[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015051621A1 - 动态心动图的检测装置 - Google Patents

动态心动图的检测装置 Download PDF

Info

Publication number
WO2015051621A1
WO2015051621A1 PCT/CN2014/074416 CN2014074416W WO2015051621A1 WO 2015051621 A1 WO2015051621 A1 WO 2015051621A1 CN 2014074416 W CN2014074416 W CN 2014074416W WO 2015051621 A1 WO2015051621 A1 WO 2015051621A1
Authority
WO
WIPO (PCT)
Prior art keywords
function module
monitoring
ultrasonic
ultrasound
dynamic
Prior art date
Application number
PCT/CN2014/074416
Other languages
English (en)
French (fr)
Inventor
王澄
李勇
刘洋
刘硕
陈亮
宋海波
左云霞
刘进
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Publication of WO2015051621A1 publication Critical patent/WO2015051621A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7285Specific aspects of physiological measurement analysis for synchronising or triggering a physiological measurement or image acquisition with a physiological event or waveform, e.g. an ECG signal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Clinical applications
    • A61B8/0883Clinical applications for diagnosis of the heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • A61B5/36Detecting PQ interval, PR interval or QT interval
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays
    • A61B5/7445Display arrangements, e.g. multiple display units
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
    • A61B5/021Measuring pressure in heart or blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue
    • A61B5/14542Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue for measuring blood gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/42Details of probe positioning or probe attachment to the patient

Definitions

  • the present invention relates to the field of medical devices, and in particular to a device for detecting a dynamic cardiogram.
  • the heart is different from other organs of the human body in that it is a "moving" word.
  • the dynamic monitoring of cardiac information has long been a clinically important exploration and research content.
  • devices that dynamically monitor cardiac information such as ECG monitors, 24-hour Holter, etc., collect and analyze only the electrical activity (electrocardiogram) of the heart, and do not reflect cardiac mechanical activity and cardiac structure and function.
  • ECG monitors ECG monitors
  • 24-hour Holter, etc. collect and analyze only the electrical activity (electrocardiogram) of the heart, and do not reflect cardiac mechanical activity and cardiac structure and function.
  • a dynamic cardiogram detecting device comprising:
  • the ultrasonic probe is fixed on the body surface of the object to be tested, and is used for transmitting ultrasonic waves to the object to be tested, and performing ultrasound scanning monitoring on the heart of the object to be tested;
  • a monitoring probe for detecting physiological parameters of the object to be tested
  • An ultrasonic function module coupled to the ultrasonic probe for controlling the ultrasonic probe to emit ultrasonic waves to the object to be measured, and receiving the cardiac ultrasonic signal acquired by the ultrasonic probe;
  • a monitoring function module coupled to the monitoring probe, configured to acquire physiological parameters of the object to be tested by using the monitoring probe
  • An ultrasound information display unit configured to display cardiac ultrasound parameters acquired by the ultrasound function module
  • the monitoring information display unit is configured to display the physiological parameters acquired by the monitoring function module.
  • the above-mentioned dynamic cardiogram detecting device can obtain the patient's cardiac ultrasound signal in real time, continuously and synchronously through the ultrasonic function module, calculate relevant cardiac parameters, draw a trend curve, and monitor the dynamic changes of the structure and function of the heart for a long time and continuously;
  • the ECG monitoring function provides a variety of ECG parameters, which can be synchronized with the cardiac parameters to provide data support for the clinical study of the relationship between cardiac electrical activity and mechanical activity.
  • FIG. 1 is a schematic structural diagram of a dynamic cardiogram detecting apparatus according to an embodiment of the present invention
  • FIG. 2 is a schematic structural view of a dynamic cardiogram detecting device according to an embodiment
  • FIG. 3 is a schematic structural view of a dynamic cardiogram detecting device according to an embodiment
  • FIG. 4 is a schematic structural diagram of a device for detecting a dynamic cardiogram according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of an apparatus for detecting a dynamic cardiogram according to an embodiment of the present invention.
  • Fig. 6 is a view showing the configuration of a detecting device for a dynamic cardiogram according to an embodiment of the present invention.
  • a dynamic cardiogram detecting apparatus is capable of performing long-term, continuous, dynamic, non-invasive detection of anatomical structures and functional states of the heart and large blood vessels.
  • a dynamic cardiogram detecting apparatus includes:
  • the ultrasonic probe 22 is fixed on the body surface of the object to be tested, and is used for transmitting ultrasonic waves to the object to be measured, and performing ultrasonic scanning monitoring on the heart of the object to be tested. Specifically, the ultrasonic probe 22 is directly attached to the fixed position of the body surface of the object to be tested, and the same slice at the fixed position of the object to be tested is scanned. In addition, the ultrasonic probe 22 can freely adjust the angle to obtain signals of different parts, can be fixed to the body surface by different methods, and can acquire the real-time and continuous ultrasonic signals of various parts of the heart without hand-held.
  • the monitoring probe 20 is configured to detect physiological parameters of the object to be tested.
  • the ultrasonic function module 12 is coupled to the ultrasonic probe 22 for controlling the ultrasonic probe 22 to emit ultrasonic waves to the object to be measured, and to receive the cardiac ultrasonic signals acquired by the ultrasonic probe 22.
  • the cardiac ultrasound signal includes at least one of a cardiac ejection fraction, a left indoor short axis shortening rate, a stroke volume per stroke, a cardiac output, a cardiac index, a left ventricular end-diastolic volume, and a left ventricular end-systolic volume.
  • the following related parameters can be calculated by the cardiac ultrasound signal: the total number of ventricular ventricular rhythm abnormalities, the dynamic left ventricular area time curve and the area time curve within a period of time (can be set, the default is 24 hours, synchronized with the ECG signal acquisition duration) Trend graph (surface) and its variability.
  • the dynamic left ventricle M-shaped motion curve extracts the dynamic ascending speed, descending speed, rising time, falling time, and pulsation amplitude of each heart beat; trend graph and variability. Short-term ventricular tachycardia or ventricular fibrillation identification and alarm functions.
  • EDV End-diastolic Volume
  • EDV mean end-systolic volume
  • stroke stroke volume
  • SV average fraction fraction
  • FS fractional shortening
  • the monitoring function module 10 is coupled to the monitoring probe 20 for acquiring physiological parameters of the object to be measured by the monitoring probe 20.
  • the physiological parameter includes the following monitoring physiological parameters, such as at least one of an electrocardiographic monitoring parameter, a blood pressure, a blood oxygen saturation parameter, and a breathing.
  • the following relevant parameters can be calculated: within a period of time (can be set, default is 24 hours), average heart rate (HR), QT interval, PR interval, RR interval, sinus heart Total number of beats, PVC (premature ventricular contraction, ventricular premature beat) The number of times, the percentage of PVC in the sinus beat, the QRS width of the PVC, and the arrhythmia event count.
  • the ultrasound information display unit 32 is configured to display cardiac ultrasound parameters acquired by the ultrasound function module 12 .
  • the monitoring information display unit 30 is configured to display the physiological parameters acquired by the monitoring function module 10.
  • an apparatus for detecting a dynamic cardiogram includes: in addition to each functional module in the above embodiment,
  • the storage module 16 is configured to store the cardiac ultrasound signals acquired by the ultrasound function module 12 and the physiological parameters acquired by the monitoring function module 10.
  • the scan period setting module 14 is configured to set a time interval during which the ultrasound function module 12 performs an ultrasound scan.
  • the ultrasound function module 22 and the monitoring function module 20 may exist independently or be integrated in one monitoring host.
  • an embodiment of an embodiment of the dynamic cardiogram detecting apparatus in which the ultrasonic function module 22 and the monitoring function module 20 are integrated in the monitoring host 1.
  • the monitoring information display unit 30 and the ultrasonic information display unit 32 are integrated in the display device 3.
  • the ultrasound function module 22 and the monitoring function module 20 are mutually independent modules, and the monitoring function module 20 is located on the monitoring host 1 , and the ultrasound function module 22 is independent of the monitoring host 1 .
  • the ultrasound function module 22 and the monitoring function module 20 are directly connected or as shown in FIG. 5, the ultrasound function module 22 and the monitoring function module 20 are independent and detachable modules.
  • the plug-in interface reserved on the monitoring host 1 is plugged and connected with the monitoring host.
  • the apparatus for detecting a dynamic cardiogram of an embodiment further includes:
  • the trend graph synthesis module 4 is configured to receive an electrocardiogram parameter obtained by processing the physiological parameter by the monitoring function module 20 and a cardiac ultrasound parameter obtained by processing the cardiac ultrasound signal by the ultrasound function module 22, and synthesize a dynamic cardiac trend graph. or
  • the physiological parameters acquired by the monitoring function module 20 and the cardiac ultrasound signals acquired by the ultrasound function module 22 are post-processed, and the electrocardiogram parameters and the cardiac ultrasound parameters are respectively obtained, and the dynamic cardiac trend graph is synthesized.
  • trend graph synthesis module 4 can also be a third party device/software independent of the dynamic cardiogram detection device.
  • the trend graph synthesized by the trend graph synthesis module 4 can be displayed on the same screen by the display device, and the display parameters can be set, and the user can select all display or select target parameters, such as only displaying the PVC times and the average LVEF.
  • the time scale of the trend graph can be set by the user through the control panel of the monitoring host.
  • the trend graph can display the normal range of the parameter, and the normal range supports the user setting, and the value exceeding the normal range will be displayed differently.
  • the patient's cardiac ultrasound signal can be obtained in real time, continuously and synchronously, the relevant cardiac parameters can be calculated, the trend curve can be drawn, and the dynamic changes of the structure and function of the heart can be monitored for a long time and continuously.
  • the ECG monitoring function provides a variety of ECG parameters, which can be synchronized with the cardiac parameters to provide data support for the clinical study of the relationship between cardiac electrical activity and mechanical activity.
  • the storage medium may be a magnetic disk, an optical disk, or a read-only storage memory (Read-Only) Memory, ROM) or Random Access Memory (RAM).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Cardiology (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physiology (AREA)
  • Psychiatry (AREA)
  • Signal Processing (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

一种动态心动图的检测装置,包括:超声探头(22),固定于被测对象体表,用于向被测对象发射超声波,对被测对象的心脏进行超声扫描监测;监护探头(22),用于探测被测对象的生理参数;超声功能模块(12),与所述超声探头(22)耦接,用于控制所述超声探头(22)向被测对象发射超声波,接收超声探头(22)获取的心脏超声信号;监护功能模块(10),与所述监护探头(20)耦接,用于通过所述监护探头(20)获取被测对象的生理参数;超声信息显示单元(32),用于显示所述超声功能模块(12)所获取的心脏超声参数;监护信息显示单元(30),用于显示所述监护功能模块(10)所获取的生理参数。所述检测装置可对心脏和大血管的解剖结构及功能状态进行长时间检测。

Description

动态心动图的检测装置
【技术领域】
本发明涉及医疗器械领域,尤其涉及一种动态心动图的检测装置。
【背景技术】
心脏不同于人体其他器官的特点在于一个“动”字,心脏信息的动态监测长期以来是临床上极为重要的探索和研究内容。目前已经实现动态监测心脏信息的装置如心电监护仪、24小时动态心电图(holter)等仅对心脏的电活动(心电信息)进行采集和分析,不能反映心脏机械活动以及心脏结构、功能的动态变化,而超声心动图通过超声的特殊物理学特性对心脏和大血管的解剖结构及功能状态进行无创检测,但超声心动图目前只能由医生手持超声探头进行短时、静态的检查,因此目前尚无对心动参数进行长时间动态连续监测的装置。
【发明内容】
基于此,有必要提供一种可对心动参数进行长时间连续的动态心动图的检测装置。
一种动态心动图的检测装置,包括:
超声探头,固定于被测对象体表,用于向被测对象发射超声波,对被测对象的心脏进行超声扫描监测;
监护探头,用于探测被测对象的生理参数;
超声功能模块,与所述超声探头耦接,用于控制所述超声探头向被测对象发射超声波,接收超声探头获取的心脏超声信号;
监护功能模块,与所述监护探头耦接,用于通过所述监护探头获取被测对象的生理参数;
超声信息显示单元,用于显示所述超声功能模块所获取的心脏超声参数;
监护信息显示单元,用于显示所述监护功能模块所获取的生理参数。
上述动态心动图的检测装置,通过超声功能模块可实时、连续、同步获得患者心脏超声信号,计算相关心动参数,绘制趋势曲线,长时间、连续的对心脏的结构和功能的动态变化进行监测;心电监护功能提供多种心电参数,可与心动参数进行同步分析,为临床研究心脏电活动与机械活动相关性提供数据支持。
【附图说明】
为了更清楚地说明本发明实施方式或现有技术中的技术方案,下面将对实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为一实施方式实施方式的的动态心动图的检测装置的结构示意图;
图2为一实施方式的动态心动图的检测装置实的结构示意图;
图3为一实施方式的动态心动图的检测装置实的结构示意图;
图4为一实施方式的实施方式动态心动图的检测装置的结构示意图;
图5为一实施方式的实施方式动态心动图的检测装置的结构示意图;及
图6为一实施方式的实施方式动态心动图的检测装置的结构示意图。
【具体实施方式】
以下说明提供了用于完全理解各个实施方式以及用于本领域的技术人员实施的特定细节。然而,本领域的技术人员应该理解,无需这样的细节亦可实践本发明。在一些实例中,为了避免不必要地混淆对实施方式的描述,没有详细示出或描述公知的结构和功能。
除非上下文清楚地要求,否则,贯穿本说明书和权利要求的用语“包括”、“包含”等应以包含性的意义来解释而不是排他性或穷尽性的意义,即,其含义为“包括,但不限于”。
一实施方式的动态心动图的检测装置,其可对心脏和大血管的解剖结构及功能状态进行长时间、连续、动态、无创检测。
参见图1,实施方式一实施方式的动态心动图的检测装置,包括:
超声探头22,固定于被测对象体表,用于向被测对象发射超声波,对被测对象的心脏进行超声扫描监测。具体的,将超声探头22直接紧密贴合在被测对象的体表的固定位置上,对被测对象所述固定位置处的同一切面进行扫描。另外,该超声探头22可自由调整角度以获取不同部位的信号,可通过不同方式固定于体表,无需手持即可获取患者实时、连续的心脏各部位超声信号。
监护探头20,用于探测被测对象的生理参数。
超声功能模块12,与所述超声探头22耦接,用于控制所述超声探头22向被测对象发射超声波,接收超声探头22获取的心脏超声信号。具体的,该心脏超声信号包括心脏射血分数、左室内短轴缩短率、每搏排血量、心排血量、心脏指数、左室舒张末期容积及左室收缩末期容积中至少一个。通过心脏超声信号可计算以下相关参数:一段时长内(可设定,默认为24小时,与心电信号采集时长同步)心室心动节律异常的总次数,动态左心室积面积时间曲线、面积时间曲线的趋势图(曲面)及其变异度等。动态左心室M型运动曲线,提取每一次心搏的动态上升速度、下降速度、上升时间、下降时间、搏动幅度等;趋势图及变异性等。短阵室速或者室颤的识别及报警功能。平均心室舒张末期容积(end-diastolic volume,EDV)、平均心室收缩末期容积(end-systolic volume,ESV)、平均每博量(stroke volume,SV)、平均射血分数(ejection fraction,EF)、平均缩短分数(fractional shortening,FS)。
监护功能模块10,与所述监护探头20耦接,用于通过所述监护探头20获取被测对象的生理参数。具体的,该生理参数包括以下的监护生理参数,如:心电监护参数、血压、血氧饱和度参数及呼吸中至少一个。通过该监护生理参数中的心电监护参数,可计算以下相关参数:一段时长内(可设定,默认为24小时)平均心率(HR)、QT间期、PR间期、RR间期、窦性心搏总数、PVC (premature ventricular contraction,室性早搏) 次数、PVC占窦性心搏的百分比、PVC的QRS波宽、心律失常事件分类计数。
超声信息显示单元32,用于显示所述超声功能模块12所获取的心脏超声参数。
监护信息显示单元30,用于显示所述监护功能模块10所获取的生理参数。
参见图2,一实施方式的实施方式动态心动图的检测装置,除了包括上述实施方式中的各个功能模块之外,还包括:
存储模块16,用于存储超声功能模块12获取的心脏超声信号,以及所述监护功能模块10获取的生理参数。
扫描周期设置模块14,用于设置所述超声功能模块12进行超声扫描的时间间隔。
在具体实现中,超声功能模块22和监护功能模块20可以独立存在或者集成在一个监护主机中。
参见图3,一实施方式的实施方式动态心动图的检测装置中所述超声功能模块22和所述监护功能模块20就集成在监护主机1中。而监护信息显示单元30和超声信息显示单元32集成于显示设备3中。
而如图4所示,所述超声功能模块22和所述监护功能模块20为相互独立的模块,监护功能模块20位于监护主机1上,超声功能模块22独立于监护主机1之外。
如图2所示,所述超声功能模块22和所述监护功能模块20直接连接或如图5所示,所述超声功能模块22和所述监护功能模块20为相互独立的可拆卸的模块,通过监护主机1上预留的插拔接口与监护主机插拔连接。
参见图6,一实施方式的动态心动图的检测装置还包括:
趋势图合成模块4,用于接收经过所述监护功能模块20处理生理参数所得的心电参数和经过所述超声功能模块22处理心脏超声信号所得的心脏超声参数,合成动态心动趋势图。或者
对所述监护功能模块20获取的生理参数和所述超声功能模块22获取的心脏超声信号进行后期处理,分别获得心电参数和心脏超声参数,合成动态心动趋势图。
需要说明的是,该趋势图合成模块4也可为独立于所述动态心动图的检测装置的第三方设备/软件。
另外,经过趋势图合成模块4合成的趋势图,可以由显示设备同屏显示,其显示参数可设定,用户可选择全部显示或选择目标参数,如仅显示PVC次数和平均LVEF。该趋势图的时间标尺可由用户通过监护主机的控制面板进行设置,另外,该趋势图可显示参数的正常范围,正常范围支持用户设置,超出正常范围的数值将区别显示。
通过其超声功能模块可实时、连续、同步获得患者心脏超声信号,计算相关心动参数,绘制趋势曲线,长时间、连续的对心脏的结构和功能的动态变化进行监测。心电监护功能提供多种心电参数,可与心动参数进行同步分析,为临床研究心脏电活动与机械活动相关性提供数据支持。
本领域普通技术人员可以理解实现上述实施方式方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施方式的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
以上所述实施方式仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种动态心动图的检测装置,其特征在于,包括:
    超声探头,固定于被测对象体表,用于向所述被测对象发射超声波,对所述被测对象的心脏进行超声扫描监测;
    监护探头,用于探测所述被测对象的生理参数;
    超声功能模块,与所述超声探头耦接,用于控制所述超声探头向所述被测对象发射超声波,接收超声探头获取的心脏超声信号;
    监护功能模块,与所述监护探头耦接,用于通过所述监护探头获取所述被测对象的生理参数;
    超声信息显示单元,用于显示所述超声功能模块所获取的心脏超声参数;
    监护信息显示单元,用于显示所述监护功能模块所获取的生理参数。
  2. 如权利要求1所述的动态心动图的检测装置,其特征在于,所述检测装置还包括:
    存储模块,用于存储超声功能模块获取的心脏超声信号,以及所述监护功能模块获取的生理参数。
  3. 如权利要求2所述的动态心动图的检测装置,其特征在于,所述检测装置还包括:
    扫描周期设置模块,用于设置所述超声功能模块进行超声扫描的时间间隔。
  4. 如权利要求3所述的动态心动图的检测装置,其特征在于,所述超声功能模块和所述监护功能模块集成在监护主机中。
  5. 如权利要求3所述的动态心动图的检测装置,其特征在于,所述超声功能模块和所述监护功能模块为相互独立的模块。
  6. 如权利要求3所述的动态心动图的检测装置,其特征在于,所述超声功能模块和所述监护功能模块直接或通过监护主机相互连接。
  7. 如权利要求3所述的动态心动图的检测装置,其特征在于,所述超声功能模块和所述监护功能模块为相互独立的可拆卸的模块,通过监护主机上预留的插拔接口与监护主机插拔连接。
  8. 如权利要求1所述的动态心动图的检测装置,其特征在于,所述装置还包括:
    趋势图合成模块,用于接收经过所述监护功能模块处理生理参数所得的心电参数和经过所述超声功能模块处理心脏超声信号所得的心脏超声参数,合成动态心动趋势图;或者
    对所述监护功能模块获取的生理参数和所述超声功能模块获取的心脏超声信号进行后期处理,分别获得心电参数和心脏超声参数,合成动态心动趋势图。
  9. 如权利要求8所述的动态心动图的检测装置,其特征在于,所述监护功能模块获取的生理参数包括:心电监护参数、血压、血氧饱和度参数及呼吸中至少一个。
  10. 如权利要求8所述的动态心动图的检测装置,其特征在于,所述超声功能模块获取的心脏超声信号包括心脏射血分数、左室内短轴缩短率、每搏排血量、心排血量、心脏指数、左室舒张末期容积及左室收缩末期容积中至少一个。
PCT/CN2014/074416 2013-10-10 2014-03-31 动态心动图的检测装置 WO2015051621A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310469935.X 2013-10-10
CN201310469935.XA CN104546009B (zh) 2013-10-10 2013-10-10 一种动态心动图的检测装置

Publications (1)

Publication Number Publication Date
WO2015051621A1 true WO2015051621A1 (zh) 2015-04-16

Family

ID=52812491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/074416 WO2015051621A1 (zh) 2013-10-10 2014-03-31 动态心动图的检测装置

Country Status (2)

Country Link
CN (1) CN104546009B (zh)
WO (1) WO2015051621A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108186052A (zh) * 2017-12-28 2018-06-22 业成科技(成都)有限公司 超声波感测装置
CN113440165A (zh) * 2021-08-10 2021-09-28 上海市第六人民医院 一种可穿戴可视化的超声无创监控设备
CN114271850B (zh) * 2021-08-27 2024-04-26 深圳迈瑞生物医疗电子股份有限公司 超声检测数据的处理方法及超声检测数据的处理装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001012068A1 (en) * 1999-08-16 2001-02-22 Chandraratna Anthony P Ultrasound transducer for continuous body organ imaging
US20110046488A1 (en) * 2007-08-30 2011-02-24 Oslo Universitetssykehus Hf Automated monitoring of myocardial function by ultrasonic transducers positioned on the heart
CN102068248A (zh) * 2009-11-20 2011-05-25 北京大学 心肌兴奋收缩耦联时间诊断仪及其应用
CN102090902A (zh) * 2009-12-09 2011-06-15 株式会社东芝 医用图像装置、医用图像处理装置的控制方法和超声波图像处理装置
CN103153196A (zh) * 2011-09-22 2013-06-12 株式会社东芝 超声波诊断装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1073392C (zh) * 1997-08-27 2001-10-24 陈瑜 多参数监护仪及其检测方法
US6705992B2 (en) * 2002-02-28 2004-03-16 Koninklijke Philips Electronics N.V. Ultrasound imaging enhancement to clinical patient monitoring functions
KR20080054162A (ko) * 2006-12-12 2008-06-17 주식회사 메디슨 초음파 진단 시스템에서 다중 성장 추이 차트를디스플레이하기 위한 장치 및 방법
CN101527047B (zh) * 2008-03-05 2013-02-13 深圳迈瑞生物医疗电子股份有限公司 使用超声图像检测组织边界的方法与装置
CN101919713B (zh) * 2009-06-11 2012-08-22 北京航空航天大学 一种膀胱积尿量的测量方法
CN102688070A (zh) * 2012-06-08 2012-09-26 深圳市理邦精密仪器股份有限公司 胎儿监护数据处理方法及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001012068A1 (en) * 1999-08-16 2001-02-22 Chandraratna Anthony P Ultrasound transducer for continuous body organ imaging
US20110046488A1 (en) * 2007-08-30 2011-02-24 Oslo Universitetssykehus Hf Automated monitoring of myocardial function by ultrasonic transducers positioned on the heart
CN102068248A (zh) * 2009-11-20 2011-05-25 北京大学 心肌兴奋收缩耦联时间诊断仪及其应用
CN102090902A (zh) * 2009-12-09 2011-06-15 株式会社东芝 医用图像装置、医用图像处理装置的控制方法和超声波图像处理装置
CN103153196A (zh) * 2011-09-22 2013-06-12 株式会社东芝 超声波诊断装置

Also Published As

Publication number Publication date
CN104546009A (zh) 2015-04-29
CN104546009B (zh) 2019-01-22

Similar Documents

Publication Publication Date Title
CN104546010B (zh) 一种心律失常检测装置
EP2563212B1 (en) Visualization of myocardial infarct size in diagnostic ecg
CN103479429B (zh) 一种基于心音和心电的心脏综合检测设备
JPH05344957A (ja) 急性イシェミー損傷を評価するための非侵入多重心電装置及び方法
JP3156725B2 (ja) 心臓容積及び大動脈パルスの変化の非侵襲的検出システム
JP2013523243A (ja) 超音波画像及びecgデータの統合された表示
Nandagopal et al. Newly constructed real time ECG monitoring system using labview
WO2011121493A1 (en) Bullseye display for ecg data
Şentürk et al. Towards wearable blood pressure measurement systems from biosignals: a review
WO2015051621A1 (zh) 动态心动图的检测装置
US20070197925A1 (en) Acquisition of multiple-lead electrocardiogram
Prasath Wireless monitoring of heart rate using microcontroller
JP2022547784A (ja) 非侵襲的かつリアルタイムの拍動対拍動の携帯型血圧監視
Conroy et al. Jugular venous pulse waveform extraction from a wearable radio frequency sensor
Zaid et al. Noninvasive cardiovascular monitoring based on electrocardiography and ballistocardiography: a feasibility study on patients in the surgical intensive care unit
Popov et al. Introduction to biomedical signals and biomedical imaging
CN114027868A (zh) 具有生理信号检测功能的超声诊断设备
EP4161377B1 (en) Method and device for multidimensional analysis of the dynamics of cardiac activity
US20230210393A1 (en) Method and device for multidimensional analysis of the dynamics of cardiac activity
Hsu et al. Acoustic radiation force impulse imaging of mechanical stiffness propagation in myocardial tissue
CN214804851U (zh) 具有生理信号检测功能的超声诊断设备
CN205054184U (zh) 探头无线数传的动脉硬化测定仪
Uymaz Development of holter ECG
Lu et al. Dual-modality Electromechanical Physiology Source Mapping
TWM555707U (zh) 心律不整偵測裝置及系統

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14852586

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 27/07/2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14852586

Country of ref document: EP

Kind code of ref document: A1