WO2015045575A1 - Network system, management method, and network manager - Google Patents
Network system, management method, and network manager Download PDFInfo
- Publication number
- WO2015045575A1 WO2015045575A1 PCT/JP2014/068703 JP2014068703W WO2015045575A1 WO 2015045575 A1 WO2015045575 A1 WO 2015045575A1 JP 2014068703 W JP2014068703 W JP 2014068703W WO 2015045575 A1 WO2015045575 A1 WO 2015045575A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- terminal
- bandwidth
- edge node
- state
- network
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/02—Arrangements for optimising operational condition
Definitions
- the present invention relates to a network system.
- a mobile backhaul is a network for wireless communication connecting a gateway from a base station.
- a base station accommodates a mobile terminal, and a gateway performs authentication of a user who uses the mobile terminal and control of a handover.
- the communication path has the following problems.
- the bandwidth of the communication path is set to a fixed bandwidth and the number of terminals accommodated by the BS-NWE node is different among the BS-NWE nodes, the bandwidth of the communication path allocated to each BS-NWE node is constant. . For this reason, even in the case where there is a vacancy in the entire network resource, the communication in the BS-NWE node with a large number of terminals has been slow.
- the node hop that passes through from the edge node on the base station side to the service accommodation edge (edge node that accommodates all servers that provide services)
- the service accommodation edge edge node that accommodates all servers that provide services
- the resources could not be fully utilized even if the network resources are available.
- Patent Document 1 Japanese Patent Application Laid-Open No. 2009-206874
- Patent Document 1 cannot improve the network utilization efficiency in consideration of the route through which data passes in the network. Further, when Patent Document 1 is used, if a terminal that has not output a transaction at the time when the transmission rate is set starts outputting a transaction after setting the transmission rate, the bandwidth of the newly generated transaction is secured. As a result, the transmission rate is insufficient.
- the first object of the present invention is to allocate an optimum bandwidth to a communication path through which data passes in a network in view of the problems of the prior art as described above. Furthermore, when a certain relay node contains too many communication paths and congestion occurs, a network system is provided that improves the overall network utilization efficiency by resetting the communication path to a relay node with a low utilization rate. It is to be.
- a second object of the present invention is to provide a network system that can secure a bandwidth of a path in consideration of potential users (users who are not performing data communication but who are likely to perform data communication in the future). That is.
- a network system for transferring data transmitted and received by a terminal, the network system including a first edge node that accommodates the terminal and a terminal that holds information on the terminal A management server; a network manager connected to the terminal management server; and a second edge node connected to the first edge node, wherein data transmitted and received by the terminal is the first edge node And the terminal is transferred via a path between the second edge nodes, and the terminal is in a first state in which the terminal transmits / receives only control data, and in which the terminal transmits / receives data other than the control data.
- the network manager includes a processor and a memory
- the terminal In each of the states, the terminal has band information including a band reserved for communication via the path, and acquires terminal state information of the terminal from the terminal management server, and the terminal management server Based on the number of terminals in the first state and the number of terminals in the second state indicated by the information acquired from the information and the bandwidth information, the terminal is secured for communication via a path.
- the first edge node and the second edge node are set so that data transmitted / received by the terminal is transferred according to the calculated bandwidth.
- an optimal bandwidth can be allocated to a route through which data passes in the network.
- FIG. 1 is an explanatory diagram illustrating a network system according to a first embodiment.
- FIG. 3 is a block diagram illustrating a physical configuration example of a network resource volume manager according to the first embodiment. It is explanatory drawing which shows NW topology DB of the present Example 1. It is explanatory drawing which shows NW resource management DB of the present Example 1. It is explanatory drawing which shows user number DB classified by service area of the present Example 1.
- FIG. It is explanatory drawing which shows LSP DB of the present Example 1. It is explanatory drawing which shows band coefficient DB of the present Example 1.
- FIG. It is a block diagram which shows the example of the functional block of the edge node of the present Example 1.
- FIG. It is explanatory drawing which shows the LSP management table of the present Example 1.
- 3 is a flowchart illustrating processing for determining a bandwidth of a communication path and processing for setting a path of the communication path according to the first embodiment. It is a flowchart which shows the process for updating the zone
- the mobile backhaul in the present embodiment uses Multi Protocol Label Switching-Transport Profile (MPLS-TP) as a network communication protocol.
- MPLS-TP Multi Protocol Label Switching-Transport Profile
- any protocol other than MPLS-TP can be used as long as the route between the edge nodes is set in advance in a packet whose attributes such as flow, destination, or transmission source are predetermined attributes. May be.
- FIG. 1 is an explanatory diagram illustrating a network system according to the first embodiment.
- the network system of the first embodiment includes at least one mobile backhaul 10, a plurality of service areas 11 (11-1 to 11-3), a network resource volume manager 1, a mobility management entity (MME) 7, an ESPGW 6, and a maintenance A person terminal 12 is included.
- MME mobility management entity
- the mobile backhaul 10 is a system for accommodating communication by at least one company and optimally using network resources.
- the mobile backhaul 10 includes a plurality of BS-NWE (Base Station Network Edge) nodes 2 (2-1 to 2-4), a plurality of relay nodes 4 (4-1 to 4-5), and at least one GW-NWE. (Gateway Network Edge) node 3 and NMS (Network Management System) 5.
- BS-NWE Base Station Network Edge
- relay nodes 4 (4-1 to 4-5
- GW-NWE Gateway Network Edge
- NMS Network Management System
- the BS-NWE node 2 is an edge node in the mobile backhaul 10 and is a network device that accommodates packets transmitted from the service area 11.
- the relay node 4 is a network device and transfers communication between the BS-NWE node 2 and the GW-NWE node 3.
- the GW-NWE node 3 is an edge node in the mobile backhaul 10 and is a network device connected to the MME 7 and the ESPGW 6.
- the NMS 5 is a computer that sets the communication path and the bandwidth of the communication path in the BS-NWE node 2, the GW-NWE node 3, and the relay node 4.
- the NMS 5 shown in FIG. 1 is included in the mobile backhaul 10, but the network resource volume manager 1 may have the functions of the NMS 5 of this embodiment.
- the communication path in the first embodiment indicates a logical route used in the mobile backhaul 10 in order to transfer a packet having a predetermined attribute.
- a route in the mobile backhaul 10 is assigned to the communication path.
- the communication path in this embodiment indicates a logical path.
- the route in the present embodiment indicates the network device through which data actually passes and the order in which the data passes.
- the network resource volume manager 1 in the first embodiment changes a network device through which a packet having a predetermined attribute passes by changing a route assigned to a communication path.
- One BS-NWE node 2 is connected to one base station 8.
- the base station 8 communicates with the mobile terminal 9 by radio.
- the service area 11 is an area where the base station 8 and the mobile terminal 9 can directly communicate.
- the mobile terminal 9 of the present embodiment is included in any service area 11.
- the base station 8 provides a mobile phone service to the mobile terminal 9.
- the ESPGW 6 is a gateway that controls the authentication of the mobile terminal 9 and the bandwidth of each mobile terminal 9.
- the MME 7 controls the handover of the mobile terminal 9 between the plurality of service areas 11.
- the ESPGW 6 and the MME 7 are computers that hold information related to the mobile terminal 9, and are terminal management servers in the present embodiment. Further, the ESPGW 6 and the MME 7 have a gateway function.
- the maintenance person terminal 12 transmits the input value from the maintenance person to the network resource volume manager 1.
- the network resource volume manager 1 periodically collects information on the number of mobile terminals 9 included in each service area 11 from the MME 7 and the ESPGW 6. Then, the network resource volume manager 1 calculates a bandwidth for each communication path based on the collected information, and assigns a route to the communication path and sets a bandwidth to the communication path according to the calculated bandwidth. Instruct NMS5.
- the BS-NWE node 2 and the GW-NWE node 3 of this embodiment are identified by different names, but the BS-NWE node 2 and the GW-NWE node 3 have the same function.
- Information collected by the network resource volume manager 1 from the MME 7 and ESPGW 6 and information set in the NMS 5 will be described later.
- FIG. 1 shows a case where there is one company that uses the mobile backhaul 10, but a plurality of companies may share one mobile backhaul 10.
- the MME 7, ESPGW 6, and service area 11 for each provider may be connected to the mobile backhaul 10.
- a communication path between the BS-NWE node 2 and the GW-NWE node 3 may be set for each carrier.
- the MME 7, ESPGW 6, and service area 11 for each provider may be implemented by physically different devices, or may be implemented by logically different devices.
- FIG. 2 is a block diagram illustrating a physical configuration example of the network resource volume manager 1 according to the first embodiment.
- the network resource volume manager 1 is a computer configured for the purpose of improving the use efficiency of network resources in the mobile backhaul 10 of this embodiment.
- the network resource volume manager 1 includes a CPU 21, a network management IF 22, a maintenance person terminal connection IF 23, a bandwidth coefficient DB 24, an NW topology DB 25, an NW resource management DB 26, a service area user count DB 27, and an LSP DB 28.
- the network resource volume manager 1 has a memory (not shown).
- the CPU 21 is an arithmetic device that implements the function of the network resource volume manager 1 by executing a program or the like stored in the memory.
- the CPU 21 may be any processor other than the CPU as long as it is an arithmetic device, and may be configured by one or a plurality of processors.
- the CPU 21 may implement the functions of the bandwidth determination unit 211 and the bandwidth instruction unit 212 by executing a program.
- the bandwidth determination unit 211 has a function of determining the bandwidth of the communication path in the mobile backhaul 10 according to the number of mobile terminals 9 included in the service area 11. In addition, the bandwidth determination unit 211 determines a network device through which the communication path passes as necessary, and thereby assigns a route to the communication path.
- the band instruction unit 212 has a function of instructing the NMS 5 to set the band or route determined by the band determination unit 211 in each network device of the mobile backhaul 10.
- the bandwidth determination unit 211 and the bandwidth instruction unit 212 may be implemented by a single program, or may each be implemented by a plurality of programs.
- the CPU 21 may incorporate one or a plurality of physical devices that implement the bandwidth determination unit 211 and the bandwidth instruction unit 212.
- the network management IF 22 is an interface for connecting to the NMS 5, MME 7 and ESPGW 6.
- the maintenance person terminal connection IF 23 is an interface for connecting to the maintenance person terminal 12.
- the bandwidth coefficient DB 24, the NW topology DB 25, the NW resource management DB 26, the service area user count DB 27, and the LSP DB 28 are connected via the CPU 21 and the database access path.
- FIG. 3 is an explanatory diagram illustrating the NW topology DB 25 according to the first embodiment.
- the NW topology DB 25 is set in advance in the network resource volume manager 1 and indicates the network topology of all networks managed by the network resource volume manager 1.
- the NW topology DB 25 shown in FIG. 3 shows the network topology of the mobile backhaul 10. The contents shown in the NW topology DB 25 in FIG. 3 will be described below.
- BS-NWE nodes 2-1 to 2-4 are connected to service areas 11-1 to 11-4, respectively.
- BS-NWE nodes 2-1 to 2-4 are connected to relay nodes 4-1 to 4-4.
- the GW-NWE node 3-1 is connected to the relay node 4-5 and the service area 11-5.
- the relay nodes 4-1 to 4-5 are connected in a ring shape.
- the BS-NWE nodes 2-1 to 2-4 are assigned E1 to E4 as identifiers, respectively, and the GW-NWE node 3-1 is assigned E5 as an identifier. Further, S1 to S5 are assigned to the relay nodes 4-1 to 4-5 as identifiers. Service areas 11-1 to 11-5 are assigned identifiers A1 to A5.
- NW topology DB 25 may be generated based on information held by the NMS 5. Further, for example, the program or physical device included in the network resource volume manager 1 may collect the information from the NMS 5 periodically to generate the NW topology DB 25.
- FIG. 4 is an explanatory diagram illustrating the NW resource management DB 26 according to the first embodiment.
- the NW resource management DB 26 indicates a bandwidth used in a link between two network devices.
- the NW resource management DB 26 indicates a link between each network device of the mobile backhaul 10 managed by the network resource volume manager 1.
- the NW resource management DB 26 includes a link ID 51, a band 52, and a remaining band 53.
- the link ID 51 indicates an identifier that identifies a link between network devices.
- a link ID 51 shown in FIG. 4 indicates an identifier generated by the identifier and hyphen of each network device.
- Band 52 indicates a band used in the link indicated by the link ID 51.
- the remaining bandwidth 53 indicates a bandwidth that is not used by the set communication path in the link indicated by the link ID 51. That is, the remaining bandwidth 53 indicates a bandwidth that can be used by a newly set communication path.
- the NW resource management DB 26 may be set in advance by a maintenance person via the maintenance person terminal 12.
- the NW resource management DB 26 may be generated by a program or a physical device included in the network resource volume manager 1 periodically collecting information from the NMS 5.
- FIG. 5 is an explanatory diagram showing the service area user count DB 27 according to the first embodiment.
- the service area user count DB 27 indicates the number and status of the mobile terminals 9 included in the service area 11 for each business operator.
- the states of the mobile terminal 9 in FIG. 5 are a connected state and an idle state.
- the state of the mobile terminal 9 in the present embodiment is a state where it is necessary to change the band necessary for communication in the mobile backhaul 10 according to the frequency, amount, content, purpose, etc. of communication of the mobile terminal 9. Any state may be used.
- the connection state in the present embodiment is a state in which the mobile terminal 9 transmits / receives data other than control data (hereinafter, actual data) under a predetermined condition.
- the predetermined condition is, for example, transmission / reception exceeding a predetermined frequency.
- the connection state includes a state in which the mobile terminal 9 can immediately transmit and receive actual data.
- Actual data in this embodiment is data for directly providing a service desired by the user using the mobile terminal 9 to the mobile terminal 9.
- the control data in the present embodiment is data for the mobile terminal 9 to communicate.
- the control data in the present embodiment includes, for example, data for establishing or disconnecting communication of the mobile terminal 9 or data for reporting the communication status of the mobile terminal 9.
- the idle state in the present embodiment is a state where the mobile terminal 9 is not transmitting / receiving actual data according to a predetermined condition, for example, a state where actual data is not transmitted / received for a predetermined time.
- the idle state includes a state in which only control data is transmitted / received.
- connection state and idle state are standardized by 3GPP.
- the mobile terminal 9 in the connected state transmits and receives more data than the mobile terminal 9 in the idle state.
- the 5 includes an area ID 61, a provider ID 62, a node ID 63, a connection state user number 64, and an idle state user number 65.
- the area ID 61 indicates an identifier of the service area 11.
- the business operator ID 62 indicates an identifier of the business operator.
- the node ID 63 indicates the BS-NWE node 2 connected to the base station 8 in the service area 11 indicated by the area ID 61.
- the node ID 63 shown in FIG. 5 indicates one BS-NWE node 2, but the node ID 63 in this embodiment is the BS-NWE node 2 used as the main server and the BS of the sub-server used when the main server fails. -NWE node 2 may be indicated.
- the number 64 of connected users indicates the number of connected mobile terminals 9 among the mobile terminals 9 included in the service area 11 indicated by the area ID 61.
- the number of idle state users 65 indicates the number of mobile terminals 9 in the idle state among the mobile terminals 9 included in the service area 11 indicated by the area ID 61.
- the service area user count DB 27 is generated based on information about the mobile terminal 9 for each service area 11 collected from the MME 7 or ESPGW 6 by the network resource volume manager 1.
- the bandwidth determination unit 211 accurately grasps the number of users and the state of each service area 11 by holding the service area user count DB 27, and performs communication between the BS-NWE node 2 and the GW-NWE node 3. It is possible to calculate a communication band necessary for the path.
- FIG. 6 is an explanatory diagram showing the LSP DB 28 according to the first embodiment.
- the LSP DB 28 holds a route and a band set in a communication path (LSP: Label Switched Path) between the BS-NWE node 2 and the GW-NWE node 3.
- the LSP DB 28 includes an area ID 71, a provider ID 72, an LSP ID 73, an edge node ID 74, a relay node ID 75, an edge node ID 76, and a set bandwidth Bw0 (77).
- Area ID 71 indicates an identifier of the service area 11.
- the business ID 72 indicates an identifier of the business.
- the LSP ID 73 indicates a communication path (LSP) identifier.
- LSP communication path
- Edge node ID 74 indicates the identifier of BS-NWE node 2 or GW-NWE node 3 that is the start point of the LSP.
- the relay node ID 75 indicates the identifier of the relay node 4 through which the LSP passes.
- the relay node ID 75 illustrated in FIG. 6 indicates the order in which the LSP passes through the relay node 4.
- the edge node ID 76 indicates the identifier of the BS-NWE node 2 or GW-NWE node 3 that is the end point of the LSP.
- the set bandwidth Bw0 (77) indicates a bandwidth set in the LSP indicated by the LSP ID 73.
- FIG. 7 is an explanatory diagram showing the band coefficient DB 24 of the first embodiment.
- the bandwidth coefficient DB 24 indicates a bandwidth reserved for one mobile terminal 9 in the LSP, and indicates the bandwidth of the mobile terminal 9 in each state. Further, the bandwidth coefficient DB 24 illustrated in FIG. 7 indicates a bandwidth for each business operator to which the mobile terminal 9 belongs.
- the band coefficient DB 24 includes a provider ID 81, a band ⁇ 82, and a band ⁇ 83.
- the provider ID 81 indicates the identifier of the provider.
- a band ⁇ 82 indicates a band secured in the mobile terminal 9 whose state is the connected state.
- a band ⁇ 83 indicates a band reserved for the mobile terminal 9 whose state is the idle state.
- the band coefficient DB 24 shown in FIG. 7 holds only the bands according to the two states of the mobile terminal 9, but holds three or more bands when three or more states of the mobile terminal 9 are defined. Also good.
- the band ⁇ is a band per mobile terminal 9 in the connected state
- the band ⁇ is a band per mobile terminal 9 in the idle state.
- the operator A may provide a mobile data communication service using the mobile backhaul 10 in advance of other companies by setting the band ⁇ 82 to be 10 Mbit / s and the band ⁇ 83 to be 2 Mbit / s.
- the operator B when the operator B newly starts a mobile data communication service using the mobile backhaul 10 with the setting that the band ⁇ 82 is 20 Mbit / s and the band ⁇ 83 is 4 Mbit / s, The operator B has a larger band to be secured per mobile terminal 9 than the operator A.
- the business operator B can increase the satisfaction level of the mobile terminal 9 belonging to the business operator B more than the business operator A. Furthermore, by setting in this way, the business operator C who owns the mobile backhaul 10 can collect more usage charges than the business operator A from the business operator B in return for the above setting.
- the band ⁇ 82 and the band ⁇ 83 may be set in advance by a maintenance person.
- the band determination unit 211 may determine the band ⁇ 82 and the band ⁇ 83 using the connection state user number 64 and the idle state user number 65 acquired a predetermined number of times for a predetermined period. Details of the method of determining the band ⁇ 82 and the band ⁇ 83 will be described later.
- the service ID 62 of the service area user count DB 27, the service ID 72 of the LSP DB 28, and the service ID 81 of the bandwidth coefficient DB 24 are not required. .
- FIG. 8 is a block diagram illustrating an example of functional blocks of the edge node according to the first embodiment.
- the BS-NWE node 2 and the GW-NWE node 3 of this embodiment have the same functional blocks shown in FIG.
- the BS-NWE node 2 and the GW-NWE node 3 are collectively referred to as edge nodes.
- the edge node includes at least one access NWIF card 31 (31-1 to 31-m, m is an arbitrary positive number), a switch (SW) 32, and at least one relay NWIF card 33 (33-1 to 33-n, n is an arbitrary positive number) and a device control unit 34.
- the access NWIF card 31 is an NW interface for connecting to the base station 8, the MME 7, or the ESPGW 6.
- the relay NWIF card 33 is an NW interface for connecting to the relay node 4 or another edge node.
- SW32 switches the packet transmission destination between the NWIF cards.
- the device control unit 34 is connected to the NMS 5.
- the device control unit 34 sets each NWIF card according to an instruction from the NMS 5, monitors the state of each functional block included in the edge node, and notifies the NMS 5 of the monitoring result according to the instruction from the NMS 5.
- the access NWIF card 31 includes an LSP management table 29, an LSP bandwidth management table 30, an NW reception circuit 35, a user flow specifying unit 36, an SW transmission circuit 37, an SW reception circuit 38, an MPLS termination circuit 39, and an NW transmission circuit 40. Have.
- the NW receiving circuit 35 receives a packet from a device such as the base station 8, MME 7, or ESPGW 6.
- the user flow specifying unit 36 searches the LSP management table 29 and the LSP bandwidth management table 30 based on the header information of the received packet. Then, as a result of the search, the user flow specifying unit 36 determines an LSP for encapsulating the received packet, and further encapsulates the received packet. In addition, the user flow specifying unit 36 controls the bandwidth of the packet.
- SW transmission circuit 37 transfers the received packet to SW32.
- the SW receiving circuit 38 receives a packet from the SW 32.
- the MPLS termination circuit 39 deletes the MPLS header from the received packet.
- the NW transmission circuit 40 transmits a packet to a device such as the base station 8, the MME 7, or the ESPGW 6.
- the relay NWIF card 33 includes an NW reception circuit 41, an output IF specifying unit 42, an SW transmission circuit 43, an SW reception circuit 44, and an NW transmission circuit 45.
- the NW receiving circuit 41 receives a packet (MPLS packet in the first embodiment) received from the relay node 4 and other edge nodes.
- the output IF specifying unit 42 extracts information for specifying the NWIF card that outputs the received packet from the header of the received packet.
- SW transmission circuit 43 transfers the received packet to SW32.
- the SW receiving circuit 44 receives a packet from the SW 32.
- the NW transmission circuit 45 transmits a packet to the relay node 4 or another edge node.
- FIG. 9 is an explanatory diagram illustrating the LSP management table 29 according to the first embodiment.
- the LSP management table 29 indicates the LSP corresponding to the flow indicated by the packet header.
- the LSP management table 29 includes a flow identifier 91 and an LSP ID 92.
- the LSP management table 29 is set according to instructions from the NMS 5.
- the flow identifier 91 is a flow identifier.
- the LSP ID 92 is an LSP identifier for encapsulating a packet transmitted by the flow indicated by the flow identifier 91.
- FIG. 10 is an explanatory diagram illustrating the LSP bandwidth management table 30 according to the first embodiment.
- the LSP bandwidth management table 30 indicates the communication bandwidth set for the LSP.
- the LSP bandwidth management table 30 includes an LSP ID 101 and a set bandwidth 102.
- the LSP bandwidth management table 30 is set according to an instruction from the NMS 5.
- the LSP ID 101 indicates the identifier of the LSP.
- the set band 102 indicates a communication band set in the LSP indicated by the LSP ID 101. In each LSP, the communication band stored in the set band 102 is guaranteed.
- the user flow specifying unit 36 extracts a flow identifier included in the header information of the received packet. Then, the user flow identification unit 36 searches the LSP management table 29 using the extracted flow identifier, thereby acquiring the LSP identifier for encapsulating the received packet from the LSP management table 29.
- the user flow specifying unit 36 searches the LSP bandwidth management table 30 using the LSP identifier, and acquires the value of the set bandwidth 102. Then, when transmitting the received packet, the user flow specifying unit 36 determines whether or not the bandwidth of the received packet in the LSP is within the value of the acquired set bandwidth 102.
- the user flow specifying unit 36 updates the priority for transferring the received packet according to the determination result.
- the priority is a value stored in the header of the packet.
- the user flow specifying unit 36 transfers the packet whose priority has been updated to the SW transmission circuit 37.
- the user flow specifying unit 36 may discard the received packet.
- the edge node of the first embodiment can prevent the packet from flowing into the mobile backhaul 10 beyond the preset setting bandwidth 102.
- the edge node according to the first embodiment can suppress packet loss due to congestion that occurs in the mobile backhaul 10.
- the user flow specifying unit 36 determines that the LSP bandwidth of the received packet exceeds the value of the set bandwidth 102 corresponding to the LSP, the user flow specifying unit 36 sets a higher priority for discarding the received packet.
- the received packet may be transmitted.
- the priority for discarding the higher the possibility that the packet will be discarded.
- the priority is a value stored in the LSP header.
- the edge node of the first embodiment By increasing the priority for discarding the packet, the edge node of the first embodiment causes the packet to flow into the mobile backhaul 10 beyond the preset bandwidth 102 and congestion occurs in the network. In this case, it is possible to preferentially discard a packet that has flowed beyond the set bandwidth 102. As a result, the edge node according to the first embodiment can suppress the loss of the packet that flows into the mobile backhaul 10 within the set bandwidth 102.
- the user flow specifying unit 36 transfers the received packet to the SW transmission circuit 37.
- the SW transmission circuit 37 specifies the NWIF card to which the packet is to be transferred from the LSP information (identifier and the like) added to the received packet, and transfers the packet toward the specified NWIF card.
- the network resource volume manager 1 changes the communication band of the LSP between the BS-NWE node 2 and the GW-NWE node 3 according to the number of mobile terminals 9 accommodated by the BS-NWE node 2 And a method of changing the LSP path.
- FIG. 11 is a flowchart illustrating processing for determining the bandwidth of the communication path and processing for setting the path of the communication path according to the first embodiment.
- an LSP necessary for communication is set in advance between each BS-NWE node 2 and GW-NWE node 3 for each operator and for each service area. It is assumed that values are set in advance in the management table 29 and the LSP bandwidth management table 30.
- the bandwidth determination unit 211 of the network resource volume manager 1 starts the process shown in FIG. 11 for each predetermined update cycle. Note that the bandwidth determination unit 211 starts the processing illustrated in FIG. 11 when, for example, the ESPGW 6 or the MME 7 acquires that the number of mobile terminals 9 included in at least one service area 11 has increased or decreased at a certain rate. May be.
- the bandwidth determination unit 211 first collects information on the mobile terminal 9 in each of the service areas 11 from at least one of the ESPGW 6 and the MME 7 (S001).
- the information on the mobile terminal 9 in FIG. 11 includes the identifier of the BS-NWE node 2 (corresponding to the node ID 63), the number of connected mobile terminals 9 in each service area 11 (corresponding to the number of connected state users 64), and The number of idle portable terminals 9 (corresponding to the number of idle users 65) is included for each operator.
- the information regarding the mobile terminal 9 in the present embodiment may include information regarding the state of the mobile terminal 9, for example, the identifier of the mobile terminal 9, the identifier indicating the state of the mobile terminal 9, and the operator to which the mobile terminal 9 belongs An identifier may be included. Then, the bandwidth determination unit 211 may calculate the number of mobile terminals 9 for each state of the mobile terminal 9 from the collected information regarding the mobile terminal 9.
- the information regarding the mobile terminal 9 includes the identifier of the BS-NWE node 2 or the identifier of the operator. It does not have to be.
- the bandwidth determination unit 211 updates the service area user count DB 27 using the collected information on the mobile terminal 9 (S002). Specifically, the bandwidth determination unit 211 updates at least the number of connected users 64 and the number of idle users 65 based on information about the mobile terminal 9.
- the bandwidth determination unit 211 uses the updated service area-specific user number DB 27 to obtain information about the LSP set for each area ID 61 and business ID 62 from the LSP DB 28 (S003).
- the bandwidth determination unit 211 extracts one entry for which the processing from S004 onward is not executed in the service area user count DB 27.
- the service area 11 indicated by the area ID 61 of the extracted entry is described as area a
- the business operator indicated by the business ID 62 of the extracted entry is described business operator a.
- step S003 the bandwidth determination unit 211 extracts an entry in the LSP DB 28 having an area ID 71 and an operator ID 72 corresponding to the area a and the operator a. Then, the bandwidth determination unit 211 acquires information on the LSP ID 73, the edge node ID 74, the relay node ID 75, the edge node ID 76, and the set bandwidth Bw0 (77) of the extracted entry as information about the LSP.
- the LSP indicated by the acquired LSP ID 73 is referred to as LSPa.
- the bandwidth determination unit 211 may extract two entries corresponding to communication in both directions as entries in the LSP DB 28 having the area ID 71 and the provider ID 72 corresponding to the area a and the provider a. In this case, the band determination unit 211 executes the processing from S004 onward for each entry indicating one-way communication.
- the bandwidth determination unit 211 identifies the entry of the bandwidth coefficient DB 24 having the business entity ID 81 corresponding to the business operator a, and acquires the values of the bandwidth ⁇ 82 and the bandwidth ⁇ 83 of the identified entry (S004).
- the bandwidth determination unit 211 includes the connection state user count 64 and the idle state user count 65 of the entry extracted from the service area user count DB 27 in S003, and the bandwidth ⁇ 82 and the bandwidth ⁇ 83 acquired from the bandwidth coefficient DB24.
- the bandwidth Bw1 to be newly set in LSPa is calculated using Equation 1 (S005).
- Band Bw1 Band ⁇ 82 ⁇ Number of connected users 64 + Band ⁇ 83 ⁇ Idle state users 65 (Formula 1)
- the bandwidth determination unit 211 determines whether or not the LSPa bandwidth can be changed to the calculated bandwidth Bw1 by the processing of S006 to S008. That is, the bandwidth determination unit 211 determines whether or not the network resource for setting the calculated bandwidth Bw1 can be secured on the route assigned to LSPa.
- the bandwidth determination unit 211 can suppress the occurrence of congestion in the mobile backhaul 10 even after dynamically changing the LSPa bandwidth.
- the band determining unit 211 calculates a band increase / decrease value Bw2 based on the value of the set band Bw0 (77) acquired in S003, the band Bw1, and Expression 2 (S006).
- the band increase / decrease value Bw2 is the amount of change between the band Bw1 that should be newly set in LSPa and the set band Bw0 that has already been set in LSPa.
- Bandwidth increase / decrease value Bw2 bandwidth Bw1-set bandwidth Bw0 (Formula 2)
- the bandwidth determination unit 211 After S006, the bandwidth determination unit 211 generates at least one link ID for connecting the network devices based on the edge node ID 74, the relay node ID 75, and the edge node ID 76 acquired from the LSP DB 28 in S003 (S007). ). The order of connecting the network devices follows the edge node ID 74, the relay node ID 75, and the edge node ID 76 acquired in S003.
- the bandwidth determination unit 211 in the present embodiment may generate the link ID by connecting the identifier of the edge node ID 74 and the identifier of the relay node ID 75 with a hyphen, for example.
- the bandwidth determination unit 211 may generate any link ID as long as a unique policy is defined for the link ID in the network system.
- the bandwidth determination unit 211 may acquire the link ID from the NW topology DB 25 in S007.
- the bandwidth determination unit 211 searches the NW resource management DB 26 using the generated link ID to acquire the network resource in each link through which the LSPa passes, and the bandwidth 52 and the remaining bandwidth 53 for each link ID. To get. Further, the band determining unit 211 subtracts the band increase / decrease value Bw2 from the remaining band 53 of each link using Expression 3 (S008). Each of the post-change remaining bands calculated here is a remaining band in each link after LSPa is set to a new band Bw1.
- the bandwidth determination unit 211 calculates the post-change remaining bandwidth for all links through which LSPa passes. When the remaining bandwidth after change in all links is 0 or more, sufficient bandwidth is secured in each link even after the change to the new bandwidth Bw1. On the other hand, if the remaining bandwidth after the change in at least one link is less than 0, after the change to the new bandwidth Bw1, there will be a link whose bandwidth is insufficient in the LSPa path.
- the bandwidth determination unit 211 determines whether or not the post-change remaining bandwidth calculated in each link is negative after S008 (S009).
- the bandwidth determination unit 211 executes the processing from S010 onward in order to set the new bandwidth Bw1 to LSPa. If it is determined in S009 that the post-change remaining bandwidth is negative, the bandwidth determination unit 211 executes processing subsequent to S021 to change the LSPa path.
- the bandwidth determination unit 211 updates the remaining bandwidth 53 of the NW resource management DB 26 corresponding to the link of the LSPa to the changed remaining bandwidth calculated in S008.
- the bandwidth determination unit 211 updates the set bandwidth Bw0 (77) of the LSP DB 28 corresponding to the LSPa with the value of the bandwidth Bw1 (S011).
- the band instruction unit 212 After S011, the band instruction unit 212 notifies the NMS 5 of a band change request regarding LSPa (S012).
- the bandwidth change request for the LSPa includes information on each link of the LSPa (identifier indicating the edge node and the relay node 4 through which the LSPa passes) and an instruction to change the bandwidth of each link to the bandwidth Bw1.
- the bandwidth instruction unit 212 generates a bandwidth change request for LSPa based on the LSP DB 28.
- the NMS 5 When the NMS 5 receives the bandwidth change request regarding the LSPa from the network resource volume manager 1, the NMS 5 sends the LSPa to the edge node and the relay node 4 through which the LSPa indicated by the bandwidth change request passes based on the database and the bandwidth change request that the NMS 5 has. Is instructed to be changed to the bandwidth Bw1.
- the database possessed by the NMS 5 is, for example, a database for associating identifiers and addresses of edge nodes and relay nodes 4 with each other.
- the device control unit 34 of the edge node updates the value of the set bandwidth 102 of the LSP ID 101 of the LSP bandwidth management table 30 corresponding to the LSPa to the bandwidth Bw1 when instructed by the NMS 5 to change the bandwidth of the LSPa. Further, the relay node 4 updates the band for transferring the packet having the label of LSPa to the band Bw1.
- the network resource volume manager 1 In response to the processing from S001 to S012 by the network resource volume manager 1 described above and the bandwidth change instruction to the edge node and the relay node 4 by the NMS 5, the network device through which the LSPa that changes the bandwidth passes changes the bandwidth. Can do. Then, by these band changes, the network resource volume manager 1 according to the first embodiment allows the BS-NWE node 2 to accommodate the LSPa (communication path) band from the BS-NWE node 2 to the GW-NWE node 3. The bandwidth can be changed to the optimum bandwidth Bw1 according to the number of terminals 9 and the state of the mobile terminal 9, and network utilization efficiency can be improved.
- the bandwidth determination unit 211 executes the processing from S021 onward in order to change the LSPa path.
- the bandwidth determination unit 211 first releases the bandwidth already set in LSPa in S021. Specifically, the bandwidth determination unit 211 adds the value of the set bandwidth Bw0 (77) of the LSPa acquired in S003 to the remaining bandwidth 53 of the NW resource management DB 26 corresponding to each link of the LSPa path (S021). ).
- the bandwidth determination unit 211 refers to the NW resource management DB 26 and the NW topology DB 25, can connect the BS-NWE node 2 and the GW-NWE node 3 of the LSPa, and has a new bandwidth Bw1 or higher. A link having a remaining bandwidth 53 is extracted. Then, the bandwidth determination unit 211 determines a new path of the LSPa by using the extracted link (S022).
- the bandwidth determination unit 211 updates the relay node ID 75 corresponding to the LSPa in the LSP DB 28 based on the new route determined in S022. Then, the bandwidth determining unit 211 updates the set bandwidth Bw0 (77) corresponding to LSPa with the bandwidth Bw1 (S023).
- the bandwidth determination unit 211 subtracts the bandwidth Bw1 from the value of the remaining bandwidth 53 of the NW resource management DB 26 for each link through which the new path of LSPa passes (S024).
- the bandwidth instruction unit 212 deletes a request for deleting each LSPa network device on the existing path of LSPa and a generation request indicating that each network device on the new path of LSPa generates LSPa.
- the generation request includes information indicating the band Bw1.
- the NMS 5 When the NMS 5 receives the deletion request and the generation request from the network resource volume manager 1, the NMS 5 refers to the database of the NMS 5 and each network device (BS-NWE node 2, GW-NWE node) on the path of LSPa indicated by the deletion request 3 and the relay node 4) are instructed to delete the LSPa setting. Further, the NMS 5 instructs each network device (BS-NWE node 2, GW-NWE node 3 and relay node 4) on the path of LSPa indicated by the generation request to set the LSPa with the band Bw1.
- the NMS 5 may hold the flow identifier of the flow corresponding to the LSPa, and transmit the identifier indicating the LSPa and the identifier of the flow to the edge node.
- the device controller 34 of the edge node updates the LSP management table 29 and the LSP bandwidth management table 30 when instructed by the NMS 5 to delete and add LSPa settings. Specifically, when each of the edge nodes is instructed to delete the LSPa setting, each of the edge nodes corresponds to the LSP management table 29 entry having the LSP ID 92 corresponding to the LSPa and the LSPa in the LSP bandwidth management table 30. The entry of the LSP management table 29 having the LSP ID 101 is deleted.
- each device control unit 34 stores an identifier indicating the LSPa and the bandwidth Bw1 in the LSP ID 101 and the set bandwidth 102 of the LSP bandwidth management table 30.
- the edge node and the relay node 4 update their destination information and the like based on the instruction from the NMS 5 so as to transfer the packet added with the LSPa as a label along the route of the LSPa.
- the route of LSPa is changed by the processing of S021 to S025 and the instruction to change the setting of LSPa from the NMS 5 to the edge node and the relay node 4.
- the network resource volume manager 1 determines the path of the communication path even when the bandwidth of the communication path from the BS-NWE node 2 to the GW-NWE node 3 is insufficient. By re-setting, the optimum bandwidth can be secured. In addition, the network resource volume manager 1 according to the first embodiment can secure an optimal bandwidth according to the number of mobile terminals 9 accommodated in the BS-NWE node 2 and the state of the mobile terminals 9, thereby The utilization efficiency of is improved.
- the network resource volume manager 1 can reduce the number of relay nodes 4 in which the bandwidth of the accommodated communication path is excessive by resetting the communication path. Then, by setting a communication path for the relay node 4 having a low usage rate, the network usage efficiency can be improved. In addition, for example, a large band can be allocated to the service area 11 including a large number of mobile terminals 9, and the use efficiency of the network can be improved.
- the bandwidth coefficient DB 24 described above was previously set by a maintenance person. However, the bandwidth determination unit 211 uses the connection state user number 64 and the idle state user number 65 collected a predetermined number of times in the past to calculate a statistical value indicating the change between the connection state user number 64 and the idle state user number 65. And the bandwidth coefficient DB 24 may be updated based on the calculated statistical value.
- FIG. 12 shows an example of processing for updating the band coefficient DB 24.
- FIG. 12 is a flowchart showing a process for updating the bandwidth of the bandwidth coefficient DB 24 of the first embodiment.
- the bandwidth determination unit 211 of the network resource volume manager 1 accumulates the collected connection state user number 64 and idle state user number 65 in its own memory each time the processing shown in FIG. 11 is executed. Then, the bandwidth determination unit 211 of the network resource volume manager 1 periodically executes the process shown in FIG.
- the process shown in FIG. 12 is executed and the bandwidth coefficient DB 24 is updated, which is referred to as a periodic update. Moreover, the process shown in FIG. 12 may be performed after the process shown in FIG. 11 is complete
- the bandwidth determination unit 211 acquires the latest connection state user count 64 and idle state user count 65 from the bandwidth coefficient DB 24 (S101).
- the connection state user number 64 and the idle state user number 65 acquired here are set as a connection state user number CU 0 and an idle state user number IU 0 .
- the bandwidth determination unit 211 uses the connection state user number CU 0 and the idle state user number IU 0 acquired in the process of S101 executed in the previous periodic update as the connection state user number CU 1 and the idle state user. Obtained as the number IU 1 . Then, the bandwidth determination unit 211 calculates the change amount V 0 (absolute value) of the number of connected state users using the number of connected state users CU 0 , the number of connected state users CU 1, and Expression 4 (S 102).
- the bandwidth determining unit 211 uses the idle number of users IU 1 in a connected state the number of users change amount V 0 and the equation 5 to calculate the change rate R 0 (S103).
- the bandwidth determination unit 211 acquires the n rate of change R 0 calculated in the past n regular updates as rate of change R 0 to rate of change R n-1 and changes rate R 0 to the rate of change. Using the rate R n-1 and Equation 6, the average RA of the rate of change is calculated (S104).
- n the predetermined number of times n used in Equation 6 is set in advance by the maintainer.
- the value n may be determined by designating a predetermined period during which the process shown in FIG. 11 is executed by a maintenance person.
- the band determining unit 211 calculates the band ⁇ using the average RA of the change rate, the band ⁇ , and Equation 7 (S105).
- the band ⁇ used in Expression 7 is a value of the band ⁇ 82 whose value is set in advance by the maintainer.
- the band determining unit 211 updates the band ⁇ 83 of the band coefficient DB 24 with the newly calculated band ⁇ .
- the band ⁇ 83 can be determined based on the latest information on the number (change amount) of the mobile terminals 9 that transition from the idle state to the connected state. .
- the bandwidth determination unit 211 performs the processing of FIG. 12, thereby generating congestion in the network while securing bandwidth more efficiently for the mobile terminal 9 (potential user) that transitions from the idle state to the connected state. Can be prevented in advance.
- the unit 211 may determine the band ⁇ to be 20% of the band ⁇ . Thereby, even when the portable terminal 9 in the idle state transitions to the connected state, a band of 20% of the band ⁇ is secured in the portable terminal 9.
- the bandwidth determination unit 211 may add a predetermined surplus bandwidth to the bandwidth ⁇ calculated in S105, and update the bandwidth ⁇ 83 with the bandwidth ⁇ including the predetermined surplus bandwidth.
- the bandwidth determining unit 211 may update the bandwidth ⁇ 83 with the same value as the bandwidth ⁇ 82 instead of executing the processing shown in FIG. Thereby, the bandwidth determination unit 211 can assign the same bandwidth to all the mobile terminals 9 included in the service area 11. As a result, even when all the mobile terminals 9 in the idle state transition to the connected state, a sufficient bandwidth can be secured and the occurrence of congestion in the network can be prevented.
- the band coefficient DB 24 of the present embodiment may include any band other than the band ⁇ 82 and the band ⁇ 83.
- the state of the mobile terminal 9 according to the present embodiment includes contents or purposes communicated by the mobile terminal 9, and the bandwidth coefficient DB 24 is specific to the contents or purposes communicated by the mobile terminal 9.
- a band may be included.
- the state of the mobile terminal 9 of the present embodiment may be the state of the mobile terminal 9 provided with a predetermined network service.
- the network service include a moving image distribution server for the mobile terminal 9.
- the network resource volume manager 1 is connected to the application server in addition to the MME 7 and the ESPGW 6, and the bandwidth coefficient DB 24 is a bandwidth reserved for the mobile terminal 9 communicating with the application server.
- the band ⁇ 1 may be provided instead of the band ⁇ .
- the bandwidth determination unit 211 may collect the number of mobile terminals 9 from the MME 7 or ESPGW 6, and may further collect the number of mobile terminals 9 that communicate with the application server from each application server. Then, the bandwidth determining unit 211 may calculate a new bandwidth Bw1 by multiplying the number of mobile terminals 9 communicating with the application server by the bandwidth corresponding to the network service provided by the application server.
- the mobile terminal 9 can ensure the optimum bandwidth according to the provided network service.
- the band determination part 211 can improve the utilization efficiency of a network.
- the bandwidth determination unit 211 described above changes the bandwidth and route of the communication path in the mobile backhaul 10 according to the number and state of the mobile terminals 9 that perform wireless communication in the service area 11.
- the edge node corresponding to the BS-NWE node 2 may accommodate a wired terminal
- the bandwidth determination unit 211 of the first embodiment is configured so that the number of terminals that communicate with the edge node by wired and The bandwidth and route of the communication path in the mobile backhaul 10 may be changed according to the state.
- the network system according to the first embodiment can be applied to a network system in which the BS-NWE node 2 is connected to the OLT and the OLT is connected to a plurality of ONUs by wire.
- the number of ONUs registered in the OLT and the number of ONUs not registered in the OLT are collected by a server equivalent to ESPGW6 or MME7, and the bandwidth determining unit 211 sends the OLT from the terminal management server equivalent to ESPGW6 or MME7 to the OLT.
- the number of registered ONUs and the number of ONUs not registered in the OLT may be collected.
- the bandwidth determination unit 211 may determine the bandwidth or route of the communication path in the mobile backhaul 10 by the process shown in FIG. 12 based on the collected information about the ONU.
- the network resource volume manager 1 and the NMS 5 communicate the communication path between the BS-NWE node 2 and the GW-NWE node 3 according to the number of mobile terminals 9 accommodated by the BS-NWE node 2. Change the bandwidth and communication path.
- the network resource volume manager 1 according to the first embodiment avoids setting an excessive bandwidth in one relay node 4 even when a plurality of communication paths are set in the mobile backhaul 10, and the utilization rate is reduced. By setting a communication path to the relay node 4 with a low network resource utilization efficiency can be improved.
- the network resource volume manager 1 calculates a necessary bandwidth in the mobile backhaul 10 based on the bandwidth coefficient DB 24 corresponding to the state of the mobile terminal 9 (connected state or idle state). . For this reason, it is possible to secure a bandwidth for a potential user such as the mobile terminal 9 in the idle state, and congestion in the mobile backhaul 10 even when the mobile terminal 9 in the idle state transitions to the connected state. Can be reduced. In addition, for example, packet discard can be suppressed.
- the bandwidth determination unit 211 can associate the business operator with the LSP. For this reason, even when a plurality of operators use one mobile backhaul 10, the network resource volume manager 1 of the first embodiment changes the bandwidth and route of the communication path allocated for each operator. The use efficiency of network resources can be improved for each business operator.
- the network resource volume manager 1 can update the information such as the number of connected users 64 and the number of idle users 65 on a regular basis for each operator, thereby providing an equivalent function to a plurality of operators.
- the mobile backhaul 10 can be used between businesses. On the other hand, different services can be provided for each business operator.
- the network system according to the second embodiment aims to improve the use efficiency of network resources even when a heavy user occurs in the mobile terminal 9 that uses the mobile backhaul 10.
- FIG. 13 is an explanatory diagram showing the network system of the second embodiment.
- the network system according to the second embodiment has two connections between the BS-NWE 103 corresponding to the BS-NWE node 2 according to the first embodiment and the GW-NWE node 104 corresponding to the GW-NWE node 3 according to the first embodiment. Including the above networks. Note that the BS-NWE node 103 and the GW-NWE node 104 of the second embodiment are edge nodes having the same functions as the BS-NWE node 2 and the GW-NWE node 3 of the first embodiment. Differences between the edge node of the second embodiment and the edge node of the first embodiment will be described later.
- the network system shown in FIG. 13 includes a network 120a and a network 120b.
- the network 120a is a network constructed by MPLS-TP whose quality is ensured as in the first embodiment.
- the network 120b is a network whose quality is not guaranteed, for example, a network such as MPLS-TP or Ethernet whose quality is not guaranteed.
- the network system of the second embodiment includes a network resource volume manager 100, a maintenance person terminal 12, at least one service area 11 (11-1 to 11-3), ESPGW6, MME7, network 120a and network 120b.
- the network system according to the second embodiment accommodates communication by at least one business operator.
- the maintenance person terminal 12, service area 11, ESPGW6, and MME7 of the second embodiment are the same as the maintenance person terminal 12, service area 11, ESPGW6, and MME7 of the first embodiment.
- the network 120a corresponds to the mobile backhaul 10 of the first embodiment, and includes a BS-NWE node 103-1, a BS-NWE node 103-4, a GW-NWE node 104, and at least one relay node 4a (4a-1 to 4a). -5) and NMS5a.
- the network 120b includes BS-NWE nodes 103-1 to 103-4, a GW-NWE node 104, at least one relay node 4b (4b-1 to 4b-5), and an NMS 5b.
- the BS-NWE node 103-1, the BS-NWE node 103-4, and the GW-NWE node 104 are included in both the network 120a and the network 120b.
- Packets in the network 120a are transferred by MPLS-TP. For this reason, the NMS 5a sets the packet transfer path and bandwidth by MPLS in the edge node and the relay node 4a included in the network 120a.
- the NMS 5b of the network 120b sets information for transferring Ethernet packets to the edge node and the relay node 4b included in the network 120b.
- the network resource volume manager 100 according to the second embodiment like the network resource volume manager 1 according to the first embodiment, periodically collects the number and state of the mobile terminals 9 communicating with each of the base stations 8 from the MME 7 and the ESPGW 6, Based on the collected information, a bandwidth to be set for each communication path is calculated. Further, the network resource volume manager 100 according to the second embodiment determines a new route of the communication path in the network 120a, as with the network resource volume manager 1 according to the first embodiment.
- the network resource volume manager 100 of the second embodiment has the same function as the network resource volume manager 1 of the first embodiment. However, the network resource volume manager 100 of the second embodiment is different from the network resource volume manager 1 of the first embodiment in that it has a heavy user management DB 130. Further, the information included in the LSP DB 28 of the first embodiment is different from the information included in the LSP DB 28 of the second embodiment.
- the BS-NWE node 103 according to the second embodiment can distribute the packet received from the base station 8 to the network 120a or the network 120b according to the header information of the packet.
- the GW-NWE node 104 according to the second embodiment can distribute a packet received from outside the network 120a and the network 120b to the network 120a or the network 120b according to the header information of the packet.
- the BS-NWE node 103 and the GW-NWE node 104 of the second embodiment are different from the BS-NWE node 2 and the GW-NWE node 3 of the first embodiment in that they have a heavy user identification table 140.
- the heavy user identification table 140 is included in the access NWIF card 31 and is read by the user flow specifying unit 36.
- FIG. 14 is an explanatory diagram illustrating the heavy user management DB 130 according to the second embodiment.
- the heavy user management DB 130 indicates heavy users acquired in each service area 11 and each business operator.
- the heavy user management DB 130 includes an area ID 131, an operator ID 132, an LSP ID 133, an edge node ID 134, and a heavy user ID 135.
- the area ID 131 indicates the identifier of the service area 11.
- the business operator ID 132 indicates an identifier of the business operator.
- LSP ID 133 indicates an identifier (label) of the LSP.
- the LSP ID 133 indicates a communication path through which a packet transmitted by a heavy user passes or a communication path through which a packet transmitted toward the heavy user passes.
- the edge node ID 134 indicates an identifier of the BS-NWE node 103 or the GW-NWE node 104.
- the edge node ID 134 indicates an edge node that needs to transmit information about a heavy user, and thus indicates an edge node that is a starting point of a route through which a packet passes in the network 120a and the network 120b.
- the heavy user ID 135 indicates an identifier of a heavy user among the mobile terminals 9.
- the heavy user in the present embodiment is a mobile terminal 9 that satisfies a predetermined condition indicating that the amount of packets to be transmitted / received is large, for example, a packet is transmitted / received exceeding a predetermined rate.
- the identifier stored in the heavy user ID 135 corresponds to the identifier of the heavy user included in the packet transmitted and received by the heavy user, and is, for example, the address of the heavy user.
- FIG. 15 is an explanatory diagram showing the LSP DB 28 of the second embodiment.
- the LSP DB 28 according to the second embodiment holds a route and a set bandwidth for each communication path (LSP) set between the BS-NWE node 103 and the GW-NWE node 104, similarly to the LSP DB 28 according to the first embodiment.
- the LSP DB 28 according to the second embodiment includes an area ID 71, an operator ID 72, an LSP ID 73, an edge node ID 74, a relay node ID 75, an edge node ID 76, and a set bandwidth Bw0 (77).
- the LSP DB 28 of the second embodiment further includes a network ID 78 and a heavy user NWID 79.
- the network ID 78 indicates an identifier of each of the plurality of networks 120 managed by the network resource volume manager 1 according to the second embodiment.
- the heavy user NWID 79 indicates an identifier of the network 120 for the heavy user that transfers a packet transmitted / received by the heavy user instead of the network 120 indicated by the network ID 78.
- Example 2 an entry indicating a plurality of different LSPs is set in one-way communication of one set of area ID 71 and business operator ID 72.
- the LSP DB 27 set in the network shown in FIG. 13 has two communication paths for passing through two networks as communication paths assigned to one-way communication of one set of area ID 71 and operator ID 72. Is set.
- an entry a indicating one of the two communication paths is set in advance as an entry indicating the network 120 for passing a packet of the mobile terminal 9 that is not a heavy user.
- a value is set for the heavy user NWID 79.
- the LSP ID 73 of entry a indicates the LSP of the network 120a.
- the entry b indicating the other communication path is set in advance as the network 120 for allowing the packet transmitted / received by the heavy user to pass.
- this entry b no value is set for the heavy user NWID 79, and the value of the heavy user NWID 79 of the entry a is set in the network ID 78.
- the LSP ID 73 of the entry b indicates the LSP of the network 120b.
- the LSP DB 28 shown in FIG. 15 has a heavy user NWID 79 to identify a network through which a heavy user packet passes.
- the network resource volume manager 100 may have the heavy user NWID 79 by any method, and may have a table for identifying a network through which the heavy user's packet is passed separately from the LSP DB 28.
- FIG. 16 is an explanatory diagram illustrating the heavy user identification table 140 according to the second embodiment.
- the heavy user identification table 140 is referred to when the packet is transferred by the user flow specifying unit 36 of the edge node of the second embodiment.
- the heavy user identification table 140 has a heavy user ID 141 and an LSP ID 142.
- the heavy user ID 141 is an identifier corresponding to the user identifier included in the received packet, and indicates a heavy user.
- the LSP ID 142 indicates the LSP to which the packet transmitted by the heavy user is transferred.
- FIG. 17 is a flowchart illustrating processing for setting an edge node for a heavy user according to the second embodiment.
- the bandwidth determination unit 211 may execute the process illustrated in FIG. 17 after the process illustrated in FIG. 11.
- the process illustrated in FIG. 11 and the process illustrated in FIG. 17 are performed. It may be executed in parallel.
- the bandwidth determination unit 211 according to the second embodiment like the bandwidth determination unit 211 according to the first embodiment, periodically collects the number of connected users 64 and the number of idle users 65 for each service area 11 from the MME 7 or the ESPG 6.
- the bandwidth determination unit 211 of the second embodiment is different from the bandwidth determination unit 211 of the first embodiment, in addition to the number of connected users and the number of idle users, information on heavy users for each service area 11 is also received from the MME 7 or ESPGW6. Collect (S201).
- the information regarding the heavy user includes an identifier of the service area 11 in which the heavy user is included, an identifier of the business operator to which the heavy user belongs, and a heavy user ID indicating the heavy user.
- Servers that provide mobile services such as MME 7 and ESPGW 6 collect transmission / reception information indicating the amount (rate) of data to be transmitted / received for each mobile terminal 9. For this reason, at least one of MME7 and ESPGW6 can specify that the mobile terminal 9 that transmits and receives data exceeding a predetermined threshold is a heavy user.
- the network resource volume manager 100 may collect transmission / reception information for each portable terminal 9 from the MME 7 or ESPGW 6 and specify a heavy user based on the collected transmission / reception information and a predetermined threshold.
- the bandwidth determination unit 211 may end the process illustrated in FIG.
- the bandwidth determining unit 211 acquires an entry from the LSP DB 28 using the information regarding the heavy user using the area ID 71 and the business ID 72 as search keys (S202).
- the LSP DB 28 contains one set of area ID 71 and operator ID 72. Two different entries are set for direction communication. For this reason, in S202, the bandwidth determination unit 211 acquires two entries from the LSP DB 28 in one direction.
- the bandwidth determination unit 211 executes the processing after S203 for each one-way communication. In the following, the processing of S203 to S206 executed for an entry indicating one-way communication will be described.
- the bandwidth determination unit 211 specifies the network 120 through which a packet transmitted / received by the heavy user is to be passed based on the network ID 78 and the heavy user NWID 79 of the entry acquired in S202 (S203). Specifically, the bandwidth determination unit 211 extracts the identifier of the heavy user NWID 79 from the entries stored in the heavy user NWID 79 out of the entries acquired in S202, and further adds the extracted identifier to the network ID 78. Identify the entry that contains it.
- the network 120 indicated by the extracted identifier is specified as the network 120 through which the packet transmitted / received by the heavy user is to be passed.
- the network 120 specified here is the network 120b in the network system shown in FIG.
- the bandwidth determination unit 211 acquires the area ID 71, the operator ID 72, the LSP ID 73, and the edge node ID 74 from the entry of the network 120b specified in S203 (S204).
- the LSP ID 73 acquired here indicates an LSP in the network 120b.
- the bandwidth determining unit 211 adds the information acquired in S204 to a new entry in the heavy user management DB 130. Specifically, the bandwidth determination unit 211 adds the area ID 71, the provider ID 72, the LSP ID 73, and the edge node ID 74 to the area ID 131, the provider ID 132, the LSP ID 133, and the edge node ID 134. In addition, the bandwidth determination unit 211 adds the heavy user ID acquired in S201 to the heavy user ID 135 of the new entry in the heavy user management DB 130 (S205).
- the bandwidth determination unit 211 sets the heavy user ID 135 of the entry corresponding to the LSP in the network 120b to S201.
- the heavy user ID acquired in step 1 may be added.
- the bandwidth instructing unit 212 sets the values of the heavy user ID 135, the LSP ID 133, and the edge node ID 134 of the newly added entry (heavy user ID, LSP ID, and edge) in order to set the heavy user information in the edge node. Node ID) is notified to the NMS 5.
- the bandwidth instruction unit 212 acquires the edge node through which the packet by the heavy user passes from the edge node ID 134 of the entry of the heavy user management DB 130 corresponding to the LSP in the network 120b, and sends it to the NMS 5 connected to the acquired edge node. Information such as a heavy user ID is transmitted.
- the NMS 5 notifies the edge node indicated by the information transmitted from the network resource volume manager 100 of the heavy user ID and LSP ID included in the transmitted information.
- the LSP indicated by the LSP DB 28 has been set.
- the device control unit 34 of the edge node sets the heavy user ID and LSP ID received from the NMS 5 to the heavy user ID 141 and the LSP ID 142 of the new entry in the heavy user identification table 140.
- the user flow specifying unit 36 When the packet is received after the information is set in the heavy node identification table 140 of the edge node, the user flow specifying unit 36 first sets the heavy user identification table 140 using the header information included in the received packet. Search for.
- the user flow specifying unit 36 is more than the search result in the LSP management table 29.
- the search result of the heavy user identification table 140 is used with priority.
- the user flow specifying unit 36 extracts the LSP identifier from the LSP ID 142 of the entry corresponding to the transmission source or destination of the received packet, and receives it by the MPLS header including the extracted LSP identifier. Encapsulate the packet. Then, the user flow specifying unit 36 and the SW transmission circuit 37 transfer the encapsulated packet to the SW 32.
- the packet transmitted by the heavy user or the packet transmitted toward the heavy user passes through the network 120b.
- the relay node 4b in the network 120b supports Ethernet frame transfer and is not set to transfer MPLS-TP packets
- the relay node 4b included in the network 120b is connected to the edge node access NWIF card.
- the packet can be transferred by connecting to the terminal 31.
- a packet by heavy user communication is encapsulated by an MPLS header in the access NWIF card 31 and then transferred to another access NWIF card 31 in the SW 32.
- the packet by the heavy user communication is decapsulated in the MPLS header in the transfer destination access NWIF card 31 and transferred to the relay node 4b. Therefore, the relay node 4b receives the packet that is not encapsulated by the MPLS header, and transfers the packet based on the Ethernet format of the received packet.
- a packet by a heavy user is different from a packet by a mobile terminal 9 other than the heavy user. It is transferred using the path. For this reason, the network resource volume manager 100 of Example 2 can suppress the situation where the packet of the portable terminals 9 other than a heavy user is discarded by communication by a heavy user.
- the database and table in the present embodiment may hold information in any format including the above-described contents, and may hold information in a format such as CSV other than the table format.
- each of the above-described configurations, functions, processing units, and processing procedures may be realized by hardware by designing a part or all of them with, for example, an integrated circuit.
- Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor.
- Information such as a program, a table, or a file that realizes each function can be stored in a recording device such as a memory, a hard disk, or an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
- control lines and information lines indicate objects that are considered necessary for explanation, and not all control lines and information lines on the product are necessarily shown. Actually, it may be considered that almost all the components are connected to each other.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
Data that is transmitted and received by a terminal is transferred via a path between a first edge node and a second edge node, the terminal takes any of a plurality of terminal states including a first state in which the terminal transmits and receives only control data, and a second state in which the terminal transmits and receives data other than the control data, and a network manager has band information including a band secured for the terminal to communicate via the path in each of the terminal states, acquires information relating to the terminal state of the terminal from a management server, calculates the band secured for the terminal to communicate via the path on the basis of the number of terminals in the first state and the number of terminals in the second state, which are indicated by the information acquired from the management server, and the band information, and sets the calculated band in the first edge node and the second edge node such that the data that is transmitted and received by the terminal is transferred in the calculated band.
Description
本出願は、平成25年(2013年)9月25日に出願された日本出願である特願2013-198406の優先権を主張し、その内容を参照することにより、本出願に取り込む。
This application claims the priority of Japanese Patent Application No. 2013-198406, which was filed on September 25, 2013, and is incorporated herein by reference.
本発明は、ネットワークシステムに関する。
The present invention relates to a network system.
LTE(Long Term Evolution)などの高速無線アクセスサービスの普及により、スマートフォンの利用者数が急増している。これにともない、無線を利用したデータ通信のニーズが飛躍的に増加している。この背景から、無線通信にも有線通信と同等の安定した通信品質が要求される。
With the spread of high-speed wireless access services such as LTE (Long Term Evolution), the number of smartphone users is rapidly increasing. Along with this, the need for wireless data communication has increased dramatically. Against this background, wireless communication is also required to have stable communication quality equivalent to wired communication.
現在のモバイルバックホールは、ATM(Asynchronous Transfer Mode)又はイーサネットを用いて構築されることが多い。モバイルバックホールとは、基地局からゲートウェイを接続する無線通信向けのネットワークのことである。モバイルネットワークにおいて、基地局は携帯端末を収容し、ゲートウェイは携帯端末を利用するユーザの認証とハンドオーバの制御とをおこなう。
Current mobile backhauls are often built using ATM (Asynchronous Transfer Mode) or Ethernet. A mobile backhaul is a network for wireless communication connecting a gateway from a base station. In a mobile network, a base station accommodates a mobile terminal, and a gateway performs authentication of a user who uses the mobile terminal and control of a handover.
現在のモバイルバックホールには、基地局を収容するネットワークエッジノード(BS-NWEノード)と、ゲートウェイを収容するネットワークエッジノード(GW-NWEノード)との間の通信パスが、あらかじめ設定されるネットワークがある。このとき、通信パスには、以下のような課題があった。
A network in which a communication path between a network edge node (BS-NWE node) accommodating a base station and a network edge node (GW-NWE node) accommodating a gateway is set in advance in the current mobile backhaul There is. At this time, the communication path has the following problems.
例えば、通信パスの帯域が固定帯域に設定され、BS-NWEノードが収容する端末の数が各BS-NWEノード間で異なる場合、各BS-NWEノードに割り当てられる通信パスの帯域は一定である。このため、ネットワークリソース全体に空きがある場合にも、端末数が多いBS-NWEノードにおける通信は遅くなっていた。
For example, when the bandwidth of the communication path is set to a fixed bandwidth and the number of terminals accommodated by the BS-NWE node is different among the BS-NWE nodes, the bandwidth of the communication path allocated to each BS-NWE node is constant. . For this reason, even in the case where there is a vacancy in the entire network resource, the communication in the BS-NWE node with a large number of terminals has been slow.
また、例えば、通信パスの帯域がベストエフォートに設定された場合、基地局側のエッジノードからサービス収容エッジ(サービスを提供するすべてのサーバを収容するエッジノード)に到達するまでに経由するノードホップ数が多い通信ほど、データが廃棄される確率が高くなり、通信が遅くなる。
Also, for example, when the bandwidth of the communication path is set to best effort, the node hop that passes through from the edge node on the base station side to the service accommodation edge (edge node that accommodates all servers that provide services) The larger the number of communications, the higher the probability that data will be discarded, and the communications will be slower.
このように、従来のモバイルバックホールではネットワークのリソースに空きがあってもリソースを十分に利用できなかった。
As described above, in the conventional mobile backhaul, the resources could not be fully utilized even if the network resources are available.
ネットワークリソースの利用効率を向上させる技術として、ネットワーク制御システム技術が提案されている(例えば、特許文献1参照)。特許文献1には、複数の端末を収容する複数のサーバと、複数のホストコンピュータと、サーバがホストコンピュータへ送信するデータ量を調整する送信レート調整サーバが、ネットワーク経由で接続されており、送信レート調整サーバは各サーバから、各サーバが収容する端末からのトランザクション数を収集し、送信レート調整サーバは収集したトランザクション数に応じて各サーバに対してネットワークにデータを送信する送信レートを通知することにより、ネットワークの輻輳を低減するネットワーク制御システムが開示される。
特許文献1:特開2009-206874号公報 As a technique for improving the utilization efficiency of network resources, a network control system technique has been proposed (see, for example, Patent Document 1). InPatent Document 1, a plurality of servers that accommodate a plurality of terminals, a plurality of host computers, and a transmission rate adjustment server that adjusts the amount of data that the server transmits to the host computers are connected via a network. The rate adjustment server collects the number of transactions from each server from each server, and the transmission rate adjustment server notifies each server of the transmission rate for transmitting data to the network according to the collected number of transactions. Thus, a network control system for reducing network congestion is disclosed.
Patent Document 1: Japanese Patent Application Laid-Open No. 2009-206874
特許文献1:特開2009-206874号公報 As a technique for improving the utilization efficiency of network resources, a network control system technique has been proposed (see, for example, Patent Document 1). In
Patent Document 1: Japanese Patent Application Laid-Open No. 2009-206874
特許文献1の技術は、ネットワークにおいてデータが通過する経路を考慮して、ネットワークの利用効率を向上させることができない。また、特許文献1を用いた場合、送信レートを設定した時点でトランザクションを出力していない端末が、送信レートを設定後にトランザクションを出力し始めた場合、新たに発生したトランザクションの帯域が確保されていないため、送信レートが不足する。
The technology of Patent Document 1 cannot improve the network utilization efficiency in consideration of the route through which data passes in the network. Further, when Patent Document 1 is used, if a terminal that has not output a transaction at the time when the transmission rate is set starts outputting a transaction after setting the transmission rate, the bandwidth of the newly generated transaction is secured. As a result, the transmission rate is insufficient.
本発明の第一の目的は、前述のような従来技術の問題点に鑑みて、ネットワークにおいてデータが通過する通信パスに最適な帯域を割り当てることである。さらには、ある中継ノードが多くの通信パスを収容し過ぎて輻輳が発生する場合など、利用率が低い中継ノードに通信パスを設定しなおすことによってネットワーク全体の利用効率を向上するネットワークシステムを提供することである。
The first object of the present invention is to allocate an optimum bandwidth to a communication path through which data passes in a network in view of the problems of the prior art as described above. Furthermore, when a certain relay node contains too many communication paths and congestion occurs, a network system is provided that improves the overall network utilization efficiency by resetting the communication path to a relay node with a low utilization rate. It is to be.
さらに、本発明の第二の目的は、潜在ユーザ(データ通信を行っていないが将来データ通信を行う可能性のあるユーザ)を考慮して経路の帯域を確保することが出来るネットワークシステムを提供することである。
Furthermore, a second object of the present invention is to provide a network system that can secure a bandwidth of a path in consideration of potential users (users who are not performing data communication but who are likely to perform data communication in the future). That is.
本発明の代表的な一形態によると、端末が送受信するデータを転送するネットワークシステムであって、前記ネットワークシステムは、前記端末を収容する第1のエッジノードと、前記端末の情報を保持する端末管理サーバと、前記端末管理サーバに接続されるネットワークマネージャと、前記第1のエッジノードに接続される第2のエッジノードとを備え、前記端末によって送受信されるデータは、前記第1のエッジノードと、前記第2のエッジノードの間のパスを介して転送され、前記端末は、前記端末が制御データのみを送受信する第1の状態と、前記端末が前記制御データ以外のデータを送受信する第2の状態と、を含む複数の端末状態のいずれかをとり、前記ネットワークマネージャは、プロセッサ及びメモリを有し、前記端末状態の各々において、前記端末が前記パスを介して通信するために確保される帯域を含む帯域情報を有し、前記端末の端末状態の情報を、前記端末管理サーバから取得し、前記端末管理サーバから取得した情報が示す前記第1の状態である端末の数及び前記第2の状態である端末の数と、前記帯域情報とに基づいて、前記端末がパスを介して通信するために確保される帯域を算出し、前記端末によって送受信されるデータを前記算出された帯域によって転送するように、前記第1のエッジノード及び前記第2のエッジノードに設定する。
According to a representative aspect of the present invention, a network system for transferring data transmitted and received by a terminal, the network system including a first edge node that accommodates the terminal and a terminal that holds information on the terminal A management server; a network manager connected to the terminal management server; and a second edge node connected to the first edge node, wherein data transmitted and received by the terminal is the first edge node And the terminal is transferred via a path between the second edge nodes, and the terminal is in a first state in which the terminal transmits / receives only control data, and in which the terminal transmits / receives data other than the control data. 2, and the network manager includes a processor and a memory, and the terminal In each of the states, the terminal has band information including a band reserved for communication via the path, and acquires terminal state information of the terminal from the terminal management server, and the terminal management server Based on the number of terminals in the first state and the number of terminals in the second state indicated by the information acquired from the information and the bandwidth information, the terminal is secured for communication via a path. The first edge node and the second edge node are set so that data transmitted / received by the terminal is transferred according to the calculated bandwidth.
本発明の一実施形態によると、ネットワークにおいてデータが通過する経路に最適な帯域を割り当てることができる。
According to an embodiment of the present invention, an optimal bandwidth can be allocated to a route through which data passes in the network.
上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
Issues, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
以下、図面を用いて実施例を詳細に説明する。
Hereinafter, embodiments will be described in detail with reference to the drawings.
本実施例におけるモバイルバックホールは、ネットワークの通信プロトコルとしてMulti Protocol Label Switching-Transport Profile(MPLS-TP)を利用する。しかし、フロー、宛先、又は、送信元等の属性が所定の属性であるパケットに、エッジノード間の経路があらかじめ設定されるようなプロトコルであれば、MPLS-TP以外のいかなる通信プロトコルを利用してもよい。
The mobile backhaul in the present embodiment uses Multi Protocol Label Switching-Transport Profile (MPLS-TP) as a network communication protocol. However, any protocol other than MPLS-TP can be used as long as the route between the edge nodes is set in advance in a packet whose attributes such as flow, destination, or transmission source are predetermined attributes. May be.
図1は、本実施例1のネットワークシステムを示す説明図である。
FIG. 1 is an explanatory diagram illustrating a network system according to the first embodiment.
実施例1のネットワークシステムは、少なくとも一つのモバイルバックホール10、複数のサービスエリア11(11-1~11-3)、ネットワークリソースボリュームマネージャ1、Mobility Management Entity(MME)7、ESPGW6、及び、保守者端末12を含む。
The network system of the first embodiment includes at least one mobile backhaul 10, a plurality of service areas 11 (11-1 to 11-3), a network resource volume manager 1, a mobility management entity (MME) 7, an ESPGW 6, and a maintenance A person terminal 12 is included.
モバイルバックホール10は、少なくとも1社の事業者による通信を収容し、ネットワークリソースを最適に利用するためのシステムである。モバイルバックホール10は、複数のBS-NWE(Base Station Network Edge)ノード2(2-1~2-4)、複数の中継ノード4(4-1~4-5)、少なくとも一つのGW-NWE(Gateway Network Edge)ノード3、及び、NMS(Network Management System)5を有する。
The mobile backhaul 10 is a system for accommodating communication by at least one company and optimally using network resources. The mobile backhaul 10 includes a plurality of BS-NWE (Base Station Network Edge) nodes 2 (2-1 to 2-4), a plurality of relay nodes 4 (4-1 to 4-5), and at least one GW-NWE. (Gateway Network Edge) node 3 and NMS (Network Management System) 5.
BS-NWEノード2は、モバイルバックホール10におけるエッジノードであり、サービスエリア11から送信されるパケットを収容するネットワーク装置である。中継ノード4は、ネットワーク装置であり、BS-NWEノード2及びGW-NWEノード3間の通信を転送する。GW-NWEノード3は、モバイルバックホール10におけるエッジノードであり、MME7及びESPGW6に接続されるネットワーク装置である。
The BS-NWE node 2 is an edge node in the mobile backhaul 10 and is a network device that accommodates packets transmitted from the service area 11. The relay node 4 is a network device and transfers communication between the BS-NWE node 2 and the GW-NWE node 3. The GW-NWE node 3 is an edge node in the mobile backhaul 10 and is a network device connected to the MME 7 and the ESPGW 6.
NMS5は、BS-NWEノード2とGW-NWEノード3と中継ノード4とに通信パスおよび通信パスの帯域を設定する計算機である。図1に示すNMS5は、モバイルバックホール10に含まれるが、本実施例のNMS5の機能は、ネットワークリソースボリュームマネージャ1が有してもよい。
The NMS 5 is a computer that sets the communication path and the bandwidth of the communication path in the BS-NWE node 2, the GW-NWE node 3, and the relay node 4. The NMS 5 shown in FIG. 1 is included in the mobile backhaul 10, but the network resource volume manager 1 may have the functions of the NMS 5 of this embodiment.
ここで、実施例1における通信パスとは、所定の属性のパケットを転送するために、モバイルバックホール10において用いられる論理的な経路を示す。通信パスには、モバイルバックホール10における経路が割り当てられる。本実施例における通信パスは、論理的なパスを示す。また、本実施例における経路は、データが実際に通過するネットワーク装置と、通過する順番とを示す。
Here, the communication path in the first embodiment indicates a logical route used in the mobile backhaul 10 in order to transfer a packet having a predetermined attribute. A route in the mobile backhaul 10 is assigned to the communication path. The communication path in this embodiment indicates a logical path. The route in the present embodiment indicates the network device through which data actually passes and the order in which the data passes.
実施例1におけるネットワークリソースボリュームマネージャ1は、通信パスに割り当てられる経路を変更することによって、所定の属性のパケットが通過するネットワーク装置を変更する。
The network resource volume manager 1 in the first embodiment changes a network device through which a packet having a predetermined attribute passes by changing a route assigned to a communication path.
一つのBS-NWEノード2は、一つの基地局8に接続される。基地局8は、携帯端末9と無線によって通信する。
One BS-NWE node 2 is connected to one base station 8. The base station 8 communicates with the mobile terminal 9 by radio.
サービスエリア11は、基地局8と携帯端末9とが直接通信できるエリアである。本実施例の携帯端末9は、いずれかのサービスエリア11に含まれる。基地局8は、携帯端末9に携帯電話サービスを提供する。
The service area 11 is an area where the base station 8 and the mobile terminal 9 can directly communicate. The mobile terminal 9 of the present embodiment is included in any service area 11. The base station 8 provides a mobile phone service to the mobile terminal 9.
ESPGW6は、携帯端末9の認証、及び、携帯端末9毎の帯域を制御するゲートウェイである。MME7は、複数のサービスエリア11間における携帯端末9のハンドオーバを制御する。ESPGW6及びMME7は、携帯端末9に関する情報を保持する計算機であり、本実施例における端末管理サーバである。また、ESPGW6及びMME7は、ゲートウェイ機能を有する。
The ESPGW 6 is a gateway that controls the authentication of the mobile terminal 9 and the bandwidth of each mobile terminal 9. The MME 7 controls the handover of the mobile terminal 9 between the plurality of service areas 11. The ESPGW 6 and the MME 7 are computers that hold information related to the mobile terminal 9, and are terminal management servers in the present embodiment. Further, the ESPGW 6 and the MME 7 have a gateway function.
保守者端末12は、保守者からの入力値を、ネットワークリソースボリュームマネージャ1に送信する。
The maintenance person terminal 12 transmits the input value from the maintenance person to the network resource volume manager 1.
ネットワークリソースボリュームマネージャ1は、サービスエリア11の各々に含まれる携帯端末9の数に関する情報を、MME7及びESPGW6から定期的に収集する。そして、ネットワークリソースボリュームマネージャ1は、収集された情報に基づいて通信パス毎の帯域を算出し、算出された帯域に従って、通信パスへの経路の割当て、並びに、通信パスへの帯域の設定を、NMS5に指示する。
The network resource volume manager 1 periodically collects information on the number of mobile terminals 9 included in each service area 11 from the MME 7 and the ESPGW 6. Then, the network resource volume manager 1 calculates a bandwidth for each communication path based on the collected information, and assigns a route to the communication path and sets a bandwidth to the communication path according to the calculated bandwidth. Instruct NMS5.
なお、説明の便宜上、本実施例のBS-NWEノード2とGW-NWEノード3とは別の名称によって識別されるが、BS-NWEノード2とGW-NWEノード3とは同じ機能を有する。ネットワークリソースボリュームマネージャ1がMME7、ESPGW6から収集する情報、及び、NMS5へ設定する情報については後述する。
For convenience of explanation, the BS-NWE node 2 and the GW-NWE node 3 of this embodiment are identified by different names, but the BS-NWE node 2 and the GW-NWE node 3 have the same function. Information collected by the network resource volume manager 1 from the MME 7 and ESPGW 6 and information set in the NMS 5 will be described later.
図1は、モバイルバックホール10を利用する事業者が1社である場合を示すが、複数の事業者が一つのモバイルバックホール10を共有してもよい。この場合、事業者毎のMME7、ESPGW6及びサービスエリア11がモバイルバックホール10に接続されてもよい。また、モバイルバックホール10には、事業者毎にBS-NWEノード2とGW-NWEノード3との間の通信パスが設定されてもよい。事業者毎のMME7、ESPGW6及びサービスエリア11は、物理的に異なる装置によって実装されてもよいし、論理的に異なる装置によって実装されてもよい。
FIG. 1 shows a case where there is one company that uses the mobile backhaul 10, but a plurality of companies may share one mobile backhaul 10. In this case, the MME 7, ESPGW 6, and service area 11 for each provider may be connected to the mobile backhaul 10. In the mobile backhaul 10, a communication path between the BS-NWE node 2 and the GW-NWE node 3 may be set for each carrier. The MME 7, ESPGW 6, and service area 11 for each provider may be implemented by physically different devices, or may be implemented by logically different devices.
図2は、本実施例1のネットワークリソースボリュームマネージャ1の物理的な構成例を示すブロック図である。
FIG. 2 is a block diagram illustrating a physical configuration example of the network resource volume manager 1 according to the first embodiment.
ネットワークリソースボリュームマネージャ1は、本実施例のモバイルバックホール10におけるネットワークリソースの利用効率向上を目的として構成される計算機である。ネットワークリソースボリュームマネージャ1は、CPU21、ネットワーク管理IF22、保守者端末接続IF23、帯域係数DB24、NWトポロジDB25、NWリソース管理DB26、サービスエリア別ユーザ数DB27、及び、LSP DB28を有する。また、ネットワークリソースボリュームマネージャ1は、図示しないメモリを有する。
The network resource volume manager 1 is a computer configured for the purpose of improving the use efficiency of network resources in the mobile backhaul 10 of this embodiment. The network resource volume manager 1 includes a CPU 21, a network management IF 22, a maintenance person terminal connection IF 23, a bandwidth coefficient DB 24, an NW topology DB 25, an NW resource management DB 26, a service area user count DB 27, and an LSP DB 28. The network resource volume manager 1 has a memory (not shown).
CPU21は、メモリに格納されたプログラム等を実行することによって、ネットワークリソースボリュームマネージャ1の機能を実装する演算装置である。CPU21は、演算装置であれば、CPU以外のいかなるプロセッサでもよいし、一つ又は複数のプロセッサによって構成されてもよい。CPU21は、プログラムを実行することによって、帯域決定部211及び帯域指示部212の機能を実装してもよい。
The CPU 21 is an arithmetic device that implements the function of the network resource volume manager 1 by executing a program or the like stored in the memory. The CPU 21 may be any processor other than the CPU as long as it is an arithmetic device, and may be configured by one or a plurality of processors. The CPU 21 may implement the functions of the bandwidth determination unit 211 and the bandwidth instruction unit 212 by executing a program.
帯域決定部211は、モバイルバックホール10における通信パスの帯域を、サービスエリア11に含まれる携帯端末9の数に従って、決定する機能を有する。また、帯域決定部211は、必要に応じて通信パスが通過するネットワーク装置を決定し、これによって、通信パスに経路を割り当てる。
The bandwidth determination unit 211 has a function of determining the bandwidth of the communication path in the mobile backhaul 10 according to the number of mobile terminals 9 included in the service area 11. In addition, the bandwidth determination unit 211 determines a network device through which the communication path passes as necessary, and thereby assigns a route to the communication path.
帯域指示部212は、帯域決定部211によって決定された帯域又は経路をモバイルバックホール10の各ネットワーク装置に設定するよう、NMS5に指示する機能を有する。
The band instruction unit 212 has a function of instructing the NMS 5 to set the band or route determined by the band determination unit 211 in each network device of the mobile backhaul 10.
帯域決定部211及び帯域指示部212は、一つのプログラムによって実装されてもよく、また、各々複数のプログラムによって実装されてもよい。また、CPU21は、帯域決定部211及び帯域指示部212を実装する一つ又は複数の物理的な装置を内蔵してもよい。
The bandwidth determination unit 211 and the bandwidth instruction unit 212 may be implemented by a single program, or may each be implemented by a plurality of programs. In addition, the CPU 21 may incorporate one or a plurality of physical devices that implement the bandwidth determination unit 211 and the bandwidth instruction unit 212.
ネットワーク管理IF22は、NMS5、MME7及びESPGW6と接続するためのインターフェースである。保守者端末接続IF23は、保守者端末12と接続するためのインターフェースである。
The network management IF 22 is an interface for connecting to the NMS 5, MME 7 and ESPGW 6. The maintenance person terminal connection IF 23 is an interface for connecting to the maintenance person terminal 12.
帯域係数DB24、NWトポロジDB25、NWリソース管理DB26、サービスエリア別ユーザ数DB27及びLSP DB28は、CPU21とデータベースアクセスパスとを介して接続される。
The bandwidth coefficient DB 24, the NW topology DB 25, the NW resource management DB 26, the service area user count DB 27, and the LSP DB 28 are connected via the CPU 21 and the database access path.
図3は、本実施例1のNWトポロジDB25を示す説明図である。
FIG. 3 is an explanatory diagram illustrating the NW topology DB 25 according to the first embodiment.
NWトポロジDB25は、あらかじめネットワークリソースボリュームマネージャ1に設定され、ネットワークリソースボリュームマネージャ1が管理するすべてのネットワークのネットワークトポロジを示す。実施例1において、ネットワークリソースボリュームマネージャ1はモバイルバックホール10を管理するため、図3に示すNWトポロジDB25は、モバイルバックホール10のネットワークトポロジを示す。以下に、図3のNWトポロジDB25が示す内容を説明する。
The NW topology DB 25 is set in advance in the network resource volume manager 1 and indicates the network topology of all networks managed by the network resource volume manager 1. In the first embodiment, since the network resource volume manager 1 manages the mobile backhaul 10, the NW topology DB 25 shown in FIG. 3 shows the network topology of the mobile backhaul 10. The contents shown in the NW topology DB 25 in FIG. 3 will be described below.
BS-NWEノード2-1~2-4は、各々サービスエリア11-1~11-4に接続される。また、BS-NWEノード2-1~2-4は、中継ノード4-1~4-4に接続される。また、GW-NWEノード3-1は、中継ノード4-5及びサービスエリア11-5に接続される。また、中継ノード4-1~4-5は、リング状に接続される。
BS-NWE nodes 2-1 to 2-4 are connected to service areas 11-1 to 11-4, respectively. BS-NWE nodes 2-1 to 2-4 are connected to relay nodes 4-1 to 4-4. The GW-NWE node 3-1 is connected to the relay node 4-5 and the service area 11-5. The relay nodes 4-1 to 4-5 are connected in a ring shape.
本実施例において、BS-NWEノード2-1~2-4には、識別子として各々E1~E4が割り当てられ、GW-NWEノード3-1には、識別子としてE5が割り当てられる。また、中継ノード4-1~4-5には、識別子としてS1~S5が割り当てられる。サービスエリア11-1~11-5には、識別子としてA1~A5が割り当てられる。
In this embodiment, the BS-NWE nodes 2-1 to 2-4 are assigned E1 to E4 as identifiers, respectively, and the GW-NWE node 3-1 is assigned E5 as an identifier. Further, S1 to S5 are assigned to the relay nodes 4-1 to 4-5 as identifiers. Service areas 11-1 to 11-5 are assigned identifiers A1 to A5.
なお、NWトポロジDB25は、NMS5が保持する情報に基づいて生成されてもよい。また、例えば、ネットワークリソースボリュームマネージャ1が有するプログラム又は物理的装置が、定期的にNMS5から情報を収集することによって、NWトポロジDB25を生成してもよい。
Note that the NW topology DB 25 may be generated based on information held by the NMS 5. Further, for example, the program or physical device included in the network resource volume manager 1 may collect the information from the NMS 5 periodically to generate the NW topology DB 25.
図4は、本実施例1のNWリソース管理DB26を示す説明図である。
FIG. 4 is an explanatory diagram illustrating the NW resource management DB 26 according to the first embodiment.
NWリソース管理DB26は、二つのネットワーク装置間のリンクにおいて使用される帯域を示す。また、NWリソース管理DB26は、ネットワークリソースボリュームマネージャ1が管理するモバイルバックホール10の各ネットワーク装置間のリンクを示す。
The NW resource management DB 26 indicates a bandwidth used in a link between two network devices. The NW resource management DB 26 indicates a link between each network device of the mobile backhaul 10 managed by the network resource volume manager 1.
NWリソース管理DB26は、リンクID51、帯域52及び残帯域53を含む。リンクID51は、ネットワーク装置間のリンクを特定する識別子を示す。図4に示すリンクID51は、各ネットワーク装置の識別子とハイフンとによって生成された識別子を示す。
The NW resource management DB 26 includes a link ID 51, a band 52, and a remaining band 53. The link ID 51 indicates an identifier that identifies a link between network devices. A link ID 51 shown in FIG. 4 indicates an identifier generated by the identifier and hyphen of each network device.
帯域52は、リンクID51が示すリンクにおいて使用される帯域を示す。残帯域53は、リンクID51が示すリンクにおいて、設定済の通信パスによって使用されていない帯域を示す。すなわち、残帯域53は、新たに設定される通信パスによって使用可能な帯域を示す。
Band 52 indicates a band used in the link indicated by the link ID 51. The remaining bandwidth 53 indicates a bandwidth that is not used by the set communication path in the link indicated by the link ID 51. That is, the remaining bandwidth 53 indicates a bandwidth that can be used by a newly set communication path.
NWリソース管理DB26は、保守者端末12を介して保守者によってあらかじめ設定されてもよい。例えば、ネットワークリソースボリュームマネージャ1が有するプログラム又は物理的装置が、定期的にNMS5から情報を収集することによって、NWリソース管理DB26を生成してもよい。
The NW resource management DB 26 may be set in advance by a maintenance person via the maintenance person terminal 12. For example, the NW resource management DB 26 may be generated by a program or a physical device included in the network resource volume manager 1 periodically collecting information from the NMS 5.
図5は、本実施例1のサービスエリア別ユーザ数DB27を示す説明図である。
FIG. 5 is an explanatory diagram showing the service area user count DB 27 according to the first embodiment.
サービスエリア別ユーザ数DB27は、サービスエリア11に含まれる携帯端末9の数及び状態を、事業者ごとに示す。ここで、図5における携帯端末9の状態とは、接続状態及びアイドル状態である。しかし、本実施例における携帯端末9の状態は、携帯端末9の通信の頻度、量、内容、又は、目的等に従って、モバイルバックホール10における通信に必要な帯域を変化させる必要がある状態であれば、いかなる状態であってもよい。
The service area user count DB 27 indicates the number and status of the mobile terminals 9 included in the service area 11 for each business operator. Here, the states of the mobile terminal 9 in FIG. 5 are a connected state and an idle state. However, the state of the mobile terminal 9 in the present embodiment is a state where it is necessary to change the band necessary for communication in the mobile backhaul 10 according to the frequency, amount, content, purpose, etc. of communication of the mobile terminal 9. Any state may be used.
なお、本実施例における接続状態は、携帯端末9が、制御データ以外のデータ(以下、実データ)を、所定の条件において送受信する状態である。所定の条件とは、例えば、所定の頻度を超えて送受信することである。また、接続状態は、携帯端末9が即時実データを送受信できる状態を含む。
The connection state in the present embodiment is a state in which the mobile terminal 9 transmits / receives data other than control data (hereinafter, actual data) under a predetermined condition. The predetermined condition is, for example, transmission / reception exceeding a predetermined frequency. The connection state includes a state in which the mobile terminal 9 can immediately transmit and receive actual data.
本実施例における実データとは、携帯端末9を使用するユーザが所望するサービスを、携帯端末9に直接提供するためのデータである。また、本実施例における制御データとは、携帯端末9が通信するためのデータである。本実施例における制御データは、例えば、携帯端末9の通信を確立又は切断するためのデータ、または、携帯端末9の通信状況を報告するためのデータを含む。
Actual data in this embodiment is data for directly providing a service desired by the user using the mobile terminal 9 to the mobile terminal 9. Further, the control data in the present embodiment is data for the mobile terminal 9 to communicate. The control data in the present embodiment includes, for example, data for establishing or disconnecting communication of the mobile terminal 9 or data for reporting the communication status of the mobile terminal 9.
本実施例におけるアイドル状態は、携帯端末9が所定の条件によって実データを送受信していない状態であり、例えば、所定の時間実データを送受信していない状態である。また、アイドル状態には、制御データのみを送受信する状態が含まれる。
The idle state in the present embodiment is a state where the mobile terminal 9 is not transmitting / receiving actual data according to a predetermined condition, for example, a state where actual data is not transmitted / received for a predetermined time. The idle state includes a state in which only control data is transmitted / received.
前述の接続状態及びアイドル状態等の本実施例における状態の遷移は、3GPPによって規格化される。一般に、接続状態である携帯端末9は、アイドル状態である携帯端末9よりも、多くのデータを送受信する。
State transitions in the present embodiment such as the above-described connection state and idle state are standardized by 3GPP. In general, the mobile terminal 9 in the connected state transmits and receives more data than the mobile terminal 9 in the idle state.
図5のサービスエリア別ユーザ数DB27は、エリアID61、事業者ID62、ノードID63、接続状態ユーザ数64、及び、アイドル状態ユーザ数65を含む。エリアID61は、サービスエリア11の識別子を示す。事業者ID62は、事業者の識別子を示す。
5 includes an area ID 61, a provider ID 62, a node ID 63, a connection state user number 64, and an idle state user number 65. The area ID 61 indicates an identifier of the service area 11. The business operator ID 62 indicates an identifier of the business operator.
ノードID63は、エリアID61が示すサービスエリア11の基地局8と接続するBS-NWEノード2を示す。図5に示すノードID63は、一つのBS-NWEノード2を示すが、本実施例のノードID63は、メインサーバとして用いられるBS-NWEノード2と、メインサーバが障害時に用いられるサブサーバのBS-NWEノード2とを示してもよい。
The node ID 63 indicates the BS-NWE node 2 connected to the base station 8 in the service area 11 indicated by the area ID 61. The node ID 63 shown in FIG. 5 indicates one BS-NWE node 2, but the node ID 63 in this embodiment is the BS-NWE node 2 used as the main server and the BS of the sub-server used when the main server fails. -NWE node 2 may be indicated.
接続状態ユーザ数64は、エリアID61が示すサービスエリア11に含まれる携帯端末9のうち、接続状態の携帯端末9の数を示す。アイドル状態ユーザ数65は、エリアID61が示すサービスエリア11に含まれる携帯端末9のうち、アイドル状態の携帯端末9の数を示す。
The number 64 of connected users indicates the number of connected mobile terminals 9 among the mobile terminals 9 included in the service area 11 indicated by the area ID 61. The number of idle state users 65 indicates the number of mobile terminals 9 in the idle state among the mobile terminals 9 included in the service area 11 indicated by the area ID 61.
サービスエリア別ユーザ数DB27は、ネットワークリソースボリュームマネージャ1がMME7又はESPGW6から収集した、サービスエリア11ごとの携帯端末9に関する情報に基づいて、生成される。帯域決定部211は、サービスエリア別ユーザ数DB27を保持することによって、サービスエリア11ごとのユーザ数及びその状態を正確に把握し、BS-NWEノード2とGW-NWEノード3との間の通信パスにおいて必要な通信帯域を算出することができる。
The service area user count DB 27 is generated based on information about the mobile terminal 9 for each service area 11 collected from the MME 7 or ESPGW 6 by the network resource volume manager 1. The bandwidth determination unit 211 accurately grasps the number of users and the state of each service area 11 by holding the service area user count DB 27, and performs communication between the BS-NWE node 2 and the GW-NWE node 3. It is possible to calculate a communication band necessary for the path.
図6は、本実施例1のLSP DB28を示す説明図である。
FIG. 6 is an explanatory diagram showing the LSP DB 28 according to the first embodiment.
LSP DB28は、BS-NWEノード2とGW-NWEノード3との間の通信パス(LSP:Label Switched Path)に設定される経路及び帯域を保持する。LSP DB28は、エリアID71、事業者ID72、LSP ID73、エッジノードID74、中継ノードID75、エッジノードID76及び設定帯域Bw0(77)を含む。
The LSP DB 28 holds a route and a band set in a communication path (LSP: Label Switched Path) between the BS-NWE node 2 and the GW-NWE node 3. The LSP DB 28 includes an area ID 71, a provider ID 72, an LSP ID 73, an edge node ID 74, a relay node ID 75, an edge node ID 76, and a set bandwidth Bw0 (77).
エリアID71は、サービスエリア11の識別子を示す。事業者ID72は、事業者の識別子を示す。LSP ID73は、通信パス(LSP)の識別子を示す。なお、以下の実施例1において、通信パスはすべてLSPによって定義されるため、実施例1における通信パスをLSPと記載する。
Area ID 71 indicates an identifier of the service area 11. The business ID 72 indicates an identifier of the business. The LSP ID 73 indicates a communication path (LSP) identifier. In the following first embodiment, since all communication paths are defined by LSP, the communication path in the first embodiment is referred to as LSP.
エッジノードID74は、LSPの始点であるBS-NWEノード2又はGW-NWEノード3の識別子を示す。中継ノードID75は、LSPが通過する中継ノード4の識別子を示す。図6に示す中継ノードID75は、LSPが中継ノード4を通過する順番を示す。エッジノードID76は、LSPの終点であるBS-NWEノード2又はGW-NWEノード3の識別子を示す。設定帯域Bw0(77)は、LSP ID73が示すLSPに設定される帯域を示す。
Edge node ID 74 indicates the identifier of BS-NWE node 2 or GW-NWE node 3 that is the start point of the LSP. The relay node ID 75 indicates the identifier of the relay node 4 through which the LSP passes. The relay node ID 75 illustrated in FIG. 6 indicates the order in which the LSP passes through the relay node 4. The edge node ID 76 indicates the identifier of the BS-NWE node 2 or GW-NWE node 3 that is the end point of the LSP. The set bandwidth Bw0 (77) indicates a bandwidth set in the LSP indicated by the LSP ID 73.
図7は、本実施例1の帯域係数DB24を示す説明図である。
FIG. 7 is an explanatory diagram showing the band coefficient DB 24 of the first embodiment.
帯域係数DB24は、LSPにおいて一つの携帯端末9に確保される帯域を示し、状態の各々における携帯端末9の帯域を示す。また、図7に示す帯域係数DB24は、携帯端末9が属する事業者ごとに帯域を示す。帯域係数DB24は、事業者ID81、帯域α82及び帯域β83を含む。
The bandwidth coefficient DB 24 indicates a bandwidth reserved for one mobile terminal 9 in the LSP, and indicates the bandwidth of the mobile terminal 9 in each state. Further, the bandwidth coefficient DB 24 illustrated in FIG. 7 indicates a bandwidth for each business operator to which the mobile terminal 9 belongs. The band coefficient DB 24 includes a provider ID 81, a band α82, and a band β83.
事業者ID81は、事業者の識別子を示す。帯域α82は、状態が接続状態である携帯端末9に確保される帯域を示す。帯域β83は、状態がアイドル状態である携帯端末9に確保される帯域を示す。
The provider ID 81 indicates the identifier of the provider. A band α82 indicates a band secured in the mobile terminal 9 whose state is the connected state. A band β83 indicates a band reserved for the mobile terminal 9 whose state is the idle state.
図7に示す帯域係数DB24は、携帯端末9の二つの状態に従った帯域のみを保持するが、携帯端末9の状態が三つ以上定義されていた場合、三つ以上の帯域を保持してもよい。
The band coefficient DB 24 shown in FIG. 7 holds only the bands according to the two states of the mobile terminal 9, but holds three or more bands when three or more states of the mobile terminal 9 are defined. Also good.
本実施例において、帯域αは接続状態の携帯端末9あたりの帯域、帯域βはアイドル状態の携帯端末9あたりの帯域である。これらの値はそれぞれの事業者単位で適宜任意の値を設定することにより、事業者間のサービスグレードにバリエーションをつけることができる。
In this embodiment, the band α is a band per mobile terminal 9 in the connected state, and the band β is a band per mobile terminal 9 in the idle state. These values can be set appropriately for each business unit, so that the service grade among business operators can be varied.
複数の事業者がモバイルバックホール10を利用する場合に、帯域α82及び帯域83を事業者毎に設定する利点を以下に示す。例えば、事業者Aが、帯域α82が10Mbit/sであり、帯域β83が2Mbit/sである設定によって、他社に先行してモバイルデータ通信サービスをモバイルバックホール10を用いて提供する場合がある。
Advantages of setting the band α 82 and the band 83 for each provider when a plurality of providers use the mobile backhaul 10 are shown below. For example, the operator A may provide a mobile data communication service using the mobile backhaul 10 in advance of other companies by setting the band α 82 to be 10 Mbit / s and the band β 83 to be 2 Mbit / s.
この場合において、事業者Bが、帯域α82が20Mbit/sであり、かつ、帯域β83が4Mbit/sである設定によって、モバイルバックホール10を用いてモバイルデータ通信サービスを新たに開始した場合、事業者Bは、事業者Aよりも一つの携帯端末9あたりに確保する帯域が大きい。
In this case, when the operator B newly starts a mobile data communication service using the mobile backhaul 10 with the setting that the band α82 is 20 Mbit / s and the band β83 is 4 Mbit / s, The operator B has a larger band to be secured per mobile terminal 9 than the operator A.
このため、事業者Bは、事業者Bに属する携帯端末9の体感満足度を事業者Aより高めることができる。さらに、このように設定することによって、モバイルバックホール10を所有する事業者Cは、前述の設定の見返りに事業者Bから事業者Aよりも多くの利用料金を徴収できる。
For this reason, the business operator B can increase the satisfaction level of the mobile terminal 9 belonging to the business operator B more than the business operator A. Furthermore, by setting in this way, the business operator C who owns the mobile backhaul 10 can collect more usage charges than the business operator A from the business operator B in return for the above setting.
帯域α82と帯域β83とは、保守者によってあらかじめ設定されてもよい。また、帯域決定部211は、所定の期間、所定の回数取得した、接続状態ユーザ数64及びアイドル状態ユーザ数65を用いて、帯域α82と帯域β83とを決定してもよい。帯域α82と帯域β83との決定方法の詳細は、後述する。
The band α82 and the band β83 may be set in advance by a maintenance person. In addition, the band determination unit 211 may determine the band α82 and the band β83 using the connection state user number 64 and the idle state user number 65 acquired a predetermined number of times for a predetermined period. Details of the method of determining the band α82 and the band β83 will be described later.
なお、モバイルバックホール10を利用する事業者が1社のみである場合、サービスエリア別ユーザ数DB27の事業者ID62、LSP DB28の事業者ID72、及び、帯域係数DB24の事業者ID81は不要である。
When only one company uses the mobile backhaul 10, the service ID 62 of the service area user count DB 27, the service ID 72 of the LSP DB 28, and the service ID 81 of the bandwidth coefficient DB 24 are not required. .
図8は、本実施例1のエッジノードの機能ブロックの例を示すブロック図である。
FIG. 8 is a block diagram illustrating an example of functional blocks of the edge node according to the first embodiment.
本実施例のBS-NWEノード2及びGW-NWEノード3は、図8に示す同じ機能ブロックを有する。以下に、BS-NWEノード2及びGW-NWEノード3を総称し、エッジノードと記載する。
The BS-NWE node 2 and the GW-NWE node 3 of this embodiment have the same functional blocks shown in FIG. Hereinafter, the BS-NWE node 2 and the GW-NWE node 3 are collectively referred to as edge nodes.
エッジノードは、少なくとも一つのアクセスNWIFカード31(31-1~31-m、mは任意の正数)、スイッチ(SW)32、少なくとも一つの中継NWIFカード33(33-1~33-n、nは任意の正数)、及び、装置制御部34を有する。
The edge node includes at least one access NWIF card 31 (31-1 to 31-m, m is an arbitrary positive number), a switch (SW) 32, and at least one relay NWIF card 33 (33-1 to 33-n, n is an arbitrary positive number) and a device control unit 34.
アクセスNWIFカード31は、基地局8、MME7又はESPGW6と接続するためのNWインターフェースである。中継NWIFカード33は、中継ノード4又は他のエッジノードと接続するためのNWインターフェースである。
The access NWIF card 31 is an NW interface for connecting to the base station 8, the MME 7, or the ESPGW 6. The relay NWIF card 33 is an NW interface for connecting to the relay node 4 or another edge node.
SW32は、各NWIFカード間でパケットの送信先をスイッチングする。装置制御部34は、NMS5と接続される。装置制御部34は、NMS5からの指示に従って、NWIFカードの各々を設定したり、エッジノードが有する各機能ブロックの状態を監視したり、監視結果をNMS5からの指示に従ってNMS5に通知したりする。
SW32 switches the packet transmission destination between the NWIF cards. The device control unit 34 is connected to the NMS 5. The device control unit 34 sets each NWIF card according to an instruction from the NMS 5, monitors the state of each functional block included in the edge node, and notifies the NMS 5 of the monitoring result according to the instruction from the NMS 5.
アクセスNWIFカード31は、LSP管理テーブル29、LSP帯域管理テーブル30、NW受信回路35、ユーザフロー特定部36、SW送信回路37、SW受信回路38、MPLS終端回路39、及び、NW送信回路40を有する。
The access NWIF card 31 includes an LSP management table 29, an LSP bandwidth management table 30, an NW reception circuit 35, a user flow specifying unit 36, an SW transmission circuit 37, an SW reception circuit 38, an MPLS termination circuit 39, and an NW transmission circuit 40. Have.
NW受信回路35は、基地局8、MME7又はESPGW6などの装置からパケットを受信する。
The NW receiving circuit 35 receives a packet from a device such as the base station 8, MME 7, or ESPGW 6.
ユーザフロー特定部36は、受信したパケットのヘッダ情報に基づいて、LSP管理テーブル29及びLSP帯域管理テーブル30を検索する。そして、ユーザフロー特定部36は、検索の結果、受信したパケットをカプセル化するためのLSPを決定し、さらに、受信したパケットをカプセル化する。また、ユーザフロー特定部36は、パケットの帯域を制御する。
The user flow specifying unit 36 searches the LSP management table 29 and the LSP bandwidth management table 30 based on the header information of the received packet. Then, as a result of the search, the user flow specifying unit 36 determines an LSP for encapsulating the received packet, and further encapsulates the received packet. In addition, the user flow specifying unit 36 controls the bandwidth of the packet.
SW送信回路37は、SW32に受信したパケットを転送する。SW受信回路38は、SW32からパケットを受信する。MPLS終端回路39は、受信したパケットからMPLSヘッダを削除する。NW送信回路40は、基地局8、MME7又はESPGW6などの装置にパケットを送信する。
SW transmission circuit 37 transfers the received packet to SW32. The SW receiving circuit 38 receives a packet from the SW 32. The MPLS termination circuit 39 deletes the MPLS header from the received packet. The NW transmission circuit 40 transmits a packet to a device such as the base station 8, the MME 7, or the ESPGW 6.
中継NWIFカード33は、NW受信回路41、出力IF特定部42、SW送信回路43、SW受信回路44及びNW送信回路45を有する。NW受信回路41は、中継ノード4及び他のエッジノードから受信したパケット(実施例1においてMPLSパケット)を受信する。出力IF特定部42は、受信したパケットのヘッダから、受信したパケットを出力するNWIFカードを特定するための情報を抽出する。
The relay NWIF card 33 includes an NW reception circuit 41, an output IF specifying unit 42, an SW transmission circuit 43, an SW reception circuit 44, and an NW transmission circuit 45. The NW receiving circuit 41 receives a packet (MPLS packet in the first embodiment) received from the relay node 4 and other edge nodes. The output IF specifying unit 42 extracts information for specifying the NWIF card that outputs the received packet from the header of the received packet.
SW送信回路43は、受信したパケットをSW32に転送する。SW受信回路44は、SW32からパケットを受信する。NW送信回路45は、中継ノード4又は他のエッジノードへパケットを送信する。
SW transmission circuit 43 transfers the received packet to SW32. The SW receiving circuit 44 receives a packet from the SW 32. The NW transmission circuit 45 transmits a packet to the relay node 4 or another edge node.
図9は、本実施例1のLSP管理テーブル29を示す説明図である。
FIG. 9 is an explanatory diagram illustrating the LSP management table 29 according to the first embodiment.
LSP管理テーブル29は、パケットのヘッダが示すフローに対応するLSPを示す。LSP管理テーブル29は、フロー識別子91及びLSP ID92を含む。LSP管理テーブル29は、NMS5からの指示に従って設定される。
The LSP management table 29 indicates the LSP corresponding to the flow indicated by the packet header. The LSP management table 29 includes a flow identifier 91 and an LSP ID 92. The LSP management table 29 is set according to instructions from the NMS 5.
フロー識別子91は、フローの識別子である。LSP ID92は、フロー識別子91が示すフローによって送信されたパケットをカプセル化するためのLSPの識別子である。
The flow identifier 91 is a flow identifier. The LSP ID 92 is an LSP identifier for encapsulating a packet transmitted by the flow indicated by the flow identifier 91.
図10は、本実施例1のLSP帯域管理テーブル30を示す説明図である。
FIG. 10 is an explanatory diagram illustrating the LSP bandwidth management table 30 according to the first embodiment.
LSP帯域管理テーブル30は、LSPに設定される通信帯域を示す。LSP帯域管理テーブル30は、LSP ID101及び設定帯域102を含む。LSP帯域管理テーブル30は、NMS5からの指示に従って設定される。
The LSP bandwidth management table 30 indicates the communication bandwidth set for the LSP. The LSP bandwidth management table 30 includes an LSP ID 101 and a set bandwidth 102. The LSP bandwidth management table 30 is set according to an instruction from the NMS 5.
LSP ID101は、LSPの識別子を示す。設定帯域102は、LSP ID101が示すLSPに設定される通信帯域を示す。LSPの各々において、設定帯域102に格納される通信帯域が保証される。
LSP ID 101 indicates the identifier of the LSP. The set band 102 indicates a communication band set in the LSP indicated by the LSP ID 101. In each LSP, the communication band stored in the set band 102 is guaranteed.
ユーザフロー特定部36は、受信したパケットのヘッダ情報に含まれるフロー識別子を抽出する。そして、ユーザフロー特定部36は、抽出されたフロー識別子を用いてLSP管理テーブル29を検索することによって、受信したパケットをカプセル化するためのLSPの識別子をLSP管理テーブル29から取得する。
The user flow specifying unit 36 extracts a flow identifier included in the header information of the received packet. Then, the user flow identification unit 36 searches the LSP management table 29 using the extracted flow identifier, thereby acquiring the LSP identifier for encapsulating the received packet from the LSP management table 29.
そして、LSPの識別子を取得した場合、ユーザフロー特定部36は、LSPの識別子を用いてLSP帯域管理テーブル30を検索し、設定帯域102の値を取得する。そして、ユーザフロー特定部36は、受信したパケットを送信した場合、受信したパケットのLSPにおける帯域が取得された設定帯域102の値以内であるか否かを判定する。
When the LSP identifier is acquired, the user flow specifying unit 36 searches the LSP bandwidth management table 30 using the LSP identifier, and acquires the value of the set bandwidth 102. Then, when transmitting the received packet, the user flow specifying unit 36 determines whether or not the bandwidth of the received packet in the LSP is within the value of the acquired set bandwidth 102.
ユーザフロー特定部36は、この判定結果に従って、受信したパケットを転送するための優先度を更新する。優先度は、パケットのヘッダに格納される値である。ユーザフロー特定部36は、優先度を更新されたパケットを、SW送信回路37へ転送する。
The user flow specifying unit 36 updates the priority for transferring the received packet according to the determination result. The priority is a value stored in the header of the packet. The user flow specifying unit 36 transfers the packet whose priority has been updated to the SW transmission circuit 37.
また、例えば、ユーザフロー特定部36は、受信したパケットのLSPの帯域が、当該LSPに対応する設定帯域102の値を超過すると判定した場合、受信したパケットを廃棄してもよい。パケットを廃棄することにより、本実施例1のエッジノードは、あらかじめ設定された設定帯域102を超えてモバイルバックホール10にパケットが流入することを防止できる。そして、これにより、本実施例1のエッジノードは、モバイルバックホール10において発生する輻輳によるパケットロスを抑止することができる。
Further, for example, when the user flow specifying unit 36 determines that the LSP band of the received packet exceeds the value of the set band 102 corresponding to the LSP, the user flow specifying unit 36 may discard the received packet. By discarding the packet, the edge node of the first embodiment can prevent the packet from flowing into the mobile backhaul 10 beyond the preset setting bandwidth 102. Thus, the edge node according to the first embodiment can suppress packet loss due to congestion that occurs in the mobile backhaul 10.
また、例えば、ユーザフロー特定部36は、受信したパケットのLSPの帯域が、当該LSPに対応する設定帯域102の値を超過すると判定した場合、受信したパケットを廃棄するための優先度を高い値に更新した後、受信したパケットを送信してもよい。本実施例における廃棄するための優先度は、値が高ければ高いほどパケットが廃棄される可能性が高くなり、例えば、LSPヘッダに格納される値である。
Further, for example, when the user flow specifying unit 36 determines that the LSP bandwidth of the received packet exceeds the value of the set bandwidth 102 corresponding to the LSP, the user flow specifying unit 36 sets a higher priority for discarding the received packet. After the update, the received packet may be transmitted. In the present embodiment, the higher the priority for discarding, the higher the possibility that the packet will be discarded. For example, the priority is a value stored in the LSP header.
パケットを廃棄する優先度を高くすることによって、本実施例1のエッジノードは、あらかじめ設定された設定帯域102を超えてモバイルバックホール10にパケットが流入し、かつ、ネットワーク内で輻輳が発生した場合、設定帯域102を超えて流入したパケットを優先的に廃棄することができる。これにより、本実施例1のエッジノードは、モバイルバックホール10に、設定帯域102以内で流入したパケットのロスを抑止することができる。
By increasing the priority for discarding the packet, the edge node of the first embodiment causes the packet to flow into the mobile backhaul 10 beyond the preset bandwidth 102 and congestion occurs in the network. In this case, it is possible to preferentially discard a packet that has flowed beyond the set bandwidth 102. As a result, the edge node according to the first embodiment can suppress the loss of the packet that flows into the mobile backhaul 10 within the set bandwidth 102.
これらの処理を実行した後、ユーザフロー特定部36は、受信したパケットをSW送信回路37へ転送する。SW送信回路37は、受信したパケットに付加されたLSPの情報(識別子等)から、パケットを転送すべきNWIFカードを特定し、特定されたNWIFカードに向けてパケットを転送する。
After executing these processes, the user flow specifying unit 36 transfers the received packet to the SW transmission circuit 37. The SW transmission circuit 37 specifies the NWIF card to which the packet is to be transferred from the LSP information (identifier and the like) added to the received packet, and transfers the packet toward the specified NWIF card.
次に本実施例1のネットワークリソースボリュームマネージャ1が、BS-NWEノード2が収容する携帯端末9の数に従って、BS-NWEノード2とGW-NWEノード3との間のLSPの通信帯域を変更する方法、及び、LSPの経路を変更する方法を示す。
Next, the network resource volume manager 1 according to the first embodiment changes the communication band of the LSP between the BS-NWE node 2 and the GW-NWE node 3 according to the number of mobile terminals 9 accommodated by the BS-NWE node 2 And a method of changing the LSP path.
図11は、本実施例1の通信パスの帯域を決定する処理及び通信パスの経路を設定する処理を示すフローチャートである。
FIG. 11 is a flowchart illustrating processing for determining the bandwidth of the communication path and processing for setting the path of the communication path according to the first embodiment.
図11に示す処理の前提条件として、各BS-NWEノード2とGW-NWEノード3との間には、事業者毎かつサービスエリア毎に、通信に必要なLSPがあらかじめ設定されており、LSP管理テーブル29及びLSP帯域管理テーブル30には、あらかじめ値が設定されているものとする。
As preconditions for the processing shown in FIG. 11, an LSP necessary for communication is set in advance between each BS-NWE node 2 and GW-NWE node 3 for each operator and for each service area. It is assumed that values are set in advance in the management table 29 and the LSP bandwidth management table 30.
まず、ネットワークリソースボリュームマネージャ1の帯域決定部211は、あらかじめ定められた更新周期ごとに、図11に示す処理を開始する。なお、帯域決定部211は、例えば、少なくとも一つのサービスエリア11に含まれる携帯端末9の数が一定の割合で増減したことを、ESPGW6又はMME7等から取得した場合、図11に示す処理を開始してもよい。
First, the bandwidth determination unit 211 of the network resource volume manager 1 starts the process shown in FIG. 11 for each predetermined update cycle. Note that the bandwidth determination unit 211 starts the processing illustrated in FIG. 11 when, for example, the ESPGW 6 or the MME 7 acquires that the number of mobile terminals 9 included in at least one service area 11 has increased or decreased at a certain rate. May be.
帯域決定部211は、まず、サービスエリア11の各々における携帯端末9に関する情報を、ESPGW6及びMME7の少なくとも一つから収集する(S001)。
The bandwidth determination unit 211 first collects information on the mobile terminal 9 in each of the service areas 11 from at least one of the ESPGW 6 and the MME 7 (S001).
図11における携帯端末9に関する情報には、BS-NWEノード2の識別子(ノードID63に対応)、サービスエリア11の各々における接続状態の携帯端末9の数(接続状態ユーザ数64に対応)、及び、アイドル状態の携帯端末9の数(アイドル状態ユーザ数65に対応)が、事業者ごとに含まれる。
The information on the mobile terminal 9 in FIG. 11 includes the identifier of the BS-NWE node 2 (corresponding to the node ID 63), the number of connected mobile terminals 9 in each service area 11 (corresponding to the number of connected state users 64), and The number of idle portable terminals 9 (corresponding to the number of idle users 65) is included for each operator.
ただし、本実施例における携帯端末9に関する情報は、携帯端末9の状態に関する情報を含めばよく、例えば、携帯端末9の識別子、携帯端末9の状態を示す識別子及び携帯端末9が属する事業者の識別子を含んでもよい。そして、帯域決定部211は、収集した携帯端末9に関する情報から、携帯端末9の状態ごとの携帯端末9の数を算出してもよい。
However, the information regarding the mobile terminal 9 in the present embodiment may include information regarding the state of the mobile terminal 9, for example, the identifier of the mobile terminal 9, the identifier indicating the state of the mobile terminal 9, and the operator to which the mobile terminal 9 belongs An identifier may be included. Then, the bandwidth determination unit 211 may calculate the number of mobile terminals 9 for each state of the mobile terminal 9 from the collected information regarding the mobile terminal 9.
また、BS-NWEノード2が一つである場合、又は、事業者が一つである場合、携帯端末9に関する情報には、BS-NWEノード2の識別子、又は、事業者の識別子が含まれなくてもよい。
Further, when there is one BS-NWE node 2 or when there is one operator, the information regarding the mobile terminal 9 includes the identifier of the BS-NWE node 2 or the identifier of the operator. It does not have to be.
S001の後、帯域決定部211は、収集した携帯端末9に関する情報を用いて、サービスエリア別ユーザ数DB27を更新する(S002)。具体的には、帯域決定部211は、接続状態ユーザ数64及びアイドル状態ユーザ数65を、携帯端末9に関する情報に基づいて少なくとも更新する。
After S001, the bandwidth determination unit 211 updates the service area user count DB 27 using the collected information on the mobile terminal 9 (S002). Specifically, the bandwidth determination unit 211 updates at least the number of connected users 64 and the number of idle users 65 based on information about the mobile terminal 9.
S002の後、帯域決定部211は、更新されたサービスエリア別ユーザ数DB27を用いて、エリアID61及び事業者ID62ごとに設定されたLSPに関する情報を、LSP DB28から取得する(S003)。
After S002, the bandwidth determination unit 211 uses the updated service area-specific user number DB 27 to obtain information about the LSP set for each area ID 61 and business ID 62 from the LSP DB 28 (S003).
具体的には、S003において、帯域決定部211は、サービスエリア別ユーザ数DB27のうち、S004以降の処理が実行されていないエントリを一つ抽出する。
Specifically, in S003, the bandwidth determination unit 211 extracts one entry for which the processing from S004 onward is not executed in the service area user count DB 27.
ここで、抽出されたエントリのエリアID61が示すサービスエリア11を、エリアaと記載し、抽出されたエントリの事業者ID62が示す事業者を事業者aと記載する。
Here, the service area 11 indicated by the area ID 61 of the extracted entry is described as area a, and the business operator indicated by the business ID 62 of the extracted entry is described business operator a.
そして、帯域決定部211は、S003において、エリアa及び事業者aに対応するエリアID71及び事業者ID72を有するLSP DB28のエントリを抽出する。そして、帯域決定部211は、抽出されたエントリのLSP ID73、エッジノードID74、中継ノードID75、エッジノードID76、及び、設定帯域Bw0(77)の情報を、LSPに関する情報として取得する。
In step S003, the bandwidth determination unit 211 extracts an entry in the LSP DB 28 having an area ID 71 and an operator ID 72 corresponding to the area a and the operator a. Then, the bandwidth determination unit 211 acquires information on the LSP ID 73, the edge node ID 74, the relay node ID 75, the edge node ID 76, and the set bandwidth Bw0 (77) of the extracted entry as information about the LSP.
ここで、取得されたLSP ID73が示すLSPを、LSPaと記載する。なお、帯域決定部211が、エリアa及び事業者aに対応するエリアID71及び事業者ID72を有するLSP DB28のエントリとして、両方向の通信に対応する二つのエントリを抽出する場合がある。この場合、帯域決定部211は、片方向の通信を示すエントリの各々に、S004以降の処理を実行する。
Here, the LSP indicated by the acquired LSP ID 73 is referred to as LSPa. Note that the bandwidth determination unit 211 may extract two entries corresponding to communication in both directions as entries in the LSP DB 28 having the area ID 71 and the provider ID 72 corresponding to the area a and the provider a. In this case, the band determination unit 211 executes the processing from S004 onward for each entry indicating one-way communication.
S003の後、帯域決定部211は、事業者aに対応する事業者ID81を有する帯域係数DB24のエントリを特定し、特定されたエントリの帯域α82と帯域β83との値を取得する(S004)。
After S003, the bandwidth determination unit 211 identifies the entry of the bandwidth coefficient DB 24 having the business entity ID 81 corresponding to the business operator a, and acquires the values of the bandwidth α82 and the bandwidth β83 of the identified entry (S004).
S004の後、帯域決定部211は、S003においてサービスエリア別ユーザ数DB27から抽出されたエントリの接続状態ユーザ数64及びアイドル状態ユーザ数65と、帯域係数DB24から取得された帯域α82及び帯域β83と、式1とを用いて、LSPaに新たに設定するべき帯域Bw1を算出する(S005)。
After S004, the bandwidth determination unit 211 includes the connection state user count 64 and the idle state user count 65 of the entry extracted from the service area user count DB 27 in S003, and the bandwidth α82 and the bandwidth β83 acquired from the bandwidth coefficient DB24. The bandwidth Bw1 to be newly set in LSPa is calculated using Equation 1 (S005).
帯域Bw1=帯域α82×接続状態ユーザ数64+帯域β83×アイドル状態ユーザ数65 (式1)
Band Bw1 = Band α82 × Number of connected users 64 + Band β83 × Idle state users 65 (Formula 1)
S005の後、帯域決定部211は、算出された帯域Bw1にLSPaの帯域を変更できるか否かを、S006~S008の処理によって判定する。すなわち、帯域決定部211は、算出された帯域Bw1を設定するためのネットワークリソースを、LSPaに割り当てられた経路上において確保できるか否かを判定する。
After S005, the bandwidth determination unit 211 determines whether or not the LSPa bandwidth can be changed to the calculated bandwidth Bw1 by the processing of S006 to S008. That is, the bandwidth determination unit 211 determines whether or not the network resource for setting the calculated bandwidth Bw1 can be secured on the route assigned to LSPa.
S006~S008の処理により、帯域決定部211は、LSPaの帯域を動的に変更した後も、モバイルバックホール10における輻輳の発生を抑止できる。
Through the processing of S006 to S008, the bandwidth determination unit 211 can suppress the occurrence of congestion in the mobile backhaul 10 even after dynamically changing the LSPa bandwidth.
まずS006において、帯域決定部211は、S003において取得された設定帯域Bw0(77)の値と帯域Bw1と式2とに基づいて、帯域増減値Bw2を算出する(S006)。帯域増減値Bw2は、LSPaに新たに設定すべき帯域Bw1と、LSPaに既に設定済の設定帯域Bw0との変化量である。
First, in S006, the band determining unit 211 calculates a band increase / decrease value Bw2 based on the value of the set band Bw0 (77) acquired in S003, the band Bw1, and Expression 2 (S006). The band increase / decrease value Bw2 is the amount of change between the band Bw1 that should be newly set in LSPa and the set band Bw0 that has already been set in LSPa.
帯域増減値Bw2=帯域Bw1-設定帯域Bw0 (式2)
Bandwidth increase / decrease value Bw2 = bandwidth Bw1-set bandwidth Bw0 (Formula 2)
S006の後、帯域決定部211は、S003においてLSP DB28から取得されたエッジノードID74、中継ノードID75及びエッジノードID76に基づいて、各ネットワーク装置間を接続する少なくとも一つのリンクIDを生成する(S007)。ネットワーク装置を接続する順番は、S003において取得されたエッジノードID74、中継ノードID75及びエッジノードID76に従う。
After S006, the bandwidth determination unit 211 generates at least one link ID for connecting the network devices based on the edge node ID 74, the relay node ID 75, and the edge node ID 76 acquired from the LSP DB 28 in S003 (S007). ). The order of connecting the network devices follows the edge node ID 74, the relay node ID 75, and the edge node ID 76 acquired in S003.
本実施例における帯域決定部211は、例えば、エッジノードID74の識別子と、中継ノードID75の識別子とを、ハイフンによって接続することによってリンクIDを生成してもよい。帯域決定部211は、ネットワークシステムにおいて一意のポリシーがリンクIDに定められていれば、いかなるリンクIDを生成してもよい。
The bandwidth determination unit 211 in the present embodiment may generate the link ID by connecting the identifier of the edge node ID 74 and the identifier of the relay node ID 75 with a hyphen, for example. The bandwidth determination unit 211 may generate any link ID as long as a unique policy is defined for the link ID in the network system.
また、保守者がNWトポロジDB25にリンクIDをあらかじめ設定する場合、帯域決定部211は、S007においてNWトポロジDB25からリンクIDを取得してもよい。
Further, when the maintenance person presets the link ID in the NW topology DB 25, the bandwidth determination unit 211 may acquire the link ID from the NW topology DB 25 in S007.
S007の後、帯域決定部211は、LSPaが通過する各リンクにおけるネットワークリソースを取得するため、生成されたリンクIDを用いてNWリソース管理DB26を検索し、リンクID毎の帯域52及び残帯域53を取得する。さらに、帯域決定部211は、各リンクの残帯域53から帯域増減値Bw2を、式3を用いて減算する(S008)。ここで算出される変更後残帯域の各々は、LSPaが新たな帯域Bw1に設定された後の各リンクにおける残帯域である。
After S007, the bandwidth determination unit 211 searches the NW resource management DB 26 using the generated link ID to acquire the network resource in each link through which the LSPa passes, and the bandwidth 52 and the remaining bandwidth 53 for each link ID. To get. Further, the band determining unit 211 subtracts the band increase / decrease value Bw2 from the remaining band 53 of each link using Expression 3 (S008). Each of the post-change remaining bands calculated here is a remaining band in each link after LSPa is set to a new band Bw1.
変更後残帯域=残帯域-帯域増減値Bw2 (式3)
Remaining bandwidth after change = Remaining bandwidth-Band increase / decrease value Bw2 (Formula 3)
帯域決定部211は、LSPaが通過するすべてのリンクについて、変更後残帯域を算出する。すべてのリンクにおける変更後残帯域が0以上である場合、新たな帯域Bw1に変更後も各リンクにおいて十分な帯域が確保される。一方、少なくとも一つのリンクにおける変更後残帯域が0未満である場合、新たな帯域Bw1に変更後に、LSPaの経路において帯域が不足するリンクが発生する。
The bandwidth determination unit 211 calculates the post-change remaining bandwidth for all links through which LSPa passes. When the remaining bandwidth after change in all links is 0 or more, sufficient bandwidth is secured in each link even after the change to the new bandwidth Bw1. On the other hand, if the remaining bandwidth after the change in at least one link is less than 0, after the change to the new bandwidth Bw1, there will be a link whose bandwidth is insufficient in the LSPa path.
このため、帯域決定部211は、S008の後、各リンクにおいて算出された変更後残帯域がマイナスであるか否かを判定する(S009)。
Therefore, the bandwidth determination unit 211 determines whether or not the post-change remaining bandwidth calculated in each link is negative after S008 (S009).
S009において、設定変更後残帯域がマイナスではない、すなわち0以上であると判定された場合、帯域決定部211は、新たな帯域Bw1をLSPaに設定するためS010以降の処理を実行する。また、S009において、変更後残帯域がマイナスであると判定された場合、帯域決定部211は、LSPaの経路を変更するためS021以降の処理を実行する。
In S009, when it is determined that the remaining bandwidth after the setting change is not negative, that is, 0 or more, the bandwidth determination unit 211 executes the processing from S010 onward in order to set the new bandwidth Bw1 to LSPa. If it is determined in S009 that the post-change remaining bandwidth is negative, the bandwidth determination unit 211 executes processing subsequent to S021 to change the LSPa path.
S010において、帯域決定部211は、LSPaのリンクに対応するNWリソース管理DB26の残帯域53を、S008において算出された変更後残帯域に各々更新する。S010の後、帯域決定部211は、LSPaに対応するLSP DB28の設定帯域Bw0(77)を、帯域Bw1の値によって更新する(S011)。
In S010, the bandwidth determination unit 211 updates the remaining bandwidth 53 of the NW resource management DB 26 corresponding to the link of the LSPa to the changed remaining bandwidth calculated in S008. After S010, the bandwidth determination unit 211 updates the set bandwidth Bw0 (77) of the LSP DB 28 corresponding to the LSPa with the value of the bandwidth Bw1 (S011).
S011の後、帯域指示部212は、LSPaに関する帯域変更リクエストをNMS5に通知する(S012)。このLSPaに関する帯域変更リクエストは、LSPaの各リンクに関する情報(LSPaが通過するエッジノード及び中継ノード4を示す識別子)、及び、各リンクにおける帯域を帯域Bw1に変更する指示を含む。帯域指示部212は、LSP DB28に基づいて、LSPaに関する帯域変更リクエストを生成する。
After S011, the band instruction unit 212 notifies the NMS 5 of a band change request regarding LSPa (S012). The bandwidth change request for the LSPa includes information on each link of the LSPa (identifier indicating the edge node and the relay node 4 through which the LSPa passes) and an instruction to change the bandwidth of each link to the bandwidth Bw1. The bandwidth instruction unit 212 generates a bandwidth change request for LSPa based on the LSP DB 28.
NMS5は、LSPaに関する帯域変更リクエストをネットワークリソースボリュームマネージャ1から受信した場合、NMS5が有するデータベースと帯域変更リクエストとに基づいて、帯域変更リクエストが示すLSPaが通過するエッジノード及び中継ノード4に、LSPaの帯域を帯域Bw1に変更するように指示する。NMS5が有するデータベースとは、例えば、エッジノード及び中継ノード4の識別子とアドレスとを対応づけるためのデータベースである。
When the NMS 5 receives the bandwidth change request regarding the LSPa from the network resource volume manager 1, the NMS 5 sends the LSPa to the edge node and the relay node 4 through which the LSPa indicated by the bandwidth change request passes based on the database and the bandwidth change request that the NMS 5 has. Is instructed to be changed to the bandwidth Bw1. The database possessed by the NMS 5 is, for example, a database for associating identifiers and addresses of edge nodes and relay nodes 4 with each other.
エッジノードの装置制御部34は、NMS5からLSPaの前述の帯域変更を指示された場合、LSPaに対応するLSP帯域管理テーブル30のLSP ID101の設定帯域102の値を、帯域Bw1に更新する。また、中継ノード4は、LSPaのラベルを有するパケットを転送する帯域を、帯域Bw1に更新する。
The device control unit 34 of the edge node updates the value of the set bandwidth 102 of the LSP ID 101 of the LSP bandwidth management table 30 corresponding to the LSPa to the bandwidth Bw1 when instructed by the NMS 5 to change the bandwidth of the LSPa. Further, the relay node 4 updates the band for transferring the packet having the label of LSPa to the band Bw1.
前述のネットワークリソースボリュームマネージャ1によるS001からS012までの処理、及び、NMS5によるエッジノード及び中継ノード4への帯域変更指示により、帯域を変更するLSPaが通過する各ネットワーク装置に、帯域を変更させることができる。そして、これら帯域変更により、本実施例1のネットワークリソースボリュームマネージャ1は、BS-NWEノード2からGW-NWEノード3までのLSPa(通信パス)の帯域を、BS-NWEノード2が収容する携帯端末9の数、及び、その携帯端末9の状態に応じた最適な帯域Bw1に変更でき、ネットワーク利用効率を向上させることができる。
In response to the processing from S001 to S012 by the network resource volume manager 1 described above and the bandwidth change instruction to the edge node and the relay node 4 by the NMS 5, the network device through which the LSPa that changes the bandwidth passes changes the bandwidth. Can do. Then, by these band changes, the network resource volume manager 1 according to the first embodiment allows the BS-NWE node 2 to accommodate the LSPa (communication path) band from the BS-NWE node 2 to the GW-NWE node 3. The bandwidth can be changed to the optimum bandwidth Bw1 according to the number of terminals 9 and the state of the mobile terminal 9, and network utilization efficiency can be improved.
一方、S009において、設定変更後残帯域がマイナスであると判定された場合、LSPaの帯域を新たな帯域Bw1に変更すると、LSPaの経路のエッジノード又は中継ノード4において輻輳が発生し、LSPaの各ネットワーク装置はデータを適切に転送できない。そこで、帯域決定部211は、LSPaの経路を変更するためS021以降の処理を実行する。
On the other hand, if it is determined in S009 that the remaining bandwidth after the setting change is negative, if the LSPa bandwidth is changed to a new bandwidth Bw1, congestion occurs at the edge node or the relay node 4 of the LSPa route, and the LSPa bandwidth is changed. Each network device cannot transfer data properly. Therefore, the bandwidth determination unit 211 executes the processing from S021 onward in order to change the LSPa path.
帯域決定部211は、まず、S021において、既にLSPaに設定される帯域を解放する。具体的には、帯域決定部211は、LSPaの経路の各リンクに対応するNWリソース管理DB26の残帯域53に、S003において取得されたLSPaの設定帯域Bw0(77)の値を加算する(S021)。
The bandwidth determination unit 211 first releases the bandwidth already set in LSPa in S021. Specifically, the bandwidth determination unit 211 adds the value of the set bandwidth Bw0 (77) of the LSPa acquired in S003 to the remaining bandwidth 53 of the NW resource management DB 26 corresponding to each link of the LSPa path (S021). ).
S021の後、帯域決定部211は、NWリソース管理DB26及びNWトポロジDB25を参照し、LSPaのBS-NWEノード2とGW-NWEノード3との間を接続でき、かつ、新たな帯域Bw1以上の残帯域53があるリンクを抽出する。そして、帯域決定部211は、抽出されたリンクによって、LSPaの新たな経路を決定する(S022)。
After S021, the bandwidth determination unit 211 refers to the NW resource management DB 26 and the NW topology DB 25, can connect the BS-NWE node 2 and the GW-NWE node 3 of the LSPa, and has a new bandwidth Bw1 or higher. A link having a remaining bandwidth 53 is extracted. Then, the bandwidth determination unit 211 determines a new path of the LSPa by using the extracted link (S022).
なお、S022において、帯域決定部211がLSPaの新たな経路を決定できない場合、帯域決定部211は、LSPaの帯域及びLSPaの経路を変更せず、図11に示す処理を終了する。
In S022, if the bandwidth determination unit 211 cannot determine a new path for the LSPa, the bandwidth determination unit 211 does not change the LSPa bandwidth and the LSPa path, and ends the processing illustrated in FIG.
S022の後、帯域決定部211は、LSP DB28のLSPaに対応する中継ノードID75を、S022において決定された新たな経路に基づいて更新する。そして、帯域決定部211は、LSPaに対応する設定帯域Bw0(77)を帯域Bw1によって更新する(S023)。
After S022, the bandwidth determination unit 211 updates the relay node ID 75 corresponding to the LSPa in the LSP DB 28 based on the new route determined in S022. Then, the bandwidth determining unit 211 updates the set bandwidth Bw0 (77) corresponding to LSPa with the bandwidth Bw1 (S023).
S023の後、帯域決定部211は、LSPaの新たな経路が通過する各リンクの、NWリソース管理DB26の残帯域53の値から帯域Bw1を減算する(S024)。
After S023, the bandwidth determination unit 211 subtracts the bandwidth Bw1 from the value of the remaining bandwidth 53 of the NW resource management DB 26 for each link through which the new path of LSPa passes (S024).
S024の後、帯域指示部212は、LSPaの既存の経路の各ネットワーク装置にLSPaを削除させることを示す削除リクエストと、LSPaの新たな経路の各ネットワーク装置にLSPaを生成させることを示す生成リクエストとを、NMS5に通知する(S025)。なお、生成リクエストには、帯域Bw1を示す情報が含まれる。
After S024, the bandwidth instruction unit 212 deletes a request for deleting each LSPa network device on the existing path of LSPa and a generation request indicating that each network device on the new path of LSPa generates LSPa. To NMS5 (S025). The generation request includes information indicating the band Bw1.
NMS5は、削除リクエストと生成リクエストとをネットワークリソースボリュームマネージャ1から受信した場合、NMS5が有するデータベースを参照し、削除リクエストが示すLSPaの経路の各ネットワーク装置(BS-NWEノード2、GW-NWEノード3及び中継ノード4)に、LSPaの設定を削除することを指示する。また、NMS5は、生成リクエストが示すLSPaの経路の各ネットワーク装置(BS-NWEノード2、GW-NWEノード3及び中継ノード4)に、LSPaを帯域Bw1によって設定することを指示する。
When the NMS 5 receives the deletion request and the generation request from the network resource volume manager 1, the NMS 5 refers to the database of the NMS 5 and each network device (BS-NWE node 2, GW-NWE node) on the path of LSPa indicated by the deletion request 3 and the relay node 4) are instructed to delete the LSPa setting. Further, the NMS 5 instructs each network device (BS-NWE node 2, GW-NWE node 3 and relay node 4) on the path of LSPa indicated by the generation request to set the LSPa with the band Bw1.
ここで、NMS5は、必要であれば、LSPaに対応するフローのフロー識別子を保持し、エッジノードにLSPaを示す識別子とフローの識別子とを送信してもよい。
Here, if necessary, the NMS 5 may hold the flow identifier of the flow corresponding to the LSPa, and transmit the identifier indicating the LSPa and the identifier of the flow to the edge node.
エッジノードの装置制御部34は、NMS5からLSPaの設定の削除及び追加を指示された場合、LSP管理テーブル29及びLSP帯域管理テーブル30を更新する。具体的には、エッジノードの各々は、LSPaの設定を削除することを指示された場合、LSPaに対応するLSP ID92を有するLSP管理テーブル29のエントリと、LSP帯域管理テーブル30のLSPaに対応するLSP ID101を有するLSP管理テーブル29のエントリと、を削除する。
The device controller 34 of the edge node updates the LSP management table 29 and the LSP bandwidth management table 30 when instructed by the NMS 5 to delete and add LSPa settings. Specifically, when each of the edge nodes is instructed to delete the LSPa setting, each of the edge nodes corresponds to the LSP management table 29 entry having the LSP ID 92 corresponding to the LSPa and the LSPa in the LSP bandwidth management table 30. The entry of the LSP management table 29 having the LSP ID 101 is deleted.
そして、エッジノードの装置制御部34は、LSPaの設定を追加することを指示された場合、LSPaに対応するフローのフロー識別子及びLSPaを示す識別子を、LSP管理テーブル29のフロー識別子91及びLSP ID92に格納する。また、各装置制御部34は、LSPaを示す識別子と帯域Bw1とを、LSP帯域管理テーブル30のLSP ID101と設定帯域102とに格納する。
When the device controller 34 of the edge node is instructed to add the LSPa setting, the flow identifier of the flow corresponding to the LSPa and the identifier indicating the LSPa, the flow identifier 91 of the LSP management table 29, and the LSP ID 92 are displayed. To store. Further, each device control unit 34 stores an identifier indicating the LSPa and the bandwidth Bw1 in the LSP ID 101 and the set bandwidth 102 of the LSP bandwidth management table 30.
また、エッジノード及び中継ノード4は、NMS5からの指示に基づいて、LSPaをラベルとして付加されたパケットを、LSPaの経路に従って転送するように自らの宛先情報等を更新する。
Further, the edge node and the relay node 4 update their destination information and the like based on the instruction from the NMS 5 so as to transfer the packet added with the LSPa as a label along the route of the LSPa.
S021~S025の処理、及び、NMS5からエッジノード及び中継ノード4へのLSPaの設定を変更する指示により、LSPaの経路が変更される。
The route of LSPa is changed by the processing of S021 to S025 and the instruction to change the setting of LSPa from the NMS 5 to the edge node and the relay node 4.
S021~S025の処理により、本実施例1のネットワークリソースボリュームマネージャ1は、BS-NWEノード2からGW-NWEノード3までの通信パスの帯域が不足する場合であっても、通信パスの経路を設定しなおすことによって最適な帯域を確保することができる。また、本実施例1のネットワークリソースボリュームマネージャ1は、BS-NWEノード2に収容される携帯端末9の数、及び、携帯端末9の状態に応じて最適な帯域を確保でき、これにより、ネットワークの利用効率が向上する。
Through the processing of S021 to S025, the network resource volume manager 1 according to the first embodiment determines the path of the communication path even when the bandwidth of the communication path from the BS-NWE node 2 to the GW-NWE node 3 is insufficient. By re-setting, the optimum bandwidth can be secured. In addition, the network resource volume manager 1 according to the first embodiment can secure an optimal bandwidth according to the number of mobile terminals 9 accommodated in the BS-NWE node 2 and the state of the mobile terminals 9, thereby The utilization efficiency of is improved.
より具体的には、本実施例1のネットワークリソースボリュームマネージャ1は、通信パスの経路を設定しなおすことによって、収容される通信パスの帯域が過剰である中継ノード4を低減することができる。そして、利用率の低い中継ノード4に通信パスを設定することによって、ネットワークの利用効率を向上させることができる。また、例えば、多くの携帯端末9を含むサービスエリア11に、多くの帯域を割り当てることができ、ネットワークの利用効率を向上させることができる。
More specifically, the network resource volume manager 1 according to the first embodiment can reduce the number of relay nodes 4 in which the bandwidth of the accommodated communication path is excessive by resetting the communication path. Then, by setting a communication path for the relay node 4 having a low usage rate, the network usage efficiency can be improved. In addition, for example, a large band can be allocated to the service area 11 including a large number of mobile terminals 9, and the use efficiency of the network can be improved.
前述における帯域係数DB24は、保守者によってあらかじめ設定されていた。しかし、帯域決定部211は、所定の回数過去に収集された接続状態ユーザ数64とアイドル状態ユーザ数65とを用いて、接続状態ユーザ数64とアイドル状態ユーザ数65との変化を示す統計値を算出し、算出された統計値に基づいて、帯域係数DB24を更新してもよい。図12に、帯域係数DB24を更新する処理の例を示す。
The bandwidth coefficient DB 24 described above was previously set by a maintenance person. However, the bandwidth determination unit 211 uses the connection state user number 64 and the idle state user number 65 collected a predetermined number of times in the past to calculate a statistical value indicating the change between the connection state user number 64 and the idle state user number 65. And the bandwidth coefficient DB 24 may be updated based on the calculated statistical value. FIG. 12 shows an example of processing for updating the band coefficient DB 24.
図12は、本実施例1の帯域係数DB24の帯域を更新するための処理を示すフローチャートである。
FIG. 12 is a flowchart showing a process for updating the bandwidth of the bandwidth coefficient DB 24 of the first embodiment.
ネットワークリソースボリュームマネージャ1の帯域決定部211は、図11に示す処理が実行される毎に、収集された接続状態ユーザ数64とアイドル状態ユーザ数65とを、自らが有するメモリに蓄積する。そして、ネットワークリソースボリュームマネージャ1の帯域決定部211は、定期的に図12に示す処理を実行する。
The bandwidth determination unit 211 of the network resource volume manager 1 accumulates the collected connection state user number 64 and idle state user number 65 in its own memory each time the processing shown in FIG. 11 is executed. Then, the bandwidth determination unit 211 of the network resource volume manager 1 periodically executes the process shown in FIG.
以下において、図12に示す処理が実行され、帯域係数DB24が更新されることを、定期更新と記載する。また、図12に示す処理は、図11に示す処理が定期的に実行される場合、図11に示す処理が終了した後に実行されてもよい。
Hereinafter, the process shown in FIG. 12 is executed and the bandwidth coefficient DB 24 is updated, which is referred to as a periodic update. Moreover, the process shown in FIG. 12 may be performed after the process shown in FIG. 11 is complete | finished, when the process shown in FIG. 11 is performed regularly.
帯域決定部211は、最新の接続状態ユーザ数64とアイドル状態ユーザ数65とを帯域係数DB24から取得する(S101)。ここで取得された接続状態ユーザ数64及びアイドル状態ユーザ数65を、接続状態ユーザ数CU0及びアイドル状態ユーザ数IU0とする。
The bandwidth determination unit 211 acquires the latest connection state user count 64 and idle state user count 65 from the bandwidth coefficient DB 24 (S101). The connection state user number 64 and the idle state user number 65 acquired here are set as a connection state user number CU 0 and an idle state user number IU 0 .
S101の後、帯域決定部211は、前回の定期更新において実行されたS101の処理において取得された接続状態ユーザ数CU0及びアイドル状態ユーザ数IU0を、接続状態ユーザ数CU1及びアイドル状態ユーザ数IU1として取得する。そして、帯域決定部211は、接続状態ユーザ数CU0、接続状態ユーザ数CU1及び式4を用いて、接続状態ユーザ数の変化量V0(絶対値)を算出する(S102)。
After S101, the bandwidth determination unit 211 uses the connection state user number CU 0 and the idle state user number IU 0 acquired in the process of S101 executed in the previous periodic update as the connection state user number CU 1 and the idle state user. Obtained as the number IU 1 . Then, the bandwidth determination unit 211 calculates the change amount V 0 (absolute value) of the number of connected state users using the number of connected state users CU 0 , the number of connected state users CU 1, and Expression 4 (S 102).
|V0|=CU1-CU0 (式4)
| V 0 | = CU 1 -CU 0 (Formula 4)
S102の後、帯域決定部211は、アイドル状態ユーザ数IU1と接続状態ユーザ数の変化量V0と式5とを用いて、変化率R0を算出する(S103)。
After S102, the bandwidth determining unit 211 uses the idle number of users IU 1 in a connected state the number of users change amount V 0 and the equation 5 to calculate the change rate R 0 (S103).
R0=|V0|/IU1 (式5)
R 0 = | V 0 | / IU 1 (Formula 5)
S103の後、帯域決定部211は、過去n回分の定期更新において算出されたn個の変化率R0を、変化率R0~変化率Rn-1として取得し、変化率R0~変化率Rn-1と式6とを用いて、変化率の平均RAを算出する(S104)。
After S103, the bandwidth determination unit 211 acquires the n rate of change R 0 calculated in the past n regular updates as rate of change R 0 to rate of change R n-1 and changes rate R 0 to the rate of change. Using the rate R n-1 and Equation 6, the average RA of the rate of change is calculated (S104).
RA=Sum(Rn-1:R0)/n (式6)
RA = Sum (R n-1 : R 0 ) / n (Formula 6)
なお、式6に用いられる所定の回数の値nは、保守者によってあらかじめ設定される。また、図11に示す処理が定期的に実行される場合、図11に示す処理が実行される所定の期間を保守者によって指定されることによって、値nは定められてもよい。
Note that the predetermined number of times n used in Equation 6 is set in advance by the maintainer. When the process shown in FIG. 11 is periodically executed, the value n may be determined by designating a predetermined period during which the process shown in FIG. 11 is executed by a maintenance person.
S104の後、帯域決定部211は、変化率の平均RAと帯域αと式7とを用いて、帯域βを算出する(S105)。ここで、式7において用いられる帯域αは、保守者によってあらかじめ値が設定される帯域α82の値である。
After S104, the band determining unit 211 calculates the band β using the average RA of the change rate, the band α, and Equation 7 (S105). Here, the band α used in Expression 7 is a value of the band α82 whose value is set in advance by the maintainer.
β=RA×α (式7)
Β = RA × α (Formula 7)
S105において帯域βが算出された場合、帯域決定部211は、新たに算出された帯域βによって、帯域係数DB24の帯域β83を更新する。前述の図12の処理によって帯域β83を定期的に更新することによって、アイドル状態から接続状態に遷移する携帯端末9の数(変化量)の最新の情報に基づいて、帯域β83を定めることができる。
When the band β is calculated in S105, the band determining unit 211 updates the band β83 of the band coefficient DB 24 with the newly calculated band β. By periodically updating the band β83 by the process of FIG. 12 described above, the band β83 can be determined based on the latest information on the number (change amount) of the mobile terminals 9 that transition from the idle state to the connected state. .
また、帯域決定部211は、図12の処理を行うことによって、アイドル状態から接続状態に遷移する携帯端末9(潜在ユーザ)のために、より無駄なく帯域を確保しつつ、ネットワークにおける輻輳の発生を未然に防ぐことができる。
In addition, the bandwidth determination unit 211 performs the processing of FIG. 12, thereby generating congestion in the network while securing bandwidth more efficiently for the mobile terminal 9 (potential user) that transitions from the idle state to the connected state. Can be prevented in advance.
例えば、図12に示す処理による過去の統計に基づいて、アイドル状態の携帯端末9が定期更新時において接続状態に遷移する変化率の平均RAが約20%であると算出された場合、帯域決定部211は、帯域βの帯域を帯域αの帯域の20%に決定してもよい。これにより、アイドル状態の携帯端末9が接続状態に遷移した場合も、帯域αの20パーセントの帯域が当該携帯端末9に確保される。
For example, when the average RA of the rate of change at which the mobile terminal 9 in the idle state transitions to the connected state at the time of regular update is calculated based on the past statistics by the process shown in FIG. The unit 211 may determine the band β to be 20% of the band α. Thereby, even when the portable terminal 9 in the idle state transitions to the connected state, a band of 20% of the band α is secured in the portable terminal 9.
さらに、帯域決定部211は、S105において算出された帯域βに、所定の余剰分の帯域を加算し、所定の余剰分の帯域を含む帯域βによって帯域β83を更新してもよい。これによって、アイドル状態から接続状態に遷移する携帯端末9の数が変化率の平均RAを超えて増加した場合も、接続状態のすべての携帯端末9に十分な帯域を確保でき、モバイルバックホール10における輻輳の発生を未然に防ぐことができる。
Further, the bandwidth determination unit 211 may add a predetermined surplus bandwidth to the bandwidth β calculated in S105, and update the bandwidth β83 with the bandwidth β including the predetermined surplus bandwidth. As a result, even when the number of mobile terminals 9 that transition from the idle state to the connected state exceeds the average RA of the rate of change, a sufficient bandwidth can be secured for all the mobile terminals 9 in the connected state, and the mobile backhaul 10 The occurrence of congestion can be prevented in advance.
また、帯域決定部211は、図12に示す処理を実行する代わりに、帯域α82と同じ値によって、帯域β83を更新してもよい。これによって、帯域決定部211は、サービスエリア11に含まれるすべての携帯端末9に同じ帯域を割り当てることができる。これによって、アイドル状態のすべての携帯端末9が接続状態に遷移した場合も、十分な帯域を確保でき、ネットワークにおける輻輳の発生を未然に防ぐことができる。
Further, the bandwidth determining unit 211 may update the bandwidth β83 with the same value as the bandwidth α82 instead of executing the processing shown in FIG. Thereby, the bandwidth determination unit 211 can assign the same bandwidth to all the mobile terminals 9 included in the service area 11. As a result, even when all the mobile terminals 9 in the idle state transition to the connected state, a sufficient bandwidth can be secured and the occurrence of congestion in the network can be prevented.
さらに、本実施例の帯域係数DB24は、帯域α82及び帯域β83以外にも、いかなる帯域を含んでもよい。ここで、本実施例の携帯端末9の状態には、携帯端末9が通信する内容又は目的等も含まれものとし、帯域係数DB24は、携帯端末9が通信する内容又は目的に従った固有の帯域を含んでもよい。
Furthermore, the band coefficient DB 24 of the present embodiment may include any band other than the band α82 and the band β83. Here, the state of the mobile terminal 9 according to the present embodiment includes contents or purposes communicated by the mobile terminal 9, and the bandwidth coefficient DB 24 is specific to the contents or purposes communicated by the mobile terminal 9. A band may be included.
例えば、本実施例の携帯端末9の状態は、所定のネットワークサービスを提供される携帯端末9の状態であってもよい。そして、ネットワークサービスには、例えば、携帯端末9向けの動画配信サーバ等がある。
For example, the state of the mobile terminal 9 of the present embodiment may be the state of the mobile terminal 9 provided with a predetermined network service. Examples of the network service include a moving image distribution server for the mobile terminal 9.
所定のネットワークサービスがアプリケーションサーバによって提供される場合、ネットワークリソースボリュームマネージャ1がMME7及びESPGW6の他、アプリケーションサーバと接続し、帯域係数DB24は、アプリケーションサーバと通信する携帯端末9に確保される帯域として帯域α1を、帯域αの代わりに有してもよい。
When a predetermined network service is provided by the application server, the network resource volume manager 1 is connected to the application server in addition to the MME 7 and the ESPGW 6, and the bandwidth coefficient DB 24 is a bandwidth reserved for the mobile terminal 9 communicating with the application server. The band α1 may be provided instead of the band α.
そして、帯域決定部211は、MME7又はESPGW6から携帯端末9の数を収集し、さらに、各アプリケーションサーバから、当該アプリケーションサーバと通信する携帯端末9の数を収集してもよい。そして、帯域決定部211は、アプリケーションサーバと通信する携帯端末9の数と、当該アプリケーションサーバによるネットワークサービスに対応する帯域とを乗算することによって、新たな帯域Bw1を算出してもよい。
Then, the bandwidth determination unit 211 may collect the number of mobile terminals 9 from the MME 7 or ESPGW 6, and may further collect the number of mobile terminals 9 that communicate with the application server from each application server. Then, the bandwidth determining unit 211 may calculate a new bandwidth Bw1 by multiplying the number of mobile terminals 9 communicating with the application server by the bandwidth corresponding to the network service provided by the application server.
これにより、携帯端末9の状態が接続状態又はアイドル状態である場合以外にも、携帯端末9には、提供されるネットワークサービスに従った最適な帯域を確保することができる。そして、帯域決定部211は、ネットワークの利用効率を向上できる。
Thereby, in addition to the case where the state of the mobile terminal 9 is the connected state or the idle state, the mobile terminal 9 can ensure the optimum bandwidth according to the provided network service. And the band determination part 211 can improve the utilization efficiency of a network.
また、前述の帯域決定部211は、サービスエリア11において無線通信する携帯端末9の数及び状態に従って、モバイルバックホール10における通信パスの帯域及び経路を変更した。しかし、本実施例において、BS-NWEノード2に相当するエッジノードが、有線による端末を収容してもよく、実施例1の帯域決定部211は、有線によってエッジノードと通信する端末の数及び状態に従って、モバイルバックホール10における通信パスの帯域及び経路を変更してもよい。
In addition, the bandwidth determination unit 211 described above changes the bandwidth and route of the communication path in the mobile backhaul 10 according to the number and state of the mobile terminals 9 that perform wireless communication in the service area 11. However, in the present embodiment, the edge node corresponding to the BS-NWE node 2 may accommodate a wired terminal, and the bandwidth determination unit 211 of the first embodiment is configured so that the number of terminals that communicate with the edge node by wired and The bandwidth and route of the communication path in the mobile backhaul 10 may be changed according to the state.
例えば、実施例1のネットワークシステムは、BS-NWEノード2がOLTに接続され、当該OLTが複数のONUと有線によって接続されるネットワークシステムにも適用可能である。この場合、OLTに登録されたONUの数とOLTに未登録のONUの数とが、ESPGW6又はMME7相当のサーバによって収集され、帯域決定部211は、ESPGW6又はMME7相当の端末管理サーバからOLTに登録されたONUの数とOLTに未登録のONUの数とを収集してもよい。そして、帯域決定部211は、収集されたONUに関する情報に基づいて、図12に示す処理によって、モバイルバックホール10における通信パスの帯域又は経路を決定してもよい。
For example, the network system according to the first embodiment can be applied to a network system in which the BS-NWE node 2 is connected to the OLT and the OLT is connected to a plurality of ONUs by wire. In this case, the number of ONUs registered in the OLT and the number of ONUs not registered in the OLT are collected by a server equivalent to ESPGW6 or MME7, and the bandwidth determining unit 211 sends the OLT from the terminal management server equivalent to ESPGW6 or MME7 to the OLT. The number of registered ONUs and the number of ONUs not registered in the OLT may be collected. Then, the bandwidth determination unit 211 may determine the bandwidth or route of the communication path in the mobile backhaul 10 by the process shown in FIG. 12 based on the collected information about the ONU.
実施例1によれば、ネットワークリソースボリュームマネージャ1及びNMS5は、BS-NWEノード2が収容する携帯端末9の数に応じて、BS-NWEノード2とGW-NWEノード3との間の通信パスの帯域及び通信パスの経路を変更する。これによって本実施例1のネットワークリソースボリュームマネージャ1は、モバイルバックホール10に複数の通信パスが設定される場合も、一つの中継ノード4に過剰な帯域が設定されることを回避し、利用率の低い中継ノード4に通信パスを設定することによって、ネットワークリソースの利用効率を向上させることができる。
According to the first embodiment, the network resource volume manager 1 and the NMS 5 communicate the communication path between the BS-NWE node 2 and the GW-NWE node 3 according to the number of mobile terminals 9 accommodated by the BS-NWE node 2. Change the bandwidth and communication path. As a result, the network resource volume manager 1 according to the first embodiment avoids setting an excessive bandwidth in one relay node 4 even when a plurality of communication paths are set in the mobile backhaul 10, and the utilization rate is reduced. By setting a communication path to the relay node 4 with a low network resource utilization efficiency can be improved.
また、本実施例1のネットワークリソースボリュームマネージャ1は、携帯端末9の状態(接続状態、又は、アイドル状態等)に応じた帯域係数DB24に基づいて、モバイルバックホール10において必要な帯域を算出する。このため、アイドル状態にある携帯端末9等の潜在的なユーザに対しても帯域を確保することができ、アイドル状態にある携帯端末9が接続状態に遷移した場合も、モバイルバックホール10における輻輳の発生を低減できる。また、これによって、例えば、パケットの廃棄を抑止できる。
Further, the network resource volume manager 1 according to the first embodiment calculates a necessary bandwidth in the mobile backhaul 10 based on the bandwidth coefficient DB 24 corresponding to the state of the mobile terminal 9 (connected state or idle state). . For this reason, it is possible to secure a bandwidth for a potential user such as the mobile terminal 9 in the idle state, and congestion in the mobile backhaul 10 even when the mobile terminal 9 in the idle state transitions to the connected state. Can be reduced. In addition, for example, packet discard can be suppressed.
さらには、本実施例の帯域係数DB24、サービスエリア別ユーザ数DB27、及び、LSP DB28が、事業者ID72を有していることにより、複数の事業者が同一のモバイルバックホール10を共有した場合も、帯域決定部211は、事業者とLSPとを対応づけることができる。このため、複数の事業者が一つのモバイルバックホール10を利用する場合も、本実施例1のネットワークリソースボリュームマネージャ1は、事業者ごとに割り当てられた通信パスの帯域及び経路を変更するため、事業者毎にネットワークリソースの利用効率を向上させることができる。
Further, when the bandwidth coefficient DB 24, the service area user count DB 27, and the LSP DB 28 of the present embodiment have the carrier ID 72, a plurality of carriers share the same mobile backhaul 10. In addition, the bandwidth determination unit 211 can associate the business operator with the LSP. For this reason, even when a plurality of operators use one mobile backhaul 10, the network resource volume manager 1 of the first embodiment changes the bandwidth and route of the communication path allocated for each operator. The use efficiency of network resources can be improved for each business operator.
また、ネットワークリソースボリュームマネージャ1が事業者毎に定期的に接続状態ユーザ数64及びアイドル状態ユーザ数65などの情報を更新することで、複数の事業者に同等の機能を提供することができ、事業者間でモバイルバックホール10を利用することができる。また、その一方で、事業者毎に異なるサービスを提供することもできる。
In addition, the network resource volume manager 1 can update the information such as the number of connected users 64 and the number of idle users 65 on a regular basis for each operator, thereby providing an equivalent function to a plurality of operators. The mobile backhaul 10 can be used between businesses. On the other hand, different services can be provided for each business operator.
実施例2のネットワークシステムは、モバイルバックホール10を利用する携帯端末9にヘビーユーザが発生した場合にも、ネットワークリソースの利用効率を向上させることを目的とする。
The network system according to the second embodiment aims to improve the use efficiency of network resources even when a heavy user occurs in the mobile terminal 9 that uses the mobile backhaul 10.
例えば、モバイルバックホール10の通信パスに設定される帯域がベストエフォートである場合、GW-NWEノード3に収容される複数の携帯端末9のうちの一部が、ヘビーユーザであるために、ヘビーユーザ以外のすべての携帯端末9による通信が遅れる。
For example, when the bandwidth set for the communication path of the mobile backhaul 10 is best effort, since some of the plurality of mobile terminals 9 accommodated in the GW-NWE node 3 are heavy users, Communication by all the mobile terminals 9 other than the user is delayed.
そこで、実施例2のネットワークシステムは、一つのサービスエリア110内にパケットを大量に送受信するヘビーユーザが発生した場合、品質が担保されないネットワークにヘビーユーザによる通信をオフロードすることによって、ヘビーユーザ以外の携帯端末9による通信の品質を確保し、ネットワークリソースの利用効率を向上させる。
Therefore, in the network system according to the second embodiment, when a heavy user who transmits and receives a large number of packets in one service area 110 occurs, offloading communication by the heavy user to a network where quality is not secured, The quality of communication by the portable terminal 9 is ensured, and the utilization efficiency of network resources is improved.
図13は、本実施例2のネットワークシステムを示す説明図である。
FIG. 13 is an explanatory diagram showing the network system of the second embodiment.
実施例2におけるネットワークシステムは、実施例1のBS-NWEノード2に相当するBS-NWE103と、実施例1のGW-NWEノード3に相当するGW-NWEノード104との間を接続する二つ以上のネットワークを含む。なお、実施例2のBS-NWEノード103及びGW-NWEノード104とは、実施例1のBS-NWEノード2及びGW-NWEノード3と同じ機能を有するエッジノードである。実施例2のエッジノードと実施例1のエッジノードとの相違点は後述する。
The network system according to the second embodiment has two connections between the BS-NWE 103 corresponding to the BS-NWE node 2 according to the first embodiment and the GW-NWE node 104 corresponding to the GW-NWE node 3 according to the first embodiment. Including the above networks. Note that the BS-NWE node 103 and the GW-NWE node 104 of the second embodiment are edge nodes having the same functions as the BS-NWE node 2 and the GW-NWE node 3 of the first embodiment. Differences between the edge node of the second embodiment and the edge node of the first embodiment will be described later.
図13に示すネットワークシステムは、ネットワーク120a及びネットワーク120bを含む。ネットワーク120aは、実施例1と同じく品質が担保されたMPLS-TPによって構築されるネットワークである。ネットワーク120bは、品質が担保されないネットワークであり、例えば、品質が担保されないMPLS-TP又はイーサネットなどのネットワークである。
The network system shown in FIG. 13 includes a network 120a and a network 120b. The network 120a is a network constructed by MPLS-TP whose quality is ensured as in the first embodiment. The network 120b is a network whose quality is not guaranteed, for example, a network such as MPLS-TP or Ethernet whose quality is not guaranteed.
本実施例2のネットワークシステムは、ネットワークリソースボリュームマネージャ100、保守者端末12、少なくとも一つのサービスエリア11(11-1~11-3)、ESPGW6、MME7、ネットワーク120a及びネットワーク120bを含む。本実施例2のネットワークシステムは、少なくとも一つの事業者による通信を収容する。
The network system of the second embodiment includes a network resource volume manager 100, a maintenance person terminal 12, at least one service area 11 (11-1 to 11-3), ESPGW6, MME7, network 120a and network 120b. The network system according to the second embodiment accommodates communication by at least one business operator.
実施例2の保守者端末12、サービスエリア11、ESPGW6及びMME7は、実施例1の保守者端末12、サービスエリア11、ESPGW6及びMME7と同じである。
The maintenance person terminal 12, service area 11, ESPGW6, and MME7 of the second embodiment are the same as the maintenance person terminal 12, service area 11, ESPGW6, and MME7 of the first embodiment.
ネットワーク120aは、実施例1のモバイルバックホール10に相当し、BS-NWEノード103-1、BS-NWEノード103-4、GW-NWEノード104、少なくとも一つの中継ノード4a(4a-1~4a-5)、及び、NMS5aを含む。ネットワーク120bは、BS-NWEノード103-1~103-4、GW-NWEノード104、少なくとも一つの中継ノード4b(4b-1~4b-5)、及び、NMS5bを含む。
The network 120a corresponds to the mobile backhaul 10 of the first embodiment, and includes a BS-NWE node 103-1, a BS-NWE node 103-4, a GW-NWE node 104, and at least one relay node 4a (4a-1 to 4a). -5) and NMS5a. The network 120b includes BS-NWE nodes 103-1 to 103-4, a GW-NWE node 104, at least one relay node 4b (4b-1 to 4b-5), and an NMS 5b.
BS-NWEノード103-1、BS-NWEノード103-4及びGW-NWEノード104は、ネットワーク120a及びネットワーク120bの両方に含まれる。
The BS-NWE node 103-1, the BS-NWE node 103-4, and the GW-NWE node 104 are included in both the network 120a and the network 120b.
ネットワーク120aにおけるパケットは、MPLS-TPによって転送される。このため、NMS5aは、ネットワーク120aに含まれるエッジノード及び中継ノード4aに、MPLSによるパケットの転送経路及び帯域を設定する。また、ネットワーク120bのNMS5bは、ネットワーク120bに含まれるエッジノード及び中継ノード4bに、イーサネットのパケットを転送するための情報を設定する。
Packets in the network 120a are transferred by MPLS-TP. For this reason, the NMS 5a sets the packet transfer path and bandwidth by MPLS in the edge node and the relay node 4a included in the network 120a. The NMS 5b of the network 120b sets information for transferring Ethernet packets to the edge node and the relay node 4b included in the network 120b.
実施例2のネットワークリソースボリュームマネージャ100は、実施例1のネットワークリソースボリュームマネージャ1と同じく、基地局8の各々と通信する携帯端末9の数と状態とを定期的にMME7及びESPGW6から収集し、収集された情報に基づいて、通信パスの各々に設定されるべき帯域を算出する。また、実施例2のネットワークリソースボリュームマネージャ100は、実施例1のネットワークリソースボリュームマネージャ1と同じく、ネットワーク120aにおける通信パスの新たな経路を決定する。
The network resource volume manager 100 according to the second embodiment, like the network resource volume manager 1 according to the first embodiment, periodically collects the number and state of the mobile terminals 9 communicating with each of the base stations 8 from the MME 7 and the ESPGW 6, Based on the collected information, a bandwidth to be set for each communication path is calculated. Further, the network resource volume manager 100 according to the second embodiment determines a new route of the communication path in the network 120a, as with the network resource volume manager 1 according to the first embodiment.
実施例2のネットワークリソースボリュームマネージャ100は、実施例1のネットワークリソースボリュームマネージャ1と同じ機能を有する。しかし、実施例2のネットワークリソースボリュームマネージャ100は、ヘビーユーザ管理DB130を有する点において、実施例1のネットワークリソースボリュームマネージャ1と相違する。また、実施例1のLSP DB28が含む情報と、実施例2のLSP DB28が含む情報とは、相違する。
The network resource volume manager 100 of the second embodiment has the same function as the network resource volume manager 1 of the first embodiment. However, the network resource volume manager 100 of the second embodiment is different from the network resource volume manager 1 of the first embodiment in that it has a heavy user management DB 130. Further, the information included in the LSP DB 28 of the first embodiment is different from the information included in the LSP DB 28 of the second embodiment.
実施例2のBS-NWEノード103は、基地局8から受信したパケットを、当該パケットのヘッダ情報に従って、ネットワーク120a又はネットワーク120bに振り分けることができる。また、実施例2のGW-NWEノード104は、ネットワーク120a及びネットワーク120b外から受信したパケットを、当該パケットのヘッダ情報に従って、ネットワーク120a又はネットワーク120bに振り分けることができる。
The BS-NWE node 103 according to the second embodiment can distribute the packet received from the base station 8 to the network 120a or the network 120b according to the header information of the packet. The GW-NWE node 104 according to the second embodiment can distribute a packet received from outside the network 120a and the network 120b to the network 120a or the network 120b according to the header information of the packet.
また、実施例2のBS-NWEノード103及びGW-NWEノード104は、ヘビーユーザ識別テーブル140を有する点において、実施例1のBS-NWEノード2及びGW-NWEノード3と相違する。ヘビーユーザ識別テーブル140は、アクセスNWIFカード31が有し、ユーザフロー特定部36によって読み出される。
The BS-NWE node 103 and the GW-NWE node 104 of the second embodiment are different from the BS-NWE node 2 and the GW-NWE node 3 of the first embodiment in that they have a heavy user identification table 140. The heavy user identification table 140 is included in the access NWIF card 31 and is read by the user flow specifying unit 36.
図14は、本実施例2のヘビーユーザ管理DB130を示す説明図である。
FIG. 14 is an explanatory diagram illustrating the heavy user management DB 130 according to the second embodiment.
ヘビーユーザ管理DB130は、各サービスエリア11及び各事業者において取得されたヘビーユーザを示す。ヘビーユーザ管理DB130は、エリアID131、事業者ID132、LSP ID133、エッジノードID134及びヘビーユーザID135を含む。エリアID131は、サービスエリア11の識別子を示す。事業者ID132は、事業者の識別子を示す。
The heavy user management DB 130 indicates heavy users acquired in each service area 11 and each business operator. The heavy user management DB 130 includes an area ID 131, an operator ID 132, an LSP ID 133, an edge node ID 134, and a heavy user ID 135. The area ID 131 indicates the identifier of the service area 11. The business operator ID 132 indicates an identifier of the business operator.
LSP ID133は、LSPの識別子(ラベル)を示す。LSP ID133は、ヘビーユーザにより送信されたパケットが通過する通信パス、又は、ヘビーユーザに向けて送信されたパケットが通過する通信パスを示す。
LSP ID 133 indicates an identifier (label) of the LSP. The LSP ID 133 indicates a communication path through which a packet transmitted by a heavy user passes or a communication path through which a packet transmitted toward the heavy user passes.
エッジノードID134は、BS-NWEノード103又はGW-NWEノード104の識別子を示す。エッジノードID134は、ヘビーユーザに関する情報を送信する必要があるエッジノードを示すため、ネットワーク120a及びネットワーク120bにおいて、パケットが通過する経路の始点となるエッジノードを示す。
The edge node ID 134 indicates an identifier of the BS-NWE node 103 or the GW-NWE node 104. The edge node ID 134 indicates an edge node that needs to transmit information about a heavy user, and thus indicates an edge node that is a starting point of a route through which a packet passes in the network 120a and the network 120b.
ヘビーユーザID135は、携帯端末9のうち、ヘビーユーザの識別子を示す。本実施例におけるヘビーユーザとは、例えば、所定のレートを超過してパケットを送受信したなど、送受信するパケットの量が多いことを示す所定の条件に該当した携帯端末9である。ヘビーユーザID135に格納される識別子は、ヘビーユーザが送信及び受信するパケットに含まれるヘビーユーザの識別子に対応しており、例えば、ヘビーユーザのアドレスである。
The heavy user ID 135 indicates an identifier of a heavy user among the mobile terminals 9. The heavy user in the present embodiment is a mobile terminal 9 that satisfies a predetermined condition indicating that the amount of packets to be transmitted / received is large, for example, a packet is transmitted / received exceeding a predetermined rate. The identifier stored in the heavy user ID 135 corresponds to the identifier of the heavy user included in the packet transmitted and received by the heavy user, and is, for example, the address of the heavy user.
図15は、本実施例2のLSP DB28を示す説明図である。
FIG. 15 is an explanatory diagram showing the LSP DB 28 of the second embodiment.
実施例2のLSP DB28は、実施例1のLSP DB28と同じく、BS-NWEノード103とGW-NWEノード104との間に設定された通信パス(LSP)毎の経路及び設定帯域を保持する。実施例2のLSP DB28は、実施例1と同じく、エリアID71、事業者ID72、LSP ID73、エッジノードID74、中継ノードID75、エッジノードID76、及び、設定帯域Bw0(77)を含む。実施例2のLSP DB28は、さらに、ネットワークID78及びヘビーユーザNWID79を含む。
The LSP DB 28 according to the second embodiment holds a route and a set bandwidth for each communication path (LSP) set between the BS-NWE node 103 and the GW-NWE node 104, similarly to the LSP DB 28 according to the first embodiment. As in the first embodiment, the LSP DB 28 according to the second embodiment includes an area ID 71, an operator ID 72, an LSP ID 73, an edge node ID 74, a relay node ID 75, an edge node ID 76, and a set bandwidth Bw0 (77). The LSP DB 28 of the second embodiment further includes a network ID 78 and a heavy user NWID 79.
ネットワークID78は、実施例2のネットワークリソースボリュームマネージャ1が管理する複数のネットワーク120の各々の識別子を示す。ヘビーユーザNWID79は、ヘビーユーザが送受信するパケットを、ネットワークID78が示すネットワーク120の代わりに転送する、ヘビーユーザ用のネットワーク120の識別子を示す。
The network ID 78 indicates an identifier of each of the plurality of networks 120 managed by the network resource volume manager 1 according to the second embodiment. The heavy user NWID 79 indicates an identifier of the network 120 for the heavy user that transfers a packet transmitted / received by the heavy user instead of the network 120 indicated by the network ID 78.
実施例2において、エリアID71及び事業者ID72の一つの組の片方向の通信には、複数の異なるLSPを示すエントリが設定される。特に、図13に示すネットワークにおいて設定されるLSP DB27は、エリアID71及び事業者ID72の一つの組の片方向の通信に割り当てられる通信パスとして、二つのネットワークを通過するための二つの通信パスが設定される。
In Example 2, an entry indicating a plurality of different LSPs is set in one-way communication of one set of area ID 71 and business operator ID 72. In particular, the LSP DB 27 set in the network shown in FIG. 13 has two communication paths for passing through two networks as communication paths assigned to one-way communication of one set of area ID 71 and operator ID 72. Is set.
図15に示すLSP DB27において、二つの通信パスのうち、一方の通信パスを示すエントリaは、ヘビーユーザではない携帯端末9のパケットを通過させるためのネットワーク120を示すエントリとして、あらかじめ設定される。このエントリaには、ヘビーユーザNWID79に値が設定される。エントリaのLSP ID73は、ネットワーク120aのLSPを示す。
In the LSP DB 27 shown in FIG. 15, an entry a indicating one of the two communication paths is set in advance as an entry indicating the network 120 for passing a packet of the mobile terminal 9 that is not a heavy user. . In this entry a, a value is set for the heavy user NWID 79. The LSP ID 73 of entry a indicates the LSP of the network 120a.
さらに、二つの通信パスのうち、他の通信パスを示すエントリbは、ヘビーユーザが送受信するパケットを通過させるためのネットワーク120として、あらかじめ設定される。このエントリbは、ヘビーユーザNWID79に値が設定されず、ネットワークID78にエントリaのヘビーユーザNWID79の値が設定される。エントリbのLSP ID73は、ネットワーク120bのLSPを示す。
Further, of the two communication paths, the entry b indicating the other communication path is set in advance as the network 120 for allowing the packet transmitted / received by the heavy user to pass. In this entry b, no value is set for the heavy user NWID 79, and the value of the heavy user NWID 79 of the entry a is set in the network ID 78. The LSP ID 73 of the entry b indicates the LSP of the network 120b.
なお、図15に示すLSP DB28は、ヘビーユーザNWID79を有することによって、ヘビーユーザのパケットを通過させるネットワークを識別する。しかし、ネットワークリソースボリュームマネージャ100は、ヘビーユーザNWID79をいかなる方法で有してもよく、ヘビーユーザのパケットを通過させるネットワークを識別するためのテーブルを、LSP DB28とは別に有してもよい。
Note that the LSP DB 28 shown in FIG. 15 has a heavy user NWID 79 to identify a network through which a heavy user packet passes. However, the network resource volume manager 100 may have the heavy user NWID 79 by any method, and may have a table for identifying a network through which the heavy user's packet is passed separately from the LSP DB 28.
図16は、本実施例2のヘビーユーザ識別テーブル140を示す説明図である。
FIG. 16 is an explanatory diagram illustrating the heavy user identification table 140 according to the second embodiment.
ヘビーユーザ識別テーブル140は、実施例2のエッジノードのユーザフロー特定部36によって、パケットを転送する際に参照される。ヘビーユーザ識別テーブル140は、ヘビーユーザID141及びLSP ID142を有する。
The heavy user identification table 140 is referred to when the packet is transferred by the user flow specifying unit 36 of the edge node of the second embodiment. The heavy user identification table 140 has a heavy user ID 141 and an LSP ID 142.
ヘビーユーザID141は、受信したパケットに含まれるユーザの識別子に対応する識別子であり、ヘビーユーザを示す。LSP ID142は、ヘビーユーザが送信したパケットを転送する先のLSPを示す。
The heavy user ID 141 is an identifier corresponding to the user identifier included in the received packet, and indicates a heavy user. The LSP ID 142 indicates the LSP to which the packet transmitted by the heavy user is transferred.
図17は、本実施例2のヘビーユーザに関してエッジノードに設定する処理を示すフローチャートである。
FIG. 17 is a flowchart illustrating processing for setting an edge node for a heavy user according to the second embodiment.
実施例2の帯域決定部211は、図11に示す処理の後、図17に示す処理を実行してもよいし、プロセッサを複数用いる場合、図11に示す処理と図17に示す処理とを並行して実行してもよい。
The bandwidth determination unit 211 according to the second embodiment may execute the process illustrated in FIG. 17 after the process illustrated in FIG. 11. When a plurality of processors are used, the process illustrated in FIG. 11 and the process illustrated in FIG. 17 are performed. It may be executed in parallel.
実施例2の帯域決定部211は、実施例1の帯域決定部211と同じく、定期的にサービスエリア11毎の接続状態ユーザ数64及びアイドル状態ユーザ数65を、MME7又はESPGW6から収集する。しかし、実施例2の帯域決定部211は、実施例1の帯域決定部211と異なり、接続状態ユーザ数及びアイドル状態ユーザ数に加えてサービスエリア11毎のヘビーユーザに関する情報も、MME7又はESPGW6から収集する(S201)。
The bandwidth determination unit 211 according to the second embodiment, like the bandwidth determination unit 211 according to the first embodiment, periodically collects the number of connected users 64 and the number of idle users 65 for each service area 11 from the MME 7 or the ESPG 6. However, the bandwidth determination unit 211 of the second embodiment is different from the bandwidth determination unit 211 of the first embodiment, in addition to the number of connected users and the number of idle users, information on heavy users for each service area 11 is also received from the MME 7 or ESPGW6. Collect (S201).
ヘビーユーザに関する情報には、ヘビーユーザが含まれるサービスエリア11の識別子、ヘビーユーザが属する事業者の識別子、及び、ヘビーユーザを示すヘビーユーザIDが含まれる。
The information regarding the heavy user includes an identifier of the service area 11 in which the heavy user is included, an identifier of the business operator to which the heavy user belongs, and a heavy user ID indicating the heavy user.
MME7及びESPGW6などのモバイルサービスを提供するサーバは、送受信するデータの量(レート)などを示す送受信情報を携帯端末9毎に収集する。このため、MME7及びESPGW6の少なくとも一方は、あらかじめ定められた閾値を超過してデータを送受信している携帯端末9をヘビーユーザであると特定できる。
Servers that provide mobile services such as MME 7 and ESPGW 6 collect transmission / reception information indicating the amount (rate) of data to be transmitted / received for each mobile terminal 9. For this reason, at least one of MME7 and ESPGW6 can specify that the mobile terminal 9 that transmits and receives data exceeding a predetermined threshold is a heavy user.
なお、ネットワークリソースボリュームマネージャ100が、MME7又はESPGW6から携帯端末9毎の送受信情報を収集し、収集された送受信情報と、あらかじめ定められた閾値とに基づいてヘビーユーザを特定してもよい。
Note that the network resource volume manager 100 may collect transmission / reception information for each portable terminal 9 from the MME 7 or ESPGW 6 and specify a heavy user based on the collected transmission / reception information and a predetermined threshold.
また、MME7又はESPGW6からヘビーユーザに関する情報を取得できない場合、又は、ネットワークリソースボリュームマネージャ100においてもヘビーユーザを特定できない場合、帯域決定部211は、図17に示す処理を終了してもよい。
Further, when the information on the heavy user cannot be acquired from the MME 7 or the ESPGW 6, or when the heavy user cannot be specified even in the network resource volume manager 100, the bandwidth determination unit 211 may end the process illustrated in FIG.
S201の後、ヘビーユーザに関する情報を取得した場合、帯域決定部211は、エリアID71と事業者ID72とを検索キーとして、ヘビーユーザに関する情報を用いてLSP DB28からエントリを取得する(S202)。
When the information regarding the heavy user is acquired after S201, the bandwidth determining unit 211 acquires an entry from the LSP DB 28 using the information regarding the heavy user using the area ID 71 and the business ID 72 as search keys (S202).
図13に示すネットワークシステムにおいて、一つのサービスエリア11及び一つの事業者の組が利用可能なネットワークは二つであるため、LSP DB28には、エリアID71と事業者ID72との一つの組の片方向の通信に対して、二つの異なるエントリが設定される。このため、S202において、帯域決定部211は片方向につき二つのエントリをLSP DB28から取得する。
In the network system shown in FIG. 13, since there are two networks that can be used by one service area 11 and one operator group, the LSP DB 28 contains one set of area ID 71 and operator ID 72. Two different entries are set for direction communication. For this reason, in S202, the bandwidth determination unit 211 acquires two entries from the LSP DB 28 in one direction.
なお、S202において、両方向の通信に対応する複数のエントリが取得された場合、帯域決定部211は、片方向の通信ごとに、S203以降の処理を実行する。以下に、片方向の通信を示すエントリに対して実行される、S203~S206の処理を説明する。
In S202, when a plurality of entries corresponding to two-way communication are acquired, the bandwidth determination unit 211 executes the processing after S203 for each one-way communication. In the following, the processing of S203 to S206 executed for an entry indicating one-way communication will be described.
S202の後、帯域決定部211は、S202において取得されたエントリのネットワークID78及びヘビーユーザNWID79に基づいて、ヘビーユーザが送受信するパケットを通過させるべきネットワーク120を特定する(S203)。具体的には、帯域決定部211は、S202において取得されたエントリのうち、ヘビーユーザNWID79に識別子が格納されたエントリからヘビーユーザNWID79の識別子を抽出し、さらに、抽出された識別子をネットワークID78に含むエントリを特定する。
After S202, the bandwidth determination unit 211 specifies the network 120 through which a packet transmitted / received by the heavy user is to be passed based on the network ID 78 and the heavy user NWID 79 of the entry acquired in S202 (S203). Specifically, the bandwidth determination unit 211 extracts the identifier of the heavy user NWID 79 from the entries stored in the heavy user NWID 79 out of the entries acquired in S202, and further adds the extracted identifier to the network ID 78. Identify the entry that contains it.
そして、抽出された識別子が示すネットワーク120を、ヘビーユーザが送受信するパケットを通過させるべきネットワーク120として特定する。ここで特定されるネットワーク120は、図13に示すネットワークシステムにおいてネットワーク120bである。
Then, the network 120 indicated by the extracted identifier is specified as the network 120 through which the packet transmitted / received by the heavy user is to be passed. The network 120 specified here is the network 120b in the network system shown in FIG.
S203の後、帯域決定部211は、S203において特定されたネットワーク120bのエントリから、エリアID71、事業者ID72、LSP ID73及びエッジノードID74を取得する(S204)。ここで取得されるLSP ID73は、ネットワーク120bにおけるLSPを示す。
After S203, the bandwidth determination unit 211 acquires the area ID 71, the operator ID 72, the LSP ID 73, and the edge node ID 74 from the entry of the network 120b specified in S203 (S204). The LSP ID 73 acquired here indicates an LSP in the network 120b.
S204の後、帯域決定部211は、S204において取得された情報を、ヘビーユーザ管理DB130の新たなエントリに追加する。具体的には、帯域決定部211は、エリアID71、事業者ID72、LSP ID73及びエッジノードID74を、エリアID131、事業者ID132、LSP ID133及びエッジノードID134に追加する。また、帯域決定部211は、S201において取得されたヘビーユーザIDを、ヘビーユーザ管理DB130の新たなエントリのヘビーユーザID135に追加する(S205)。
After S204, the bandwidth determining unit 211 adds the information acquired in S204 to a new entry in the heavy user management DB 130. Specifically, the bandwidth determination unit 211 adds the area ID 71, the provider ID 72, the LSP ID 73, and the edge node ID 74 to the area ID 131, the provider ID 132, the LSP ID 133, and the edge node ID 134. In addition, the bandwidth determination unit 211 adds the heavy user ID acquired in S201 to the heavy user ID 135 of the new entry in the heavy user management DB 130 (S205).
なお、S204において取得されたネットワーク120bにおけるLSPに関する情報に対応するエントリが、ヘビーユーザ管理DB130に既に含まれる場合、帯域決定部211は、ネットワーク120bにおけるLSPに対応するエントリのヘビーユーザID135に、S201において取得されたヘビーユーザIDを追加してもよい。
When the entry corresponding to the information related to the LSP in the network 120b acquired in S204 is already included in the heavy user management DB 130, the bandwidth determination unit 211 sets the heavy user ID 135 of the entry corresponding to the LSP in the network 120b to S201. The heavy user ID acquired in step 1 may be added.
S205の後、帯域指示部212は、ヘビーユーザの情報をエッジノードに設定するため、新たに追加されたエントリのヘビーユーザID135、LSP ID133及びエッジノードID134の値(ヘビーユーザID、LSP ID及びエッジノードID)を、NMS5に通知する。ここで帯域指示部212は、ネットワーク120bにおけるLSPに対応するヘビーユーザ管理DB130のエントリのエッジノードID134から、ヘビーユーザによるパケットが通過するエッジノードを取得し、取得されたエッジノードに接続するNMS5にヘビーユーザID等の情報を送信する。
After S205, the bandwidth instructing unit 212 sets the values of the heavy user ID 135, the LSP ID 133, and the edge node ID 134 of the newly added entry (heavy user ID, LSP ID, and edge) in order to set the heavy user information in the edge node. Node ID) is notified to the NMS 5. Here, the bandwidth instruction unit 212 acquires the edge node through which the packet by the heavy user passes from the edge node ID 134 of the entry of the heavy user management DB 130 corresponding to the LSP in the network 120b, and sends it to the NMS 5 connected to the acquired edge node. Information such as a heavy user ID is transmitted.
NMS5は、ネットワークリソースボリュームマネージャ100から送信された情報が示すエッジノードに、送信された情報に含まれるヘビーユーザIDとLSP IDとを通知する。なお、実施例2におけるネットワーク120a及びネットワーク120bにおいて、LSP DB28が示すLSPは設定済である。
The NMS 5 notifies the edge node indicated by the information transmitted from the network resource volume manager 100 of the heavy user ID and LSP ID included in the transmitted information. In the network 120a and the network 120b in the second embodiment, the LSP indicated by the LSP DB 28 has been set.
エッジノードの装置制御部34は、NMS5から受信したヘビーユーザIDとLSP IDとを、ヘビーユーザ識別テーブル140の新たなエントリのヘビーユーザID141とLSP ID142とに設定する。
The device control unit 34 of the edge node sets the heavy user ID and LSP ID received from the NMS 5 to the heavy user ID 141 and the LSP ID 142 of the new entry in the heavy user identification table 140.
エッジノードのヘビーユーザ識別テーブル140に情報が設定された後、パケットを受信した場合、ユーザフロー特定部36は、受信したパケットに含まれるヘッダ情報等を用いて、ヘビーユーザ識別テーブル140を最初に検索する。
When the packet is received after the information is set in the heavy node identification table 140 of the edge node, the user flow specifying unit 36 first sets the heavy user identification table 140 using the header information included in the received packet. Search for.
例えば、受信したパケットのヘッダ情報が示す送信元又は宛先の携帯端末9が、ヘビーユーザ識別テーブル140のヘビーユーザID141を示す場合、ユーザフロー特定部36は、LSP管理テーブル29における検索結果よりも、ヘビーユーザ識別テーブル140の検索結果を優先して用いる。
For example, when the source or destination mobile terminal 9 indicated by the header information of the received packet indicates the heavy user ID 141 in the heavy user identification table 140, the user flow specifying unit 36 is more than the search result in the LSP management table 29. The search result of the heavy user identification table 140 is used with priority.
ユーザフロー特定部36は、ヘビーユーザ識別テーブル140において、受信したパケットの送信元又は宛先に対応するエントリのLSP ID142からLSPの識別子を抽出し、抽出されたLSPの識別子を含むMPLSヘッダによって、受信したパケットをカプセル化する。そして、ユーザフロー特定部36及びSW送信回路37は、カプセル化されたパケットをSW32へ転送する。
In the heavy user identification table 140, the user flow specifying unit 36 extracts the LSP identifier from the LSP ID 142 of the entry corresponding to the transmission source or destination of the received packet, and receives it by the MPLS header including the extracted LSP identifier. Encapsulate the packet. Then, the user flow specifying unit 36 and the SW transmission circuit 37 transfer the encapsulated packet to the SW 32.
これによって、ヘビーユーザによって送信されたパケット、又は、ヘビーユーザに向けて送信されたパケットは、ネットワーク120bを通過する。
Thereby, the packet transmitted by the heavy user or the packet transmitted toward the heavy user passes through the network 120b.
なお、ネットワーク120bにおける中継ノード4bが、イーサネットフレームの転送に対応し、MPLS-TPのパケットを転送するように設定されていない場合、ネットワーク120bに含まれる中継ノード4bは、エッジノードのアクセスNWIFカード31と接続することによって、パケットを転送できる。
Note that if the relay node 4b in the network 120b supports Ethernet frame transfer and is not set to transfer MPLS-TP packets, the relay node 4b included in the network 120b is connected to the edge node access NWIF card. The packet can be transferred by connecting to the terminal 31.
より詳細には、ヘビーユーザの通信によるパケットは、アクセスNWIFカード31においてMPLSヘッダによってカプセル化された後、SW32において他のアクセスNWIFカード31へ転送される。そして、ヘビーユーザの通信によるパケットは、転送先のアクセスNWIFカード31においてMPLSヘッダをデカプセル化され、中継ノード4bへと転送される。このため、中継ノード4bは、MPLSヘッダによってカプセル化されていないパケットを受信し、受信したパケットのイーサネットのフォーマットに基づいて、パケットを転送する。
More specifically, a packet by heavy user communication is encapsulated by an MPLS header in the access NWIF card 31 and then transferred to another access NWIF card 31 in the SW 32. The packet by the heavy user communication is decapsulated in the MPLS header in the transfer destination access NWIF card 31 and transferred to the relay node 4b. Therefore, the relay node 4b receives the packet that is not encapsulated by the MPLS header, and transfers the packet based on the Ethernet format of the received packet.
実施例2によれば、一つのサービスエリア11に含まれ、かつ、一つの事業者に属する携帯端末9のうち、ヘビーユーザによるパケットと、ヘビーユーザ以外の携帯端末9によるパケットとは、各々異なるパスを用いて転送される。このため、実施例2のネットワークリソースボリュームマネージャ100は、ヘビーユーザによる通信により、ヘビーユーザ以外の携帯端末9のパケットが廃棄されるような事態を、抑止することができる。
According to the second embodiment, among mobile terminals 9 included in one service area 11 and belonging to one operator, a packet by a heavy user is different from a packet by a mobile terminal 9 other than the heavy user. It is transferred using the path. For this reason, the network resource volume manager 100 of Example 2 can suppress the situation where the packet of the portable terminals 9 other than a heavy user is discarded by communication by a heavy user.
なお、本発明は前述した実施例に限定されるものではなく、様々な変形例が含まれる。
In addition, this invention is not limited to the Example mentioned above, Various modifications are included.
例えば、前述した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加、削除又は置き換えをすることが可能である。
For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. In addition, it is possible to add, delete, or replace another configuration for a part of the configuration of each embodiment.
また、本実施例におけるデータベース及びテーブルは、前述した内容を含めばいかなる形式によって情報を保持してもよく、テーブル形式以外のCSV等の形式によって情報を保持してもよい。
Further, the database and table in the present embodiment may hold information in any format including the above-described contents, and may hold information in a format such as CSV other than the table format.
また、前述の各構成、機能、処理部、処理手順は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、前述の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現しても良い。各機能を実現するプログラム、テーブル又はファイル等の情報は、メモリ、ハードディスク若しくはSSD(Solid State Drive)等の記録装置、又は、ICカード、SDカード、若しくはDVD等の記録媒体に置くことができる。
In addition, each of the above-described configurations, functions, processing units, and processing procedures may be realized by hardware by designing a part or all of them with, for example, an integrated circuit. Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor. Information such as a program, a table, or a file that realizes each function can be stored in a recording device such as a memory, a hard disk, or an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
また、制御線や情報線は説明上必要と考えられる物を示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。
Also, the control lines and information lines indicate objects that are considered necessary for explanation, and not all control lines and information lines on the product are necessarily shown. Actually, it may be considered that almost all the components are connected to each other.
Claims (15)
- 端末が送受信するデータを転送するネットワークシステムであって、
前記ネットワークシステムは、前記端末を収容する第1のエッジノードと、前記端末の情報を保持する端末管理サーバと、前記端末管理サーバに接続されるネットワークマネージャと、前記第1のエッジノードに接続される第2のエッジノードとを備え、
前記端末によって送受信されるデータは、前記第1のエッジノードと、前記第2のエッジノードの間のパスを介して転送され、
前記端末は、前記端末が制御データのみを送受信する第1の状態と、前記端末が前記制御データ以外のデータを送受信する第2の状態と、を含む複数の端末状態のいずれかをとり、
前記ネットワークマネージャは、
プロセッサ及びメモリを有し、
前記端末状態の各々において、前記端末が前記パスを介して通信するために確保される帯域を含む帯域情報を有し、
前記端末の端末状態の情報を、前記端末管理サーバから取得し、
前記端末管理サーバから取得した情報が示す前記第1の状態である端末の数及び前記第2の状態である端末の数と、前記帯域情報とに基づいて、前記端末がパスを介して通信するために確保される帯域を算出し、
前記端末によって送受信されるデータを前記算出された帯域によって転送するように、前記第1のエッジノード及び前記第2のエッジノードに設定することを特徴とするネットワークシステム。 A network system for transferring data transmitted and received by a terminal,
The network system is connected to a first edge node that accommodates the terminal, a terminal management server that holds information on the terminal, a network manager connected to the terminal management server, and the first edge node. A second edge node,
Data transmitted and received by the terminal is transferred via a path between the first edge node and the second edge node;
The terminal takes one of a plurality of terminal states including a first state in which the terminal transmits / receives only control data and a second state in which the terminal transmits / receives data other than the control data,
The network manager
A processor and a memory;
In each of the terminal states, the terminal has band information including a band reserved for the terminal to communicate via the path;
Obtaining terminal status information of the terminal from the terminal management server,
The terminal communicates via a path based on the number of terminals in the first state and the number of terminals in the second state indicated by the information acquired from the terminal management server and the bandwidth information. Calculating the bandwidth reserved for
A network system, characterized in that the first edge node and the second edge node are set so that data transmitted / received by the terminal is transferred according to the calculated bandwidth. - 請求項1に記載のネットワークシステムであって、
前記帯域情報は、前記端末が属する事業者を示す識別子を含み、
前記端末の端末状態の情報は、前記端末が属する事業者の識別子を含み、
前記ネットワークマネージャは、前記端末管理サーバから取得した情報が示す前記第1の状態である端末の数、前記第2の状態である端末の数及び前記事業者の識別子と、前記帯域情報とに基づいて、前記端末がパスを介して通信するために確保される帯域を算出することを特徴とするネットワークシステム。 The network system according to claim 1,
The band information includes an identifier indicating a business operator to which the terminal belongs,
The terminal status information of the terminal includes an identifier of a business operator to which the terminal belongs,
The network manager is based on the number of terminals in the first state, the number of terminals in the second state, the identifier of the operator, and the bandwidth information indicated by the information acquired from the terminal management server. And calculating a bandwidth reserved for the terminal to communicate via a path. - 請求項1又は2に記載のネットワークシステムであって、
前記端末状態は、ネットワークサービスが提供される端末の状態を含み、
前記ネットワークマネージャは、
前記ネットワークサービスを提供するアプリケーションサーバに接続され、
前記ネットワークサービスが提供される前記端末の数を、前記アプリケーションサーバから取得し、
前記アプリケーションサーバから取得した前記ネットワークサービスが提供される端末の数と、前記端末管理サーバから取得した端末状態及び端末の数と、前記帯域情報とに基づいて、前記端末がパスを介して通信するために確保される帯域を算出することを特徴とするネットワークシステム。 The network system according to claim 1 or 2,
The terminal state includes a state of a terminal for which network service is provided,
The network manager
Connected to an application server providing the network service,
Obtaining the number of the terminals provided with the network service from the application server;
The terminal communicates via a path based on the number of terminals provided with the network service acquired from the application server, the terminal status and the number of terminals acquired from the terminal management server, and the bandwidth information. A network system characterized by calculating a bandwidth reserved for the purpose. - 請求項1に記載のネットワークシステムであって、
前記ネットワークシステムは、前記第1のエッジノード及び前記第2のエッジノードに接続する少なくとも一つの中継ノードを有し、
前記ネットワークマネージャは、
前記第1のエッジノード、前記第2のエッジノード、及び、前記中継ノードの各々の間において使用可能な帯域を示すリソース管理情報を有し、
前記算出された帯域を用いて、前記端末によって送受信されるデータを、通信が行われている第1のパスを介して転送できるか否かを、前記リソース管理情報に基づいて判定し、
前記判定の結果、前記端末によって送受信されるデータを前記第1のパスを介して転送できない場合、前記第1のパスとは異なる第2のパスを、前記リソース管理情報に基づいて決定し、
前記算出された帯域を用いて、前記端末によって送受信されるデータを前記第2のパスを介して転送するように、前記第1のエッジノード及び前記第2のエッジノードに設定することを特徴とするネットワークシステム。 The network system according to claim 1,
The network system includes at least one relay node connected to the first edge node and the second edge node;
The network manager
Resource management information indicating a usable bandwidth between each of the first edge node, the second edge node, and the relay node;
It is determined based on the resource management information whether or not the data transmitted and received by the terminal can be transferred via the first path through which communication is performed using the calculated bandwidth,
As a result of the determination, when data transmitted / received by the terminal cannot be transferred via the first path, a second path different from the first path is determined based on the resource management information,
The first and second edge nodes are set so that data transmitted and received by the terminal is transferred through the second path using the calculated bandwidth. Network system. - 請求項1に記載のネットワークシステムであって、
前記ネットワークマネージャは、
前記端末管理サーバから、所定の条件を超えた量の前記データを送受信する前記端末であるヘビーユーザを示す情報を取得し、
前記取得した情報が示すヘビーユーザによって送受信されるデータを、通信が行われているパス以外のパスによって転送させるように、前記第1のエッジノード又は前記第2のエッジノードに設定することを特徴とするネットワークシステム。 The network system according to claim 1,
The network manager
From the terminal management server, obtain information indicating a heavy user that is the terminal that transmits and receives the amount of data exceeding a predetermined condition,
The data transmitted and received by the heavy user indicated by the acquired information is set to the first edge node or the second edge node so as to be transferred by a path other than the path in which communication is performed. Network system. - 請求項1に記載のネットワークシステムであって、
前記ネットワークマネージャは、
所定の回数取得した前記端末状態である端末の数を、前記メモリに格納し、
前記格納された端末状態である端末の数に基づいて、前記第1の状態である端末の数と前記第2の状態である端末の数との変化を示す統計値を算出し、
前記統計値に基づいて、前記端末がパスを介して通信するために確保される帯域を、前記端末状態ごとに算出することを特徴とするネットワークシステム。 The network system according to claim 1,
The network manager
The number of terminals in the terminal state acquired a predetermined number of times is stored in the memory,
Based on the number of terminals in the stored terminal state, calculate a statistical value indicating a change between the number of terminals in the first state and the number of terminals in the second state;
A network system characterized in that, based on the statistical value, a bandwidth reserved for the terminal to communicate via a path is calculated for each terminal state. - 端末が送受信するデータを転送するネットワークシステムによる管理方法であって、
前記ネットワークシステムは、前記端末を収容する第1のエッジノードと、前記端末の情報を保持する端末管理サーバと、前記端末管理サーバに接続されるネットワークマネージャと、前記第1のエッジノードに接続される第2のエッジノードとを備え、
前記端末によって送受信されるデータは、前記第1のエッジノードと、前記第2のエッジノードの間のパスを介して転送され、
前記端末は、前記端末が制御データのみを送受信する第1の状態と、前記端末が前記制御データ以外のデータを送受信する第2の状態と、を含む複数の端末状態のいずれかをとり、
前記ネットワークマネージャは、
プロセッサ及びメモリを有し、
前記端末状態の各々において、前記端末が前記パスを介して通信するために確保される帯域を含む帯域情報を有し、
前記方法は、
前記プロセッサが、前記端末の端末状態の情報を、前記端末管理サーバから取得し、
前記プロセッサが、前記端末管理サーバから取得した情報が示す前記第1の状態である端末の数及び前記第2の状態である端末の数と、前記帯域情報とに基づいて、前記端末がパスを介して通信するために確保される帯域を算出し、
前記プロセッサが、前記端末によって送受信されるデータを前記算出された帯域によって転送するように、前記第1のエッジノード及び前記第2のエッジノードに設定することを特徴とする管理方法。 A management method by a network system for transferring data transmitted and received by a terminal,
The network system is connected to a first edge node that accommodates the terminal, a terminal management server that holds information on the terminal, a network manager connected to the terminal management server, and the first edge node. A second edge node,
Data transmitted and received by the terminal is transferred via a path between the first edge node and the second edge node;
The terminal takes one of a plurality of terminal states including a first state in which the terminal transmits / receives only control data and a second state in which the terminal transmits / receives data other than the control data,
The network manager
A processor and a memory;
In each of the terminal states, the terminal has band information including a band reserved for the terminal to communicate via the path;
The method
The processor obtains terminal status information of the terminal from the terminal management server,
Based on the number of terminals in the first state and the number of terminals in the second state indicated by the information acquired from the terminal management server by the processor, and the bandwidth information, the terminal Calculating the bandwidth reserved for communication via
The management method, wherein the processor sets the first edge node and the second edge node to transfer data transmitted / received by the terminal according to the calculated bandwidth. - 請求項7に記載の管理方法であって、
前記帯域情報は、前記端末が属する事業者を示す識別子を含み、
前記端末の端末状態の情報は、前記端末が属する事業者の識別子を含み、
前記方法は、前記プロセッサが、前記端末管理サーバから取得した情報が示す前記第1の状態である端末の数、前記第2の状態である端末の数及び前記事業者の識別子と、前記帯域情報とに基づいて、前記端末がパスを介して通信するために確保される帯域を算出することを特徴とする管理方法。 The management method according to claim 7,
The band information includes an identifier indicating a business operator to which the terminal belongs,
The terminal status information of the terminal includes an identifier of a business operator to which the terminal belongs,
In the method, the processor includes the number of terminals in the first state, the number of terminals in the second state, the identifier of the operator, and the bandwidth information indicated by the information acquired from the terminal management server. And a bandwidth that is reserved for the terminal to communicate via a path. - 請求項7又は8に記載の管理方法であって、
前記端末状態は、ネットワークサービスが提供される端末の状態を含み、
前記ネットワークマネージャは、前記ネットワークサービスを提供するアプリケーションサーバに接続され、
前記方法は、
前記プロセッサが、前記ネットワークサービスが提供される前記端末の数を、前記アプリケーションサーバから取得し、
前記プロセッサが、前記アプリケーションサーバから取得した前記ネットワークサービスが提供される端末の数と、前記端末管理サーバから取得した端末状態及び端末の数と、前記帯域情報とに基づいて、前記端末がパスを介して通信するために確保される帯域を算出することを特徴とする管理方法。 The management method according to claim 7 or 8,
The terminal state includes a state of a terminal for which network service is provided,
The network manager is connected to an application server that provides the network service;
The method
The processor obtains the number of the terminals to which the network service is provided from the application server;
Based on the number of terminals provided with the network service acquired by the processor from the application server, the terminal status and the number of terminals acquired from the terminal management server, and the bandwidth information, the terminal passes the path. A management method characterized by calculating a bandwidth reserved for communication via a network. - 請求項7に記載の管理方法であって、
前記ネットワークシステムは、前記第1のエッジノード及び前記第2のエッジノードに接続する少なくとも一つの中継ノードを有し、
前記ネットワークマネージャは、前記第1のエッジノード、前記第2のエッジノード、及び、前記中継ノードの各々の間において使用可能な帯域を示すリソース管理情報を有し、
前記方法は、
前記プロセッサが、前記算出された帯域を用いて、前記端末によって送受信されるデータを、通信が行われている第1のパスを介して転送できるか否かを、前記リソース管理情報に基づいて判定し、
前記判定の結果、前記端末によって送受信されるデータを前記第1のパスを介して転送できない場合、前記プロセッサが、前記第1のパスとは異なる第2のパスを、前記リソース管理情報に基づいて決定し、
前記プロセッサが、前記算出された帯域を用いて、前記端末によって送受信されるデータを前記第2のパスを介して転送するように、前記第1のエッジノード及び前記第2のエッジノードに設定することを特徴とする管理方法。 The management method according to claim 7,
The network system includes at least one relay node connected to the first edge node and the second edge node;
The network manager has resource management information indicating a usable bandwidth between each of the first edge node, the second edge node, and the relay node;
The method
Based on the resource management information, the processor determines whether the data transmitted / received by the terminal can be transferred via the first path through which communication is performed using the calculated bandwidth. And
As a result of the determination, if the data transmitted / received by the terminal cannot be transferred via the first path, the processor determines a second path different from the first path based on the resource management information. Decide
The processor sets the first edge node and the second edge node to transfer data transmitted / received by the terminal through the second path using the calculated bandwidth. A management method characterized by that. - 請求項7に記載の管理方法であって、
前記方法は、
前記プロセッサが、前記端末管理サーバから、所定の条件を超えた量の前記データを送受信する前記端末であるヘビーユーザを示す情報を取得し、
前記プロセッサが、前記取得した情報が示すヘビーユーザによって送受信されるデータを、通信が行われているパス以外のパスによって転送させるように、前記第1のエッジノード又は前記第2のエッジノードに設定することを特徴とする管理方法。 The management method according to claim 7,
The method
The processor acquires, from the terminal management server, information indicating a heavy user that is the terminal that transmits and receives the data in an amount exceeding a predetermined condition,
The processor sets the first edge node or the second edge node so that the data transmitted / received by the heavy user indicated by the acquired information is transferred by a path other than the path in which communication is performed. A management method characterized by: - 請求項7に記載の管理方法であって、
前記方法は、
前記プロセッサが、所定の回数取得した前記端末状態である端末の数を前記メモリに格納し、
前記プロセッサが、前記格納された端末状態である端末の数に基づいて、前記第1の状態である端末の数と前記第2の状態である端末の数との変化を示す統計値を算出し、
前記プロセッサが、前記統計値に基づいて、前記端末がパスを介して通信するために確保される帯域を、前記端末状態ごとに算出することを特徴とする管理方法。 The management method according to claim 7,
The method
The processor stores the number of terminals in the terminal state acquired a predetermined number of times in the memory,
The processor calculates a statistical value indicating a change between the number of terminals in the first state and the number of terminals in the second state based on the number of terminals in the stored terminal state. ,
The management method, wherein the processor calculates, for each terminal state, a bandwidth reserved for the terminal to communicate via a path based on the statistical value. - ネットワークシステムに備わるネットワークマネージャであって、
前記ネットワークシステムは、前記端末を収容する第1のエッジノードと、前記端末の情報を保持する端末管理サーバと、前記第1のエッジノードに接続される第2のエッジノードとを備え、
前記端末によって送受信されるデータは、前記第1のエッジノードと、前記第2のエッジノードの間のパスを介して転送され、
前記端末は、前記端末が制御データのみを送受信する第1の状態と、前記端末が前記制御データ以外のデータを送受信する第2の状態と、を含む複数の端末状態のいずれかをとり、
前記ネットワークマネージャは、
前記端末管理サーバに接続され、
プロセッサ及びメモリを有し、
前記端末状態の各々において、前記端末が前記パスを介して通信するために確保される帯域を含む帯域情報を有し、
前記端末の端末状態の情報を、前記端末管理サーバから取得し、
前記端末管理サーバから取得した情報が示す前記第1の状態である端末の数及び前記第2の状態である端末の数と、前記帯域情報とに基づいて、前記端末がパスを介して通信するために確保される帯域を算出し、
前記端末によって送受信されるデータを前記算出された帯域によって転送するように、前記第1のエッジノード及び前記第2のエッジノードに設定することを特徴とするネットワークマネージャ。 A network manager provided in the network system,
The network system includes a first edge node that accommodates the terminal, a terminal management server that holds information on the terminal, and a second edge node connected to the first edge node,
Data transmitted and received by the terminal is transferred via a path between the first edge node and the second edge node;
The terminal takes one of a plurality of terminal states including a first state in which the terminal transmits / receives only control data and a second state in which the terminal transmits / receives data other than the control data,
The network manager
Connected to the terminal management server,
A processor and a memory;
In each of the terminal states, the terminal has band information including a band reserved for the terminal to communicate via the path;
Obtaining terminal status information of the terminal from the terminal management server,
The terminal communicates via a path based on the number of terminals in the first state and the number of terminals in the second state indicated by the information acquired from the terminal management server and the bandwidth information. Calculating the bandwidth reserved for
A network manager configured to set the first edge node and the second edge node to transfer data transmitted / received by the terminal according to the calculated bandwidth. - 請求項13に記載のネットワークマネージャであって、
前記帯域情報は、前記端末が属する事業者を示す識別子を含み、
前記端末の端末状態の情報は、前記端末が属する事業者の識別子を含み、
前記ネットワークマネージャは、前記端末管理サーバから取得した情報が示す前記第1の状態である端末の数、前記第2の状態である端末の数及び前記事業者の識別子と、前記帯域情報とに基づいて、前記端末がパスを介して通信するために確保される帯域を算出することを特徴とするネットワークマネージャ。 The network manager according to claim 13, comprising:
The band information includes an identifier indicating a business operator to which the terminal belongs,
The terminal status information of the terminal includes an identifier of a business operator to which the terminal belongs,
The network manager is based on the number of terminals in the first state, the number of terminals in the second state, the identifier of the operator, and the bandwidth information indicated by the information acquired from the terminal management server. And calculating a bandwidth reserved for the terminal to communicate via a path. - 請求項13又は14に記載のネットワークマネージャであって、
前記端末状態は、ネットワークサービスが提供される端末の状態を含み、
前記ネットワークマネージャは、
前記ネットワークサービスを提供するアプリケーションサーバに接続され、
前記ネットワークサービスが提供される前記端末の数を、前記アプリケーションサーバから取得し、
前記アプリケーションサーバから取得した前記ネットワークサービスが提供される端末の数と、前記端末管理サーバから取得した端末状態及び端末の数と、前記帯域情報とに基づいて、前記端末がパスを介して通信するために確保される帯域を算出することを特徴とするネットワークマネージャ。 The network manager according to claim 13 or 14, comprising:
The terminal state includes a state of a terminal for which network service is provided,
The network manager
Connected to an application server providing the network service,
Obtaining the number of the terminals provided with the network service from the application server;
The terminal communicates via a path based on the number of terminals provided with the network service acquired from the application server, the terminal status and the number of terminals acquired from the terminal management server, and the bandwidth information. A network manager characterized by calculating a bandwidth reserved for the purpose.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-198406 | 2013-09-25 | ||
JP2013198406 | 2013-09-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015045575A1 true WO2015045575A1 (en) | 2015-04-02 |
Family
ID=52742732
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/068703 WO2015045575A1 (en) | 2013-09-25 | 2014-07-14 | Network system, management method, and network manager |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2015045575A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005051556A (en) * | 2003-07-29 | 2005-02-24 | Matsushita Electric Ind Co Ltd | Edge switch device |
JP2006237678A (en) * | 2005-02-22 | 2006-09-07 | Hitachi Communication Technologies Ltd | Apparatus for packet relaying and control method for communication band |
-
2014
- 2014-07-14 WO PCT/JP2014/068703 patent/WO2015045575A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005051556A (en) * | 2003-07-29 | 2005-02-24 | Matsushita Electric Ind Co Ltd | Edge switch device |
JP2006237678A (en) * | 2005-02-22 | 2006-09-07 | Hitachi Communication Technologies Ltd | Apparatus for packet relaying and control method for communication band |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220182315A1 (en) | Service Packet Transmission Method and Device | |
US8670385B2 (en) | Dynamic allocation of network resources for provisioning services to user devices | |
US12021560B1 (en) | Apparatus and method for joint profile-based slicing of mobile access and optical backhaul | |
CN109787801B (en) | Network service management method, device and system | |
CN114128228B (en) | Transmitting MTNC-ID through SRv head to realize 5G transmission | |
US11811650B2 (en) | Systems and methods for user plane function (“UPF”) offload at configurable routing fabric | |
WO2014192259A1 (en) | Network control device, network control method, program, and communication system | |
US10531274B2 (en) | Data processing method and device | |
US20180242188A1 (en) | Quality of service control method, device, and system | |
US11882513B2 (en) | Transporting MTNC-ID over SRV6-enabled dataplane for 5G transport | |
EP3091693A1 (en) | Control method and centralized controller in communication network and wireless communication network system | |
CN113228592B (en) | Method and apparatus for providing transport context and on-path metadata to support 5G-enabled networks | |
US11483733B2 (en) | Transporting a multi-transport network context-identifier (MTNC- ID) across multiple domains | |
US20220070736A1 (en) | Traffic steering device | |
KR101774994B1 (en) | Network system for transferring data efficiently, and method for transferring data thereof | |
WO2015045575A1 (en) | Network system, management method, and network manager | |
JP2016152552A (en) | Communication system and communication method | |
JP2014099798A (en) | Communication system, communication control method and communication control device | |
WO2015052869A1 (en) | Terminal device, terminal-device control method, and terminal-device control program | |
KR20190129378A (en) | Method and apparatus for transmitting and receiving packet through unified transport network in communication system | |
JP2017158103A (en) | Communication management device, communication system, communication management method and program |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14849549 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14849549 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |