WO2015045552A1 - 蓄電池管理装置、蓄電池、蓄電池管理方法及びプログラム - Google Patents
蓄電池管理装置、蓄電池、蓄電池管理方法及びプログラム Download PDFInfo
- Publication number
- WO2015045552A1 WO2015045552A1 PCT/JP2014/068076 JP2014068076W WO2015045552A1 WO 2015045552 A1 WO2015045552 A1 WO 2015045552A1 JP 2014068076 W JP2014068076 W JP 2014068076W WO 2015045552 A1 WO2015045552 A1 WO 2015045552A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power
- discharge
- storage battery
- upper limit
- battery management
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 33
- 238000007726 management method Methods 0.000 claims description 168
- 238000010248 power generation Methods 0.000 claims description 82
- 230000008569 process Effects 0.000 claims description 21
- 230000005611 electricity Effects 0.000 claims description 9
- 238000004519 manufacturing process Methods 0.000 description 28
- 238000010586 diagram Methods 0.000 description 16
- 230000008859 change Effects 0.000 description 10
- 238000004891 communication Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 238000013461 design Methods 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 238000012545 processing Methods 0.000 description 4
- 238000007599 discharging Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000005401 electroluminescence Methods 0.000 description 2
- 230000003203 everyday effect Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 229910052987 metal hydride Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- -1 nickel metal hydride Chemical class 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/28—Arrangements for balancing of the load in a network by storage of energy
- H02J3/32—Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/06—Energy or water supply
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/004—Generation forecast, e.g. methods or systems for forecasting future energy generation
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/008—Circuit arrangements for ac mains or ac distribution networks involving trading of energy or energy transmission rights
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/50—Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S50/00—Market activities related to the operation of systems integrating technologies related to power network operation or related to communication or information technologies
- Y04S50/10—Energy trading, including energy flowing from end-user application to grid
Definitions
- the present invention relates to a storage battery management device, a storage battery, a storage battery management method, and a program.
- Patent Document 1 discloses a distributed energy system control device that can create an optimal operation plan even when there is a specific change due to temperature, water temperature, or device deterioration.
- the distributed energy system control device disclosed in Patent Literature 1 includes a modeling operation plan creation unit, a measurement information storage unit, a device characteristic modeling unit, a device characteristic storage unit, an optimum operation plan creation unit, and a demand forecast.
- the modeling operation plan creation unit creates an operation plan based on the modeling operation plan for the energy generation device and the energy storage device set in advance.
- the measurement information storage unit stores therein the measurement result of the output characteristics of the device operated based on the modeling operation plan.
- the device characteristic modeling unit models the device characteristic based on the stored output characteristic and stores it in the device characteristic storage unit.
- the optimum operation plan creation unit creates an optimum operation plan based on the modeled device characteristics and the demand amount predicted by the demand amount prediction unit.
- Patent Document 2 discloses a charge / discharge management device for improving the energy consumption performance and social environment performance of the entire power system while taking into account the actions of consumers.
- the charge / discharge management apparatus of Patent Literature 2 includes charge / discharge reward information receiving means for receiving, from a charge management central server, rewards that can be enjoyed by consumers' charge / discharge behavior and charge / discharge reward information that defines restrictions on the implementation of charge / discharge. Based on the charge / discharge reward information, the calculation unit creates a charge / discharge plan including the total charge amount and the total discharge amount in a certain time zone and the estimated use start time of the electric vehicle so that the reward is maximized.
- Charge / discharge command transmission means for instructing the electric vehicle to start / end charge / discharge according to the charge / discharge plan, charge / discharge amount monitoring means for monitoring charge / discharge, Charge / discharge execution result transmission means for transmitting the charge / discharge execution result including the individual identification information for identifying itself to the charge management central server.
- Patent Document 3 discloses a control device that can effectively use electric power using a storage battery.
- the control device acquires power rate information indicating a different power rate for each time zone, and generates a schedule in which a period in which the power rate is lower than a charge threshold is a charging period.
- the day is divided into a daytime zone and a nighttime zone, and the unit price in the nighttime zone is lower than the daytime zone.
- the power consumer wants to suppress the daytime power purchase.
- a power consumer having a storage battery can reduce the power charge paid to the power supplier by receiving power from the power system at night and charging the storage battery and using this power in the daytime (Patent Literature). 3).
- the amount of power consumed by power consumers is greater during the day than at night, and the peak of power supplied from the power grid to the power consumer (power peak) appears during the day.
- the power supplier can cut a power peak that appears in the daytime, and can easily realize a stable power supply.
- the power peak appears at a specific time during the daytime, for example, from 13:00 to 17:00 in the summer.
- the charge plan in which the daytime time zone is divided into a plurality of time zones and different unit prices are determined for each time zone it is considered that the power supplier can effectively cut the power peak.
- power consumers with storage batteries properly use the power charged in the storage battery and the power supplied from the power system according to the difference in unit price for each time zone. By doing so, it is possible to lower the electricity charge.
- An object of the present invention is to provide a new technique for controlling a discharge schedule from a storage battery.
- the upper limit value of the power discharged from the storage battery for each discharge time zone divided every unit time, or the power discharged from the storage battery A storage battery management device characterized by determining an upper limit value of the amount is provided.
- a storage battery that discharges electric power according to the upper limit determined by the storage battery management device.
- the upper limit value of the power discharged from the storage battery for each discharge time zone divided every unit time, or the power discharged from the storage battery A program for performing the step of determining the upper limit value of the amount is provided.
- FIG. 1 It is a figure which shows an example of the functional block diagram of the storage battery management apparatus of this embodiment. It is a figure for demonstrating the structure of the discharge schedule production
- FIG. 1 is a diagram illustrating a first application example of the storage battery management device of the present embodiment.
- the storage battery management device 10 is provided in the management center 20.
- the storage battery management device 10 is connected to a storage battery system 40 installed in a house or facility of the power consumer 30 via a network 50 such as the Internet or a LAN (Local Area Network).
- the storage battery management device 10 communicates with the storage battery system 40 to transmit and receive information and manage the operation of the storage battery system 40. Specifically, the storage battery management device 10 generates a discharge schedule for the storage battery system 40. And the storage battery system 40 discharges the electric power charged in the own system according to the discharge schedule which the storage battery management apparatus 10 produced
- the storage battery system 40 includes one or a plurality of battery packs 44, a BMU (Battery Management Unit) 42, a PCS (Power Conditioning System) 41, and a system controller 43.
- BMU Battery Management Unit
- PCS Power Conditioning System
- the battery pack 44 has a plurality of battery cells connected in series and / or in parallel, and is configured to store electric power.
- the battery pack 44 is a secondary battery, for example, a lithium ion secondary battery, a lead storage battery, a nickel metal hydride battery, or the like.
- the BMU 42 protects and controls the battery pack 44.
- the PCS 41 is located between the BMU 42, the power system 45, the load 46, and the power generation device 47, and performs DC / AC conversion of power and adjusts voltage and frequency.
- the power system 45 is a system that is managed by a power supplier (for example, a power company) and supplies power to a power consumer.
- the power generation device 47 is a device managed by each power consumer, and the type thereof is not particularly limited. For example, the power generation device 47 may be a device that generates power using natural energy such as sunlight.
- the system controller 43 centrally manages the BMU 42 and the PCS 41.
- the system controller 43 is connected to a network 50 such as the Internet or a LAN, and transmits / receives data to / from the management center 20 that manages the storage battery system 40.
- the battery pack 44, the BMU 42, the PCS 41, and the system controller 43 are separately described. This indicates that these four modules are logically separated. These modules may be physically configured separately, or at least a part thereof may be integrally formed in any combination.
- the battery pack 44 and the BMU 42 may be installed in a single casing.
- FIG. 3 is a diagram showing a second application example of the storage battery management device of the present embodiment. As shown in the figure, the storage battery management device 10 may be installed for each house or facility of the power consumer 30.
- the storage battery management device 10 of this embodiment includes a CPU (Central Processing Unit), a memory, and a program loaded in the memory (a program stored in the memory from the stage of shipping the device in advance, a CD ( Compact Disc) and other storage media and programs downloaded from servers on the Internet, etc., storage units such as hard disks for storing the programs, and any combination of hardware and software centering on the network connection interface It is realized by. It will be understood by those skilled in the art that there are various modifications to the implementation method and apparatus.
- FIG. 4 is a diagram conceptually illustrating an example of a hardware configuration of the storage battery management device 10 of the present embodiment.
- the storage battery management device 10 of this embodiment includes, for example, a CPU 1A, a RAM (Random Access Memory) 2A, a ROM (Read Only Memory) 3A, a communication unit 4A, a display 5A, which are connected to each other via a bus 8A.
- An operation reception unit 6A, an operation unit 7A, and the like are included.
- other elements such as a microphone, a speaker, and an auxiliary storage device can also be included.
- the CPU1A controls the whole computer of the storage battery management apparatus 10 with each element.
- the ROM 3A includes an area for storing programs for operating the computer, various application programs, various setting data used when these programs operate.
- the RAM 2A includes an area for temporarily storing data, such as a work area for operating a program.
- the operation unit 7A includes operation keys, operation buttons, switches, a jog dial, a touch pad, a touch panel integrated with a display, and the like.
- the operation reception unit 6A receives user input made by the user operating the operation unit 7A.
- the communication unit 4A can be connected to a network such as the Internet or a LAN. Further, the communication unit 4A can be connected to an external device on a one-to-one basis and communicate with the external device. The communication unit 4A can be connected to an external device or a network by wire and / or using any wireless communication technology (short-range wireless communication, wireless LAN communication, etc.).
- Display 5A includes an LED (Light Emitting Diode) display, a liquid crystal display, an organic EL (Electro Luminescence) display, and the like.
- LED Light Emitting Diode
- liquid crystal display a liquid crystal display
- organic EL Electro Luminescence
- the storage battery management device of the present embodiment is based on the discharge remaining power information indicating the amount of power that can be supplied from the storage battery to the load, or the upper limit value of the power discharged from the storage battery for each discharge time zone divided every unit time, or The upper limit value of the electric energy discharged from the storage battery is determined.
- the storage battery management apparatus of this embodiment can determine the said upper limit based on the information regarding the electric power supplied to a storage battery, and discharge remaining power information.
- the information regarding power is, for example, power purchase price information indicating a power purchase price for each time zone.
- FIG. 5 shows an example of a functional block diagram of the storage battery management device 10 of the present embodiment.
- the storage battery management device 10 includes a price information acquisition unit 11, a discharge capacity information acquisition unit 12, and a discharge schedule generation unit 13.
- the price information acquisition unit 11 acquires power purchase price information indicating a power purchase price for each time zone of power supplied from the power system 45 (power sold by the power supplier).
- FIG. 6 shows an example of power purchase price information.
- one day is divided into six time zones. A price is set for each time zone.
- the power purchase price information may be information in which the daytime time zone is divided into a plurality of time zones and the price for each time zone is set.
- the “M hour to M + 1 hour” shown in the figure is a time zone that includes the M hour and does not include the M + 1 hour (the same applies hereinafter).
- the power purchase price information may be different for each specific day. For example, there may be power purchase price information for Monday through Friday, power purchase price information for Saturday, and power purchase price information for Sundays and holidays. Further, the power purchase price information may be updated at a predetermined timing (every year, every half year, every month, every week, every day, etc.). These are generally items determined by the power supplier.
- the means by which the price information acquisition unit 11 acquires power purchase price information is not particularly limited.
- the user acquires power purchase price information by a predetermined means (for example, by using his own terminal device to access and acquire the power purchase price information via the network 50), and the storage battery management device 10 may be entered.
- the price information acquisition part 11 may acquire the electric power purchase price information input into the storage battery management apparatus 10 in this way.
- the price information acquisition unit 11 holds address information of an external device (eg, a power supplier's server), accesses the external device at a predetermined timing, and acquires power purchase price information. Good.
- the remaining discharge capacity information acquisition unit 12 acquires the remaining discharge capacity information indicating the amount of power that can be supplied from the storage battery to the load 46.
- the storage battery here is a storage battery that the storage battery system 40 has.
- generation part 13 demonstrated below will produce the discharge schedule for discharging systematically the quantity of electric power shown by this discharge remaining power information.
- the storage battery is charged to the first level (eg, SOC (State Of Charge) is 100%) at night, and an amount of electric power corresponding to the operating condition of the load 46 is used during the day, and then again at night.
- the battery may be operated in a charge / discharge cycle in which the battery is charged to the first level (e.g., SOC is 100%).
- the remaining discharge capacity information acquisition unit 12 may acquire information indicating the amount of power at the time when the storage battery is charged to the first level (eg, SOC is 100%) as the remaining discharge capacity information.
- the storage battery management device 10 may hold in advance information indicating the amount of power at the time when the power is charged to the first level as a characteristic of the storage battery system 40. Then, the remaining discharge capacity information acquisition unit 12 may acquire this information.
- the remaining discharge capacity information acquisition unit 12 may request the remaining discharge capacity information from the storage battery system 40 at a predetermined timing (eg, every day at 5 o'clock).
- a predetermined timing eg, every day at 5 o'clock.
- the storage battery system 40 acquires the request, for example, information (e.g., the value of the electric energy itself, the voltage value, the current value, etc.) indicating the charge electric energy of the storage battery of the own system at that time
- the first level For example, information indicating the amount of electric power at the time when the SOC is charged to 100% is returned to the discharge remaining power information acquisition unit 12 as discharge remaining power information.
- the time of the upper limit value of the electric energy may be a unit time in the discharge time zone, or may be 1 hour, 1 minute, 1 second, or the like.
- the maximum value (maximum power amount) of the electric energy that can be discharged in each discharge time zone is determined.
- the amount of power that is discharged when the discharge is continued with the power of the upper limit value for the unit time of the discharge time zone is the maximum power amount.
- the upper limit value of the electric energy becomes the maximum electric energy.
- the discharge schedule generation unit 13 can determine a larger upper limit value in a discharge time zone in which the power purchase price is relatively high. For example, when there is a first discharge time zone and a second discharge time zone in which the power purchase price is lower than the first discharge time zone, the discharge schedule generation unit 13 is first than the second discharge time zone. A larger upper limit value can be determined in the discharge time zone.
- generation part 13 can also determine the same upper limit in a 1st discharge time slot
- the discharge schedule generation unit 13 determines that the total of the maximum power amount determined based on the upper limit value determined in each discharge time zone is a predetermined power amount (hereinafter referred to as “discharge permission”) determined based on the discharge remaining power information.
- the discharge schedule may be generated so as not to exceed the electric energy “)”.
- the discharge permission power amount may be the power amount itself indicated by the discharge remaining power information or a predetermined amount (eg, 80%, 70%, etc.) of the power amount indicated by the discharge remaining power information. Also good. In the latter case, it is possible to generate a discharge schedule in which a constant amount (eg, 20%, 30%, etc.) of electric power can be stored in the storage battery at all times, for example, as an emergency.
- the price information acquisition unit 11 acquires the power purchase price information shown in FIG.
- the highest power purchase price is from 13:00 to 17:00, the next is from 11:00 to 13:00, the next is from 17:00 to 21:00, and the remaining time.
- the discharge schedule generation unit 13 preferentially determines an upper limit value greater than 0 in a discharge time zone in which the power purchase price is relatively high, and in a discharge time zone in which the power purchase price is relatively low. Can determine 0 as the upper limit value and generate a discharge schedule as shown in FIG.
- the horizontal axis represents time
- the vertical axis represents discharge electric energy indicating an upper limit value that permits discharge from the storage battery.
- it can also take discharge electric power instead of electric discharge electric energy (FIG. 10, 11, 13, 15 (2), 17 (2), 19 (2), 20 (2), 21 is also the same).
- one discharge time zone is from M hour to M + 1 hour (M is an integer from 0 to 23). Then, an upper limit value greater than 0 is determined in the time zone from 11:00 to 21:00, and 0 is determined as the upper limit value in other time zones.
- the specific value of the upper limit value larger than 0 determined in each discharge time zone is a design matter in the present embodiment, for example, it is determined based on the upper limit value determined in each discharge time zone. It may be determined so that the sum of the maximum power amounts does not exceed the discharge permission power amount determined based on the discharge capacity information.
- the price information acquisition unit 11 acquires power purchase price information indicating a power purchase price for each time zone of power supplied from the power system.
- the remaining discharge capacity information acquisition unit 12 acquires remaining discharge capacity information indicating the amount of power that can be supplied from the storage battery to the load. Note that the order of S11 and S12 may be reversed.
- the discharge schedule generation unit 13 uses the power purchase price information and the discharge surplus information, and the upper limit value of the power discharged from the storage battery in each of a plurality of discharge time zones divided for each unit time, or Then, a discharge schedule that determines the upper limit value of the electric energy is generated.
- the generated discharge schedule is transmitted from the storage battery management device 10 to the storage battery system 40.
- the storage battery system 40 that has acquired the discharge schedule controls the discharge of the storage battery according to the discharge schedule.
- the storage battery system 40 receives supply of power from the power system 45 and supplies it to the load 46.
- the storage battery system 40 supplies the power stored in the storage battery (battery pack 44) to the load 46.
- the power stored in the storage battery (battery pack 44) is supplied to the load 46 within a range that does not exceed the upper limit value of the power in the discharge time period defined in the discharge schedule. The power is supplied and supplied to the load 46.
- the electric power stored in the storage battery (battery pack 44) is not received from the electric power system 45 until the upper limit value of the electric energy in the discharge time period determined in the discharge schedule is reached.
- Supply to load 46 When the amount of power discharged from the storage battery (battery pack 44) reaches the upper limit value, the storage battery (battery pack 44) is not discharged from the storage battery (battery pack 44) in the discharge time zone, and power is supplied from the power system 45. , Supplied to the load 46. In this case, the accumulated value of the amount of power supplied from the storage battery (battery pack 44) to the load 46 is monitored in each discharge time zone.
- the present embodiment it is possible to generate a discharge schedule in which the upper limit value of the discharge power or the amount of discharge power from the storage battery is defined for each discharge time zone and cause the storage battery system 40 to discharge according to the discharge schedule. According to such this embodiment, the electric power charged in the storage battery can be systematically discharged.
- the present embodiment it is possible to generate a discharge schedule in which a larger upper limit value is determined in a discharge time zone in which the power purchase price is relatively high, and cause the storage battery system 40 to discharge according to the discharge schedule.
- the opportunity to receive power supply from the power system 45 is greater in the discharge time zone in which the power purchase price is relatively higher than in the discharge time zone in which the power purchase price is relatively low. Get smaller. As a result, it is possible to reduce the inconvenience of purchasing power from a power supplier during a discharge time period when the power purchase price is high.
- the total of the maximum power amount determined based on the upper limit value determined in each discharge time zone is a predetermined power amount (discharge permission power amount) determined based on the discharge remaining power information.
- the discharge schedule can be generated so as not to exceed the value, and the storage battery system 40 can be discharged according to the discharge schedule.
- the power corresponding to the maximum power amount determined based on the upper limit value is always stored in the storage battery, and the discharge There will never be a situation where there is no power reserve of the storage battery during the time period.
- a discharge schedule is generated with the discharge permission power amount set as a predetermined amount (for example, 80%, 70%, etc.) in the power amount indicated by the discharge remaining power information, and according to the discharge schedule.
- the storage battery system 40 can be discharged.
- a constant amount of power eg, 20%, 30%, etc.
- FIG. 5 An example of a functional block diagram of the storage battery management device 10 of the present embodiment is shown in FIG. 5 as in the first embodiment.
- the configurations of the price information acquisition unit 11 and the remaining discharge capacity information acquisition unit 12 are the same as those in the first embodiment.
- the discharge schedule generation unit 13 gives priority to the plurality of discharge time zones so that the priority order of the discharge time zones with a high power purchase price is high, and the upper limit value of the first discharge time zone is the first discharge time zone.
- the second embodiment differs from the first embodiment in that the discharge schedule is generated so as to be equal to or higher than the upper limit value of the second discharge time zone having a lower priority than the time zone.
- this priority order is referred to as “discharge priority order”.
- generation part 13 is the same as that of 1st Embodiment.
- the discharge schedule generation unit 13 assigns a discharge priority to a plurality of discharge time zones, and (2) the discharge schedule generation unit 13 uses the discharge priority order to set an upper limit value for the plurality of discharge time zones. The process of determining the will be described.
- FIG. 9 shows the magnitude of the power purchase price in each time slot, with time on the horizontal axis and the power purchase price on the vertical axis.
- the magnitude of the power purchase price in each time zone is based on the power purchase price information acquired by the price information acquisition unit 11.
- one discharge time zone is from M hour to M + 1 hour.
- the discharge schedule generation unit 13 After specifying the power purchase price for each time zone based on the power purchase price information, the discharge schedule generation unit 13 first determines a chargeable time zone for receiving power supply from the power system 45 and charging the storage battery with power. .
- the length of the chargeable time zone is a design matter.
- generation part 13 can make the time slot
- the discharge schedule generation unit 13 sets the chargeable time zone from 0 o'clock to 7 o'clock, which is a time zone of a predetermined length (7 hours) selected from the one with a lower power purchase price.
- the storage battery system 40 receives power supply from the power system 45 in the chargeable time zone and charges the storage battery with power.
- the discharge schedule generation unit 13 classifies the time zone excluding the chargeable time zone into a plurality of discharge time zones, and assigns a discharge priority order. Specifically, the discharge schedule generation unit 13 divides the time zone excluding the chargeable time zone into a plurality of discharge time zones for each predetermined unit time, and the power purchase price is divided into the plurality of discharge time zones. The discharge priority is assigned so that the discharge priority in the high discharge time zone becomes higher. It should be noted that various methods can be applied as to how the discharge priorities are assigned in the discharge time period where the power purchase price is the same. For example, the discharge priority in the discharge time zone at the previous time may be increased.
- discharge priorities as shown in FIG. 9 are assigned to a plurality of discharge time zones. In the illustrated discharge priority order, the smaller the numerical value, the higher the priority order (the same applies to all the following embodiments).
- the discharge schedule generation unit 13 sets the discharge priority so that the sum of the maximum power amounts determined based on the upper limit value determined in the discharge time zone does not exceed the discharge permission power amount determined based on the discharge remaining power information.
- the upper limit value larger than 0 is determined in order from the discharge time zone with the highest. And when the sum of the maximum electric energy determined based on the upper limit determined in the discharge time zone exceeds the discharge permission electric energy, 0 is determined as the upper limit for the remaining discharge time zone.
- the upper limit value greater than 0 is, for example, the maximum power that the storage battery can discharge with safety in terms of performance, or the maximum power amount that can be discharged per unit time (hereinafter referred to as “discharge maximum value”). It may be.
- the storage battery management device 10 may hold in advance information indicating the maximum discharge value of the storage battery as a characteristic of the storage battery system 40. For example, the manufacturer of the storage battery system 40 determines the maximum discharge value. And the discharge schedule production
- the discharge schedule generation unit 13 may determine this half-end portion as the discharge priority time zone of the next discharge priority order, or may ignore this half-end portion.
- the upper limit value greater than 0 may be determined based on the power purchase price information.
- the discharge schedule generation unit 13 may determine a predetermined number (design items) of discharge time zones from the higher discharge priority as discharge time zones for determining an upper limit value greater than zero. Then, the discharge permission electric energy may be apportioned according to the power purchase price in the discharge time period determined to determine an upper limit value greater than 0. Then, 0 may be determined as the upper limit value for a discharge time zone that is determined not to determine an upper limit value greater than 0. In such a case, as shown in FIG. 11, the upper limit value of the discharge time zone for which the upper limit value is determined to be greater than 0 is a value corresponding to the power purchase price of each discharge time zone.
- the upper limit value of the first discharge time zone is equal to or higher than the upper limit value of the second discharge time zone having a lower priority than the first discharge time zone.
- a discharge schedule can be generated efficiently.
- the discharge schedule is generated so that the upper limit value of the first discharge time period is equal to or higher than the upper limit value of the second discharge time period that is lower in priority than the first discharge time period. can do.
- the opportunity for receiving power supply from the power system 45 is such that the discharge priority is higher in the discharge time zone in which the discharge priority is relatively high (the power purchase price is relatively high). Is smaller than the discharge time period, which is relatively low (the power purchase price is relatively low). As a result, it is possible to reduce the inconvenience of purchasing power from a power supplier during a discharge time period when the power purchase price is high.
- the discharge schedule which determined the maximum electric power which can discharge a storage battery or the maximum electric energy (discharge maximum value) which can be discharged per unit time as an upper limit can be produced
- the storage battery management apparatus 10 generates a discharge schedule for enabling the power for the discharge permission power amount to be completely used up.
- the discharge schedule is a schedule that defines the upper limit value of discharge from the storage battery, and the actual discharge amount according to the schedule is less than this.
- the amount of power supplied to the load 46 is smaller than the upper limit value determined in the discharge schedule in a certain discharge time zone, the power of the storage battery is not discharged until the upper limit value is reached in that discharge time zone.
- the discharge schedule is generated so that the sum of the maximum power determined based on the upper limit determined in the discharge time zone does not exceed the discharge allowable power, and a discharge time zone that does not discharge to the maximum power amount occurs.
- the discharge permission power amount is not used up, and some power may be left.
- the power charged in the storage battery during the time when the power purchase price is low is not used up, but the discharge time zone assigned 0 as the upper limit (the time zone when the power purchase price is higher than the chargeable time zone) ), The inconvenience of purchasing power upon receiving power supply from the power system 45 occurs.
- the storage battery management device 10 of the present embodiment generates a discharge schedule for allowing the power for the discharge permission power amount to be used up.
- the discharge schedule is set so that the sum of the maximum electric energy determined based on the upper limit value determined in the discharge time zone greatly exceeds the discharge allowable electric energy. It is realized by generating. For example, it can be realized by determining a value sufficiently larger than 0 as the upper limit value in all discharge time zones.
- the amount of discharge from the storage battery during the discharge hours when the purchase price is relatively high and the discharge from the storage battery during the discharge hours when the purchase price is relatively low Need to be reduced. If a value sufficiently larger than 0 is determined as the upper limit value for a large number of discharge time zones, the power of the storage battery is used up in the discharge time zone where the purchase price is relatively low, and the discharge time zone where the purchase price is relatively high. There may be an inconvenience that no electric power remains in the storage battery.
- the storage battery management apparatus 10 generates a discharge schedule that can be discharged in a discharge time zone in which the power purchase price is relatively high and that the power for the discharge permission electric energy can be completely used up. .
- FIG. 5 An example of a functional block diagram of the storage battery management device 10 of the present embodiment is shown in FIG. 5 as in the first embodiment.
- the configurations of the price information acquisition unit 11 and the remaining discharge capacity information acquisition unit 12 are the same as those in the first embodiment.
- generation part 13 is demonstrated. Only the parts different from the first and second embodiments will be described, and the description of the common parts will be omitted as appropriate.
- the discharge schedule generation unit 13 includes a first group in which a plurality of discharge time zones are combined with a discharge time zone in which a power purchase price is relatively high, and a second group in which discharge time zones with a relatively low power purchase price are combined. Divide into groups.
- the discharge time zone included in the first group is a time zone that is always desired to be discharged from the storage battery in order to suppress the power charge paid to the power supplier.
- the discharge time zone included in the second group is a time zone in which the power purchase price is higher than the chargeable time zone, but the power purchase price is lower than the first group discharge time zone.
- the storage battery discharge priority is lower than the group discharge time zone, it is a time zone that should be discharged if the power of the storage battery has sufficient power.
- the discharge time zone is a time zone excluding the chargeable time zone described in the second embodiment.
- the discharge schedule generation unit 13 follows a standard as shown in FIG. 12 and stores a plurality of discharge time zones in the first group with a relatively high power purchase price and a relative power purchase price.
- the second group may be divided into a low second group.
- the discharge schedule generation unit 13 determines the maximum power amount determined based on the upper limit value determined for the discharge time zone included in the first group (the maximum value of the power amount that can be discharged in each discharge time zone). A discharge time zone included in the second group and a discharge time zone temporally prior to at least one discharge time zone included in the first group. The discharge schedule is generated so that the sum of the maximum total electric energy determined based on the upper limit value and the second total does not exceed the allowable discharge electric energy.
- generation part 13 is the discharge time zone contained in the 2nd group, Comprising: The upper limit determined in the discharge time zone temporally after all the discharge time zones contained in the 1st group The discharge schedule is generated so that the sum of the third total, which is the sum of the maximum power amounts determined based on the above, the first sum, and the second sum is equal to or greater than the discharge permission power amount. .
- the upper limit value is the maximum discharge value of the storage battery or 0.
- this upper limit value is the maximum electric energy.
- the upper limit value is indicated by electric power
- the discharge time zone included from 13:00 to 17:00 is the first group, and the other discharge time zones are the second group.
- the discharge priority order shown in each discharge time zone is given.
- the discharge priority shown in FIG. 13 is the same as the discharge priority shown in FIG.
- the discharge schedule generation unit 13 determines the maximum discharge value of the storage battery as the upper limit value in the four discharge time zones included in the first group according to the discharge priority order.
- the first sum is the sum of the maximum power amounts defined as described above. In the example shown in FIG. 13, a value obtained by multiplying the maximum power amount by four (13:00 to 14:00, 14:00 to 15:00, the sum of the maximum power amounts from 15:00 to 16:00, and 16:00 to 17:00).
- the discharge schedule generation unit 13 determines an upper limit value for the discharge time zone included in the second group in accordance with the discharge priority order.
- the next highest discharge priority is 11:00 to 12:00.
- This discharge time zone is a discharge time zone that is temporally prior to at least one discharge time zone included in the first group.
- the total of the maximum electric energy determined based on the upper limit value determined in such a discharge time zone is the second total.
- the discharge schedule generation unit 13 generates a discharge schedule so that the sum of the first total and the second total does not exceed the discharge allowable power amount. Therefore, when the discharge schedule generation unit 13 determines the maximum discharge value of the storage battery as the upper limit value in the discharge time period from 11:00 to 12:00, the sum of the first sum and the second sum is the discharge permission power amount. Judge whether or not. When not exceeding, the discharge schedule generation unit 13 determines the maximum discharge value of the storage battery as the upper limit value in the discharge time zone from 11:00 to 12:00. On the other hand, if it exceeds, the discharge schedule generation unit 13 determines 0 as the upper limit value in the discharge time zone from 11:00 to 12:00. In the case of the example shown in FIG. 13, the maximum discharge value of the storage battery is determined as the upper limit value in the discharge time zone from 11:00 to 12:00.
- the discharge schedule generation unit 13 treats the next highest discharge priority from 12:00 to 13:00. Also in this case, similarly to the above, when the discharge schedule generation unit 13 determines the maximum discharge value of the storage battery as the upper limit value in the discharge time zone from 12:00 to 13:00, the first sum and the second sum It is determined whether or not the sum exceeds the discharge permission electric energy. Then, according to the determination result, 0 or the maximum discharge value of the storage battery is determined as the upper limit value in the time period from 12:00 to 13:00. In the example shown in FIG. 13, 0 is determined as the upper limit value in the discharge time zone from 12:00 to 13:00.
- This discharge time zone is a discharge time zone that is later in time than all the discharge time zones included in the first group.
- the total of the maximum electric energy determined based on the upper limit value determined in such a discharge time zone is the third total.
- the discharge schedule generation unit 13 sets the discharge schedule so that the sum of the first sum, the second sum, and the third sum is equal to or greater than a predetermined amount of power that is determined based on the remaining power information. Is generated. For example, the discharge schedule generation unit 13 sets the storage battery in all the discharge time zones that are later in time than all the discharge time zones included in the first group among the discharge time zones included in the second group. The maximum discharge value is determined as the upper limit value.
- the discharge schedule generation unit 13 generates a discharge schedule as shown in FIG.
- the discharge schedule can be generated so that the sum of the first sum and the second sum does not exceed the discharge permission power amount. According to the present embodiment as described above, it is possible to suppress the inconvenience that the power of the storage battery is used up before the discharge time period included in the first group and the power cannot be discharged from the storage battery in the discharge time period.
- the discharge schedule is generated so that the sum of the first sum, the second sum, and the third sum exceeds the discharge permission power amount, preferably sufficiently exceeds the discharge permission power amount. can do.
- the discharge maximum value of the storage battery can be determined as the upper limit value in all the discharge time zones that are later in time than all the discharge time zones included in the first group.
- the power equivalent to the discharge allowable power amount is supplied by the end of the discharge process according to the discharge schedule (for example, at the time of 24 o'clock in the case of the discharge schedule from 0 o'clock to 24 o'clock). It can be used up.
- This embodiment is different from the first to third embodiments in that a discharge schedule is generated by further using demand prediction information indicating a power demand prediction of the load 46.
- FIG. 14 shows an example of a functional block diagram of the storage battery management device 10 of the present embodiment.
- the storage battery management apparatus 10 includes a price information acquisition unit 11, a remaining discharge capacity information acquisition unit 12, a discharge schedule generation unit 13, and a demand prediction information acquisition unit 14.
- the configurations of the price information acquisition unit 11 and the remaining discharge capacity information acquisition unit 12 are the same as those in the first to third embodiments. Hereinafter, differences from the first to third embodiments will be described.
- the demand prediction information acquisition unit 14 acquires demand prediction information indicating a power demand prediction of the load 46.
- the demand prediction information is information indicating the power demand for each time zone.
- the demand prediction information may be information determined based on past results, for example.
- the storage battery system 40 may transmit information indicating the actual amount of power supplied to the load 46 connected to the PCS 41 to the storage battery management device 10.
- the storage battery management device 10 may accumulate such results and generate demand prediction information using a predetermined algorithm. How to generate demand forecast information in this embodiment is a matter of design.
- the discharge schedule generation unit 13 further uses the demand prediction information acquired by the demand prediction information acquisition unit 14 to generate a discharge schedule. Specifically, the discharge schedule production
- generation part 13 can determine the predetermined electric energy more than the value of the electric power demand prediction (Wh) in a 1st discharge time slot
- the upper limit value of power can be determined based on the determined predetermined power amount. Note that a value that is larger than the value of the power demand prediction (Wh) is not determined as the predetermined power amount, but a value that is large enough to absorb the power demand prediction error to some extent is determined as the predetermined power amount. Is preferred.
- the discharge schedule generation unit 13 calculates a value obtained by multiplying the power demand prediction (Wh) in this discharge time period by a predetermined coefficient of 1 or more and smaller than 2, or a value obtained by adding a predetermined amount of power that is not too large.
- the predetermined amount of power may be determined.
- the discharge schedule generation unit 13 may set min (a value determined based on power demand prediction, a maximum discharge value) as an upper limit value.
- min (a, b) takes the smaller value of a and b.
- the horizontal axis indicates the time
- the vertical axis indicates the power purchase price
- the magnitude of the power purchase price in each time zone is indicated by a bar graph.
- the magnitude of power demand prediction in each time zone is shown by dotted lines.
- one discharge time zone is from M hour to M + 1 hour.
- the horizontal axis represents time
- the vertical axis represents discharge electric energy (Wh) indicating an upper limit value for permitting discharge from the storage battery.
- Wh discharge electric energy
- the magnitude of power demand prediction in each time zone is shown by dotted lines.
- the discharge priority determined according to the power purchase price in each discharge time zone is shown.
- the discharge priority shown in (2) of FIG. 15 is the same as the discharge priority shown in FIG.
- the discharge schedule generation unit 13 determines an upper limit value that is larger than 0 in order from a discharge time zone having a high discharge priority, and the sum of the maximum power amounts determined based on the upper limit value determined in the discharge time zone is the discharge permission power amount. A discharge schedule is generated so as not to exceed.
- the discharge schedule generation unit 13 treats the discharge time zone having the highest discharge priority as from 13:00 to 14:00. And the discharge schedule production
- the discharge schedule generation unit 13 treats the discharge time zone having the next highest discharge priority, from 14:00 to 15:00. And the discharge schedule production
- the discharge schedule generation unit 13 determines the upper limit value candidate as the upper limit value from 14:00 to 15:00. On the other hand, if it exceeds, the discharge schedule generator 13 determines 0 as the upper limit value in the discharge time zone from 14:00 to 15:00. And the discharge schedule production
- the upper limit value is determined based on the power demand prediction in the first and second embodiments.
- the upper limit value may be determined based on the power demand prediction. Is possible.
- the present embodiment since it is possible to generate a discharge schedule in which an upper limit value is determined based on power demand prediction, there is no need to determine an unnecessarily large upper limit value. In order to suppress the purchase of power from the power supplier in the discharge time zone where the power purchase price is high, it is preferable to determine a sufficiently large upper limit value for the discharge time zone. However, if an unnecessarily large upper limit value is determined, the difference between the amount of power actually used in the discharge time zone and the upper limit value determined in the discharge time zone becomes large, and the accuracy of the discharge control is lowered.
- the discharge schedule when the discharge schedule is generated so that the sum of the maximum power amounts determined based on the upper limit value determined in the discharge time zone does not exceed the discharge allowable power amount, the discharge time that can determine an upper limit value greater than 0 The band becomes smaller, and the remaining amount of electric power at the end point of the discharge process according to the discharge schedule (for example, in the case of the discharge schedule from 0 o'clock to 24 o'clock, 24 o'clock) increases.
- the present embodiment it is possible to determine the upper limit value that is not unnecessarily large and is less likely to become smaller than the amount of power that is actually used in the discharge time zone, based on the power demand prediction. As a result, the accuracy of discharge control is increased.
- This embodiment is different from the first to fourth embodiments in that a discharge schedule is generated by further using power generation prediction information indicating power generation amount prediction for each time zone of the power generation device 47.
- FIG. 16 shows an example of a functional block diagram of the storage battery management device 10 of the present embodiment.
- the storage battery management device 10 includes a price information acquisition unit 11, a discharge capacity information acquisition unit 12, a discharge schedule generation unit 13, and a power generation prediction information acquisition unit 15.
- the demand prediction information acquisition unit 14 may be further included.
- the configurations of the price information acquisition unit 11, the remaining discharge capacity information acquisition unit 12, and the demand prediction information acquisition unit 14 are the same as those in the first to fourth embodiments. Hereinafter, differences from the first to fourth embodiments will be described.
- the power generation prediction information acquisition unit 15 is a power supply source different from that of the power system 45 and performs power generation amount prediction for each time zone of the power generation device 47 that supplies power to the storage battery (battery pack 44) included in the load 46 or the storage battery system 40.
- the power generation prediction information shown is acquired.
- the means for generating the power generation amount prediction is a design matter.
- the power generation amount prediction may be generated using information such as a weather forecast.
- the discharge schedule generation unit 13 further uses the power generation prediction information to generate a discharge schedule.
- the horizontal axis indicates the time
- the vertical axis indicates the power purchase price
- the magnitude of the power purchase price in each time zone is indicated by a bar graph.
- the magnitude of the power generation amount prediction in each time zone is shown by lines. In the example shown in the figure, one discharge time zone is from M hour to M + 1 hour.
- the horizontal axis represents time
- the vertical axis represents discharge electric energy (Wh) indicating an upper limit value for permitting discharge from the storage battery.
- the discharge priority of each discharge time zone is shown. The discharge priority is determined according to the following rules. ⁇ Give higher discharge priority in order from the discharge time zone in which the electricity purchase price is higher. ⁇ Discharge time zones with the same power purchase price will be given a higher discharge priority in order from the discharge time zone with the least power generation forecast. -Discharge time zones with the same power purchase price and power generation amount prediction will be given a higher discharge priority in order from the earlier discharge time zone.
- the discharge schedule generation unit 13 sets the discharge schedule so that the sum of the maximum power amounts determined based on the upper limit value determined in the discharge time zone does not exceed the discharge permission power amount.
- a discharge schedule as shown in (2) of FIG. 17 can be generated.
- the upper limit value of (2) of FIG. 17 is a discharge maximum value
- the other value demonstrated in the said embodiment can also be made into an upper limit value.
- the discharge schedule generation unit 13 may set min (maximum discharge value, max (0, power demand prediction ⁇ power generation amount prediction) + ⁇ ) as an upper limit value.
- max (a, b) takes the larger value of a and b.
- the discharge schedule can be generated by the method described in the third embodiment.
- the horizontal axis indicates the time
- the vertical axis indicates the power purchase price
- the magnitude of the power purchase price in each time zone is indicated by a bar graph.
- the magnitude of the power generation amount prediction in each time zone is shown by lines.
- the price at which the power generated by the power generation device 47 is sold to the power supplier is indicated by a line.
- the price information acquisition unit 11 may acquire power sale price information indicating the power sale price of the power generated by the power generation device 47.
- one discharge time zone is from M hour to M + 1 hour.
- the power selling price is constant regardless of the time zone, but may be a different value for each time zone (the same applies to all the embodiments).
- generation part 13 produces
- the power generated by the power generation device 47 is supplied to the load 46 or the storage battery.
- the power generated by the power generation device 47 is not supplied to the load 46 and the storage battery.
- the power selling price is equal to or lower than the power purchasing price, it is better to supply the power generated by the power generator 47 to the load 46 or the storage battery instead of selling it.
- the power sale price is higher than the power purchase price, it is better to sell the power generated by the power generation device 47 rather than supplying it to the load 46 or the storage battery.
- the premise that “the power generated by the power generation device 47 is not supplied to the load 46 and the storage battery in a time zone in which the power sale price is higher than the power purchase price” is merely to create a discharge schedule (each discharge This is a precondition assumed in order to determine the upper limit value of the time zone, and it does not necessarily mean that the power operation must be performed according to the premise. That is, the storage battery system 40 supplies the power generated by the power generation device 47 to the load 46 and the storage battery in a time zone in which the power sale price is higher than the power purchase price when discharging according to the discharge schedule created based on the premise. May be.
- power supply amount prediction shows a power generation amount prediction in a time zone in which the power selling price is lower than the power purchasing price. That is, the prediction of the amount of power supplied from the power generation device 47 to the load 46 or the storage battery (hereinafter “power supply amount prediction”) is shown.
- the discharge schedule generation unit 13 may generate the discharge schedule by using the power supply amount prediction instead of the power generation amount prediction, similarly giving the discharge priority order.
- the horizontal axis indicates the time
- the vertical axis indicates the power purchase price
- the magnitude of the power purchase price in each time zone is indicated by a bar graph.
- the magnitude of power demand prediction in each time zone is shown by dotted lines.
- the magnitude of the power supply prediction in each time zone is indicated by a line.
- one discharge time zone is from M hour to M + 1 hour.
- the horizontal axis represents time
- the vertical axis represents discharge electric energy (Wh) indicating an upper limit value for permitting discharge from the storage battery.
- the discharge priority of each discharge time zone is shown.
- the discharge priority is determined according to the following rules. ⁇ Precedence of discharge priority is assigned in order from the discharge time zone where the power supply amount prediction is less than the power demand prediction. ⁇ When there are multiple discharge time zones where the power supply amount prediction is less than or equal to the power demand prediction, a higher discharge priority is assigned in order from the discharge time zone with the highest purchase price. ⁇ Discharge time zones with the same power purchase price will be given a higher discharge priority in order from the earlier discharge time zone.
- the discharge schedule generation unit 13 generates a discharge schedule according to the discharge priority order determined in this way so that the sum of the upper limit values determined in the discharge time zone does not exceed the discharge allowable power amount ( A discharge schedule as in 2) can be generated.
- the upper limit value of (2) in FIG. 19 is the maximum discharge value, other values described so far can be used as the upper limit value.
- the discharge schedule can be generated by the method described in the third embodiment.
- generation part 13 can produce
- the discharge schedule generation unit 13 supplies power from the power generation device 47 to the load 46 rather than from the power supply from the storage battery to the load 46 in a discharge time zone in which power can be supplied from the power generation device 47 to the load 46 or the storage battery.
- the discharge schedule may be generated with priority.
- the storage battery system 40 prioritizes the power supply from the power generation device 47 to the load 46 over the power supply from the storage battery to the load 46. I do.
- the discharge schedule can be generated based on the power generation amount prediction of the power generation device 47, an appropriate discharge schedule can be generated in consideration of the power generation amount of the power generation device 47.
- the time period for selling the power generated by the power generation device 47 and the time period for supplying power to the storage battery or the load 46 are It is possible to generate a discharge schedule that preferentially uses the electric power generated by the power generation device 47 in the discharge time zone included in the time zone determined to be divided and supplied to the storage battery or the load 46. As a result, the power generated by the power generation device 47 can be used effectively.
- FIG. 16 An example of a functional block diagram of the storage battery management device 10 of the present embodiment is shown in FIG. 16 as in the fifth embodiment.
- the configurations of the price information acquisition unit 11, the discharge capacity information acquisition unit 12, the demand prediction information acquisition unit 14, and the power generation prediction information acquisition unit 15 are the same as those in the first to fifth embodiments. Hereinafter, differences from the first to fifth embodiments will be described.
- the discharge schedule generation unit 13 can supply the load 46 from the storage battery based on the change in the charge amount of the storage battery resulting from the power supply from the power generation device 47 to the storage battery, using the remaining power information and the power generation prediction information. A time-series change in the electric energy is calculated. And the discharge schedule production
- the horizontal axis represents time
- the vertical axis represents generated surplus power.
- the surplus power generated is the amount of power generated when the power demand prediction specified by the demand prediction information is subtracted from the power generation prediction specified by the power generation prediction information. If the power demand prediction is larger than the power generation prediction, the generated surplus power is zero.
- the generated surplus power may be a surplus power generation amount when the power demand prediction specified by the demand prediction information is subtracted from the power supply amount prediction described in the fifth embodiment.
- the discharge schedule generation unit 13 calculates a change in the amount of charge of the storage battery on the assumption that the calculated surplus power generated as described above is charged to the storage battery.
- the horizontal axis represents time
- the vertical axis represents discharge electric energy (Wh) indicating an upper limit value for permitting discharge from the storage battery.
- Wh discharge electric energy
- the magnitude of the value obtained by subtracting the power generation amount prediction from the power demand prediction in each time zone is indicated by a dotted line.
- the discharge priority determined according to the power purchase price in each discharge time zone is shown.
- the discharge priority shown in (2) of FIG. 20 is the same as the discharge priority shown in FIG. In the example shown in the figure, one discharge time zone is from M hour to M + 1 hour.
- the upper limit value of the discharge electric energy is set so that the sum of the upper limit values does not exceed the discharge allowable electric energy in order from the discharge time zone with the highest discharge priority.
- the upper limit value greater than 0 is determined based on the power demand prediction of the load 46 (see the fourth embodiment).
- the horizontal axis represents time
- the vertical axis represents storage battery charge (Wh).
- zone storage battery charge
- zone the change of the charge amount of the storage battery when it discharges to an upper limit in each discharge time slot
- zone is shown with a dotted line according to the discharge schedule of (2) of FIG.
- the line is discharged to the upper limit value in each discharge time zone in accordance with the discharge schedule of (2) in FIG. 20, and the power generation surplus power shown in (1) of FIG. 20 is charged to the storage battery at that timing
- the change of the charge amount of the storage battery in is shown.
- the discharge schedule generation unit 13 calculates a time-series change in the amount of power (discharge permitted power amount) that can be supplied from the storage battery to the load 46 based on the change in the charge amount of the storage battery, and considers the change. To generate a discharge schedule. For example, in the discharge time zone after the timing of charging the generated power surplus power, the discharge schedule is generated with the added power generated surplus power as dischargeable power. Then, the storage battery system 40 charges the storage battery when surplus power is generated. Specifically, as a result of charging the surplus power shown in FIG. 20 (3) and increasing the discharge permission power amount, the time zones (discharging priority order of 19-20 o'clock and 20-21 o'clock shown in FIG. 20 (2)).
- the discharge schedule is generated based on the premise that the power generation surplus power that has not been sold and supplied to the load 46 among the power generated by the power generation device 47 is charged to the storage battery. Therefore, an appropriate discharge schedule can be generated in consideration of the power generation amount of the power generation device 47 and the demand prediction of the load 46.
- the discharge schedule can be generated so that the generated surplus power is used up, for example, as the power that can be discharged.
- the power generated by the power generation device 47 can be used effectively.
- FIGS. 5, 14 and 16 An example of a functional block diagram of the storage battery management device 10 of the present embodiment is shown in FIGS. 5, 14 and 16 as in the first to sixth embodiments.
- the configurations of the price information acquisition unit 11, the demand prediction information acquisition unit 14, and the power generation prediction information acquisition unit 15 are the same as those in the first to sixth embodiments.
- differences from the first to sixth embodiments will be described.
- the discharge capacity information acquisition unit 12 acquires updated discharge capacity information indicating the amount of power that can be supplied from the storage battery to the load 46 at the predetermined timing.
- the remaining discharge capacity information acquisition unit 12 acquires updated discharge capacity information from the storage battery system 40 at a predetermined timing while the storage battery system 40 performs the discharge process according to the discharge schedule.
- the predetermined timing may be a predetermined time such as 10:00, 12:00, 15:00, or the like.
- the predetermined timing may be a timing immediately after the end of a single discharge time zone.
- the predetermined timing may be a timing at which generated power is supplied from the power generation device 47 to the storage battery.
- the discharge schedule generation unit 13 updates the discharge schedule after a predetermined timing using the updated discharge remaining power information. Specifically, in the discharge schedule generation method described in the above embodiment, the discharge schedule generation unit 13 newly generates a discharge schedule by using the updated discharge capacity information instead of the discharge capacity information.
- the actual amount of electric power that can be supplied from the storage battery to the load 46 at that time is grasped, and based on the grasped value A discharge schedule can be generated.
- the discharge schedule is a schedule that defines the upper limit value of discharge from the storage battery, and the actual discharge amount according to the schedule is less than this.
- the discharge is not performed up to the maximum power amount determined based on the upper limit value in the discharge time zone.
- the charge amount of a storage battery changes by charging surplus electric power generation to a storage battery.
- the power generation device 47 is a device that generates power using natural energy, it is difficult to accurately predict the amount of power generation, and it may be significantly different.
- the actual amount of power that can be supplied from the storage battery to the load 46 at that time is grasped, and the discharge is performed based on the grasped value. Since the schedule can be generated, it is possible to reduce the occurrence of the inconvenience as described above.
- FIGS. 5, 14 and 16 An example of a functional block diagram of the storage battery management device 10 of the present embodiment is shown in FIGS. 5, 14 and 16 as in the first to seventh embodiments.
- the configurations of the remaining discharge capacity information acquisition unit 12, the demand prediction information acquisition unit 14, and the power generation prediction information acquisition unit 15 are the same as those in the first to seventh embodiments. Hereinafter, differences from the first to seventh embodiments will be described.
- the price information acquisition unit 11 further acquires privilege information indicating a privilege for each time period according to the amount of power supplied from the power system 45.
- the privilege information may indicate that a predetermined privilege is obtained when the amount of power supplied from the power system 45 in the first time zone is less than a predetermined value, for example.
- the discharge schedule generation unit 13 further uses the privilege information to generate a discharge schedule. For example, the discharge schedule generation unit 13 may assign an upper limit value larger than the other discharge time zones to the discharge time zone included in the first time zone. Or the discharge schedule production
- the horizontal axis represents time
- the vertical axis represents discharge electric energy (Wh) indicating an upper limit value for permitting discharge from the storage battery.
- Wh discharge electric energy
- the privilege can receive money according to the magnitude of the difference.
- FIG. 21 shows the discharge priority in each discharge time zone.
- the discharge priority is determined according to the following rules. ⁇ Give higher discharge priority in order from the discharge time zone with benefits. -When there are multiple discharge time zones with benefits, give higher discharge priority in order from the discharge time zones with greater benefits. ⁇ When there are multiple discharge time zones with the same privilege level, the highest discharge priority is given in order from the discharge time zone with the highest power purchase price. ⁇ When there are multiple discharge time zones without benefits, the highest discharge priority is given in order from the discharge time zone with the highest power purchase price. ⁇ Discharge time zones with the same power purchase price will be given a higher discharge priority in order from the earlier discharge time zone.
- the discharge schedule generation unit 13 generates a discharge schedule according to the discharge priority order determined in this way so that the sum of the upper limit values determined in the discharge time zone does not exceed the discharge allowable power amount, as shown in FIG. A simple discharge schedule.
- the upper limit value of FIG. 21 is a discharge maximum value, the other value demonstrated in the said embodiment can also be made into an upper limit value.
- the discharge schedule is generated so that the sum of the upper limit values determined in the discharge time period does not exceed the discharge allowable power amount after the discharge priority is determined, but the discharge priority is determined. Thereafter, the discharge schedule can be generated by the method described in the third embodiment.
- the storage battery management apparatus Based on discharge capacity information indicating the amount of power that can be supplied from the storage battery to the load, the upper limit value of the power discharged from the storage battery for each discharge time zone divided every unit time, or the power discharged from the storage battery
- the storage battery management apparatus characterized by determining the upper limit of quantity. 2.
- the storage battery management apparatus which determines the said upper limit based on the information regarding the electric power supplied to the said storage battery, and the said discharge capacity information.
- the information regarding the electric power is a storage battery management device which is power purchase price information indicating a power purchase price for each time zone. 4).
- the storage battery management apparatus which determines the said upper limit so that the said discharge time zone where the said power purchase price is relatively higher becomes larger than the said discharge time zone where the said electricity purchase price is relatively low. 5.
- the storage battery management apparatus which determines the said upper limit so that it may become more than the said upper limit of the said 2nd time slot
- a predetermined power that is determined based on the discharge remaining power information, and a sum of the second total that is the sum of the maximum power amounts of the discharge time period temporally prior to at least one of the discharge time periods The storage battery management apparatus which produces
- the discharge time zone included in the second group which is the sum of the maximum electric energy in the discharge time zone that is temporally later than all the discharge time zones included in the first group.
- the storage battery management apparatus which determines either the maximum electric power which the said storage battery can discharge with respect to each said discharge time slot
- a storage battery management device that determines, as the upper limit value, a maximum amount of power that the storage battery can discharge per unit time and a predetermined value smaller than the maximum amount of power for each of the discharge time periods . 10.
- the storage battery management apparatus which determines the said upper limit further using the demand forecast information which shows the electric power demand forecast of the said load. 11. 10.
- the storage battery management device 10
- the storage battery management apparatus which determines the value more than the value of the said power demand prediction in the said discharge time slot
- the storage battery management apparatus which determines the said upper limit further using the electric power generation prediction information which shows the electric power generation amount prediction for every time slot
- the storage battery management apparatus which determines the said upper limit value further using the power sale price information which shows the power sale price of the electric power which the said power generation apparatus generated.
- the power generated by the power generation device In the time zone where the power selling price is less than or equal to the power purchasing price, the power generated by the power generation device is supplied to the load or the storage battery, In the time zone in which the power selling price is higher than the power purchasing price, the power generated by the power generator is not supplied to the load and the storage battery.
- a storage battery management device that determines the upper limit value on the premise. 15.
- updated discharge remaining power information indicating the amount of power that can be supplied from the storage battery to the load at that timing is acquired, and the updated discharge remaining power information is further used to perform the discharge time period after the predetermined timing.
- the storage battery management apparatus which updates the said upper limit. 16.
- the storage battery management apparatus which determines the said upper limit further using the privilege information which shows the privilege for every time slot
- the privilege information indicates that a predetermined privilege is obtained when the amount of power supplied from the power system in the first time period is less than a predetermined value.
- the storage battery management apparatus which determines the said upper limit larger than the said other discharge time slot
- the maximum amount of power that can be discharged in each discharge time period specified based on the upper limit value of the power or the upper limit value of the power amount is obtained by subtracting a predetermined amount from the amount of power that can be supplied from the storage battery to the load.
- Battery management device that is the amount of electricity. 19.
- the storage battery management apparatus which determines the chargeable time zone which the said storage battery acquires electric power from the said electric power grid
- the storage battery management method which determines the said upper limit based on the information regarding the electric power which the said computer supplies to the said storage battery, and the said discharge capacity information. 21-3.
- the information on the power is a storage battery management method which is power purchase price information indicating a power purchase price for each time zone. 21-4.
- the computer prioritizes the discharge time period so that the priority of the discharge time period when the power purchase price is high is higher, and the upper limit value of the first discharge time period is the first value.
- the storage battery management method which determines the said upper limit so that it may become more than the said upper limit of the said 2nd time slot
- the computer is A first group in which the plurality of discharge time zones are combined with the discharge time zones in which the power purchase price is relatively high, and a second group in which the discharge time zones with the relatively low power purchase price are combined. Divided into Based on the upper limit value of the electric power or the upper limit value of the electric energy, the maximum electric energy that can be discharged in each discharge time zone is specified, A first total that is a sum of the maximum power amounts of the discharge time periods included in the first group, and a discharge time period that is included in the second group, and is included in the first group.
- a predetermined power that is determined based on the discharge remaining power information, and a sum of the second total that is the sum of the maximum power amounts of the discharge time period temporally prior to at least one of the discharge time periods The storage battery management method which produces
- the computer is The discharge time zone included in the second group, which is the sum of the maximum electric energy in the discharge time zone that is temporally later than all the discharge time zones included in the first group.
- the storage battery management method in which the computer determines, as the upper limit value, a maximum power that can be discharged by the storage battery and a predetermined value that is smaller than the maximum power for each of the discharge time periods. 21-9. In the storage battery management method according to any one of 21-3 to 21-7, The computer determines, as the upper limit value, any one of a maximum amount of power that the storage battery can discharge per unit time and a predetermined value smaller than the maximum amount of power for each of the discharge time periods. Storage battery management method. 21-10.
- the computer is In the time zone where the power selling price is less than or equal to the power purchasing price, the power generated by the power generation device is supplied to the load or the storage battery, In the time zone in which the power selling price is higher than the power purchasing price, the power generated by the power generator is not supplied to the load and the storage battery.
- the computer acquires updated discharge capacity information indicating the amount of electric power that can be supplied from the storage battery to the load at the predetermined timing, and further uses the updated discharge capacity information, and after the predetermined timing.
- the privilege information indicates that a predetermined privilege is obtained when the amount of power supplied from the power system in the first time period is less than a predetermined value.
- the maximum amount of power that can be discharged in each discharge time period specified based on the upper limit value of the power or the upper limit value of the power amount is obtained by subtracting a predetermined amount from the amount of power that can be supplied from the storage battery to the load. Storage battery management method that is the amount of electricity. 21-19.
- the storage battery management method in which the computer determines a chargeable time zone in which the storage battery acquires power from the power system and charges, and determines a time zone excluding the chargeable time zone as the discharge time zone. 22. On the computer, Based on discharge capacity information indicating the amount of power that can be supplied from the storage battery to the load, the upper limit value of the power discharged from the storage battery for each discharge time zone divided every unit time, or the power discharged from the storage battery A program for causing the process of determining the upper limit of the quantity to be carried out. 22-2.
- the program for making the said computer implement the process of determining the said upper limit based on the information regarding the electric power supplied to the said storage battery, and the said discharge capacity information. 22-3.
- the information on the power is a program that is power purchase price information indicating a power purchase price for each time zone. 22-4.
- the computer is prioritized in the discharge time zone so that the priority of the discharge time zone in which the power purchase price is high is higher, and the upper limit value of the first discharge time zone is the first value.
- the computer In the program described in any one of 22-3 to 22-5, In the computer, A first group in which the plurality of discharge time zones are combined with the discharge time zones in which the power purchase price is relatively high, and a second group in which the discharge time zones with the relatively low power purchase price are combined.
- the maximum electric energy that can be discharged in each discharge time zone is specified, A first total that is a sum of the maximum power amounts of the discharge time periods included in the first group, and a discharge time period that is included in the second group, and is included in the first group.
- a predetermined power that is determined based on the discharge remaining power information, and a sum of the second total that is the sum of the maximum power amounts of the discharge time period temporally prior to at least one of the discharge time periods
- the discharge schedule is such that the sum of the third sum, the first sum, and the second sum is equal to or greater than the predetermined power amount determined based on the discharge remaining power information.
- a program for executing the process of generating the. 22-8. In the program described in any one of 22-3 to 22-7, For causing the computer to execute, as the upper limit value, any one of a maximum power that can be discharged by the storage battery and a predetermined value smaller than the maximum power for each of the discharge time periods. program. 22-9.
- the computer determines, as the upper limit value, a maximum amount of power that the storage battery can discharge per unit time and a predetermined value smaller than the maximum amount of power for each of the discharge time periods.
- the program for making the said computer implement the process of determining the value more than the value of the said power demand prediction in the said discharge time slot
- the program for making the said computer implement the process of determining the said upper limit further using the electric power selling price information which shows the electric power selling price of the electric power which the said electric power generation apparatus generated. 22-14.
- the computer In the program described in 22-13, In the computer, In the time zone where the power selling price is less than or equal to the power purchasing price, the power generated by the power generation device is supplied to the load or the storage battery, In the time zone in which the power selling price is higher than the power purchasing price, the power generated by the power generator is not supplied to the load and the storage battery.
- the computer obtains updated discharge remaining power information indicating the amount of power that can be supplied from the storage battery to the load at the predetermined timing, and further uses the updated discharge remaining power information to provide a later time than the predetermined timing.
- the program for making the said computer implement the process of determining the said upper limit further using the privilege information which shows the privilege for every time slot
- the privilege information indicates that a predetermined privilege is obtained when the amount of power supplied from the power system in the first time period is less than a predetermined value.
- the maximum amount of power that can be discharged in each discharge time period specified based on the upper limit value of the power or the upper limit value of the power amount is obtained by subtracting a predetermined amount from the amount of power that can be supplied from the storage battery to the load.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Business, Economics & Management (AREA)
- Health & Medical Sciences (AREA)
- Economics (AREA)
- Public Health (AREA)
- Water Supply & Treatment (AREA)
- General Health & Medical Sciences (AREA)
- Human Resources & Organizations (AREA)
- Marketing (AREA)
- Primary Health Care (AREA)
- Strategic Management (AREA)
- Tourism & Hospitality (AREA)
- Physics & Mathematics (AREA)
- General Business, Economics & Management (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Supply And Distribution Of Alternating Current (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
蓄電池から負荷に供給可能な電力量を示す放電余力情報に基づいて、単位時間毎に区分けされた放電時間帯毎に前記蓄電池から放電される電力の上限値、又は、前記蓄電池から放電される電力量の上限値を決定することを特徴とする蓄電池管理装置が提供される。
コンピュータが、
蓄電池から負荷に供給可能な電力量を示す放電余力情報に基づいて、単位時間毎に区分けされた放電時間帯毎に前記蓄電池から放電される電力の上限値、又は、前記蓄電池から放電される電力量の上限値を決定する蓄電池管理方法が提供される。
コンピュータに、
蓄電池から負荷に供給可能な電力量を示す放電余力情報に基づいて、単位時間毎に区分けされた放電時間帯毎に前記蓄電池から放電される電力の上限値、又は、前記蓄電池から放電される電力量の上限値を決定する工程を実施させるためのプログラムが提供される。
まず、本実施形態の蓄電池管理装置の適用例について説明する。図1は、本実施形態の蓄電池管理装置の第1の適用例を示す図である。
本実施形態の蓄電池管理装置10は、任意のコンピュータのCPU(Central Processing Unit)、メモリ、メモリにロードされたプログラム(あらかじめ装置を出荷する段階からメモリ内に格納されているプログラムのほか、CD(Compact Disc)等の記憶媒体やインターネット上のサーバ等からダウンロードされたプログラムも含む)、そのプログラムを格納するハードディスク等の記憶ユニット、ネットワーク接続用インタフェイスを中心にハードウエアとソフトウエアの任意の組合せによって実現される。そして、その実現方法、装置にはいろいろな変形例があることは、当業者には理解されるところである。
本実施形態の蓄電池管理装置は、蓄電池から負荷に供給可能な電力量を示す放電余力情報に基づいて、単位時間毎に区分けされた放電時間帯毎に蓄電池から放電される電力の上限値、又は、蓄電池から放電される電力量の上限値を決定する。本実施形態の蓄電池管理装置は、蓄電池に供給する電力に関する情報と、放電余力情報と、に基づいて、上記上限値を決定することができる。電力に関する情報は、例えば、時間帯毎の買電価格を示す買電価格情報である。
本実施形態の蓄電池管理装置10の機能ブロック図の一例は、第1の実施形態同様、図5で示される。価格情報取得部11及び放電余力情報取得部12の構成は、第1の実施形態と同様である。
本実施形態の蓄電池管理装置10は、放電許可電力量分の電力を完全に使い切ることかできるようにするための放電スケジュールを生成する。
本実施形態は、負荷46の電力需要予測を示す需要予測情報をさらに利用して、放電スケジュールを生成する点で、第1乃至第3の実施形態と異なる。
本実施形態は、発電装置47の時間帯毎の発電量予測を示す発電予測情報をさらに利用して、放電スケジュールを生成する点で、第1乃至第4の実施形態と異なる。
・ 買電価格が高い放電時間帯から順に高い放電優先順位を付す。
・ 買電価格が同じ放電時間帯には、発電量予測が少ない放電時間帯から順に高い放電優先順位を付す。
・ 買電価格、及び、発電量予測が同じ放電時間帯には、時刻が早い放電時間帯から順に高い放電優先順位を付す。
・ 売電価格が買電価格以下の時間帯においては、発電装置47が発電した電力は負荷46又は蓄電池に供給される。
・ 売電価格が買電価格より高い時間帯においては、発電装置47が発電した電力が負荷46及び蓄電池に供給されない。
・ 電力供給量予測が電力需要予測以下の放電時間帯から順に高い放電優先順位を付す。
・ 電力供給量予測が電力需要予測以下の放電時間帯が複数ある場合、買電価格が高い放電時間帯から順に高い放電優先順位を付す。
・ 買電価格が同じ放電時間帯には、時刻が早い放電時間帯から順に高い放電優先順位を付す。
本実施形態の蓄電池管理装置10の機能ブロック図の一例は、第5の実施形態同様、図16示される。価格情報取得部11、放電余力情報取得部12、需要予測情報取得部14及び発電予測情報取得部15の構成は、第1乃至第5の実施形態と同様である。以下、第1乃至第5の実施形態と異なる点を説明する。
本実施形態の蓄電池管理装置10の機能ブロック図の一例は、第1乃至第6の実施形態同様、図5、14及び16で示される。価格情報取得部11、需要予測情報取得部14及び発電予測情報取得部15の構成は、第1乃至第6の実施形態と同様である。以下、第1乃至第6の実施形態と異なる点を説明する。
本実施形態の蓄電池管理装置10の機能ブロック図の一例は、第1乃至第7の実施形態同様、図5、14及び16で示される。放電余力情報取得部12、需要予測情報取得部14及び発電予測情報取得部15の構成は、第1乃至第7の実施形態と同様である。以下、第1乃至第7の実施形態と異なる点を説明する。
・ 特典がある放電時間帯から順に高い放電優先順位を付す。
・ 特典がある放電時間帯が複数ある場合、特典が大きい放電時間帯から順に高い放電優先順位を付す。
・ 特典のレベルが等しい放電時間帯が複数ある場合、買電価格が高い放電時間帯から順に高い放電優先順位を付す。
・ 特典がない放電時間帯が複数ある場合、買電価格が高い放電時間帯から順に高い放電優先順位を付す。
・ 買電価格が同じ放電時間帯には、時刻が早い放電時間帯から順に高い放電優先順位を付す。
1. 蓄電池から負荷に供給可能な電力量を示す放電余力情報に基づいて、単位時間毎に区分けされた放電時間帯毎に前記蓄電池から放電される電力の上限値、又は、前記蓄電池から放電される電力量の上限値を決定することを特徴とする蓄電池管理装置。
2. 1に記載の蓄電池管理装置において、
前記蓄電池に供給する電力に関する情報と、前記放電余力情報と、に基づいて、前記上限値を決定する蓄電池管理装置。
3. 1又は2に記載の蓄電池管理装置において、
前記電力に関する情報は、時間帯毎の買電価格を示す買電価格情報である蓄電池管理装置。
4. 3に記載の蓄電池管理装置において、
前記買電価格が相対的に低い前記放電時間帯よりも、前記買電価格が相対的に高い前記放電時間帯の方が大きくなるように前記上限値を決定する蓄電池管理装置。
5. 3又は4に記載の蓄電池管理装置において、
前記買電価格が高い前記放電時間帯の優先順位が高くなるように前記放電時間帯に優先順位を付し、第1の前記放電時間帯の前記上限値が、前記第1の時間帯より優先順位が低い第2の前記時間帯の前記上限値以上となるように、前記上限値を決定する蓄電池管理装置。
6. 3から5のいずれかに記載の蓄電池管理装置において、
前記複数の放電時間帯を、前記買電価格が相対的に高い前記放電時間帯をまとめた第1のグループと、前記買電価格が相対的に低い前記放電時間帯をまとめた第2のグループとに分け、
前記電力の前記上限値、又は、前記電力量の前記上限値に基づいて、各放電時間帯に放電され得る最大電力量を特定し、
前記第1のグループに含まれる前記放電時間帯の前記最大電力量の合計である第1の合計と、前記第2のグループに含まれる前記放電時間帯であって、前記第1のグループに含まれる少なくとも1つの前記放電時間帯よりも時間的に前の前記放電時間帯の前記最大電力量の合計である第2の合計との和が、前記放電余力情報に基づいて決定される所定の電力量を超えないように前記放電スケジュールを生成する蓄電池管理装置。
7. 6に記載の蓄電池管理装置において、
前記第2のグループに含まれる前記放電時間帯であって、前記第1のグループに含まれるすべての前記放電時間帯よりも時間的に後の前記放電時間帯の前記最大電力量の合計である第3の合計と、前記第1の合計と、前記第2の合計との和が、前記放電余力情報に基づいて決定される前記所定の電力量以上となるように前記放電スケジュールを生成する蓄電池管理装置。
8. 3から7のいずれかに記載の蓄電池管理装置において、
前記放電時間帯各々に対して、前記蓄電池が放電可能な最大の電力、及び、前記最大の電力より小さい所定の値のいずれかを前記上限値として決定する蓄電池管理装置。
9. 3から7のいずれかに記載の蓄電池管理装置において、
前記放電時間帯各々に対して、前記蓄電池が前記単位時間あたりに放電可能な最大の電力量、及び、前記最大の電力量より小さい所定の値のいずれかを前記上限値として決定する蓄電池管理装置。
10. 3から9のいずれかに記載の蓄電池管理装置において、
前記負荷の電力需要予測を示す需要予測情報をさらに利用して、前記上限値を決定する蓄電池管理装置。
11. 10に記載の蓄電池管理装置において、
前記放電時間帯における前記電力需要予測の値以上の値を、前記上限値として決定する蓄電池管理装置。
12. 3から11のいずれかに記載の蓄電池管理装置において、
前記負荷又は前記蓄電池に電力を供給する発電装置の時間帯毎の発電量予測を示す発電予測情報をさらに利用して、前記上限値を決定する蓄電池管理装置。
13. 12に記載の蓄電池管理装置において、
前記発電装置が発電した電力の売電価格を示す売電価格情報をさらに利用して、前記上限値を決定する蓄電池管理装置。
14. 13に記載の蓄電池管理装置において、
前記売電価格が前記買電価格以下の時間帯においては、前記発電装置が発電した電力は前記負荷又は前記蓄電池に供給され、
前記売電価格が前記買電価格より高い時間帯においては、前記発電装置が発電した電力は前記負荷及び前記蓄電池に供給されない、
前提で、前記上限値を決定する蓄電池管理装置。
15. 1から13のいずれかに記載の蓄電池管理装置において、
所定のタイミングで、そのタイミングにおいて前記蓄電池から前記負荷に供給可能な電力量を示す更新放電余力情報を取得し、更新放電余力情報をさらに利用して、前記所定のタイミングより後の前記放電時間帯の前記上限値を更新する蓄電池管理装置。
16. 1から15のいずれかに記載の蓄電池管理装置において、
電力系統から供給される電力量に応じた時間帯毎の特典を示す特典情報をさらに利用して、前記上限値を決定する蓄電池管理装置。
17. 16に記載の蓄電池管理装置において、
前記特典情報は、第1の時間帯における前記電力系統から供給される電力量が所定値より少ない場合に所定の特典が得られることを示すものであり、
前記第1の時間帯に含まれる前記放電時間帯に、他の前記放電時間帯より大きい前記上限値を決定する蓄電池管理装置。
18. 1から17のいずれかに記載の蓄電池管理装置において、
前記電力の前記上限値、又は、前記電力量の前記上限値に基づいて特定される各放電時間帯に放電され得る最大電力量は、前記蓄電池から負荷に供給可能な電力量から所定量を差し引いた電力量である蓄電池管理装置。
19. 1から18のいずれかに記載の蓄電池管理装置において、
前記蓄電池が前記電力系統から電力を取得して充電する充電可能時間帯を決定し、前記充電可能時間帯を除く時間帯を前記放電時間帯として決定する蓄電池管理装置。
20. 1から19のいずれかに記載の蓄電池管理装置が決定した前記上限値に従い、電力を放電する蓄電池。
21. コンピュータが、
蓄電池から負荷に供給可能な電力量を示す放電余力情報に基づいて、単位時間毎に区分けされた放電時間帯毎に前記蓄電池から放電される電力の上限値、又は、前記蓄電池から放電される電力量の上限値を決定する蓄電池管理方法。
21-2. 21に記載の蓄電池管理方法において、
前記コンピュータが、前記蓄電池に供給する電力に関する情報と、前記放電余力情報と、に基づいて、前記上限値を決定する蓄電池管理方法。
21-3. 21又は21-2に記載の蓄電池管理方法において、
前記電力に関する情報は、時間帯毎の買電価格を示す買電価格情報である蓄電池管理方法。
21-4. 21-3に記載の蓄電池管理方法において、
前記コンピュータが、前記買電価格が相対的に低い前記放電時間帯よりも、前記買電価格が相対的に高い前記放電時間帯の方が大きくなるように前記上限値を決定する蓄電池管理方法。
21-5. 21-3又は21-4に記載の蓄電池管理方法において、
前記コンピュータが、前記買電価格が高い前記放電時間帯の優先順位が高くなるように前記放電時間帯に優先順位を付し、第1の前記放電時間帯の前記上限値が、前記第1の時間帯より優先順位が低い第2の前記時間帯の前記上限値以上となるように、前記上限値を決定する蓄電池管理方法。
21-6. 21-3から21-5のいずれかに記載の蓄電池管理方法において、
前記コンピュータが、
前記複数の放電時間帯を、前記買電価格が相対的に高い前記放電時間帯をまとめた第1のグループと、前記買電価格が相対的に低い前記放電時間帯をまとめた第2のグループとに分け、
前記電力の前記上限値、又は、前記電力量の前記上限値に基づいて、各放電時間帯に放電され得る最大電力量を特定し、
前記第1のグループに含まれる前記放電時間帯の前記最大電力量の合計である第1の合計と、前記第2のグループに含まれる前記放電時間帯であって、前記第1のグループに含まれる少なくとも1つの前記放電時間帯よりも時間的に前の前記放電時間帯の前記最大電力量の合計である第2の合計との和が、前記放電余力情報に基づいて決定される所定の電力量を超えないように前記放電スケジュールを生成する蓄電池管理方法。
21-7. 21-6に記載の蓄電池管理方法において、
前記コンピュータが、
前記第2のグループに含まれる前記放電時間帯であって、前記第1のグループに含まれるすべての前記放電時間帯よりも時間的に後の前記放電時間帯の前記最大電力量の合計である第3の合計と、前記第1の合計と、前記第2の合計との和が、前記放電余力情報に基づいて決定される前記所定の電力量以上となるように前記放電スケジュールを生成する蓄電池管理方法。
21-8. 21-3から21-7のいずれかに記載の蓄電池管理方法において、
前記コンピュータが、前記放電時間帯各々に対して、前記蓄電池が放電可能な最大の電力、及び、前記最大の電力より小さい所定の値のいずれかを前記上限値として決定する蓄電池管理方法。
21-9. 21-3から21-7のいずれかに記載の蓄電池管理方法において、
前記コンピュータが、前記放電時間帯各々に対して、前記蓄電池が前記単位時間あたりに放電可能な最大の電力量、及び、前記最大の電力量より小さい所定の値のいずれかを前記上限値として決定する蓄電池管理方法。
21-10. 21-3から21-9のいずれかに記載の蓄電池管理方法において、
前記コンピュータが、前記負荷の電力需要予測を示す需要予測情報をさらに利用して、前記上限値を決定する蓄電池管理方法。
21-11. 21-10に記載の蓄電池管理方法において、
前記コンピュータが、前記放電時間帯における前記電力需要予測の値以上の値を、前記上限値として決定する蓄電池管理方法。
21-12. 21-3から21-11のいずれかに記載の蓄電池管理方法において、
前記コンピュータが、前記負荷又は前記蓄電池に電力を供給する発電装置の時間帯毎の発電量予測を示す発電予測情報をさらに利用して、前記上限値を決定する蓄電池管理方法。
21-13. 21-12に記載の蓄電池管理方法において、
前記コンピュータが、前記発電装置が発電した電力の売電価格を示す売電価格情報をさらに利用して、前記上限値を決定する蓄電池管理方法。
21-14. 21-13に記載の蓄電池管理方法において、
前記コンピュータが、
前記売電価格が前記買電価格以下の時間帯においては、前記発電装置が発電した電力は前記負荷又は前記蓄電池に供給され、
前記売電価格が前記買電価格より高い時間帯においては、前記発電装置が発電した電力は前記負荷及び前記蓄電池に供給されない、
前提で、前記上限値を決定する蓄電池管理方法。
21-15. 21から21-13のいずれかに記載の蓄電池管理方法において、
前記コンピュータが、所定のタイミングで、そのタイミングにおいて前記蓄電池から前記負荷に供給可能な電力量を示す更新放電余力情報を取得し、更新放電余力情報をさらに利用して、前記所定のタイミングより後の前記放電時間帯の前記上限値を更新する蓄電池管理方法。
21-16. 21から21-15のいずれかに記載の蓄電池管理方法において、
前記コンピュータが、電力系統から供給される電力量に応じた時間帯毎の特典を示す特典情報をさらに利用して、前記上限値を決定する蓄電池管理方法。
21-17. 21-16に記載の蓄電池管理方法において、
前記特典情報は、第1の時間帯における前記電力系統から供給される電力量が所定値より少ない場合に所定の特典が得られることを示すものであり、
前記コンピュータが、前記第1の時間帯に含まれる前記放電時間帯に、他の前記放電時間帯より大きい前記上限値を決定する蓄電池管理方法。
21-18. 21から21-17のいずれかに記載の蓄電池管理方法において、
前記電力の前記上限値、又は、前記電力量の前記上限値に基づいて特定される各放電時間帯に放電され得る最大電力量は、前記蓄電池から負荷に供給可能な電力量から所定量を差し引いた電力量である蓄電池管理方法。
21-19. 21から21-18のいずれかに記載の蓄電池管理方法において、
前記コンピュータが、前記蓄電池が前記電力系統から電力を取得して充電する充電可能時間帯を決定し、前記充電可能時間帯を除く時間帯を前記放電時間帯として決定する蓄電池管理方法。
22. コンピュータに、
蓄電池から負荷に供給可能な電力量を示す放電余力情報に基づいて、単位時間毎に区分けされた放電時間帯毎に前記蓄電池から放電される電力の上限値、又は、前記蓄電池から放電される電力量の上限値を決定する工程を実施させるためのプログラム。
22-2. 22に記載のプログラムにおいて、
前記コンピュータに、前記蓄電池に供給する電力に関する情報と、前記放電余力情報と、に基づいて、前記上限値を決定する工程を実施させるためのプログラム。
22-3. 22又は22-2に記載のプログラムにおいて、
前記電力に関する情報は、時間帯毎の買電価格を示す買電価格情報であるプログラム。
22-4. 22-3に記載のプログラムにおいて、
前記コンピュータに、前記買電価格が相対的に低い前記放電時間帯よりも、前記買電価格が相対的に高い前記放電時間帯の方が大きくなるように前記上限値を決定する工程を実施させるためのプログラム。
22-5. 22-3又は22-4に記載のプログラムにおいて、
前記コンピュータに、前記買電価格が高い前記放電時間帯の優先順位が高くなるように前記放電時間帯に優先順位を付し、第1の前記放電時間帯の前記上限値が、前記第1の時間帯より優先順位が低い第2の前記時間帯の前記上限値以上となるように、前記上限値を決定する工程を実施させるためのプログラム。
22-6. 22-3から22-5のいずれかに記載のプログラムにおいて、
前記コンピュータに、
前記複数の放電時間帯を、前記買電価格が相対的に高い前記放電時間帯をまとめた第1のグループと、前記買電価格が相対的に低い前記放電時間帯をまとめた第2のグループとに分け、
前記電力の前記上限値、又は、前記電力量の前記上限値に基づいて、各放電時間帯に放電され得る最大電力量を特定し、
前記第1のグループに含まれる前記放電時間帯の前記最大電力量の合計である第1の合計と、前記第2のグループに含まれる前記放電時間帯であって、前記第1のグループに含まれる少なくとも1つの前記放電時間帯よりも時間的に前の前記放電時間帯の前記最大電力量の合計である第2の合計との和が、前記放電余力情報に基づいて決定される所定の電力量を超えないように前記放電スケジュールを生成する工程を実施させるためのプログラム。
22-7. 22-6に記載のプログラムにおいて、
前記コンピュータに、前記第2のグループに含まれる前記放電時間帯であって、前記第1のグループに含まれるすべての前記放電時間帯よりも時間的に後の前記放電時間帯の前記最大電力量の合計である第3の合計と、前記第1の合計と、前記第2の合計との和が、前記放電余力情報に基づいて決定される前記所定の電力量以上となるように前記放電スケジュールを生成する工程を実施させるためのプログラム。
22-8. 22-3から22-7のいずれかに記載のプログラムにおいて、
前記コンピュータに、前記放電時間帯各々に対して、前記蓄電池が放電可能な最大の電力、及び、前記最大の電力より小さい所定の値のいずれかを前記上限値として決定する工程を実施させるためのプログラム。
22-9. 22-3から22-7のいずれかに記載のプログラムにおいて、
前記コンピュータに、前記放電時間帯各々に対して、前記蓄電池が前記単位時間あたりに放電可能な最大の電力量、及び、前記最大の電力量より小さい所定の値のいずれかを前記上限値として決定する工程を実施させるためのプログラム。
22-10. 22-3から22-9のいずれかに記載のプログラムにおいて、
前記コンピュータに、前記負荷の電力需要予測を示す需要予測情報をさらに利用して、前記上限値を決定する工程を実施させるためのプログラム。
22-11. 22-10に記載のプログラムにおいて、
前記コンピュータに、前記放電時間帯における前記電力需要予測の値以上の値を、前記上限値として決定する工程を実施させるためのプログラム。
22-12. 22-3から22-11のいずれかに記載のプログラムにおいて、
前記コンピュータに、前記負荷又は前記蓄電池に電力を供給する発電装置の時間帯毎の発電量予測を示す発電予測情報をさらに利用して、前記上限値を決定する工程を実施させるためのプログラム。
22-13. 22-12に記載のプログラムにおいて、
前記コンピュータに、前記発電装置が発電した電力の売電価格を示す売電価格情報をさらに利用して、前記上限値を決定する工程を実施させるためのプログラム。
22-14. 22-13に記載のプログラムにおいて、
前記コンピュータに、
前記売電価格が前記買電価格以下の時間帯においては、前記発電装置が発電した電力は前記負荷又は前記蓄電池に供給され、
前記売電価格が前記買電価格より高い時間帯においては、前記発電装置が発電した電力は前記負荷及び前記蓄電池に供給されない、
前提で、前記上限値を決定する工程を実施させるためのプログラム。
22-15. 22から22-13のいずれかに記載のプログラムにおいて、
前記コンピュータに、所定のタイミングで、そのタイミングにおいて前記蓄電池から前記負荷に供給可能な電力量を示す更新放電余力情報を取得し、更新放電余力情報をさらに利用して、前記所定のタイミングより後の前記放電時間帯の前記上限値を更新する工程を実施させるためのプログラム。
22-16. 22から22-15のいずれかに記載のプログラムにおいて、
前記コンピュータに、電力系統から供給される電力量に応じた時間帯毎の特典を示す特典情報をさらに利用して、前記上限値を決定する工程を実施させるためのプログラム。
22-17. 22-16に記載のプログラムにおいて、
前記特典情報は、第1の時間帯における前記電力系統から供給される電力量が所定値より少ない場合に所定の特典が得られることを示すものであり、
前記コンピュータに、前記第1の時間帯に含まれる前記放電時間帯に、他の前記放電時間帯より大きい前記上限値を決定する工程を実施させるためのプログラム。
22-18. 22から22-17のいずれかに記載のプログラムにおいて、
前記電力の前記上限値、又は、前記電力量の前記上限値に基づいて特定される各放電時間帯に放電され得る最大電力量は、前記蓄電池から負荷に供給可能な電力量から所定量を差し引いた電力量であるプログラム。
22-19. 22から22-18のいずれかに記載のプログラムにおいて、
前記コンピュータに、前記蓄電池が前記電力系統から電力を取得して充電する充電可能時間帯を決定し、前記充電可能時間帯を除く時間帯を前記放電時間帯として決定する工程を実施させるためのプログラム。
Claims (22)
- 蓄電池から負荷に供給可能な電力量を示す放電余力情報に基づいて、単位時間毎に区分けされた放電時間帯毎に前記蓄電池から放電される電力の上限値、又は、前記蓄電池から放電される電力量の上限値を決定することを特徴とする蓄電池管理装置。
- 請求項1に記載の蓄電池管理装置において、
前記蓄電池に供給する電力に関する情報と、前記放電余力情報と、に基づいて、前記上限値を決定する蓄電池管理装置。 - 請求項1又は2に記載の蓄電池管理装置において、
前記電力に関する情報は、時間帯毎の買電価格を示す買電価格情報である蓄電池管理装置。 - 請求項3に記載の蓄電池管理装置において、
前記買電価格が相対的に低い前記放電時間帯よりも、前記買電価格が相対的に高い前記放電時間帯の方が大きくなるように前記上限値を決定する蓄電池管理装置。 - 請求項3又は4に記載の蓄電池管理装置において、
前記買電価格が高い前記放電時間帯の優先順位が高くなるように前記放電時間帯に優先順位を付し、第1の前記放電時間帯の前記上限値が、前記第1の時間帯より優先順位が低い第2の前記時間帯の前記上限値以上となるように、前記上限値を決定する蓄電池管理装置。 - 請求項3から5のいずれか1項に記載の蓄電池管理装置において、
前記複数の放電時間帯を、前記買電価格が相対的に高い前記放電時間帯をまとめた第1のグループと、前記買電価格が相対的に低い前記放電時間帯をまとめた第2のグループとに分け、
前記電力の前記上限値、又は、前記電力量の前記上限値に基づいて、各放電時間帯に放電され得る最大電力量を特定し、
前記第1のグループに含まれる前記放電時間帯の前記最大電力量の合計である第1の合計と、前記第2のグループに含まれる前記放電時間帯であって、前記第1のグループに含まれる少なくとも1つの前記放電時間帯よりも時間的に前の前記放電時間帯の前記最大電力量の合計である第2の合計との和が、前記放電余力情報に基づいて決定される所定の電力量を超えないように前記放電スケジュールを生成する蓄電池管理装置。 - 請求項6に記載の蓄電池管理装置において、
前記第2のグループに含まれる前記放電時間帯であって、前記第1のグループに含まれるすべての前記放電時間帯よりも時間的に後の前記放電時間帯の前記最大電力量の合計である第3の合計と、前記第1の合計と、前記第2の合計との和が、前記放電余力情報に基づいて決定される前記所定の電力量以上となるように前記放電スケジュールを生成する蓄電池管理装置。 - 請求項3から7のいずれか1項に記載の蓄電池管理装置において、
前記放電時間帯各々に対して、前記蓄電池が放電可能な最大の電力、及び、前記最大の電力より小さい所定の値のいずれかを前記上限値として決定する蓄電池管理装置。 - 請求項3から7のいずれか1項に記載の蓄電池管理装置において、
前記放電時間帯各々に対して、前記蓄電池が前記単位時間あたりに放電可能な最大の電力量、及び、前記最大の電力量より小さい所定の値のいずれかを前記上限値として決定する蓄電池管理装置。 - 請求項3から9のいずれか1項に記載の蓄電池管理装置において、
前記負荷の電力需要予測を示す需要予測情報をさらに利用して、前記上限値を決定する蓄電池管理装置。 - 請求項10に記載の蓄電池管理装置において、
前記放電時間帯における前記電力需要予測の値以上の値を、前記上限値として決定する蓄電池管理装置。 - 請求項3から11のいずれか1項に記載の蓄電池管理装置において、
前記負荷又は前記蓄電池に電力を供給する発電装置の時間帯毎の発電量予測を示す発電予測情報をさらに利用して、前記上限値を決定する蓄電池管理装置。 - 請求項12に記載の蓄電池管理装置において、
前記発電装置が発電した電力の売電価格を示す売電価格情報をさらに利用して、前記上限値を決定する蓄電池管理装置。 - 請求項13に記載の蓄電池管理装置において、
前記売電価格が前記買電価格以下の時間帯においては、前記発電装置が発電した電力は前記負荷又は前記蓄電池に供給され、
前記売電価格が前記買電価格より高い時間帯においては、前記発電装置が発電した電力は前記負荷及び前記蓄電池に供給されない、
前提で、前記上限値を決定する蓄電池管理装置。 - 請求項1から13のいずれか1項に記載の蓄電池管理装置において、
所定のタイミングで、そのタイミングにおいて前記蓄電池から前記負荷に供給可能な電力量を示す更新放電余力情報を取得し、更新放電余力情報をさらに利用して、前記所定のタイミングより後の前記放電時間帯の前記上限値を更新する蓄電池管理装置。 - 請求項1から15のいずれか1項に記載の蓄電池管理装置において、
電力系統から供給される電力量に応じた時間帯毎の特典を示す特典情報をさらに利用して、前記上限値を決定する蓄電池管理装置。 - 請求項16に記載の蓄電池管理装置において、
前記特典情報は、第1の時間帯における前記電力系統から供給される電力量が所定値より少ない場合に所定の特典が得られることを示すものであり、
前記第1の時間帯に含まれる前記放電時間帯に、他の前記放電時間帯より大きい前記上限値を決定する蓄電池管理装置。 - 請求項1から17のいずれか1項に記載の蓄電池管理装置において、
前記電力の前記上限値、又は、前記電力量の前記上限値に基づいて特定される各放電時間帯に放電され得る最大電力量は、前記蓄電池から負荷に供給可能な電力量から所定量を差し引いた電力量である蓄電池管理装置。 - 請求項1から18のいずれか1項に記載の蓄電池管理装置において、
前記蓄電池が前記電力系統から電力を取得して充電する充電可能時間帯を決定し、前記充電可能時間帯を除く時間帯を前記放電時間帯として決定する蓄電池管理装置。 - 請求項1から19のいずれか1項に記載の蓄電池管理装置が決定した前記上限値に従い、電力を放電する蓄電池。
- コンピュータが、
蓄電池から負荷に供給可能な電力量を示す放電余力情報に基づいて、単位時間毎に区分けされた放電時間帯毎に前記蓄電池から放電される電力の上限値、又は、前記蓄電池から放電される電力量の上限値を決定する蓄電池管理方法。 - コンピュータに、
蓄電池から負荷に供給可能な電力量を示す放電余力情報に基づいて、単位時間毎に区分けされた放電時間帯毎に前記蓄電池から放電される電力の上限値、又は、前記蓄電池から放電される電力量の上限値を決定する工程を実施させるためのプログラム。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201480051900.7A CN105556786A (zh) | 2013-09-27 | 2014-07-07 | 蓄电池管理装置、蓄电池、蓄电池管理方法和程序 |
SG11201601833WA SG11201601833WA (en) | 2013-09-27 | 2014-07-07 | Storage battery management device, storage battery, method of managing storage battery, and program |
US15/021,414 US10074987B2 (en) | 2013-09-27 | 2014-07-07 | Storage battery management device, storage battery, method of managing storage battery, and storage medium |
EP14848558.4A EP3051652B1 (en) | 2013-09-27 | 2014-07-07 | Power-storage-cell management device, power-storage cell, method for managing power-storage cell, and program |
AU2014325761A AU2014325761A1 (en) | 2013-09-27 | 2014-07-07 | Storage battery management device, storage battery, method of managing storage battery, and program |
JP2015538966A JP6252594B2 (ja) | 2013-09-27 | 2014-07-07 | 蓄電池管理装置、蓄電池管理方法及びプログラム |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013200774 | 2013-09-27 | ||
JP2013-200774 | 2013-09-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015045552A1 true WO2015045552A1 (ja) | 2015-04-02 |
Family
ID=52742710
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/068076 WO2015045552A1 (ja) | 2013-09-27 | 2014-07-07 | 蓄電池管理装置、蓄電池、蓄電池管理方法及びプログラム |
Country Status (7)
Country | Link |
---|---|
US (1) | US10074987B2 (ja) |
EP (1) | EP3051652B1 (ja) |
JP (1) | JP6252594B2 (ja) |
CN (1) | CN105556786A (ja) |
AU (1) | AU2014325761A1 (ja) |
SG (1) | SG11201601833WA (ja) |
WO (1) | WO2015045552A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017005845A (ja) * | 2015-06-09 | 2017-01-05 | パナソニックIpマネジメント株式会社 | 電力制御方法および電力制御装置 |
WO2017077716A1 (ja) * | 2015-11-06 | 2017-05-11 | パナソニックIpマネジメント株式会社 | 充放電制御装置、充放電制御方法及びプログラム |
JP2020054141A (ja) * | 2018-09-27 | 2020-04-02 | 大和ハウス工業株式会社 | 電力供給システム |
JP2020054140A (ja) * | 2018-09-27 | 2020-04-02 | 大和ハウス工業株式会社 | 電力供給システム |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102014010117A1 (de) * | 2014-07-08 | 2016-01-14 | Evohaus Gmbh | Prognose- und Steuerungssystem für den Strombezug von Haushalten |
JP6467216B2 (ja) * | 2014-12-18 | 2019-02-06 | 株式会社日立製作所 | 熱源システム管理装置、熱源システム管理方法、及びプログラム |
EP3116057B1 (en) * | 2015-03-16 | 2019-10-30 | Kabushiki Kaisha Toshiba | Storage battery control apparatus and storage battery control method |
WO2016158783A1 (ja) * | 2015-03-31 | 2016-10-06 | 三菱重工業株式会社 | 状況判定システム、状況判定方法、意思決定支援システム、コンピュータプログラム、及び記録媒体 |
US10191771B2 (en) * | 2015-09-18 | 2019-01-29 | Huawei Technologies Co., Ltd. | System and method for resource management |
US10313429B2 (en) * | 2016-04-11 | 2019-06-04 | Huawei Technologies Co., Ltd. | Distributed resource management method and system |
CN106445066B (zh) | 2016-08-25 | 2019-06-11 | 北京小米移动软件有限公司 | 设备控制方法和装置 |
US9645596B1 (en) | 2016-11-23 | 2017-05-09 | Advanced Microgrid Solutions, Inc. | Method and apparatus for facilitating the operation of an on-site energy storage system to co-optimize battery dispatch |
US20180204293A1 (en) * | 2017-01-18 | 2018-07-19 | Coulomb Inc. | Method of optimizing market supply and demand dynamics for energy distribution and consumption |
CN109285016A (zh) * | 2017-07-21 | 2019-01-29 | 南方电网科学研究院有限责任公司 | 一种分布式光伏发电定价方法 |
JP2019164643A (ja) | 2018-03-20 | 2019-09-26 | 本田技研工業株式会社 | 情報提供装置、情報提供方法及びシステム |
JP2019165584A (ja) * | 2018-03-20 | 2019-09-26 | 本田技研工業株式会社 | 情報提供装置、情報提供方法及びシステム |
US11774932B2 (en) * | 2018-05-02 | 2023-10-03 | Virtual Peaker, Inc. | Systems and methods for managing the charge and discharge of energy from controllable devices |
US10326305B1 (en) * | 2018-08-27 | 2019-06-18 | Ekergy Llc | Personal power plant system and methods of inverse energy generation |
US10615610B1 (en) | 2019-05-28 | 2020-04-07 | Ekergy Llc | System and method for efficient charging of multiple battery cassettes |
WO2021029031A1 (ja) * | 2019-08-14 | 2021-02-18 | 本田技研工業株式会社 | 選択装置、選択方法およびプログラム |
CN110544950B (zh) * | 2019-09-05 | 2021-02-26 | 南方电网科学研究院有限责任公司 | 一种储能电池充放电控制方法、装置和设备 |
JP7427458B2 (ja) * | 2020-01-29 | 2024-02-05 | 株式会社日立製作所 | 電力取引管理装置および電力取引システム |
JP7201930B2 (ja) * | 2020-08-03 | 2023-01-11 | ダイキン工業株式会社 | 生成装置、システムおよびプログラム |
CN112054545B (zh) * | 2020-09-09 | 2023-05-26 | 河北东达新能源科技有限公司 | 一种电动汽车与电网双向互动v2g方法和系统 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002369380A (ja) * | 2001-06-01 | 2002-12-20 | Osaka Gas Co Ltd | 電力供給システム及びその電力料金の課金方法 |
JP2006325336A (ja) | 2005-05-19 | 2006-11-30 | Nippon Telegr & Teleph Corp <Ntt> | 分散型エネルギーシステムの制御装置、方法、およびプログラム |
US20100017045A1 (en) * | 2007-11-30 | 2010-01-21 | Johnson Controls Technology Company | Electrical demand response using energy storage in vehicles and buildings |
JP2010081722A (ja) * | 2008-09-25 | 2010-04-08 | Hitachi Ltd | 充放電管理装置 |
JP2011130618A (ja) * | 2009-12-18 | 2011-06-30 | Panasonic Corp | 電力制御装置および電力制御方法 |
JP2012115003A (ja) | 2010-11-22 | 2012-06-14 | Kyocera Corp | 制御装置及び制御方法 |
JP2013176189A (ja) * | 2012-02-23 | 2013-09-05 | Sanyo Electric Co Ltd | 蓄電池制御装置 |
JP2013200774A (ja) | 2012-03-26 | 2013-10-03 | Nippon Telegraph & Telephone East Corp | 数値計算装置 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101728839B (zh) | 2008-10-13 | 2012-02-29 | 华为技术有限公司 | 一种控制基站中蓄电池充放电的方法和装置 |
EP2293406B1 (en) * | 2009-09-07 | 2015-08-05 | ABB Research Ltd. | Energy storage systems |
US8892264B2 (en) * | 2009-10-23 | 2014-11-18 | Viridity Energy, Inc. | Methods, apparatus and systems for managing energy assets |
KR101424908B1 (ko) * | 2010-06-09 | 2014-08-01 | 도요타 지도샤(주) | 차량용 조전지 균등화 시스템 및 차량용 조전지 균등화 방법 |
KR101210204B1 (ko) | 2010-07-02 | 2012-12-07 | 엘에스산전 주식회사 | 충방전 시스템, 충방전 장치, 충방전 방법 |
JP2012075248A (ja) | 2010-09-28 | 2012-04-12 | Sanyo Electric Co Ltd | 電力供給システム |
WO2012145563A1 (en) | 2011-04-19 | 2012-10-26 | Viridity Energy, Inc. | Methods, apparatus and systems for managing energy assets |
US8680866B2 (en) | 2011-04-20 | 2014-03-25 | Saudi Arabian Oil Company | Borehole to surface electromagnetic transmitter |
JP5802463B2 (ja) * | 2011-07-22 | 2015-10-28 | 株式会社東芝 | 電気量調整装置、電気量調整方法、電気量調整プログラム及び電力供給システム |
-
2014
- 2014-07-07 CN CN201480051900.7A patent/CN105556786A/zh active Pending
- 2014-07-07 US US15/021,414 patent/US10074987B2/en active Active
- 2014-07-07 JP JP2015538966A patent/JP6252594B2/ja active Active
- 2014-07-07 WO PCT/JP2014/068076 patent/WO2015045552A1/ja active Application Filing
- 2014-07-07 SG SG11201601833WA patent/SG11201601833WA/en unknown
- 2014-07-07 AU AU2014325761A patent/AU2014325761A1/en not_active Abandoned
- 2014-07-07 EP EP14848558.4A patent/EP3051652B1/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002369380A (ja) * | 2001-06-01 | 2002-12-20 | Osaka Gas Co Ltd | 電力供給システム及びその電力料金の課金方法 |
JP2006325336A (ja) | 2005-05-19 | 2006-11-30 | Nippon Telegr & Teleph Corp <Ntt> | 分散型エネルギーシステムの制御装置、方法、およびプログラム |
US20100017045A1 (en) * | 2007-11-30 | 2010-01-21 | Johnson Controls Technology Company | Electrical demand response using energy storage in vehicles and buildings |
JP2010081722A (ja) * | 2008-09-25 | 2010-04-08 | Hitachi Ltd | 充放電管理装置 |
JP2011050240A (ja) | 2008-09-25 | 2011-03-10 | Hitachi Ltd | 充放電管理装置および充放電管理方法 |
JP2011130618A (ja) * | 2009-12-18 | 2011-06-30 | Panasonic Corp | 電力制御装置および電力制御方法 |
JP2012115003A (ja) | 2010-11-22 | 2012-06-14 | Kyocera Corp | 制御装置及び制御方法 |
JP2013176189A (ja) * | 2012-02-23 | 2013-09-05 | Sanyo Electric Co Ltd | 蓄電池制御装置 |
JP2013200774A (ja) | 2012-03-26 | 2013-10-03 | Nippon Telegraph & Telephone East Corp | 数値計算装置 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017005845A (ja) * | 2015-06-09 | 2017-01-05 | パナソニックIpマネジメント株式会社 | 電力制御方法および電力制御装置 |
WO2017077716A1 (ja) * | 2015-11-06 | 2017-05-11 | パナソニックIpマネジメント株式会社 | 充放電制御装置、充放電制御方法及びプログラム |
JP2020054141A (ja) * | 2018-09-27 | 2020-04-02 | 大和ハウス工業株式会社 | 電力供給システム |
JP2020054140A (ja) * | 2018-09-27 | 2020-04-02 | 大和ハウス工業株式会社 | 電力供給システム |
JP7181036B2 (ja) | 2018-09-27 | 2022-11-30 | 大和ハウス工業株式会社 | 電力供給システム |
JP7219572B2 (ja) | 2018-09-27 | 2023-02-08 | 大和ハウス工業株式会社 | 電力供給システム |
Also Published As
Publication number | Publication date |
---|---|
EP3051652A1 (en) | 2016-08-03 |
US20160226250A1 (en) | 2016-08-04 |
JPWO2015045552A1 (ja) | 2017-03-09 |
EP3051652A4 (en) | 2017-05-10 |
AU2014325761A1 (en) | 2016-03-17 |
EP3051652B1 (en) | 2019-08-21 |
SG11201601833WA (en) | 2016-04-28 |
CN105556786A (zh) | 2016-05-04 |
JP6252594B2 (ja) | 2017-12-27 |
US10074987B2 (en) | 2018-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6252594B2 (ja) | 蓄電池管理装置、蓄電池管理方法及びプログラム | |
US9698617B2 (en) | Frequency based rechargeable power source charging | |
US20170070089A1 (en) | Storage battery sharing system, information processing device, storage battery sharing method, and recording medium recording storage battery sharing program | |
JP5271329B2 (ja) | 蓄電池管理システム | |
WO2015122196A1 (ja) | 在宅状況判定装置、配送システム、在宅状況判定方法、在宅状況判定プログラム、および配送端末 | |
JP6332276B2 (ja) | 電力需給調整装置、電力システム、および電力需給調整方法 | |
US9098817B2 (en) | Method for real-time control of energy storage units to reduce electricity cost | |
JP6838792B2 (ja) | 制御装置、制御システム、制御装置の動作方法及びプログラム | |
JP6692365B2 (ja) | 電力制御システム、方法及び制御装置 | |
JP2013143838A (ja) | 充放電制御装置 | |
JP2013132174A (ja) | 充放電制御装置 | |
JP2017229137A (ja) | 電力供給システム | |
JP2016171609A (ja) | 充放電制御システム、充放電制御方法、および充放電制御プログラム | |
JP6464247B2 (ja) | 電力管理装置、電力管理システム及び電力管理方法 | |
JP7503485B2 (ja) | 電池管理システム、電池管理方法及びプログラム | |
JP6922570B2 (ja) | 処理装置、処理方法及びプログラム | |
JP7423977B2 (ja) | 電力管理システム、電力管理装置、電力管理方法及びプログラム | |
KR20150067860A (ko) | 에너지 저장장치의 전력관리장치 및 전력관리방법 | |
KR102131416B1 (ko) | 전기자동차의 배터리를 이용한 가상발전소 운영시스템 및 방법 | |
JP6971158B2 (ja) | 電力管理装置及びプログラム | |
US10742054B2 (en) | Intelligent composable multi-function battery pack | |
WO2023063383A1 (ja) | 生成方法、生成装置、及び生成プログラム | |
JP2023083813A (ja) | 電力管理システム、電力管理装置、電力管理方法及びコンピュータプログラム | |
KR20240080598A (ko) | 신재생 에너지 발전소와 연계되는 에너지 저장 장치를 관리하는 방법 및 장치 | |
CN118539554A (zh) | 基于ems储能设备的充放电控制方法、系统、设备及介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480051900.7 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14848558 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015538966 Country of ref document: JP Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2014848558 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014848558 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15021414 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2014325761 Country of ref document: AU Date of ref document: 20140707 Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |