[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015052744A1 - Laser device - Google Patents

Laser device Download PDF

Info

Publication number
WO2015052744A1
WO2015052744A1 PCT/JP2013/006090 JP2013006090W WO2015052744A1 WO 2015052744 A1 WO2015052744 A1 WO 2015052744A1 JP 2013006090 W JP2013006090 W JP 2013006090W WO 2015052744 A1 WO2015052744 A1 WO 2015052744A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser light
laser
unnecessary
power generation
generation unit
Prior art date
Application number
PCT/JP2013/006090
Other languages
French (fr)
Japanese (ja)
Inventor
孝文 河井
小島 哲夫
鈴木 寛之
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2013/006090 priority Critical patent/WO2015052744A1/en
Priority to JP2014509543A priority patent/JPWO2015052744A1/en
Priority to TW103111673A priority patent/TW201513957A/en
Publication of WO2015052744A1 publication Critical patent/WO2015052744A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0121Operation of devices; Circuit arrangements, not otherwise provided for in this subclass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0543Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the refractive type, e.g. lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/0014Monitoring arrangements not otherwise provided for
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0092Nonlinear frequency conversion, e.g. second harmonic generation [SHG] or sum- or difference-frequency generation outside the laser cavity
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/3501Constructional details or arrangements of non-linear optical devices, e.g. shape of non-linear crystals
    • G02F1/3503Structural association of optical elements, e.g. lenses, with the non-linear optical device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/3501Constructional details or arrangements of non-linear optical devices, e.g. shape of non-linear crystals
    • G02F1/3507Arrangements comprising two or more nonlinear optical devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/354Third or higher harmonic generation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a laser device.
  • Some laser devices convert laser light having a fundamental wavelength incident on a wavelength conversion crystal to generate laser light having a high harmonic wave.
  • a fundamental wave and a second harmonic are also generated at the same time.
  • the conventional laser oscillator has absorbed unnecessary laser light (fundamental wave, second harmonic laser light) after wavelength conversion by a damper.
  • An object of the present invention is to obtain a laser apparatus that can reuse unnecessary laser light by generating electric power from the unnecessary laser light.
  • power is generated by irradiating the power generating element with unnecessary laser light as the output of the laser apparatus.
  • the present invention it is possible to generate electric power from unnecessary laser light by irradiating the power generating element with unnecessary laser light as an output of the laser device. Thereby, a laser device with high energy efficiency can be obtained.
  • Embodiment 1 of this invention It is a figure which shows the laser apparatus in Embodiment 1 of this invention. It is a figure which shows an example of the laser beam generation part in Embodiment 1 of this invention. It is a figure which shows another example in Embodiment 1 of this invention. It is a figure which shows another example of the laser beam generation part in Embodiment 1 of this invention. It is a figure which shows the laser apparatus in Embodiment 2 of this invention. It is a figure which shows the laser apparatus in Embodiment 3 of this invention.
  • FIG. FIG. 1 is a diagram showing a laser device in the first embodiment.
  • the present invention is applied to a laser apparatus that generates a third harmonic from the laser light generated from the laser light generator 3 by the wavelength converter 8 and uses the third harmonic laser light for processing.
  • the laser device 1 in FIG. 1 includes a laser light generation unit 3, a wavelength conversion unit 8, a wavelength separation mirror 9, a power generation element 4, and a power storage 5.
  • the power generation element 4 is connected to the power storage 5.
  • the wavelength separation mirror 9 functions to pass only the third harmonic wave and change the optical paths of the fundamental wave and the second harmonic laser beam by 90 °.
  • the laser light generator 3 includes a total reflection mirror (TR) 10, a cavity 11 having a rod type YAG as a laser medium and an excitation light source for exciting the laser medium, a Q switch 12, a partial reflection mirror ( PR) 13.
  • the light generated in the cavity 11 is oscillated by the total reflection mirror 10 and the partial reflection mirror 13, passes through the Q switch 12, and is output.
  • the cavity 11 is not limited to the rod type, but may be a crystal shape or a slab type, and the material is not limited to YAG and may be YVO4.
  • the wavelength conversion unit 8 is composed of a wavelength conversion crystal of an SHG crystal 80 (Second harmonic generation) and a THG crystal 81 (Third harmonic generation).
  • the wavelength conversion crystal may be any crystal such as LBO, BBO, CLBO, or KTP.
  • the fundamental laser beam emitted from the laser beam generator 3 is input to the wavelength converter 8.
  • a second harmonic laser beam is generated by the SHG crystal 80, and the fundamental laser beam that has not been converted by the SHG crystal is incident on the THG crystal 81 together with the second harmonic laser beam.
  • the THG crystal 81 generates a third harmonic laser beam from the fundamental laser beam and the second harmonic laser beam. After passing through the THG crystal 81, the fundamental laser beam, the second harmonic laser beam, and the generation that are not converted.
  • the three-wavelength laser light having the third wavelength travels on the same optical path.
  • the fundamental laser light and the second harmonic laser light are changed in optical path by 90 ° and are incident on the power generation element 4.
  • the third harmonic laser beam passes through the wavelength separation mirror 9, is output from the laser device 1, and is used for processing the workpiece 7.
  • the laser light incident on the power generation element 4 is generated and stored in the power storage 5.
  • the generated power can be used for various purposes. That is, it may be used as an auxiliary power supply to the laser device 1 or may be used for power supply to devices other than the laser device 1.
  • the power accumulator 5 may not be provided, and the power generated by the power generation element 4 may be directly used as a power source assist for the laser light generator.
  • the conventional laser device that absorbs unnecessary laser light in the damper requires a damper cooling device because the damper generates heat. However, according to the present embodiment, the damper cooling device is unnecessary. Therefore, the apparatus can be downsized.
  • the third harmonic laser beam necessary for processing is “necessary laser beam emitted from the laser device.
  • the fundamental wave or the second harmonic laser beam that is not necessary for processing is “unnecessary laser beam that is not emitted from the laser device”.
  • unnecessary laser light that is not required for processing is incident on the power generation element 4, power generation from unnecessary laser light can be performed, and laser light generation energy can be effectively used.
  • the necessary laser beam is a third harmonic laser beam
  • the necessary laser beam may be a fourth harmonic laser beam.
  • the wavelength converter 8 is provided with an FHG crystal (Forth harmonic generation) instead of the THG crystal 81, and outputs the fourth harmonic laser beam together with the fundamental laser beam and the second harmonic laser beam.
  • the laser beam generation energy can be effectively used by making unnecessary laser light (fundamental laser light, double wave laser light) incident on the power generation element 4.
  • the wavelength separation mirror 9 is used to change the optical path of unnecessary laser light.
  • a prism 14 may be used as shown in FIG.
  • the power generation element 4 is provided at a position where unnecessary laser light after passing through the prism 14 is irradiated, and only the necessary laser light is output from the laser device 1.
  • the power generation element 4 may be provided in each of the plurality of directions, or each unnecessary laser light emitted in the plurality of directions may be optically pathed by a mirror or the like. It may be adjusted and finally irradiated to one power generation element 4.
  • the laser light generator 3 has the configuration shown in FIG. 2, but the configuration is not limited to this, and the configuration shown in FIG. 4 may be used.
  • FIG. 4 is a diagram in which the laser beam generator 3 is configured with a fiber laser 15. Laser light generated by the fiber laser 15 is amplified by the amplifier 16 and output.
  • the laser light generator 3 may be a disk laser.
  • the power generating element 4 may use a solar cell.
  • the required third harmonic laser light in this embodiment is about 30%, and the other 70% is unnecessary laser light (fundamental wave and second harmonic laser light). Since the conversion efficiency of a solar cell is generally about 20%, when about 70% of unnecessary laser light is irradiated to the solar cell, about 1.4% of the total laser light output from the laser light generation unit 3 Laser light can be used for power generation.
  • solar cells of the CIS type compounds based on copper, indium and selenium
  • have a sensitivity to the wavelength band (about 500 to 1000 nm) of the fundamental laser beam and the second harmonic laser beam Since it is good, the power generation efficiency can be further increased by using this.
  • the energy density of the laser light may be lowered so as not to damage the power generating element.
  • an expanding lens (diameter expanding means) or the like is installed on the optical path between the wavelength separation mirror 9 and the power generation element 4, and the diameter is increased so as to reduce the energy density of the laser light.
  • the laser beam with reduced energy density is incident on the power generation element, so that the power generation element can be prevented from being damaged.
  • FIG. FIG. 5 is a diagram showing a laser apparatus according to Embodiment 2 for carrying out the present invention.
  • the wavelength converter 8 and the wavelength separation mirror 9 are not provided, and the shutter 2 is added.
  • the other parts with the same symbols are the same as those in the first embodiment, and thus the description thereof is omitted.
  • the shutter 2 is a total reflection mirror, for example, and is connected to a drive unit (not shown) described later, and the drive unit is connected to a control unit (not shown).
  • the laser light output from the laser device 1 is condensed by the condenser lens 6 and irradiated onto the workpiece 7.
  • FIG. 5A is a diagram at the time of processing (a state in which the shutter 2 is open), and FIG. 5B is a diagram at a time of non-processing (a state in which the shutter 2 is closed).
  • the laser light generation unit 3 generates laser light by performing laser oscillation inside.
  • the laser beam generated by the laser beam generator 3 is collected by the condenser lens 6 and irradiated onto the workpiece 7.
  • the control unit controls a driving unit (not shown), and the shutter 2 is moved to a position where the laser beam does not interfere with the optical path from the laser beam generator 3 to the condenser lens 6.
  • the optical path from the laser beam generator 3 to the condenser lens 6 is a straight line, but the optical path may be folded back by a mirror or the like and propagated to the condenser lens 6.
  • the laser light is propagated from the laser light generator 3 to the condenser lens 6, so that the laser light does not enter the power generation element 4.
  • the laser beam generated by the laser beam generator 3 is changed in optical path by the shutter 2 and enters the power generation element 4.
  • the control unit controls a driving unit (not shown), and the shutter 2 is positioned on the optical path from the laser light generation unit 3 to the condensing lens 6 so that the laser light enters the power generation element 4 instead of the condensing lens 6. Moved to. For this reason, when the shutter 2 is closed, the laser beam generated by the laser beam generator 3 is not irradiated to the condenser lens 6 and the workpiece 7.
  • the power generation element 4 generates electric power from the incident laser light, is sent to the electric power storage 5, and the electric power storage 5 stores the electric power.
  • the stored power can be used for various purposes as in the first embodiment. You may use as an auxiliary
  • the device can be miniaturized.
  • the laser beam output from the laser device 1 is used for processing the workpiece 7, and the laser beam output from the laser beam generator 3 at the time of processing (when processing is necessary) is “necessary”.
  • the laser beam output from the laser beam generator 3 when not processing (when processing is not necessary) is “unnecessary laser beam”.
  • unnecessary laser light at the time of non-processing is made incident on the power generation element 4
  • power generation from unnecessary laser light can be performed, and laser light generation energy can be used effectively.
  • the output of the laser light generating unit 3 is more stable than when laser light generation is stopped when not being processed.
  • the energy density of the laser light may be lowered so as not to damage the power generation element. Thereby, damage to the power generation element can be prevented.
  • FIG. 6 shows a laser device 1 according to the third embodiment. Compared to FIG. 2, a thermoelectric element 17 is used as the power generation element 4, a laser light absorber 18 and a cooling device 19 are added, and the others are the same. The thermoelectric element 17 is in contact with the laser light absorber 18, and the opposite surface in contact with the laser light absorber 18 is in contact with the cooling device 19.
  • thermoelectric element 17 in contact with the laser light absorber 18 The temperature of the surface of the thermoelectric element 17 in contact with the laser light absorber 18 is generated by the heat of the laser light absorber 18, and the temperature of the surface of the thermoelectric element 17 in contact with the cooling device 19 is cooled by the cooling device 19. .
  • the thermoelectric element 17 generates power from this temperature difference.
  • the generated power is stored in the power storage 5 as in the second embodiment. Also in this configuration, it is possible to generate power from unnecessary laser light as in the first and second embodiments, and the laser light generation energy can be used effectively.
  • the generated power can be used for various purposes, as in the first and second embodiments. You may use as an auxiliary
  • the device can be miniaturized.
  • the energy density of the laser light may be lowered so as not to damage the power generating element. Thereby, damage to the power generation element can be prevented.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Lasers (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The present invention is a laser device which outputs necessary laser light and does not output unnecessary laser light, said laser device characterized in being provided with: a laser light generation unit (3) which generates laser light; a power generation unit (4) which generates power by being irradiated with the laser light; and optical means (8) which causes the optical path for the unnecessary laser light and the optical path for the necessary laser light to be different light paths among the laser light emitted from the laser light generation unit (3). The laser device is also characterized in that the unnecessary laser light is irradiated to the power generation unit (4). The laser device is further characterized in being additionally provided with diameter expansion means upon an optical path between the optical means and the power generation unit.

Description

レーザ装置Laser equipment
この発明はレーザ装置に関するものである。 The present invention relates to a laser device.
レーザ装置には、例えば波長変換結晶にて入射された基本波長のレーザ光を波長変換して、高倍波のレーザ光を発生させるものがある。このとき、例えば3倍波を生成する場合、基本波、2倍波も同時に生成される。3倍波レーザ光がレーザ加工に必要な場合、従来のレーザ発振器は波長変換後の不要なレーザ光(基本波、2倍波レーザ光)をダンパーに吸収させていた。(例えば、特許文献1参照) Some laser devices, for example, convert laser light having a fundamental wavelength incident on a wavelength conversion crystal to generate laser light having a high harmonic wave. At this time, for example, when a third harmonic is generated, a fundamental wave and a second harmonic are also generated at the same time. When third harmonic laser light is necessary for laser processing, the conventional laser oscillator has absorbed unnecessary laser light (fundamental wave, second harmonic laser light) after wavelength conversion by a damper. (For example, see Patent Document 1)
特開2001-53358(第7頁、第11図)JP 2001-53358 (Page 7, FIG. 11)
エネルギー効率の観点からは、不要なレーザ光を発生させないことが最も望ましいが、例えば上記従来技術のように波長変換を行う場合、変換効率は3割程度であり、7割程度のエネルギーを捨てているという問題がある。また、現状では、不要なレーザ光の発生を大幅に削減することは困難であるという問題もある。
この発明の目的は、不要なレーザ光から電力を発生させることで、不要なレーザ光を再利用することができるレーザ装置を得るものである。
From the viewpoint of energy efficiency, it is most desirable not to generate unnecessary laser light. However, for example, when wavelength conversion is performed as in the prior art, the conversion efficiency is about 30%, and about 70% of energy is discarded. There is a problem that. In addition, at present, there is a problem that it is difficult to significantly reduce the generation of unnecessary laser light.
An object of the present invention is to obtain a laser apparatus that can reuse unnecessary laser light by generating electric power from the unnecessary laser light.
この発明にかかるレーザ装置においては、レーザ装置の出力として不要なレーザ光を発電素子に照射することで発電するものである。 In the laser apparatus according to the present invention, power is generated by irradiating the power generating element with unnecessary laser light as the output of the laser apparatus.
この発明は、レーザ装置の出力として不要なレーザ光を発電素子に照射させることにより、不要なレーザ光から発電することができる。これにより、エネルギー効率の高いレーザ装置を得ることができる。 According to the present invention, it is possible to generate electric power from unnecessary laser light by irradiating the power generating element with unnecessary laser light as an output of the laser device. Thereby, a laser device with high energy efficiency can be obtained.
この発明の実施の形態1におけるレーザ装置を示す図である。It is a figure which shows the laser apparatus in Embodiment 1 of this invention. この発明の実施の形態1におけるレーザ光発生部の一例を示す図である。It is a figure which shows an example of the laser beam generation part in Embodiment 1 of this invention. この発明の実施の形態1における別の一例を示す図である。It is a figure which shows another example in Embodiment 1 of this invention. この発明の実施の形態1におけるレーザ光発生部の別の一例を示す図である。It is a figure which shows another example of the laser beam generation part in Embodiment 1 of this invention. この発明の実施の形態2におけるレーザ装置を示す図である。It is a figure which shows the laser apparatus in Embodiment 2 of this invention. この発明の実施の形態3におけるレーザ装置を示す図である。It is a figure which shows the laser apparatus in Embodiment 3 of this invention.
実施の形態1.
図1は実施の形態1におけるレーザ装置を示す図である。本実施の形態では、レーザ光発生部3から発生されたレーザ光から波長変換部8により、3倍波を発生させ、3倍波のレーザ光を加工に用いるレーザ装置において、本発明を適用したものである。図1のレーザ装置1は、レーザ光発生部3、波長変換部8、波長分離ミラー9、発電素子4、電力蓄積器5を備え、発電素子4は電力蓄積器5と接続されている。波長分離ミラー9は、3倍波のみを通過させ、基本波、及び2倍波レーザ光の光路を90°変える働きをする。
Embodiment 1 FIG.
FIG. 1 is a diagram showing a laser device in the first embodiment. In the present embodiment, the present invention is applied to a laser apparatus that generates a third harmonic from the laser light generated from the laser light generator 3 by the wavelength converter 8 and uses the third harmonic laser light for processing. Is. The laser device 1 in FIG. 1 includes a laser light generation unit 3, a wavelength conversion unit 8, a wavelength separation mirror 9, a power generation element 4, and a power storage 5. The power generation element 4 is connected to the power storage 5. The wavelength separation mirror 9 functions to pass only the third harmonic wave and change the optical paths of the fundamental wave and the second harmonic laser beam by 90 °.
レーザ光発生部3は、例えば図2のように全反射ミラー(TR)10、レーザ媒質であるロッド型YAGおよびレーザ媒質を励起する励起光源を備えたキャビティ11、Qスイッチ12、部分反射ミラー(PR)13を備える。キャビティ11で生成された光は全反射ミラー10、部分反射ミラー13で発振され、Qスイッチ12を通り、出力される。なお、キャビティ11はロッド型に限られず、結晶形状、或いは、スラブ型でもよいし、素材についてもYAGに限られずYVO4でもよい。波長変換部8は、SHG結晶80(Second harmonic generation),THG結晶81(Third harmonic generation)の波長変換結晶で構成される。波長変換結晶はLBO、BBO、CLBO、KTPなど、いずれの結晶でも良い。 For example, as shown in FIG. 2, the laser light generator 3 includes a total reflection mirror (TR) 10, a cavity 11 having a rod type YAG as a laser medium and an excitation light source for exciting the laser medium, a Q switch 12, a partial reflection mirror ( PR) 13. The light generated in the cavity 11 is oscillated by the total reflection mirror 10 and the partial reflection mirror 13, passes through the Q switch 12, and is output. The cavity 11 is not limited to the rod type, but may be a crystal shape or a slab type, and the material is not limited to YAG and may be YVO4. The wavelength conversion unit 8 is composed of a wavelength conversion crystal of an SHG crystal 80 (Second harmonic generation) and a THG crystal 81 (Third harmonic generation). The wavelength conversion crystal may be any crystal such as LBO, BBO, CLBO, or KTP.
次に本実施の形態にかかるレーザ装置1の動作について説明する。レーザ光発生部3から出射した基本波レーザ光は、波長変換部8に入力される。波長変換部8では、SHG結晶80により2倍波レーザ光が生成され、SHG結晶で変換されなかった基本波レーザ光がこの2倍波レーザ光とともにTHG結晶81に入射される。THG結晶81では、基本波レーザ光、及び2倍波レーザ光から3倍波レーザ光が生成され、THG結晶81通過後は、変換されなかった基本波レーザ光、2倍波レーザ光、および生成された3倍波レーザ光の3波長のレーザ光が同じ光路を進むことになる。THG結晶81通過後のレーザ光は、波長分離ミラー9に到達すると、基本波レーザ光、及び2倍波レーザ光は光路を90°変えられ、発電素子4に入射される。3倍波レーザ光は波長分離ミラー9を通過し、レーザ装置1から出力され、ワーク7の加工に用いられる。発電素子4に入射されたレーザ光は、発電され電力蓄積器5に蓄えられる。発生した電力は様々な用途に活用できる。即ち、レーザ装置1への電力供給の補助として使用してもよいし、レーザ装置1以外の装置への電力供給に用いてもよい。あるいは、電力蓄積器5を備えず、発電素子4により発電した電力を直接レーザ光発生器の電源補助としてもよい。また、従来のように、不要なレーザ光をダンパーに吸収させるレーザ装置はダンパーが発熱するためダンパー用の冷却装置が必要であったが、本実施の形態によるとダンパー用の冷却装置が不要なため、装置の小型化が可能となる。 Next, the operation of the laser apparatus 1 according to this embodiment will be described. The fundamental laser beam emitted from the laser beam generator 3 is input to the wavelength converter 8. In the wavelength converter 8, a second harmonic laser beam is generated by the SHG crystal 80, and the fundamental laser beam that has not been converted by the SHG crystal is incident on the THG crystal 81 together with the second harmonic laser beam. The THG crystal 81 generates a third harmonic laser beam from the fundamental laser beam and the second harmonic laser beam. After passing through the THG crystal 81, the fundamental laser beam, the second harmonic laser beam, and the generation that are not converted. The three-wavelength laser light having the third wavelength travels on the same optical path. When the laser light that has passed through the THG crystal 81 reaches the wavelength separation mirror 9, the fundamental laser light and the second harmonic laser light are changed in optical path by 90 ° and are incident on the power generation element 4. The third harmonic laser beam passes through the wavelength separation mirror 9, is output from the laser device 1, and is used for processing the workpiece 7. The laser light incident on the power generation element 4 is generated and stored in the power storage 5. The generated power can be used for various purposes. That is, it may be used as an auxiliary power supply to the laser device 1 or may be used for power supply to devices other than the laser device 1. Alternatively, the power accumulator 5 may not be provided, and the power generated by the power generation element 4 may be directly used as a power source assist for the laser light generator. In addition, the conventional laser device that absorbs unnecessary laser light in the damper requires a damper cooling device because the damper generates heat. However, according to the present embodiment, the damper cooling device is unnecessary. Therefore, the apparatus can be downsized.
以上のように、本実施の形態におけるレーザ装置1では、レーザ光発生部3から出射したレーザ光のうち、加工に必要な3倍波レーザ光は「レーザ装置から出射される、必要なレーザ光」であり、加工に必要のない基本波、または2倍波レーザ光は「レーザ装置から出射されない、不要なレーザ光」である。このように、加工に必要のない不要なレーザ光を発電素子4に入射するようにしたことで、不要なレーザ光からの発電が可能となり、レーザ光発生エネルギーを有効利用することができる。 As described above, in the laser device 1 according to the present embodiment, among the laser beams emitted from the laser beam generator 3, the third harmonic laser beam necessary for processing is “necessary laser beam emitted from the laser device. The fundamental wave or the second harmonic laser beam that is not necessary for processing is “unnecessary laser beam that is not emitted from the laser device”. As described above, since unnecessary laser light that is not required for processing is incident on the power generation element 4, power generation from unnecessary laser light can be performed, and laser light generation energy can be effectively used.
なお、本実施の形態では、必要なレーザ光が3倍波レーザ光である場合を述べたが、必要なレーザ光が4倍波レーザ光であってもよい。その場合には、波長変換部8にTHG結晶81ではなくFHG結晶(Forth harmonic generation)を設け、基本波レーザ光、2倍波レーザ光とともに4倍波レーザ光を出力させる。この場合も、不要なレーザ光(基本波レーザ光、2倍波レーザ光)を発電素子4に入射させることでレーザ光発生エネルギーを有効利用することができる。 In the present embodiment, the case where the necessary laser beam is a third harmonic laser beam has been described, but the necessary laser beam may be a fourth harmonic laser beam. In this case, the wavelength converter 8 is provided with an FHG crystal (Forth harmonic generation) instead of the THG crystal 81, and outputs the fourth harmonic laser beam together with the fundamental laser beam and the second harmonic laser beam. Also in this case, the laser beam generation energy can be effectively used by making unnecessary laser light (fundamental laser light, double wave laser light) incident on the power generation element 4.
なお、本実施の形態では、不要なレーザ光の光路を変更するために波長分離ミラー9を使用したが、例えば図3のようにプリズム14を用いてもよい。プリズム14を用いた場合、プリズム14通過後の不要なレーザ光が照射される位置に発電素子4を設け、必要なレーザ光のみレーザ装置1から出力させればよい。なお、プリズム14通過後の不要なレーザ光が複数方向に出射される場合、複数方向それぞれに発電素子4を設けてもよいし、複数方向に出射された不要なレーザ光それぞれをミラー等で光路調整し、最終的に1つの発電素子4に照射するようにしてもよい。 In the present embodiment, the wavelength separation mirror 9 is used to change the optical path of unnecessary laser light. However, for example, a prism 14 may be used as shown in FIG. When the prism 14 is used, the power generation element 4 is provided at a position where unnecessary laser light after passing through the prism 14 is irradiated, and only the necessary laser light is output from the laser device 1. In addition, when unnecessary laser light after passing through the prism 14 is emitted in a plurality of directions, the power generation element 4 may be provided in each of the plurality of directions, or each unnecessary laser light emitted in the plurality of directions may be optically pathed by a mirror or the like. It may be adjusted and finally irradiated to one power generation element 4.
また、本実施の形態ではレーザ光発生部3を図2の構成としたが、これに限られるものではなく、図4の構成としてもよい。図4は、レーザ光発生部3をファイバレーザ15で構成した図である。ファイバレーザ15で発生したレーザ光は増幅器16で増幅され、出力される。また、レーザ光発生部3はディスクレーザでもよい。 In the present embodiment, the laser light generator 3 has the configuration shown in FIG. 2, but the configuration is not limited to this, and the configuration shown in FIG. 4 may be used. FIG. 4 is a diagram in which the laser beam generator 3 is configured with a fiber laser 15. Laser light generated by the fiber laser 15 is amplified by the amplifier 16 and output. The laser light generator 3 may be a disk laser.
また、発電素子4は、太陽電池を用いても良い。本実施の形態で必要な3倍波レーザ光は約3割程度で、その他の7割は不要なレーザ光(基本波、及び2倍波レーザ光)である。太陽電池の変換効率は一般に2割程度であるので、7割の不要なレーザ光を太陽電池に照射させると、レーザ光発生部3から出力された全レーザ光のうち、1.4割程度のレーザ光を発電に用いることができる。特に、太陽電池の中でもCIS系(銅、インジウム、セレンを主要元素とした化合物系)の太陽電池は、基本波レーザ光、及び2倍波レーザ光の波長帯域(500~1000nm程度)に対する感度が良いため、これを用いると発電効率をさらに高めることができる。 The power generating element 4 may use a solar cell. The required third harmonic laser light in this embodiment is about 30%, and the other 70% is unnecessary laser light (fundamental wave and second harmonic laser light). Since the conversion efficiency of a solar cell is generally about 20%, when about 70% of unnecessary laser light is irradiated to the solar cell, about 1.4% of the total laser light output from the laser light generation unit 3 Laser light can be used for power generation. In particular, among solar cells, solar cells of the CIS type (compounds based on copper, indium and selenium) have a sensitivity to the wavelength band (about 500 to 1000 nm) of the fundamental laser beam and the second harmonic laser beam. Since it is good, the power generation efficiency can be further increased by using this.
また、発電素子に不要なレーザ光を照射させる場合、発電素子を損傷させないようレーザ光のエネルギー密度を下げるようにしてもよい。この場合、波長分離ミラー9と発電素子4の間の光路上にエキスパンドレンズ(径拡張手段)等を設置し、レーザ光のエネルギー密度を下げるよう径を広げる。これにより、エネルギー密度が下げられたレーザ光が発電素子に入射されることで、発電素子の損傷を防ぐことができる。 Moreover, when irradiating the power generating element with unnecessary laser light, the energy density of the laser light may be lowered so as not to damage the power generating element. In this case, an expanding lens (diameter expanding means) or the like is installed on the optical path between the wavelength separation mirror 9 and the power generation element 4, and the diameter is increased so as to reduce the energy density of the laser light. Thereby, the laser beam with reduced energy density is incident on the power generation element, so that the power generation element can be prevented from being damaged.
実施の形態2.
図5は、この発明を実施するための実施の形態2におけるレーザ装置を示す図である。実施の形態1に対し、波長変換部8、波長分離ミラー9がなく、シャッタ2が追加される構成となる。その他、同じ記号を付けている箇所は実施の形態1と同様のため、説明を省略する。シャッタ2は例えば全反射ミラーであり、後述する駆動部(図示せず)と接続され、駆動部は制御部(図示せず)に接続される。レーザ装置1から出力されるレーザ光は集光レンズ6により集光され、ワーク7に照射される。
Embodiment 2. FIG.
FIG. 5 is a diagram showing a laser apparatus according to Embodiment 2 for carrying out the present invention. In contrast to the first embodiment, the wavelength converter 8 and the wavelength separation mirror 9 are not provided, and the shutter 2 is added. The other parts with the same symbols are the same as those in the first embodiment, and thus the description thereof is omitted. The shutter 2 is a total reflection mirror, for example, and is connected to a drive unit (not shown) described later, and the drive unit is connected to a control unit (not shown). The laser light output from the laser device 1 is condensed by the condenser lens 6 and irradiated onto the workpiece 7.
実施の形態2におけるレーザ装置1の動作を説明する。制御部は、加工時、および非加工時を切り替えるため、駆動部を制御し、シャッタ2の位置を移動させる。図5(a)は、加工時(シャッタ2が開いている状態)の図であり、図5(b)は非加工時(シャッタ2が閉じている状態)の図である。図5(a)に基づいて説明する。レーザ光発生部3は、内部でレーザ発振がなされ、レーザ光を生成する。レーザ光発生部3により発生したレーザ光は、集光レンズ6で集光され、ワーク7に照射される。この時、制御部が図示しない駆動部を制御し、シャッタ2は、レーザ光がレーザ光発生部3から集光レンズ6に至る光路を妨げない位置に移動されている。本実施の形態ではレーザ光発生部3から集光レンズ6までの光路が直線であるが、ミラー等で光路を折り返して集光レンズ6まで伝搬してもよい。なお、シャッタ2が開いている状態では、レーザ光はレーザ光発生部3から集光レンズ6に伝搬されるため、発電素子4にはレーザ光は入射しない。 The operation of the laser apparatus 1 in the second embodiment will be described. The control unit controls the drive unit to move the position of the shutter 2 in order to switch between processing and non-processing. FIG. 5A is a diagram at the time of processing (a state in which the shutter 2 is open), and FIG. 5B is a diagram at a time of non-processing (a state in which the shutter 2 is closed). This will be described with reference to FIG. The laser light generation unit 3 generates laser light by performing laser oscillation inside. The laser beam generated by the laser beam generator 3 is collected by the condenser lens 6 and irradiated onto the workpiece 7. At this time, the control unit controls a driving unit (not shown), and the shutter 2 is moved to a position where the laser beam does not interfere with the optical path from the laser beam generator 3 to the condenser lens 6. In the present embodiment, the optical path from the laser beam generator 3 to the condenser lens 6 is a straight line, but the optical path may be folded back by a mirror or the like and propagated to the condenser lens 6. In the state where the shutter 2 is open, the laser light is propagated from the laser light generator 3 to the condenser lens 6, so that the laser light does not enter the power generation element 4.
次に図5(b)に基づいて説明する。レーザ光発生部3により発生したレーザ光は、シャッタ2で光路を変えられ、発電素子4に入射する。この時、制御部が図示しない駆動部を制御し、シャッタ2は、レーザ光発生部3から集光レンズ6までの光路上で、レーザ光を集光レンズ6でなく発電素子4に入射する位置に移動される。このため、シャッタ2が閉じている状態では、レーザ光発生部3で発生したレーザ光は、集光レンズ6およびワーク7に照射されることがない。発電素子4は、入射したレーザ光から電力を発電し、電力蓄積器5に送られ、電力蓄積器5で電力が蓄えられる。蓄えられた電力は、実施の形態1と同様、様々な用途に活用できる。レーザ装置1への電力供給の補助として使用してもよいし、レーザ装置1以外の装置への電力供給に用いてもよい。あるいは、電力蓄積器5を備えず、発電素子4により発電した電力を直接レーザ光発生器の電源補助としてもよい。また、実施の形態1と同様、不要なレーザ光をダンパーに吸収させたときに発生する熱を冷却するためのダンパー用の冷却装置が不要なため、装置の小型化が可能となる。 Next, a description will be given based on FIG. The laser beam generated by the laser beam generator 3 is changed in optical path by the shutter 2 and enters the power generation element 4. At this time, the control unit controls a driving unit (not shown), and the shutter 2 is positioned on the optical path from the laser light generation unit 3 to the condensing lens 6 so that the laser light enters the power generation element 4 instead of the condensing lens 6. Moved to. For this reason, when the shutter 2 is closed, the laser beam generated by the laser beam generator 3 is not irradiated to the condenser lens 6 and the workpiece 7. The power generation element 4 generates electric power from the incident laser light, is sent to the electric power storage 5, and the electric power storage 5 stores the electric power. The stored power can be used for various purposes as in the first embodiment. You may use as an auxiliary | assistant of the electric power supply to the laser apparatus 1, and may be used for the electric power supply to apparatuses other than the laser apparatus 1. FIG. Alternatively, the power accumulator 5 may not be provided, and the power generated by the power generation element 4 may be directly used as a power source assist for the laser light generator. Further, similarly to the first embodiment, since a damper cooling device for cooling heat generated when unnecessary laser light is absorbed by the damper is unnecessary, the device can be miniaturized.
本実施の形態では、レーザ装置1から出力されるレーザ光をワーク7の加工に用いており、加工時(加工の必要がある時)にレーザ光発生部3から出力されるレーザ光は「必要なレーザ光」であり、非加工時(加工の必要がない時)にレーザ光発生部3から出力されるレーザ光は「不要なレーザ光」である。このように、非加工時の不要なレーザ光を発電素子4に入射するようにしたことで、不要なレーザ光からの発電が可能となり、レーザ光発生エネルギーを有効利用することができる。また、非加工時もレーザ光を発生させているので、非加工時にレーザ光発生を止める場合よりもレーザ光発生部3の出力が安定する。また、本実施の形態でも実施の形態1と同様に、発電素子に不要なレーザ光を照射させる場合、発電素子を損傷させないようレーザ光のエネルギー密度を下げるようにしてもよい。これにより、発電素子の損傷を防ぐことができる。 In the present embodiment, the laser beam output from the laser device 1 is used for processing the workpiece 7, and the laser beam output from the laser beam generator 3 at the time of processing (when processing is necessary) is “necessary”. The laser beam output from the laser beam generator 3 when not processing (when processing is not necessary) is “unnecessary laser beam”. As described above, since unnecessary laser light at the time of non-processing is made incident on the power generation element 4, power generation from unnecessary laser light can be performed, and laser light generation energy can be used effectively. In addition, since the laser light is generated even when not being processed, the output of the laser light generating unit 3 is more stable than when laser light generation is stopped when not being processed. In the present embodiment, similarly to the first embodiment, when the power generation element is irradiated with unnecessary laser light, the energy density of the laser light may be lowered so as not to damage the power generation element. Thereby, damage to the power generation element can be prevented.
実施の形態3.
 本実施の形態では、発電素子4としてレーザ光が照射される面と反対の面との温度差により発電する熱電素子17を用いる。図6は実施の形態3におけるレーザ装置1を示す図である。図2に対し、発電素子4として熱電素子17を使用し、レーザ光吸収体18、冷却装置19を追加しており、その他は同様である。熱電素子17はレーザ光吸収体18と接しており、レーザ光吸収体18と接する反対側の面が冷却装置19と接している。熱電素子17のレーザ光吸収体18と接している面の温度はレーザ光吸収体18の熱により発熱し、熱電素子17の冷却装置19と接している面の温度は冷却装置19により冷却される。熱電素子17はこの温度差から発電する。発電された電力は実施の形態2と同様電力蓄積器5で蓄積される。本構成においても、実施の形態1,2と同様に不要なレーザ光からの発電が可能となり、レーザ光発生エネルギーを有効利用することができる。
Embodiment 3 FIG.
In the present embodiment, a thermoelectric element 17 that generates electricity by using a temperature difference between the surface irradiated with laser light and the opposite surface is used as the power generating element 4. FIG. 6 shows a laser device 1 according to the third embodiment. Compared to FIG. 2, a thermoelectric element 17 is used as the power generation element 4, a laser light absorber 18 and a cooling device 19 are added, and the others are the same. The thermoelectric element 17 is in contact with the laser light absorber 18, and the opposite surface in contact with the laser light absorber 18 is in contact with the cooling device 19. The temperature of the surface of the thermoelectric element 17 in contact with the laser light absorber 18 is generated by the heat of the laser light absorber 18, and the temperature of the surface of the thermoelectric element 17 in contact with the cooling device 19 is cooled by the cooling device 19. . The thermoelectric element 17 generates power from this temperature difference. The generated power is stored in the power storage 5 as in the second embodiment. Also in this configuration, it is possible to generate power from unnecessary laser light as in the first and second embodiments, and the laser light generation energy can be used effectively.
なお、実施の形態1、2と同様、発生した電力は様々な用途に活用できる。レーザ装置1への電力供給の補助として使用してもよいし、レーザ装置1以外の装置への電力供給に用いてもよい。あるいは、電力蓄積器5を備えず、発電素子4により発電した電力を直接レーザ光発生器の電源補助としてもよい。また、実施の形態1、2と同様、不要なレーザ光をダンパーに吸収させたときに発生する熱を冷却するためのダンパー用の冷却装置が不要なため、装置の小型化が可能となる。また、本実施の形態でも実施の形態1、2と同様に、発電素子に不要なレーザ光を照射させる場合、発電素子を損傷させないようレーザ光のエネルギー密度を下げるようにしてもよい。これにより、発電素子の損傷を防ぐことができる。 Note that the generated power can be used for various purposes, as in the first and second embodiments. You may use as an auxiliary | assistant of the electric power supply to the laser apparatus 1, and may be used for the electric power supply to apparatuses other than the laser apparatus 1. FIG. Alternatively, the power accumulator 5 may not be provided, and the power generated by the power generation element 4 may be directly used as a power source assist for the laser light generator. Further, similarly to the first and second embodiments, since a damper cooling device for cooling the heat generated when the damper absorbs unnecessary laser light is unnecessary, the device can be miniaturized. In the present embodiment, similarly to Embodiments 1 and 2, when the power generating element is irradiated with unnecessary laser light, the energy density of the laser light may be lowered so as not to damage the power generating element. Thereby, damage to the power generation element can be prevented.
1 レーザ装置
3 レーザ光発生部
4 発電素子
5 電力蓄積器
DESCRIPTION OF SYMBOLS 1 Laser apparatus 3 Laser light generation part 4 Power generation element 5 Electric power storage

Claims (5)

  1. 必要なレーザ光を出力し、不要なレーザ光を出力しないレーザ装置において、
    レーザ光を発生させるレーザ光発生部と、
    レーザ光が照射されることにより発電する発電部と、
    前記レーザ光発生部から発生されたレーザ光のうち、前記不要なレーザ光の光路と、前記必要なレーザ光の光路とを異なる光路に変更する光学手段とを備え、
    前記発電部には前記不要なレーザ光が照射されることを特徴とするレーザ装置。
    In a laser device that outputs necessary laser light and does not output unnecessary laser light,
    A laser light generator for generating laser light;
    A power generation unit that generates power when irradiated with laser light;
    Of the laser light generated from the laser light generation unit, comprising an optical means for changing the optical path of the unnecessary laser light and the optical path of the necessary laser light to a different optical path,
    The laser apparatus, wherein the power generation unit is irradiated with the unnecessary laser light.
  2. 前記光学手段と前記発電部の間の光路上に、径拡張手段を備えることを特徴とする請求項1に記載のレーザ装置。
    The laser apparatus according to claim 1, further comprising a diameter expanding unit on an optical path between the optical unit and the power generation unit.
  3. 前記光学手段は、前記レーザ光発生部から発生したレーザ光を入射させ、波長に応じて光路を変更する波長分離手段であり、
    前記不要なレーザ光は、前記必要なレーザ光の波長と異なる波長のレーザ光であることを特徴とする請求項1から2のいずれか一項に記載のレーザ装置。
    The optical means is a wavelength separation means for making the laser light generated from the laser light generator incident and changing the optical path according to the wavelength,
    3. The laser device according to claim 1, wherein the unnecessary laser light is a laser light having a wavelength different from a wavelength of the necessary laser light. 4.
  4. 前記光学手段はシャッタ部である請求項1から2のいずれか一項に記載のレーザ装置。
    The laser apparatus according to claim 1, wherein the optical unit is a shutter unit.
  5. 前記レーザ光発生部は固体のレーザ媒質を備え、前記発電部としてCIS系太陽電池を用いることを特徴とする請求項1から4のいずれか一項に記載のレーザ装置。 5. The laser device according to claim 1, wherein the laser light generation unit includes a solid laser medium, and a CIS solar cell is used as the power generation unit. 6.
PCT/JP2013/006090 2013-10-11 2013-10-11 Laser device WO2015052744A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2013/006090 WO2015052744A1 (en) 2013-10-11 2013-10-11 Laser device
JP2014509543A JPWO2015052744A1 (en) 2013-10-11 2013-10-11 Laser equipment
TW103111673A TW201513957A (en) 2013-10-11 2014-03-28 Laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/006090 WO2015052744A1 (en) 2013-10-11 2013-10-11 Laser device

Publications (1)

Publication Number Publication Date
WO2015052744A1 true WO2015052744A1 (en) 2015-04-16

Family

ID=52812595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/006090 WO2015052744A1 (en) 2013-10-11 2013-10-11 Laser device

Country Status (3)

Country Link
JP (1) JPWO2015052744A1 (en)
TW (1) TW201513957A (en)
WO (1) WO2015052744A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104949753A (en) * 2015-06-29 2015-09-30 中国原子能科学研究院 Real-time monitoring system device for intense laser energy
JP2018083214A (en) * 2016-11-24 2018-05-31 ファナック株式会社 Rotary table device, and laser processing system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI733395B (en) * 2020-03-30 2021-07-11 國立陽明交通大學 Array type solar-pumping solid-state laser system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60247488A (en) * 1985-05-08 1985-12-07 Hitachi Ltd Laser equipment
EP1063852A2 (en) * 1999-06-21 2000-12-27 Sony Corporation Image projector
WO2006049262A1 (en) * 2004-11-08 2006-05-11 Matsushita Electric Industrial Co., Ltd. Video projector using coherent light source

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62151043A (en) * 1985-12-25 1987-07-06 Nec Corp Power feeding system for optical communication equipment
JPH08307348A (en) * 1995-05-08 1996-11-22 Sumitomo Electric Ind Ltd Optical transmission equipment
WO2007096965A1 (en) * 2006-02-23 2007-08-30 Mitsubishi Denki Kabushiki Kaisha Wavelength conversion laser

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60247488A (en) * 1985-05-08 1985-12-07 Hitachi Ltd Laser equipment
EP1063852A2 (en) * 1999-06-21 2000-12-27 Sony Corporation Image projector
WO2006049262A1 (en) * 2004-11-08 2006-05-11 Matsushita Electric Industrial Co., Ltd. Video projector using coherent light source

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104949753A (en) * 2015-06-29 2015-09-30 中国原子能科学研究院 Real-time monitoring system device for intense laser energy
JP2018083214A (en) * 2016-11-24 2018-05-31 ファナック株式会社 Rotary table device, and laser processing system
US10232468B2 (en) 2016-11-24 2019-03-19 Fanuc Corporation Rotary table device and laser machining system

Also Published As

Publication number Publication date
JPWO2015052744A1 (en) 2017-03-09
TW201513957A (en) 2015-04-16

Similar Documents

Publication Publication Date Title
JP4858499B2 (en) Laser light source apparatus and laser irradiation apparatus using the same
JP4590578B1 (en) Light source apparatus, mask inspection apparatus, and coherent light generation method
JP4925085B2 (en) Deep ultraviolet laser light generation method and deep ultraviolet laser device
TWI761081B (en) Wavelength conversion laser apparatus and wavelength conversion laser processing machine
WO2011158927A1 (en) Ultraviolet laser device
JP3998067B2 (en) Solid state laser oscillator
WO2015052744A1 (en) Laser device
JP6020441B2 (en) UV laser equipment
JP2007086101A (en) Deep ultraviolet laser device
US20070064750A1 (en) Deep ultraviolet laser apparatus
JP2008242184A (en) Wavelength converter, ultraviolet laser device and laser processor
JP5170439B2 (en) Solid state laser oscillator
JP2000216465A (en) Laser resonator
JP5213368B2 (en) Laser light second harmonic generator
JP2000338530A (en) Wavelength conversion device for laser light and method for its conversion
JP2007242974A (en) Semiconductor-laser exciting solid laser device
Ito et al. A sub-watt, line-narrowing, 193-nm solid state laser operating at 6 kHz with KBBF for injection-locking ArF excimer laser systems
JP5825642B2 (en) Light source device, inspection device, and wavelength conversion method
JP5834981B2 (en) Solid state laser equipment
JP2005242257A (en) Device and method for generating highly efficient coherent ultraviolet ray
JP2005150252A (en) Fifth harmonic generator
Yin et al. Research on all-solid-state intracavity frequency doubling 457 nm laser with LBO and BIBO crystal
JP2011090254A (en) Laser beam generator and laser beam generating method
Cui et al. High-power High-efficiency Second Harmonic Generation of 1342-nm Laser in LBO and PPKTP
JP2006203117A (en) Solid-state laser device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014509543

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13895399

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13895399

Country of ref document: EP

Kind code of ref document: A1