electric energy converted by the light energy is more. Further, the solar cell of the present invention has more energy storage.
- the solar cell further includes a first electrode and a second electrode An active layer composed of CdSe quantum dots.
- the display panel includes a red sub-pixel, a green sub-pixel, and a blue sub-pixel, wherein a particle diameter of the CdSe quantum dot in the solar cell on the light-transmitting region corresponding to the red sub-pixel is 15-20 nm
- the diameter of the CdSe quantum dots in the solar cell corresponding to the transparent sub-pixel corresponding to the green sub-pixel is between 8-13 nm
- the particle size of the dots is between 2 and 5 nm.
- the display panel further includes an array substrate, the array substrate includes a first substrate, an insulating layer, and a thin film transistor, wherein the solar cell is disposed on the first substrate, and the insulating layer is disposed above the solar cell, the thin film transistor Set above the insulation.
- the display panel further includes an array substrate, the array substrate includes a first substrate, an insulating layer, and a thin film transistor, wherein the thin film transistor is disposed on the first substrate, the insulating layer is disposed above the thin film transistor, and the solar cell is disposed at Above the insulation.
- the display panel further includes an array substrate, the array substrate includes a first substrate and a second substrate, wherein a thin film transistor is disposed on an upper surface of the first substrate, and a lower surface of the second substrate A solar cell is disposed, and a lower surface of the first substrate is attached to an upper surface of the second substrate.
- the array substrate includes a first substrate and a second substrate, wherein a thin film transistor is disposed on an upper surface of the first substrate, and a lower surface of the second substrate A solar cell is disposed, and a lower surface of the first substrate is attached to an upper surface of the second substrate.
- the display panel further includes an array substrate, and the array substrate includes a first substrate.
- the upper surface of the first substrate is provided with a thin film transistor, and the lower surface is provided with a solar cell.
- the display panel further includes a color filter substrate, the color film substrate includes a third substrate and a fourth substrate, wherein a color filter layer is disposed on an upper surface of the third substrate, the fourth substrate A solar cell is disposed on a lower surface thereof, and a lower surface of the third substrate is attached to an upper surface of the fourth substrate.
- the display panel further includes a color filter substrate, and the color filter substrate includes a third substrate, wherein the upper surface of the third substrate is provided with a solar cell, and the lower surface is provided with a color filter layer.
- the display panel further includes an array substrate and a color filter substrate, wherein A solar cell is disposed on both the light transmissive area of the array substrate and the light transmissive area of the color filter substrate.
- a solar cell is disposed on the light shielding area of the display panel.
- the display panel further includes a power module, and the first pole and the second pole of the solar battery are electrically connected to the two poles of the power module, respectively.
- the power module can include a gate drive circuit and/or a source drive circuit.
- a technical solution for solving the technical problem of the present invention is a method for manufacturing a display panel, comprising: providing a solar cell for supplying power to a display panel at least on a light transmissive area formed by a sub-pixel of a portion of the display panel, so that at least Light of the same color as the sub-pixel at the light-transmitting region can pass through the solar cell.
- the step of disposing a solar cell for supplying power to the display panel at least on a light transmissive area formed by a sub-pixel of the display panel comprises: preparing a solar cell on the first substrate of the array substrate; preparing the solar cell Forming an insulating layer on the first substrate; and preparing a thin film transistor on the first substrate on which the insulating layer is formed.
- the step of disposing a solar cell for supplying power to the display panel at least on a light transmissive area formed by a sub-pixel of the display panel comprises: preparing a thin film transistor on the first substrate of the array substrate; preparing the thin film transistor Forming an insulating layer on the first substrate; and preparing a solar cell on the first substrate forming the insulating layer.
- the step of disposing a solar cell for supplying power to the display panel at least on a light transmissive area formed by a sub-pixel of the display panel comprises: preparing a thin film transistor on the upper surface of the first substrate of the array substrate, and then A solar cell is prepared on a lower surface of the first substrate; or a solar cell is prepared on a lower surface of the first substrate of the array substrate, and then a thin film transistor is prepared on the upper surface of the first substrate.
- the step of disposing a solar cell for supplying power to the display panel at least on a light transmissive area formed by a sub-pixel of the display panel comprises: preparing a thin film transistor on the upper surface of the first substrate of the array substrate, and then Preparing a solar cell on a lower surface of the second substrate of the array substrate, or preparing a solar cell on a lower surface of the second substrate of the array substrate, and then on the first substrate of the array substrate Preparing a thin film transistor on the surface; and bonding the lower surface of the first substrate to the upper surface of the second substrate.
- the step of providing a solar cell for supplying power to the display panel at least on a light-transmissive area formed by a sub-pixel of the display panel comprises: forming a color filter layer on the upper surface of the third substrate of the color filter substrate. And then forming a solar cell on the lower surface of the fourth substrate of the color filter substrate, or forming a solar cell on the lower surface of the fourth substrate of the color filter substrate, and then forming a color on the upper surface of the third substrate of the color filter substrate a filter layer; and bonding the lower surface of the third substrate to the upper surface of the fourth substrate.
- the step of providing a solar cell for supplying power to the display panel at least on a light transmissive area formed by a sub-pixel of the display panel comprises: forming a color filter layer on a lower surface of the third substrate of the color filter substrate. Then, a solar cell is formed on the upper surface of the third substrate, or a solar cell is formed on the upper surface of the third substrate of the color filter substrate, and then a color filter layer is formed on the lower surface of the third substrate.
- the above step of preparing the solar cell comprises: forming a first electrode of the solar cell; forming an active layer over the first electrode; and forming a second electrode on the active layer.
- the technical solution adopted to solve the technical problem of the present invention is a display device including the above display panel.
- the display device of the present invention includes the above display panel, it can reduce the power consumption of other power supply devices.
- the display device further includes: a backlight and a power module of the backlight, wherein the first pole and the second pole of the solar cell are respectively electrically connected to the two poles of the power module of the backlight.
- the present invention also provides a method of manufacturing the above display panel, comprising: providing a solar cell for supplying power to the display panel at least on a portion of the light transmissive area of the display panel such that at least the sub-region Light of the same color of pixels can pass through the solar cell.
- the solar cell is disposed at least in a portion of the light transmissive area on the display panel, and at least with the light transmissive area
- the light of the same sub-pixel color can pass through the solar cell, and other colors of light will be absorbed by the solar cell into electrical energy, so that the solar cell will absorb without affecting the normal operation of the sub-pixels on the display substrate.
- the light energy is converted into electric energy for storage, and is used for powering the display panel, thereby reducing power consumption of other power supply devices such as lithium batteries, and reducing the frequency of charging the lithium battery, which is convenient for the user.
- FIG. 1 is a schematic structural view of a conventional solar cell
- FIG. 2 is a schematic view of a display panel according to Embodiment 1 of the present invention.
- FIG. 3 is a schematic view of a display panel according to Embodiment 2 of the present invention.
- FIG. 4 is a schematic view of a display substrate of Embodiment 3 of the present invention.
- FIG. 5 is a schematic view of a display panel according to Embodiment 4 of the present invention and FIG. 6 is a schematic view of a display panel according to Embodiment 5 of the present invention, wherein: 101, a first substrate; 102, a solar cell; 103, an insulating layer 104, a thin film transistor; 201, a second substrate; 301, a third substrate; 302, a fourth substrate; 303, a color filter layer.
- the present invention provides a display panel including a light transmissive area formed by sub-pixels, and at least a portion of the light transmissive area of the display panel is provided with a solar cell 102 for display
- the panel is powered by the solar cell 102.
- the first electrode and the second electrode of the solar cell 102 are both made of a transparent conductive material, and at least the same color as the sub-pixels at the transparent region can pass through the solar cell 102.
- one of the first electrode and the second electrode of the solar cell 102 is an anode, and the other electrode is a cathode, and the light transmissive area refers to any place in the display panel where light can pass through.
- the solar cell 102 of the present invention can transmit light of the same color as the sub-pixels at the light-transmitting region, and the solar cell 102 also absorbs a certain amount of light different in color from the sub-pixels, thereby converting the light energy into electrical energy.
- a driving unit of the display panel eg, a gate driving unit, a source driving unit, etc. supplies power.
- the area of the light-transmitting area of the display panel is much larger than the area of the light-shielding area of the display panel, and the amount of light to the light-transmitting area is larger than that of the light-shielding area, since the solar cell 102 of the present invention is disposed on the display panel
- the light transmissive area is such that the solar cell 102 provided in the light transmissive area of the present invention can absorb more light than the structure of the existing solar cell disposed at the non-transmissive part (light-shielding area), and the light energy can be absorbed.
- the converted electrical energy is more, and thus the solar cell 102 has more energy storage.
- the solar cell 102 includes a first electrode, a second electrode, and an active layer between the first electrode and the second electrode, the active layer being composed of CdSe quantum dots.
- the absorption and transmission characteristics of the quantum dots correspond to the wavelengths of light of various colors, and the absorption and transmission characteristics of the quantum dots themselves can be adjusted, together with the quantum dots. Its own particle size is related.
- the quantum dots in the solar cell 102 of the present invention are not limited to one type of CdSe quantum dots, and may include quantum dots of other materials.
- the display panel includes a red sub-pixel, a green sub-pixel, and a blue sub-pixel, wherein the diameter of the CdSe quantum dot in the solar cell 102 on the light-transmitting region corresponding to the red sub-pixel is 15-20 nm.
- the solar cell 102 can absorb light of other colors than red light, convert the light energy into electrical energy, and the solar cell 102 only transmits red light; the solar cell on the transparent region corresponding to the green sub-pixel
- the diameter of the CdSe quantum dots in 102 is between 8 and 13 nm.
- the solar cell 102 can absorb light of other colors than green light, convert the light energy into electrical energy, and the solar cell 102 only transmits green light;
- the diameter of the CdSe quantum dots in the solar cell 102 on the light-transmitting region corresponding to the blue sub-pixel is between 2 and 5 nm.
- the solar cell 102 can absorb light of other colors than blue light, and convert the light energy into Electrical energy, while solar cell 102 only transmits blue light.
- the solar cell 102 can transmit light of the same color as the sub-pixels at the light-transmitting area, and other colors of light will be absorbed by the solar cell 102, so that the solar cell 102 will not affect Light transmittance of various color sub-pixels, and also absorbs light of an unused color (light of a sub-pixel color at a light-transmitting area), supplies power to a power module of the display panel, and does not require lithium
- the battery is charged to bring convenience to the user.
- the particle size of the quantum dots at the light-transmitting regions of the different color sub-pixels may be set according to actual conditions to transmit light of the same color as the sub-pixels at the light-transmitting regions.
- the display panel of the present invention includes an array substrate. As shown in FIG. 2, the array substrate includes a first substrate 101, an insulating layer 103, and a thin film transistor 104.
- the solar cell 102 is disposed on the first substrate 101, and the insulating layer 103 is disposed above the solar cell 102.
- the thin film transistor 104 is disposed above the insulating layer 103.
- the solar cell 102 is disposed in the light transmitting region of the array substrate. At this time, when light is irradiated onto the array substrate, the solar cell 102 absorbs a certain amount of light, converts the light energy into electrical energy for storage, and further Power is supplied to the energy consuming portion of the display panel.
- the solar cell 102 can also be disposed on the prepared array substrate. That is, the array substrate may include the first substrate 101, the thin film transistor 104 and the storage capacitor provided on the first substrate 101, the insulating layer 103 prepared on the thin film transistor 104 and the storage capacitor, and the insulating layer. Solar cell 102 above 103.
- the array substrate may include the first substrate 101, the thin film transistor 104 and the storage capacitor provided on the first substrate 101, the insulating layer 103 prepared on the thin film transistor 104 and the storage capacitor, and the insulating layer. Solar cell 102 above 103.
- Example 2
- the display panel of this embodiment includes an array substrate.
- the array substrate includes a first substrate 101.
- the upper surface of the first substrate 101 is provided with a thin film transistor 104, and the lower surface is provided with a solar cell 102.
- the solar cell 102 is disposed in the light-transmitting region of the array substrate. At this time, when light is irradiated onto the array substrate, the solar cell 102 absorbs a certain amount of light, and converts the light energy into electrical energy for storage. Power can be supplied to the energy consuming portion of the display panel.
- Example 3
- the display panel of this embodiment includes an array substrate.
- the array substrate includes a first substrate 101 and a second substrate 201.
- the upper surface of the first substrate 101 is provided with a thin film transistor 104, and the lower surface of the second substrate 201 is provided with solar energy.
- the battery 102 wherein the lower surface of the first substrate 101 is in contact with the upper surface of the second substrate 201.
- Example 4 The above is a case where another solar cell 102 is disposed in the light-transmitting region of the array substrate. At this time, when light is irradiated onto the array substrate, the solar cell 102 absorbs a certain amount of light, and converts the light energy into electrical energy for storage. Power is supplied to the energy consuming portion of the display panel.
- Example 4
- the display panel of this embodiment includes a color filter substrate.
- the color filter substrate includes a third substrate 301 and a fourth substrate 302.
- the upper surface of the third substrate 301 is provided with a color filter layer 303 on the lower surface of the fourth substrate 302.
- a solar cell 102 is disposed, wherein a lower surface of the third substrate 301 is in contact with an upper surface of the fourth substrate 302.
- Example 5 The above is a case where the solar cell 102 is disposed in the light transmissive area of the color filter substrate. At this time, when light is irradiated to the solar cell 102, the solar cell 102 absorbs a certain amount of light, and converts the light energy into electric energy for storage. Power can be supplied to the energy consuming portion of the display panel.
- Example 5
- the display panel of this embodiment includes a color filter substrate.
- the color filter substrate includes a third substrate 301.
- the upper surface of the third substrate 301 is provided with a solar cell 102, and the lower surface is provided with a color filter layer 303.
- the solar cell 102 is disposed in the light transmissive area of the color filter substrate. At this time, when light is irradiated onto the color filter substrate, the solar cell 102 absorbs a certain amount of light, and can also absorb the external environment. Light, converting light energy into electrical energy Line storage, which can power the energy-consuming part of the display panel.
- the display panel of the present invention further includes: a power module, wherein the first pole and the second pole of the solar cell 102 are electrically connected to the two poles of the power module, respectively.
- the power module can supply power to one or more circuits of a driving circuit such as a gate driving circuit and a source driving circuit of the display panel, wherein the solar cell 102 is electrically connected to the power module, that is, the solar cell 102 can Charge the power module.
- a driving circuit such as a gate driving circuit and a source driving circuit of the display panel
- first, second, third and fourth substrates are opposite to each other with respect to the direction shown in the drawing.
- the present invention has only described display panels of several configurations, but the present invention is not limited to the above several cases.
- the present invention may further include the following two cases: the display panel may include an array substrate and a color filter substrate, and the solar cell 102 is disposed on the light transmissive area of the array substrate and the light transmissive area of the color filter substrate; The solar cell 102 is disposed on both the light transmitting area and the light shielding area of the display panel, wherein the light shielding area may be a black matrix on the color film substrate, a storage capacitor on the array substrate, and a non-transmissive component such as the thin film transistor 104 in the pixel area. At the location. According to the present invention, it is within the scope of the present invention to provide solar cells 102 on the light transmissive area of the display panel, and details are not described herein.
- the present invention also provides a method of manufacturing a display panel, comprising: providing a solar cell 102 for supplying power to a display panel at least on a light transmissive area formed by a sub-pixel of a portion of the display panel such that at least the light transmissive area Light having the same sub-pixel color can be transmitted through the solar cell 102.
- the specific preparation method of the array substrate according to Embodiment 1 of the present invention shown in FIG. 2 may include: First, preparing a solar cell 102 on the first substrate 101, and forming an insulating layer 103 on the first substrate 101 on which the solar cell 102 is prepared. And then finished Other elements on the array substrate such as the thin film transistor 104 are prepared on the first substrate 101 of the foregoing steps.
- the preparing the solar cell 102 may include: forming a first electrode of the solar cell 102 on the first substrate 101, and then forming an active layer (ie, a PN junction) over the first electrode by sputtering, evaporation, or spin coating. Finally, a second electrode is formed on the active layer.
- the material of the first electrode and the second electrode may be indium tin oxide (ITO) or other transparent conductive material.
- the specific preparation method of the array substrate according to Embodiment 2 of the present invention shown in FIG. 3 may include: first, preparing a thin film transistor 104, a storage capacitor, and the like on the upper surface of the first substrate 101; and then, preparing on the lower surface thereof Solar cell 102. It should be noted that the order of the foregoing two steps is interchangeable.
- the specific method for preparing the solar cell 102 is the same as the method for preparing the solar cell 102 described above, and details are not described herein.
- the specific preparation method of the array substrate according to Embodiment 3 of the present invention shown in FIG. 4 may include: first, preparing other elements such as a thin film transistor 104, a storage capacitor, and the like on the upper surface of the first substrate 101; and then, on the second substrate 201 A solar cell 102 is prepared on the lower surface. It should be noted that the order of the above two steps is interchangeable. The specific steps of preparing the solar cell 102 are the same as in the previous case, and the details are not repeated herein. Finally, the lower surface of the prepared first substrate 101 and the upper surface of the second substrate 201 are attached.
- the specific preparation method of the array substrate according to Embodiment 4 of the present invention shown in FIG. 5 may include: first, forming a color filter layer 303 on the upper surface of the third substrate 301; and then, under the fourth substrate 302
- the solar cell 102 is formed on the surface; it should be noted that the order of the above two steps is interchangeable.
- the specific steps of preparing the solar cell 102 are the same as in the previous case, and the detailed description thereof will not be repeated here.
- the lower surface of the prepared third substrate 301 is bonded to the upper surface of the fourth substrate 302.
- the specific preparation method of the array substrate according to Embodiment 5 of the present invention shown in FIG. 6 may include: first, forming a color filter layer 303 on the lower surface of the third substrate 301; then, on the third substrate 301
- the solar cell 102 is formed on the surface; it should be noted that the order of the above two steps is interchangeable. Preparation of solar power
- the specific steps of the pool 102 are the same as the previous one, and the details are not repeated here.
- the present invention also provides a display device comprising the above display panel.
- the display device can be: a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, etc., any product or component having a display function.
- the display device of the present invention has the display panels of the first to fifth embodiments, so that the display panel can be powered by the solar cell disposed on the light-transmitting area without charging the lithium battery, which is convenient for the user.
- the display device of the present invention further includes a backlight and a power module of the backlight, and the first pole and the second pole of the solar cell 102 are electrically connected to the two poles of the power module of the backlight, respectively.
- the solar cell 102 is electrically coupled to a power module of the backlight, that is, the solar cell 102 charges the power module of the backlight.
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
- Liquid Crystal (AREA)
- Photovoltaic Devices (AREA)
Abstract
一种显示面板及其制造方法和显示装置,属于液晶显示技术领域,其可解决现有的显示面板中太阳能电池吸收光量有限的问题。所述显示面板包括由子像素构成的透光区;以及太阳能电池(102),其至少设置在所述显示面板的部分透光区上,用于给显示面板供电;其中,所述太阳能电池的第一电极与第二电极均采用透明导电材料制成,且至少与所述透光区处的子像素颜色相同的光能够透过所述太阳能电池。
Description
显示面板及其制造方法和显示装置 技术领域
本发明属于液晶显示技术领域, 具体涉及一种显示面板及其 制造方法和显示装置。 背景技术
液晶显示装置具有轻薄、 功耗小、 数字化等优点, 目前在市 场上越来越受到广泛应用。 由于液晶本身不发光, 也无法依赖自 然光采光, 因此必须采用背光源以获得稳定、 清晰的显示。 一般 来说, 背光源的电能来源于外接的电池, 比如锂电池, 而电池的 储电量有限, 每次使用完后需要充电, 给使用者带来不便。
太阳能电池是利用光伏效应将太阳能转化为电能的一种装 置。 如图 1所述, 在常规的太阳能电池中, 当 N型半导体材料和 P型半导体材料接触后,导电粒子会发生扩散和漂移,从而在两种 半导体材料的界面处形成由 N型指向 P型的内建电场。 当光照在 太阳能电池的表面后, 光子提供能量, 在半导体材料中激发出新 的电子-空穴对。 这些被激发出来的空穴和电子在内建电场的作用 下分离, 并迅速在太阳能电池的上下两极积累。 基于上述原理, 将负载与太阳能电池两极相连, 即可实现太阳能电池为该负载供 电。
由于利用太阳能发电具有环保、 安全等优点, 因此, 在例如 液晶显示装置的耗电装置中, 尽可能有效地利用太阳能电池获取 光线来产生能量, 将极大地有利于节省资源的消耗以及保护环境。
常规的液晶显示装置包括: 驱动电路, 阵列基板, 彩膜基板, 设置在阵列基板与彩膜基板间的液晶层, 以及背光源。 其正常工 作时, 来自背光源的光透过阵列基板, 投射至液晶层; 驱动电路 通过调整阵列基板与彩膜基板之间的电场分布, 控制液晶层中液 晶分子发生转动, 使得由背光源发出的光部分或全部透过液晶层, 并经由彩膜基板透出, 从而实现显示。
公开号为 CN101813849A的中国专利申请中, 公开了这样一 种包含太阳能电池的显示器, 所述太阳能电池位于彩膜基板黑矩 阵的位置, 相当于把黑矩阵换成了太阳能电池, 从而将吸收到背 光源的光, 将光能转化成电能, 给液晶显示装置供电; 公开号为 CN101995691A 的中国专利申请中, 公开了一种包含太阳能电池 的显示器, 所述的太阳能电池位于显示器的非透光部件处, 同样 将吸收到背光源的光, 将光能转化成电能, 给液晶显示装置供电。 这两个专利只是分析液晶显示装置中非透光部件处的太阳能电 池, 而对于透光部件处的太阳能电池没有研究。 发明内容
本发明所要解决的技术问题包括, 针对现有的显示面板存在 的上述问题, 提供一种可以增大太阳能电池供电能力的显示面板。
解决本发明技术问题所采用的技术方案是一种显示面板, 其 包括由子像素构成的透光区和太阳能电池, 所述太阳能电池至少 设置在所述显示面板的部分透光区上, 用于给显示面板供电; 所 述太阳电池的第一电极与第二电极均采用透明导电材料制成, 且 至少与所述透光区处的子像素颜色相同的光能够透过所述太阳能 电池。
本发明的显示面板中的太阳能电池可以透过透光区处的子像 素颜色相同的光, 同时太阳能电池也会吸收一定量的与子像素颜 色不相同的光, 将光能转化为电能, 可以为显示面板的驱动单元 (例如栅极驱动单元、 源极驱动单元等)提供电能, 进而可以节 约其他供电设备的功耗。 而且, 显示面板的透光区相对显示面板 的遮光区的面积要大得多, 光照到透光区的量比照到遮光区的量 更多, 由于本发明的太阳能电池设置在显示面板的透光区, 因此 与现有的太阳能电池设于非透光部件处 (遮光区)相比较, 设于 透光区的太阳能电池能够吸收到的光能更多, 从而经光能转化的 电能更多, 进而本发明的太阳能电池的储能更多。
优选的是, 所述太阳能电池还包括第一电极与第二电极之间
的活性层, 所述活性层由 CdSe量子点组成。
进一步优选的是, 所述显示面板包括红色子像素、 绿色子像 素和蓝色子像素, 其中, 所述红色子像素所对应透光区上的太阳 能电池中 CdSe量子点的粒径在 15-20nm之间,所述绿色子像素所 对应透光区上的太阳能电池中 CdSe量子点的粒径在 8-13nm之间, 以及所述蓝色子像素所对应透光区上的太阳能电池中 CdSe 量子 点的粒径在 2-5nm之间。
优选的是, 上述显示面板还包括阵列基板, 所述阵列基板包 括第一基底、 绝缘层和薄膜晶体管, 其中, 所述太阳能电池设置 在第一基底上, 绝缘层设置在太阳能电池上方, 薄膜晶体管设置 在绝缘层上方。
优选的是, 上述显示面板还包括阵列基板, 所述阵列基板包 括第一基底、 绝缘层和薄膜晶体管, 其中, 薄膜晶体管设置在第 一基底上, 绝缘层设置在薄膜晶体管上方, 太阳能电池设置在绝 缘层上方。
优选的是, 上述显示面板还包括阵列基板, 所述阵列基板包 括第一基底和第二基底, 其中, 所述第一基底的上表面上设置有 薄膜晶体管, 所述第二基底的下表面上设置有太阳能电池, 并且 所述第一基底的下表面与第二基底的上表面相贴合。
优选的是, 上述显示面板还包括阵列基板, 所述阵列基板包 括第一基底, 其中, 所述第一基底的上表面设置有薄膜晶体管, 下表面设有太阳能电池。
优选的是, 上述显示面板还包括彩膜基板, 所述彩膜基板包 括第三基底和第四基底, 其中, 所述第三基底的上表面上设置有 彩色滤光层, 所述第四基底的下表面上设置有太阳能电池, 并且 所述第三基底的下表面与第四基底的上表面相贴合。
优选的是, 上述显示面板还包括彩膜基板, 所述彩膜基板包 括第三基底, 其中, 所述第三基底的上表面设置有太阳能电池, 下表面设置有彩色滤光层。
优选的是, 上述显示面板还包括阵列基板和彩膜基板, 其中,
所述阵列基板的透光区与所述彩膜基板的透光区上均设置有太阳 能电池。
优选的是, 在上述显示面板的遮光区上设置太阳能电池。 优选的是, 上述显示面板还包括电源模块, 所述太阳能电池 的第一极和第二极分别与所述电源模块的两极电连接。
电源模块可以包括栅极驱动电路和 /或源极驱动电路。
解决本发明技术问题所采用的技术方案是一种制造显示面板 的方法, 其包括: 至少在显示面板的部分由子像素构成的透光区 上设置用以给显示面板供电的太阳能电池, 以使得至少与所述透 光区处的子像素颜色相同的光能够透过所述太阳能电池。
优选的是, 上述至少在显示面板的部分由子像素构成的透光 区上设置用以给显示面板供电的太阳能电池的步骤包括: 在阵列 基板的第一基底上制备太阳能电池; 在制备好太阳能电池的第一 基底上形成绝缘层; 以及在形成绝缘层的第一基底上制备薄膜晶 体管。
优选的是, 上述至少在显示面板的部分由子像素构成的透光 区上设置用以给显示面板供电的太阳能电池的步骤包括: 在阵列 基板的第一基底上制备薄膜晶体管; 在制备好薄膜晶体管的第一 基底上形成绝缘层; 以及在形成绝缘层的第一基底上制备太阳能 电池。
优选的是, 上述至少在显示面板的部分由子像素构成的透光 区上设置用以给显示面板供电的太阳能电池的步骤包括: 在阵列 基板的第一基底的上表面上制备薄膜晶体管、 然后在第一基底的 下表面上制备太阳能电池; 或者在阵列基板的第一基底的下表面 上制备太阳能电池、 然后在第一基底的上表面上制备薄膜晶体管。
优选的是, 上述至少在显示面板的部分由子像素构成的透光 区上设置用以给显示面板供电的太阳能电池的步骤包括: 在阵列 基板的第一基底的上表面上制备薄膜晶体管、 然后在阵列基板的 第二基底的下表面上制备太阳能电池, 或者在阵列基板的第二基 底的下表面上制备太阳能电池、 然后在阵列基板的第一基底的上
表面上制备薄膜晶体管; 以及将第一基底的下表面和第二基底的 上表面相贴合。
优选的是, 上述至少在显示面板的部分由子像素构成的透光 区上设置用以给显示面板供电的太阳能电池的步骤包括: 在彩膜 基板的第三基底的上表面上形成彩色滤光层、 然后在彩膜基板的 第四基底的下表面上形成太阳能电池, 或者在彩膜基板的第四基 底的下表面上形成太阳能电池、 然后在彩膜基板的第三基底的上 表面上形成彩色滤光层; 以及将第三基底的下表面和第四基底的 上表面相贴合。
优选的是, 上述至少在显示面板的部分由子像素构成的透光 区上设置用以给显示面板供电的太阳能电池的步骤包括: 在彩膜 基板的第三基底的下表面上形成彩色滤光层、 然后在第三基底的 上表面上形成太阳能电池, 或者在彩膜基板的第三基底的上表面 上形成太阳能电池、 然后在第三基底的下表面上形成彩色滤光层。
优选的是, 上述制备太阳能电池的步骤包括: 形成太阳能电 池的第一电极; 在第一极上方形成活性层; 以及在活性层上形成 第二电极。
解决本发明技术问题所采用的技术方案是一种显示装置, 其 包括上述显示面板。
由于本发明的显示装置包括上述显示面板, 故其可以减小其 他供电设备的功耗。
优选的是, 上述显示装置还包括: 背光源和背光源的电源模 块, 所述太阳能电池的第一极和第二极分别与背光源的电源模块 的两极电连接。
本发明还提供了一种制造上述显示面板的方法, 其包括: 至少 在显示面板的部分透光区上设置用以给显示面板供电的太阳能电 池, 以使得至少与所述透光区处的子像素颜色相同的光能够透过所 述太阳能电池。
在本发明的显示面板及包括该显示面板的显示装置中,太阳能 电池至少设置在显示面板上的部分透光区,并且至少与所述透光区
处的子像素颜色相同的光能够透过所述太阳能电池而其他颜色的 光将被太阳能电池吸收转换成电能,从而在不影响显示基板上的子 像素的正常操作的情况下太阳能电池将所吸收的光能转换成电能 进行存储, 用以对显示面板进行供电, 从而可以减小诸如锂电池的 其他供电设备的功耗, 减少了需要对锂电池进行充电的频率, 给用 户带来了方便。 附图说明
图 1为现有的太阳能电池的结构示意图;
图 2为本发明的实施例 1的显示面板的示意图
图 3为本发明的实施例 2的显示面板的示意图
图 4为本发明的实施例 3的显示基板的示意图
图 5为本发明的实施例 4的显示面板的示意图 以及 图 6为本发明的实施例 5的显示面板的示意图 其中附图标记为: 101、 第一基底; 102、 太阳能电池; 103、 绝缘层; 104、 薄膜晶体管; 201、 第二基底; 301、 第三基底; 302、 第四基底; 303、 彩色滤光层。 具体实施方式
为使本领域技术人员更好地理解本发明的技术方案, 下面结 合附图和具体实施方式对本发明作进一步详细描述。 如图 2至图 6所示, 本发明提供一种显示面板, 其包括由子 像素构成的透光区, 且至少在所述显示面板的部分透光区上设置 有太阳能电池 102, 用于给显示面板供电; 其中, 太阳能电池 102 的第一电极与第二电极均采用透明导电材料制成, 且至少与所述 透光区处的子像素颜色相同的光能够透过太阳能电池 102。 其中, 太阳能电池 102的第一电极和第二电极中的一个电极为阳极, 另 一电极为阴极, 透光区是指显示面板中光能够透过的任何地方。
本发明中的太阳能电池 102可以透过与透光区处的子像素颜 色相同的光, 同时太阳能电池 102也会吸收一定量的与子像素颜 色不相同的光, 将光能转化为电能, 为显示面板的驱动单元 (例 如栅极驱动单元、 源极驱动单元等)提供电能。 而且, 显示面板 的透光区的面积相对显示面板的遮光区的面积要大得多, 光照到 透光区的量比照到遮光区的量更多,由于本发明的太阳能电池 102 设置在显示面板的透光区, 因此与现有的太阳能电池设于非透光 部件处 (遮光区) 的结构相比较, 本发明的设于透光区的太阳能 电池 102 能够吸收到更多的光量, 光能转化的电能更多, 进而太 阳能电池 102的储能更多。
优选地, 太阳能电池 102包括第一电极、 第二电极以及第一 电极与第二电极之间的活性层, 所述活性层由 CdSe量子点组成。 本领域技术人员可以理解的是, 量子点的吸收特性和透过特性与 各种颜色的光的波长是相对应的, 并且量子点本身的吸收特性和 透过特性也是可以调节的, 与量子点本身的粒径相关。 当然, 本 发明的太阳能电池 102中的量子点不局限于 CdSe量子点一种,也 可以包括其他材料的量子点。
进一步优选地, 上述显示面板包括红色子像素、 绿色子像素 和蓝色子像素, 其中, 所述红色子像素所对应透光区上的太阳能 电池 102中 CdSe量子点的粒径在 15-20nm之间,此时太阳能电池 102可以吸收除红光以外的其他颜色的光,将光能转化为电能, 而 太阳能电池 102只透过红光; 所述绿色子像素所对应透光区上的 太阳能电池 102中 CdSe量子点的粒径在 8-13nm之间, 此时太阳 能电池 102 可以吸收除绿光以外的其他颜色的光, 将光能转化为 电能, 而太阳能电池 102只透过绿光; 所述蓝色子像素所对应透 光区上的太阳能电池 102中 CdSe量子点的粒径在 2-5nm之间,此 时太阳能电池 102可以吸收除蓝光以外的其他颜色的光, 将光能 转化为电能, 而太阳能电池 102只透过蓝光。 也就是说, 太阳能 电池 102 能透过与透光区处子像素颜色相同的光, 其他颜色的光 将被太阳能电池 102吸收, 因此, 太阳能电池 102不仅不会影响
各种颜色子像素的光的透过率, 同时还可以吸收未被利用的颜色 的光(与透光区处子像素颜色不同的光) , 给显示面板的电源模 块等供电, 而不需要对锂电池进行充电, 给使用者带来方便。 同 理,对于包括其他量子点的太阳能电池 102, 可根据实际情况来设 置不同颜色子像素透光区处量子点的粒径, 以便透过与透光区处 子像素相同颜色的光。 实施例 1 :
本发明的显示面板包括阵列基板。 作为实施例 1 , 如图 2所 示,该阵列基板包括第一基底 101、绝缘层 103和薄膜晶体管 104, 所述太阳能电池 102设置在第一基底 101上, 绝缘层 103设置在 太阳能电池 102上方, 而薄膜晶体管 104设置在绝缘层 103上方。
上述为一种太阳能电池 102 设置在阵列基板的透光区的情 况, 此时当有光照射到阵列基板时, 太阳能电池 102就会吸收一 定的光, 将光能转化为电能进行存储, 进而可以为显示面板的耗 能部分供电。
当然, 太阳能电池 102也可以设置在制备好的阵列基板上。 也就是, 阵列基板可以包括第一基底 101、第一基底 101上设置的 薄膜晶体管 104和存储电容等元器件、 在薄膜晶体管 104和存储 电容等元器件上制备的绝缘层 103和设置在绝缘层 103上方的太 阳能电池 102。 实施例 2
本实施例的显示面板包括阵列基板。 作为实施例 2, 如图 3 所示, 该阵列基板包括第一基底 101 , 所述第一基底 101的上表面 设置有薄膜晶体管 104, 而下表面设有太阳能电池 102。
上述为另一种太阳能电池 102设置在阵列基板的透光区的情 况, 此时当有光照射到阵列基板时, 太阳能电池 102就会吸收一 定的光, 将光能转化为电能进行存储, 进而可以为显示面板的耗 能部分供电。
实施例 3
本实施例的显示面板包括阵列基板。 作为实施例 3 , 如图 4 所示, 该阵列基板包括第一基底 101 和第二基底 201 , 第一基底 101的上表面上设置有薄膜晶体管 104, 第二基底 201的下表面上 设置有太阳能电池 102, 其中, 第一基底 101的下表面与第二基底 201的上表面相贴合。
上述为再一种太阳能电池 102设置在阵列基板的透光区的情 况, 此时当有光照射到阵列基板时, 太阳能电池 102就会吸收一 定的光, 将光能转化为电能进行存储, 可以为显示面板的耗能部 分供电。 实施例 4
本实施例的显示面板包括彩膜基板。 作为实施例 4, 如图 5 所示, 该彩膜基板包括第三基底 301 和第四基底 302, 第三基底 301的上表面上设置有彩色滤光层 303, 第四基底 302的下表面上 设置有太阳能电池 102, 其中, 第三基底 301的下表面与第四基底 302的上表面相贴合。
上述为一种太阳能电池 102 设置在彩膜基板的透光区的情 况, 此时当有光照射到太阳能电池 102时, 太阳能电池 102就会 吸收一定的光, 将光能转化为电能进行存储, 可以为显示面板的 耗能部分供电。 实施例 5
本实施例的显示面板包括彩膜基板。 作为实施例 5, 如图 6 所示, 所述彩膜基板包括第三基底 301 , 所述第三基底 301的上表 面设置有太阳能电池 102, 下表面设置有彩色滤光层 303。
上述为另一种太阳能电池 102设置在彩膜基板的透光区的情 况, 此时当有光照射到彩膜基板时, 太阳能电池 102就会吸收一 定的光, 而且还可以吸收到外界环境的光, 将光能转化为电能进
行存储, 可以为显示面板的耗能部分供电。 优选地, 本发明的显示面板还包括: 电源模块, 所述太阳能 电池 102 的第一极和第二极分别与所述电源模块的两极电连接。 该电源模块可以为显示面板的栅极驱动电路、 源极驱动电路等驱 动电路中的一种电路或多种电路供电, 其中, 太阳能电池 102与 电源模块电连接, 也就是说, 太阳能电池 102能够给电源模块充 电。
需要说明的是, 上述第一、 第二、 第三和第四基底的上表面 与下表面是相对的, 均是相对于附图中所示方向而言的。 本发明 只是描述了几种结构的显示面板, 但是本发明不局限于上述几种 情况。 例如, 本发明还可以包括以下两种情况: 所述显示面板可 以包括阵列基板和彩膜基板, 而在阵列基板的透光区与彩膜基板 的透光区上均设有太阳能电池 102;在显示面板的透光区与遮光区 上均设置有太阳能电池 102,其中遮光区可以是彩膜基板上的黑矩 阵、 阵列基板上的存储电容、 像素区域内的薄膜晶体管 104等非 透光元器件所在位置处。 根据本发明, 只要在显示面板的透光区 上设置有太阳能电池 102, 均在本发明的保护范围内,在此不—— 赘述。 本发明还提供了一种制造显示面板的方法,其包括至少在显示 面板的部分由子像素构成的透光区上设置用以给显示面板供电的 太阳能电池 102, 以使得至少与所述透光区处的子像素颜色相同的 光能够透过所述太阳能电池 102。
下面参照图 2至图 6所示的实施例 1至实施例 5的阵列基板的 结构示意图来描述根据本发明的制造显示面板的方法的具体实施 方式。
图 2所示的根据本发明实施例 1的阵列基板的具体制备方法 可以包括: 首先, 在第一基底 101上制备太阳能电池 102, 在制备 好太阳能电池 102的第一基底 101上形成绝缘层 103,然后在完成
前述步骤的第一基底 101上制备薄膜晶体管 104等阵列基板上的 其他元件。 其中, 制备太阳能电池 102具体可以包括: 在第一基 底 101上形成太阳能电池 102的第一电极, 然后通过溅射、 蒸镀 或者旋涂等方法在第一电极上方形成活性层(即 PN结), 最后在 活性层上形成第二电极。 第一电极和第二电极的材料可以采用氧 化铟锡 (ITO ) , 也可以是其它透明的导电材料。
图 3所示的根据本发明实施例 2的阵列基板的具体制备方法 可以包括:首先,在第一基底 101的上表面上制备薄膜晶体管 104、 存储电容等元件; 然后, 在其下表面上制备太阳能电池 102。 需要 说明的是, 前述这两个步骤的顺序是可以互换的。 其中, 太阳能 电池 102的具体制备方法与上述太阳能电池 102的制备方法相同, 在此不重复赘述。
图 4所示的根据本发明实施例 3的阵列基板的具体制备方法 可以包括:首先,在第一基底 101的上表面上制备薄膜晶体管 104、 存储电容等其他元件; 然后, 在第二基底 201 下表面上制备太阳 能电池 102。 需要说明的是, 上述两个步骤的顺序是可以互换的。 制备太阳能电池 102的具体步骤与上一种情况相同, 在此不重复 赘述。 最后, 将制备好的第一基底 101 的下表面和第二基底 201 的上表面相贴合。
图 5所示的根据本发明实施例 4所示的阵列基板的具体制备 方法可以包括: 首先, 在第三基底 301 的上表面上形成彩色滤光 层 303; 然后, 在第四基底 302的下表面上形成太阳能电池 102; 需要说明的是, 上述两个步骤的顺序是可以互换的。 制备太阳能 电池 102的具体步骤与上一种情况相同, 在此不重复赘述。 最后, 将制备好的第三基底 301的下表面和第四基底 302的上表面相贴 合。
图 6所示的根据本发明实施例 5所示的阵列基板的具体制备 方法可以包括: 首先, 在第三基底 301 的下表面上形成彩色滤光 层 303; 然后, 在第三基底 301的上表面上形成太阳能电池 102; 需要说明的是, 上述两步骤的顺序是可以互换的。 制备太阳能电
池 102的具体步骤与上一种情况相同, 在此不重复赘述。 本发明还提供了一种显示装置, 其包括上述显示面板。 该显 示装置可以为: 手机、 平板电脑、 电视机、 显示器、 笔记本电脑、 数码相框、 导航仪等任何具有显示功能的产品或部件。
本发明的显示装置具有实施例 1至 5中的显示面板, 因此可 以利用设置在透光区上的太阳能电池对显示面板供电, 而不需要 对锂电池进行充电, 给使用者带来方便。
优选地, 本发明的显示装置还包括背光源和背光源的电源模 块, 所述太阳能电池 102的第一极和第二极分别与背光源的电源 模块的两极电连接。 太阳能电池 102与背光源的电源模块电连接, 也就是, 太阳能电池 102给背光源的电源模块充电。
当然, 本发明的显示装置中还可以包括其他常规结构, 如显 示驱动单元等。
可以理解的是, 以上实施方式仅仅是为了说明本发明的原理 而采用的示例性实施方式, 然而本发明并不局限于此。 对于本领 域内的普通技术人员而言, 在不脱离本发明的精神和实质的情况 下, 可以做出各种变型和改进, 这些变型和改进也视为本发明的 保护范围。
Claims
1. 一种显示面板, 其包括由子像素构成的透光区和太阳能电 池, 其中,
所述太阳能电池至少设置在所述显示面板的部分透光区上, 用于给显示面板供电; 以及
所述太阳电池的第一电极与第二电极均采用透明导电材料制 成, 且至少与所述透光区处的子像素颜色相同的光能够透过所述 太阳能电池。
2. 根据权利要求 1所述的显示面板, 其中, 所述太阳能电池 还包括第一电极与第二电极之间的活性层, 并且所述活性层由 CdSe量子点组成。
3. 根据权利要求 2所述的显示面板, 其中, 所述子像素包括 红色子像素、 绿色子像素和蓝色子像素, 其中, 所述红色子像素 所对应透光区上的太阳能电池中 CdSe量子点的粒径在 15-20nm之 间,所述绿色子像素所对应透光区上的太阳能电池中 CdSe量子点 的粒径在 8-13nm之间, 以及所述蓝色子像素所对应透光区上的太 阳能电池中 CdSe量子点的粒径在 2-5nm之间。
4. 根据权利要求 1至 3中任一项所述的显示面板, 还包括阵 列基板, 所述阵列基板包括第一基底、 绝缘层和薄膜晶体管, 其中, 所述太阳能电池设置在第一基底上, 绝缘层设置在太 阳能电池上方, 薄膜晶体管设置在绝缘层上方。
5. 根据权利要求 1至 3中任一项所述的显示面板, 还包括阵 列基板, 所述阵列基板包括第一基底、 绝缘层和薄膜晶体管, 其中, 薄膜晶体管设置在第一基底上, 绝缘层设置在薄膜晶 体管上方, 太阳能电池设置在绝缘层上方。
6. 根据权利要求 1至 3中任一项所述的显示面板, 还包括阵 列基板, 所述阵列基板包括第一基底,
其中, 所述第一基底的上表面设置有薄膜晶体管, 下表面设 有太阳能电池。
7. 根据权利要求 1至 3中任一项所述的显示面板, 还包括阵 列基板, 所述阵列基板包括第一基底和第二基底,
其中, 所述第一基底的上表面上设置有薄膜晶体管, 所述第 二基底的下表面上设置有太阳能电池, 并且所述第一基底的下表 面与所述第二基底的上表面相贴合。
8. 根据权利要求 1至 3中任一项所述的显示面板, 还包括彩 膜基板, 所述彩膜基板包括第三基底和第四基底,
其中, 所述第三基底的上表面上设置有彩色滤光层, 所述第 四基底的下表面上设置有太阳能电池, 并且所述第三基底的下表 面与所述第四基底的上表面相贴合。
9. 根据权利要求 1至 3中任一项所述的显示面板, 还包括彩 膜基板, 所述彩膜基板包括第三基底,
其中, 所述第三基底的上表面设置有太阳能电池, 下表面设 置有彩色滤光层。
10. 根据权利要求 1至 3 中任一项所述的显示面板, 还包括 阵列基板和彩膜基板,
其中, 所述阵列基板的透光区与所述彩膜基板的透光区上均 设置有太阳能电池。
11. 根据权利要求 1至 10中任一项所述的显示面板, 其中, 在所述显示面板的遮光区上设置有太阳能电池。
12. 根据权利要求 1至 11中任一项所述的显示面板, 还包括 电源模块,
其中, 所述太阳能电池的第一极和第二极分别与所述电源模 块的两极电连接。
13. 根据权利要求 12所述的显示面板, 其中, 电源模块包括 栅极驱动电路和 /或源极驱动电路。
14. 一种制造显示面板的方法, 包括:
至少在显示面板的部分由子像素构成的透光区上设置用以给 显示面板供电的太阳能电池, 以使得至少与所述透光区处的子像 素颜色相同的光能够透过所述太阳能电池。
15. 根据权利要求 14所述的方法, 其中, 至少在显示面板的 部分由子像素构成的透光区上设置用以给显示面板供电的太阳能 电池的步骤包括:
在阵列基板的第一基底上制备太阳能电池;
在制备好太阳能电池的第一基底上形成绝缘层; 以及 在形成绝缘层的第一基底上制备薄膜晶体管。
16. 根据权利要求 14所述的方法, 其中, 至少在显示面板的 部分由子像素构成的透光区上设置用以给显示面板供电的太阳能 电池的步骤包括:
在阵列基板的第一基底上制备薄膜晶体管;
在制备好薄膜晶体管的第一基底上形成绝缘层; 以及 在形成绝缘层的第一基底上制备太阳能电池。
17. 根据权利要求 14所述的方法, 其中, 至少在显示面板的 部分由子像素构成的透光区上设置用以给显示面板供电的太阳能
电池的步骤包括:
在阵列基板的第一基底的上表面上制备薄膜晶体管、 然后在 第一基底的下表面上制备太阳能电池; 或者
在阵列基板的第一基底的下表面上制备太阳能电池、 然后在 第一基底的上表面上制备薄膜晶体管。
18. 根据权利要求 14所述的方法, 其中, 至少在显示面板的 部分由子像素构成的透光区上设置用以给显示面板供电的太阳能 电池的步骤包括:
在阵列基板的第一基底的上表面上制备薄膜晶体管、 然后在 阵列基板的第二基底的下表面上制备太阳能电池, 或者在阵列基 板的第二基底的下表面上制备太阳能电池、 然后在阵列基板的第 一基底的上表面上制备薄膜晶体管; 以及
将第一基底的下表面和第二基底的上表面相贴合。
19. 根据权利要求 14所述的方法, 其中, 至少在显示面板的 部分由子像素构成的透光区上设置用以给显示面板供电的太阳能 电池的步骤包括:
在彩膜基板的第三基底的上表面上形成彩色滤光层、 然后在 彩膜基板的第四基底的下表面上形成太阳能电池, 或者在彩膜基 板的第四基底的下表面上形成太阳能电池、 然后在彩膜基板的第 三基底的上表面上形成彩色滤光层; 以及
将第三基底的下表面和第四基底的上表面相贴合。
20. 根据权利要求 14所述的方法, 其中, 至少在显示面板的 部分由子像素构成的透光区上设置用以给显示面板供电的太阳能 电池的步骤包括:
在彩膜基板的第三基底的下表面上形成彩色滤光层、 然后在 第三基底的上表面上形成太阳能电池, 或者
在彩膜基板的第三基底的上表面上形成太阳能电池、 然后在 第三基底的下表面上形成彩色滤光层。
21. 根据权利要求 15至 20中任一项所述的方法, 其中, 制 备太阳能电池的步骤包括:
形成太阳能电池的第一电极;
在第一极上方形成活性层; 以及
在活性层上形成第二电极。
22. 一种显示装置, 包括权利要求 1至 13 中任意一项所述的 显示面板。
23. 根据权利要求 22所述的显示装置, 还包括背光源和背光 源的电源模块,所述太阳能电池的第一极和第二极分别与背光源的 电源模块的两极电连接。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/429,992 US9507190B2 (en) | 2013-10-18 | 2014-05-16 | Display panel and method for manufacturing the same, and display device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310491955.7 | 2013-10-18 | ||
CN201310491955.7A CN103529581A (zh) | 2013-10-18 | 2013-10-18 | 显示面板及显示装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015055004A1 true WO2015055004A1 (zh) | 2015-04-23 |
Family
ID=49931710
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2014/077661 WO2015055004A1 (zh) | 2013-10-18 | 2014-05-16 | 显示面板及其制造方法和显示装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9507190B2 (zh) |
CN (1) | CN103529581A (zh) |
WO (1) | WO2015055004A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114335201A (zh) * | 2021-04-01 | 2022-04-12 | 友达光电股份有限公司 | 太阳能板 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103529581A (zh) * | 2013-10-18 | 2014-01-22 | 京东方科技集团股份有限公司 | 显示面板及显示装置 |
CN103955082A (zh) * | 2014-03-07 | 2014-07-30 | 京东方科技集团股份有限公司 | 一种液晶面板及其制作方法和显示装置 |
CN103985734B (zh) * | 2014-04-16 | 2017-03-08 | 京东方科技集团股份有限公司 | 一种透明显示装置及其制作方法 |
CN106597721B (zh) * | 2016-12-05 | 2020-10-27 | Tcl科技集团股份有限公司 | 一种显示面板、显示装置及显示面板的制作方法 |
KR102602739B1 (ko) | 2018-09-07 | 2023-11-16 | 삼성디스플레이 주식회사 | 전자 장치 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101101930A (zh) * | 2007-08-01 | 2008-01-09 | 上海芯光科技有限公司 | 一种高效太阳能电池光波转换纳米复合材料 |
CN101813849A (zh) * | 2009-02-19 | 2010-08-25 | 北京京东方光电科技有限公司 | 彩膜基板及其制造方法和液晶面板 |
CN101852947A (zh) * | 2009-03-31 | 2010-10-06 | 英特尔公司 | 用于显示设备的集成光电池 |
CN101995691A (zh) * | 2009-08-20 | 2011-03-30 | 上海天马微电子有限公司 | 液晶显示装置 |
CN201984173U (zh) * | 2010-11-24 | 2011-09-21 | 吉富新能源科技(上海)有限公司 | 具有透明薄膜太阳能电池的彩色滤光片及其显示装置 |
CN102540565A (zh) * | 2012-03-20 | 2012-07-04 | 友达光电(苏州)有限公司 | 具有太阳能电池功能的彩色滤光基板及显示面板 |
CN103529581A (zh) * | 2013-10-18 | 2014-01-22 | 京东方科技集团股份有限公司 | 显示面板及显示装置 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20090079569A (ko) * | 2008-01-18 | 2009-07-22 | 삼성전자주식회사 | 박막 트랜지스터 기판과 이의 제조 방법 |
US20110155233A1 (en) * | 2009-12-29 | 2011-06-30 | Honeywell International Inc. | Hybrid solar cells |
KR101156434B1 (ko) * | 2010-01-05 | 2012-06-18 | 삼성모바일디스플레이주식회사 | 유기 발광 표시 장치 |
JP4844685B1 (ja) * | 2010-06-23 | 2011-12-28 | 大日本印刷株式会社 | 有機薄膜太陽電池モジュール |
CN102487042B (zh) * | 2010-12-03 | 2014-06-11 | 北京京东方光电科技有限公司 | 阵列基板及其制造方法和检测方法、液晶面板 |
US8686416B2 (en) * | 2011-03-25 | 2014-04-01 | Semiconductor Energy Laboratory Co., Ltd. | Oxide semiconductor film and semiconductor device |
-
2013
- 2013-10-18 CN CN201310491955.7A patent/CN103529581A/zh active Pending
-
2014
- 2014-05-16 WO PCT/CN2014/077661 patent/WO2015055004A1/zh active Application Filing
- 2014-05-16 US US14/429,992 patent/US9507190B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101101930A (zh) * | 2007-08-01 | 2008-01-09 | 上海芯光科技有限公司 | 一种高效太阳能电池光波转换纳米复合材料 |
CN101813849A (zh) * | 2009-02-19 | 2010-08-25 | 北京京东方光电科技有限公司 | 彩膜基板及其制造方法和液晶面板 |
CN101852947A (zh) * | 2009-03-31 | 2010-10-06 | 英特尔公司 | 用于显示设备的集成光电池 |
CN101995691A (zh) * | 2009-08-20 | 2011-03-30 | 上海天马微电子有限公司 | 液晶显示装置 |
CN201984173U (zh) * | 2010-11-24 | 2011-09-21 | 吉富新能源科技(上海)有限公司 | 具有透明薄膜太阳能电池的彩色滤光片及其显示装置 |
CN102540565A (zh) * | 2012-03-20 | 2012-07-04 | 友达光电(苏州)有限公司 | 具有太阳能电池功能的彩色滤光基板及显示面板 |
CN103529581A (zh) * | 2013-10-18 | 2014-01-22 | 京东方科技集团股份有限公司 | 显示面板及显示装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114335201A (zh) * | 2021-04-01 | 2022-04-12 | 友达光电股份有限公司 | 太阳能板 |
CN114335201B (zh) * | 2021-04-01 | 2023-12-19 | 友达光电股份有限公司 | 太阳能板 |
Also Published As
Publication number | Publication date |
---|---|
CN103529581A (zh) | 2014-01-22 |
US9507190B2 (en) | 2016-11-29 |
US20150338691A1 (en) | 2015-11-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9477019B2 (en) | Color filter substrate, display device and method for manufacturing a color filter substrate | |
CN101813849B (zh) | 彩膜基板及其制造方法和液晶面板 | |
WO2015055004A1 (zh) | 显示面板及其制造方法和显示装置 | |
TWI406036B (zh) | 光電池整合液晶顯示器及光電池整合平面顯示器 | |
US7933061B2 (en) | Display substrate, electrophoretic display device with the same and method for manufacturing the same | |
US20160087116A1 (en) | Display device integrated with solar cell panel and methods for producing the same | |
WO2014173016A1 (zh) | 显示面板、显示装置及电子器件 | |
US10012852B2 (en) | Color filter substrate and liquid crystal display apparatus | |
US9965080B2 (en) | Color filter substrate with photovoltaic conversion layer, display panel and touch display device | |
WO2012060246A1 (ja) | 太陽電池を備えた表示装置及び電子機器 | |
CN104571698A (zh) | 一种触控面板及其制备方法、触控显示装置 | |
WO2015100884A1 (zh) | 显示基板和显示装置 | |
CN109713025A (zh) | 显示面板及其制备方法、显示装置 | |
WO2015106536A1 (zh) | 一种背光模组和显示装置 | |
TW201515206A (zh) | 具有太陽能電池之有機發光顯示器 | |
TWI385612B (zh) | 具光電效應之顯示面板與應用其之電子裝置 | |
US9831826B2 (en) | Display substrate and display device | |
CN110895374A (zh) | 显示面板及显示装置 | |
TWI590477B (zh) | 太陽能電池鏤空電路及太陽能電池顯示裝置 | |
US11081067B2 (en) | Display substrate of electronic ink screen and display device thereof | |
KR101868792B1 (ko) | 자가발전에 의한 충전식 디스플레이 패널 | |
CN108364979A (zh) | Ar眼镜 | |
CN104916727A (zh) | 太阳能电池及其制作方法、显示模组及显示装置 | |
CN108550613B (zh) | 一种显示模组 | |
CN207264710U (zh) | 一种显示装置及电子设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 14429992 Country of ref document: US |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14854570 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase | ||
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23.08.2016) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14854570 Country of ref document: EP Kind code of ref document: A1 |