[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015045404A1 - 電池ユニット - Google Patents

電池ユニット Download PDF

Info

Publication number
WO2015045404A1
WO2015045404A1 PCT/JP2014/004940 JP2014004940W WO2015045404A1 WO 2015045404 A1 WO2015045404 A1 WO 2015045404A1 JP 2014004940 W JP2014004940 W JP 2014004940W WO 2015045404 A1 WO2015045404 A1 WO 2015045404A1
Authority
WO
WIPO (PCT)
Prior art keywords
duct
battery
exhaust
gas
outlet
Prior art date
Application number
PCT/JP2014/004940
Other languages
English (en)
French (fr)
Inventor
吉洋 塩津
裕史 高崎
啓介 清水
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2015538913A priority Critical patent/JP6296362B2/ja
Priority to US14/895,208 priority patent/US9761917B2/en
Publication of WO2015045404A1 publication Critical patent/WO2015045404A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/35Gas exhaust passages comprising elongated, tortuous or labyrinth-shaped exhaust passages
    • H01M50/358External gas exhaust passages located on the battery cover or case
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/394Gas-pervious parts or elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a battery unit including a battery module including a plurality of battery cells and having an exhaust port.
  • Patent Document 1 has a case in which a single cell is accommodated and an exhaust duct connected to a case opening provided in the case, and the downstream opening of the exhaust duct has an area larger than that of the upstream opening. A large battery module is described. The gas generated in the unit cell is discharged to the outside through the case opening and the exhaust duct.
  • the battery module described in Patent Document 1 has a structure that can lower the temperature of gas that is ejected from a single battery (or battery cell) and discharged outside the battery module, from the aspect of suppressing an increase in gas pressure in the battery module. There is room for improvement.
  • a battery unit includes a battery module including a plurality of battery cells, the battery module having an exhaust port for exhausting the gas ejected from each battery cell, and exhausting the gas to the outside of the battery module in communication with the exhaust port.
  • An exhaust duct, and the exhaust duct is at least one duct outlet, and the cross-sectional area of the duct outlet or the sum of the cross-sectional areas of the duct outlets is greater than the cross-sectional area of the upstream side of the gas A large duct outlet, and a temperature lowering member that is fixed so as to block a part of the flow path at the periphery of the duct outlet and lowers the temperature of the gas passing through the gap.
  • the temperature of the gas ejected from the battery cell and discharged to the outside of the battery module can be reduced, and an increase in gas pressure inside the battery module can be suppressed.
  • FIG. 1 It is a perspective view showing a battery system which is a battery unit in an embodiment of the present disclosure. It is the A section enlarged view of FIG. In the battery system of FIG. 1, it is the figure which abbreviate
  • FIG. 1 it is a perspective view which takes out and shows a plate main body. It is a perspective view which takes out and shows one battery module from FIG.
  • FIG. 6 is a sectional view taken along line BB in FIG. 5.
  • FIG. 6 is a cross-sectional view taken along the line CC of FIG.
  • FIG. 1 it is a perspective view which expands and shows the structure by which the uppermost battery module and the exhaust duct were connected.
  • FIG. 1 it is a perspective view which expands and shows the structure by which the uppermost battery module and the exhaust duct were connected.
  • FIG. 8 it is a D arrow line view which shows the exit of an exhaust duct.
  • FIG. 9 is a cross-sectional view taken along line EE in FIG. 8. It is a figure corresponding to FIG. 2 which has shown another example of the exhaust duct. It is a perspective view which shows the duct exit member used with the structure of FIG. It is F arrow line view of FIG. 12A. It is G arrow line view of FIG. 12A. It is a perspective view which shows the duct cover used with the structure of FIG. It is a figure corresponding to Drawing 8 showing the 2nd example of another example of an exhaust duct. It is a figure which shows the 3rd example of another example of an exhaust duct.
  • FIG. 1 is a perspective view showing a battery system 20 that is a battery unit according to an embodiment of the present disclosure.
  • FIG. 2 is an enlarged view of part A in FIG.
  • FIG. 3 is a view of the battery system 20 of FIG.
  • the battery system 20 is used as a power storage device.
  • the battery system 20 includes a plurality of battery modules 22, a fixing member 24 with a duct that integrally fixes the plurality of battery modules 22, an inverter 26, a converter 27, and a circuit board 30.
  • the battery system 20 charges the battery module 22 with electric power obtained by a power generation device such as a solar battery (not shown), and boosts or lowers the DC power taken out from the battery module 22 as necessary using a converter 27. It has a function of converting to AC power and outputting it to an electric device (not shown).
  • the circuit board 30 includes a control unit that controls operations of the inverter 26 and the converter 27.
  • the battery system 20 is fixed inside a case (not shown).
  • the battery system 20 is not limited to the configuration used for storing or supplying power from the power generation device, and may be used, for example, at the time of a power failure or for adjusting power consumption.
  • the battery system 20 stores power from the commercial AC power source to the battery system 20 in a time zone where power consumption is low throughout the entire building to which power is distributed, and the battery system 20 is installed in a time zone where power consumption is high or during a power failure. Electric power may be supplied from the battery system 20 to the electrical equipment in the building. In this case, AC power supplied from the inverter 26 is converted into DC power, and the converted DC power is stored in the battery module 22.
  • a height direction H, a length direction L, and a width direction W are shown as three axis directions orthogonal to each other.
  • the height direction H is a vertical direction or a vertical direction when the battery system 20 is installed on a horizontal plane.
  • the length direction L and the width direction W are directions orthogonal to each other on a horizontal plane.
  • the longer dimension of the battery system 20 is defined as the length direction L, and the shorter dimension is defined as the width direction W.
  • the fixing member with duct 24 is a frame member, and includes a duct frame 34 called a duct plate, two side frames 36 and 38, a plurality of coupling frames 40 and 42, a substrate support frame 44, and a lateral plate 45. It is fixed integrally.
  • the two side frames 36 and 38 are a first side frame 36 and a second side frame 38.
  • the plurality of combined frames 40 and 42 are a first combined frame 40 and a second combined frame 42.
  • the duct frame 34 is configured by connecting a plurality of duct forming members 48 and 50 side by side to a frame main body 46 that is a main body plate portion.
  • the plurality of duct forming members 48 and 50 are the first duct forming member 48 and the second duct forming member 50.
  • the frame body 46 is formed by subjecting a plate-like member having a predetermined outer shape to bending processing and hole processing.
  • the first duct forming member 48 and the second duct forming member 50 are a first plate portion H1 and a second plate portion which are two upper and lower plate portions along the horizontal direction.
  • H2 and outer plate part H3 which is connected to each plate part H1, H2 and extends along the vertical direction is formed.
  • the first duct forming member 48 includes a first duct main body 74 having an opening on the frame main body 46 side, a duct outlet member 76 and a lid member 78 (FIG. 2) coupled to both ends of the first duct main body 74.
  • the second duct forming member 50 includes a second duct main body 75 that opens on the frame main body 46 side, and a duct outlet member 76 and a lid member 78 that are coupled to both ends of the second duct main body 75.
  • the duct bodies 74 and 75 are a plurality of exhaust ducts arranged vertically by combining the duct bodies 74 and 75 so that the plate ends of the frame body 46 are closed at the open ends to form a straight gas flow path having a rectangular cross section.
  • a first exhaust duct 51 and a second exhaust duct 51A are formed.
  • the uppermost first exhaust duct 51 is connected to the uppermost battery module 22, and the first exhaust duct 51 communicates with an exhaust port 52 (FIG. 5) provided in the battery module 22.
  • the first exhaust duct 51 is provided with a cross-sectional enlarged portion 54 whose flow passage cross-sectional area increases toward the gas downstream side at the gas downstream end.
  • a temperature reducing member 58 is fixed to the periphery of the duct outlet 56 of the cross-sectional enlarged portion 54, and the temperature of the gas passing through the gap of the temperature reducing member 58 is reduced. Thereby, it is possible to achieve both a decrease in the temperature of the exhaust gas and a suppression of an increase in the internal pressure of the battery module 22. This will be described in detail later.
  • first side frame 36 and the second side frame 38 are fixed at right angles to the frame body 46 by screws at both ends in the longitudinal direction L of the duct frame 34, and the shape seen from above is shown. It is formed to have a gate shape.
  • the first coupling frame 40 and the second coupling frame 42 are stretched over and coupled to a plurality of portions of the first side frame 36 and the second side frame 38 in the length direction.
  • the substrate support frame 44 is spanned in the width direction and fixed to a one-side frame (not shown) and the frame body 46.
  • the one-side frame is fixed by being screwed to one end in the width direction (the back side end in FIG. 1) of the first side frame 36 and the second side frame 38.
  • the circuit board 30 is fixed to the board support frame 44.
  • the plurality of horizontal plates 45 are vertically aligned with the upper ends of the first side frame 36 and the second side frame 38 and spanned in the length direction L, and both end portions in the length direction of each horizontal plate 45 are each side frame 36. , 38 are fixed by screws.
  • the inverter 26 is fixed on the upper horizontal plate 45, and the converter 27 is fixed on the lower horizontal plate 45.
  • At least one of the first coupling frame 40 and the second coupling frame 42 is formed in the shape of a bowl having a U-shaped cross section by bending both ends along the length direction of the intermediate portion. At least one longitudinal end of each of the first coupling frame 40 and the second coupling frame 42 is screwed to the side frame 36 (or 38), or the periphery of the hole formed in the side frame 36 (or 38). It is fixed by engagement with the part.
  • the frame main body 46 includes an anti-falling plate 60 provided at the lower end, a first battery support plate 62 and a second battery support plate 64 that are a plurality of battery support plates, and one end in the length direction. And an exhaust gas blocking plate 66 provided in the section.
  • the first battery support plate 62 and the second battery support plate 64 protrude from a plurality of locations in the height direction H of the frame body 46 to the other surface side (the back side in FIG. 4).
  • the fall-preventing plate 60 is formed by bending the lower end portion of the frame body 46 in the horizontal direction.
  • the fall prevention plate 60 can be fixed to the upper side of the bottom plate portion of the case (not shown) by screwing.
  • the battery module 22 (FIG. 1) is placed on the battery support plates 62 and 64 as described later.
  • the exhaust gas blocking plate 66 is formed at one end portion in the length direction L of the frame body 46 by bending up at a right angle on the opposite side to the battery module 22 throughout the height direction H. The function of the exhaust gas blocking plate 66 will be described later.
  • the frame body 46, the side frames 36, 38, 44 and the horizontal plate 45 are formed of a metal plate such as iron.
  • the battery modules 22 are arranged in four stages in the vertical direction on the fixing member with duct 24 and fixed by a coupling means such as a bolt (not shown).
  • the battery module 22 is sandwiched between a frame body (not shown) and a frame main body 46 that are coupled so as to span over the width direction (W direction) ends of the first side frame 36 and the second side frame 38 without using bolts. Thus, it may be fixed to the fixing member 24 with duct.
  • the one battery module 22 is fixed to the uppermost stage of the fixing member 24 with duct, and the four battery modules 22 are fixed to the two middle and lowermost stages, respectively.
  • a total of 13 battery modules 22 are arranged in the battery system 20.
  • illustration of a terminal portion 68 (FIG. 5), which will be described later, of the battery module 22 is omitted.
  • Each battery module 22 is formed in a rectangular parallelepiped shape. Note that the number of battery modules 22 constituting the battery system 20 is not limited to 13 and is appropriately changed according to the output or capacity required of the battery system 20.
  • FIG. 5 is a perspective view showing one battery module 22 taken out from FIG. 6 is a cross-sectional view taken along the line BB of FIG. 7 is a cross-sectional view taken along the line CC of FIG.
  • Terminal portions 68 are formed to protrude at both ends in the length direction of the battery module 22. Of the two terminal portions 68, one terminal portion 68 is a positive terminal, and the other terminal portion 68 is a negative terminal.
  • the terminal portion 68 is electrically connected to the electrode of the minimum unit battery cell included in the battery module 22 and serves as an input / output terminal when charging / discharging the battery cell.
  • the terminal portions 68 of the plurality of battery modules 22 are electrically connected in series or in parallel by a bus bar (not shown).
  • the battery module 22 includes a plurality of battery cells 2 arranged in a staggered manner.
  • a battery cell case 3 (FIG. 7), which will be described later, that holds the plurality of battery cells 2 is omitted.
  • the battery module 22 is configured to obtain a predetermined battery capacity by connecting a plurality of battery cells 2 in parallel.
  • an example using 40 battery cells 2 is shown.
  • the battery modules 22 are arranged in a predetermined arrangement relationship with 40 battery cells 2 such that each positive electrode side is aligned on one side and each negative electrode side is aligned on the other side.
  • the battery module 22 includes a battery cell 2, a battery cell case 3, an upper holder 6, a lower holder 7, a module case 8, and a module duct 19.
  • the battery cell case 3 houses and holds the battery cell 2, the positive electrode side current collector 4 is disposed on the positive electrode side, and the negative electrode side current collector 5 is disposed on the negative electrode side.
  • a positive electrode current collector 4 and a negative electrode current collector 5 are coupled to the battery cell case 3 via an upper holder 6 and a lower holder 7.
  • the battery module 22 is arranged in a predetermined arrangement relationship with the negative electrode side of the battery cell 2 aligned on one side and the positive electrode side aligned on the other side. May be.
  • the battery cell 2 is a chargeable / dischargeable secondary battery that is the minimum unit of the battery constituting the battery module 22.
  • a lithium ion battery is used as the secondary battery.
  • a nickel metal hydride battery, an alkaline battery, or the like may be used.
  • Forty battery cells 2 included in the battery module 22 are arranged side by side with two sets of 20 battery cells as one set. Each set of battery cells 2 has a staggered arrangement relationship that minimizes a gap between adjacent battery cells, and three battery rows are arranged in the length direction L. 7, 6, and 7 battery cells 2 are arranged.
  • the battery cell 2 has a cylindrical outer shape. Of the both ends of the cylindrical shape, one end is used as a positive terminal and the other end is used as a negative terminal. In the present embodiment, a positive electrode terminal is provided at the upper end of the battery cell 2 shown in FIG. 7, and a negative electrode terminal is provided at the lower end.
  • the battery cell 2 is not limited to a cylindrical battery, and may be a battery having another external shape.
  • the battery cell 2 has a safety valve 13 on the positive electrode terminal side.
  • the safety valve 13 has a function of discharging as exhaust gas from the inside of the battery to the outside of the cell when the pressure of the gas generated by the electrochemical reaction performed inside the battery cell 2 exceeds a predetermined threshold pressure.
  • the safety valve 13 may include a metal sheet that is broken when the gas pressure exceeds a threshold pressure, or a valve body that leaves the valve seat when the gas pressure exceeds the threshold pressure.
  • the battery cell case 3 is a holding container that holds and arranges 40 battery cells 2 in a predetermined arrangement relationship.
  • the battery cell case 3 is a frame body having the same height as the battery cell 2 and provided with 40 through-hole shaped battery storage portions that are open at both ends in the height direction H. 2 is stored and arranged in one of the battery storage units.
  • the arrangement of the battery storage units is a staggered arrangement corresponding to the arrangement of the battery cells 2. That is, two sets are arranged side by side, and three battery storage portions are arranged in the length direction L in each set, and each of the battery storage portion rows is 7, 6, and 7 along the width direction W. It has a battery storage part.
  • the battery cell case 3 may be any material having good thermal conductivity. For example, a material mainly made of aluminum and formed into a predetermined shape by extrusion molding can be used.
  • each positive electrode side of the battery cell 2 is aligned on one side, and each negative electrode side is aligned on the other side.
  • one side is the upper side of the paper surface along the height direction H, and the other side is the lower side of the paper surface along the height direction H.
  • the battery cell case may be constituted by two sets of battery cell cases that are arranged side by side and have 20 battery accommodating portions.
  • the positive electrode side current collector 4 is a connecting member that is disposed so as to close the opening on one side of the battery cell case 3 and electrically connects the positive electrode sides of the aligned battery cells 2.
  • the positive electrode side current collector 4 includes a positive electrode side insulating plate 10, a positive electrode plate 11, and a positive electrode lead plate 12.
  • the positive electrode-side insulating plate 10 is a plate material that is disposed between the battery cell case 3, the positive electrode plate 11, and the positive electrode lead plate 12 and electrically insulates them.
  • the positive electrode-side insulating plate 10 is provided with 40 circular openings or the like for protruding the positive electrode of the battery cell 2.
  • the positive electrode plate 11 is a thin plate having 40 electrode contact portions arranged in a positional relationship in which they individually contact the positive electrode of the battery cell 2.
  • a metal thin plate having electrical conductivity formed by forming an electrode contact portion having a predetermined shape with a substantially C-shaped notch formed around by etching or pressing is used. Can do.
  • the positive electrode lead plate 12 is an electrode plate that is electrically connected to the positive electrode plate 11 and interconnects 40 electrode contact portions to form at least one positive electrode side output terminal.
  • a metal thin plate having electrical conductivity and having an appropriate thickness and strength can be used.
  • a thin metal plate formed by etching or pressing or the like and having an electrode contact portion having a predetermined shape in which a circular opening or the like is formed can be used.
  • the negative electrode side current collector 5 is a connecting member that is arranged in the opening on the other side of the battery cell case 3 and electrically connects the negative electrode sides of the arranged battery cells 2.
  • the negative electrode current collector 5 includes a negative electrode insulating plate 16, a negative electrode plate 17, and a negative electrode lead plate 18.
  • the negative electrode side insulating plate 16 is a plate material that is disposed between the battery cell case 3, the negative electrode plate 17, and the negative electrode lead plate 18 and electrically insulates them.
  • the negative electrode side insulating plate 16 is provided with 40 circular openings for exposing the negative electrode of the battery cell 2.
  • the negative electrode plate 17 is an electrode member having 40 electrode contact portions arranged in a positional relationship in which the negative electrode plate of the battery cell 2 is individually in contact with each other.
  • a thin metal plate having electrical conductivity formed by forming a substantially C-shaped notch portion by etching or pressing or the like to form a partitioned electrode contact portion is used. it can.
  • the electrode contact portion of the negative electrode plate 17 may be provided with a current interrupting element that blows when an overcurrent flows through the battery cell 2 and exceeds a predetermined threshold temperature.
  • the negative electrode lead plate 18 is an electrode plate electrically connected to the negative electrode plate 17 and interconnecting each of the 40 electrode contact portions to form at least one negative electrode side output terminal.
  • a metal thin plate having electrical conductivity and having an appropriate thickness and strength is formed by opening or opening a circle or the like corresponding to the electrode contact portion of the negative electrode plate 17 by etching or pressing. The formed one can be used.
  • the upper holder 6 and the lower holder 7 include a positive electrode side current collector 4 disposed on one side of the battery cell case 3 and a negative electrode side current collector 5 disposed on the other side together with the battery cell case 3. It is a member for integrating as a whole and is made of an insulating material.
  • the upper holder 6 and the lower holder 7 are integrated by fastening the positive current collector 4 and the negative current collector 5 using a fastening member such as a bolt.
  • the holders may not be configured separately, and, for example, a side portion that covers the side surface of the battery cell case 3, an upper portion that covers the positive electrode side, and a lower portion that covers the negative electrode side may be integrally configured.
  • Each holder 6, 7 is fixed inside the module case 8, and the module case 8 is constituted by an upper duct cover 14 and a lower bottom cover 15.
  • a module duct 19 having a duct chamber 9 inside and having a U-shaped cross section that is open on the lower side is provided.
  • the module duct 19 is provided so as to cover the upper side of the upper holder 6, and is fixed to the upper side of the peripheral edge of the upper end opening of the duct cover 14 whose upper end has a frame shape.
  • a bottom cover 15 coupled to the duct cover 14 is provided below the negative electrode current collector 5.
  • the duct chamber 9 faces the positive terminal of the battery cell 2 provided with the safety valve 13 through an opening or a notch, and is connected to an exhaust port 52 (FIG. 5) formed on one end surface in the length direction of the module duct 19. Communicate. Thereby, the gas ejected from the safety valve 13 of the battery cell 2 can be discharged to the outside from the duct chamber 9 through the exhaust port 52. As will be described later, the exhaust port 52 communicates with the exhaust ducts 51 and 51A, and the gas ejected from each battery cell 2 is discharged to the outside of the battery module 22 through the respective exhaust ducts 51 and 51A.
  • the module duct 19 may be made of a material having good thermal conductivity. For example, it is formed of a metal plate mainly made of aluminum.
  • each battery cell 2 was connected in parallel was demonstrated as the battery module 22 above, two sets of side-by-side battery cells connected in series may be included, or connected in series or in parallel. Three or more sets of battery cells may be included.
  • FIG. 8 is an enlarged perspective view showing a state in which the uppermost battery module 22 and the first exhaust duct 51 are connected in FIG. 1.
  • FIG. 9 is a view taken in the direction of arrow D showing the outlet of the first exhaust duct 51 in FIG. 8.
  • 10 is a cross-sectional view taken along the line EE of FIG.
  • the relationship between the uppermost battery module 22 and the first exhaust duct 51 in FIG. 1 will be described.
  • the upper and lower middle and lowermost battery modules 22 and the second exhaust duct 51A ( The relationship with FIG. 1) is the same as the number of exhaust ports of the battery module 22 communicating with one second exhaust duct 51A is increased.
  • the length of the second exhaust duct 51 ⁇ / b> A is larger than the length of the first exhaust duct 51.
  • the battery module 22 is coupled to the frame body 46.
  • a rectangular first hole 70 is formed in a portion facing the lower end portion of the battery module 22, and the rectangular plate portion of the inner portion of the first hole 70 is substantially perpendicular to the battery module 22 side.
  • the first battery support plate 62 is formed by bending.
  • the battery module 22 is placed on the first battery support plate 62 to increase the support strength of the battery module 22.
  • the terminal portion 68 of the battery module 22 is led out to one side (front side in FIG. 8) of the frame main body 46 through the second hole 72 formed in the frame main body 46.
  • the first exhaust duct 51 includes a linear first duct body 74 having a rectangular cross section, a duct outlet member 76 and a lid member 78 connected to one end and the other end in the length direction of the first duct body 74, respectively. And a temperature lowering member 58 (FIG. 9) fixed to the duct outlet member 76.
  • the opening on the frame body 46 side of the first duct body 74 communicates with the exhaust port 52 of the battery module 22 through the plate hole 84 formed in the frame body 46.
  • a seal material (not shown) having good thermal conductivity is sandwiched between the peripheral portion of the opening on the frame main body 46 side of the first duct main body 74 and the peripheral portion of the plate hole 84 formed in the frame main body 46. But you can.
  • the sealing material closes the gap between the peripheral portion of the opening on the frame main body 46 side of the first duct main body 74 and the peripheral portion of the plate hole 84 formed in the frame main body 46, and improves the airtightness of the exhaust ducts 51 and 51A. be able to.
  • the sealing material for example, an elastomeric material can be used.
  • the heat of the first duct body 74 heated by the exhaust gas can be transmitted to the frame body 46 through the elastomeric material.
  • the frame body 46 can be used for heat extraction, and the temperature of the exhaust gas can be further reduced.
  • a sealing material with good thermal conductivity for example, a highly thermal conductive elastomer-based material containing a thermal conductive filler can be used.
  • the duct outlet member 76 includes a cross-sectional enlarged portion 54 having a shape in which the flow path cross-sectional area S1 about a plane orthogonal to the length direction gradually increases toward the gas downstream side.
  • the cross-sectional enlarged portion 54 is formed by connecting the upper surface P1 and the lower surface P2, the outer surface P3 opposite to the frame body 46, and the inner surface P4 on the frame body 46 side.
  • the upper surface P1 and the lower surface P2 are inclined with respect to the horizontal plane, and the interval increases toward the outlet.
  • the outer side surface P3 is inclined so as to be away from the frame body 46 toward the outlet.
  • the inner side surface P4 has a shape substantially along the side surface of the frame body 46.
  • the flow passage cross-sectional area S1 of the duct outlet 56 which is the gas downstream end of the cross-sectional enlarged portion 54, is larger than the flow passage cross-sectional area S2 of the first duct body 74 provided on the gas upstream side.
  • the flow path cross-sectional area S1 at the gas downstream end of the duct outlet 56 is preferably 1.5 to 3.4 times the flow path cross-sectional area S2 of the first duct body 74.
  • the cross-sectional area of the duct outlet 56 may change greatly, and pressure loss due to energy loss may occur.
  • the cross-sectional enlarged portion 54 is provided in the peripheral portion of the duct outlet 56.
  • the inner surface P4 is spaced from the outer surface P3 toward the outlet with respect to the plane along the height direction H and the length direction L. It is good also as a shape which inclines so that it may become larger and the flow-path cross-sectional area S1 becomes larger toward the gas downstream side.
  • the temperature lowering member 58 is composed of a metal mesh member fixed to the duct outlet member 76, that is, a wire mesh.
  • the temperature lowering member 58 is fixed to a peripheral part of the duct outlet, for example, a part where the cross section of the flow path is most enlarged so as to always block a part of the flow path.
  • the temperature lowering member 58 lowers the temperature of the gas by contact with the temperature lowering member 58.
  • the ratio between the total area A of the mesh gaps and the flow path cross-sectional area S2 of the first duct body 74 in a state where the temperature reducing member 58 having an opening ratio of about 36% is fixed to the periphery of the duct outlet 56 (A / S2) is preferably between 0.55 and 3.23.
  • the flow path cross-sectional area S2 is the minimum flow path cross-sectional area on the gas upstream side of the temperature reducing member 58 in the first exhaust duct 51.
  • the ratio between the total area of the mesh gaps and the flow passage cross-sectional area S2 of the first duct body 74 is smaller than 0.55, the periphery of the duct outlet 56 of each of the exhaust ducts 51 and 51A is blocked by the temperature reducing member 58. As a result, gas pressure loss may increase.
  • the ratio between the total area of the mesh gap and the flow path cross-sectional area S2 of the first duct body 74 is larger than 3.23, the volume of the duct outlet 56 increases, so that the cross-sectional area of the duct outlet 56 changes greatly. As a result, pressure loss due to energy loss may occur. Further, it is more preferable that the total area of the mesh gaps is substantially the same as the cross-sectional area S2 of the first exhaust duct 51 on the gas upstream side.
  • the lid member 78 is fixed so as to close the opening at the other end in the length direction of the first duct body 74.
  • the first duct body 74 may be made of a material having good thermal conductivity.
  • the first duct body 74 may be formed of a metal such as iron or aluminum.
  • connection structure between the upper and lower two middle and lower battery modules 22 and the second exhaust duct 51A shown in FIGS. 1 and 3 is also the connection structure between the uppermost battery module 22 and the first exhaust duct 51.
  • This is the same as the basic configuration.
  • the exhaust ports provided in the plurality of battery modules 22 arranged along the length direction L are communicated with the two middle and lower second exhaust ducts 51A.
  • the plurality of exhaust ducts 51, 51 ⁇ / b> A are arranged in parallel in the vertical direction, and the duct outlet of each exhaust duct 51, 51 ⁇ / b> A is provided at one end in the length direction.
  • Each duct outlet faces an exhaust gas blocking plate 66 that is folded substantially perpendicularly to one end in the length direction of the frame body 46. In this case, only a part of the opening end of each duct outlet may face the exhaust gas blocking plate 66. With this configuration, as will be described later, the gas discharged from the exhaust ducts 51 and 51A is blown to the exhaust gas blocking plate 66, and the temperature of the gas is lowered.
  • the exhaust ducts 51, 51 ⁇ / b> A communicating with the exhaust port 52 of the battery module 22 are provided in the cross-sectional enlarged portion 54 and the duct outlet peripheral portion on the gas downstream side of the cross-sectional enlarged portion 54.
  • a temperature lowering member 58 for this reason, the temperature of the gas ejected from the battery cell 2 and discharged to the outside of the battery module 22 can be lowered, and an increase in gas pressure in the battery module 22 can be suppressed.
  • FIG. 10 is a cross-sectional view taken along the line EE of FIG.
  • the safety valve 13 When the internal pressure becomes high due to abnormality of the battery cell included in the battery system 20 and the safety valve 13 is activated, the high-temperature gas ejected from the safety valve 13 is exhausted through the module duct 19 and the exhaust port 52 through the first exhaust. It is sent to the duct 51.
  • the gas flowing in the direction of arrow ⁇ in FIG. 10 in the first exhaust duct 51 is discharged out of the battery module 22 through the cross-sectional enlarged portion 54.
  • the temperature of the gas decreases due to heat radiation through the first exhaust duct 51 while flowing through the first exhaust duct 51, and passes through the gap of the temperature decrease member 58, so that the temperature decrease member 58 and the duct.
  • the temperature further decreases due to heat radiation through the outlet member 76.
  • the distance that the gas flows through the first duct body 74 is shortened.
  • a relatively high temperature gas may be discharged. Since the battery system 20 of the present embodiment includes the temperature lowering member 58, the temperature of the gas discharged from each of the exhaust ducts 51 and 51A decreases. For this reason, ignition by exhaust gas can be prevented with a simple configuration.
  • the exhaust duct is provided with a plurality of duct outlets each having the temperature lowering member 58 and the sum of the flow passage cross-sectional areas of the respective duct outlets is smaller than the flow passage cross-sectional area S2, the exhaust duct duct 56 The peripheral portion is excessively blocked by the temperature lowering member 58. Therefore, in these structures, there exists a problem that the pressure loss of gas becomes large. In this case, the gas exhaustability from the inside of the battery module 22 decreases. Since the battery system 20 of the present embodiment has the cross-sectional enlarged portion 54 around the duct outlet 56, the gas temperature can be lowered by providing the temperature lowering member 58. In addition, this configuration can suppress an increase in pressure loss and increase the gas discharge performance from the battery module 22.
  • each of the exhaust ducts 51 and 51A has the cross-sectional enlarged portion 54
  • a plurality of duct outlets are provided at both ends of each of the exhaust ducts 51 and 51A, and the sum of the flow path cross-sectional areas of the respective duct outlets May be larger than the cross-sectional area of the gas upstream side, for example, the cross-sectional area S2 of the duct body 74.
  • the gas temperature can be lowered by providing the temperature lowering member 58 similarly to the structure in which the cross-sectional enlarged portion 54 described with reference to FIGS. 1 to 10 is provided.
  • the increase in pressure loss can be suppressed and the gas discharge property from the battery module 22 can be made high.
  • the temperature reduction member 58 is fixed to the periphery of the duct outlet 56, and the total area of the mesh gaps is substantially the same as the flow path cross-sectional area S2 at which the gas upstream side of the first exhaust duct 51 is minimized. In this case, the effect of lowering the exhaust gas temperature and the effect of suppressing the internal pressure of the battery module 22 can be achieved at a high level.
  • the temperature lowering member 58 is not limited to the wire mesh, and the gas downstream side of the cross-sectional enlarged portion 54 is always partially blocked. Any gas can be used as long as it is fixed and can lower the temperature of the gas passing through the gap.
  • any one of a metal honeycomb member, a non-woven fabric, and a refractory fiber can be used as the temperature lowering member. More preferably, the nonwoven fabric is formed of a refractory material.
  • each exhaust duct 51, 51A may be formed in a rectangular cross section by connecting a plate portion different from the frame main body 46 to the frame main body 46 side of each duct forming member 48, 50. .
  • each of the exhaust ducts 51 and 51 ⁇ / b> A is fixed to the frame main body 46, but is configured as a separate member from the frame main body 46.
  • FIG. 11 is a view corresponding to FIG. 2 showing another example of the first exhaust duct 51.
  • the duct cover 86 is coupled to the gas downstream side end portion of the duct outlet member 76.
  • 12A, 12B, and 12C are a perspective view of the duct outlet member 76, an F arrow view of FIG. 12A, and a G arrow view of FIG. 12A, respectively.
  • FIG. 12A and FIG. 12B the direction which becomes the up-down direction in the attachment state to the 1st duct main body 74 is shown by arrow (beta).
  • the first exhaust duct 51 is connected to the duct outlet 56 and protrudes from a part of the peripheral portion along the discharge direction, and a plate portion 88 that is a protruding wall that restricts the flow direction of the gas discharged from the duct outlet 56.
  • the first exhaust duct 51 includes a duct cover 86 connected to the duct outlet of the duct outlet member 76.
  • the duct outlet member 76 is provided with an upstream connection portion 90 that can be connected to the gas downstream end of the first duct body 74 at the gas upstream end portion, and a downstream connection portion 92 that can be connected to the duct cover 86 at the gas downstream end portion.
  • the upstream connection portion 90 is formed in a cylindrical shape having a rectangular cross section that can be fitted inside the gas downstream end opening of the first duct body 74, and protrusions 96 are formed outside the two elastic pieces 94 at both ends in the vertical direction. Has been.
  • Each projection 96 engages with a locking groove (not shown) formed at the end portion of the first duct body 74 in a state where the upstream connection portion 90 is fitted to the gas downstream end of the first duct body 74. For this reason, it is possible to prevent the duct outlet member 76 from dropping from the first duct body 74 with a simple structure.
  • a second projection 98 having a triangular cross section is formed on the outer surface of both ends in the vertical direction of the downstream connection portion 92 of the duct outlet member 76.
  • FIG. 13 is a perspective view of the duct cover 86.
  • the duct cover 86 includes a frame portion 100 and a plate portion 88 that is a protruding wall that are coupled to each other in an L shape.
  • the frame portion 100 has a rectangular outer shape, and is reinforced by a cross-shaped reinforcing portion on the inner side, and a third hole 102 is formed on the inner side.
  • Elastic pieces 104 are formed on the outer surfaces of both upper and lower ends of the frame portion 100 so as to protrude in the same direction in the axial direction, and holes are formed in each elastic piece 104.
  • Such a duct cover 86 is configured such that the hole portion of each elastic piece 104 is engaged with the second protrusion 98 of the duct outlet member 76 so that the plate portion 88 is disposed on the front side of FIG. To join. The leading edge of the plate portion 88 abuts against the exhaust gas blocking plate 66 or is opposed through a minute gap.
  • FIG. 14 is a view corresponding to FIG. 8 showing a second example of another example of the first exhaust duct 51.
  • duct outlet members 76 are provided at both ends in the length direction of the exhaust ducts 51 and 51A, and the gas ejected from the battery cells of the battery module 22 is 2
  • the two duct outlet members 76 can be discharged.
  • the shape of each duct outlet member 76 is the same as that of the structure of FIGS.
  • FIG. 14 shows the first exhaust duct 51 connected to the uppermost battery module 22, the same second exhaust duct 51 ⁇ / b> A is also connected to the battery modules 22 other than the uppermost battery module 22.
  • a duct cover 86 can be connected to the duct outlets of the exhaust ducts 51 and 51 ⁇ / b> A, as in the configurations of FIGS. 11 to 13.
  • the ratio between the total area A of the mesh gap and the flow path cross-sectional area S 2 of the first duct body 74 When (A / S2) is larger than 0.55, an increase in pressure inside the battery module 22 can be suppressed. Further, in the configuration of FIG.
  • the duct outlets of the exhaust ducts 51 and 51A are not provided with the cross-section enlarged portion 54, and the sum of the channel cross-sectional areas of the duct outlets is made larger than the channel cross-sectional area on the gas upstream side. It is good.
  • FIG. 15 is a view showing a third example of another example of the first exhaust duct 51.
  • the first exhaust duct 51 is configured to include second duct outlet members 76A provided at both ends in the length direction, similarly to the configuration of FIG.
  • Each second duct outlet member 76 ⁇ / b> A has a leg portion 104 bifurcated from the connecting portion of the duct main body 74, and a second cross section in which the cross-sectional area of the flow path increases toward the gas downstream side at the distal end portion of each leg portion 104.
  • An enlargement unit 106 is provided.
  • the gas downstream end opening of the second cross-section enlarged portion 106 serves as a duct outlet.
  • the second cross-sectional enlarged portion 106 is formed in a rectangular cross section by connecting four plane portions.
  • a temperature lowering member 58 (see FIG. 9) is provided at the periphery of each duct outlet.
  • the first exhaust duct 51 is connected to the battery module 22 at each stage.
  • the gas ejected from the battery cells of the battery module 22 is discharged from each duct outlet of each duct outlet member 76A in the direction of arrow ⁇ in FIG.
  • the second cross-section enlarged portion 106 is not provided at each duct outlet of the first exhaust duct 51, and the sum of the channel cross-sectional areas at each duct outlet is made larger than the channel cross-sectional area on the gas upstream side. Also good.
  • the battery system 20 has been described in which a plurality of battery modules 22 and a plurality of exhaust ducts 51, 51 ⁇ / b> A are coupled to the frame body 46, and the inverter 26 and the circuit board 30 are included.
  • the battery unit of the present disclosure is not limited to such a configuration, and may be a battery unit in which an inverter and a circuit board are omitted.
  • a battery unit in which one exhaust duct is coupled to one battery module 22 via a frame body 46 may be used.
  • a battery unit in which an exhaust duct is coupled to the battery module 22 without using the frame main body 46 may be used.
  • FIG. 16 is a perspective view showing a battery unit of a first example of another example.
  • the first exhaust duct 51 communicates with the exhaust port of the battery module 22.
  • the duct outlet 56 of the first exhaust duct 51 has an opening inclined with respect to the length direction of the first exhaust duct 51.
  • the channel cross-sectional area of the opening of the duct outlet 56 is larger than the channel cross-sectional area on the gas upstream side of the first exhaust duct 51.
  • the configuration of the battery module 22 is the same as that of each battery module 22 having the configuration shown in FIGS.
  • FIG. 17 is a perspective view showing a battery unit of a second example of another example.
  • a first exhaust duct 51 having a height direction dimension that substantially coincides with the height direction of the battery module 22 (vertical direction in FIG. 17) is coupled to the battery module 22, and the first exhaust duct 51 is The battery module 22 communicates with the exhaust port.
  • Both side surfaces of the duct outlet member 76 in the width direction are inclined with respect to the width direction so that the distance between them increases toward the gas downstream side.
  • Other configurations and operations are the same as those in the configuration of FIG.
  • FIG. 18 is a perspective view showing a battery unit of a third example of another example.
  • the battery unit of this example includes two battery modules 22 and a first exhaust duct 51 sandwiched between the two battery modules 22.
  • An exhaust port (not shown) provided in each battery module 22 communicates with the first exhaust duct 51.
  • Other configurations and operations are the same as those in FIG.
  • FIG. 19 is a perspective view showing a battery unit of a fourth example of another example.
  • two first exhaust ducts 51 are coupled to both sides in the width direction of the battery module 22, and an exhaust port (not shown) provided in the battery module 22 communicates with the first exhaust duct 51.
  • gas is discharged from the inside of the battery module 22 through the two first exhaust ducts 51.
  • Other configurations and operations are the same as those in FIG.
  • any one of the connection configurations of FIGS. 16 to 19 may be used for the connection configuration of the battery module 22 and the first exhaust duct 51 of the battery system 20. Good.
  • the form for implementing this indication was demonstrated, this indication is not limited to such embodiment at all, and can be implemented with various forms within the range which does not deviate from the gist of this indication.
  • the cross-sectional shape of the duct main bodies 74 and 75 included in the exhaust ducts 51 and 51A is not limited to a rectangle, and may be a circle, an ellipse, or a polygon other than a rectangle.
  • each exhaust duct 51 and 51A is not limited to what is formed in a cross-sectional rectangle by a some plane part, It is good also considering a cross-sectional shape as a polygon other than a rectangle, an ellipse, or a rectangle.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

 電池ユニットは、複数の電池セルを含み、各電池セルから噴出したガスを排気する排気口を有する電池モジュールと、排気口に連通してガスを電池モジュール外部に排出する排気ダクトとを含む。排気ダクトは、少なくとも1つのダクト出口であって、ダクト出口の流路断面積、または各ダクト出口の流路断面積の総和は、ガス上流側の流路断面積よりも大きいダクト出口と、ダクト出口の周辺部に流路の一部を塞ぐように固定され、隙間を通過するガスの温度を低下させる温度低下部材とを有する。

Description

電池ユニット
 本開示は、複数の電池セルを含み排気口を有する電池モジュールを備える電池ユニットに関する。
 特許文献1には、単電池が収容されたケースと、ケースに設けられたケース開口部に接続される排気ダクトとを有し、排気ダクトの下流側開口部は上流側開口部よりも面積が大きい電池モジュールが記載されている。単電池で生じたガスはケース開口部及び排気ダクトを通じて外部に排出される。
特開2011-70871号公報
 特許文献1に記載された電池モジュールでは、単電池(または電池セル)から噴出され、電池モジュール外に排出されるガスの温度を低下できる構造で、電池モジュール内のガス圧力増大を抑制する面から改良の余地がある。
 本開示の一態様に係る電池ユニットは、複数の電池セルを含み、各電池セルから噴出したガスを排気する排気口を有する電池モジュールと、排気口に連通してガスを電池モジュール外部に排出する排気ダクトと、を備え、排気ダクトは、少なくとも1つのダクト出口であって、ダクト出口の流路断面積、または各ダクト出口の流路断面積の総和は、ガス上流側の流路断面積よりも大きいダクト出口と、ダクト出口の周辺部に流路の一部を塞ぐように固定され、隙間を通過するガスの温度を低下させる温度低下部材と、を含む。
 本開示の一態様に係る電池ユニットによれば、電池セルから噴出され、電池モジュール外に排出されるガスの温度を低下でき、かつ、電池モジュール内のガス圧力増大を抑制できる。
本開示の実施形態における電池ユニットである電池システムを示す斜視図である。 図1のA部拡大図である。 図1の電池システムにおいて、一部を省略して裏側から見た図である。 図1において、プレート本体を取り出して示す斜視図である。 図1から、1つの電池モジュールを取り出して示す斜視図である。 図5のB-B断面図である。 図5のC-C断面図である。 図1において、最上段の電池モジュールと排気ダクトとが接続された構成を拡大して示す斜視図である。 図8において、排気ダクトの出口を示すD矢視図である。 図8のE-E断面図である。 排気ダクトの別例を示している図2に対応する図である。 図11の構成で用いられるダクト出口部材を示す斜視図である。 図12AのF矢視図である。 図12AのG矢視図である。 図11の構成で用いられるダクトカバーを示す斜視図である。 排気ダクトの別例の第2例を示している図8に対応する図である。 排気ダクトの別例の第3例を示す図である。 本開示の実施形態の別例の第1例の電池ユニットを示す斜視図である。 本開示の実施形態の別例の第2例の電池ユニットを示す斜視図である。 本開示の実施形態の別例の第3例の電池ユニットを示す斜視図である。 本開示の実施形態の別例の第4例の電池ユニットを示す斜視図である。
 以下、図面を参照しながら、本開示に係る実施形態について詳細に説明する。この説明において、具体的な形状、材料、数値、方向等は、本開示の理解を容易にするための例示であって、用途、目的、仕様等に合わせて適宜変更することができる。また、以下において複数の実施形態、または変形例などが含まれる場合、複数の実施形態または変形例における各構成要素を適宜または任意に組み合わせて実施することができる。以下ではすべての図面において実質的に同様の要素に対する重複説明を省略する場合がある。
 図1は、本開示の実施形態における電池ユニットである電池システム20を示す斜視図である。図2は、図1のA部拡大図である。図3は、図1の電池システム20において、一部を省略して裏側から見た図である。電池システム20は、蓄電装置として用いられる。電池システム20は、複数の電池モジュール22と、複数の電池モジュール22を一体に固定するダクト付固定部材24と、インバータ26、コンバータ27及び回路基板30とを含んで構成される。
 電池システム20は、図示しない太陽電池等の発電装置で得られた電力を電池モジュール22に充電し、必要に応じて電池モジュール22から取り出した直流電力をコンバータ27で昇圧または降圧し、インバータ26で交流電力に変換し、図示しない電気機器に出力する機能を有する。回路基板30は、インバータ26及びコンバータ27の動作を制御する制御部を含む。電池システム20は、図示しないケースの内側に固定される。電池システム20は、発電装置からの電力を蓄電または供給するために用いられる構成に限定せず、例えば停電時または電力消費の調整に用いられてもよい。例えば電池システム20は、電力が分配される各建物全体で電力消費が少ない時間帯に商用交流電源から電池システム20に電力を蓄電し、電力消費が多い時間帯または停電時に、電池システム20が設置される建物内の電気機器に電池システム20から電力を供給してもよい。この場合、インバータ26が供給された交流電力を直流電力に変換し、変換後の直流電力を電池モジュール22に蓄電する。
 図1、3、及び後述する図面の一部では、互いに直交する3軸方向として、高さ方向H、長さ方向L、幅方向Wが示されている。高さ方向Hは、電池システム20が水平面上に設置された場合の上下方向または鉛直方向である。長さ方向L及び幅方向Wは水平面で互いに直交する方向である。ここでは電池システム20の寸法が長い方を長さ方向Lとし、短い方を幅方向Wとした。
 ダクト付固定部材24は、フレーム部材であり、ダクトプレートと呼ばれるダクトフレーム34と、2つのサイドフレーム36,38と、複数の結合フレーム40,42、基板支持フレーム44、及び横プレート45とを含んで一体に固定される。2つのサイドフレーム36,38は、第1サイドフレーム36及び第2サイドフレーム38である。複数の結合フレーム40,42は、第1結合フレーム40及び第2結合フレーム42である。ダクトフレーム34は、本体板部であるフレーム本体46に複数のダクト形成部材48,50が上下に並んで結合されることにより構成される。複数のダクト形成部材48,50は、第1ダクト形成部材48及び第2ダクト形成部材50である。フレーム本体46は、所定の外形を有する板状部材に曲げ加工と孔加工とを施すことにより形成される。第1ダクト形成部材48及び第2ダクト形成部材50は、図2に第1ダクト形成部材48で示すように、水平方向に沿う上下2つの板部である第1板部H1及び第2板部H2と、各板部H1,H2に連結され鉛直方向に沿う外側板部H3とを含んで形成される。第1ダクト形成部材48は、フレーム本体46側が開口する第1ダクト本体74と、第1ダクト本体74の両端に結合されたダクト出口部材76及び蓋部材78(図2)とにより構成される。第2ダクト形成部材50は、フレーム本体46側が開口する第2ダクト本体75と、第2ダクト本体75の両端に結合されたダクト出口部材76及び蓋部材78とにより構成される。各ダクト本体74,75が、フレーム本体46の板部に開口端を塞がれて断面矩形の直線ガス流路を形成するように組み合わされることにより、上下に並んだ複数の排気ダクトである第1排気ダクト51及び第2排気ダクト51Aが形成される。
 図2に示すように、最上段の第1排気ダクト51は最上段の電池モジュール22に接続され、電池モジュール22に設けられた排気口52(図5)に第1排気ダクト51が連通する。第1排気ダクト51は、ガス下流側端部にガス下流側に向かって流路断面積が拡大する断面拡大部54が設けられる。断面拡大部54のダクト出口56の周辺部に温度低下部材58が固定され、温度低下部材58の隙間を通過するガスの温度を低下させる。これによって、排出ガスの温度低下と電池モジュール22の内圧上昇の抑制とを両立できる。これについては、後で詳しく説明する。
 図1に戻って、第1サイドフレーム36及び第2サイドフレーム38は、ダクトフレーム34の長さ方向Lの両端部にねじ止めによりフレーム本体46に対し直角に固定され、上から見た形状が門形となるように形成される。第1結合フレーム40及び第2結合フレーム42は、第1サイドフレーム36及び第2サイドフレーム38の複数個所に長さ方向に掛け渡されて結合される。基板支持フレーム44は、図示しない片側フレームと、フレーム本体46とに幅方向に掛け渡されて固定される。片側フレームは、第1サイドフレーム36及び第2サイドフレーム38の幅方向一端部(図1の裏側端部)にねじ止めにより掛け渡して固定される。基板支持フレーム44には、回路基板30が固定される。
 複数の横プレート45は、第1サイドフレーム36及び第2サイドフレーム38の上端部に上下に並んで長さ方向Lに掛け渡され、各横プレート45の長さ方向両端部が各サイドフレーム36,38にねじ止めにより固定される。インバータ26は、上側の横プレート45上に固定され、コンバータ27は、下側の横プレート45上に固定される。
 第1結合フレーム40及び第2結合フレーム42の少なくとも1つは、中間部の長さ方向に沿った両端が曲げ起こされることで角を持つ断面U字形の樋状に形成される。第1結合フレーム40及び第2結合フレーム42の少なくとも1つの長さ方向両端部はサイドフレーム36(または38)にねじ止めされるか、またはサイドフレーム36(または38)に形成された孔の周縁部との係合により固定される。
 図4に示すように、フレーム本体46は、下端部に設けられた倒れ止め板60と、複数の電池支持板である第1電池支持板62及び第2電池支持板64と、長さ方向一端部に設けられた排出ガス遮断板66とを含んで構成される。第1電池支持板62及び第2電池支持板64は、フレーム本体46の高さ方向Hの複数個所から他方面側(図4の裏側)に突出する。倒れ止め板60はフレーム本体46の下端部に水平方向に曲げ起こすことにより形成される。倒れ止め板60は、図示しないケースの底板部の上側にねじ止めにより固定可能である。
 各電池支持板62,64は、後で説明するように電池モジュール22(図1)が上側に乗せられる。排出ガス遮断板66は、フレーム本体46の長さ方向Lの一端部に高さ方向Hの全体にわたって、電池モジュール22とは反対側に直角に曲げ起こすことで形成される。排出ガス遮断板66の機能は後述する。フレーム本体46、各サイドフレーム36,38、44及び横プレート45は鉄等の金属板により形成される。
 図3に示すように、ダクト付固定部材24には、電池モジュール22が上下方向に4段に並んで、図示しないボルト等の結合手段により固定される。電池モジュール22はボルトを用いずに、第1サイドフレーム36及び第2サイドフレーム38の幅方向(W方向)端部に掛け渡すように結合された図示しないフレームとフレーム本体46とにより挟まれることで、ダクト付固定部材24に固定されてもよい。
 ダクト付固定部材24の最上段に1つの電池モジュール22が、2つの中段及び最下段にそれぞれ4つの電池モジュール22が固定される。そして、電池システム20に合計13個の電池モジュール22が配置されている。図3では電池モジュール22の後述する端子部68(図5)の図示を省略する。
 各電池モジュール22は直方体状に形成されている。なお、電池システム20を構成する電池モジュール22の数は、13個に限定されるものではなく、電池システム20に要求される出力または容量に応じて適宜変更される。
 図5は、図1から、1つの電池モジュール22を取り出して示す斜視図である。図6は、図5のB-B断面図である。図7は、図5のC-C断面図である。電池モジュール22が電池システム20に配置される場合に、電池モジュール22の長さ方向は電池システム20の幅方向Wと一致し、電池モジュール22の幅方向は電池システム20の長さ方向Lと一致する。電池モジュール22の長さ方向両端部には端子部68が突出形成される。2つの端子部68のうち、一方側の端子部68が正極端子であり、他方側の端子部68が負極端子である。端子部68は、電池モジュール22に含まれる最少単位の電池セルの電極に電気的に接続されて、電池セルに対し充放電を行う場合の入出力端子となる。複数の電池モジュール22の端子部68は、図示しないバスバーによって直列または並列に電気的に接続される。
 図6に示すように、電池モジュール22は、千鳥配置された複数の電池セル2を含む。図6では、複数の電池セル2を保持する後述する電池セルケース3(図7)の図示を省略する。電池モジュール22は、複数の電池セル2を並列接続して所定の電池容量が得られるように構成される。ここでは40個の電池セル2を用いた例が示される。
 図7に示すように、電池モジュール22は40個の電池セル2について各正極側を一方側に揃え、各負極側を他方側に揃えて所定の配置関係で整列配置される。電池モジュール22は、電池セル2、電池セルケース3、上側ホルダ6、下側ホルダ7、モジュールケース8、及びモジュールダクト19を含んで構成される。電池セルケース3は電池セル2を収納して保持し、正極側に正極側集電部4が配置され、負極側に負極側集電部5が配置される。電池セルケース3に上側ホルダ6及び下側ホルダ7を介して正極側集電部4及び負極側集電部5が結合される。なお、電池セル2が負極側から排気する構造である場合、電池モジュール22は、電池セル2について各負極側を一方側に揃え、各正極側を他方側に揃えて所定の配置関係で整列配置してもよい。
 電池セル2は、電池モジュール22を構成する電池の最小単位となる充放電可能な二次電池である。二次電池としては、リチウムイオン電池が用いられる。これ以外に、ニッケル水素電池、アルカリ電池等を用いてもよい。電池モジュール22に含まれる40個の電池セル2は、20個の電池セルを1組として、2組が横並びで配置されている。各組の電池セル2で隣接する電池セルの間の隙間を最小にする千鳥型の配置関係とされ、長さ方向Lに3列の電池列が配置され、それぞれの電池列は、幅方向Wに沿って、7個、6個、7個の電池セル2が配置されている。
 電池セル2は、円筒形の外形を有する。円筒形の両端部のうち一方端が正極端子、他方端が負極端子として用いられる。本実施形態では、図7に示す電池セル2の上端に正極端子が設けられ、下端に負極端子が設けられている。なお、電池セル2は円筒形の電池に限らず、他の外形を有する電池であってもよい。
 電池セル2は、正極端子側に安全弁13を有する。安全弁13は、電池セル2の内部で行われる電気化学反応によって発生するガスの圧力が予め定めた閾値圧力を超えたときに、電池内部からセル外部に排ガスとして放出する機能を有する。安全弁13は、ガス圧が閾値圧力を超えた時に破断される金属シート、または閾値圧力を超えたときに弁座から離れる弁体を含む構成としてもよい。
 電池セルケース3は、40個の電池セル2を所定の配置関係で整列配置して保持する保持容器である。電池セルケース3は、電池セル2の高さと同じ高さを有し、高さ方向Hの両端側がそれぞれ開口する40個の貫通孔形状の電池収納部が設けられる枠体で、それぞれの電池セル2は、電池収納部の1つに収納配置される。
 電池収納部の配置は、電池セル2の配置関係に対応して、千鳥型の配置関係とされる。すなわち、横並びに2組が配置され、各組で長さ方向Lに3列の電池収納部が配置され、それぞれの電池収納部列は、幅方向Wに沿って、7個、6個、7個の電池収納部を有する。かかる電池セルケース3としては、熱伝導性のよい材料であればよい。例えばアルミニウムを主材料として、押出成形によって所定の形状としたものを用いることができる。
 電池セルケース3において、40個の電池セル2が電池収納部に収納配置される際に、電池セル2の各正極側が一方側に揃えられ、各負極側が他方側に揃えられる。図7では、一方側は高さ方向Hに沿って紙面の上方側で、他方側は高さ方向Hに沿って紙面の下方側である。なお、電池セルケースは、20個の電池収容部を有し互いに分離される横並びの2組の電池セルケースにより構成されてもよい。
 正極側集電部4は、電池セルケース3の一方側の開口を塞ぐように配置されて、整列配置された電池セル2の正極側をそれぞれ電気的に接続する接続部材である。正極側集電部4は、正極側絶縁板10、正極板11、正極リード板12で構成される。
 正極側絶縁板10は、電池セルケース3と正極板11、正極リード板12との間に配置され、これらの間を電気的に絶縁する板材である。正極側絶縁板10には、電池セル2の正極電極を突き出させる40個の円形等の開口が設けられる。かかる正極側絶縁板10としては、所定の耐熱性と電気絶縁性とを有する樹脂成型品または樹脂シートを所定の形状に加工したものが用いられる。
 正極板11は、電池セル2の正極電極にそれぞれ個別に接触する位置関係で配置される40個の電極接触部を有する薄板である。かかる正極板11としては、電気的導電性を有する金属薄板について、エッチングまたはプレス加工等によって、周囲に略C字状の切欠部が形成された所定形状の電極接触部を形成したものを用いることができる。
 正極リード板12は、正極板11と電気的に接続され、40個の電極接触部を相互接続して少なくとも1つの正極側出力端子とする電極板である。かかる正極リード板12としては、電気的導電性を有し、適当な厚さと強度を有する金属薄板を用いることができる。正極リード板12としては、金属薄板についてエッチングまたはプレス加工等で、円形等の開口が形成された所定形状の電極接触部を形成したものを用いることができる。
 負極側集電部5は、電池セルケース3の他方側の開口に配置され、整列配置された電池セル2の負極側をそれぞれ電気的に接続する接続部材である。負極側集電部5は、負極側絶縁板16、負極板17、負極リード板18で構成される。
 負極側絶縁板16は、電池セルケース3と負極板17、負極リード板18との間に配置され、これらの間を電気的に絶縁する板材である。負極側絶縁板16には、電池セル2の負極電極を露出させる40個の円形等の開口が設けられる。かかる負極側絶縁板16としては、所定の耐熱性と電気絶縁性とを有する樹脂成型品または樹脂シートを所定の形状に加工したものが用いられる。
 負極板17は、電池セル2の負極電極にそれぞれ個別に接触する位置関係で配置される40個の電極接触部を有する電極部材である。かかる負極板17としては、電気的導電性を有する金属薄板について、エッチングまたはプレス加工等によって、略C字状の切欠部を形成することにより区画された電極接触部を形成したものを用いることができる。また、負極板17の電極接触部には、電池セル2に過電流が流れることで予め定めた閾値温度を超えるときに溶断する電流遮断素子を設けてもよい。
 負極リード板18は、負極板17と電気的に接続され、40個の電極接触部のそれぞれを相互接続して少なくとも1つの負極側出力端子とする電極板である。かかる負極リード板18としては、電気的導電性を有し、適当な厚さと強度を有する金属薄板を、エッチングまたはプレス加工等で、負極板17の電極接触部に対応して円形等の開口が形成されたものを用いることができる。
 上側ホルダ6及び下側ホルダ7は、電池セルケース3の一方側に配置される正極側集電部4と、他方側に配置される負極側集電部5とを、電池セルケース3とともに、全体として一体化するための部材で、絶縁材料で構成される。例えば上側ホルダ6及び下側ホルダ7は、正極側集電部4と負極側集電部5とを、ボルト等の締結部材を用いて締結して一体化される。なお、ホルダは別々に構成されていなくてもよく、例えば、電池セルケース3の側面を覆う側部と、正極側を覆う上部と、負極側を覆う下部とが一体に構成されてもよい。各ホルダ6,7は、モジュールケース8の内側に固定され、モジュールケース8は、上側のダクトカバー14と下側のボトムカバー15とにより構成される。
 上記のような構成を有する電池モジュール22の上部には、内部にダクト室9を有し、下側が開口する断面U字形のモジュールダクト19が設けられる。モジュールダクト19は、上側ホルダ6の上側に被せるように設けられ、上端が枠状となるダクトカバー14の上端開口周縁部の上側に固定される。一方、負極側集電部5の下側には、ダクトカバー14に結合されたボトムカバー15が設けられる。
 ダクト室9が、安全弁13が設けられた電池セル2の正極端子に開口部または切欠部を介して臨むとともに、モジュールダクト19の長さ方向一端面に形成された排気口52(図5)に連通している。これにより、電池セル2の安全弁13から噴出したガスは、ダクト室9から排気口52を介して外部に排出可能である。後述するように、排気口52は排気ダクト51,51Aに連通し、各電池セル2から噴出したガスは、各排気ダクト51,51Aを通じて電池モジュール22の外部に排出される。モジュールダクト19は、熱伝導性のよい材料であればよい。例えばアルミニウムを主材料とする金属板により形成される。
 なお、上記では電池モジュール22として、各電池セル2が並列接続される場合を説明したが、直列接続された横並びの2組の電池セルが含まれてもよいし、あるいは直列または並列接続された3組以上の電池セルが含まれてもよい。
 次に第1排気ダクト51を説明する。図8は、図1において、最上段の電池モジュール22と第1排気ダクト51とを接続した状態を拡大して示す斜視図である。図9は、図8において、第1排気ダクト51の出口を示すD矢視図である。図10は、図8のE-E断面図である。
 なお、図8から図10では、図1の最上段の電池モジュール22と第1排気ダクト51との関係を説明するが、上下2つの中段及び最下段の電池モジュール22と第2排気ダクト51A(図1)との関係も、1つの第2排気ダクト51Aに連通する電池モジュール22の排気口の数が増えるだけで同様である。第2排気ダクト51Aの長さは、第1排気ダクト51の長さよりも大きい。
 電池モジュール22は、フレーム本体46に結合されている。フレーム本体46において、電池モジュール22の下端部と対向する部分に矩形状の第1孔70が形成され、その第1孔70の内側部分の矩形状の板部を電池モジュール22側に略直角に折り曲げることにより、第1電池支持板62が形成されている。第1電池支持板62には電池モジュール22が上側に乗せられ、電池モジュール22の支持強度を高くする。また、電池モジュール22の端子部68は、フレーム本体46に形成された第2孔72を通じてフレーム本体46の片側(図8の表側)に導出される。
 第1排気ダクト51は、断面矩形の直線状の第1ダクト本体74と、第1ダクト本体74の長さ方向一端部及び他端部にそれぞれ接続されるダクト出口部材76及び蓋部材78と、ダクト出口部材76に固定された温度低下部材58(図9)とを含んで構成される。
 図10に示すように、第1ダクト本体74のフレーム本体46側の開口は、フレーム本体46に形成されたプレート孔84を介して電池モジュール22の排気口52に連通する。なお、第1ダクト本体74のフレーム本体46側の開口の周辺部とフレーム本体46に形成されたプレート孔84の周辺部との間に、熱伝導性のよいシール材(図示せず)を挟んでもよい。シール材は、第1ダクト本体74のフレーム本体46側の開口の周辺部とフレーム本体46に形成されたプレート孔84の周辺部との隙間を塞ぎ、各排気ダクト51、51Aの気密性を高めることができる。また、シール材として、例えばエラストマー系の材料を用いることができる。エラストマー系の材料を用いることで、排出ガスによって加熱された第1ダクト本体74の熱はエラストマー系の材料を介してフレーム本体46に伝達することができる。この構成によって、フレーム本体46を熱引きに利用することができ、排出ガスの温度をより低下させることができる。熱伝導性の良いシール材として、例えば熱伝導性フィラーを含有した高熱伝導性のエラストマー系の材料を用いることもできる。
 ダクト出口部材76は、長さ方向に対し直交する平面についての流路断面積S1がガス下流側に向かって徐々に拡大する形状を有する断面拡大部54を含む。具体的には、断面拡大部54は、上面P1及び下面P2、フレーム本体46と反対側の外側面P3、フレーム本体46側の内側面P4を連結することにより形成される。上面P1及び下面P2は、水平面に対し傾斜して、出口に向かうほど間隔が広がっている。外側面P3は、出口に向かうほどフレーム本体46から離れるように傾斜する。内側面P4は、フレーム本体46の側面にほぼ沿う形状としている。この結果、断面拡大部54のガス下流端であるダクト出口56の流路断面積S1は、ガス上流側に設けられる第1ダクト本体74の流路断面積S2よりも大きくなっている。ダクト出口56のガス下流端部の流路断面積S1は、第1ダクト本体74の流路断面積S2の1.5倍から3.4倍の大きさとすることが好ましい。流路断面積S1が流路断面積S2の1.5倍より小さい場合、各排気ダクト51,51Aのダクト出口56の周辺部が温度低下部材58により塞がれることにより、ガスの圧力損失が大きくなる場合がある。また、流路断面積S1が流路断面積S2の3.4倍より大きい場合、ダクト出口56の断面積が大きく変化してエネルギー損失による圧力損失が発生する場合がある。このような構成では、断面拡大部54は、ダクト出口56の周辺部に設けられる。
 なお、断面拡大部54は、プレート本体との干渉がないのであれば、内側面P4を、高さ方向H及び長さ方向Lに沿う平面に対し、出口に向かって外側面P3との間隔がより大きくなるように傾斜させて、流路断面積S1がガス下流側に向かって、より大きくなる形状としてもよい。
 図9に示すように、温度低下部材58は、ダクト出口部材76に固定された金属製の網状部材、すなわち金網により構成される。温度低下部材58はダクト出口の周辺部、例えば流路断面が最も拡大した部分に、流路の一部を常時塞ぐように固定される。温度低下部材58は、網目の隙間に高温のガスが通過した場合に、温度低下部材58との接触によってそのガスの温度を低下させる。開口率約36%の温度低下部材58をダクト出口56の周辺部に固定された状態で、網目の隙間の面積総和Aと第1ダクト本体74の流路断面積S2との比率である(A/S2)は、0.55から3.23の間にすることが好ましい。この場合、流路断面積S2は、第1排気ダクト51において、温度低下部材58よりもガス上流側の最小流路断面積である。網目の隙間の面積総和と第1ダクト本体74の流路断面積S2との比率が0.55より小さい場合、各排気ダクト51,51Aのダクト出口56の周辺部が温度低下部材58に塞がれることにより、ガスの圧力損失が大きくなる場合がある。また、網目の隙間の面積総和と第1ダクト本体74の流路断面積S2との比率が3.23より大きい場合、ダクト出口56の体積が増大するため、ダクト出口56の断面積が大きく変化してエネルギー損失による圧力損失が発生する場合がある。また、網目の隙間の面積総和が第1排気ダクト51のガス上流側の最小となる流路断面積S2と略同じとした場合がより好ましい。
 蓋部材78は、第1ダクト本体74の長さ方向他端部の開口を塞ぐように固定される。このような第1排気ダクト51において、第1ダクト本体74は熱伝導性のよい材料であればよい。例えば第1ダクト本体74を鉄、アルミニウム等の金属により形成してもよい。また、ダクト出口部材76及び蓋部材78を樹脂により形成してもよい。
 一方、図1、図3に示す上下2つの中段及び最下段の電池モジュール22と第2排気ダクト51Aとの接続構造も、上記の最上段の電池モジュール22と第1排気ダクト51との接続構造の基本構成と同様である。この場合、2つの中段及び最下段の第2排気ダクト51Aには、それぞれの段で長さ方向Lに沿って並んだ複数の電池モジュール22に設けられた排気口を連通させる。図1に示すように、複数の排気ダクト51、51Aは上下に並んで平行に配置され、各排気ダクト51,51Aのダクト出口は長さ方向一方端に設けられる。各ダクト出口は、フレーム本体46の長さ方向一端部に略直角に折り立てられた排出ガス遮断板66に対向する。この場合、各ダクト出口の開口端の一部のみが排出ガス遮断板66に対向してもよい。この構成によって、後述のように各排気ダクト51,51Aから排出されるガスが排出ガス遮断板66に吹き付けられ、ガスの温度が低下する。
 上記の電池システム20によれば、電池モジュール22の排気口52に連通する各排気ダクト51,51Aは、断面拡大部54と、断面拡大部54のガス下流側のダクト出口周辺部に設けられた温度低下部材58とを含む。このため、電池セル2から噴出され、電池モジュール22外に排出されるガスの温度を低下でき、かつ、電池モジュール22内のガス圧力増大を抑制できる。
 これについて図10を用いて説明する。図10は、図8のE-E断面図である。電池システム20に含まれる電池セルの異常により内部圧力が高くなって安全弁13が作動した場合、安全弁13から噴出した高温のガスはモジュールダクト19の内側と、排気口52とを介して第1排気ダクト51に送られる。第1排気ダクト51内で図10の矢印α方向に流れたガスは断面拡大部54を通じて電池モジュール22外に排出される。この場合、ガスは、第1排気ダクト51を流れる間に第1排気ダクト51を介しての放熱で温度低下し、しかも、温度低下部材58の隙間を通過することで、温度低下部材58及びダクト出口部材76を介しての放熱でさらに温度低下する。特に第1排気ダクト51の第1ダクト本体74のガス下流端に近い位置に配置される電池セル2からガスが排出された場合に、そのガスは第1ダクト本体74を流れる距離が短くなるので、温度低下部材がない場合には比較的高温のガスが排出されるおそれがある。本実施形態の電池システム20は温度低下部材58を備えるので、各排気ダクト51,51Aから排出されるガスの温度が低下する。このため、単純な構成で、排出ガスによる発火を防止できる。
 一方、温度低下部材58を備える構成でも断面拡大部54がない構造であって、ダクト出口56のガス下流端部の流路断面積S1がダクト本体74の流路断面積S2より小さい構成では、各排気ダクト51,51Aのダクト出口56の周辺部が温度低下部材58により過度に塞がれる。また、排気ダクトにおいて、温度低下部材58をそれぞれ有する複数のダクト出口を設ける構成で、各ダクト出口の流路断面積の総和が流路断面積S2より小さい構成でも、排気ダクトのダクト出口56の周辺部が温度低下部材58により過度に塞がれる。そのため、これらの構成ではガスの圧力損失が大きくなるという問題がある。この場合には、電池モジュール22内からのガス排出性が低下する。本実施形態の電池システム20は、ダクト出口56の周辺部に断面拡大部54を有するので、温度低下部材58を設けることでガス温度を低下できる。また、この構成によって圧力損失の増大を抑制して電池モジュール22からのガス排出性を高くできる。
 また、各排気ダクト51,51Aに断面拡大部54があるか、またはないかに関係なく、各排気ダクト51,51Aの両端に複数のダクト出口を設けて、各ダクト出口の流路断面積の総和をガス上流側の流路断面積、例えばダクト本体74の流路断面積S2より大きくする構成としてもよい。この構成によれば、上記の図1から図10で説明した断面拡大部54を設ける構造と同様に、温度低下部材58を設けることでガス温度を低下できる。また、この構成によれば、圧力損失の増大を抑制して電池モジュール22からのガス排出性を高くできる。
 また、温度低下部材58はダクト出口56の周辺部に固定された状態で、網目の隙間の面積総和が第1排気ダクト51のガス上流側の最小となる流路断面積S2と略同じとした場合、排出ガスの温度低下効果と、電池モジュール22の内部圧力抑制効果とを高レベルで両立させることができる。
 なお、上記では温度低下部材58として金網を用いる場合を説明したが、温度低下部材は、金網に限定するものではなく、断面拡大部54のガス下流側において、ガス下流側の一部を常時塞ぐように固定され、隙間を通過するガスの温度を低下できるものであればよい。例えば金属のハニカム状部材、不織布、耐火繊維のいずれか1つを温度低下部材として用いることもできる。不織布は耐火材料により形成するのがより好ましい。
 また、図1、図2に示したように、各排気ダクト51,51Aのダクト出口56の少なくとも一部が排出ガス遮断板66に対向する。このため、各排気ダクト51,51Aから排出されたガスは排出ガス遮断板66に吹き付けられて温度低下する。排出ガス遮断板66がガスから伝熱される場合でも、排出ガス遮断板66は放熱性が高いので低い温度に維持される。このため、各排気ダクト51の出口に排出ガス遮断板66を介して対向する部分、例えば図示しないケースの側壁部等にユーザが掴む取っ手または操作部が設けられる場合でも、この取っ手または操作部の温度上昇を抑制できる。
 なお、各排気ダクト51,51Aのダクト本体は、フレーム本体46とは別の板部を、各ダクト形成部材48,50のフレーム本体46側に連結することにより断面矩形状に形成してもよい。この場合、各排気ダクト51,51Aは、フレーム本体46に固定されるが、フレーム本体46とは別部材として構成される。
 図11は、第1排気ダクト51の別例を示している図2に対応する図である。本例では、上記の図1から図10に示した構成において、ダクト出口部材76のガス下流側端部にダクトカバー86が結合されている。図12A、図12B、図12Cは、それぞれダクト出口部材76の斜視図、図12AのF矢視図、図12AのG矢視図である。図12A、図12Bでは、第1ダクト本体74への取付状態で上下方向となる方向を矢印βで示している。
 第1排気ダクト51は、ダクト出口56に接続されて周縁部の一部から排出方向に沿うように突出し、ダクト出口56から排出されたガスの流れ方向を制限する突出壁である板部88を有する。具体的には、第1排気ダクト51は、ダクト出口部材76のダクト出口に接続されたダクトカバー86を含んで構成される。
 ダクト出口部材76は、ガス上流端部に第1ダクト本体74のガス下流端と接続可能な上流側接続部90が設けられ、ガス下流端部にダクトカバー86と接続可能な下流側接続部92が設けられる。上流側接続部90は、第1ダクト本体74のガス下流端開口の内側に嵌合可能な断面矩形の筒状に形成され、上下方向両端部の2つの弾性片94の外側に突起96が形成されている。各突起96は、上流側接続部90を第1ダクト本体74のガス下流端に嵌合させた状態で、第1ダクト本体74の端部に形成された図示しない係止溝と係合する。このため、ダクト出口部材76の第1ダクト本体74からの脱落を簡易な構造で阻止できる。
 ダクト出口部材76の下流側接続部92の上下方向両端部の外面には断面三角形の第2突起98が形成される。
 図13は、ダクトカバー86の斜視図である。ダクトカバー86は、互いにL字形に結合された枠部100及び突出壁である板部88を含む。枠部100は矩形状の外形を有し、内側に十字形の補強部で補強され内側に第3孔102が形成されている。枠部100の上下両端部外面に弾性片104が軸方向同方向に突出形成され、各弾性片104に孔部が形成されている。
 このようなダクトカバー86は、板部88が図11の表側に配置されるように、各弾性片104の孔部をダクト出口部材76の第2突起98に係合させて、ダクト出口部材76に結合する。板部88の先端縁は、排出ガス遮断板66に突き当てるか、または微小隙間を介して対向させる。
 上記構成によれば、第1排気ダクト51からダクトカバー86の第3孔102を介して排出されるガスの流れは、板部88と排出ガス遮断板66とにより遮断され、図11の矢印γ1、γ2方向となる。このような構成は、電池システム20の板部88が配置される図11の表側に温度上昇させたくない部品が設置される場合に有効である。
 図14は、第1排気ダクト51の別例の第2例を示している図8に対応する図である。本例は、上記の図1から図10に示す構成において、各排気ダクト51,51Aの長さ方向両端部にダクト出口部材76が設けられ、電池モジュール22の電池セルから噴出されたガスを2つのダクト出口部材76の両方から排出可能としている。各ダクト出口部材76の形状は、図1から図10の構成の場合と同様である。図14では最上段の電池モジュール22に接続される第1排気ダクト51を示しているが、最上段以外の電池モジュール22においても同様の第2排気ダクト51Aが接続される。このような構成によっても、排出ガスの温度を効率よく低下でき、かつ、電池モジュール22内部の圧力増大を抑制できる。なお、図14の構成において、図11から図13の構成と同様に、各排気ダクト51,51Aのダクト出口にダクトカバー86を接続することもできる。なお、断面拡大部54を備えず温度低下部材58をダクト出口56の周辺部に固定された状態で、網目の隙間の面積総和Aと第1ダクト本体74の流路断面積S2との比率である(A/S2)が、0.55より大きい場合、電池モジュール22内部の圧力増大を抑制できる。また、図14の構成において、各排気ダクト51,51Aの各ダクト出口に断面拡大部54を備えず、各ダクト出口の流路断面積の総和をガス上流側の流路断面積より大きくする構成としてもよい。
 図15は、第1排気ダクト51の別例の第3例を示す図である。第1排気ダクト51は、図14の構成の場合と同様に長さ方向両端部に設けられた第2ダクト出口部材76Aを含んで構成される。各第2ダクト出口部材76Aはダクト本体74の接続部から二股に分岐した脚部104を有し、各脚部104の先端部にガス下流側に向かって流路断面積が拡大する第2断面拡大部106が設けられる。第2断面拡大部106のガス下流端開口がダクト出口となる。第2断面拡大部106は、4つの平面部が連結されることにより断面矩形に形成される。各ダクト出口の周辺部には温度低下部材58(図9参照)が設けられる。
 このような第1排気ダクト51は各段の電池モジュール22に接続される。電池モジュール22の電池セルから噴出されたガスは、例えば各ダクト出口部材76Aの各ダクト出口から図15の矢印δ方向に排出される。図15の構成において、第1排気ダクト51の各ダクト出口に第2断面拡大部106を備えず、各ダクト出口の流路断面積の総和をガス上流側の流路断面積より大きくする構成としてもよい。
 なお、上記の図1から図15の構成では、フレーム本体46に複数の電池モジュール22と複数の排気ダクト51,51Aとを結合し、インバータ26及び回路基板30を有する電池システム20を説明したが、本開示の電池ユニットはこのような構成に限定せず、インバータ及び回路基板を省略した電池ユニットとしてもよい。また、1つの電池モジュール22にフレーム本体46を介して1つの排気ダクトが結合される電池ユニットとしてもよい。また、電池モジュール22にフレーム本体46を介さずに排気ダクトが結合される電池ユニットとしてもよい。
 排気ダクト51,51Aの形状と、排気ダクト51,51A及び電池モジュール22の位置関係とは、上記の構成に限定するものではなく、以下で説明する別例の第1例から第4例の構成でもよい。図16は、別例の第1例の電池ユニットを示す斜視図である。本例の構成では、第1排気ダクト51は電池モジュール22の排気口に連通される。第1排気ダクト51のダクト出口56は、第1排気ダクト51の長さ方向に対し傾斜した開口を有する。ダクト出口56の開口の流路断面積は、第1排気ダクト51のガス上流側の流路断面積よりも大きい。電池モジュール22の構成は、図1から図10の構成の各電池モジュール22の場合と同様である。
 図17は、別例の第2例の電池ユニットを示す斜視図である。本例の構成では、電池モジュール22の高さ方向(図17の上下方向)とほぼ一致する高さ方向の寸法を有する第1排気ダクト51が電池モジュール22に結合され、第1排気ダクト51は、電池モジュール22の排気口に連通される。ダクト出口部材76の幅方向(図15の左右方向)両側面は、ガス下流側に向かって互いの間隔が大きくなるように幅方向に対し傾斜している。その他の構成及び作用は、図16の構成の場合と同様である。
 図18は、別例の第3例の電池ユニットを示す斜視図である。本例の電池ユニットは、2つの電池モジュール22と、2つの電池モジュール22で挟まれた第1排気ダクト51とを含む。各電池モジュール22に設けられた図示しない排気口は第1排気ダクト51に連通している。その他の構成及び作用は、図17の構成と同様である。
 図19は、別例の第4例の電池ユニットを示す斜視図である。本例の電池ユニットは、電池モジュール22の幅方向両側に2つの第1排気ダクト51が結合され、電池モジュール22に設けられた図示しない排気口が第1排気ダクト51に連通する。このような構成では、電池モジュール22の内部から2つの第1排気ダクト51を通じてガスが排出される。その他の構成及び作用は、図17の構成と同様である。
 なお、上記の図1から図10の構成と同様に、電池システム20の電池モジュール22と第1排気ダクト51との接続構成に、図16から図19のいずれか1つの接続構成を用いてもよい。
 以上、本開示を実施するための形態について説明したが、本開示はこうした実施の形態に何ら限定されるものではなく、本開示の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。例えば、各排気ダクト51,51Aに含まれるダクト本体74,75の断面形状は矩形に限定するものではなく、円形、楕円形、または矩形以外の多角形としてもよい。また、各排気ダクト51,51Aの断面拡大部は、複数の平面部によって断面矩形に形成されるものに限定せず、断面形状を円形、楕円形、または矩形以外の多角形としてもよい。
2 電池セル、3 電池セルケース、4 正極側集電部、5 負極側集電部、6 上側ホルダ、7 下側ホルダ、8 モジュールケース、9 ダクト室、10 正極側絶縁板、11 正極板、12 正極リード板、13 安全弁、14 ダクトカバー、15 ボトムカバー、16 負極側絶縁板、17 負極板、18 負極リード板、19 モジュールダクト、20 電池システム、22 電池モジュール、24 ダクト付固定部材、26 インバータ、27 コンバータ、30 回路基板、34 ダクトフレーム、36 第1サイドフレーム、38 第2サイドフレーム、40 第1結合フレーム、42 第2結合フレーム、44 基板支持フレーム、45 横プレート、46 フレーム本体、48 第1ダクト形成部材、50 第2ダクト形成部材、51 第1排気ダクト、51A 第2排気ダクト、52 排気口、54 断面拡大部、56 ダクト出口、58 温度低下部材、60 倒れ止め板、62 第1電池支持板、64 第2電池支持板、66 排出ガス遮断板、68 端子部、70 第1孔、72 第2孔、74 第1ダクト本体、75 第2ダクト本体、76 ダクト出口部材、76A 第2ダクト出口部材、78 蓋部材、80 温度低下部材、84 プレート孔、86 ダクトカバー、88 板部、90 上流側接続部、92 下流側接続部、94 弾性片、96 突起、98 第2突起、100 枠部、102 第3孔、104 弾性片、106 第2断面拡大部。

Claims (6)

  1.  複数の電池セルを含み、各電池セルから噴出したガスを排気する排気口を有する電池モジュールと、
     前記排気口に連通して前記ガスを電池モジュール外部に排出する排気ダクトと、を備え、
     前記排気ダクトは、
     少なくとも1つのダクト出口であって、ダクト出口の流路断面積、または各ダクト出口の流路断面積の総和は、ガス上流側の流路断面積よりも大きいダクト出口と、
     ダクト出口の周辺部に流路の一部を塞ぐように固定され、隙間を通過するガスの温度を低下させる温度低下部材と、を含む、電池ユニット。
  2.  請求項1に記載の電池ユニットにおいて、
     前記排気ダクトは、ダクト出口周辺部に設けられガス下流側に向かって流路断面積が拡大する断面拡大部を含む、電池ユニット。
  3.  請求項1または請求項2に記載の電池ユニットにおいて、
     前記温度低下部材は、網状部材であって、前記ダクト出口周辺部に固定された状態で網目の隙間の面積総和Aと、前記排気ダクトにおいて前記温度低下部材よりもガス上流側の最小流路断面積S2との比率である(A/S2)が、0.55から3.23である、電池ユニット。
  4.  請求項1から請求項3のいずれか1に記載の電池ユニットにおいて、
     前記排気ダクトは、前記ダクト出口に接続されて周縁部の一部から排出方向に沿うように突出し、前記ダクト出口から排出された前記ガスの流れ方向を制限する突出壁を有するダクトカバーを備える、電池ユニット。
  5.  請求項1から請求項4のいずれか1に記載の電池ユニットにおいて、
     前記排気ダクトは、前記排気口と連通する直線状の排気通路を形成するダクト本体と、前記ダクト本体のガス下流側に接続され、前記ダクト出口を有するダクト出口部材とを含む、電池ユニット。
  6.  請求項1から請求項5のいずれか1に記載の電池ユニットにおいて、
     熱伝導性のよいシール材をさらに備え、
     前記排気ダクトは、前記排気口の周辺部と前記シール材を介して連通する、電池ユニット。
PCT/JP2014/004940 2013-09-30 2014-09-26 電池ユニット WO2015045404A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015538913A JP6296362B2 (ja) 2013-09-30 2014-09-26 電池ユニット
US14/895,208 US9761917B2 (en) 2013-09-30 2014-09-26 Battery unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013204777 2013-09-30
JP2013-204777 2013-09-30

Publications (1)

Publication Number Publication Date
WO2015045404A1 true WO2015045404A1 (ja) 2015-04-02

Family

ID=52742573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/004940 WO2015045404A1 (ja) 2013-09-30 2014-09-26 電池ユニット

Country Status (3)

Country Link
US (1) US9761917B2 (ja)
JP (1) JP6296362B2 (ja)
WO (1) WO2015045404A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109994675A (zh) * 2018-01-02 2019-07-09 车王电子股份有限公司 电池端子的绝缘盒
CN111584791A (zh) * 2020-06-22 2020-08-25 昆山宝创新能源科技有限公司 电池模组
JP2021068559A (ja) * 2019-10-23 2021-04-30 株式会社Gsユアサ 蓄電装置
WO2021200941A1 (ja) * 2020-03-31 2021-10-07 パナソニックIpマネジメント株式会社 電池パック
CN114258611A (zh) * 2020-07-10 2022-03-29 宁德时代新能源科技股份有限公司 电池的箱体、电池、用电装置、制备电池的方法和装置
US11791518B2 (en) 2020-07-10 2023-10-17 Contemporary Amperex Technology Co., Limited Battery, power consumption device, method and device for preparing a battery
US11955654B2 (en) 2020-07-10 2024-04-09 Contemporary Amperex Technology Co., Limited Battery, and related device, preparation method and preparation apparatus thereof
JP7558395B2 (ja) 2021-01-21 2024-09-30 エルジー エナジー ソリューション リミテッド バッテリーパック

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019213424A1 (de) * 2018-09-12 2020-03-12 Mahle International Gmbh Akkumulatoranordnung
DE102019114047A1 (de) * 2019-05-27 2020-12-03 Bayerische Motoren Werke Aktiengesellschaft Speichermodul mit einer Entgasungsleitung
CN112366400B (zh) * 2019-07-25 2022-06-14 比亚迪股份有限公司 电池托盘、动力电池包及车辆
JPWO2021199594A1 (ja) * 2020-03-31 2021-10-07
CN112688019B (zh) * 2020-12-25 2022-10-14 中国第一汽车股份有限公司 一种动力电池热流泄放装置及动力电池热流泄放方法
KR20220159819A (ko) * 2021-05-26 2022-12-05 주식회사 엘지에너지솔루션 벤팅 가스의 온도 저감 및 스파크의 외부 배출 차단 구조를 적용한 배터리 팩
KR20240080543A (ko) * 2022-11-30 2024-06-07 에스케이온 주식회사 배터리 팩
CN117559064B (zh) * 2024-01-12 2024-04-26 长安绿电科技有限公司 一种分布式新能源汽车动力电池组

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008117765A (ja) * 2006-10-13 2008-05-22 Matsushita Electric Ind Co Ltd 電池パック及び電池搭載機器並びに電池パックの接続構造
JP2009212081A (ja) * 2008-02-04 2009-09-17 Panasonic Corp 電池パック、それを備えた電子機器および電池収納部を備えた電子機器
JP2011070871A (ja) * 2009-09-25 2011-04-07 Panasonic Corp 電池モジュールとそれを用いた電池パック
JP2013165013A (ja) * 2012-02-13 2013-08-22 Mitsubishi Heavy Ind Ltd 電池用防火装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101380029B1 (ko) 2006-10-13 2014-04-02 파나소닉 주식회사 전지 팩, 전지 탑재 기기 및 전지 팩의 접속 구조체
CN102414868A (zh) * 2009-04-30 2012-04-11 诺基亚公司 从电池单元的气体释放

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008117765A (ja) * 2006-10-13 2008-05-22 Matsushita Electric Ind Co Ltd 電池パック及び電池搭載機器並びに電池パックの接続構造
JP2009212081A (ja) * 2008-02-04 2009-09-17 Panasonic Corp 電池パック、それを備えた電子機器および電池収納部を備えた電子機器
JP2011070871A (ja) * 2009-09-25 2011-04-07 Panasonic Corp 電池モジュールとそれを用いた電池パック
JP2013165013A (ja) * 2012-02-13 2013-08-22 Mitsubishi Heavy Ind Ltd 電池用防火装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109994675A (zh) * 2018-01-02 2019-07-09 车王电子股份有限公司 电池端子的绝缘盒
JP2021068559A (ja) * 2019-10-23 2021-04-30 株式会社Gsユアサ 蓄電装置
JP7380075B2 (ja) 2019-10-23 2023-11-15 株式会社Gsユアサ 蓄電装置
WO2021200941A1 (ja) * 2020-03-31 2021-10-07 パナソニックIpマネジメント株式会社 電池パック
CN111584791A (zh) * 2020-06-22 2020-08-25 昆山宝创新能源科技有限公司 电池模组
CN114258611A (zh) * 2020-07-10 2022-03-29 宁德时代新能源科技股份有限公司 电池的箱体、电池、用电装置、制备电池的方法和装置
US11791518B2 (en) 2020-07-10 2023-10-17 Contemporary Amperex Technology Co., Limited Battery, power consumption device, method and device for preparing a battery
CN114258611B (zh) * 2020-07-10 2023-11-17 宁德时代新能源科技股份有限公司 电池的箱体、电池、用电装置、制备电池的方法和装置
US11955654B2 (en) 2020-07-10 2024-04-09 Contemporary Amperex Technology Co., Limited Battery, and related device, preparation method and preparation apparatus thereof
US11967725B2 (en) 2020-07-10 2024-04-23 Contemporary Amperex Technology Co., Limited Case of battery, battery, power consumption device, and method and device for preparing battery
JP7558395B2 (ja) 2021-01-21 2024-09-30 エルジー エナジー ソリューション リミテッド バッテリーパック

Also Published As

Publication number Publication date
JPWO2015045404A1 (ja) 2017-03-09
US9761917B2 (en) 2017-09-12
US20160104923A1 (en) 2016-04-14
JP6296362B2 (ja) 2018-03-20

Similar Documents

Publication Publication Date Title
JP6296362B2 (ja) 電池ユニット
US10003055B2 (en) Battery module
WO2015045401A1 (ja) 電池固定用フレーム部材、電池固定部材及び蓄電装置
JP5594592B2 (ja) 電池モジュール及び組電池
US10529960B2 (en) Battery pack
US9112202B2 (en) Battery module
TW201709604A (zh) 蓄電裝置
JP6638667B2 (ja) 電池パック
US20120288738A1 (en) Battery pack
KR101806417B1 (ko) 전력 저장 장치의 단위 전지 팩
JP6296361B2 (ja) 電池ユニット
US10388927B2 (en) Battery unit
JP2015135763A (ja) 蓄電装置
JP7418409B2 (ja) 電池モジュール
JP2007311172A (ja) 電源システム
WO2020110449A1 (ja) 電池モジュール
JP2012199045A (ja) 組電池、及び、セパレーター
KR20210036902A (ko) 이차 전지 모듈 및 이를 포함하는 이차 전지 팩
JP2013186995A (ja) 組電池
JP5870290B2 (ja) 蓄電装置
JP2015195150A (ja) 蓄電装置
JP5887580B2 (ja) 組電池モジュール構造体
CN217114675U (zh) 电池包及用电设备
JP2018006249A (ja) 電池パック
JP5793432B2 (ja) 燃料電池及び分配マニホールド

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14847676

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015538913

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14895208

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14847676

Country of ref document: EP

Kind code of ref document: A1