[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015045860A1 - ユーザ端末及びネットワーク装置 - Google Patents

ユーザ端末及びネットワーク装置 Download PDF

Info

Publication number
WO2015045860A1
WO2015045860A1 PCT/JP2014/073870 JP2014073870W WO2015045860A1 WO 2015045860 A1 WO2015045860 A1 WO 2015045860A1 JP 2014073870 W JP2014073870 W JP 2014073870W WO 2015045860 A1 WO2015045860 A1 WO 2015045860A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
user terminal
terminal
communication
network device
Prior art date
Application number
PCT/JP2014/073870
Other languages
English (en)
French (fr)
Inventor
憲由 福田
童 方偉
智春 山▲崎▼
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to US15/024,256 priority Critical patent/US9832712B2/en
Priority to EP14847519.7A priority patent/EP3051851B1/en
Priority to JP2015539086A priority patent/JPWO2015045860A1/ja
Publication of WO2015045860A1 publication Critical patent/WO2015045860A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/20Selecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/005Discovery of network devices, e.g. terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • the present invention relates to a user terminal and a network device in a mobile communication system that supports D2D communication.
  • D2D communication a plurality of adjacent user terminals perform direct inter-terminal communication without going through the core network.
  • cellular communication which is normal communication of a mobile communication system
  • user terminals communicate via a core network.
  • the user terminal performs control for discovering a partner terminal for D2D communication.
  • the user terminal performs control to receive a discovery signal (Discovery signal or Discoverable signal) transmitted from another user terminal.
  • a discovery signal Discovery signal or Discoverable signal
  • an object of the present invention is to provide a user terminal and a network device capable of suppressing wasteful battery consumption in D2D communication.
  • the user terminal is a user terminal in a mobile communication system that supports D2D communication that is direct inter-terminal communication.
  • the user terminal receives a D2D terminal information related to the other user terminal located around the user terminal from a network device that manages the position of the other user terminal that distributes the information by the D2D communication; And a control unit that performs control for discovering the other user terminal based on the D2D terminal information.
  • FIG. 1 is a configuration diagram of an LTE system.
  • FIG. 2 is a block diagram of the UE.
  • FIG. 3 is a block diagram of the eNB.
  • FIG. 4 is a protocol stack diagram of a radio interface in the LTE system.
  • FIG. 5 is a configuration diagram of a radio frame used in the LTE system.
  • FIG. 6 is a diagram illustrating a data path in cellular communication.
  • FIG. 7 is a diagram illustrating a data path in D2D communication.
  • FIG. 8 is a sequence diagram showing an operation example of the mobile communication system according to the present embodiment.
  • FIG. 9 is a diagram showing an example of the D2D management list according to the present embodiment.
  • the user terminal which concerns on embodiment is a user terminal in the mobile communication system which supports D2D communication which is direct communication between terminals.
  • the user terminal receives a D2D terminal information related to the other user terminal located around the user terminal from a network device that manages the position of the other user terminal that distributes the information by the D2D communication; And a control unit that performs control for discovering the other user terminal based on the D2D terminal information.
  • the user terminal further includes a transmission unit that transmits a terminal information request for requesting the D2D terminal information to the network device.
  • the transmission unit transmits the terminal information request to the network device when the user terminal is close to a position where the D2D communication has been performed in the past.
  • the user terminal further includes a transmission unit that transmits D2D capability information indicating that the user terminal is capable of the D2D communication to the network device before the reception unit receives the D2D terminal information. Prepare.
  • the D2D capability information includes information for specifying a frequency band in which the user terminal can perform the D2D communication.
  • the receiving unit determines that the control unit performs control for discovering the other user terminal, and then the other unit to be discovered as a counterpart terminal of the D2D communication.
  • the discovery signal information related to the discovery signal transmitted by the user terminal is received from the network device, and the control unit receives the discovery signal based on the discovery signal information as control for discovering the other user terminal. Control for.
  • the user terminal further includes a transmission unit that transmits the discovery information request for requesting the discovery signal information to the network device after receiving the D2D terminal information.
  • the discovery signal information includes information indicating a timing at which the other user terminal transmits the discovery signal and / or radio resources used for transmission of the discovery signal of the other user terminal. Contains information.
  • the network device is a network device in a mobile communication system that supports D2D communication that is direct inter-terminal communication.
  • the network device includes a control unit that manages a position of another user terminal that distributes information through the D2D communication, and a position around the user terminal when the user terminal is located around the other user terminal.
  • a transmitting unit that transmits D2D terminal information related to the other user terminal to the user terminal.
  • the network device further includes a receiving unit that receives a terminal information request for requesting the D2D terminal information from the user terminal.
  • the transmission unit transmits the D2D terminal information to the user terminal in response to reception of the terminal information request.
  • the network device further includes a receiving unit that receives D2D capability information indicating that the D2D communication is possible from the user terminal.
  • the transmission unit transmits the D2D terminal information to the user terminal only when the D2D capability information is received from the user terminal.
  • the transmission unit determines a frequency band specified by the information.
  • the D2D terminal information relating only to the other user terminal capable of performing the D2D communication is transmitted to the user terminal.
  • the transmission unit transmits the D2D terminal information regarding the fixed other user terminal to the user terminal.
  • discovery signal information related to a discovery signal transmitted by the other user terminal to be discovered as a counterpart terminal of the D2D communication Transmit to the user terminal.
  • the network device further includes a receiving unit that receives the discovery information request for requesting the discovery signal information from the user terminal after transmitting the D2D terminal information.
  • the transmission unit transmits the discovery signal information to the user terminal when the discovery information request is received from the user terminal.
  • the transmission unit transmits transmission permission information that permits transmission of the discovery signal under a predetermined condition to the other user terminal, and the transmission unit uses the discovery signal information as the discovery signal information. Transmission permission information is transmitted to the user terminal.
  • the discovery signal information includes information indicating timing at which the other user terminal transmits the discovery signal and / or radio resources used for transmission of the discovery signal of the other user terminal. Contains allocation information.
  • FIG. 1 is a configuration diagram of an LTE system according to the present embodiment.
  • the LTE system includes a plurality of UEs (User Equipment) 100, an E-UTRAN (Evolved Universal Terrestrial Radio Access Network) 10, an EPC (Evolved Packet Core) 20, and the like.
  • the E-UTRAN 10 and the EPC 20 constitute a network.
  • the UE 100 is a mobile radio communication device, and performs radio communication with a cell (serving cell) that has established a connection.
  • UE100 is corresponded to a user terminal.
  • the E-UTRAN 10 includes a plurality of eNBs 200 (evolved Node-B).
  • the eNB 200 corresponds to a base station.
  • the eNB 200 manages a cell and performs radio communication with the UE 100 that has established a connection with the cell. Note that, as the same meaning as the connection between the cell managed by the eNB 200 and the UE 100, the connection between the eNB 200 and the UE 100 is appropriately referred to.
  • cell is used as a term indicating a minimum unit of a radio communication area, and is also used as a term indicating a function of performing radio communication with the UE 100.
  • the eNB 200 has, for example, a radio resource management (RRM) function, a user data routing function, and a measurement control function for mobility control and scheduling.
  • RRM radio resource management
  • the EPC 20 includes MME (Mobility Management Entity) / S-GW (Serving-Gateway) 300 and OAM (Operation and Maintenance) 400.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • OAM Operaation and Maintenance
  • the MME is a network node that performs various types of mobility control for the UE 100, and corresponds to a control station.
  • the S-GW is a network node that performs transfer control of user data, and corresponds to an exchange.
  • the eNB 200 is connected to each other via the X2 interface.
  • the eNB 200 is connected to the MME / S-GW 300 via the S1 interface.
  • the OAM 400 is a server device managed by an operator, and performs maintenance and monitoring of the E-UTRAN 10.
  • FIG. 2 is a block diagram of the UE 100.
  • the UE 100 includes an antenna 101, a radio transceiver 110, a user interface 120, a GNSS (Global Navigation Satellite System) receiver 130, a battery 140, a memory 150, and a processor 160.
  • the memory 150 and the processor 160 constitute a control unit.
  • the UE 100 may not have the GNSS receiver 130. Further, the memory 150 may be integrated with the processor 160, and this set (that is, a chip set) may be used as the processor 160 '.
  • the antenna 101 and the wireless transceiver 110 are used for transmitting and receiving wireless signals.
  • the antenna 101 includes a plurality of antenna elements.
  • the radio transceiver 110 converts the baseband signal output from the processor 160 into a radio signal and transmits it from the antenna 101. Further, the radio transceiver 110 converts a radio signal received by the antenna 101 into a baseband signal and outputs the baseband signal to the processor 160.
  • the user interface 120 is an interface with a user who owns the UE 100, and includes, for example, a display, a microphone, a speaker, and various buttons.
  • the user interface 120 receives an operation from the user and outputs a signal indicating the content of the operation to the processor 160.
  • the GNSS receiver 130 receives a GNSS signal and outputs the received signal to the processor 160 in order to obtain position information indicating the geographical position of the UE 100.
  • the battery 140 stores power to be supplied to each block of the UE 100.
  • the memory 150 stores a program executed by the processor 160 and information used for processing by the processor 160.
  • the processor 160 includes a baseband processor that modulates / demodulates and encodes / decodes a baseband signal, and a CPU (Central Processing Unit) that executes programs stored in the memory 150 and performs various processes. .
  • the processor 160 may further include a codec that performs encoding / decoding of an audio / video signal.
  • the processor 160 executes various processes and various communication protocols described later.
  • FIG. 3 is a block diagram of the eNB 200.
  • the eNB 200 includes an antenna 201, a radio transceiver 210, a network interface 220, a memory 230, and a processor 240.
  • the memory 230 and the processor 240 constitute a control unit.
  • the memory 230 may be integrated with the processor 240, and this set (that is, a chip set) may be used as the processor 240 '.
  • the antenna 201 and the wireless transceiver 210 are used for transmitting and receiving wireless signals.
  • the antenna 201 includes a plurality of antenna elements.
  • the wireless transceiver 210 converts the baseband signal output from the processor 240 into a wireless signal and transmits it from the antenna 201.
  • the radio transceiver 210 converts a radio signal received by the antenna 201 into a baseband signal and outputs the baseband signal to the processor 240.
  • the network interface 220 is connected to the neighboring eNB 200 via the X2 interface and is connected to the MME / S-GW 300 via the S1 interface.
  • the network interface 220 is used for communication performed on the X2 interface and communication performed on the S1 interface.
  • the memory 230 stores a program executed by the processor 240 and information used for processing by the processor 240.
  • the processor 240 includes a baseband processor that performs modulation / demodulation and encoding / decoding of a baseband signal, and a CPU that executes programs stored in the memory 230 and performs various processes.
  • the processor 240 executes various processes and various communication protocols described later.
  • FIG. 4 is a protocol stack diagram of a radio interface in the LTE system.
  • the radio interface protocol is divided into layers 1 to 3 of the OSI reference model, and layer 1 is a physical (PHY) layer.
  • Layer 2 includes a MAC (Medium Access Control) layer, an RLC (Radio Link Control) layer, and a PDCP (Packet Data Convergence Protocol) layer.
  • Layer 3 includes an RRC (Radio Resource Control) layer.
  • the physical layer performs encoding / decoding, modulation / demodulation, antenna mapping / demapping, and resource mapping / demapping.
  • the physical layer provides a transmission service to an upper layer using a physical channel. Data is transmitted between the physical layer of the UE 100 and the physical layer of the eNB 200 via a physical channel.
  • the MAC layer performs data priority control, retransmission processing by hybrid ARQ (HARQ), and the like. Data is transmitted via the transport channel between the MAC layer of the UE 100 and the MAC layer of the eNB 200.
  • the MAC layer of the eNB 200 includes a MAC scheduler that determines an uplink / downlink transport format (transport block size, modulation / coding scheme, and the like) and an allocated resource block.
  • the RLC layer transmits data to the RLC layer on the receiving side using the functions of the MAC layer and the physical layer. Data is transmitted between the RLC layer of the UE 100 and the RLC layer of the eNB 200 via a logical channel.
  • the PDCP layer performs header compression / decompression and encryption / decryption.
  • the RRC layer is defined only in the control plane. Control signals (RRC messages) for various settings are transmitted between the RRC layer of the UE 100 and the RRC layer of the eNB 200.
  • the RRC layer controls the logical channel, the transport channel, and the physical channel according to establishment, re-establishment, and release of the radio bearer. If there is an RRC connection between the RRC of the UE 100 and the RRC of the eNB 200, the UE 100 is in a connected state, otherwise, the UE 100 is in an idle state.
  • the NAS (Non-Access Stratum) layer located above the RRC layer performs session management and mobility management.
  • FIG. 5 is a configuration diagram of a radio frame used in the LTE system.
  • the LTE system uses OFDMA (Orthogonal Frequency Division Multiple Access) for the downlink, and SC-FDMA (Single Carrier Division Multiple Access) for the uplink.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Division Multiple Access
  • the radio frame is composed of 10 subframes arranged in the time direction, and each subframe is composed of two slots arranged in the time direction.
  • the length of each subframe is 1 ms, and the length of each slot is 0.5 ms.
  • Each subframe includes a plurality of resource blocks (RB) in the frequency direction and includes a plurality of symbols in the time direction.
  • a guard interval called a cyclic prefix (CP) is provided at the head of each symbol.
  • the resource block includes a plurality of subcarriers in the frequency direction.
  • a radio resource unit composed of one subcarrier and one symbol is called a resource element (RE).
  • RE resource element
  • frequency resources can be specified by resource blocks, and time resources can be specified by subframes (or slots).
  • the section of the first few symbols of each subframe is a control region mainly used as a physical downlink control channel (PDCCH).
  • the remaining section of each subframe is an area that can be used mainly as a physical downlink shared channel (PDSCH).
  • PDSCH physical downlink shared channel
  • CRS cell-specific reference signals
  • both ends in the frequency direction in each subframe are control regions mainly used as a physical uplink control channel (PUCCH). Further, the central portion in the frequency direction in each subframe is an area that can be used mainly as a physical uplink shared channel (PUSCH). Further, a demodulation reference signal (DMRS) and a sounding reference signal (SRS) are arranged in each subframe.
  • DMRS demodulation reference signal
  • SRS sounding reference signal
  • D2D communication Next, normal communication (cellular communication) of the LTE system and D2D communication will be compared and described.
  • FIG. 6 is a diagram showing a data path in cellular communication.
  • a data path means a transfer path of user data (user plane).
  • the data path of cellular communication goes through the network. Specifically, a data path passing through the eNB 200-1, the S-GW 300, and the eNB 200-2 is set.
  • FIG. 7 is a diagram showing a data path in D2D communication. Here, a case where D2D communication is performed between the UE 100-1 that has established a connection with the eNB 200-1 and the UE 100-2 that has established a connection with the eNB 200-2 is illustrated.
  • the data path of D2D communication does not go through the network. That is, direct radio communication is performed between UEs.
  • direct radio communication is performed between UEs.
  • the network traffic load and the battery consumption of the UE 100 are reduced by performing D2D communication between the UE 100-1 and the UE 100-2. The effect of doing etc. is acquired.
  • D2D communication As a case where D2D communication is started, (a) a case where D2D communication is started after the partner terminal is discovered by performing an operation for discovering the partner terminal, and (b) a partner terminal is discovered. There is a case where D2D communication is started without performing the operation for.
  • D2D communication is started when one of the UEs 100-1 and 100-2 discovers the other UE 100 in the vicinity.
  • the UE 100 has a function of discovering another UE 100 existing in the vicinity of the UE 100 in order to discover the counterpart terminal (Discover) and / or a function of discovering itself from the other UE 100 (Discoverable) Have
  • the UE 100 does not necessarily need to perform D2D communication even if it discovers the counterpart terminal.
  • the UE 100-1 and the UE 100-2 may negotiate each other and then perform D2D communication after discovering each other. It may be determined.
  • Each of the UE 100-1 and the UE 100-2 starts D2D communication when agreeing to perform D2D communication.
  • the UE 100 starts broadcasting a signal for D2D communication by broadcasting.
  • UE100 can start D2D communication irrespective of the presence or absence of a partner terminal's discovery.
  • FIG. 8 is a sequence diagram showing an operation example of the mobile communication system according to the present embodiment.
  • FIG. 9 is a diagram showing an example of the D2D management list according to the present embodiment.
  • the mobile communication system includes UE 100-1, UE 100-2, eNB 200, and NW 500 (network device).
  • NW 500 network device
  • Each of the UE 100-1 and the UE 100-2 has not established a connection with the eNB 200. That is, each of UE 100-1 and UE 100-2 is in an idle state.
  • the UE 100-1 is a terminal that distributes information through D2D communication.
  • the UE 100-1 is a terminal dedicated to D2D communication, for example, a kiosk terminal installed in a street or in a store.
  • the UE 100-1 (that is, the terminal dedicated to D2D communication) may be connectable to a management server or the like via a network.
  • the UE 100-1 has an MTC (Machine Type Communication) function that is a communication function for a small module.
  • the UE 100-1 transmits a discovery signal for discovering nearby terminals.
  • the discovery signal is a signal (Discoverable signal) for the UE 100 (for example, UE 100-1) that transmits the discovery signal to be discovered from another UE 100 (for example, UE 100-2).
  • the discovery signal may be a reference signal for D2D communication, a beacon signal, or a pilot signal.
  • the NW 500 manages the UE 100 capable of D2D communication. Specifically, the NW 500 manages the location of the UE 100 capable of D2D communication. In the present embodiment, the NW 500 stores a D2D management list as shown in FIG.
  • the D2D management list includes “an identifier of the UE 100 capable of D2D communication (terminal ID)”, “an identifier of a cell connected to the UE 100 capable of D2D communication (connected cell ID)”, “UE 100 capable of D2D communication”.
  • Position information position information
  • information information indicating whether or not the UE 100 capable of D2D communication is executing D2D (D2D executing information)" are recorded. Note that the position information and the D2D in-execution information may be optional, and the position information may be used only for D2D communication and may be recorded only for a fixed terminal whose position is fixed.
  • step S101 the UE 100-1 establishes a connection with the eNB 200.
  • step S102 the UE 100-1 transmits D2D capability information (D2D capability information) to the NW 500 via the eNB 200.
  • the NW 500 receives the D2D capability information.
  • the NW 500 recognizes that the UE 100-1 is capable of D2D communication by receiving the D2D capability information from the UE 100-1.
  • D2D capability information is information indicating that D2D communication is possible.
  • D2D capability information for example, (a) Information indicating that the UE 100 can perform D2D communication using uplink and downlink in all bands supporting cellular communication (D2D capability), (b) Information (D2D capability per UL / DL) indicating that UE 100 is capable of D2D communication using uplink and / or downlink in all bands supporting cellular communication, (c) in a predetermined band , Information indicating that the UE 100 is capable of D2D communication using uplink and downlink (D2D capability per band), (d) D2D communication using the uplink and / or downlink in a predetermined band (D (D capability per band + UL / DL), (e) Indicates that the UE 100 is capable of D2D communication using the uplink and / or downlink in a predetermined uplink band and / or a predetermined downlink band. Information (D2D capability per UL / DL per band). As described
  • the D2D capability information may be notified to the eNB 200 using UE Capability Information.
  • UE Capability Information a new FGI bit may be defined for D2D capability information.
  • the D2D capability information may be included in UE EUTRA Capability.
  • the D2D capability information may include fixed information indicating that the UE 100-1 is a fixed terminal.
  • the fixed information include information indicating that the UE 100-1 has an MTC function, information indicating that the UE 100-1 is DC power feeding, and the like.
  • the UE 100-1 may transmit the D2D capability information when establishing a connection with the eNB 200 in step S101.
  • step S103 the NW 500 transmits Discoverable related information (transmission permission information) that permits transmission of a discovery signal under a predetermined condition to the UE 100-1 via the eNB 200.
  • the UE 100-1 receives Discoverable related information.
  • the predetermined condition is defined by, for example, the permitted discovery signal transmission timing and / or the radio resource permitted to be used for the discovery signal transmission.
  • the Discoverable related information includes at least one of timing information indicating transmission timing of the permitted discovery signal and radio resource information of the radio resource permitted to be used for transmission of the discovery signal.
  • the radio resource information may include frequency information and frame format information (FDD / TDD) that can be used for transmitting discovery signals.
  • the NW 500 may transmit the Discoverable related information only to the UE 100 that has transmitted the D2D capability information by unicast, or may transmit the Discoverable related information to all the UEs 100 located in the cell managed by the eNB 200.
  • the NW 500 may transmit the Discoverable related information to the UE 100 via the eNB 200 using the NAS signal, or the eNB 200 that has received the Discoverable related information from the NW 500 uses the high layer AS signal (higher layer AS signal). Then, it may be transmitted to UE 100 by broadcast or unicast. Note that D2D terminal information, which will be described later, may also be transmitted in the same manner as the Discoverable related information.
  • step S104 the UE 100-2 establishes a connection with the eNB 200.
  • step S105 the UE 100-2 transmits the D2D capability information to the NW 500 via the eNB 200.
  • the NW 500 receives the D2D capability information.
  • step S106 the UE 100-2 transmits a D2D terminal information request (terminal information request) for requesting D2D terminal information to the NW 500 via the eNB 200.
  • the NW 500 receives the D2D terminal information request.
  • the D2D terminal information will be described later.
  • the D2D terminal information request may include location information indicating the current location of the UE 100.
  • the UE 100-2 transmits a D2D terminal information request to the NW 500 when, for example, the UE 100-2 comes close to a position where the D2D communication has been performed in the past. Specifically, when the UE 100-2 is located in the vicinity of the UE 100 that has performed D2D communication in the past, based on the position information included in the access history of the past D2D communication and the current position information. If determined, a D2D terminal information request is transmitted.
  • a D2D terminal information request may be transmitted.
  • the UE 100-2 may display information on the UE 100 that has performed D2D communication in the past located on the periphery on the user interface 120.
  • the D2D terminal information request may be transmitted.
  • the NW 500 determines whether or not the UE 100-2 is located in the vicinity of another UE 100 that distributes information through D2D communication. For example, the NW 500 determines that the UE 100-2 is located in the vicinity of the other UE 100 when the distance between the position of the UE 100-2 and the position of the other UE 100 is equal to or less than a threshold indicating that the distance is D2D communication. May be. Alternatively, the NW 500 may determine that the UE 100 existing in the same cell as the cell to which the UE 100 is connected is the UE 100 located in the vicinity of the UE 100-2.
  • the NW 500 determines that the UE 100-2 is located in the vicinity of another UE 100, the NW 500 transmits D2D terminal information to the UE 100-2.
  • the NW 500 may transmit the D2D terminal information to the UE 100-2 only when the D2D capability information is received from the UE 100-2.
  • step S107 the UE 100-1 starts transmitting a Discoverable signal based on the Discoverable related information.
  • the UE 100-1 transmits a Discoverable signal by broadcasting at a predetermined cycle based on the timing information included in the Discoverable related information.
  • step S108 the NW 500 transmits D2D terminal information to the UE 100-2 via the eNB 200 in response to reception of the D2D terminal information request.
  • the UE 100-2 receives the D2D terminal information.
  • the D2D terminal information is information related to the UE 100 located around the UE 100-2.
  • the D2D terminal information is used to determine whether or not the UE 100-2 performs control for discovering a partner terminal in D2D communication.
  • the D2D terminal information is, for example, information (for example, details of the content being distributed) that is understood by other UEs 100 located in the vicinity of the UE 100-2, and other UEs 100 located in the vicinity of the UE 100-2.
  • the NW 500 may acquire these pieces of information from the UE 100 or may acquire the information by inquiring of the management server.
  • the NW 500 uses only the UE 100 that can perform D2D communication using the frequency band specified by the information. Information may be transmitted to UE 100-2. That is, the NW 500 does not have to transmit to the UE 100-2 D2D terminal information related to the UE 100 capable of D2D communication only in a frequency band in which the UE 100-2 cannot perform D2D communication.
  • the NW 500 may transmit D2D terminal information related to the UE 100 whose position is fixed among the UEs 100 located around the UE 100-2.
  • the UE 100-2 determines whether or not to perform control for discovering another UE 100 located in the vicinity of the UE 100-2.
  • the UE 100-2 transmits the D2D terminal information and information registered in advance in the UE 100-2 (for example, the UE 100- 2 is an identifier of an application that can be used) to determine whether or not to perform the control.
  • the UE 100-2 may determine to perform the control when the identifier of an application used for distribution matches the identifier of an application that can be used by the UE 100-2.
  • the UE 100-2 may determine that the control is performed based on a signal input by a user who has visually confirmed the contents of the distributed content.
  • the UE 100-2 performs the control when the position information of the other UE 100 and the current position information are within a predetermined value indicating that the distance between the UE 100-2 and the other UE 100 is close to each other. May be determined.
  • the D2D terminal information includes information related to the UE 100-2, and the UE 100-2 determines to perform control for discovering the UE 100-1.
  • the UE 100-2 when the UE 100-2 determines to perform the control, the UE 100-2 performs the process of step S109.
  • step S109 the UE 100-2 transmits a Discovery related information request (discovery information request) for requesting Discovery related information (discovery signal information) related to the discovery signal transmitted by another UE 100 to the eNB 200.
  • the eNB 200 receives the Discovery related information request.
  • the Discovery related information request may include an identifier of the UE 100-1 that the UE 100-2 desires as a partner of D2D communication.
  • step S110 the eNB 200 transmits the Discovery related information to the UE 100-2 in response to the reception of the Discovery related information request.
  • the UE 100-2 receives the Discovery related information.
  • the Discovery related information includes information indicating the timing at which the other UE 100 transmits a discovery signal and / or radio resource allocation information used for transmitting the discovery signal of the other UE 100.
  • the Discovery related information may have the same content as the above-described Discoverable related information. That is, the eNB 200 may transmit the Discoverable related information as the Discovery related information.
  • the eNB 200 may transmit Discovery related information related only to the UE 100-1 that the UE 100-2 desires as a partner of D2D communication to the UE 100-2.
  • eNB200 may transmit Discovery related information to UE100 using a high layer AS signal.
  • the UE 100-2 performs control for discovering the UE 100-1. Specifically, the UE 100-2 performs control for receiving the Discoverable signal transmitted from the UE 100-1 based on the Discovery related information.
  • the UE 100-2 determines that the UE 100-1 has been found.
  • the UE 100-2 determines that the UE 100-1 has been discovered by the UE 100-2 by transmitting a response signal to the Discoverable signal to the UE 100-1.
  • the UE 100-1 and the UE 100-2 start D2D communication.
  • the UE 100-2 receives information distributed by the UE 100-1.
  • the NW 500 transmits D2D terminal information related to the UE 100-1 to the UE 100-2 when the UE 100-2 is located in the vicinity of the UE 100-1 that distributes information by D2D communication.
  • the UE 100-2 receives the D2D terminal information from the NW 500.
  • the UE 100-2 performs control for discovering the UE 100-2 based on the D2D terminal information.
  • the UE 100-2 knows that the UE 100 capable of D2D communication exists in the vicinity of the UE 100-2, and thus can suppress performing control for discovery even though the other terminal of D2D communication does not exist in the vicinity. . Therefore, useless battery consumption can be suppressed.
  • the UE 100-2 transmits a D2D terminal information request for requesting D2D terminal information to the NW 500.
  • the NW 500 receives the D2D terminal information request from the UE 100-2.
  • NW500 transmits D2D terminal information to UE100 in response to reception of a D2D terminal information request.
  • the UE 100-2 can acquire the D2D terminal information when the D2D terminal information is necessary. Therefore, the UE 100-2 does not receive the D2D terminal information when the D2D terminal information is not necessary, so that useless battery consumption can be suppressed.
  • the UE 100-2 can transmit a D2D terminal information request to the NW 500 when it is close to a position where D2D communication has been performed in the past. As a result, the UE 100-2 can confirm whether the UE 100 that has performed D2D communication in the past still exists at the same position. Therefore, useless battery consumption can be suppressed.
  • the UE 100-2 transmits the D2D capability information to the NW 500 before receiving the D2D terminal information.
  • the NW 500 transmits D2D terminal information to the UE 100 only when the D2D capability information is received from the UE 100-2.
  • the UE 100 that cannot perform D2D communication is not a target for transmitting D2D terminal information, and thus can effectively use radio resources.
  • the D2D capability information includes information for specifying a frequency band in which the UE 100 can perform D2D communication.
  • the D2D capability information includes information for specifying a frequency band in which the UE 100-2 that is the transmission source of the D2D communication capability information can perform D2D communication
  • the NW 500 uses the frequency band specified by the information to perform D2D communication Can be transmitted to the UE 100-2.
  • the NW 500 does not need to transmit D2D terminal information related to the UE 100 in which the UE 100-2 cannot perform D2D communication, and thus can effectively use radio resources.
  • the NW 500 can transmit D2D terminal information related to the UE 100 whose position is fixed among the UEs 100 located around the UE 100-2.
  • the UE 100-2 can further suppress wasteful battery consumption by determining whether to perform discovery control based on the D2D related information.
  • the NW 500 transmits the Discovery related information to the UE 100-2 after transmitting the D2D terminal information.
  • UE100 receives Discovery related information, after determining with performing the control for discovery.
  • the UE 100 performs control for receiving the Discoverable signal based on the Discovery related information.
  • the Discovery related information includes information indicating the timing at which the UE 100-1 transmits the Discoverable signal and / or information indicating the radio resource used for transmitting the Discoverable signal of the UE 100-1.
  • the UE 100-2 can reduce the time for performing the control for discovery. Therefore, wasteful battery consumption can be further suppressed.
  • the UE 100-2 after receiving the D2D terminal information, the UE 100-2 transmits a Discovery related information request to the NW 500.
  • the NW 500 receives the Discovery related information request after transmitting the D2D terminal information, the NW 500 transmits the Discovery related information to the UE 100-2.
  • NW500 since NW500 does not need to transmit Discovery related information to UE100 which does not perform D2D communication, it can utilize a radio
  • the NW 500 transmits Discoverable-related information that permits transmission of a Discoverable signal under a predetermined condition to the UE 100-1, and transmits Discovery-related information (Discoverable-related information in the present embodiment) to the UE 100-2.
  • the NW 500 can control the transmission of the Discoverable signal of the UE 100-1, and the UE 100-2 can shorten the time for performing the control for discovery. Therefore, wasteful battery consumption can be further suppressed.
  • the network device that is the NW 500 is different from the eNB 200, but the network device may be the eNB 200.
  • the network device may be a device (for example, MME) configuring the core network, or may be a management server.
  • the eNB 200 may have the same function as the network device according to the present embodiment, and may perform control according to the above-described embodiment in cooperation with other network devices.
  • the UE 100-1 transmits the Discoverable signal as the discovery signal, but is not limited thereto.
  • the UE 100-1 may transmit a signal for discovering the partner terminal (Discovery signal) as the discovery signal.
  • the UE 100-2 can discover the UE 100-1 by receiving the Discovery signal.
  • the UE 100-1 can discover the UE 100-2 by receiving the response of the Discovery signal from the UE 100-2.
  • the UE 100-2 performs control for receiving the Discoverable signal as control for discovering the UE 100-1, but is not limited thereto.
  • the UE 100-2 may discover the UE 100-1 by receiving the Discovery signal transmitted from the UE 100-1.
  • the UE 100-2 may discover the UE 100-1 by transmitting a Discovery signal (or a Discoverable signal) and receiving a response to the Discovery signal (or the Discoverable signal) from the UE 100-1.
  • the NW 500 transmits the D2D terminal information in response to the reception of the D2D terminal information request, but is not limited thereto. For example, the NW 500 determines whether each UE 100 connected to the cell is located in the vicinity of another UE 100 that distributes information by D2D communication, periodically or aperiodically. NW500 may transmit D2D terminal information, when it determines with UE100 being located in the periphery of the said other UE100.
  • the eNB 200 transmits the Discovery related information in response to the reception of the Discovery related information request, but is not limited thereto.
  • the eNB 200 may transmit the Discovery related information periodically or aperiodically.
  • NW500 may control transmission of Discovery related information. That is, when receiving the Discovery related information request via the eNB 200, the NW 500 may transmit the Discovery related information to the UE 100-2.
  • the UE 100-2 transmits the Discovery related information request after determining to perform control for discovering other UEs 100 located in the vicinity of the UE 100-2. Absent. After determining that the UE 100-2 performs the control, the UE 100-2 may perform the Discovery without transmitting the Discovery related information request.
  • the UE capability information includes fixed information indicating that the UE 100-1 is a fixed terminal. May be transmitted to the NW 500.
  • the NW 500 may update the D2D management list based on the fixed information.
  • the UE 100-2 performs control for discovering the UE 100-1 for the purpose of communication, and of course the UE 100-1 existing around itself regardless of whether or not to communicate with the discovered partner. You may perform control for discovering only for the purpose of discovering.
  • the Discovery related information Based on the above, control for discovering another UE 100 may be performed.
  • the present invention is not limited to the LTE system, and the present invention may be applied to a system other than the LTE system.
  • the user terminal and the network device according to the present invention are useful in the mobile communication field because they can suppress wasteful battery consumption in D2D communication.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Telephone Function (AREA)
  • Telephonic Communication Services (AREA)

Abstract

 本発明に係るユーザ端末は、直接的な端末間通信であるD2D通信をサポートする移動通信システムにおけるユーザ端末である。当該ユーザ端末は、前記D2D通信によって情報を配信する他のユーザ端末の位置を管理するネットワーク装置から、前記ユーザ端末の周辺に位置する前記他のユーザ端末に関するD2D端末情報を受信する受信部と、前記D2D端末情報に基づいて、前記他のユーザ端末を発見するための制御を行う制御部と、を備える。

Description

ユーザ端末及びネットワーク装置
 本発明は、D2D通信をサポートする移動通信システムにおけるユーザ端末及びネットワーク装置に関する。
 移動通信システムの標準化プロジェクトである3GPP(3rd Generation Partnership Project)では、リリース12以降の新機能として、端末間(Device to Device:D2D)通信の導入が検討されている(非特許文献1参照)。
 D2D通信では、近接する複数のユーザ端末がコアネットワークを介さずに直接的な端末間通信を行う。一方、移動通信システムの通常の通信であるセルラ通信では、ユーザ端末がコアネットワークを介して通信を行う。
 なお、ユーザ端末は、D2D通信の相手端末を発見するための制御を行う。一例として、ユーザ端末は、他のユーザ端末から送信される発見信号(Discovery信号又はDiscoverable信号)を受信する制御を行う。
3GPP技術報告書 「TR 22.803 V12.1.0」   2013年6月
 しかしながら、ユーザ端末の周辺にD2D通信を可能な他のユーザ端末が存在するとは限らない。このため、ユーザ端末は、D2D通信の相手端末を発見するための制御を行っても、当該他のユーザ端末が周辺に存在しなければ、当該他のユーザ端末を発見することができない。従って、ユーザ端末は、D2D通信の相手端末を発見するための制御を行うことによって、無駄にバッテリを消費する虞がある。
 そこで、本発明は、D2D通信における無駄なバッテリの消費を抑制可能なユーザ端末及びネットワーク装置を提供することを目的とする。
 一実施形態に係るユーザ端末は、直接的な端末間通信であるD2D通信をサポートする移動通信システムにおけるユーザ端末である。当該ユーザ端末は、前記D2D通信によって情報を配信する他のユーザ端末の位置を管理するネットワーク装置から、前記ユーザ端末の周辺に位置する前記他のユーザ端末に関するD2D端末情報を受信する受信部と、前記D2D端末情報に基づいて、前記他のユーザ端末を発見するための制御を行う制御部と、を備える。
図1は、LTEシステムの構成図である。 図2は、UEのブロック図である。 図3は、eNBのブロック図である。 図4は、LTEシステムにおける無線インターフェイスのプロトコルスタック図である。 図5は、LTEシステムで使用される無線フレームの構成図である。 図6は、セルラ通信におけるデータパスを示す図である。 図7は、D2D通信におけるデータパスを示す図である。 図8は、本実施形態に係る移動通信システムの動作例を示すシーケンス図である。 図9は、本実施形態に係るD2D管理リストの一例を示す図である。
 [実施形態の概要]
 実施形態に係るユーザ端末は、直接的な端末間通信であるD2D通信をサポートする移動通信システムにおけるユーザ端末である。当該ユーザ端末は、前記D2D通信によって情報を配信する他のユーザ端末の位置を管理するネットワーク装置から、前記ユーザ端末の周辺に位置する前記他のユーザ端末に関するD2D端末情報を受信する受信部と、前記D2D端末情報に基づいて、前記他のユーザ端末を発見するための制御を行う制御部と、を備える。
 実施形態に係るユーザ端末は、前記D2D端末情報を要求するための端末情報要求を前記ネットワーク装置に送信する送信部をさらに備える。
 実施形態に係るユーザ端末において、前記送信部は、前記ユーザ端末が前記D2D通信を過去に行った位置に近接した場合に、前記端末情報要求を前記ネットワーク装置に送信する。
 実施形態に係るユーザ端末は、前記受信部が前記D2D端末情報を受信する前に、前記ユーザ端末が前記D2D通信を可能であることを示すD2D能力情報を前記ネットワーク装置に送信する送信部をさらに備える。
 実施形態に係るユーザ端末において、前記D2D能力情報は、前記ユーザ端末が前記D2D通信を可能な周波数帯域を特定するための情報を含む。
 実施形態に係るユーザ端末において、前記受信部は、前記制御部が前記他のユーザ端末を発見するための制御を行うと判定した後に、前記D2D通信の相手端末として発見されるために前記他のユーザ端末が送信する発見信号に関する発見信号情報を前記ネットワーク装置から受信し、前記制御部は、前記他のユーザ端末を発見するための制御として、前記発見信号情報に基づいて前記発見信号を受信するための制御を行う。
 実施形態に係るユーザ端末は、前記D2D端末情報を受信した後に、前記発見信号情報を要求するための発見情報要求を前記ネットワーク装置に送信する送信部をさらに備える。
 実施形態に係るユーザ端末において、前記発見信号情報は、前記他のユーザ端末が前記発見信号を送信するタイミングを示す情報及び/又は前記他のユーザ端末の前記発見信号の送信に用いられる無線リソースの情報を含む。
 実施形態に係るネットワーク装置は、直接的な端末間通信であるD2D通信をサポートする移動通信システムにおけるネットワーク装置である。当該ネットワーク装置は、前記D2D通信によって情報を配信する他のユーザ端末の位置を管理する制御部と、前記ユーザ端末が前記他のユーザ端末の周辺に位置する場合に、前記ユーザ端末の周辺に位置する前記他のユーザ端末に関するD2D端末情報を前記ユーザ端末に送信する送信部と、を備える。
 実施形態に係るネットワーク装置は、前記D2D端末情報を要求するための端末情報要求を前記ユーザ端末から受信する受信部をさらに備える。前記送信部は、前記端末情報要求の受信に応じて、前記D2D端末情報を前記ユーザ端末に送信する。
 実施形態に係るネットワーク装置は、前記D2D通信を可能であることを示すD2D能力情報を前記ユーザ端末から受信する受信部をさらに備える。前記送信部は、前記D2D能力情報を前記ユーザ端末から受信していた場合にのみ、前記D2D端末情報を前記ユーザ端末に送信する。
 実施形態に係るネットワーク装置において、前記送信部は、前記D2D能力情報が、前記ユーザ端末が前記D2D通信を可能な周波数帯域を特定するための情報を含む場合、前記情報によって特定された周波数帯域を用いて前記D2D通信を可能な前記他のユーザ端末のみに関する前記D2D端末情報を前記ユーザ端末に送信する。
 実施形態に係るネットワーク装置において、前記送信部は、前記他のユーザ端末の位置が固定されている場合、固定された前記他のユーザ端末に関する前記D2D端末情報を前記ユーザ端末に送信する。
 実施形態に係るネットワーク装置において、前記送信部は、前記D2D端末情報を送信した後に、前記D2D通信の相手端末として発見されるために前記他のユーザ端末が送信する発見信号に関する発見信号情報を、前記ユーザ端末に送信する。
 実施形態に係るネットワーク装置は、前記D2D端末情報を送信した後に、前記発見信号情報を要求するための発見情報要求を前記ユーザ端末から受信する受信部をさらに備える。前記送信部は、前記発見情報要求を前記ユーザ端末から受信した場合に、前記発見信号情報を前記ユーザ端末に送信する。
 実施形態に係るネットワーク装置において、前記送信部は、所定の条件において前記発見信号の送信を許可する送信許可情報を前記他のユーザ端末に送信し、前記送信部は、前記発見信号情報として、前記送信許可情報を前記ユーザ端末に送信する。
 実施形態に係るネットワーク装置は、前記発見信号情報は、前記他のユーザ端末が前記発見信号を送信するタイミングを示す情報及び/又は前記他のユーザ端末の前記発見信号の送信に用いられる無線リソースの割当情報を含む。
 [実施形態]
 (LTEシステム)
 図1は、本実施形態に係るLTEシステムの構成図である。
 図1に示すように、LTEシステムは、複数のUE(User Equipment)100と、E-UTRAN(Evolved Universal Terrestrial Radio Access Network)10と、EPC(Evolved Packet Core)20と、を含む。E-UTRAN10及びEPC20は、ネットワークを構成する。
 UE100は、移動型の無線通信装置であり、接続を確立したセル(サービングセル)との無線通信を行う。UE100はユーザ端末に相当する。
 E-UTRAN10は、複数のeNB200(evolved Node-B)を含む。eNB200は基地局に相当する。eNB200は、セルを管理しており、セルとの接続を確立したUE100との無線通信を行う。なお、eNB200が管理するセルとUE100との接続と同じ意味として、eNB200とUE100との接続と適宜称する。
 なお、「セル」は、無線通信エリアの最小単位を示す用語として使用される他に、UE100との無線通信を行う機能を示す用語としても使用される。
 eNB200は、例えば、無線リソース管理(RRM)機能と、ユーザデータのルーティング機能と、モビリティ制御及びスケジューリングのための測定制御機能と、を有する。
 EPC20は、MME(Mobility Management Entity)/S-GW(Serving-Gateway)300と、OAM(Operation and Maintenance)400とを含む。また、EPC20は、コアネットワークに相当する。
 MMEは、UE100に対する各種モビリティ制御等を行うネットワークノードであり、制御局に相当する。S-GWは、ユーザデータの転送制御を行うネットワークノードであり、交換局に相当する。
 eNB200は、X2インターフェイスを介して相互に接続される。また、eNB200は、S1インターフェイスを介してMME/S-GW300と接続される。
 OAM400は、オペレータによって管理されるサーバ装置であり、E-UTRAN10の保守及び監視を行う。
 次に、UE100及びeNB200の構成を説明する。
 図2は、UE100のブロック図である。図2に示すように、UE100は、アンテナ101と、無線送受信機110と、ユーザインターフェイス120と、GNSS(Global Navigation Satellite System)受信機130と、バッテリ140と、メモリ150と、プロセッサ160と、を有する。メモリ150及びプロセッサ160は、制御部を構成する。
 UE100は、GNSS受信機130を有していなくてもよい。また、メモリ150をプロセッサ160と一体化し、このセット(すなわち、チップセット)をプロセッサ160’としてもよい。
 アンテナ101及び無線送受信機110は、無線信号の送受信に用いられる。アンテナ101は、複数のアンテナ素子を含む。無線送受信機110は、プロセッサ160が出力するベースバンド信号を無線信号に変換してアンテナ101から送信する。また、無線送受信機110は、アンテナ101が受信する無線信号をベースバンド信号に変換してプロセッサ160に出力する。
 ユーザインターフェイス120は、UE100を所持するユーザとのインターフェイスであり、例えば、ディスプレイ、マイク、スピーカ、及び各種ボタンなどを含む。ユーザインターフェイス120は、ユーザからの操作を受け付けて、該操作の内容を示す信号をプロセッサ160に出力する。
 GNSS受信機130は、UE100の地理的な位置を示す位置情報を得るために、GNSS信号を受信して、受信した信号をプロセッサ160に出力する。
 バッテリ140は、UE100の各ブロックに供給すべき電力を蓄える。
 メモリ150は、プロセッサ160によって実行されるプログラムと、プロセッサ160による処理に使用される情報と、を記憶する。
 プロセッサ160は、ベースバンド信号の変調・復調及び符号化・復号などを行うベースバンドプロセッサと、メモリ150に記憶されるプログラムを実行して各種の処理を行うCPU(Central Processing Unit)と、を含む。プロセッサ160は、さらに、音声・映像信号の符号化・復号を行うコーデックを含んでもよい。プロセッサ160は、後述する各種の処理及び各種の通信プロトコルを実行する。
 図3は、eNB200のブロック図である。図3に示すように、eNB200は、アンテナ201と、無線送受信機210と、ネットワークインターフェイス220と、メモリ230と、プロセッサ240と、を有する。メモリ230及びプロセッサ240は、制御部を構成する。なお、メモリ230をプロセッサ240と一体化し、このセット(すなわち、チップセット)をプロセッサ240’としてもよい。
 アンテナ201及び無線送受信機210は、無線信号の送受信に用いられる。アンテナ201は、複数のアンテナ素子を含む。無線送受信機210は、プロセッサ240が出力するベースバンド信号を無線信号に変換してアンテナ201から送信する。また、無線送受信機210は、アンテナ201が受信する無線信号をベースバンド信号に変換してプロセッサ240に出力する。
 ネットワークインターフェイス220は、X2インターフェイスを介して隣接eNB200と接続され、S1インターフェイスを介してMME/S-GW300と接続される。ネットワークインターフェイス220は、X2インターフェイス上で行う通信及びS1インターフェイス上で行う通信に用いられる。
 メモリ230は、プロセッサ240によって実行されるプログラムと、プロセッサ240による処理に使用される情報と、を記憶する。
 プロセッサ240は、ベースバンド信号の変調・復調及び符号化・復号などを行うベースバンドプロセッサと、メモリ230に記憶されるプログラムを実行して各種の処理を行うCPUと、を含む。プロセッサ240は、後述する各種の処理及び各種の通信プロトコルを実行する。
 図4は、LTEシステムにおける無線インターフェイスのプロトコルスタック図である。
 図4に示すように、無線インターフェイスプロトコルは、OSI参照モデルのレイヤ1乃至レイヤ3に区分されており、レイヤ1は物理(PHY)レイヤである。レイヤ2は、MAC(Medium Access Control)レイヤと、RLC(Radio Link Control)レイヤと、PDCP(Packet Data Convergence Protocol)レイヤと、を含む。レイヤ3は、RRC(Radio Resource Control)レイヤを含む。
 物理レイヤは、符号化・復号、変調・復調、アンテナマッピング・デマッピング、及びリソースマッピング・デマッピングを行う。物理レイヤは、物理チャネルを用いて上位レイヤに伝送サービスを提供する。UE100の物理レイヤとeNB200の物理レイヤとの間では、物理チャネルを介してデータが伝送される。
 MACレイヤは、データの優先制御、及びハイブリッドARQ(HARQ)による再送処理などを行う。UE100のMACレイヤとeNB200のMACレイヤとの間では、トランスポートチャネルを介してデータが伝送される。eNB200のMACレイヤは、上下リンクのトランスポートフォーマット(トランスポートブロックサイズ、変調・符号化方式など)、及び割り当てリソースブロックを決定するMACスケジューラを含む。
 RLCレイヤは、MACレイヤ及び物理レイヤの機能を利用してデータを受信側のRLCレイヤに伝送する。UE100のRLCレイヤとeNB200のRLCレイヤとの間では、論理チャネルを介してデータが伝送される。
 PDCPレイヤは、ヘッダ圧縮・伸張、及び暗号化・復号化を行う。
 RRCレイヤは、制御プレーンでのみ定義される。UE100のRRCレイヤとeNB200のRRCレイヤとの間では、各種設定のための制御信号(RRCメッセージ)が伝送される。RRCレイヤは、無線ベアラの確立、再確立及び解放に応じて、論理チャネル、トランスポートチャネル、及び物理チャネルを制御する。UE100のRRCとeNB200のRRCとの間にRRC接続がある場合、UE100は接続状態であり、そうでない場合、UE100はアイドル状態である。
 RRCレイヤの上位に位置するNAS(Non-Access Stratum)レイヤは、セッション管理及びモビリティ管理などを行う。
 図5は、LTEシステムで使用される無線フレームの構成図である。LTEシステムは、下りリンクにはOFDMA(Orthogonal Frequency Division Multiple Access)、上りリンクにはSC-FDMA(Single Carrier Frequency Division Multiple Access)がそれぞれ使用される。
 図5に示すように、無線フレームは、時間方向に並ぶ10個のサブフレームで構成され、各サブフレームは、時間方向に並ぶ2個のスロットで構成される。各サブフレームの長さは1msであり、各スロットの長さは0.5msである。各サブフレームは、周波数方向に複数個のリソースブロック(RB)を含み、時間方向に複数個のシンボルを含む。各シンボルの先頭には、サイクリックプレフィックス(CP)と呼ばれるガード区間が設けられる。リソースブロックは、周波数方向に複数個のサブキャリアを含む。1つのサブキャリア及び1つのシンボルにより構成される無線リソース単位はリソースエレメント(RE)と称される。
 UE100に割り当てられる無線リソースのうち、周波数リソースはリソースブロックにより特定でき、時間リソースはサブフレーム(又はスロット)により特定できる。
 下りリンクにおいて、各サブフレームの先頭数シンボルの区間は、主に物理下りリンク制御チャネル(PDCCH)として使用される制御領域である。また、各サブフレームの残りの区間は、主に物理下りリンク共有チャネル(PDSCH)として使用できる領域である。さらに、各サブフレームには、セル固有参照信号(CRS)が分散して配置される。
 上りリンクにおいて、各サブフレームにおける周波数方向の両端部は、主に物理上りリンク制御チャネル(PUCCH)として使用される制御領域である。また、各サブフレームにおける周波数方向の中央部は、主に物理上りリンク共有チャネル(PUSCH)として使用できる領域である。さらに、各サブフレームには、復調参照信号(DMRS)及びサウンディング参照信号(SRS)が配置される。
 (D2D通信)
 次に、LTEシステムの通常の通信(セルラ通信)とD2D通信とを比較して説明する。
 図6は、セルラ通信におけるデータパスを示す図である。ここでは、eNB200-1との接続を確立したUE100-1と、eNB200-2との接続を確立したUE100-2と、の間でセルラ通信を行う場合を例示している。なお、データパスとは、ユーザデータ(ユーザプレーン)の転送経路を意味する。
 図6に示すように、セルラ通信のデータパスはネットワークを経由する。詳細には、eNB200-1、S-GW300、及びeNB200-2を経由するデータパスが設定される。
 図7は、D2D通信におけるデータパスを示す図である。ここでは、eNB200-1との接続を確立したUE100-1と、eNB200-2との接続を確立したUE100-2と、の間でD2D通信を行う場合を例示している。
 図7に示すように、D2D通信のデータパスはネットワークを経由しない。すなわち、UE間で直接的な無線通信を行う。このように、UE100-1の近傍にUE100-2が存在するのであれば、UE100-1とUE100-2との間でD2D通信を行うことによって、ネットワークのトラフィック負荷及びUE100のバッテリ消費量を削減するなどの効果が得られる。
 なお、D2D通信が開始されるケースとして、(a)相手端末を発見するための動作を行うことによって相手端末を発見した後に、D2D通信が開始されるケースと、(b)相手端末を発見するための動作を行わずにD2D通信が開始されるケースがある。
 例えば、上記(a)のケースでは、UE100-1及びUE100-2のうち一方のUE100が、近傍に存在する他方のUE100を発見することで、D2D通信が開始される。
 このケースの場合、UE100は、相手端末を発見するために、自身の近傍に存在する他のUE100を発見する(Discover)機能、及び/又は、自身が他のUE100から発見される(Discoverable)機能を有する。
 なお、UE100は、相手端末を発見しても必ずしもD2D通信を行う必要はなく、例えば、UE100-1及びUE100-2は、互いに相手を発見した後に、ネゴシエーションを行って、D2D通信を行うか否かを判定してもよい。UE100-1及びUE100-2のそれぞれは、D2D通信を行うことに同意した場合に、D2D通信を開始する。
 一方、上記(b)のケースでは、例えば、UE100は、ブロードキャストによってD2D通信用の信号の報知を開始する。これにより、UE100は、相手端末の発見の有無にかかわらず、D2D通信を開始できる。
 (移動通信システムの概略動作)
 次に、本実施形態に係る移動通信システムの概略動作について、図8及び図9を用いて説明する。図8は、本実施形態に係る移動通信システムの動作例を示すシーケンス図である。図9は、本実施形態に係るD2D管理リストの一例を示す図である。
 図8に示すように、本実施形態に係る移動通信システムは、UE100-1、UE100-2、eNB200及びNW500(ネットワーク装置)を有する。
 UE100-1及びUE100-2のそれぞれは、eNB200との接続を確立していない。すなわち、UE100-1及びUE100-2のそれぞれは、アイドル状態である。
 UE100-1は、D2D通信よって情報を配信する端末である。本実施形態において、UE100-1は、D2D通信専用端末であり、例えば、街頭又は店舗内に設置されるキオスク端末である。ただし、UE100-1(すなわち、D2D通信専用端末)は、ネットワークを介して、管理サーバ等に接続可能であってもよい。UE100-1は、小型モジュール向けの通信機能であるMTC(Machine Type Communication)機能を有する。
 また、UE100-1は、近傍の端末を発見するための発見信号を送信する。本実施形態において、発見信号は、発見信号を送信するUE100(例えば、UE100-1)が他のUE100(例えば、UE100-2)から発見されるための信号(Discoverable信号)である。発見信号は、D2D通信用の参照信号、ビーコン信号又はパイロット信号であってもよい。
 NW500は、D2D通信が可能なUE100を管理する。具体的には、NW500は、D2D通信が可能なUE100の位置を管理する。本実施形態において、NW500は、図9に示すように、D2D管理リストを記憶する。
 本実施形態において、D2D管理リストには、「D2D通信可能なUE100の識別子(端末ID)」、「D2D通信可能なUE100が接続するセルの識別子(接続セルID)」、「D2D通信可能なUE100の位置情報(位置情報)」及び「D2D通信可能なUE100がD2D実行中か否かを示す情報(D2D実行中情報)」が記録される。なお、位置情報及びD2D実行中情報は、オプションであってもよく、位置情報は、D2D通信専用に用いられ、位置が固定される固定端末のみ記録されてもよい。
 図8に示すように、ステップS101において、UE100-1は、eNB200との接続を確立する。
 ステップS102において、UE100-1は、D2D能力情報(D2D capability情報)をeNB200を介してNW500に送信する。NW500は、D2D能力情報を受信する。NW500は、UE100-1からのD2D能力情報の受信によって、UE100-1がD2D通信可能であると認識する。
 D2D能力情報は、D2D通信を可能であることを示す情報である。D2D能力情報として、例えば、(a)セルラ通信をサポートしている全ての帯域において、UE100が上りリンク及び下りリンクを用いたD2D通信を可能であることを示す情報(D2D capability)、(b)セルラ通信をサポートしている全ての帯域において、UE100が上りリンク及び/又は下りリンクを用いたD2D通信を可能であることを示す情報(D2D capability per UL/DL)、(c)所定の帯域において、UE100が上りリンク及び下りリンクを用いたD2D通信を可能であることを示す情報(D2D capability per band)、(d)所定の帯域において、UE100が上りリンク及び/又は下りリンクを用いたD2D通信を可能であることを示す情報(D2D capability per band +UL/DL)、(e)上りリンクの所定の帯域及び/又は下りリンクの所定の帯域において、UE100が上りリンク及び/又は下りリンクを用いたD2D通信を可能であることを示す情報(D2D capability per UL/DL per band)、が挙げられる。このように、D2D能力情報は、D2D通信を可能な周波数帯域を特定するための情報を含んでもよい。
 D2D能力情報は、UE Capability Infomationを用いて、eNB200に通知してもよい。また、D2D能力情報のために、新たなFGI bitが規定されてもよい。また、D2D能力情報は、UE EUTRA Capabilityに含まれてもよい。
 また、D2D能力情報は、UE100-1が固定端末であることを示す固定情報を含んでいてもよい。固定情報として、UE100-1がMTC機能を有することを示す情報、UE100-1がDC給電であることを示す情報などが挙げられる。
 なお、UE100-1は、ステップS101において、eNB200との接続を確立する際に、D2D能力情報を送信してもよい。
 ステップS103において、NW500は、所定の条件において発見信号の送信を許可するDiscoverable関連情報(送信許可情報)を、eNB200を介して、UE100-1に送信する。UE100-1は、Discoverable関連情報を受信する。
 所定の条件は、例えば、許可された発見信号の送信タイミング及び/又は発見信号の送信に用いられることが許可された無線リソースによって規定される。Discoverable関連情報は、許可された発見信号の送信タイミングを示すタイミング情報及び発見信号の送信に用いられることが許可された無線リソースの無線リソース情報の少なくとも1つを含む。無線リソース情報は、発見信号の送信に利用可能な周波数情報、フレームフォーマット情報(FDD/TDD)を含んでもよい。
 NW500は、Discoverable関連情報を、D2D能力情報を送信したUE100にのみDiscoverable関連情報をユニキャストで送信してもよいし、eNB200が管理するセルに在圏する全てのUE100に送信してもよい。
 なお、NW500は、Discoverable関連情報をUE100にNAS信号を用いてeNB200を介して送信してもよいし、Discoverable関連情報をNW500から受信したeNB200が、高レイヤAS信号(higher layer AS singnal)を用いて、UE100にブロードキャスト又はユニキャストで送信してもよい。なお、後述するD2D端末情報も、Discoverable関連情報と同様に送信されてもよい。
 ステップS104において、UE100-2は、eNB200との接続を確立する。
 ステップS105において、UE100-2は、D2D能力情報をeNB200を介してNW500に送信する。NW500は、D2D能力情報を受信する。
 ステップS106において、UE100-2は、D2D端末情報を要求するためのD2D端末情報要求(端末情報要求)を、eNB200を介してNW500に送信する。NW500は、D2D端末情報要求を受信する。D2D端末情報については、後述する。
 D2D端末情報要求は、現在のUE100の位置を示す位置情報を含んでもよい。
 UE100-2は、例えば、UE100-2がD2D通信を過去に行った位置に近接した場合に、D2D端末情報要求をNW500に送信する。具体的には、UE100-2は、過去のD2D通信のアクセス履歴に含まれる位置情報と現在の位置情報とに基づいて、UE100-2が、過去にD2D通信を行ったUE100の周辺に位置すると判定した場合、D2D端末情報要求を送信する。
 或いは、UE100-2は、D2D通信可能であり、位置が固定されている固定端末の位置情報に関する過去に取得したリストに基づいて、UE100の周辺にD2D通信可能なUE100が存在する判定した場合、D2D端末情報要求を送信してもよい。
 また、UE100-2は、D2D端末情報要求を送信する前に、周辺に位置する過去にD2D通信を行ったUE100の情報をユーザインターフェイス120に表示してもよい。ユーザから接続を希望するUE100(例えば、UE100-2)が入力された場合に、D2D端末情報要求を送信してもよい。
 一方、NW500は、UE100-2からD2D端末情報要求を受信した場合、UE100-2がD2D通信によって情報を配信する他のUE100の周辺に位置するか否かを判定する。例えば、NW500は、UE100-2の位置と他のUE100の位置との距離がD2D通信可能な距離であることを示す閾値以下である場合、UE100-2が他のUE100の周辺に位置すると判定してもよい。或いは、NW500は、UE100が接続するセルと同一のセルに存在するUE100をUE100-2の周辺に位置するUE100と判定してもよい。
 NW500は、UE100-2が他のUE100の周辺に位置すると判定した場合、D2D端末情報をUE100-2に送信する。NW500は、UE100-2からD2D能力情報を受信していた場合にのみ、D2D端末情報をUE100-2に送信してもよい。
 ステップS107において、UE100-1は、Discoverable関連情報に基づいて、Discoverable信号の送信を開始する。本実施形態において、UE100-1は、Discoverable関連情報に含まれるタイミング情報に基づいて、所定の周期で、Discoverable信号をブロードキャストによって送信する。
 ステップS108において、NW500は、D2D端末情報要求の受信に応じて、D2D端末情報をeNB200を介してUE100-2に送信する。UE100-2は、D2D端末情報を受信する。
 D2D端末情報は、UE100-2の周辺に位置するUE100に関する情報である。D2D端末情報は、UE100-2がD2D通信における相手端末を発見するための制御を行うか否かを判定するために用いられる。
 D2D端末情報は、例えば、UE100-2の周辺に位置する他のUE100が配信する内容が分かる情報(例えば、配信しているコンテンツの内容など)、UE100-2の周辺に位置する他のUE100の位置情報である。NW500は、これらの情報をUE100から取得してもよいし、管理サーバに問い合わせて取得してもよい。
 NW500は、D2D能力情報が、UE100-2がD2D通信を可能な周波数帯域を特定するための情報を含む場合、当該情報によって特定された周波数帯域を用いてD2D通信を可能なUE100のみに関するD2D端末情報をUE100-2に送信してもよい。すなわち、NW500は、UE100-2がD2D通信を不可能な周波数帯域のみでD2D通信可能なUE100に関するD2D端末情報を、UE100-2に送信しなくてもよい。
 また、NW500は、UE100-2の周辺に位置するUE100のうち、位置が固定されているUE100に関するD2D端末情報を送信してもよい。
 一方、UE100-2は、D2D端末情報に基づいて、UE100-2の周辺に位置する他のUE100を発見するための制御を行うか否かの判定を行う。
 例えば、D2D端末情報が他のUE100の配信に関する情報(配信に用いられるアプリケーションの識別子)を含む場合、UE100-2は、D2D端末情報と、UE100-2に予め登録された情報(例えば、UE100-2が利用可能なアプリケーションの識別子)とに基づいて、当該制御を行うか否かを判定する。この場合、UE100-2は、配信に用いられるアプリケーションの識別子と、UE100-2が利用可能なアプリケーションの識別子とが一致した場合に、当該制御を行うと判定してもよい。また、UE100-2は、配信しているコンテンツの内容を視認したユーザによって入力された信号に基づいて当該制御を行うと判定してもよい。また、UE100-2は、他のUE100の位置情報と現在の位置情報とによって、UE100-2と他のUE100との距離が近接していることを示す所定値以内である場合、当該制御を行うと判定してもよい。
 本実施形態において、D2D端末情報には、UE100-2に関する情報が含まれており、UE100-2は、UE100-1を発見するための制御を行うと判定したと仮定して説明する。
 本実施形態において、UE100-2は、当該制御を行うと判定した場合、ステップS109の処理を行う。
 ステップS109において、UE100-2は、他のUE100が送信する発見信号に関するDiscovery関連情報(発見信号情報)を要求するためのDiscovery関連情報要求(発見情報要求)をeNB200に送信する。eNB200は、Discovery関連情報要求を受信する。
 Discovery関連情報要求は、UE100-2がD2D通信の相手として希望するUE100-1の識別子を含んでいてもよい。
 ステップS110において、eNB200は、Discovery関連情報要求の受信に応じて、Discovery関連情報をUE100-2に送信する。UE100-2は、Discovery関連情報を受信する。
 Discovery関連情報は、他のUE100が発見信号を送信するタイミングを示す情報及び/又は他のUE100の発見信号の送信に用いられる無線リソースの割当情報を含む。Discovery関連情報は、上述のDiscoverable関連情報と同様の内容であってもよい。すなわち、eNB200は、Discovery関連情報として、Discoverable関連情報を送信してもよい。
 eNB200は、UE100-2がD2D通信の相手として希望するUE100-1のみに関するDiscovery関連情報をUE100-2に送信してもよい。
 なお、eNB200は、Discovery関連情報を高レイヤAS信号を用いて、UE100に送信してもよい。
 ステップS111において、UE100-2は、UE100-1を発見するための制御を行う。具体的には、UE100-2は、Discovery関連情報に基づいて、UE100-1から送信されるDiscoverable信号を受信するための制御を行う。UE100-2は、Discoverable信号を受信した場合、UE100-1を発見したと判定する。UE100-2は、Discoverable信号への応答信号をUE100-1に送信することによって、UE100-1は、UE100-2に発見されたと判定する。その後、UE100-1及びUE100-2は、D2D通信を開始する。UE100-2は、UE100-1が配信する情報を受信する。
 (実施形態のまとめ)
 本実施形態において、NW500は、D2D通信によって情報を配信するUE100-1の周辺にUE100-2が位置する場合、UE100-1に関するD2D端末情報をUE100-2に送信する。UE100-2は、NW500からD2D端末情報を受信する。UE100-2は、D2D端末情報に基づいて、UE100-2を発見するための制御を行う。これにより、UE100-2は、自身の周辺にD2D通信可能なUE100が存在することが分かるため、D2D通信の相手端末が周辺に存在しないにもかかわらず発見するための制御を行うことを抑制できる。従って、無駄なバッテリの消費を抑制できる。
 本実施形態において、UE100-2は、D2D端末情報を要求するためのD2D端末情報要求をNW500に送信する。NW500は、D2D端末情報要求をUE100-2から受信する。NW500は、D2D端末情報要求の受信に応じて、D2D端末情報をUE100に送信する。これにより、UE100-2は、D2D端末情報が必要なときにD2D端末情報を取得することができる。このため、UE100-2は、D2D端末情報が必要ないときにはD2D端末情報を受信しないため、無駄なバッテリの消費を抑制できる。
 本実施形態において、UE100-2は、過去にD2D通信を行った位置に近接した場合に、D2D端末情報要求をNW500に送信できる。これにより、UE100-2は、過去にD2D通信を行ったUE100が、現在も同じ位置に存在するかを確認することができる。従って、無駄なバッテリの消費を抑制できる。
 本実施形態において、UE100-2は、D2D端末情報を受信する前に、D2D能力情報をNW500に送信する。NW500は、D2D能力情報をUE100-2から受信していた場合にのみ、D2D端末情報をUE100に送信する。これにより、D2D通信不可能なUE100は、D2D端末情報を送信する対象とならないため、無線リソースを有効活用できる。
 本実施形態において、D2D能力情報は、UE100がD2D通信を可能な周波数帯域を特定するための情報を含む。NW500は、D2D能力情報が、D2D通信能力情報の送信元のUE100-2がD2D通信を可能な周波数帯域を特定するための情報を含む場合、当該情報によって特定された周波数帯域を用いてD2D通信を可能なUE100のみ関するD2D端末情報をUE100-2に送信できる。これにより、NW500は、UE100-2がD2D通信できないUE100に関するD2D端末情報を送信せずにすむため、無線リソースを有効活用できる。
 本実施形態において、NW500は、UE100-2の周辺に位置するUE100のうち、位置が固定されているUE100に関するD2D端末情報を送信できる。これにより、位置が固定されているUE100の位置は、D2D管理リストに記憶されたUE100の位置情報が示す位置と同じである可能性が非常に高いため、D2D関連情報の信頼性が向上する。その結果、UE100-2は、D2D関連情報に基づいて、発見のための制御を行うかを判定することにより、無駄なバッテリの消費をより抑制可能となる。
 本実施形態において、NW500は、D2D端末情報を送信した後に、Discovery関連情報をUE100-2に送信する。UE100は、発見のための制御を行うと判定した後に、Discovery関連情報を受信する。UE100は、Discovery関連情報に基づいて、Discoverable信号を受信するための制御を行う。また、Discovery関連情報は、UE100-1がDiscoverable信号を送信するタイミングを示す情報及び/又はUE100-1のDiscoverable信号の送信に用いられる無線リソースを示す情報を含む。これにより、UE100-2は、発見のための制御を行う時間を短縮することができる。従って、無駄なバッテリの消費をより抑制可能となる。
 本実施形態において、UE100-2は、D2D端末情報を受信した後に、Discovery関連情報要求をNW500に送信する。NW500は、D2D端末情報を送信した後に、Discovery関連情報要求を受信した場合、Discovery関連情報をUE100-2に送信する。これにより、NW500は、D2D通信を行わないUE100にDiscovery関連情報を送信せずにすむため、無線リソースを有効活用できる。
 本実施形態において、NW500は、所定の条件においてDiscoverable信号の送信を許可するDiscoverable関連情報をUE100-1に送信し、Discovery関連情報(本実施形態におけるDiscoverable関連情報)をUE100-2に送信する。これにより、NW500は、UE100-1のDiscoverable信号の送信を制御できるとともに、UE100-2は、発見のための制御を行う時間を短縮することができる。従って、無駄なバッテリの消費をより抑制可能となる。
 [その他実施形態]
 上記のように、本発明は実施形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなる。
 例えば、上述した実施形態では、NW500であるネットワーク装置は、eNB200と異なっていたが、ネットワーク装置は、eNB200であってもよい。また、ネットワーク装置は、コアネットワークを構成する装置(例えば、MME)であってもよいし、管理サーバであってもよい。また、eNB200が本実施形態に係るネットワーク装置と同様の機能を有し、他のネットワーク装置と連携して、上述の実施形態に係る制御を行ってもよい。
 また、上述した実施形態において、UE100-1は、発見信号としてDiscoverable信号を送信したが、これに限られない。例えば、UE100-1は、発見信号として、相手端末を発見する信号(Discovery信号)を送信してもよい。UE100-2は、Discovery信号を受信することによって、UE100-1を発見できる。UE100-1は、UE100-2からのDiscovery信号の応答を受信することによって、UE100-2を発見できる。
 また、上述した実施形態では、UE100-2は、UE100-1を発見するための制御として、Discoverable信号を受信する制御を行ったが、これに限られない。例えば、UE100-2は、UE100-1から送信されるDiscovery信号を受信することによって、UE100-1を発見してもよい。或いは、UE100-2は、Discovery信号(又はDiscoverable信号)を送信し、UE100-1からのDiscovery信号(又はDiscoverable信号)への応答を受信することによって、UE100-1を発見してもよい。
 また、上述した実施形態において、NW500は、D2D端末情報要求の受信に応じて、D2D端末情報を送信したが、これに限られない。例えば、NW500は、周期的又は非周期的に、セルに接続する各UE100がD2D通信によって情報を配信する他のUE100の周辺に位置するか否かを判定する。NW500は、UE100が当該他のUE100の周辺に位置すると判定した場合、D2D端末情報を送信してもよい。
 また、上述した実施形態において、eNB200は、Discovery関連情報要求の受信に応じて、Discovery関連情報を送信したが、これに限られない。例えば、eNB200は、周期的に又は非周期的に、Discovery関連情報を送信してもよい。また、eNB200が、Discovery関連情報の送信を制御していたが、NW500がDiscovery関連情報の送信を制御してもよい。すなわち、NW500は、eNB200を介して、Discovery関連情報要求を受信した場合に、Discovery関連情報をUE100-2に送信してもよい。
 また、上述した実施形態において、UE100-2は、UE100-2の周辺に位置する他のUE100を発見するための制御を行うと判定した後に、Discovery関連情報要求を送信したが、これに限られない。UE100-2は、当該制御を行うと判定した後に、Discovery関連情報要求を送信せずに、Discoveryを行ってもよい。
 また、上述した実施形態において、UE100-1は、移動が制限された端末(例えば、位置が固定されている固定端末)である場合、UE能力情報に固定端末であることを示す固定情報を含めてNW500に送信してもよい。NW500は、固定情報に基づいて、D2D管理リストを更新してもよい。
 なお、UE100-2は、通信を目的として、UE100-1を発見するための制御を行うことはもちろん、発見した相手と通信を行うか否かにかかわらず、自身の周囲に存在するUE100-1を発見することのみを目的として発見するための制御を行ってもよい。
 なお、UE100-2は、UE100-2がD2D通信を過去に行った位置に近接した場合に、D2D端末情報を受信していなくても、Discovery関連情報を予め受信していた場合、Discovery関連情報に基づいて、他のUE100を発見するための制御を行ってもよい。
 また、上述した実施形態では、本発明をLTEシステムに適用する一例を説明したが、LTEシステムに限定されるものではなく、LTEシステム以外のシステムに本発明を適用してもよい。
 なお、日本国特許出願第2013-202765号(2013年9月27日出願)の全内容が、参照により、本願明細書に組み込まれている。
 以上のように、本発明に係るユーザ端末及びネットワーク装置は、D2D通信における無駄なバッテリの消費を抑制可能であるため、移動通信分野において有用である。

Claims (17)

  1.  直接的な端末間通信であるD2D通信をサポートする移動通信システムにおけるユーザ端末であって、
     前記D2D通信によって情報を配信する他のユーザ端末の位置を管理するネットワーク装置から、前記ユーザ端末の周辺に位置する前記他のユーザ端末に関するD2D端末情報を受信する受信部と、
     前記D2D端末情報に基づいて、前記他のユーザ端末を発見するための制御を行う制御部と、を備えることを特徴とするユーザ端末。
  2.  前記D2D端末情報を要求するための端末情報要求を前記ネットワーク装置に送信する送信部をさらに備えることを特徴とする請求項1に記載のユーザ端末。
  3.  前記送信部は、前記ユーザ端末が前記D2D通信を過去に行った位置に近接した場合に、前記端末情報要求を前記ネットワーク装置に送信することを特徴とする請求項2に記載のユーザ端末。
  4.  前記受信部が前記D2D端末情報を受信する前に、前記ユーザ端末が前記D2D通信を可能であることを示すD2D能力情報を前記ネットワーク装置に送信する送信部をさらに備えることを特徴とする請求項1に記載のユーザ端末。
  5.  前記D2D能力情報は、前記ユーザ端末が前記D2D通信を可能な周波数帯域を特定するための情報を含むことを特徴とする請求項4に記載のユーザ端末。
  6.  前記受信部は、前記制御部が前記他のユーザ端末を発見するための制御を行うと判定した後に、前記D2D通信の相手端末として発見されるために前記他のユーザ端末が送信する発見信号に関する発見信号情報を前記ネットワーク装置から受信し、
     前記制御部は、前記他のユーザ端末を発見するための制御として、前記発見信号情報に基づいて前記発見信号を受信するための制御を行うことを特徴とする請求項1に記載のユーザ端末。
  7.  前記D2D端末情報を受信した後に、前記発見信号情報を要求するための発見情報要求を前記ネットワーク装置に送信する送信部をさらに備えることを特徴とする請求項6に記載のユーザ端末。
  8.  前記発見信号情報は、前記他のユーザ端末が前記発見信号を送信するタイミングを示す情報及び/又は前記他のユーザ端末の前記発見信号の送信に用いられる無線リソースの情報を含むことを特徴とする請求項6に記載のユーザ端末。
  9.  直接的な端末間通信であるD2D通信をサポートする移動通信システムにおけるネットワーク装置であって、
     前記D2D通信によって情報を配信する他のユーザ端末の位置を管理する制御部と、
     前記ユーザ端末が前記他のユーザ端末の周辺に位置する場合に、前記ユーザ端末の周辺に位置する前記他のユーザ端末に関するD2D端末情報を前記ユーザ端末に送信する送信部と、を備えることを特徴とするネットワーク装置。
  10.  前記D2D端末情報を要求するための端末情報要求を前記ユーザ端末から受信する受信部をさらに備え、
     前記送信部は、前記端末情報要求の受信に応じて、前記D2D端末情報を前記ユーザ端末に送信することを特徴とする請求項9に記載のネットワーク装置。
  11.  前記D2D通信を可能であることを示すD2D能力情報を前記ユーザ端末から受信する受信部をさらに備え、
     前記送信部は、前記D2D能力情報を前記ユーザ端末から受信していた場合にのみ、前記D2D端末情報を前記ユーザ端末に送信することを特徴とする請求項9に記載のネットワーク装置。
  12.  前記送信部は、前記D2D能力情報が、前記ユーザ端末が前記D2D通信を可能な周波数帯域を特定するための情報を含む場合、前記情報によって特定された周波数帯域を用いて前記D2D通信を可能な前記他のユーザ端末のみに関する前記D2D端末情報を前記ユーザ端末に送信することを特徴とする請求項11に記載のネットワーク装置。
  13.  前記送信部は、前記他のユーザ端末の位置が固定されている場合、固定された前記他のユーザ端末に関する前記D2D端末情報を前記ユーザ端末に送信することを特徴とする請求項9に記載のネットワーク装置。
  14.  前記送信部は、前記D2D端末情報を送信した後に、前記D2D通信の相手端末として発見されるために前記他のユーザ端末が送信する発見信号に関する発見信号情報を、前記ユーザ端末に送信することを特徴とする請求項9に記載のネットワーク装置。
  15.  前記D2D端末情報を送信した後に、前記発見信号情報を要求するための発見情報要求を前記ユーザ端末から受信する受信部をさらに備え、
     前記送信部は、前記発見情報要求を前記ユーザ端末から受信した場合に、前記発見信号情報を前記ユーザ端末に送信することを特徴とする請求項14に記載のネットワーク装置。
  16.  前記送信部は、所定の条件において前記発見信号の送信を許可する送信許可情報を前記他のユーザ端末に送信し、
     前記送信部は、前記発見信号情報として、前記送信許可情報を前記ユーザ端末に送信することを特徴とする請求項14に記載のネットワーク装置。
  17.  前記発見信号情報は、前記他のユーザ端末が前記発見信号を送信するタイミングを示す情報及び/又は前記他のユーザ端末の前記発見信号の送信に用いられる無線リソースの割当情報を含むことを特徴とする請求項14に記載のネットワーク装置。
PCT/JP2014/073870 2013-09-27 2014-09-10 ユーザ端末及びネットワーク装置 WO2015045860A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/024,256 US9832712B2 (en) 2013-09-27 2014-09-10 User terminal and network apparatus
EP14847519.7A EP3051851B1 (en) 2013-09-27 2014-09-10 User terminal and network device
JP2015539086A JPWO2015045860A1 (ja) 2013-09-27 2014-09-10 ユーザ端末及びネットワーク装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013202765 2013-09-27
JP2013-202765 2013-09-27

Publications (1)

Publication Number Publication Date
WO2015045860A1 true WO2015045860A1 (ja) 2015-04-02

Family

ID=52743004

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/073870 WO2015045860A1 (ja) 2013-09-27 2014-09-10 ユーザ端末及びネットワーク装置

Country Status (4)

Country Link
US (1) US9832712B2 (ja)
EP (1) EP3051851B1 (ja)
JP (1) JPWO2015045860A1 (ja)
WO (1) WO2015045860A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019512901A (ja) * 2016-03-28 2019-05-16 グァンドン オッポ モバイル テレコミュニケーションズ コーポレーション リミテッドGuangdong Oppo Mobile Telecommunications Corp., Ltd. デバイスツーデバイス通信方法
US10778324B2 (en) 2015-06-25 2020-09-15 Nec Corporation D2D communication control apparatus, radio terminal, relay radio terminal candidate selection method, and non-transitory computer readable medium
JP2022544953A (ja) * 2019-08-14 2022-10-24 フラウンホファー ゲセルシャフト ツール フェールデルンク ダー アンゲヴァンテン フォルシュンク エー.ファオ. 少なくとも1つの通信サービスに条件付きで参加するためのトランシーバ

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112492519A (zh) * 2015-05-05 2021-03-12 诺基亚技术有限公司 方法、系统及装置
DE102017203905B4 (de) * 2016-12-22 2022-11-10 Volkswagen Aktiengesellschaft Verfahren zur Organisation der Kommunikation zwischen Mobilfunknetz-Teilnehmerstationen in einer Mobilfunkzelle, sowie Mobilfunknetz-Teilnehmerstation und Mobilfunknetz-Verwaltungseinheit bei der Verwendung des erfindungsgemäßen Verfahrens
US11153717B2 (en) * 2019-04-04 2021-10-19 Qualcomm Incorporated Enhanced reporting of positioning-related states

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012060934A2 (en) * 2010-11-04 2012-05-10 Interdigital Patent Holdings, Inc. Method and apparatus for establishing peer-to-peer communication
WO2012088470A1 (en) * 2010-12-22 2012-06-28 Qualcomm Incorporated Configuration of user equipment for peer-to-peer communication
JP2013527697A (ja) * 2010-04-29 2013-06-27 エルジー エレクトロニクス インコーポレイティド 無線接続システムにおける端末識別子(stid)割当方法及び装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100128701A1 (en) * 2008-11-24 2010-05-27 Qualcomm Incorporated Beacon transmission for participation in peer-to-peer formation and discovery
US8082303B2 (en) * 2009-03-30 2011-12-20 Qualcomm Incorporated Methods and apparatus for combined peer to peer and wide area network based discovery
US9351340B2 (en) * 2009-04-08 2016-05-24 Nokia Technologies Oy Apparatus and method for mode selection for device-to-device communications
EP2510733A4 (en) * 2009-12-11 2017-05-17 Nokia Technologies Oy Method, apparatus and computer program product for allocating resources in wireless communication network
US8812657B2 (en) * 2010-04-15 2014-08-19 Qualcomm Incorporated Network-assisted peer discovery
US8977276B2 (en) * 2010-07-15 2015-03-10 Nokia Corporation Method and apparatus for device initiated offloading to unlicensed bands
EP2679036B1 (en) * 2011-02-25 2018-09-05 BlackBerry Limited Inter-device session connectivity enhancement
EP2721898B1 (en) * 2011-06-17 2015-12-02 Telefonaktiebolaget LM Ericsson (PUBL) Method and radio base station in a cellular communications network for device -to -device communications
US20130073671A1 (en) * 2011-09-15 2013-03-21 Vinayak Nagpal Offloading traffic to device-to-device communications
US9408212B2 (en) * 2011-11-10 2016-08-02 Nokia Technologies Oy Methods and apparatuses for facilitating use of carrier aggregation for device-to-device communications
KR20130053650A (ko) * 2011-11-15 2013-05-24 삼성전자주식회사 디바이스간 직접 통신 서비스 시스템에서 데이터 송신 방법 및 장치
WO2013073915A1 (ko) * 2011-11-18 2013-05-23 엘지전자 주식회사 무선 접속 시스템에서 단말 간 통신 요청 방법 및 이를 위한 장치
KR20130070661A (ko) * 2011-12-14 2013-06-28 한국전자통신연구원 단말간 직접 통신을 위한 제어 방법
WO2013095220A1 (en) * 2011-12-20 2013-06-27 Telefonaktiebolaget L M Ericsson (Publ) Method and device for truncating location information
US9036546B2 (en) * 2012-01-04 2015-05-19 Futurewei Technologies, Inc. System and method for device discovery for device-to-device communication in a cellular network
WO2013119094A1 (ko) * 2012-02-10 2013-08-15 엘지전자 주식회사 D2d 서비스 타입 또는 d2d 어플리케이션 타입에 따른 d2d 통신 방법 및 이를 위한 장치
CN109905871B (zh) * 2012-03-07 2022-05-17 英特尔公司 用于实现对等无线连接的系统和方法
US9554406B2 (en) * 2012-03-19 2017-01-24 Industrial Technology Research Institute Method for device to device communication and control node using the same
US9450667B2 (en) * 2012-03-19 2016-09-20 Industrial Technology Research Institute Method for device to device communication and base station and user equipment using the same
US10129836B2 (en) * 2012-09-19 2018-11-13 Telefonaktiebolaget L M Ericsson (Publ) Network node and method for managing maximum transmission power levels for a D2D communication link
US20140204847A1 (en) * 2013-01-18 2014-07-24 Telefonaktiebolaget L M Ericsson (Publ) Network-assisted d2d communication using d2d capability information
US9094050B2 (en) * 2013-01-25 2015-07-28 Blackberry Limited Methods and apparatus to facilitate device-to-device communication
US9788328B2 (en) * 2013-02-14 2017-10-10 Qualcomm Incorporated Joint scheduling of device-to-device (D2D) links and wide area network (WAN) uplink (UL) user equipments (UEs)

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013527697A (ja) * 2010-04-29 2013-06-27 エルジー エレクトロニクス インコーポレイティド 無線接続システムにおける端末識別子(stid)割当方法及び装置
WO2012060934A2 (en) * 2010-11-04 2012-05-10 Interdigital Patent Holdings, Inc. Method and apparatus for establishing peer-to-peer communication
WO2012088470A1 (en) * 2010-12-22 2012-06-28 Qualcomm Incorporated Configuration of user equipment for peer-to-peer communication

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"TR 22.803 V12.1.0", 3GPP TECHNICAL REPORT, June 2013 (2013-06-01)
See also references of EP3051851A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10778324B2 (en) 2015-06-25 2020-09-15 Nec Corporation D2D communication control apparatus, radio terminal, relay radio terminal candidate selection method, and non-transitory computer readable medium
JP2019512901A (ja) * 2016-03-28 2019-05-16 グァンドン オッポ モバイル テレコミュニケーションズ コーポレーション リミテッドGuangdong Oppo Mobile Telecommunications Corp., Ltd. デバイスツーデバイス通信方法
US11166149B2 (en) 2016-03-28 2021-11-02 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Device-to-device communication method, terminal device, and network device
JP2022544953A (ja) * 2019-08-14 2022-10-24 フラウンホファー ゲセルシャフト ツール フェールデルンク ダー アンゲヴァンテン フォルシュンク エー.ファオ. 少なくとも1つの通信サービスに条件付きで参加するためのトランシーバ

Also Published As

Publication number Publication date
JPWO2015045860A1 (ja) 2017-03-09
EP3051851A4 (en) 2017-09-06
US9832712B2 (en) 2017-11-28
EP3051851B1 (en) 2019-07-31
EP3051851A1 (en) 2016-08-03
US20160219499A1 (en) 2016-07-28

Similar Documents

Publication Publication Date Title
US9642172B2 (en) Mobile communication system, base station, user terminal, and processor
JP6174213B2 (ja) ユーザ端末、プロセッサ及び基地局
WO2015064679A1 (ja) 移動通信システム及びユーザ端末
JP6147844B2 (ja) 移動通信システム、基地局、ユーザ端末及びプロセッサ
JP6026549B2 (ja) 移動通信システム、基地局及びユーザ端末
JP2016129376A (ja) 基地局、ユーザ端末及びプロセッサ
JP2017103781A (ja) 基地局及びプロセッサ
US10425881B2 (en) User terminal, network apparatus, and processor
JP5842061B2 (ja) 移動通信システム、ユーザ端末、及びプロセッサ
US10165604B2 (en) Mobile communication system, user terminal, base station, processor, and communication control method
US20190174278A1 (en) User equipment and chipset
WO2015045860A1 (ja) ユーザ端末及びネットワーク装置
JP6028038B2 (ja) 移動通信システム、基地局、プロセッサ
US10433150B2 (en) Communication method, radio terminal, processor and base station
JPWO2015141847A1 (ja) 通信制御方法及び基地局
JP6615729B2 (ja) 通信方法、ユーザ端末及びプロセッサ
WO2014192632A1 (ja) 基地局、ユーザ端末及びプロセッサ
WO2014129456A1 (ja) 通信制御方法、基地局及びユーザ端末
US20170339549A1 (en) Communication control method, management server, and user terminal
WO2016021701A1 (ja) 基地局及びユーザ端末

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14847519

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015539086

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15024256

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014847519

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014847519

Country of ref document: EP