WO2014208564A1 - Stress relaxation film, and protective film for surface of semiconductor - Google Patents
Stress relaxation film, and protective film for surface of semiconductor Download PDFInfo
- Publication number
- WO2014208564A1 WO2014208564A1 PCT/JP2014/066722 JP2014066722W WO2014208564A1 WO 2014208564 A1 WO2014208564 A1 WO 2014208564A1 JP 2014066722 W JP2014066722 W JP 2014066722W WO 2014208564 A1 WO2014208564 A1 WO 2014208564A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- stress relaxation
- thermoplastic resin
- mol
- film
- mass
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/18—Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
- C08L23/20—Homopolymers or copolymers of hydrocarbons having four or more carbon atoms having four to nine carbon atoms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/32—Layered products comprising a layer of synthetic resin comprising polyolefins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/04—Interconnection of layers
- B32B7/12—Interconnection of layers using interposed adhesives or interposed materials with bonding properties
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/6835—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
- H01L21/6836—Wafer tapes, e.g. grinding or dicing support tapes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/51—Elastic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/558—Impact strength, toughness
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2571/00—Protective equipment
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2323/04—Homopolymers or copolymers of ethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2323/10—Homopolymers or copolymers of propene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2323/18—Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
- C08J2323/20—Homopolymers or copolymers of hydrocarbons having four or more carbon atoms having four to nine carbon atoms
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2221/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
- H01L2221/67—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
- H01L2221/683—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L2221/68304—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
- H01L2221/68327—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2221/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
- H01L2221/67—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
- H01L2221/683—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L2221/68304—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
- H01L2221/6834—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used to protect an active side of a device or wafer
Definitions
- the present invention relates to a stress relaxation film, a laminate, a surface protective film for a semiconductor, a method for manufacturing a semiconductor device, and a resin modifier.
- Surface protective films are attached to the surfaces of various resin products such as building materials and optical parts, metal products, and glass products to prevent scratches and dirt from being attached during transportation, storage, and processing.
- the surface protective film is also applied, for example, as a protective member for a circuit forming surface during grinding of a semiconductor substrate (see, for example, Japanese Patent No. 3594581 and Japanese Patent Application Laid-Open No. 2010-92945).
- the surface protective film is required to have various properties in addition to the properties usually required for the film such as flexibility and mechanical properties, depending on the object to be protected, the purpose of protection, the use environment, and the like.
- a film used for protecting an object from scratches or breakage due to an external force is required to have stress relaxation properties.
- a hard resin is used as a material in order to form a film having stress relaxation properties.
- a film formed of only a hard resin has stress relaxation properties, but tends to have a low impact strength and is inferior in impact resistance.
- the present inventors have found that a specific thermoplastic resin containing a large amount of 4-methyl-1-pentene in the skeleton contributes to an improvement in the stress relaxation property of the film.
- the specific thermoplastic resin containing a large amount of 4-methyl-1-pentene in the skeleton can increase the stress relaxation property of the film, but tends to increase the release property of the film. For this reason, the present inventors have also found that delamination tends to occur when laminated with other layers.
- the first aspect of the present invention is a stress relaxation film having excellent stress relaxation properties and impact resistance, a laminate using the stress relaxation film, a surface protection film for semiconductors, and semiconductor manufacturing. It is an object to provide a method for manufacturing a device.
- the second aspect of the present invention is a stress relaxation film having a certain degree of high stress relaxation property and hardly causing delamination when laminated with other layers, and a laminate using the stress relaxation film. It is an object to provide a method for manufacturing a body, a surface protection film for a semiconductor, and a semiconductor manufacturing apparatus.
- the second aspect of the present invention provides a resin modifier that imparts, to a resin, a somewhat high stress relaxation property and adhesion that is difficult to delaminate when laminated with other layers. This is the issue.
- thermoplastic resin A which is a copolymer having a proportion of structural units derived from an ⁇ -olefin having 4 to 20 carbon atoms other than 4-methyl-1-pentene and having an amount of 10 mol% or less, an ethylene polymer, and a propylene polymer
- thermoplastic resin B other than the thermoplastic resin A, which is at least one polymer selected from the group consisting of a polymer, a butene-based polymer, and a 4-methyl-1-pentene-based polymer.
- the content of the thermoplastic resin A is 50% by mass to 98% by mass with respect to the total mass, and the content of the thermoplastic resin B is 2% by mass to 50% by mass with respect to the total mass. Relaxing film.
- thermoplastic resin A is a copolymer containing 75 mol% to 88 mol% of a structural unit derived from 4-methyl-1-pentene.
- thermoplastic resin B is at least one polymer selected from the group consisting of an ethylene polymer and a propylene polymer.
- thermoplastic resin B is at least one polymer selected from the group consisting of an ethylene polymer and a propylene polymer.
- ⁇ 5> Selected from the group consisting of a stress relaxation layer comprising the stress relaxation film according to any one of ⁇ 1> to ⁇ 4>, an ethylene polymer, a propylene polymer, and a butene polymer.
- a laminate comprising a thermoplastic resin C, which is at least one polymer, and a surface layer at least partially in contact with the stress relaxation layer.
- a surface protective film for a semiconductor comprising the stress relaxation film according to any one of ⁇ 1> to ⁇ 4>, which protects a circuit forming surface of the semiconductor substrate when grinding the semiconductor substrate.
- the semiconductor surface according to ⁇ 6> further including a base material layer having a storage elastic modulus G ′ (25) at 25 ° C. measured at a frequency of 1.6 Hz of 5 ⁇ 10 7 Pa or more.
- the surface protective film for a semiconductor according to ⁇ 7> comprising an adhesive layer on the side opposite to the side on which the base material layer of the stress relaxation film is present.
- An adhesion step for adhering the adhesive layer and the circuit formation surface of the semiconductor substrate to face each other, a grinding step for grinding a circuit non-formation surface of the semiconductor substrate, and an attachment to the circuit formation surface of the semiconductor substrate A peeling step of peeling the attached surface protective film from the circuit forming surface of the semiconductor substrate.
- thermoplastic resin A which is a copolymer having a proportion of structural units derived from an ⁇ -olefin having 4 to 20 carbon atoms other than 4-methyl-1-pentene and having an amount of 10 mol% or less, an ethylene polymer, and a propylene polymer
- thermoplastic resin B other than the thermoplastic resin A, which is at least one polymer selected from the group consisting of a polymer, a butene-based polymer, and a 4-methyl-1-pentene-based polymer.
- the content of the thermoplastic resin A is 2% by mass or more and less than 50% by mass with respect to the total mass, and the content of the thermoplastic resin B is 50% by mass or more and 98% by mass or less with respect to the total mass.
- Stress relaxation film is a material that is 2% by mass or more and less than 50% by mass with respect to the total mass, and the content of the thermoplastic resin B is 50% by mass or more and 98% by mass or less with respect to the total mass.
- thermoplastic resin A is a copolymer containing 70 mol% to 88 mol% of a structural unit derived from 4-methyl-1-pentene.
- thermoplastic resin B is at least one polymer selected from the group consisting of an ethylene polymer and a propylene polymer.
- thermoplastic resin B is at least one polymer selected from the group consisting of an ethylene polymer and a propylene polymer.
- thermoplastic resin B is at least one polymer selected from the group consisting of an ethylene polymer and a propylene polymer.
- ⁇ 13> Any one of ⁇ 10> to ⁇ 12>, which has a sea-island structure including an island part including the thermoplastic resin A and a sea part substantially composed of the thermoplastic resin B.
- ⁇ 14> Selected from the group consisting of a stress relaxation layer made of the stress relaxation film according to any one of ⁇ 10> to ⁇ 13>, an ethylene polymer, a propylene polymer, and a butene polymer.
- a laminate comprising a thermoplastic resin C, which is at least one polymer, and a surface layer at least partially in contact with the
- a surface protective film for a semiconductor comprising the stress relaxation film according to any one of ⁇ 10> to ⁇ 13>, which protects a circuit forming surface of the semiconductor substrate during grinding.
- the semiconductor surface according to ⁇ 15> further including a base material layer having a storage elastic modulus G ′ (25) at 25 ° C. measured at a frequency of 1.6 Hz of 5 ⁇ 10 7 Pa or more.
- the surface protective film for a semiconductor according to ⁇ 16> comprising an adhesive layer on the side opposite to the side on which the base material layer of the stress relaxation film is present.
- An adhesion step for adhering the adhesive layer and the circuit formation surface of the semiconductor substrate to face each other, a grinding step for grinding a circuit non-formation surface of the semiconductor substrate, and an attachment to the circuit formation surface of the semiconductor substrate A peeling step of peeling the attached surface protective film from the circuit forming surface of the semiconductor substrate.
- thermoplastic resin A which is a copolymer having a proportion of structural units derived from an ⁇ -olefin having 4 to 20 carbon atoms other than 4-methyl-1-pentene and having an amount of 10 mol% or less, an ethylene polymer, and a propylene polymer
- thermoplastic resin B other than the thermoplastic resin A, which is at least one polymer selected from the group consisting of a polymer, a butene-based polymer, and a 4-methyl-1-pentene-based polymer.
- the content of the thermoplastic resin A is 2% by mass or more and less than 50% by mass with respect to the total mass, and the content of the thermoplastic resin B is 50% by mass or more and 98% by mass or less with respect to the total mass.
- a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
- amount of each component in the composition when there are a plurality of substances corresponding to each component in the composition, a plurality of substances present in the composition unless otherwise specified. Means the total amount.
- (meth) acrylate represents at least one selected from acrylate and methacrylate.
- process is not limited to an independent process, but is included in the term if the intended purpose of the process is achieved even if it cannot be clearly distinguished from other processes. It is.
- An apparatus manufacturing method can be provided.
- the stress relaxation film having a somewhat high stress relaxation property and hardly causing delamination when laminated with another layer, and the stress relaxation film are used.
- a laminate, a surface protection film for a semiconductor, and a method for manufacturing a semiconductor manufacturing apparatus can be provided.
- the resin modifier for imparting a certain degree of high stress relaxation to the resin and adhesion that is difficult to delaminate when laminated with other layers is provided. Can be provided.
- the stress relaxation film according to the first aspect of the present invention is composed of 70 to 90 mol% of a structural unit derived from 4-methyl-1-pentene and a 2 or 3 carbon atom ⁇ -olefin.
- thermoplastic resin which is a plastic resin A and at least one polymer selected from the group consisting of an ethylene polymer, a propylene polymer, a butene polymer, and a 4-methyl-1-pentene polymer A thermoplastic resin B other than A, wherein the content of the thermoplastic resin A is 50% by mass to 98% by mass with respect to the total mass, and the content of the thermoplastic resin B is based on the total mass. 2 mass% to 50 mass%.
- a film used for protecting an object from scratches or breakage due to an external force is required to have characteristics such as stress relaxation properties.
- a hard resin is used as a material.
- a film formed only of a hard resin tends to have a low impact strength.
- a film using a flexible resin as a material has high impact strength and impact resistance, but tends to be inferior in stress relaxation properties.
- the impact strength of the film can be improved, but the proportion of the hard thermoplastic resin is reduced by adding the flexible thermoplastic resin.
- the stress relaxation property of the film is lowered. Therefore, it can be said that having stress relaxation and having shock resistance are in a trade-off relationship that if one is to be realized, the other must be sacrificed.
- the film is made of a specific thermoplastic resin A containing a large amount of 4-methyl-1-pentene in the skeleton, which tends to harden the resin at room temperature (25 ° C.),
- the aspect which contains the thermoplastic resin B in a specific ratio the film which combined the outstanding stress relaxation property and impact resistance is implement
- thermoplastic resin A is a structural unit derived from a 4-methyl-1-pentene-derived structural unit derived from 70 mol% to 90 mol% and an ⁇ -olefin having 2 or 3 carbon atoms. 10% by mole to 30% by mole, and a copolymer having a proportion of structural units derived from an ⁇ -olefin having 4 to 20 carbon atoms other than 4-methyl-1-pentene (hereinafter referred to as “ Also referred to as “4-methyl-1-pentene copolymer”.
- the 4-methyl-1-pentene copolymer in the first embodiment of the present invention contains 70 mol% to 90 mol% of a structural unit derived from 4-methyl-1-pentene, and 75 mol % To 89 mol% is more preferable, and 80 mol% to 86 mol% is still more preferable.
- the structural unit derived from 4-methyl-1-pentene contained in the 4-methyl-1-pentene copolymer is less than 70 mol%, excellent stress relaxation properties as a protective film cannot be obtained. Further, if the structural unit derived from 4-methyl-1-pentene contained in the 4-methyl-1-pentene copolymer exceeds 90 mol%, excellent impact resistance as a protective film cannot be obtained.
- the 4-methyl-1-pentene copolymer in the first aspect of the present invention contains 10 to 30 mol% of structural units derived from an ⁇ -olefin having 2 or 3 carbon atoms, More preferably, it is contained in an amount of 11 mol% to 25 mol%, more preferably 14 mol% to 20 mol%. If the structural unit derived from the ⁇ -olefin having 2 or 3 carbon atoms contained in the 4-methyl-1-pentene copolymer is less than 10 mol%, the rigidity of the material is excessively increased, so that the impact resistance is lowered. At the same time, appropriate stress relaxation properties cannot be obtained.
- the structural unit derived from the ⁇ -olefin having 2 or 3 carbon atoms contained in the 4-methyl-1-pentene copolymer exceeds 30 mol%, the crystallinity is lowered and the melting point is not observed. Softening advances and film forming becomes difficult.
- the structural unit derived from an ⁇ -olefin having 2 or 3 carbon atoms is a structural unit derived from ethylene or propylene.
- the structural unit derived from an ⁇ -olefin having 2 or 3 carbon atoms is a component derived from propylene in that the glass transition temperature is designed around room temperature to balance impact resistance and stress relaxation. Units are particularly preferred.
- the 4-methyl-1-pentene copolymer in the first embodiment of the present invention may contain a structural unit derived from an ⁇ -olefin having 4 to 20 carbon atoms other than 4-methyl-1-pentene. .
- the proportion of structural units derived from ⁇ -olefin having 4 to 20 carbon atoms other than 4-methyl-1-pentene is 10 mol% or less, preferably 5 mol. % Or less, more preferably 3 mol% or less, and still more preferably 1 mol% or less.
- the 4-methyl-1-pentene copolymer does not contain a structural unit derived from an ⁇ -olefin having 4 to 20 carbon atoms other than 4-methyl-1-pentene. Is particularly preferred.
- the proportion of the structural unit derived from the ⁇ -olefin having 4 to 20 carbon atoms other than 4-methyl-1-pentene in the 4-methyl-1-pentene copolymer exceeds 10 mol%, the material becomes flexible. Progresses and tends to be inferior in stress relaxation properties.
- Examples of the ⁇ -olefin having 4 to 20 carbon atoms include linear or branched ⁇ -olefins, cyclic olefins, aromatic vinyl compounds, conjugated dienes, non-conjugated polyenes, and functional vinyl compounds.
- linear or branched ⁇ -olefin that can be a structural unit of the 4-methyl-1-pentene copolymer
- examples of the linear or branched ⁇ -olefin that can be a structural unit of the 4-methyl-1-pentene copolymer include, for example, 1-butene, 1-pentene, 1-hexene, 1-octene, and 1-decene.
- Examples of the cyclic olefin that can be a constituent unit of the 4-methyl-1-pentene copolymer include carbon such as cyclopentene, cycloheptene, norbornene, 5-methyl-2-norbornene, tetracyclododecene, vinylnorbornene, and vinylcyclohexane.
- Examples of the compound include 4 to 20 (preferably 5 to 15).
- Examples of the conjugated diene that can be a structural unit of the 4-methyl-1-pentene copolymer include 1,3-butadiene, isoprene, chloroprene, 1,3-pentadiene, 2,3-dimethylbutadiene, 4-methyl- Examples thereof include compounds having 4 to 20 carbon atoms (preferably 4 to 10) such as 1,3-pentadiene, 1,3-pentadiene, 1,3-hexadiene, and 1,3-octadiene.
- non-conjugated polyene that can be a constituent unit of the 4-methyl-1-pentene copolymer
- examples of the non-conjugated polyene that can be a constituent unit of the 4-methyl-1-pentene copolymer include 1,4-pentadiene, 1,4-hexadiene, 1,5-hexadiene, 1,4-octadiene, 1, 5-octadiene, 1,6-octadiene, 1,7-octadiene, 2-methyl-1,5-hexadiene, 6-methyl-1,5-heptadiene, 7-methyl-1,6-octadiene, 4-ethylidene- 8-methyl-1,7-nonadiene, 4,8-dimethyl-1,4,8-decatriene (DMDT), dicyclopentadiene, cyclohexadiene, dicyclooctadiene, methylene norbornene, 5-vinyl norbornene, 5-eth
- Examples of the functionalized vinyl compound that can be a constituent unit of a 4-methyl-1-pentene copolymer include a hydroxyl group-containing olefin; a halogenated olefin; acrylic acid, propionic acid, 3-butenoic acid, 4-pentenoic acid, 5 Unsaturated carboxylic acids such as hexenoic acid, 6-heptenoic acid, 7-octenoic acid, 8-nonenoic acid and 9-decenoic acid; unsaturated amines such as allylamine, 5-hexenamine and 6-heptenamine; 7-octadienyl) succinic anhydride, pentapropenyl succinic anhydride, unsaturated acid anhydrides such as the above-mentioned unsaturated carboxylic acid anhydrides; halides of the above-mentioned unsaturated carboxylic acids; 4-epoxy-1-butene 5-epoxy-1-pentene, 6-ep
- the hydroxyl group-containing olefin that can be a constituent unit of the 4-methyl-1-pentene copolymer is not particularly limited as long as it is an olefin compound having a hydroxyl group, and is preferably a terminal hydroxylated olefin compound.
- the terminal hydroxylated olefin compound include vinyl alcohol, allyl alcohol, hydroxyl-1-butene, hydroxyl-1-pentene, hydroxyl-1-hexene, hydroxyl-1-octene, and hydroxyl-1-decene.
- 3-ethyl-1-hexene and the like branched hydroxide ⁇ -
- halogenated olefin that can be a constituent unit of the 4-methyl-1-pentene copolymer
- examples of the halogenated olefin that can be a constituent unit of the 4-methyl-1-pentene copolymer include, for example, halogenated-1-butene, halogenated-1-pentene, halogenated-1-hexene, and halogenated-1- 4 to 20 carbon atoms such as octene, halogenated-1-decene, halogenated-1-dodecene, halogenated-1-tetradecene, halogenated-1-hexadecene, halogenated-1-octadecene, halogenated-1-eicocene (Preferably 4 to 10) linear halogenated ⁇ -olefin; halogenated-3-methyl-1-butene, halogenated-4-methyl-1-pentene, halogenated-3-methyl-1-
- Examples of the structural unit derived from an ⁇ -olefin having 4 to 20 carbon atoms other than 4-methyl-1-pentene that can be a structural unit of the 4-methyl-1-pentene copolymer include 1-butene, 1-pentene, 1-hexene, 3-methyl-1-butene, 3-methyl-1-pentene, 3-ethyl-1-pentene, 4-methyl-1-hexene, 4,4-dimethyl-1-hexene, 4,4-dimethyl-1-pentene, 4-ethyl-1-hexene, 3-ethyl-1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, Particularly preferred is at least one selected from the group consisting of 1-eicosene, vinylcyclohexane, and styrene.
- the 4-methyl-1-pentene copolymer contains a structural unit derived from an ⁇ -olefin having 4 to 20 carbon atoms other than 4-methyl-1-pentene, other than 4-methyl-1-pentene Only one type of structural unit derived from an ⁇ -olefin having 4 to 20 carbon atoms may be contained, or two or more types of structural units may be contained.
- a structural unit derived from 4-methyl-1-pentene a structural unit derived from an ⁇ -olefin having 2 or 3 carbon atoms, contained in the 4-methyl-1-pentene copolymer in the first embodiment of the present invention
- the content (mol%) of the structural unit derived from an ⁇ -olefin having 4 to 20 carbon atoms other than 4-methyl-1-pentene can be measured by the following method.
- the 4-methyl-1-pentene copolymer is a structural unit derived from 4-methyl-1-pentene and an ⁇ -olefin having 2 or 3 carbon atoms within the range not impairing the effect of the first aspect of the present invention. And a structural unit other than a structural unit derived from an ⁇ -olefin having 4 to 20 carbon atoms other than 4-methyl-1-pentene.
- the 4-methyl 1-pentene copolymer according to the first aspect of the present invention has an intrinsic viscosity [ ⁇ ] measured at 135 ° C. in a decalin solvent of 0.5 dl / g to 5.0 dl / g. It is preferably 0.5 dl / g to 4.0 dl / g.
- the intrinsic viscosity [ ⁇ ] of the 4-methyl 1-pentene copolymer is a value measured by the following method using an Ubbelohde viscometer.
- the weight average molecular weight (Mw) of the 4-methyl-1-pentene copolymer in the first embodiment of the present invention is preferably 1 ⁇ 10 4 to 2 ⁇ 10 6 from the viewpoint of film moldability, More preferably, it is 1 ⁇ 10 4 to 1 ⁇ 10 6 .
- the molecular weight distribution (Mw / Mn) of the 4-methyl-1-pentene copolymer in the first embodiment of the present invention is 1.0 to 3.5 from the viewpoint of film stickiness and appearance. Preferably, it is 1.1 to 3.0.
- the weight average molecular weight (Mw) of the 4-methyl-1-pentene copolymer and the molecular weight distribution (Mw / Mn) represented by the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) are: It is a value calculated by the standard polystyrene conversion method using the following gel permeation chromatography (GPC).
- GPC ALC / GPC 150-C plus type, suggested refractometer detector integrated type, manufactured by Waters
- the melt flow rate (MFR) of the 4-methyl 1-pentene copolymer in the first embodiment of the present invention is 0.1 g / 10 min to 100 g / 10 min from the viewpoint of fluidity during molding. It is preferably 0.5 g / 10 min to 50 g / 10 min, more preferably 0.5 g / 10 min to 30 g / 10 min.
- the melt flow rate (MFR) of the 4-methyl 1-pentene copolymer is a value measured according to ASTM D1238. Specifically, the melt flow rate (MFR) of the 4-methyl 1-pentene copolymer is a value measured at 230 ° C. with a load of 2.16 kg.
- Density of the first 4-methyl-1-pentene copolymer in the embodiment of the present invention is preferably from the viewpoint of handling properties, it is 820kg / m 3 ⁇ 870kg / m 3, 830kg / m 3 ⁇ 850kg / more preferably m 3.
- the density of the 4-methyl 1-pentene copolymer is a value measured according to JIS K7112 (density gradient tube method).
- the melting point (Tm) of the 4-methyl 1-pentene copolymer in the first embodiment of the present invention is not observed or preferably 100 ° C. to 180 ° C., not observed, or 110 ° C. to 160 ° C. More preferably, it is ° C.
- the melting point (Tm) of the 4-methyl 1-pentene copolymer is a value measured by the following method using a differential scanning calorimetry (DSC). About 5 mg of 4-methyl 1-pentene copolymer was sealed in an aluminum pan for measurement of a differential scanning calorimeter (DSC220C type) manufactured by Seiko Instruments Inc., and was cooled from room temperature to 200 ° C. at 10 ° C./min. Until heated.
- the 4-methyl 1-pentene copolymer In order to completely melt the 4-methyl 1-pentene copolymer, it is held at 200 ° C. for 5 minutes and then cooled to ⁇ 50 ° C. at 10 ° C./min. After 5 minutes at ⁇ 50 ° C., the second heating is performed to 200 ° C. at 10 ° C./min, and the peak temperature (° C.) at the second heating is defined as the melting point (Tm) of the copolymer. When a plurality of peaks are detected, the peak detected on the highest temperature side is adopted.
- the 4-methyl 1-pentene copolymer in the first embodiment of the present invention forms a film having a thickness of 50 ⁇ m, and the maximum value of the loss tangent (tan ⁇ ) measured 3 days after the film formation is ⁇ 5 ° C.
- the maximum value of loss tangent (tan ⁇ ) measured 3 days after the film formation is ⁇ 5 ° C.
- the maximum value of loss tangent (tan ⁇ ) is 0.5 or more. It is preferably 1.0 or more, more preferably 1.2 or more.
- the 4-methyl 1-pentene copolymer has excellent stress relaxation properties when the maximum value of the loss tangent (tan ⁇ ) is within the above temperature range and the maximum value is 0.5 or more.
- the maximum value of the loss tangent (tan ⁇ ) of the 4-methyl 1-pentene copolymer and the temperature at which the maximum value is shown were measured as a viscoelasticity measuring device (MCR301, Anton Paar). And a dynamic viscoelasticity in the temperature range of ⁇ 70 to 180 ° C. is measured at a frequency of 10 rad / s.
- the 4-methyl 1-pentene copolymer in the first aspect of the present invention is synthesized by a conventionally known metallocene catalyst synthesis method, for example, International Publication No. 2005/121192, International Publication No. 2011/055803. It can be synthesized by a method described in a pamphlet or the like.
- the content of the thermoplastic resin A in the stress relaxation film according to the first embodiment of the present invention is 50% by mass to 98% by mass, and 50% by mass to 96% by mass with respect to the total mass of the stress relaxation film. %, And more preferably 60% by mass to 95% by mass.
- the content of the thermoplastic resin A is less than 50% by mass with respect to the total mass of the stress relaxation film, it is not possible to obtain excellent stress relaxation properties as a protective film. If the content of the thermoplastic resin A exceeds 98% by mass with respect to the total mass of the stress relaxation film, excellent impact resistance as a protective film cannot be obtained.
- thermoplastic resin B is at least one selected from the group consisting of ethylene polymers, propylene polymers, butene polymers, and 4-methyl-1-pentene polymers. Polymer (however, excluding the above-mentioned thermoplastic resin A).
- the thermoplastic resin B in the present invention is preferably at least one polymer selected from the group consisting of ethylene polymers and propylene polymers.
- the ethylene polymer may be a homopolymer of ethylene or a copolymer (copolymer) of ethylene and another monomer.
- the ethylene polymer include low-density polyethylene, medium-density polyethylene, high-density polyethylene, and high-pressure method low-density polyethylene, which are produced by a conventionally known method.
- the ethylene polymer also include an ethylene polymer elastomer.
- the preferable ethylene-type polymer in the thermoplastic resin B the preferable ethylene-type polymer in the below-mentioned thermoplastic resin C is mentioned.
- the propylene polymer may be a propylene homopolymer (homopolymer) or a copolymer of propylene and another monomer (copolymer).
- examples of the propylene polymer include isotactic propylene polymer and syndiotactic propylene polymer.
- the isotactic propylene polymer may be a homopropylene polymer or a propylene / ⁇ -olefin having 2 to 20 carbon atoms (excluding propylene) random copolymer, A propylene block copolymer may be used.
- the propylene polymer include a propylene polymer elastomer.
- the preferable propylene-type polymer in the thermoplastic resin B the preferable propylene-type polymer in the thermoplastic resin C mentioned later is mentioned.
- the butene-based polymer may be a butene homopolymer (homopolymer) or a copolymer of butene and another monomer (copolymer).
- the butene polymer include a homopolymer of 1-butene, a copolymer of 1-butene and an olefin excluding 1-butene, and the like.
- the copolymer include 1-butene / ethylene random copolymer, 1-butene / propylene random copolymer, 1-butene / methylpentene copolymer, 1-butene / methylbutene copolymer, Examples include butene / propylene / ethylene copolymer.
- a preferable butene polymer in the thermoplastic resin B a preferable butene polymer in the thermoplastic resin C to be described later can be cited.
- the 4-methyl-1-pentene polymer may be a homopolymer of 4-methyl-1-pentene, or a copolymer of 4-methyl-1-pentene and other monomers. (Copolymer) may be used.
- Examples of 4-methyl-1-pentene polymers include 4-methyl-1-pentene homopolymer, 4-methyl-1-pentene and 1-hexene, 1-decene, 1-octadecene, 1-hexadecene, etc. And a random copolymer.
- the melt flow rate (MFR) of the thermoplastic resin B in the first aspect of the present invention is preferably 0.1 g / 10 min to 100 g / 10 min from the viewpoint of film moldability and mechanical properties of the film. More preferably, it is 5 g / 10 min to 50 g / 10 min.
- the melt flow rate (MFR) of the thermoplastic resin B is a value measured in accordance with ASTM D1238. Specifically, the melt flow rate (MFR) of the ethylene polymer and the butene polymer is a value measured at 190 ° C. with a load of 2.16 kg, and the melt flow rate (MFR) of the propylene polymer. ) Is a value measured at 230 ° C. under a load of 2.16 kg, and the melt flow rate (MFR) of 4-methyl-1-pentene polymer is measured at 260 ° C. under a load of 5.0 kg. Is the value to be
- the density of the thermoplastic resin B in the first embodiment of the present invention is 820 kg / m 3 to 960 kg from the viewpoint of light weight and dispersibility when a 4-methyl-1-pentene copolymer is used as a composition. / M 3 is preferable, and 830 kg / m 3 to 950 kg / m 3 is more preferable.
- the density of the thermoplastic resin B is a value measured according to JIS K7112 (density gradient tube method).
- the content of the thermoplastic resin B in the stress relaxation film according to the first embodiment of the present invention is 2% by mass to 50% by mass, and 4% by mass to 50% by mass with respect to the total mass of the stress relaxation film. %, Preferably 5% by mass to 40% by mass.
- the content of the thermoplastic resin B is less than 2% by mass with respect to the total mass of the stress relaxation film, excellent impact resistance as a protective film cannot be obtained.
- the content of the thermoplastic resin B exceeds 50% by mass with respect to the total mass of the stress relaxation film, stress relaxation excellent as a protective film cannot be obtained.
- the stress relaxation film according to the first aspect of the present invention contains other resins other than the above-described thermoplastic resin A and thermoplastic resin B within a range not impairing the object of the first aspect of the present invention. It may be.
- the stress relieving film according to the first aspect of the present invention preferably has a sea-island structure composed of a sea part including the thermoplastic resin A and an island part substantially made of the thermoplastic resin B.
- the island part “consisting essentially of the thermoplastic resin B” means that the content of the thermoplastic resin B in the island part is 70% by mass or more based on the total mass of the constituent components of the island part. Means that.
- the stress relaxation film according to the first aspect of the present invention has a sea-island structure composed of a sea part that includes the thermoplastic resin A and an island part that is substantially made of the thermoplastic resin B.
- a sea part that includes the thermoplastic resin A and an island part that is substantially made of the thermoplastic resin B.
- the thermoplastic resin A responsible for stress relaxation becomes the sea part, the stress relaxation property is ensured, and the thermoplastic resin B responsible for improvement of impact strength becomes the island part, It is considered that the effect of improving the impact strength of the thermoplastic resin B is more effectively exhibited by dispersing in the film, and the impact resistance of the film is increased.
- the stress relaxation film according to the first aspect of the present invention has a sea-island structure composed of a sea part that includes the thermoplastic resin A and an island part that is substantially made of the thermoplastic resin B.
- TEM transmission electron microscope
- the film is ground to produce an ultrathin section, and only one of the components is selectively stained with a heavy metal such as ruthenium tetroxide or osmium tetroxide, and then observed using a transmission electron microscope. To do.
- a film having a sea-island structure composed of a sea part including the thermoplastic resin A and an island part substantially composed of the thermoplastic resin B is, for example, a dry blend of the thermoplastic resin A and the thermoplastic resin B. Obtained by mixing and extrusion to form a film.
- the stress relaxation film according to the first aspect of the present invention can be produced, for example, by the following method.
- the first aspect of the present invention is not limited to the following method.
- the thermoplastic resin A and the thermoplastic resin B are mixed (for example, dry blended).
- the obtained mixture is put into an hopper of an extruder provided with a T die, and the cylinder temperature is set to 100 ° C. to 270 ° C. and the die temperature is set to 200 ° C. to 270 ° C.
- the melt-kneaded material is extruded from a T die and cast to obtain a stress relaxation film.
- the thickness of the stress relaxation film according to the first aspect of the present invention is preferably 50 ⁇ m to 350 ⁇ m, more preferably 60 ⁇ m to 300 ⁇ m, and still more preferably 70 ⁇ m to 200 ⁇ m.
- handleability is easy.
- the stress relaxation film according to the first aspect of the present invention is used for the purpose of preventing scratches and preventing dust during transportation, storage, processing, etc. of various resin products such as building materials and optical parts, metal products, and glass products.
- the protective film can be suitably used as a protective film adhered to these surfaces.
- the stress relaxation film according to the first aspect of the present invention provides a circuit board surface that is not damaged when the circuit board non-circuit formation surface of the semiconductor substrate is ground to a desired thickness. It can be particularly suitably used as a protective film for preventing breakage. Since the stress relaxation film according to the first aspect of the present invention is excellent in stress relaxation property and impact resistance, it is effective in preventing damage and breakage of the circuit formation surface of the semiconductor substrate.
- the laminate according to the first aspect of the present invention includes a stress relaxation layer comprising the stress relaxation film according to the first aspect of the present invention, an ethylene polymer, a propylene polymer, and a butene polymer.
- a thermoplastic resin C which is at least one polymer selected from the group consisting of: and a surface layer at least partially in contact with the stress relaxation layer.
- the laminate according to the first aspect of the present invention has excellent stress relaxation properties and impact resistance, and delamination does not easily occur between the stress relaxation layer and the surface layer.
- the stress relaxation layer in the laminate according to the first aspect of the present invention is composed of the above-described stress relaxation film according to the first aspect of the present invention. Since the laminated body which concerns on the 1st aspect of this invention contains the stress relaxation layer which consists of the stress relaxation film which concerns on the 1st aspect of the above-mentioned this invention, it has the outstanding stress relaxation property and impact resistance. In addition, since it mentioned above about the stress relaxation film concerning the 1st aspect of this invention, description is abbreviate
- the surface layer in the laminate according to the first aspect of the present invention comprises a thermoplastic resin C which is at least one polymer selected from the group consisting of an ethylene polymer, a propylene polymer, and a butene polymer. And at least a portion is in contact with the stress relaxation layer.
- the surface layer may be present only on one side of the stress relaxation layer (that is, only one layer) or on both sides of the stress relaxation layer (that is, 2 layers in total) may be present.
- the surface layer in the laminate according to the first aspect of the present invention comprises a thermoplastic resin C which is at least one polymer selected from the group consisting of an ethylene polymer, a propylene polymer, and a butene polymer. Therefore, delamination is unlikely to occur between the stress relaxation layer.
- “at least a part is in contact with the stress relaxation layer” means that the surface layer is in contact with a part of the stress relaxation layer or the surface layer is in contact with the entire stress relaxation layer.
- the contact ratio between the stress relaxation layer and the surface layer is preferably 30% to 100%, more preferably 50% to 100% with respect to the total area of the stress relaxation layer. % Is more preferable.
- thermoplastic resin C is at least one polymer selected from the group consisting of an ethylene polymer, a propylene polymer, and a butene polymer.
- a propylene-based polymer and a butene-based polymer are used in that a surface layer that is less likely to cause delamination between the stress relaxation layer can be formed. It is preferably at least one polymer selected from the group consisting of, and more preferably a propylene-based polymer.
- the ethylene-based polymer, the propylene-based polymer, and the butene-based polymer are synonymous with the ethylene-based polymer, the propylene-based polymer, and the butene-based polymer described in the section of the thermoplastic resin B, respectively. It is.
- the ethylene polymer a polymer having a proportion of structural units derived from ethylene of 50 mol% or more is preferable.
- a propylene-type polymer the polymer whose ratio of the structural unit derived from propylene is 50 mol% or more is preferable.
- the butene polymer is preferably a polymer in which the proportion of structural units derived from 1-butene is 50 mol% or more.
- the copolymer can form a surface layer in which delamination is less likely to occur between the stress relaxation layer and ethylene with 3 to 20 carbon atoms.
- a copolymer of ⁇ -olefin is preferable, and a copolymer of ethylene and an ⁇ -olefin having 3 to 10 carbon atoms is more preferable.
- the ratio of the structural units derived from ethylene in the ethylene polymer is preferably 50 mol% to 100 mol%, assuming that all the structural units in the ethylene polymer are 100 mol%, and 60 mol%. More preferably, it is ⁇ 99 mol%. When the ratio of the structural unit derived from ethylene in the ethylene-based polymer is within the above range, better heat resistance and impact properties are obtained.
- the propylene-based polymer is a copolymer
- the copolymer can form a surface layer in which delamination is less likely to occur between the stress relaxation layer and propylene with 2 to 20 carbon atoms.
- a copolymer with an ⁇ -olefin (excluding propylene) is preferred.
- the proportion of the structural units derived from propylene in the propylene-based polymer is preferably 50 mol% to 100 mol%, based on 100 mol% of all the structural units in the propylene-based polymer, and preferably 60 mol%. More preferably, it is ⁇ 99 mol%.
- the ratio of the structural unit derived from propylene in the propylene-based polymer is within the above range, better heat resistance and impact properties are obtained.
- the copolymer can form a surface layer in which delamination is less likely to occur between the stress relaxation layer and 1-butene and 1-butene. It is preferable that it is a copolymer with an olefin excluding.
- the proportion of structural units derived from 1-butene in the butene-based copolymer is preferably 50 mol% to 100 mol%, assuming that all the structural units in the butene-based polymer are 100 mol%. More preferably, it is 70 mol% to 99 mol%. When the ratio of the structural unit derived from 1-butene in the butene polymer is within the above range, the impact property is better.
- the melt flow rate (MFR) of the thermoplastic resin C in the first embodiment of the present invention is preferably 0.1 g / 10 min to 100 g / 10 min from the viewpoint of film moldability and mechanical properties of the film. More preferably, it is 5 g / 10 min to 50 g / 10 min.
- the melt flow rate (MFR) of the thermoplastic resin C is a value measured in accordance with ASTM D1238. Specifically, the melt flow rate (MFR) of the propylene polymer is a value measured at 230 ° C. with a load of 2.16 kg, and the melt flow rate (MFR) of the ethylene polymer and the butene polymer. ) Is a value measured at 190 ° C. with a load of 2.16 kg.
- the density of the thermoplastic resin C in the first aspect of the present invention is preferably from 820kg / m 3 ⁇ 960kg / m 3, it is 830kg / m 3 ⁇ 940kg / m 3 More preferred is 860 kg / m 3 to 940 kg / m 3 .
- the density of the thermoplastic resin C is a value measured according to JIS K7112 (density gradient tube method).
- the content of the thermoplastic resin C in the surface layer is preferably 50% by mass to 100% by mass, and more preferably 70% by mass to 100% by mass with respect to the total mass of the surface layer.
- the content of the thermoplastic resin C is within the above range with respect to the total mass of the surface layer, a surface layer in which delamination is less likely to occur with the stress relaxation layer can be formed.
- the surface layer in the laminate according to the first aspect of the present invention may contain other resins other than the above-mentioned thermoplastic resin C within a range not impairing the object of the first aspect of the present invention.
- other resins include styrene copolymers and ethylene / vinyl acetate copolymers (EVA).
- the laminated body of the present invention may contain other layers other than the stress relaxation layer and the surface layer within a range not impairing the object of the first aspect of the present invention.
- the manufacturing method of the laminated body which concerns on the 1st aspect of this invention is not specifically limited.
- the method for producing a laminate according to the first aspect of the present invention includes a 4-methyl-1-pentene copolymer contained as a constituent component of a stress relaxation layer and a thermoplastic resin contained as a constituent component of a surface layer.
- a method in which C and C are bonded together by mixing in the vicinity of the interface to form a laminate is preferable.
- Examples of such a method include a co-extrusion method in which a molten resin is laminated, a heat fusion method in which a previously formed resin film is thermally fused, and an interlayer adhesion between a stress relaxation layer and a surface layer.
- the coextrusion method of laminating a molten resin is more preferable in that a laminate having higher properties and less delamination between the stress relaxation layer and the surface layer can be formed.
- the thickness ratio of the surface layer to the stress relaxation layer is 1/99 to 60/40. Is preferable, and 10/90 to 60/40 is more preferable.
- the thickness of the laminate according to the first aspect of the present invention is preferably 20 ⁇ m to 500 ⁇ m, more preferably 20 ⁇ m to 350 ⁇ m, and more preferably 50 ⁇ m to 300 ⁇ m in terms of easy handling. Is more preferable.
- the surface protective film for a semiconductor according to the first aspect of the present invention (hereinafter also simply referred to as “surface protective film”) protects the circuit forming surface of the semiconductor substrate during grinding of the semiconductor substrate.
- the stress relaxation film which concerns on the 1st aspect of is included.
- the surface protective film according to the first aspect of the present invention may consist only of the stress relaxation film according to the first aspect of the present invention, or the stress relaxation property according to the first aspect of the present invention. It may be a laminate of a film and other layers. It is desirable that other layers be appropriately selected within a range that does not impair the effects of the stress relaxation film according to the first aspect of the present invention.
- the surface protective film according to the first aspect of the present invention includes the above-described stress relaxation film according to the first aspect of the present invention, the surface protective film is excellent in stress relaxation and impact resistance. Therefore, according to the surface protective film which concerns on the 1st aspect of this invention, the damage
- the base material layer When the surface protection film according to the first aspect of the present invention includes a base material layer, the base material layer preferably has a high elastic modulus.
- the base material layer is usually laminated on one surface of the stress relaxation film according to the first aspect of the present invention described above.
- the surface protection film according to the first aspect of the present invention includes a base material layer, thereby preventing deformation thereof.
- the elastic modulus of the base material layer the storage elastic modulus G ′ (25) at 25 ° C. measured at a frequency of 1.6 Hz is preferably 5 ⁇ 10 7 Pa or more, and 1 ⁇ 10 8 Pa to 2 It is more preferable that it is ⁇ 10 10 Pa.
- the storage elastic modulus G ′ (25) of the base material layer is 5 ⁇ 10 7 Pa or more, the semiconductor substrate is deformed due to the surface protective film during or after grinding of the semiconductor substrate, and the semiconductor substrate accompanying the deformation It is difficult for cracks to occur.
- the base material layer can be formed into a desired shape and has good affinity with the thermoplastic resin A and the thermoplastic resin B contained in the stress relaxation film according to the first aspect of the present invention. Preferably it consists of.
- the base material layer is preferably a layer made of polyethylene, ethylene-vinyl acetate copolymer, polypropylene, polyethylene terephthalate, or the like.
- the thickness of the base material layer is preferably 20 ⁇ m to 100 ⁇ m, and more preferably 38 ⁇ m to 50 ⁇ m.
- the thickness of the base material layer is within the above range, during or after grinding of the semiconductor substrate, deformation of the semiconductor substrate caused by the surface protective film, and cracking of the semiconductor substrate due to the deformation hardly occur, The handleability of the surface protective film is good.
- the surface protective film according to the first aspect of the present invention preferably includes an adhesive layer for adhering to the circuit forming surface of the semiconductor substrate.
- the adhesive layer is on the side where the base material layer of the stress relaxation film according to the first aspect of the present invention is present. It is preferable that it is contained on the opposite side.
- the adhesive layer may be a layer made of an adhesive or the like.
- the pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer is not particularly limited, and examples thereof include natural rubber-based; synthetic rubber-based; silicone rubber-based; acrylic pressure-sensitive adhesives such as acrylic acid alkyl esters and methacrylic acid alkyl esters. It is done. Among these, the adhesive is preferably an acrylic adhesive from the viewpoint of adhesiveness.
- the pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer is a pressure-sensitive adhesive having a pressure-sensitive adhesive switching function in which the pressure-sensitive adhesive force is reduced depending on certain conditions such as a radiation-curing type, a heat-curing type, and a heat-foaming type. Either may be sufficient.
- the adhesive is an acrylic having an adhesive force switching function from the viewpoint that it can be easily peeled off from the circuit forming surface and there is little risk of damaging the circuit forming surface.
- a UV curable pressure sensitive adhesive is preferred.
- acrylic UV curable pressure-sensitive adhesive examples include, for example, 100 parts by mass of an acrylic ester copolymer in which a photopolymerizable carbon-carbon double bond is introduced in the molecule, and a photopolymerizable carbon-carbon in the molecule.
- examples thereof include a pressure-sensitive adhesive containing 0.1 to 20 parts by mass of a low molecular weight compound having two or more double bonds and 5 to 15 parts by mass of a photoinitiator.
- acrylic ester copolymer contained in the acrylic UV curable pressure-sensitive adhesive examples include a copolymer obtained by copolymerizing a monomer having an ethylenic double bond and a copolymerizable monomer having a reactive functional group.
- examples thereof include compounds obtained by reacting a combination with a monomer containing a photopolymerizable carbon-carbon double bond having a group capable of reacting with the reactive functional group.
- Examples of the monomer having an ethylenic double bond contained in the copolymer for obtaining an acrylic ester copolymer include, for example, methyl methacrylate, 2-ethylhexyl acrylate, butyl acrylate, ethyl acrylate, etc.
- Acrylic acid alkyl ester and methacrylic acid alkyl ester monomers vinyl esters such as vinyl acetate; monomers having an ethylenic double bond such as acrylonitrile; acrylamide; styrene;
- Examples of the copolymerizable monomer having a reactive functional group contained in the copolymer for obtaining an acrylic ester copolymer include (meth) acrylic acid, maleic acid, 2-hydroxyethyl (meta ) Acrylate, glycidyl (meth) acrylate, N-methylol (meth) acrylamide and the like. Only one of these may be polymerized with the monomer having an ethylenic double bond, and two or more of these may be polymerized with the monomer having an ethylenic double bond.
- the polymerization ratio of the monomer having an ethylenic double bond and the copolymerizable monomer having a reactive functional group is 70% by mass to 99% by mass: 30% by mass to It is preferably 1% by mass, more preferably 80% by mass to 95% by mass: 20% by mass to 5% by mass.
- a monomer containing a photopolymerizable carbon-carbon double bond for obtaining an acrylate copolymer is not particularly limited, and a reactive functional group (for example, carboxyl group) contained in the copolymer is not limited. Any photoreactive monomer containing a photopolymerizable carbon-carbon double bond having a group capable of reacting with a group, a hydroxyl group, a glycidyl group, etc.
- Examples of combinations of the reactive functional group contained in the copolymer and the group capable of reacting with the reactive functional group of the photoreactive monomer include a carboxyl group and an epoxy group, a carboxyl group and an aziridyl group, and a hydroxyl group and an isocyanate. Groups and the like. Among such combinations, a combination that easily causes an addition reaction is desirable.
- the group capable of reacting with the reactive functional group of the photoreactive monomer is not limited to a group that undergoes an addition reaction with the reactive functional group of the copolymer, and is a group that undergoes a condensation reaction with the reactive functional group of the copolymer. There may be.
- Examples of the low molecular weight compound having two or more photopolymerizable carbon-carbon double bonds in the molecule contained in the acrylic UV curable pressure-sensitive adhesive include tripropylene glycol di (meth) acrylate and trimethylolpropane tri (Meth) acrylate, tetramethylolmethane tetraacrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol monohydroxypenta (meth) acrylate, dipentaerythritol hexa (meth) acrylate and the like. Only one type of low molecular weight compound may be contained in the acrylic ultraviolet curable pressure-sensitive adhesive, or two or more types may be contained.
- the “low molecular weight compound” as used herein refers to a compound having a molecular weight of 10,000 or less, and the molecular weight of the low molecular weight compound is more preferably 5,000 or less.
- Examples of the photoinitiator contained in the acrylic ultraviolet curable adhesive include, for example, benzoin, isopropyl benzoin ether, isobutyl benzoin ether, benzophenone, Michler ketone, chlorothioxanthone, dodecylthioxanthone, dimethylthioxanthone, diethylthioxanthone, acetophenone diethyl ketal, benzyl Examples include dimethyl ketal, 1-hydroxycyclohexyl phenyl ketone, and 2-hydroxy-2-methyl-1-phenylpropan-1-one.
- a photoinitiator only 1 type may be contained in the ultraviolet curing adhesive, and 2 or more types may be contained.
- the content of the photoinitiator in the ultraviolet curable pressure-sensitive adhesive is preferably 5 parts by mass to 15 parts by mass with respect to 100 parts by mass of the acrylate copolymer, and 5 parts by mass to 10 parts by mass. More preferably.
- the acrylic UV curable pressure-sensitive adhesive may contain a crosslinking agent.
- the crosslinking agent include epoxy compounds such as sorbitol polyglycidyl ether, polyglycerol polyglycidyl ether, pentaerythritol polyglycidyl ether, diglycerol polyglycidyl ether; tetramethylolmethane-tri- ⁇ -aziridinyl propionate, Trimethylolpropane-tri- ⁇ -aziridinylpropionate, N, N′-diphenylmethane-4,4′-bis (1-aziridinecarboxamide), N, N′-hexamethylene-1,6-bis ( Aziridine compounds such as 1-aziridinecarboxyamide); isocyanate compounds such as tetramethylene diisocyanate, hexamethylene diisocyanate, and polyisocyanate.
- the acrylic UV curable adhesive may contain rosin resin-based, terpene resin-based tackifiers, various surfactants, and the like. According to these, it is possible to adjust the adhesive properties of the acrylic ultraviolet curable adhesive.
- the thickness of the adhesive layer is not particularly limited, and is preferably 3 ⁇ m to 100 ⁇ m, and preferably 10 to 100 ⁇ m. Is more preferable. When the thickness of the adhesive layer is within the above range, sufficient adhesiveness can be obtained, and the effect of the stress relaxation film according to the first aspect of the present invention is hardly impaired.
- the adhesive strength of the surface protective film according to the first aspect of the present invention including the adhesive layer is preferably 0.1 N / 25 mm to 5 N / 25 mm in terms of adhesive strength to the SUS304-BA plate, / 25 mm to 3 N / 25 mm is more preferable.
- the adhesive strength of the surface protective film is within the above range, the surface protective film can be sufficiently adhered to the circuit forming surface of the semiconductor substrate, and when the surface protective film is peeled off from the circuit forming surface In addition, the semiconductor substrate is hardly damaged, and further, the adhesive layer hardly remains on the circuit forming surface after the surface protective film is peeled off from the circuit forming surface of the semiconductor substrate.
- the adhesive has an adhesive force switching function such as a radiation curable type, a thermosetting type, a heated foam type, etc.
- the adhesive force after the adhesive force is switched and reduced by radiation irradiation or the like is within the above range. It is preferable to be within.
- the surface protective film according to the first aspect of the present invention may include, for example, another layer having a low elastic modulus between the stress relaxation film according to the first aspect of the present invention and the adhesive layer. .
- the elastic modulus of the other layers is preferably lower than the elastic modulus of the stress relaxation film according to the first aspect of the present invention.
- the storage elastic modulus G ′ (25) at 25 ° C. measured at a frequency of 1.6 Hz is preferably 8 ⁇ 10 6 Pa or less, preferably 1 ⁇ 10 4 Pa to More preferably, it is 8 ⁇ 10 6 Pa.
- the storage elastic modulus G ′ (25) of the other layers is 8 ⁇ 10 6 Pa or less, the effect of the stress relaxation film according to the first aspect of the present invention is hardly impaired.
- Other layers include, for example, ethylene-vinyl acetate copolymer, ethylene-alkyl acrylate copolymer (alkyl group having 1 to 4 carbon atoms), low density polyethylene, ethylene- ⁇ -olefin copolymer ( ⁇ -olefin). And a resin layer containing 3 to 8 carbon atoms.
- the other layer is preferably a resin layer containing an ethylene-vinyl acetate copolymer having a vinyl acetate unit content of 5% by mass to 50% by mass.
- the method for producing the surface protective film according to the first aspect of the present invention is not particularly limited.
- the surface protection film including the stress relaxation film, the base material layer, and the adhesive layer according to the first aspect of the present invention is formed by laminating the stress relaxation film according to the first aspect of the present invention and the base material layer. Furthermore, it is obtained by forming an adhesive layer on the side opposite to the side where the base material layer of the stress relaxation film is present.
- a resin and a base material layer that form the stress relaxation film according to the first aspect of the present invention are formed.
- a new adhesive layer may be formed between the two, or the present invention.
- Each of the stress relaxation film and the base material layer according to the first aspect may be subjected to easy adhesion treatment such as corona discharge treatment.
- the pressure-sensitive adhesive layer is a known method such as a roll coater, a comma coater, a die coater, a Mayer bar coater, a reverse roll coater, a gravure coater, etc.
- a roll coater a comma coater
- a die coater a die coater
- a Mayer bar coater a reverse roll coater
- a gravure coater a gravure coater
- the stress according to the first aspect of the present invention is applied to the pressure-sensitive adhesive layer by a dry laminating method or the like. You may transfer on a relaxation film.
- the drying conditions for drying the pressure-sensitive adhesive coating solution are not particularly limited, and in general, drying is preferably performed for 10 seconds to 10 minutes in a temperature range of 80 ° C. to 300 ° C., preferably 80 ° C. to It is more preferable to dry in the temperature range of 200 ° C. for 15 seconds to 5 minutes. Further, after the drying of the pressure-sensitive adhesive coating solution, the surface protective film may be heated at 40 to 80 ° C. for about 5 to 300 hours.
- the film forming environment and the manufacturing environment for these raw materials are maintained at a cleanness of class 1,000 or less as defined in the US Federal Standard 209b.
- a semiconductor device manufacturing method comprising: a preparatory step of preparing a semiconductor substrate having a circuit formed only on one surface; An adhesion step of adhering the surface protective film according to the embodiment so that the adhesive layer of the surface protective film and the circuit forming surface of the semiconductor substrate face each other, and grinding the circuit non-forming surface of the semiconductor substrate And a peeling step of peeling the surface protection film attached to the circuit forming surface of the semiconductor substrate from the circuit forming surface of the semiconductor substrate.
- a circuit is formed on one surface of a semiconductor substrate having a thickness of about 500 ⁇ m to 1000 ⁇ m. Thereafter, the surface on which the circuit is not formed (circuit non-formation surface) is ground to thin the semiconductor substrate.
- the preparation step is a step of preparing a thick semiconductor substrate before grinding the non-circuit-formed surface.
- the semiconductor substrate include silicon wafers, germanium, gallium-arsenic, gallium-phosphorus, and gallium-arsenic-aluminum substrates.
- the surface protective film according to the first aspect of the present invention is opposed to the circuit forming surface of the semiconductor substrate, and the adhesive layer of the surface protective film and the circuit forming surface of the semiconductor substrate are opposed to each other. It is the process of sticking.
- the sticking may be performed manually, but is usually performed by an automatic sticking machine equipped with a roll-shaped surface protective film.
- an automatic pasting machine for example, Takatori Co., Ltd., model: ATM-1000B, ATM-1100, TEAM-100, Teikoku Seiki Co., Ltd., model: STL series, Nitto Seiki Co., Ltd., model : DR-8500II, DR-3000II and the like.
- the grinding process is a process of grinding the circuit non-formed surface of the semiconductor substrate.
- the grinding can be performed by a known method such as a through-feed method or an in-feed method. In either method, the semiconductor substrate is ground with a grindstone.
- the temperature of the semiconductor substrate at the start of the grinding process is usually about 18 ° C. to 28 ° C., preferably 20 ° C. to 25 ° C.
- the temperature of the semiconductor substrate during the grinding process depends on the material of the substrate to be ground, but is usually 20 ° C. to 120 ° C., preferably 30 ° C. to 80 ° C., and preferably 40 ° C. to 70 ° C. It is more preferable.
- the non-circuit-formed surface of the semiconductor substrate may be further processed as necessary.
- the non-circuit-formed surface is processed by fixing the semiconductor substrate to a chuck table or the like of a back surface processing machine via a surface protective film.
- Examples of the treatment of the circuit non-formation surface include polishing of the semiconductor substrate, chemical etching, dry etching, plasma treatment, etc., and removal of distortion generated on the circuit non-formation surface of the semiconductor substrate or further thinning of the semiconductor substrate. Layering, removal of oxide film, etc., processing before electrode formation, etc. are performed.
- a step of attaching an adhesive film for die bonding to the back surface of the semiconductor substrate may be performed.
- an apparatus for attaching the die bonding adhesive film there are, for example, Takatori Co., Ltd., model: ATM-8200, DM-800, and the like.
- a so-called inline back surface processing machine in which the back surface processing unit, the die bonding adhesive film attaching unit, and the surface protection film peeling unit are integrated has been put into practical use.
- model name: PG300RM manufactured by Tokyo Seimitsu Co., Ltd. may be mentioned.
- the surface protection film is adhered to a circuit forming surface of the semi-conductor substrate, a step of peeling from the circuit formation surface of the semiconductor substrate.
- the surface protective film may be peeled off by a human hand, but is generally carried out by an apparatus called an automatic peeling machine.
- an automatic peeling machine for example, Takatori Co., Ltd., model: ATRM-2000B, ATRM-2100, Teikoku Seiki Co., Ltd., model: STP series, Nitto Seiki Co., Ltd., model: HR8500-II, etc. There is.
- the surface protective film may be peeled while heating the semiconductor substrate.
- cleaning methods include wet cleaning such as water cleaning and solvent cleaning, and dry cleaning such as plasma cleaning. In the case of wet cleaning, ultrasonic cleaning may be used in combination. These cleaning methods are appropriately selected depending on the contamination state of the semiconductor substrate surface.
- the stress relaxation film according to the first aspect of the present invention is adhered to the circuit forming surface of the semiconductor substrate.
- the circuit forming surface is scratched or dust is attached. Further, it is possible to prevent the thin semiconductor substrate from being damaged during the grinding process.
- the stress relaxation film according to the second aspect of the present invention has a constitution derived from 70 mol% to 90 mol% of a structural unit derived from 4-methyl-1-pentene and an ⁇ -olefin having 2 or 3 carbon atoms.
- thermoplastic resin which is a plastic resin A and at least one polymer selected from the group consisting of an ethylene polymer, a propylene polymer, a butene polymer, and a 4-methyl-1-pentene polymer A thermoplastic resin B other than A, and the content of the thermoplastic resin A is 2% by mass or more and less than 50% by mass with respect to the total mass, and the content of the thermoplastic resin B is the total mass 50 mass% or more 98 quality % Or less.
- the stress relaxation film according to the second aspect of the present invention delamination hardly occurs when the film has a certain degree of stress relaxation and is laminated with another layer.
- a film used for protecting an object from scratches or breakage due to external force (hereinafter also referred to as “protective film”) is required to have characteristics such as stress relaxation properties, for example.
- the present inventors have found a specific thermoplastic resin containing a large amount of 4-methyl-1-pentene as a resin responsible for stress relaxation.
- the film comprises a specific thermoplastic resin A containing a large amount of 4-methyl-1-pentene in the skeleton, which is responsible for stress relaxation, and a specific thermoplastic resin, which is responsible for adhesion and adhesion.
- thermoplastic resin A in the second aspect of the present invention is synonymous with the thermoplastic resin A in the first aspect of the present invention except for the following points, and is preferably in a preferred range (for example, 4-methyl-1-pentene series).
- Copolymer constituent unit and content thereof, physical properties of 4-methyl-1-pentene copolymer for example, intrinsic viscosity [ ⁇ ], weight average molecular weight (Mw), molecular weight distribution (Mw / Mn), melt flow) The rate (MFR), density, melting point (Tm), etc.) and the measurement method, synthesis method, etc.) and the reason are the same.
- the 4-methyl-1-pentene copolymer according to the second aspect of the present invention contains 70 mol% to 90 mol% of a structural unit derived from 4-methyl-1-pentene. % To 88 mol% is more preferable, and 70 mol% to 86 mol% is still more preferable.
- the structural unit derived from 4-methyl-1-pentene contained in the 4-methyl-1-pentene copolymer is less than 70 mol%, a high degree of stress relaxation necessary for the protective film can be obtained. Can not.
- the structural unit derived from 4-methyl-1-pentene contained in the 4-methyl-1-pentene copolymer exceeds 90 mol%, the releasability becomes too high, so that it is laminated with other layers. When delaminated, delamination occurs.
- the 4-methyl-1-pentene copolymer according to the second aspect of the present invention contains 10 to 30 mol% of structural units derived from an ⁇ -olefin having 2 or 3 carbon atoms, More preferably, it is contained in an amount of 11 mol% to 30 mol%, more preferably 14 mol% to 30 mol%.
- the structural unit derived from the ⁇ -olefin having 2 or 3 carbon atoms contained in the 4-methyl-1-pentene copolymer is less than 10 mol%, the rigidity of the material is excessively increased, so that appropriate stress relaxation properties are obtained. Cannot be obtained.
- the structural unit derived from the ⁇ -olefin having 2 or 3 carbon atoms contained in the 4-methyl-1-pentene copolymer exceeds 30 mol%, the crystallinity is lowered and the melting point is not observed. Softening advances and film forming becomes difficult.
- the structural unit derived from an ⁇ -olefin having 2 or 3 carbon atoms is a structural unit derived from ethylene or propylene.
- the structural unit derived from an ⁇ -olefin having 2 or 3 carbon atoms is particularly preferably a structural unit derived from propylene.
- the content of the thermoplastic resin A in the stress relaxation film according to the second aspect of the present invention is 2% by mass or more and less than 50% by mass, and 5% by mass or more and 48% by mass with respect to the total mass of the stress relaxation film.
- the content is preferably at most 10 mass%, more preferably at least 10 mass% and at most 45 mass%.
- the content of the thermoplastic resin A is less than 2% by mass with respect to the total mass of the stress relaxation film, it is not possible to obtain a high level of stress relaxation necessary for the protective film.
- the content of the thermoplastic resin A is 50% by mass or more with respect to the total mass of the stress relaxation film, the releasability becomes too high, and thus delamination occurs when laminated with other layers. .
- thermoplastic resin B The thermoplastic resin B in the second aspect of the present invention is synonymous with the thermoplastic resin B in the first aspect of the present invention, except for the following points, and preferred ranges (for example, composition, physical properties (melt flow rate ( MFR), density, etc.) and measurement methods thereof) and the reason are the same.
- the content of the thermoplastic resin B in the stress relaxation film according to the second aspect of the present invention is 50% by mass or more and 98% by mass or less, and 52% by mass or more and 95% by mass with respect to the total mass of the stress relaxation film. It is preferable that it is mass% or less, and it is more preferable that it is 55 mass% or more and 90 mass% or less.
- the content of the thermoplastic resin B is less than 50% by mass with respect to the total mass of the stress relaxation film, sufficient adhesiveness and adhesion cannot be expressed, and the other layers are laminated. In some cases, delamination occurs.
- the content of the thermoplastic resin B exceeds 98% by mass with respect to the total mass of the stress relaxation film, it is not possible to obtain a high level of stress relaxation necessary for the protective film.
- the stress relaxation film according to the second aspect of the present invention contains other resins other than the above-described thermoplastic resin A and thermoplastic resin B within a range not impairing the object of the second aspect of the present invention. It may be.
- the stress relieving film according to the second aspect of the present invention preferably has a sea-island structure composed of an island part including the thermoplastic resin A and a sea part substantially composed of the thermoplastic resin B.
- the sea part “consisting essentially of the thermoplastic resin B” means that the content of the thermoplastic resin B in the sea part is 70% by mass or more based on the total mass of the constituent components of the sea part. To do.
- the stress relieving film of the present invention having a sea-island structure composed of an island part including the thermoplastic resin A and a sea part substantially consisting of the thermoplastic resin B has a higher stress relaxation property. And when other layers are laminated, delamination is less likely to occur. The reason why such an effect is achieved is not clear, but the present inventors presume as follows. Adhesion performance and adhesion performance by the thermoplastic resin B are more effectively exhibited when the thermoplastic resin B responsible for adhesion and adhesion becomes a sea part. As a result, even when other layers are laminated, delamination is less likely to occur. Moreover, the thermoplastic resin A which bears stress relaxation becomes an island part, and the stress relaxation performance by the thermoplastic resin A is more effectively exhibited by dispersing in the film. As a result, the stress relaxation property of the film becomes higher.
- the stress relaxation film according to the second aspect of the present invention has a sea-island structure including an island part including the thermoplastic resin A and a sea part substantially made of the thermoplastic resin B.
- TEM transmission electron microscope
- the film is ground to produce an ultrathin section, and only one of the components is selectively stained with a heavy metal such as ruthenium tetroxide or osmium tetroxide, and then observed using a transmission electron microscope. To do.
- a film having a sea-island structure composed of an island part including the thermoplastic resin A and a sea part substantially composed of the thermoplastic resin B is, for example, a dry blend of the thermoplastic resin A and the thermoplastic resin B. Obtained by mixing and extrusion to form a film.
- the stress relaxation film according to the second aspect of the present invention can be produced, for example, by the following method.
- the second aspect of the present invention is not limited to the following method.
- the thermoplastic resin A and the thermoplastic resin B are mixed (for example, dry blended). From the viewpoint of forming the above-mentioned sea-island structure, it is preferable to appropriately knead the thermoplastic resin A and the thermoplastic resin B by dry blending or the like rather than uniformly mixing them by melt kneading or the like.
- the obtained mixture is put into an hopper of an extruder provided with a T die, and the cylinder temperature is set to 100 ° C. to 270 ° C. and the die temperature is set to 200 ° C. to 270 ° C.
- the melt-kneaded material is extruded from a T die and cast to obtain a stress relaxation film.
- the thickness of the stress relaxation film according to the second aspect of the present invention is preferably 50 ⁇ m to 350 ⁇ m, more preferably 60 ⁇ m to 300 ⁇ m, and still more preferably 70 ⁇ m to 200 ⁇ m.
- handleability is easy.
- the stress relaxation film according to the second aspect of the present invention is used for the purpose of preventing scratches and dust prevention during transportation, storage, processing, etc. of various resin products such as building materials and optical parts, metal products, and glass products.
- the protective film can be suitably used as a protective film adhered to these surfaces.
- the stress relaxation film according to the second aspect of the present invention can be used to grind the circuit non-formation surface of the semiconductor substrate so that the semiconductor substrate has a desired thickness. It can be particularly suitably used as a protective film for preventing breakage. Since the stress relaxation film according to the second aspect of the present invention has stress relaxation properties, it is effective in preventing damage and breakage of the circuit formation surface of the semiconductor substrate. In addition, since the stress relaxation film according to the second aspect of the present invention hardly causes delamination even when other layers are laminated, the semiconductor substrate is adhered to a circuit forming surface. Workability such as peeling from the circuit forming surface is good.
- the laminate according to the second aspect of the present invention includes a stress relaxation layer comprising the stress relaxation film according to the second aspect of the present invention, an ethylene polymer, a propylene polymer, and a butene polymer.
- a thermoplastic resin C which is at least one polymer selected from the group consisting of: and a surface layer at least partially in contact with the stress relaxation layer.
- the laminate according to the second aspect of the present invention has a somewhat high stress relaxation property, and is less likely to cause delamination when laminated with other layers, according to the second aspect of the present invention described above. Since a stress relaxation layer made of a stress relaxation film is included, the stress relaxation property is high to some extent, and delamination does not easily occur between the stress relaxation layer and the layer in contact with the stress relaxation layer.
- the stress relaxation layer in the laminate according to the second aspect of the present invention is composed of the stress relaxation film according to the second aspect of the present invention described above.
- description is abbreviate
- the surface layer in the laminated body according to the second aspect of the present invention is synonymous with the surface layer in the laminated body according to the first aspect of the present invention, and the preferred range (for example, composition, location, stress relaxation layer) The contact ratio etc.) and the reason are the same.
- thermoplastic resin C The thermoplastic resin C in the second aspect of the present invention is synonymous with the thermoplastic resin C in the first aspect of the present invention, and preferred ranges (for example, composition, physical properties (melt flow rate (MFR), density, etc.)). And the measuring method, the content in the surface layer, etc.) and the reason are the same.
- the laminated body according to the second aspect of the present invention may include other layers other than the stress relaxation layer and the surface layer, as long as the object of the second aspect of the present invention is not impaired.
- the method for manufacturing a laminate according to the second aspect of the present invention is the same as the method for manufacturing the laminate according to the first aspect of the present invention, and preferred ranges (for example, manufacturing conditions, surface layer and stress relaxation layer)
- the thickness ratio (the thickness of the surface layer / the thickness of the stress relaxation layer, the thickness of the laminated body, etc.) and the reason are the same.
- the semiconductor surface protective film according to the second aspect of the present invention (hereinafter also simply referred to as “surface protective film”) protects the circuit forming surface of the semiconductor substrate during grinding of the semiconductor substrate.
- the stress relaxation film which concerns on the 2nd aspect of is included.
- the surface protective film according to the second aspect of the present invention may consist only of the stress relaxation film according to the second aspect of the present invention, or the stress relaxation property according to the second aspect of the present invention. It may be a laminate of a film and other layers. It is desirable that other layers are appropriately selected as long as the effects of the stress relaxation film according to the second aspect of the present invention are not impaired.
- the surface protective film according to the second aspect of the present invention includes the above-described stress relaxation film according to the second aspect of the present invention, the surface protective film has a somewhat high stress relaxation property. Therefore, according to the surface protective film which concerns on the 2nd aspect of this invention, the damage and damage of the circuit formation surface of a semiconductor substrate can be prevented effectively. Further, when the surface protective film according to the second aspect of the present invention is a laminate of the above-described stress relaxation film according to the second aspect of the present invention and another layer, delamination hardly occurs. Therefore, operations such as attaching the semiconductor substrate to the circuit formation surface and peeling the semiconductor substrate from the circuit formation surface can be performed satisfactorily.
- the base material layer that can be included in the surface protective film according to the second aspect of the present invention is synonymous with the base material layer that can be included in the surface protective film according to the first aspect of the present invention, and a preferred range (for example, The elastic modulus, location, composition, thickness, etc.) and the reason are the same.
- the pressure-sensitive adhesive layer that can be included in the surface protective film according to the second aspect of the present invention is synonymous with the pressure-sensitive adhesive layer that can be included in the surface protective film according to the first aspect of the present invention, and a preferred range (for example, the location)
- the adhesive layer constituting the adhesive layer, the thickness, the adhesive force, etc.) and the reason are the same.
- the other layer that can be included in the surface protective film according to the second aspect of the present invention is synonymous with the other layer that can be included in the surface protective film according to the first aspect of the present invention, and a preferred range (for example, The elastic modulus, composition, etc.) and the reason are the same.
- the method for producing the surface protective film according to the second aspect of the present invention is the same as the method for producing the surface protective film according to the first aspect of the present invention, and the preferred range (for example, production conditions) and the reason thereof are also included. It is the same.
- the manufacturing method of the semiconductor device according to the second aspect of the present invention is the same as the manufacturing method of the semiconductor device according to the first aspect of the present invention, and the preferable range (for example, manufacturing conditions) and the reason are the same. is there.
- the stress relaxation film according to the second aspect of the present invention is adhered to the circuit forming surface of the semiconductor substrate.
- the stress relaxation film according to the second aspect of the present invention is adhered to the circuit forming surface of the semiconductor substrate.
- the stress relaxation film according to the second aspect of the present invention when the stress relaxation film according to the second aspect of the present invention, which is adhered to the circuit forming surface of the semiconductor substrate, is a laminate with other layers. Since the delamination hardly occurs, the sticking work can be performed well.
- the resin modifier according to the second aspect of the present invention has a constitution derived from 70 mol% to 90 mol% of a structural unit derived from 4-methyl-1-pentene and an ⁇ -olefin having 2 or 3 carbon atoms.
- a heat which is a copolymer containing 10 mol% to 30 mol% of units and having a ratio of structural units derived from ⁇ -olefins having 4 to 20 carbon atoms other than 4-methyl-1-pentene of 10 mol% or less.
- thermoplastic resin which is a plastic resin A and at least one polymer selected from the group consisting of an ethylene polymer, a propylene polymer, a butene polymer, and a 4-methyl-1-pentene polymer A thermoplastic resin B other than A, and the content of the thermoplastic resin A is 2% by mass or more and less than 50% by mass with respect to the total mass, and the content of the thermoplastic resin B is the total mass 50 mass% or more and 98 mass% or less It is.
- the resin modifier according to the second aspect of the present invention the resin is imparted with a certain degree of high stress relaxation and adhesion that is difficult to delaminate when laminated with other layers. Can do.
- thermoplastic resin A and the thermoplastic resin B in the resin modifier according to the second aspect of the present invention have the same meaning as the thermoplastic resin A and the thermoplastic resin B described in the section of the stress relaxation film, respectively. Since the aspect is also the same, the description is omitted here.
- content of the thermoplastic resin A and the content of the thermoplastic resin B in the resin modifier according to the second aspect of the present invention the content of the thermoplastic resin A described in the section of the stress relaxation film, respectively.
- the amount and the content of the thermoplastic resin B are synonymous, and the preferred embodiment is also the same, and thus the description thereof is omitted here.
- the resin to be modified by the resin modifier according to the second aspect of the present invention is not particularly limited.
- the resin to be modified by the resin modifier according to the second aspect of the present invention is ethylene from the viewpoint of rigidity of the base material, heat resistance, stress relaxation effect due to dispersion state with the thermoplastic resin A, and the like. Of these, a polymer, a propylene polymer, a butene polymer and the like are preferable.
- the resin modifier according to the second aspect of the present invention is preferably blended in an amount of 5 to 50 parts by weight, preferably 10 to 45 parts by weight, based on 100 parts by weight of the resin to be modified. It is more preferable.
- the resin modifier according to the second aspect of the present invention contains a specific amount of thermoplastic resin A and a specific amount of thermoplastic resin B, and further does not impair the purpose of the second aspect of the present invention.
- weathering stabilizer, heat stabilizer, antioxidant, ultraviolet absorber, antistatic agent, anti-slip agent, anti-blocking agent, anti-fogging agent, nucleating agent, lubricant, pigment, dye, anti-aging agent Various additives such as a hydrochloric acid absorbent, an inorganic or organic filler, an organic or inorganic foaming agent, a cross-linking agent, a cross-linking aid, a pressure-sensitive adhesive, a softening agent, and a flame retardant may be contained.
- first and second aspect of the present invention will be described more specifically with reference to examples.
- the first and second aspects of the present invention are not limited to the following examples as long as they do not exceed the gist thereof.
- the autoclave was heated until the internal temperature reached 60 ° C., and pressurized with propylene so that the total pressure (gauge pressure) was 0.19 MPa. Subsequently, 1 mmol of methylaluminoxane in terms of aluminum (Al) and 0.01 mmol of diphenylmethylene (1-ethyl-3-t-butyl-cyclopentadienyl) (2,7-di-dioxide) prepared in advance. 0.34 ml of a toluene solution containing -t-butyl-fluorenyl) zirconium dichloride was injected into the autoclave with nitrogen to start the polymerization reaction.
- the temperature was adjusted so that the internal temperature of the autoclave was 60 ° C.
- 5 ml of methanol was pressed into the autoclave with nitrogen to stop the polymerization reaction, and then the inside of the autoclave was depressurized to atmospheric pressure.
- acetone was added to the reaction solution while stirring the reaction solution to obtain a polymerization reaction product containing a solvent.
- the obtained polymerization reaction product containing the solvent was dried at 130 ° C. under reduced pressure for 12 hours to obtain 44.0 g of a powdery copolymer A-1A.
- Table 1 shows the measurement results of various physical properties of the obtained copolymer A-1A.
- the content of 4-methyl-1-pentene in copolymer A-1A was 84.1 mol%, and the content of propylene was 15.9 mol%. Further, the density of the copolymer A-1A was 838 kg / m 3 .
- Copolymer A-1A had an intrinsic viscosity [ ⁇ ] of 1.5 dl / g, a weight average molecular weight (Mw) of 340,000, and a molecular weight distribution (Mw / Mn) of 2.1.
- the melting point (Tm) of copolymer A-1A was 132 ° C., and the maximum value of tan ⁇ was 1.6 (temperature at which the maximum value was shown: 39 ° C.).
- Table 1 shows the measurement results of various physical properties of the obtained copolymer A-2A.
- the content of 4-methyl-1-pentene in the copolymer A-2A was 72.5 mol%, and the content of propylene was 27.5 mol%. Further, the density of the copolymer A-2A was 839 kg / m 3 .
- Copolymer A-2A had an intrinsic viscosity [ ⁇ ] of 1.5 dl / g, a weight average molecular weight (Mw) of 337,000, and a molecular weight distribution (Mw / Mn) of 2.1.
- the melting point (Tm) of the copolymer A-2A was not observed, and the maximum value of tan ⁇ was 2.8 (temperature when showing the maximum value: 31 ° C.).
- Table 1 shows the measurement results of various physical properties of the obtained copolymer A-3A.
- the content of 4-methyl-1-pentene in the copolymer A-3A was 92.3 mol%, and the content of propylene was 7.7 mol%. Further, the density of the copolymer A-3A was 832 kg / m 3 .
- Copolymer A-3A had an intrinsic viscosity [ ⁇ ] of 1.6 dl / g, a weight average molecular weight (Mw) of 370,000, and a molecular weight distribution (Mw / Mn) of 2.1.
- the melting point (Tm) of copolymer A-3A was 178 ° C., and the maximum value of tan ⁇ was 0.4 (temperature at which the maximum value was shown: 40 ° C.).
- the intrinsic viscosity [ ⁇ ] of the copolymer was measured at 135 ° C. in a decalin solvent using an Ubbelohde viscometer as a measuring device. Specifically, about 20 mg of the powdery copolymer was dissolved in 25 ml of decalin, and then the specific viscosity ⁇ sp was measured in an oil bath at 135 ° C. using an Ubbelohde viscometer. After 5 ml of decalin was added to the decalin solution for dilution, the specific viscosity ⁇ sp was measured in the same manner as described above.
- Weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn) The weight average molecular weight (Mw) of the copolymer and the molecular weight distribution (Mw / Mn) represented by the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) are determined by gel permeation chromatography (GPC: Gel). It calculated by the standard polystyrene conversion method using Permeation Chromatography). The measurement conditions are as follows.
- GPC ALC / GPC 150-C plus type, suggested refractometer detector integrated type, manufactured by Waters
- melt flow rate (MFR) The melt flow rate (MFR) of the copolymer was measured at 230 ° C. and a load of 2.16 kg in accordance with ASTM D1238. The unit is g / 10 min).
- the density of the copolymer was measured according to JIS K7112 (density gradient tube method). This density (kg / m 3 ) was used as an indicator of lightness.
- the melting point (Tm) of the copolymer was measured using a differential scanning calorimeter (DSC220C type, manufactured by Seiko Instruments Inc.) as a measuring device. About 5 mg of the copolymer was sealed in a measurement aluminum pan and heated from room temperature to 200 ° C. at 10 ° C./min. In order to completely melt the copolymer, it was kept at 200 ° C. for 5 minutes and then cooled to ⁇ 50 ° C. at 10 ° C./min. After 5 minutes at ⁇ 50 ° C., the second heating was performed to 200 ° C. at 10 ° C./min. The peak temperature (° C.) at the second heating was defined as the melting point (Tm) of the copolymer. The melting point (Tm) of this copolymer was used as an index of heat resistance.
- the powdery copolymer obtained above was charged into a hopper of a 20 mm ⁇ single screw extruder (single screw sheet forming machine, manufactured by Tanaka Iron Works Co., Ltd.) equipped with a T die having a lip width of 240 mm.
- the cylinder temperature was set to 100 ° C. to 250 ° C.
- the die temperature was set to 250 ° C.
- the melt-kneaded product was extruded from the T die.
- the extruded melt-kneaded product was taken up at a chill roll temperature of 20 ° C. and a take-up speed of 10 m / min to obtain a cast film having a thickness of 50 ⁇ m.
- This cast film was cut out to 45 mm ⁇ 10 mm to obtain a test piece.
- This test piece was measured for dynamic viscoelasticity in a temperature range of ⁇ 70 to 180 ° C. at a frequency of 10 rad / s using a viscoelasticity measuring device (MCR301, manufactured by Anton Paar), and was caused by the glass transition temperature.
- the maximum value (peak value) of the loss tangent (tan ⁇ ) and the temperature at which the maximum value was shown (temperature at the peak) were measured.
- Example 1A 75 parts by mass of copolymer A-1A, propylene-based polymer (Prime Polypro (registered trademark) F327, propylene / ethylene / butene random copolymer, density: 907 kg / m 3 , MFR (230 ° C.): 7 g / 10 min And 25 parts by mass (manufactured by Prime Polymer Co., Ltd.) were mixed (dry blended). Next, the obtained mixture was put into a hopper of a 20 mm ⁇ single screw extruder (single screw sheet forming machine, manufactured by Tanaka Iron Works Co., Ltd.) equipped with a T die having a lip width of 240 mm.
- Prime Polypro registered trademark
- T die having a lip width of 240 mm.
- Example 1A was obtained by setting the cylinder temperature to 230 ° C. and the die temperature to 250 ° C., extruding the melt-kneaded material from the T-die and cast molding.
- the film had a thickness of 50 ⁇ m and a thickness of 200 ⁇ m.
- Example 2A Example 1A, except that 60 parts by mass of copolymer A-1A and 40 parts by mass of a propylene polymer (Prime Polypro (registered trademark) F327, manufactured by Prime Polymer Co., Ltd.) were mixed (dry blended). A film of Example 2A was obtained in the same manner as described above.
- Example 3A 60 parts by mass of copolymer A-1A, propylene-based polymer (Prime Polypro (registered trademark) F107, homopolymer of propylene, density: 910 kg / m 3 , MFR (230 ° C.): 7 g / 10 min, Prime Co., Ltd.
- a film of Example 3A was obtained by the same method as Example 1A, except that 40 parts by mass of polymer) was mixed (dry blended).
- Example 4A Example 1A, except that 60 parts by mass of copolymer A-2A and 40 parts by mass of a propylene-based polymer (Prime Polypro (registered trademark) F327, manufactured by Prime Polymer Co., Ltd.) were mixed (dry blended).
- the film of Example 4A was obtained by the same method as described above.
- Example 5A 60 parts by mass of copolymer A-1A, ethylene polymer (Evolue (registered trademark) SP2540, linear low density polyethylene, density: 924 kg / m 3 , MFR (190 ° C.): 3.8 g / 10 min, A film of Example 5A was obtained in the same manner as in Example 1A, except that 40 parts by mass of Prime Polymer Co., Ltd.) were mixed (dry blended).
- ethylene polymer Evolue (registered trademark) SP2540, linear low density polyethylene, density: 924 kg / m 3 , MFR (190 ° C.): 3.8 g / 10 min
- Example 1A Example 1A, except that 25 parts by mass of copolymer A-1A and 75 parts by mass of a propylene-based polymer (Prime Polypro (registered trademark) F327, manufactured by Prime Polymer Co., Ltd.) were mixed (dry blended). A film of Comparative Example 1A was obtained in the same manner as above.
- Example 1A Example 1A, except that 60 parts by mass of copolymer A-3A and 40 parts by mass of a propylene-based polymer (Prime Polypro (registered trademark) F327, manufactured by Prime Polymer Co., Ltd.) were mixed (dry blended).
- a film of Comparative Example 2A was obtained by the same method as described above.
- Comparative Example 3A A film of Comparative Example 3A was obtained by the same method as Example 1A, except that only an ethylene polymer (Evolue (registered trademark) SP2540, manufactured by Prime Polymer Co., Ltd.) was used as a raw material for the film.
- Evolue registered trademark
- Comparative Example 4A A film of Comparative Example 4A was obtained by the same method as Example 1A, except that only a propylene polymer (Prime Polypro (registered trademark) F327, manufactured by Prime Polymer Co., Ltd.) was used as a raw material for the film. .
- a propylene polymer Principal Polypro (registered trademark) F327, manufactured by Prime Polymer Co., Ltd.
- the films of Examples 1A to 5A and Comparative Examples 1A to 2A have a sea part containing copolymer A-1A, copolymer A-2A, or copolymer A-3A, and a substantially propylene-based polymer. It was confirmed that it has a sea-island structure composed of A TEM image of the film of Example 2A is shown in FIG.
- Stress relaxation property A sheet having a thickness of 10 mm and a length of 100 mm punched out from a film having a thickness of 50 ⁇ m was used as a test piece. Using a tensile tester (universal tensile tester 3380, manufactured by Instron), the test piece was stretched 10% under the conditions of a distance between chucks of 75 mm, a tensile speed of 200 mm / min, and a temperature of 23 ° C. And the stress (initial stress) at the time of extending
- the films of Examples 1A to 5A have both impact resistance and stress relaxation properties.
- the films of Comparative Examples 1A, 3A, and 4A are inferior in stress relaxation, and the film of Comparative Example 2A is inferior in impact resistance.
- Example 6A 75 parts by mass of copolymer A-1A, and ethylene polymer (Evolue (registered trademark) SP2540, linear low density polyethylene, density: 924 kg / m 3 , MFR (190 ° C.): 3.8 g / 10 min, A stress relaxation layer (thickness: 100 ⁇ m) made of a mixture obtained by mixing (dry blending) 25 parts by mass of Prime Polymer Co., Ltd., an ethylene polymer (Evolue (registered trademark) SP2540, Prime Co., Ltd.) A 20 mm ⁇ single-screw extruder (with a T-die having a lip width of 200 mm) is formed from a laminate (thickness: 160 ⁇ m) composed of a surface layer (thickness: 30 ⁇ m) consisting of 100 parts by mass of a polymer) Using a uniaxial two-kind three-layer sheet molding machine (manufactured by Technobel Co., Ltd.), a two-kind
- Example 7A> In the same manner as in Example 6A, 75 parts by mass of copolymer A-1A and propylene-based polymer (prime polypro (registered trademark) F327, propylene / ethylene / butene random copolymer, density: 907 kg / m 3 , MFR (230 ° C.): 7 g / 10 min, manufactured by Prime Polymer Co., Ltd.) 25 parts by mass (dry blending) and a stress relaxation layer (thickness: 100 ⁇ m) composed of a mixture, and a propylene polymer ( A two-layer laminate (thickness: 130 ⁇ m) consisting of a surface layer (thickness: 30 ⁇ m) consisting of 100 parts by mass of Prime Polypro (registered trademark) F327, manufactured by Prime Polymer Co., Ltd. was molded.
- primary polypro registered trademark
- F327 propylene / ethylene / butene random copolymer, density: 907 kg / m
- Example 8A> In the same manner as in Example 6A, 75 parts by mass of copolymer A-1A and 25 parts by mass of an ethylene polymer (Evolue (registered trademark) SP2540, manufactured by Prime Polymer Co., Ltd.) were mixed (dry blended).
- Evolue registered trademark
- SP2540 an ethylene polymer
- a stress relaxation layer made of the obtained mixture, 80 parts by mass of an ethylene copolymer (Evolue (registered trademark) SP2540, manufactured by Prime Polymer Co., Ltd.), and an ethylene polymer (Tuffmer (registered) Trademark) DF605, ethylene-butene copolymer (ratio of structural units derived from ethylene: 50 mol% or more, density: 861 kg / m 3 , MFR (230 ° C.): 0.9 g / 10 min, manufactured by Mitsui Chemicals, Inc. )
- a laminate comprising a surface layer (thickness: 30 ⁇ m) composed of a mixture obtained by mixing (dry blending) 20 parts by mass. 30 ⁇ m).
- Example 9A> In the same manner as in Example 6A, 75 parts by mass of copolymer A-2A and 25 parts by mass of a propylene-based polymer (Prime Polypro (registered trademark) F327, manufactured by Prime Polymer Co., Ltd.) were mixed (dry blended). And a surface layer (thickness: 30 ⁇ m) consisting of 100 parts by mass of a stress relaxation layer (thickness: 100 ⁇ m) made of the mixture and an ethylene polymer (Evolue (registered trademark) SP2540, manufactured by Prime Polymer Co., Ltd.). A laminate (thickness: 130 ⁇ m) having a two-layer structure was formed.
- Prime Polypro registered trademark
- SP2540 ethylene polymer
- a stress relaxation layer composed of 100 parts by mass of an ethylene polymer (Evolue (registered trademark) SP2540, manufactured by Prime Polymer Co., Ltd.) and an ethylene polymer (Evolue) (Registered trademark) SP2540, manufactured by Prime Polymer Co., Ltd.)
- a two-layer laminate (thickness: 130 ⁇ m) consisting of a surface layer (thickness: 30 ⁇ m) consisting of 100 parts by mass was molded.
- a stress relaxation layer composed of 100 parts by mass of a propylene polymer (Prime Polypro (registered trademark) F327, manufactured by Prime Polymer Co., Ltd.) and an ethylene polymer ( A layered product (thickness: 130 ⁇ m) composed of a surface layer (thickness: 30 ⁇ m) composed of 100 parts by mass of Evolue (registered trademark) SP2540, manufactured by Prime Polymer Co., Ltd. was molded.
- ⁇ Comparative Example 7A> In the same manner as in Example 6A, a stress relaxation layer (thickness: 100 ⁇ m) composed of 100 parts by mass of copolymer A-1A and an ethylene polymer (Evolue (registered trademark) SP2540, manufactured by Prime Polymer Co., Ltd.) A two-layer laminate (thickness: 130 ⁇ m) composed of a surface layer (thickness: 30 ⁇ m) composed of 100 parts by mass was molded.
- Stress relaxation property A sheet having a width of 10 mm and a length of 100 mm punched from the laminate was used as a test piece. Using a tensile tester (universal tensile tester 3380, manufactured by Instron), the test piece was stretched 10% under the conditions of a distance between chucks of 75 mm, a tensile speed of 200 mm / min, and a temperature of 23 ° C. And the stress (initial stress) at the time of extending
- the laminate was cut into strips having a width of 15 mm and a length of 100 mm, and used as a test piece.
- a tensile tester universal tensile tester 3380, manufactured by Instron
- the film was pulled in the direction of 180 ° to peel off the stress relaxation layer and the surface layer.
- the measured values of the five test pieces were averaged to obtain the peel strength.
- the laminates of Examples 6A to 9A have both impact resistance and stress relaxation properties.
- the peel strength between the stress relaxation layer and the surface layer is high, and the adhesion between the stress relaxation layer and the surface layer is good.
- the laminates of Comparative Examples 5A and 6A are inferior in stress relaxation properties, and the laminate of Comparative Example 7A has low peel strength between the stress relaxation layer and the surface layer, and is easily peeled off. .
- the autoclave was heated until the internal temperature reached 60 ° C., and pressurized with propylene so that the total pressure (gauge pressure) was 0.19 MPa. Subsequently, 1 mmol of methylaluminoxane and 0.01 mmol of diphenylmethylene (1-ethyl-3-t-butyl-cyclopentadienyl) (2,7-di-t-) prepared in advance were converted into Al. 0.34 ml of a toluene solution containing (butyl-fluorenyl) zirconium dichloride was pressed into the autoclave with nitrogen to initiate the polymerization reaction.
- the temperature was adjusted so that the internal temperature of the autoclave was 60 ° C.
- 5 ml of methanol was injected into the autoclave with nitrogen to stop the polymerization reaction, and then the inside of the autoclave was depressurized to the atmospheric pressure.
- acetone was added to the reaction solution while stirring the reaction solution to obtain a polymerization reaction product containing a solvent.
- the obtained polymerization reaction product containing the solvent was dried at 130 ° C. under reduced pressure for 12 hours to obtain 44.0 g of a powdery copolymer A-1B.
- Table 4 shows the measurement results of various physical properties of the obtained copolymer A-1B.
- the content of 4-methyl-1-pentene in copolymer A-1B was 84.1 mol%, and the content of propylene was 15.9 mol%. Further, the density of the copolymer A-1B was 838 kg / m 3 .
- Copolymer A-1B has an intrinsic viscosity [ ⁇ ] of 1.5 dl / g, a weight average molecular weight (Mw) of 340,000, a molecular weight distribution (Mw / Mn) of 2.1, and a melt flow The rate (MFR) was 11 g / 10 min.
- the melting point (Tm) of copolymer A-1B was 132 ° C., and the maximum value of tan ⁇ was 1.6 (temperature at which the maximum value was shown: 39 ° C.).
- Table 4 shows the measurement results of various physical properties of the obtained copolymer A-2B.
- the content of 4-methyl-1-pentene in the copolymer A-2B was 72.5 mol%, and the content of propylene was 27.5 mol%. Further, the density of the copolymer A-2B was 839 kg / m 3 .
- Copolymer A-2B has an intrinsic viscosity [ ⁇ ] of 1.5 dl / g, a weight average molecular weight (Mw) of 337,000, a molecular weight distribution (Mw / Mn) of 2.1, and a melt flow The rate (MFR) was 11 g / 10 min.
- the melting point (Tm) of the copolymer A-2B was not observed, and the maximum value of tan ⁇ was 2.8 (temperature when showing the maximum value: 31 ° C.).
- the intrinsic viscosity [ ⁇ ] of the copolymer was measured at 135 ° C. in a decalin solvent using an Ubbelohde viscometer as a measuring device. Specifically, about 20 mg of the powdery copolymer was dissolved in 25 ml of decalin, and then the specific viscosity ⁇ sp was measured in an oil bath at 135 ° C. using an Ubbelohde viscometer. After 5 ml of decalin was added to the decalin solution for dilution, the specific viscosity ⁇ sp was measured in the same manner as described above.
- Weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn) The weight average molecular weight (Mw) of the copolymer and the molecular weight distribution (Mw / Mn) represented by the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) are determined by gel permeation chromatography (GPC: Gel). It calculated by the standard polystyrene conversion method using Permeation Chromatography). The measurement conditions are as follows.
- GPC ALC / GPC 150-C plus type, suggested refractometer detector integrated type, manufactured by Waters
- melt flow rate (MFR) The melt flow rate (MFR) of the copolymer was measured at 230 ° C. and a load of 2.16 kg in accordance with ASTM D1238. The unit is g / 10 min).
- the density of the copolymer was measured according to JIS K7112 (density gradient tube method). This density (kg / m 3 ) was used as an indicator of lightness.
- the melting point (Tm) of the copolymer was measured using a differential scanning calorimeter (DSC220C type, manufactured by Seiko Instruments Inc.) as a measuring device. About 5 mg of the copolymer was sealed in a measurement aluminum pan and heated from room temperature to 200 ° C. at 10 ° C./min. In order to completely melt the copolymer, it was kept at 200 ° C. for 5 minutes and then cooled to ⁇ 50 ° C. at 10 ° C./min. After 5 minutes at ⁇ 50 ° C., the second heating was performed to 200 ° C. at 10 ° C./min. The peak temperature (° C.) at the second heating was defined as the melting point (Tm) of the copolymer. The melting point (Tm) of this copolymer was used as an index of heat resistance.
- the powdery copolymer obtained above was charged into a hopper of a 20 mm ⁇ single screw extruder (single screw sheet forming machine, manufactured by Tanaka Iron Works Co., Ltd.) equipped with a T die having a lip width of 240 mm.
- the cylinder temperature was set to 100 ° C. to 250 ° C.
- the die temperature was set to 250 ° C.
- the melt-kneaded product was extruded from the T die.
- the extruded melt-kneaded product was taken up at a chill roll temperature of 20 ° C. and a take-up speed of 10 m / min to obtain a cast film having a thickness of 50 ⁇ m.
- This cast film was cut out to 45 mm ⁇ 10 mm to obtain a test piece.
- the dynamic viscoelasticity in the temperature range of ⁇ 70 to 180 ° C. was measured at a frequency of 10 rad / s using a viscoelasticity measuring apparatus (MCR301, manufactured by Anton Paar). Then, the maximum value of the loss tangent (tan ⁇ ) due to the obtained glass transition temperature and the temperature at which the maximum value was shown were used as an index of shock absorption.
- Example 1B 30 parts by mass of copolymer A-1B and an ethylene polymer (Evolue (registered trademark) SP2540, linear low density polyethylene, density: 924 kg / m 3 , MFR (190 ° C.): 3.8 g / 10 min, ( 70 parts by mass (manufactured by Prime Polymer Co., Ltd.) were mixed (dry blended).
- the obtained mixture was put into a hopper of a 20 mm ⁇ single screw extruder (single screw sheet forming machine, manufactured by Tanaka Iron Works Co., Ltd.) equipped with a T die having a lip width of 240 mm.
- the cylinder temperature was set to 230 ° C.
- the die temperature was set to 250 ° C.
- the melt-kneaded product was extruded from the T die, and cast to obtain a stress relaxation film (thickness: 200 ⁇ m).
- Example 2B 40 parts by mass of copolymer A-1B, propylene-based polymer (Prime Polypro (registered trademark) F327, propylene / ethylene / butene random copolymer, density: 907 kg / m 3 , MFR (230 ° C.): 7 g / 10 min Except that 60 parts by mass (manufactured by Prime Polymer Co., Ltd.) were mixed (dry blended), a stress relaxation film (thickness: 200 ⁇ m) was obtained in the same manner as in Example 1B.
- Prime Polypro registered trademark
- Example 3B Example 1B except that 20 parts by mass of copolymer A-2B and 80 parts by mass of an ethylene polymer (Evolue (registered trademark) SP2540, manufactured by Prime Polymer Co., Ltd.) were mixed (dry blended). A stress relaxation film (thickness: 200 ⁇ m) was obtained by the same method.
- Evolue registered trademark
- SP2540 an ethylene polymer
- ⁇ Comparative Example 1B> As raw materials, 50 parts by mass of an ethylene polymer (Evolue (registered trademark) SP2540, manufactured by Prime Polymer Co., Ltd.), an ethylene polymer (Evolue (registered trademark) SP0540, linear low-density polyethylene, density: 903 kg / Example 3B except that only a mixture obtained by mixing (dry blending) m 3 , MFR (190 ° C.): 3.8 g / 10 min, manufactured by Prime Polymer Co., Ltd. (50 parts by mass) was used. By the same method, a stress relaxation film (thickness: 200 ⁇ m) was obtained.
- an ethylene polymer (Evolue (registered trademark) SP2540, manufactured by Prime Polymer Co., Ltd.)
- an ethylene polymer Evolue (registered trademark) SP0540, linear low-density polyethylene, density: 903 kg / Example 3B except that only a mixture obtained by mixing (dry blending) m 3
- Example 2B A stress relieving film (thickness: 200 ⁇ m) was produced in the same manner as in Example 1B except that only a propylene polymer (Prime Polypro (registered trademark) F327, manufactured by Prime Polymer Co., Ltd.) was used as a raw material. Obtained.
- a propylene polymer Principal Polypro (registered trademark) F327, manufactured by Prime Polymer Co., Ltd.
- Example 3B A stress relaxation film (thickness: 200 ⁇ m) was obtained in the same manner as in Example 1B, except that only copolymer A-1B was used as a raw material.
- TEM Transmission Electron Microscope
- the stress relaxation film of Example 1B has a sea-island structure composed of an island part containing the copolymer A-1B and a sea part consisting essentially of an ethylene-based polymer.
- Example 2B The stress relaxation film of Example 3B has a sea-island structure composed of an island part containing the copolymer A-1B and a sea part substantially made of a propylene-based polymer. It was confirmed that the film had a sea-island structure composed of an island part containing the copolymer A-2B and a sea part consisting essentially of an ethylene-based polymer.
- a TEM image of the film of Example 3B is shown in FIG.
- Example 4B Stress relaxation layer comprising a mixture obtained by mixing (dry blending) 30 parts by mass of copolymer A-1B and 70 parts by mass of an ethylene-based polymer (Evolue (registered trademark) SP2540, manufactured by Prime Polymer Co., Ltd.). (Thickness: 100 ⁇ m) and a surface layer (thickness: 30 ⁇ m each) composed of 100 parts by mass of an ethylene-based polymer (Evolue (registered trademark) SP2540, manufactured by Prime Polymer Co., Ltd.).
- a 20 mm ⁇ single screw extruder (manufactured by Technobel Co., Ltd.) having a laminated body (thickness: 160 ⁇ m, layer structure: surface layer / stress relaxation layer / surface layer) provided with a two-type three-layer T-die having a lip width of 200 mm. ) And was formed by coextrusion.
- the cylinder temperature was set to 200 ° C.
- the die temperature was set to 200 ° C.
- Example 5B In the same manner as in Example 4B, 40 parts by mass of copolymer A-1B and 60 parts by mass of a propylene-based polymer (Prime Polypro (registered trademark) F327, manufactured by Prime Polymer Co., Ltd.) were mixed (dry blended). And a surface layer (thickness: each) consisting of 100 parts by mass of a stress relaxation layer (thickness: 100 ⁇ m) made of the mixture and a propylene polymer (Prime Polypro (registered trademark) F327, manufactured by Prime Polymer Co., Ltd.). 30 ⁇ m) and a laminated body having a two-layer / three-layer structure (thickness: 160 ⁇ m, layer structure: surface layer / stress relaxation layer / surface layer).
- a propylene-based polymer Principal Polypro (registered trademark) F327, manufactured by Prime Polymer Co., Ltd.
- Example 6B In the same manner as in Example 4B, 30 parts by mass of copolymer A-2B and 70 parts by mass of an ethylene polymer (Evolue (registered trademark) SP2540, manufactured by Prime Polymer Co., Ltd.) were mixed (dry blended).
- Evolue registered trademark
- SP2540 an ethylene polymer
- a stress relaxation layer made of the obtained mixture, 80 parts by mass of an ethylene copolymer (Evolue (registered trademark) SP2540, manufactured by Prime Polymer Co., Ltd.), and an ethylene polymer (Tuffmer (registered) Trademark) DF605, ethylene-butene copolymer (ratio of structural units derived from ethylene: 50 mol% or more, density: 861 kg / m 3 , MFR (230 ° C.): 0.9 g / 10 min, manufactured by Mitsui Chemicals, Inc.
- Example 4B In the same manner as in Example 4B, 50 parts by mass of an ethylene polymer (Evolue (registered trademark) SP2540, manufactured by Prime Polymer Co., Ltd.) and an ethylene polymer (Evolue (registered trademark) SP0540, Prime Polymer Co., Ltd.) were used.
- an ethylene polymer (Evolue (registered trademark) SP2540, manufactured by Prime Polymer Co., Ltd.)
- an ethylene polymer Evolue (registered trademark) SP0540, Prime Polymer Co., Ltd.
- a layered body (thickness: 160 ⁇ m, layer structure: surface layer / stress relaxation layer / surface layer) composed of a surface layer (thickness: 30 ⁇ m each) consisting of 100 parts by mass and two kinds and three layers.
- a stress relaxation layer (thickness: 100 ⁇ m) composed of 100 parts by mass of a propylene polymer (Prime Polypro (registered trademark) F327, manufactured by Prime Polymer Co., Ltd.) and an ethylene polymer ( Evolue (registered trademark) SP2540, manufactured by Prime Polymer Co., Ltd., a surface layer (thickness: 30 ⁇ m each) composed of 100 parts by mass, and a laminate of two types and three layers (thickness: 160 ⁇ m, layer configuration: surface) Layer / stress relaxation layer / surface layer).
- a propylene polymer Principal Polypro (registered trademark) F327, manufactured by Prime Polymer Co., Ltd.
- Evolue (registered trademark) SP2540 manufactured by Prime Polymer Co., Ltd.
- a surface layer (thickness: 30 ⁇ m each) composed of 100 parts by mass, and a laminate of two types and three layers (thickness: 160 ⁇ m, layer configuration: surface) Layer / stress relaxation
- a stress relaxation layer (thickness: 100 ⁇ m) consisting of 100 parts by mass of copolymer A-1B and an ethylene-based polymer (Evolue (registered trademark) SP2540, manufactured by Prime Polymer Co., Ltd.)
- a surface layer composed of 100 parts by mass (thickness: 30 ⁇ m each) and a laminate of two types and three layers composed of (thickness: 160 ⁇ m, layer configuration: surface layer / stress relaxation layer / surface layer) were formed.
- a stress relaxation layer and a surface were separately used with a tensile tester (universal tensile tester 3380, manufactured by Instron) under the conditions of a distance between chucks of 80 mm, a tensile speed of 300 mm / min, and a temperature of 23 ° C.
- the layer was pulled in the direction of 180 ° with respect to the adhesive surface with the layer, the stress relaxation layer and the surface layer were peeled, and the peel strength (interlayer peel strength) was measured. The peel strength was measured for five test pieces and the average value was calculated. The results are shown in Table 5 below.
- the stress relaxation film of the present invention has good stress relaxation properties (see Examples 1B to 3B), and when laminated with other layers, Good adhesion was exhibited (see Examples 4B to 6B).
- the stress relieving film of the present invention is a surface protective film used for the purpose of preventing scratches during transportation, storage and processing of various resin products such as building materials and optical parts, metal products, glass products, and dust prevention purposes. Or it is useful as the member. Moreover, when the stress relaxation film of the present invention is used as a film for protecting the circuit formation surface during grinding of the semiconductor substrate, it is possible to prevent the semiconductor substrate from being cracked or scratched. Therefore, the stress relaxation film of the present invention is very useful as a surface protective film for a semiconductor substrate or a member thereof.
- Japanese Application 2013-137495, Japanese Application 2013-163579, and Japanese Application 2013-173556 are hereby incorporated by reference in their entirety. All documents, patent applications, and technical standards described in this specification are specifically and individually incorporated by reference as if individual documents, patent applications, and technical standards were incorporated by reference. To the extent it is incorporated herein by reference.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Laminated Bodies (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
Abstract
A stress relaxation film comprising: a thermoplastic resin (A) which comprises a copolymer that contains 70 to 90 mol% of a constituent unit derived from 4-methyl-1-pentene and 10 to 30 mol% of a constituent unit derived from a C2 or C3 α-olefin, and contains a constituent unit derived from a C4-20 α-olefin other than 4-methyl-1-pentene in an amount of 10 mol% or less; and a thermoplastic resin (B) which comprises at least one polymer selected from the group consisting of an ethylene polymer, a propylene polymer, a butene polymer and a 4-methyl-1-pentene polymer and is different from the thermoplastic resin (A). In the stress relaxation film, the content of the thermoplastic resin (A) is 50 to 98 mass% relative to the whole mass of the film and the content of the thermoplastic resin (B) is 2 to 50 mass% relative to the whole mass of the film.
Description
本発明は、応力緩和性フィルム、積層体、半導体用表面保護フィルム、半導体装置の製造方法、及び樹脂改質剤に関する。
The present invention relates to a stress relaxation film, a laminate, a surface protective film for a semiconductor, a method for manufacturing a semiconductor device, and a resin modifier.
建材、光学部品等の各種樹脂製品、金属製品、ガラス製品などの表面には、輸送時、保管時、加工時等における傷付きや汚れの付着の防止を目的として、表面保護フィルムが貼着される。表面保護フィルムは、例えば、半導体基板研削時の回路形成面の保護部材としても適用されている(例えば、特許第3594581号公報及び特開2010-92945号公報参照)。
Surface protective films are attached to the surfaces of various resin products such as building materials and optical parts, metal products, and glass products to prevent scratches and dirt from being attached during transportation, storage, and processing. The The surface protective film is also applied, for example, as a protective member for a circuit forming surface during grinding of a semiconductor substrate (see, for example, Japanese Patent No. 3594581 and Japanese Patent Application Laid-Open No. 2010-92945).
ところで、表面保護フィルムには、柔軟性、機械特性等のフィルムに対して通常求められる性質のほか、保護対象、保護目的、使用環境等に応じて、種々の特性が求められる。
例えば、外的な力による傷付きや破損から対象物を保護するために用いられるフィルムには、その特性として、応力緩和性が求められる。 By the way, the surface protective film is required to have various properties in addition to the properties usually required for the film such as flexibility and mechanical properties, depending on the object to be protected, the purpose of protection, the use environment, and the like.
For example, a film used for protecting an object from scratches or breakage due to an external force is required to have stress relaxation properties.
例えば、外的な力による傷付きや破損から対象物を保護するために用いられるフィルムには、その特性として、応力緩和性が求められる。 By the way, the surface protective film is required to have various properties in addition to the properties usually required for the film such as flexibility and mechanical properties, depending on the object to be protected, the purpose of protection, the use environment, and the like.
For example, a film used for protecting an object from scratches or breakage due to an external force is required to have stress relaxation properties.
一般に、応力緩和性を有するフィルムを形成するためには、硬い樹脂が材料として用いられる。
しかしながら、硬い樹脂だけで形成したフィルムは、応力緩和性を有するものの、衝撃強度が低くなる傾向があり、耐衝撃性に劣る。
本発明者らは、フィルムの材料の検討を進める過程で、4-メチル-1-ペンテンを骨格に多く含む特定の熱可塑性樹脂が、フィルムの応力緩和性の向上に寄与することを見出した。
しかしながら、4-メチル-1-ペンテンを骨格に多く含む特定の熱可塑性樹脂によれば、フィルムの応力緩和性を高めることができる反面、フィルムの離型性を高めてしまう傾向がある。そのため、他の層と積層させた場合に層間剥離が生じ易いことも、本発明者らは見出した。 Generally, a hard resin is used as a material in order to form a film having stress relaxation properties.
However, a film formed of only a hard resin has stress relaxation properties, but tends to have a low impact strength and is inferior in impact resistance.
In the course of advancing the study of film materials, the present inventors have found that a specific thermoplastic resin containing a large amount of 4-methyl-1-pentene in the skeleton contributes to an improvement in the stress relaxation property of the film.
However, the specific thermoplastic resin containing a large amount of 4-methyl-1-pentene in the skeleton can increase the stress relaxation property of the film, but tends to increase the release property of the film. For this reason, the present inventors have also found that delamination tends to occur when laminated with other layers.
しかしながら、硬い樹脂だけで形成したフィルムは、応力緩和性を有するものの、衝撃強度が低くなる傾向があり、耐衝撃性に劣る。
本発明者らは、フィルムの材料の検討を進める過程で、4-メチル-1-ペンテンを骨格に多く含む特定の熱可塑性樹脂が、フィルムの応力緩和性の向上に寄与することを見出した。
しかしながら、4-メチル-1-ペンテンを骨格に多く含む特定の熱可塑性樹脂によれば、フィルムの応力緩和性を高めることができる反面、フィルムの離型性を高めてしまう傾向がある。そのため、他の層と積層させた場合に層間剥離が生じ易いことも、本発明者らは見出した。 Generally, a hard resin is used as a material in order to form a film having stress relaxation properties.
However, a film formed of only a hard resin has stress relaxation properties, but tends to have a low impact strength and is inferior in impact resistance.
In the course of advancing the study of film materials, the present inventors have found that a specific thermoplastic resin containing a large amount of 4-methyl-1-pentene in the skeleton contributes to an improvement in the stress relaxation property of the film.
However, the specific thermoplastic resin containing a large amount of 4-methyl-1-pentene in the skeleton can increase the stress relaxation property of the film, but tends to increase the release property of the film. For this reason, the present inventors have also found that delamination tends to occur when laminated with other layers.
したがって、本発明の第1の態様は、優れた応力緩和性と耐衝撃性とを兼ね備えた応力緩和性フィルム、並びに該応力緩和性フィルムを用いた積層体、半導体用表面保護フィルム、及び半導体製造装置の製造方法を提供することを課題とする。
本発明の第2の態様は、ある程度高い応力緩和性を有し、かつ、他の層と積層させた場合に層間剥離が生じ難い応力緩和性フィルム、並びに該応力緩和性フィルムを用いた、積層体、半導体用表面保護フィルム、及び半導体製造装置の製造方法を提供することを課題とする。
また、本発明の第2の態様は、樹脂に対して、ある程度高い応力緩和性と、他の層と積層させた場合に層間剥離し難い接着性と、を付与する樹脂改質剤を提供することを課題とする。 Therefore, the first aspect of the present invention is a stress relaxation film having excellent stress relaxation properties and impact resistance, a laminate using the stress relaxation film, a surface protection film for semiconductors, and semiconductor manufacturing. It is an object to provide a method for manufacturing a device.
The second aspect of the present invention is a stress relaxation film having a certain degree of high stress relaxation property and hardly causing delamination when laminated with other layers, and a laminate using the stress relaxation film. It is an object to provide a method for manufacturing a body, a surface protection film for a semiconductor, and a semiconductor manufacturing apparatus.
In addition, the second aspect of the present invention provides a resin modifier that imparts, to a resin, a somewhat high stress relaxation property and adhesion that is difficult to delaminate when laminated with other layers. This is the issue.
本発明の第2の態様は、ある程度高い応力緩和性を有し、かつ、他の層と積層させた場合に層間剥離が生じ難い応力緩和性フィルム、並びに該応力緩和性フィルムを用いた、積層体、半導体用表面保護フィルム、及び半導体製造装置の製造方法を提供することを課題とする。
また、本発明の第2の態様は、樹脂に対して、ある程度高い応力緩和性と、他の層と積層させた場合に層間剥離し難い接着性と、を付与する樹脂改質剤を提供することを課題とする。 Therefore, the first aspect of the present invention is a stress relaxation film having excellent stress relaxation properties and impact resistance, a laminate using the stress relaxation film, a surface protection film for semiconductors, and semiconductor manufacturing. It is an object to provide a method for manufacturing a device.
The second aspect of the present invention is a stress relaxation film having a certain degree of high stress relaxation property and hardly causing delamination when laminated with other layers, and a laminate using the stress relaxation film. It is an object to provide a method for manufacturing a body, a surface protection film for a semiconductor, and a semiconductor manufacturing apparatus.
In addition, the second aspect of the present invention provides a resin modifier that imparts, to a resin, a somewhat high stress relaxation property and adhesion that is difficult to delaminate when laminated with other layers. This is the issue.
上記の課題を解決するための具体的な手段は、以下の通りである。
Specific means for solving the above problems are as follows.
<1> 4-メチル-1-ペンテンに由来する構成単位を70モル%~90モル%、及び炭素数2又は3のα-オレフィンに由来する構成単位を10モル%~30モル%含み、かつ、4-メチル-1-ペンテン以外の炭素数4~20のα-オレフィンに由来する構成単位の比率が10モル%以下の共重合体である熱可塑性樹脂Aと、エチレン系重合体、プロピレン系重合体、ブテン系重合体、及び4-メチル-1-ペンテン系重合体からなる群より選ばれる少なくとも1種の重合体である、前記熱可塑性樹脂A以外の熱可塑性樹脂Bと、を含有し、前記熱可塑性樹脂Aの含有量が全質量に対して50質量%~98質量%であり、前記熱可塑性樹脂Bの含有量が全質量に対して2質量%~50質量%である、応力緩和性フィルム。
<1> containing 70 mol% to 90 mol% of structural units derived from 4-methyl-1-pentene, and 10 mol% to 30 mol% of structural units derived from an α-olefin having 2 or 3 carbon atoms, and , A thermoplastic resin A which is a copolymer having a proportion of structural units derived from an α-olefin having 4 to 20 carbon atoms other than 4-methyl-1-pentene and having an amount of 10 mol% or less, an ethylene polymer, and a propylene polymer A thermoplastic resin B other than the thermoplastic resin A, which is at least one polymer selected from the group consisting of a polymer, a butene-based polymer, and a 4-methyl-1-pentene-based polymer. The content of the thermoplastic resin A is 50% by mass to 98% by mass with respect to the total mass, and the content of the thermoplastic resin B is 2% by mass to 50% by mass with respect to the total mass. Relaxing film.
<2> 前記熱可塑性樹脂Aは、4-メチル-1-ペンテンに由来する構成単位を75モル%~88モル%含む共重合体である、<1>に記載の応力緩和性フィルム。
<3> 前記熱可塑性樹脂Bが、エチレン系重合体及びプロピレン系重合体からなる群より選ばれる少なくとも1種の重合体である、<1>又は<2>に記載の応力緩和性フィルム。
<4> 前記熱可塑性樹脂Aを含んでなる海部と、実質的に前記熱可塑性樹脂Bからなる島部と、から構成される海島構造を有する、<1>~<3>のいずれか1つに記載の応力緩和性フィルム。
<5> <1>~<4>のいずれか1つに記載の応力緩和性フィルムからなる応力緩和層と、エチレン系重合体、プロピレン系重合体、及びブテン系重合体からなる群より選ばれる少なくとも1種の重合体である熱可塑性樹脂Cを含み、かつ、少なくとも一部が前記応力緩和層と接触している表面層と、を含む積層体。 <2> The stress relaxation film according to <1>, wherein the thermoplastic resin A is a copolymer containing 75 mol% to 88 mol% of a structural unit derived from 4-methyl-1-pentene.
<3> The stress relaxation film according to <1> or <2>, wherein the thermoplastic resin B is at least one polymer selected from the group consisting of an ethylene polymer and a propylene polymer.
<4> Any one of <1> to <3>, which has a sea-island structure including a sea part including the thermoplastic resin A and an island part substantially made of the thermoplastic resin B. The stress relaxation film described in 1.
<5> Selected from the group consisting of a stress relaxation layer comprising the stress relaxation film according to any one of <1> to <4>, an ethylene polymer, a propylene polymer, and a butene polymer. A laminate comprising a thermoplastic resin C, which is at least one polymer, and a surface layer at least partially in contact with the stress relaxation layer.
<3> 前記熱可塑性樹脂Bが、エチレン系重合体及びプロピレン系重合体からなる群より選ばれる少なくとも1種の重合体である、<1>又は<2>に記載の応力緩和性フィルム。
<4> 前記熱可塑性樹脂Aを含んでなる海部と、実質的に前記熱可塑性樹脂Bからなる島部と、から構成される海島構造を有する、<1>~<3>のいずれか1つに記載の応力緩和性フィルム。
<5> <1>~<4>のいずれか1つに記載の応力緩和性フィルムからなる応力緩和層と、エチレン系重合体、プロピレン系重合体、及びブテン系重合体からなる群より選ばれる少なくとも1種の重合体である熱可塑性樹脂Cを含み、かつ、少なくとも一部が前記応力緩和層と接触している表面層と、を含む積層体。 <2> The stress relaxation film according to <1>, wherein the thermoplastic resin A is a copolymer containing 75 mol% to 88 mol% of a structural unit derived from 4-methyl-1-pentene.
<3> The stress relaxation film according to <1> or <2>, wherein the thermoplastic resin B is at least one polymer selected from the group consisting of an ethylene polymer and a propylene polymer.
<4> Any one of <1> to <3>, which has a sea-island structure including a sea part including the thermoplastic resin A and an island part substantially made of the thermoplastic resin B. The stress relaxation film described in 1.
<5> Selected from the group consisting of a stress relaxation layer comprising the stress relaxation film according to any one of <1> to <4>, an ethylene polymer, a propylene polymer, and a butene polymer. A laminate comprising a thermoplastic resin C, which is at least one polymer, and a surface layer at least partially in contact with the stress relaxation layer.
<6> <1>~<4>のいずれか1つに記載の応力緩和性フィルムを含む、半導体基板の研削時に該半導体基板の回路形成面を保護する、半導体用表面保護フィルム。
<7> 周波数1.6Hzにて測定される25℃での貯蔵弾性率G’(25)が、5×107Pa以上である基材層を更に含む、<6>に記載の半導体用表面保護フィルム。
<8> 前記応力緩和性フィルムの前記基材層が存在する側とは反対側に粘着層を含む、<7>に記載の半導体用表面保護フィルム。
<9> 一方の面のみに回路が形成された半導体基板を準備する準備工程と、前記半導体基板の回路形成面に、<8>に記載の半導体用表面保護フィルムを、該表面保護フィルムの前記粘着層と、前記半導体基板の回路形成面と、が対向するように貼着する貼着工程と、前記半導体基板の回路非形成面を研削する研削工程と、前記半導体基板の回路形成面に貼着された表面保護フィルムを、前記半導体基板の回路形成面から剥離する剥離工程と、を含む、半導体装置の製造方法。 <6> A surface protective film for a semiconductor, comprising the stress relaxation film according to any one of <1> to <4>, which protects a circuit forming surface of the semiconductor substrate when grinding the semiconductor substrate.
<7> The semiconductor surface according to <6>, further including a base material layer having a storage elastic modulus G ′ (25) at 25 ° C. measured at a frequency of 1.6 Hz of 5 × 10 7 Pa or more. Protective film.
<8> The surface protective film for a semiconductor according to <7>, comprising an adhesive layer on the side opposite to the side on which the base material layer of the stress relaxation film is present.
<9> A preparation step of preparing a semiconductor substrate having a circuit formed on only one surface thereof, and a surface protection film for a semiconductor according to <8> on the circuit formation surface of the semiconductor substrate. An adhesion step for adhering the adhesive layer and the circuit formation surface of the semiconductor substrate to face each other, a grinding step for grinding a circuit non-formation surface of the semiconductor substrate, and an attachment to the circuit formation surface of the semiconductor substrate A peeling step of peeling the attached surface protective film from the circuit forming surface of the semiconductor substrate.
<7> 周波数1.6Hzにて測定される25℃での貯蔵弾性率G’(25)が、5×107Pa以上である基材層を更に含む、<6>に記載の半導体用表面保護フィルム。
<8> 前記応力緩和性フィルムの前記基材層が存在する側とは反対側に粘着層を含む、<7>に記載の半導体用表面保護フィルム。
<9> 一方の面のみに回路が形成された半導体基板を準備する準備工程と、前記半導体基板の回路形成面に、<8>に記載の半導体用表面保護フィルムを、該表面保護フィルムの前記粘着層と、前記半導体基板の回路形成面と、が対向するように貼着する貼着工程と、前記半導体基板の回路非形成面を研削する研削工程と、前記半導体基板の回路形成面に貼着された表面保護フィルムを、前記半導体基板の回路形成面から剥離する剥離工程と、を含む、半導体装置の製造方法。 <6> A surface protective film for a semiconductor, comprising the stress relaxation film according to any one of <1> to <4>, which protects a circuit forming surface of the semiconductor substrate when grinding the semiconductor substrate.
<7> The semiconductor surface according to <6>, further including a base material layer having a storage elastic modulus G ′ (25) at 25 ° C. measured at a frequency of 1.6 Hz of 5 × 10 7 Pa or more. Protective film.
<8> The surface protective film for a semiconductor according to <7>, comprising an adhesive layer on the side opposite to the side on which the base material layer of the stress relaxation film is present.
<9> A preparation step of preparing a semiconductor substrate having a circuit formed on only one surface thereof, and a surface protection film for a semiconductor according to <8> on the circuit formation surface of the semiconductor substrate. An adhesion step for adhering the adhesive layer and the circuit formation surface of the semiconductor substrate to face each other, a grinding step for grinding a circuit non-formation surface of the semiconductor substrate, and an attachment to the circuit formation surface of the semiconductor substrate A peeling step of peeling the attached surface protective film from the circuit forming surface of the semiconductor substrate.
<10> 4-メチル-1-ペンテンに由来する構成単位を70モル%~90モル%、及び炭素数2又は3のα-オレフィンに由来する構成単位を10モル%~30モル%含み、かつ、4-メチル-1-ペンテン以外の炭素数4~20のα-オレフィンに由来する構成単位の比率が10モル%以下の共重合体である熱可塑性樹脂Aと、エチレン系重合体、プロピレン系重合体、ブテン系重合体、及び4-メチル-1-ペンテン系重合体からなる群より選ばれる少なくとも1種の重合体である、前記熱可塑性樹脂A以外の熱可塑性樹脂Bと、を含有し、前記熱可塑性樹脂Aの含有量が全質量に対して2質量%以上50質量%未満であり、前記熱可塑性樹脂Bの含有量が全質量に対して50質量%以上98質量%以下である、応力緩和性フィルム。
<10> 70 mol% to 90 mol% of structural units derived from 4-methyl-1-pentene, and 10 mol% to 30 mol% of structural units derived from an α-olefin having 2 or 3 carbon atoms, and , A thermoplastic resin A which is a copolymer having a proportion of structural units derived from an α-olefin having 4 to 20 carbon atoms other than 4-methyl-1-pentene and having an amount of 10 mol% or less, an ethylene polymer, and a propylene polymer A thermoplastic resin B other than the thermoplastic resin A, which is at least one polymer selected from the group consisting of a polymer, a butene-based polymer, and a 4-methyl-1-pentene-based polymer. The content of the thermoplastic resin A is 2% by mass or more and less than 50% by mass with respect to the total mass, and the content of the thermoplastic resin B is 50% by mass or more and 98% by mass or less with respect to the total mass. , Stress relaxation film .
<11> 前記熱可塑性樹脂Aは、4-メチル-1-ペンテンに由来する構成単位を70モル%~88モル%含む共重合体である、<10>に記載の応力緩和性フィルム。
<11> The stress relaxation film according to <10>, wherein the thermoplastic resin A is a copolymer containing 70 mol% to 88 mol% of a structural unit derived from 4-methyl-1-pentene.
<12> 前記熱可塑性樹脂Bが、エチレン系重合体及びプロピレン系重合体からなる群より選ばれる少なくとも1種の重合体である、<10>又は<11>に記載の応力緩和性フィルム。
<13> 前記熱可塑性樹脂Aを含んでなる島部と、実質的に前記熱可塑性樹脂Bからなる海部と、から構成される海島構造を有する、<10>~<12>のいずれか1つに記載の応力緩和性フィルム。
<14> <10>~<13>のいずれか1つに記載の応力緩和性フィルムからなる応力緩和層と、エチレン系重合体、プロピレン系重合体、及びブテン系重合体からなる群より選ばれる少なくとも1種の重合体である熱可塑性樹脂Cを含み、かつ、少なくとも一部が前記応力緩和層と接触している表面層と、を含む積層体。 <12> The stress relaxation film according to <10> or <11>, wherein the thermoplastic resin B is at least one polymer selected from the group consisting of an ethylene polymer and a propylene polymer.
<13> Any one of <10> to <12>, which has a sea-island structure including an island part including the thermoplastic resin A and a sea part substantially composed of the thermoplastic resin B. The stress relaxation film described in 1.
<14> Selected from the group consisting of a stress relaxation layer made of the stress relaxation film according to any one of <10> to <13>, an ethylene polymer, a propylene polymer, and a butene polymer. A laminate comprising a thermoplastic resin C, which is at least one polymer, and a surface layer at least partially in contact with the stress relaxation layer.
<13> 前記熱可塑性樹脂Aを含んでなる島部と、実質的に前記熱可塑性樹脂Bからなる海部と、から構成される海島構造を有する、<10>~<12>のいずれか1つに記載の応力緩和性フィルム。
<14> <10>~<13>のいずれか1つに記載の応力緩和性フィルムからなる応力緩和層と、エチレン系重合体、プロピレン系重合体、及びブテン系重合体からなる群より選ばれる少なくとも1種の重合体である熱可塑性樹脂Cを含み、かつ、少なくとも一部が前記応力緩和層と接触している表面層と、を含む積層体。 <12> The stress relaxation film according to <10> or <11>, wherein the thermoplastic resin B is at least one polymer selected from the group consisting of an ethylene polymer and a propylene polymer.
<13> Any one of <10> to <12>, which has a sea-island structure including an island part including the thermoplastic resin A and a sea part substantially composed of the thermoplastic resin B. The stress relaxation film described in 1.
<14> Selected from the group consisting of a stress relaxation layer made of the stress relaxation film according to any one of <10> to <13>, an ethylene polymer, a propylene polymer, and a butene polymer. A laminate comprising a thermoplastic resin C, which is at least one polymer, and a surface layer at least partially in contact with the stress relaxation layer.
<15> <10>~<13>のいずれか1つに記載の応力緩和性フィルムを含む、半導体基板の研削時に該半導体基板の回路形成面を保護する、半導体用表面保護フィルム。
<16> 周波数1.6Hzにて測定される25℃での貯蔵弾性率G’(25)が、5×107Pa以上である基材層を更に含む、<15>に記載の半導体用表面保護フィルム。
<17> 前記応力緩和性フィルムの前記基材層が存在する側とは反対側に粘着層を含む、<16>に記載の半導体用表面保護フィルム。
<18> 一方の面のみに回路が形成された半導体基板を準備する準備工程と、前記半導体基板の回路形成面に、<17>に記載の半導体用表面保護フィルムを、該表面保護フィルムの前記粘着層と、前記半導体基板の回路形成面と、が対向するように貼着する貼着工程と、前記半導体基板の回路非形成面を研削する研削工程と、前記半導体基板の回路形成面に貼着された表面保護フィルムを、前記半導体基板の回路形成面から剥離する剥離工程と、を含む、半導体装置の製造方法。 <15> A surface protective film for a semiconductor, comprising the stress relaxation film according to any one of <10> to <13>, which protects a circuit forming surface of the semiconductor substrate during grinding.
<16> The semiconductor surface according to <15>, further including a base material layer having a storage elastic modulus G ′ (25) at 25 ° C. measured at a frequency of 1.6 Hz of 5 × 10 7 Pa or more. Protective film.
<17> The surface protective film for a semiconductor according to <16>, comprising an adhesive layer on the side opposite to the side on which the base material layer of the stress relaxation film is present.
<18> A preparatory step of preparing a semiconductor substrate having a circuit formed only on one surface thereof; and a surface protection film for a semiconductor according to <17> on the circuit formation surface of the semiconductor substrate. An adhesion step for adhering the adhesive layer and the circuit formation surface of the semiconductor substrate to face each other, a grinding step for grinding a circuit non-formation surface of the semiconductor substrate, and an attachment to the circuit formation surface of the semiconductor substrate A peeling step of peeling the attached surface protective film from the circuit forming surface of the semiconductor substrate.
<16> 周波数1.6Hzにて測定される25℃での貯蔵弾性率G’(25)が、5×107Pa以上である基材層を更に含む、<15>に記載の半導体用表面保護フィルム。
<17> 前記応力緩和性フィルムの前記基材層が存在する側とは反対側に粘着層を含む、<16>に記載の半導体用表面保護フィルム。
<18> 一方の面のみに回路が形成された半導体基板を準備する準備工程と、前記半導体基板の回路形成面に、<17>に記載の半導体用表面保護フィルムを、該表面保護フィルムの前記粘着層と、前記半導体基板の回路形成面と、が対向するように貼着する貼着工程と、前記半導体基板の回路非形成面を研削する研削工程と、前記半導体基板の回路形成面に貼着された表面保護フィルムを、前記半導体基板の回路形成面から剥離する剥離工程と、を含む、半導体装置の製造方法。 <15> A surface protective film for a semiconductor, comprising the stress relaxation film according to any one of <10> to <13>, which protects a circuit forming surface of the semiconductor substrate during grinding.
<16> The semiconductor surface according to <15>, further including a base material layer having a storage elastic modulus G ′ (25) at 25 ° C. measured at a frequency of 1.6 Hz of 5 × 10 7 Pa or more. Protective film.
<17> The surface protective film for a semiconductor according to <16>, comprising an adhesive layer on the side opposite to the side on which the base material layer of the stress relaxation film is present.
<18> A preparatory step of preparing a semiconductor substrate having a circuit formed only on one surface thereof; and a surface protection film for a semiconductor according to <17> on the circuit formation surface of the semiconductor substrate. An adhesion step for adhering the adhesive layer and the circuit formation surface of the semiconductor substrate to face each other, a grinding step for grinding a circuit non-formation surface of the semiconductor substrate, and an attachment to the circuit formation surface of the semiconductor substrate A peeling step of peeling the attached surface protective film from the circuit forming surface of the semiconductor substrate.
<19> 4-メチル-1-ペンテンに由来する構成単位を70モル%~90モル%、及び炭素数2又は3のα-オレフィンに由来する構成単位を10モル%~30モル%含み、かつ、4-メチル-1-ペンテン以外の炭素数4~20のα-オレフィンに由来する構成単位の比率が10モル%以下の共重合体である熱可塑性樹脂Aと、エチレン系重合体、プロピレン系重合体、ブテン系重合体、及び4-メチル-1-ペンテン系重合体からなる群より選ばれる少なくとも1種の重合体である、前記熱可塑性樹脂A以外の熱可塑性樹脂Bと、を含有し、前記熱可塑性樹脂Aの含有量が全質量に対して2質量%以上50質量%未満であり、前記熱可塑性樹脂Bの含有量が全質量に対して50質量%以上98質量%以下である、樹脂改質剤。
<19> 70 mol% to 90 mol% of structural units derived from 4-methyl-1-pentene, and 10 mol% to 30 mol% of structural units derived from an α-olefin having 2 or 3 carbon atoms, and , A thermoplastic resin A which is a copolymer having a proportion of structural units derived from an α-olefin having 4 to 20 carbon atoms other than 4-methyl-1-pentene and having an amount of 10 mol% or less, an ethylene polymer, and a propylene polymer A thermoplastic resin B other than the thermoplastic resin A, which is at least one polymer selected from the group consisting of a polymer, a butene-based polymer, and a 4-methyl-1-pentene-based polymer. The content of the thermoplastic resin A is 2% by mass or more and less than 50% by mass with respect to the total mass, and the content of the thermoplastic resin B is 50% by mass or more and 98% by mass or less with respect to the total mass. , Resin modifier.
本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
本明細書において、組成物中の各成分の量について言及する場合、組成物中に各成分に該当する物質が複数存在する場合には、特に断らない限り、組成物中に存在する複数の物質の合計量を意味する。
本明細書において、「(メタ)アクリレート」は、アクリレート及びメタクリレートから選ばれる少なくとも一方を表す。
本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であっても、その工程の所期の目的が達成されれば、本用語に含まれる。 In the present specification, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
In this specification, when referring to the amount of each component in the composition, when there are a plurality of substances corresponding to each component in the composition, a plurality of substances present in the composition unless otherwise specified. Means the total amount.
In this specification, “(meth) acrylate” represents at least one selected from acrylate and methacrylate.
In this specification, the term “process” is not limited to an independent process, but is included in the term if the intended purpose of the process is achieved even if it cannot be clearly distinguished from other processes. It is.
本明細書において、組成物中の各成分の量について言及する場合、組成物中に各成分に該当する物質が複数存在する場合には、特に断らない限り、組成物中に存在する複数の物質の合計量を意味する。
本明細書において、「(メタ)アクリレート」は、アクリレート及びメタクリレートから選ばれる少なくとも一方を表す。
本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であっても、その工程の所期の目的が達成されれば、本用語に含まれる。 In the present specification, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
In this specification, when referring to the amount of each component in the composition, when there are a plurality of substances corresponding to each component in the composition, a plurality of substances present in the composition unless otherwise specified. Means the total amount.
In this specification, “(meth) acrylate” represents at least one selected from acrylate and methacrylate.
In this specification, the term “process” is not limited to an independent process, but is included in the term if the intended purpose of the process is achieved even if it cannot be clearly distinguished from other processes. It is.
本発明の第1の態様によれば、優れた応力緩和性と耐衝撃性とを兼ね備えた応力緩和性フィルム、並びに該応力緩和性フィルムを用いた積層体、半導体用表面保護フィルム、及び半導体製造装置の製造方法を提供することができる。
本発明の第2の態様によれば、ある程度高い応力緩和性を有し、かつ、他の層と積層させた場合に層間剥離が生じ難い応力緩和性フィルム、並びに該応力緩和性フィルムを用いた、積層体、半導体用表面保護フィルム、及び半導体製造装置の製造方法を提供することができる。
また、本発明の第2の態様によれば、樹脂に対して、ある程度高い応力緩和性と、他の層と積層させた場合に層間剥離し難い接着性と、を付与する樹脂改質剤を提供することができる。 According to the first aspect of the present invention, a stress relaxation film having excellent stress relaxation properties and impact resistance, a laminate using the stress relaxation film, a surface protection film for semiconductors, and semiconductor manufacturing An apparatus manufacturing method can be provided.
According to the second aspect of the present invention, the stress relaxation film having a somewhat high stress relaxation property and hardly causing delamination when laminated with another layer, and the stress relaxation film are used. , A laminate, a surface protection film for a semiconductor, and a method for manufacturing a semiconductor manufacturing apparatus can be provided.
Further, according to the second aspect of the present invention, the resin modifier for imparting a certain degree of high stress relaxation to the resin and adhesion that is difficult to delaminate when laminated with other layers is provided. Can be provided.
本発明の第2の態様によれば、ある程度高い応力緩和性を有し、かつ、他の層と積層させた場合に層間剥離が生じ難い応力緩和性フィルム、並びに該応力緩和性フィルムを用いた、積層体、半導体用表面保護フィルム、及び半導体製造装置の製造方法を提供することができる。
また、本発明の第2の態様によれば、樹脂に対して、ある程度高い応力緩和性と、他の層と積層させた場合に層間剥離し難い接着性と、を付与する樹脂改質剤を提供することができる。 According to the first aspect of the present invention, a stress relaxation film having excellent stress relaxation properties and impact resistance, a laminate using the stress relaxation film, a surface protection film for semiconductors, and semiconductor manufacturing An apparatus manufacturing method can be provided.
According to the second aspect of the present invention, the stress relaxation film having a somewhat high stress relaxation property and hardly causing delamination when laminated with another layer, and the stress relaxation film are used. , A laminate, a surface protection film for a semiconductor, and a method for manufacturing a semiconductor manufacturing apparatus can be provided.
Further, according to the second aspect of the present invention, the resin modifier for imparting a certain degree of high stress relaxation to the resin and adhesion that is difficult to delaminate when laminated with other layers is provided. Can be provided.
以下、本発明の具体的な実施形態について詳細に説明するが、本発明は、以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。
Hereinafter, specific embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments, and may be implemented with appropriate modifications within the scope of the object of the present invention. be able to.
《第1の態様》
[応力緩和性フィルム]
本発明の第1の態様に係る応力緩和性フィルムは、4-メチル-1-ペンテンに由来する構成単位を70モル%~90モル%、及び炭素数2又は3のα-オレフィンに由来する構成単位を10モル%~30モル%含み、かつ、4-メチル-1-ペンテン以外の炭素数4~20のα-オレフィンに由来する構成単位の比率が10モル%以下の共重合体である熱可塑性樹脂Aと、エチレン系重合体、プロピレン系重合体、ブテン系重合体、及び4-メチル-1-ペンテン系重合体からなる群より選ばれる少なくとも1種の重合体である、上記熱可塑性樹脂A以外の熱可塑性樹脂Bと、を含有し、上記熱可塑性樹脂Aの含有量が全質量に対して50質量%~98質量%であり、上記熱可塑性樹脂Bの含有量が全質量に対して2質量%~50質量%である。 << First Aspect >>
[Stress relaxation film]
The stress relaxation film according to the first aspect of the present invention is composed of 70 to 90 mol% of a structural unit derived from 4-methyl-1-pentene and a 2 or 3 carbon atom α-olefin. A heat which is a copolymer containing 10 mol% to 30 mol% of units and having a ratio of structural units derived from α-olefins having 4 to 20 carbon atoms other than 4-methyl-1-pentene of 10 mol% or less. The thermoplastic resin, which is a plastic resin A and at least one polymer selected from the group consisting of an ethylene polymer, a propylene polymer, a butene polymer, and a 4-methyl-1-pentene polymer A thermoplastic resin B other than A, wherein the content of the thermoplastic resin A is 50% by mass to 98% by mass with respect to the total mass, and the content of the thermoplastic resin B is based on the total mass. 2 mass% to 50 mass% The
[応力緩和性フィルム]
本発明の第1の態様に係る応力緩和性フィルムは、4-メチル-1-ペンテンに由来する構成単位を70モル%~90モル%、及び炭素数2又は3のα-オレフィンに由来する構成単位を10モル%~30モル%含み、かつ、4-メチル-1-ペンテン以外の炭素数4~20のα-オレフィンに由来する構成単位の比率が10モル%以下の共重合体である熱可塑性樹脂Aと、エチレン系重合体、プロピレン系重合体、ブテン系重合体、及び4-メチル-1-ペンテン系重合体からなる群より選ばれる少なくとも1種の重合体である、上記熱可塑性樹脂A以外の熱可塑性樹脂Bと、を含有し、上記熱可塑性樹脂Aの含有量が全質量に対して50質量%~98質量%であり、上記熱可塑性樹脂Bの含有量が全質量に対して2質量%~50質量%である。 << First Aspect >>
[Stress relaxation film]
The stress relaxation film according to the first aspect of the present invention is composed of 70 to 90 mol% of a structural unit derived from 4-methyl-1-pentene and a 2 or 3 carbon atom α-olefin. A heat which is a copolymer containing 10 mol% to 30 mol% of units and having a ratio of structural units derived from α-olefins having 4 to 20 carbon atoms other than 4-methyl-1-pentene of 10 mol% or less. The thermoplastic resin, which is a plastic resin A and at least one polymer selected from the group consisting of an ethylene polymer, a propylene polymer, a butene polymer, and a 4-methyl-1-pentene polymer A thermoplastic resin B other than A, wherein the content of the thermoplastic resin A is 50% by mass to 98% by mass with respect to the total mass, and the content of the thermoplastic resin B is based on the total mass. 2 mass% to 50 mass% The
外的な力による傷付きや破損から対象物を保護するために用いられるフィルムには、例えば、応力緩和性等の特性が求められる。一般に、応力緩和性を有するフィルムを形成するためには、硬い樹脂が材料として用いられるが、硬い樹脂だけで形成したフィルムは、衝撃強度が低くなる傾向がある。他方、柔軟な樹脂を材料として用いたフィルムは、衝撃強度が高く、耐衝撃性を有するものの、応力緩和性に劣る傾向がある。そして、硬い樹脂に、柔軟な樹脂を添加してフィルムを形成すると、フィルムの衝撃強度を向上させることはできるが、柔軟な熱可塑性樹脂を添加した分、硬い熱可塑性樹脂の割合が減少するため、フィルムの応力緩和性が低下する。
したがって、応力緩和性を有することと、耐衝撃性を有することとは、一方を実現させようとすると、他方を犠牲にせざるを得ないという二律背反の関係にあるといえる。 A film used for protecting an object from scratches or breakage due to an external force is required to have characteristics such as stress relaxation properties. Generally, in order to form a film having stress relaxation properties, a hard resin is used as a material. However, a film formed only of a hard resin tends to have a low impact strength. On the other hand, a film using a flexible resin as a material has high impact strength and impact resistance, but tends to be inferior in stress relaxation properties. And, if a flexible resin is added to a hard resin to form a film, the impact strength of the film can be improved, but the proportion of the hard thermoplastic resin is reduced by adding the flexible thermoplastic resin. The stress relaxation property of the film is lowered.
Therefore, it can be said that having stress relaxation and having shock resistance are in a trade-off relationship that if one is to be realized, the other must be sacrificed.
したがって、応力緩和性を有することと、耐衝撃性を有することとは、一方を実現させようとすると、他方を犠牲にせざるを得ないという二律背反の関係にあるといえる。 A film used for protecting an object from scratches or breakage due to an external force is required to have characteristics such as stress relaxation properties. Generally, in order to form a film having stress relaxation properties, a hard resin is used as a material. However, a film formed only of a hard resin tends to have a low impact strength. On the other hand, a film using a flexible resin as a material has high impact strength and impact resistance, but tends to be inferior in stress relaxation properties. And, if a flexible resin is added to a hard resin to form a film, the impact strength of the film can be improved, but the proportion of the hard thermoplastic resin is reduced by adding the flexible thermoplastic resin. The stress relaxation property of the film is lowered.
Therefore, it can be said that having stress relaxation and having shock resistance are in a trade-off relationship that if one is to be realized, the other must be sacrificed.
本発明の第1の態様においては、フィルムを、室温(25℃)では樹脂を硬くする傾向がある4-メチル-1-ペンテンを骨格に多く含む特定の熱可塑性樹脂Aと、柔軟な特定の熱可塑性樹脂Bと、を特定の割合で含有する態様とすることにより、優れた応力緩和性と耐衝撃性とを兼ね備えたフィルムを実現する。
In the first embodiment of the present invention, the film is made of a specific thermoplastic resin A containing a large amount of 4-methyl-1-pentene in the skeleton, which tends to harden the resin at room temperature (25 ° C.), By making it the aspect which contains the thermoplastic resin B in a specific ratio, the film which combined the outstanding stress relaxation property and impact resistance is implement | achieved.
以下、本発明の第1の態様に係る応力緩和性フィルムに含まれる成分について説明する。
Hereinafter, components contained in the stress relaxation film according to the first aspect of the present invention will be described.
〔熱可塑性樹脂A〕
本発明の第1の態様における熱可塑性樹脂Aは、4-メチル-1-ペンテンに由来する構成単位を70モル%~90モル%、及び炭素数2又は3のα-オレフィンに由来する構成単位を10モル%~30モル%含み、かつ、4-メチル-1-ペンテン以外の炭素数4~20のα-オレフィンに由来する構成単位の比率が10モル%以下の共重合体(以下、「4-メチル-1-ペンテン系共重合体」ともいう。)である。 [Thermoplastic resin A]
The thermoplastic resin A according to the first embodiment of the present invention is a structural unit derived from a 4-methyl-1-pentene-derived structural unit derived from 70 mol% to 90 mol% and an α-olefin having 2 or 3 carbon atoms. 10% by mole to 30% by mole, and a copolymer having a proportion of structural units derived from an α-olefin having 4 to 20 carbon atoms other than 4-methyl-1-pentene (hereinafter referred to as “ Also referred to as “4-methyl-1-pentene copolymer”.
本発明の第1の態様における熱可塑性樹脂Aは、4-メチル-1-ペンテンに由来する構成単位を70モル%~90モル%、及び炭素数2又は3のα-オレフィンに由来する構成単位を10モル%~30モル%含み、かつ、4-メチル-1-ペンテン以外の炭素数4~20のα-オレフィンに由来する構成単位の比率が10モル%以下の共重合体(以下、「4-メチル-1-ペンテン系共重合体」ともいう。)である。 [Thermoplastic resin A]
The thermoplastic resin A according to the first embodiment of the present invention is a structural unit derived from a 4-methyl-1-pentene-derived structural unit derived from 70 mol% to 90 mol% and an α-olefin having 2 or 3 carbon atoms. 10% by mole to 30% by mole, and a copolymer having a proportion of structural units derived from an α-olefin having 4 to 20 carbon atoms other than 4-methyl-1-pentene (hereinafter referred to as “ Also referred to as “4-methyl-1-pentene copolymer”.
本発明の第1の態様における4-メチル-1-ペンテン系共重合体には、4-メチル-1-ペンテンに由来する構成単位が、70モル%~90モル%含まれており、75モル%~89モル%含まれていることがより好ましく、80モル%~86モル%含まれていることが更に好ましい。
4-メチル-1-ペンテン系共重合体に含まれる4-メチル-1-ペンテンに由来する構成単位が70モル%未満であると、保護フィルムとして優れた応力緩和性を得ることができない。また、4-メチル-1-ペンテン系共重合体に含まれる4-メチル-1-ペンテンに由来する構成単位が90モル%を超えると、保護フィルムとして優れた耐衝撃性を得ることができない。 The 4-methyl-1-pentene copolymer in the first embodiment of the present invention contains 70 mol% to 90 mol% of a structural unit derived from 4-methyl-1-pentene, and 75 mol % To 89 mol% is more preferable, and 80 mol% to 86 mol% is still more preferable.
When the structural unit derived from 4-methyl-1-pentene contained in the 4-methyl-1-pentene copolymer is less than 70 mol%, excellent stress relaxation properties as a protective film cannot be obtained. Further, if the structural unit derived from 4-methyl-1-pentene contained in the 4-methyl-1-pentene copolymer exceeds 90 mol%, excellent impact resistance as a protective film cannot be obtained.
4-メチル-1-ペンテン系共重合体に含まれる4-メチル-1-ペンテンに由来する構成単位が70モル%未満であると、保護フィルムとして優れた応力緩和性を得ることができない。また、4-メチル-1-ペンテン系共重合体に含まれる4-メチル-1-ペンテンに由来する構成単位が90モル%を超えると、保護フィルムとして優れた耐衝撃性を得ることができない。 The 4-methyl-1-pentene copolymer in the first embodiment of the present invention contains 70 mol% to 90 mol% of a structural unit derived from 4-methyl-1-pentene, and 75 mol % To 89 mol% is more preferable, and 80 mol% to 86 mol% is still more preferable.
When the structural unit derived from 4-methyl-1-pentene contained in the 4-methyl-1-pentene copolymer is less than 70 mol%, excellent stress relaxation properties as a protective film cannot be obtained. Further, if the structural unit derived from 4-methyl-1-pentene contained in the 4-methyl-1-pentene copolymer exceeds 90 mol%, excellent impact resistance as a protective film cannot be obtained.
本発明の第1の態様における4-メチル-1-ペンテン系共重合体には、炭素数2又は3のα-オレフィンに由来する構成単位が、10モル%~30モル%含まれており、11モル%~25モル%含まれていることがより好ましく、14モル%~20モル%含まれていることが更に好ましい。
4-メチル-1-ペンテン系共重合体に含まれる炭素数2又は3のα-オレフィンに由来する構成単位が10モル%未満であると、材料の剛性が上がりすぎるため、耐衝撃性が落ちるとともに、適切な応力緩和性が得られなくなる。また、4-メチル-1-ペンテン系共重合体に含まれる炭素数2又は3のα-オレフィンに由来する構成単位が30モル%を超えると、結晶性が落ちて融点が観測されなくなることで柔軟化が進み、フィルム成形が困難となる。 The 4-methyl-1-pentene copolymer in the first aspect of the present invention contains 10 to 30 mol% of structural units derived from an α-olefin having 2 or 3 carbon atoms, More preferably, it is contained in an amount of 11 mol% to 25 mol%, more preferably 14 mol% to 20 mol%.
If the structural unit derived from the α-olefin having 2 or 3 carbon atoms contained in the 4-methyl-1-pentene copolymer is less than 10 mol%, the rigidity of the material is excessively increased, so that the impact resistance is lowered. At the same time, appropriate stress relaxation properties cannot be obtained. Further, if the structural unit derived from the α-olefin having 2 or 3 carbon atoms contained in the 4-methyl-1-pentene copolymer exceeds 30 mol%, the crystallinity is lowered and the melting point is not observed. Softening advances and film forming becomes difficult.
4-メチル-1-ペンテン系共重合体に含まれる炭素数2又は3のα-オレフィンに由来する構成単位が10モル%未満であると、材料の剛性が上がりすぎるため、耐衝撃性が落ちるとともに、適切な応力緩和性が得られなくなる。また、4-メチル-1-ペンテン系共重合体に含まれる炭素数2又は3のα-オレフィンに由来する構成単位が30モル%を超えると、結晶性が落ちて融点が観測されなくなることで柔軟化が進み、フィルム成形が困難となる。 The 4-methyl-1-pentene copolymer in the first aspect of the present invention contains 10 to 30 mol% of structural units derived from an α-olefin having 2 or 3 carbon atoms, More preferably, it is contained in an amount of 11 mol% to 25 mol%, more preferably 14 mol% to 20 mol%.
If the structural unit derived from the α-olefin having 2 or 3 carbon atoms contained in the 4-methyl-1-pentene copolymer is less than 10 mol%, the rigidity of the material is excessively increased, so that the impact resistance is lowered. At the same time, appropriate stress relaxation properties cannot be obtained. Further, if the structural unit derived from the α-olefin having 2 or 3 carbon atoms contained in the 4-methyl-1-pentene copolymer exceeds 30 mol%, the crystallinity is lowered and the melting point is not observed. Softening advances and film forming becomes difficult.
炭素数2又は3のα-オレフィンに由来する構成単位は、エチレン又はプロピレンに由来する構成単位である。本発明においては、耐衝撃性と応力緩和性とのバランスを取る室温付近にガラス転移温度を設計する点において、炭素数2又は3のα-オレフィンに由来する構成単位は、プロピレンに由来する構成単位が特に好ましい。
The structural unit derived from an α-olefin having 2 or 3 carbon atoms is a structural unit derived from ethylene or propylene. In the present invention, the structural unit derived from an α-olefin having 2 or 3 carbon atoms is a component derived from propylene in that the glass transition temperature is designed around room temperature to balance impact resistance and stress relaxation. Units are particularly preferred.
本発明の第1の態様における4-メチル-1-ペンテン系共重合体は、4-メチル-1-ペンテン以外の炭素数4~20のα-オレフィンに由来する構成単位を含んでいてもよい。4-メチル-1-ペンテン系共重合体における4-メチル-1-ペンテン以外の炭素数4~20のα-オレフィンに由来する構成単位の比率は、10モル%以下であり、好ましくは5モル%以下であり、より好ましくは3モル%以下であり、更に好ましくは1モル%以下である。本発明の第1の態様においては、4-メチル-1-ペンテン系共重合体が、4-メチル-1-ペンテン以外の炭素数4~20のα-オレフィンに由来する構成単位を含まないことが特に好ましい。
4-メチル-1-ペンテン系共重合体における4-メチル-1-ペンテン以外の炭素数4~20のα-オレフィンに由来する構成単位の比率が、10モル%を超えると、材料の柔軟化が進行し、応力緩和性に劣る傾向となる。 The 4-methyl-1-pentene copolymer in the first embodiment of the present invention may contain a structural unit derived from an α-olefin having 4 to 20 carbon atoms other than 4-methyl-1-pentene. . In the 4-methyl-1-pentene copolymer, the proportion of structural units derived from α-olefin having 4 to 20 carbon atoms other than 4-methyl-1-pentene is 10 mol% or less, preferably 5 mol. % Or less, more preferably 3 mol% or less, and still more preferably 1 mol% or less. In the first aspect of the present invention, the 4-methyl-1-pentene copolymer does not contain a structural unit derived from an α-olefin having 4 to 20 carbon atoms other than 4-methyl-1-pentene. Is particularly preferred.
When the proportion of the structural unit derived from the α-olefin having 4 to 20 carbon atoms other than 4-methyl-1-pentene in the 4-methyl-1-pentene copolymer exceeds 10 mol%, the material becomes flexible. Progresses and tends to be inferior in stress relaxation properties.
4-メチル-1-ペンテン系共重合体における4-メチル-1-ペンテン以外の炭素数4~20のα-オレフィンに由来する構成単位の比率が、10モル%を超えると、材料の柔軟化が進行し、応力緩和性に劣る傾向となる。 The 4-methyl-1-pentene copolymer in the first embodiment of the present invention may contain a structural unit derived from an α-olefin having 4 to 20 carbon atoms other than 4-methyl-1-pentene. . In the 4-methyl-1-pentene copolymer, the proportion of structural units derived from α-olefin having 4 to 20 carbon atoms other than 4-methyl-1-pentene is 10 mol% or less, preferably 5 mol. % Or less, more preferably 3 mol% or less, and still more preferably 1 mol% or less. In the first aspect of the present invention, the 4-methyl-1-pentene copolymer does not contain a structural unit derived from an α-olefin having 4 to 20 carbon atoms other than 4-methyl-1-pentene. Is particularly preferred.
When the proportion of the structural unit derived from the α-olefin having 4 to 20 carbon atoms other than 4-methyl-1-pentene in the 4-methyl-1-pentene copolymer exceeds 10 mol%, the material becomes flexible. Progresses and tends to be inferior in stress relaxation properties.
炭素数が4~20のα-オレフィンには、例えば、直鎖状又は分岐状のα-オレフィン、環状オレフィン、芳香族ビニル化合物、共役ジエン、非共役ポリエン、官能ビニル化合物等が含まれる。
Examples of the α-olefin having 4 to 20 carbon atoms include linear or branched α-olefins, cyclic olefins, aromatic vinyl compounds, conjugated dienes, non-conjugated polyenes, and functional vinyl compounds.
4-メチル-1-ペンテン系共重合体の構成単位となり得る直鎖状又は分岐状のα-オレフィンとしては、例えば、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセン等の炭素数4~20(好ましくは4~10)の直鎖状のα-オレフィン;3-メチル-1-ブテン、3-メチル-1-ペンテン、3-エチル-1-ペンテン、4,4-ジメチル-1-ペンテン、4-メチル-1-ヘキセン、4,4-ジメチル-1-ヘキセン、4-エチル-1-ヘキセン、3-エチル-1-ヘキセン等の、好ましくは炭素数5~20(より好ましくは5~10)の分岐状のα-オレフィンなどが挙げられる。
Examples of the linear or branched α-olefin that can be a structural unit of the 4-methyl-1-pentene copolymer include, for example, 1-butene, 1-pentene, 1-hexene, 1-octene, and 1-decene. 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicocene, etc., a linear α-olefin having 4 to 20 carbon atoms (preferably 4 to 10); 3-methyl-1-butene 3-methyl-1-pentene, 3-ethyl-1-pentene, 4,4-dimethyl-1-pentene, 4-methyl-1-hexene, 4,4-dimethyl-1-hexene, 4-ethyl-1 Examples thereof include branched α-olefins having 5 to 20 carbon atoms (more preferably 5 to 10 carbon atoms) such as -hexene and 3-ethyl-1-hexene.
4-メチル-1-ペンテン系共重合体の構成単位となり得る環状オレフィンとしては、例えば、シクロペンテン、シクロヘプテン、ノルボルネン、5-メチル-2-ノルボルネン、テトラシクロドデセン、ビニルノルボルネン、ビニルシクロヘキサン等の炭素数4~20(好ましくは5~15)の化合物が挙げられる。
Examples of the cyclic olefin that can be a constituent unit of the 4-methyl-1-pentene copolymer include carbon such as cyclopentene, cycloheptene, norbornene, 5-methyl-2-norbornene, tetracyclododecene, vinylnorbornene, and vinylcyclohexane. Examples of the compound include 4 to 20 (preferably 5 to 15).
4-メチル-1-ペンテン系共重合体の構成単位となり得る芳香族ビニル化合物としては、例えば、スチレン;α-メチルスチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、o,p-ジメチルスチレン、o-エチルスチレン、m-エチルスチレン、p-エチルスチレン等のモノ又はポリアルキルスチレンなどが挙げられる。
Examples of the aromatic vinyl compound that can be a structural unit of the 4-methyl-1-pentene copolymer include styrene; α-methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, o, p And mono- or polyalkyl styrene such as dimethyl styrene, o-ethyl styrene, m-ethyl styrene, p-ethyl styrene, and the like.
4-メチル-1-ペンテン系共重合体の構成単位となり得る共役ジエンとしては、例えば、1,3-ブタジエン、イソプレン、クロロプレン、1,3-ペンタジエン、2,3-ジメチルブタジエン、4-メチル-1,3-ペンタジエン、1,3-ペンタジエン、1,3-ヘキサジエン、1,3-オクタジエン等の炭素数4~20(好ましくは4~10)の化合物が挙げられる。
Examples of the conjugated diene that can be a structural unit of the 4-methyl-1-pentene copolymer include 1,3-butadiene, isoprene, chloroprene, 1,3-pentadiene, 2,3-dimethylbutadiene, 4-methyl- Examples thereof include compounds having 4 to 20 carbon atoms (preferably 4 to 10) such as 1,3-pentadiene, 1,3-pentadiene, 1,3-hexadiene, and 1,3-octadiene.
4-メチル-1-ペンテン系共重合体の構成単位となり得る非共役ポリエンとしては、例えば、1,4-ペンタジエン、1,4-ヘキサジエン、1,5-ヘキサジエン、1,4-オクタジエン、1,5-オクタジエン、1,6-オクタジエン、1,7-オクタジエン、2-メチル-1,5-ヘキサジエン、6-メチル-1,5-ヘプタジエン、7-メチル-1,6-オクタジエン、4-エチリデン-8-メチル-1,7-ノナジエン、4,8-ジメチル-1,4,8-デカトリエン(DMDT)、ジシクロペンタジエン、シクロヘキサジエン、ジシクロオクタジエン、メチレンノルボルネン、5-ビニルノルボルネン、5-エチリデン-2-ノルボルネン、5-メチレン-2-ノルボルネン、5-イソプロピリデン-2-ノルボルネン、6-クロロメチル-5-イソプロペンル-2-ノルボルネン、2,3-ジイソプロピリデン-5-ノルボルネン、2-エチリデン-3-イソプロピリデン-5-ノルボルネン、2-プロペニル-2,2-ノルボルナジエン等の炭素数5~20(好ましくは5~10)の化合物が挙げられる。
Examples of the non-conjugated polyene that can be a constituent unit of the 4-methyl-1-pentene copolymer include 1,4-pentadiene, 1,4-hexadiene, 1,5-hexadiene, 1,4-octadiene, 1, 5-octadiene, 1,6-octadiene, 1,7-octadiene, 2-methyl-1,5-hexadiene, 6-methyl-1,5-heptadiene, 7-methyl-1,6-octadiene, 4-ethylidene- 8-methyl-1,7-nonadiene, 4,8-dimethyl-1,4,8-decatriene (DMDT), dicyclopentadiene, cyclohexadiene, dicyclooctadiene, methylene norbornene, 5-vinyl norbornene, 5-ethylidene -2-norbornene, 5-methylene-2-norbornene, 5-isopropylidene-2-norbornene, 6 5 carbon atoms such as chloromethyl-5-isopropylene-2-norbornene, 2,3-diisopropylidene-5-norbornene, 2-ethylidene-3-isopropylidene-5-norbornene, 2-propenyl-2,2-norbornadiene To 20 (preferably 5 to 10) compounds.
4-メチル-1-ペンテン系共重合体の構成単位となり得る官能化ビニル化合物としては、例えば、水酸基含有オレフィン;ハロゲン化オレフィン;アクリル酸、プロピオン酸、3-ブテン酸、4-ペンテン酸、5-ヘキセン酸、6-ヘプテン酸、7-オクテン酸、8-ノネン酸、9-デセン酸等の不飽和カルボン酸類;アリルアミン、5-ヘキセンアミン、6-ヘプテンアミン等の不飽和アミン類;(2,7-オクタジエニル)コハク酸無水物、ペンタプロペニルコハク酸無水物、上記不飽和カルボン酸類の酸無水物等の不飽和酸無水物類;上記不飽和カルボン酸類のハロゲン化物;4-エポキシ-1-ブテン、5-エポキシ-1-ペンテン、6-エポキシ-1-ヘキセン、7-エポキシ-1-ヘプテン、8-エポキシ-1-オクテン、9-エポキシ-1-ノネン、10-エポキシ-1-デセン、11-エポキシ-1-ウンデセン等の不飽和エポキシ化合物類などが挙げられる。
Examples of the functionalized vinyl compound that can be a constituent unit of a 4-methyl-1-pentene copolymer include a hydroxyl group-containing olefin; a halogenated olefin; acrylic acid, propionic acid, 3-butenoic acid, 4-pentenoic acid, 5 Unsaturated carboxylic acids such as hexenoic acid, 6-heptenoic acid, 7-octenoic acid, 8-nonenoic acid and 9-decenoic acid; unsaturated amines such as allylamine, 5-hexenamine and 6-heptenamine; 7-octadienyl) succinic anhydride, pentapropenyl succinic anhydride, unsaturated acid anhydrides such as the above-mentioned unsaturated carboxylic acid anhydrides; halides of the above-mentioned unsaturated carboxylic acids; 4-epoxy-1-butene 5-epoxy-1-pentene, 6-epoxy-1-hexene, 7-epoxy-1-heptene, 8-epoxy-1-octene, - epoxy-1-nonene, 10-epoxy-1-decene, and unsaturated epoxy compounds such as 11-epoxy-1-undecene and the like.
4-メチル-1-ペンテン系共重合体の構成単位となり得る水酸基含有オレフィンは、水酸基を有するオレフィン系化合物であれば、特に限定されるものではなく、好ましくは末端水酸化オレフィン化合物である。
末端水酸化オレフィン化合物としては、例えば、ビニルアルコール、アリルアルコール、水酸化-1-ブテン、水酸化-1-ペンテン、水酸化-1-ヘキセン、水酸化-1-オクテン、水酸化-1-デセン、水酸化-1-ドデセン、水酸化-1-テトラデセン、水酸化-1-ヘキサデセン、水酸化-1-オクタデセン、水酸化-1-エイコセン等の炭素数4~20(好ましくは2~10)の直鎖状の水酸化α-オレフィン;水酸化-3-メチル-1-ブテン、水酸化-4-メチル-1-ペンテン、水酸化-3-メチル-1-ペンテン、水酸化-3-エチル-1-ペンテン、水酸化-4,4-ジメチル-1-ペンテン、水酸化-4-メチル-1-ヘキセン、水酸化-4,4-ジメチル-1-ヘキセン、水酸化-4-エチル-1-ヘキセン、水酸化-3-エチル-1-ヘキセン等の好ましくは炭素数5~20(より好ましくは5~10)の分岐状の水酸化α-オレフィンなどが挙げられる。 The hydroxyl group-containing olefin that can be a constituent unit of the 4-methyl-1-pentene copolymer is not particularly limited as long as it is an olefin compound having a hydroxyl group, and is preferably a terminal hydroxylated olefin compound.
Examples of the terminal hydroxylated olefin compound include vinyl alcohol, allyl alcohol, hydroxyl-1-butene, hydroxyl-1-pentene, hydroxyl-1-hexene, hydroxyl-1-octene, and hydroxyl-1-decene. , Hydroxyl-1-dodecene, hydroxyl-1-tetradecene, hydroxyl-1-hexadecene, hydroxyl-1-octadecene, hydroxyl-1-octadecene, hydroxyl-1-eicosene, etc., having 4 to 20 carbon atoms (preferably 2 to 10) Linear hydroxylated α-olefin; hydroxylated 3-methyl-1-butene, hydroxylated 4-methyl-1-pentene, hydroxylated 3-methyl-1-pentene, hydroxylated 3-ethyl- 1-pentene, hydroxyl-4,4-dimethyl-1-pentene, hydroxyl-4-methyl-1-hexene, hydroxyl-4,4-dimethyl-1-hexene, hydroxyl-4-ethyl-1- Hexene, hydroxy acid Preferably, such 3-ethyl-1-hexene, and the like branched hydroxide α- olefin of from 5 to 20 carbon atoms (more preferably 5-10).
末端水酸化オレフィン化合物としては、例えば、ビニルアルコール、アリルアルコール、水酸化-1-ブテン、水酸化-1-ペンテン、水酸化-1-ヘキセン、水酸化-1-オクテン、水酸化-1-デセン、水酸化-1-ドデセン、水酸化-1-テトラデセン、水酸化-1-ヘキサデセン、水酸化-1-オクタデセン、水酸化-1-エイコセン等の炭素数4~20(好ましくは2~10)の直鎖状の水酸化α-オレフィン;水酸化-3-メチル-1-ブテン、水酸化-4-メチル-1-ペンテン、水酸化-3-メチル-1-ペンテン、水酸化-3-エチル-1-ペンテン、水酸化-4,4-ジメチル-1-ペンテン、水酸化-4-メチル-1-ヘキセン、水酸化-4,4-ジメチル-1-ヘキセン、水酸化-4-エチル-1-ヘキセン、水酸化-3-エチル-1-ヘキセン等の好ましくは炭素数5~20(より好ましくは5~10)の分岐状の水酸化α-オレフィンなどが挙げられる。 The hydroxyl group-containing olefin that can be a constituent unit of the 4-methyl-1-pentene copolymer is not particularly limited as long as it is an olefin compound having a hydroxyl group, and is preferably a terminal hydroxylated olefin compound.
Examples of the terminal hydroxylated olefin compound include vinyl alcohol, allyl alcohol, hydroxyl-1-butene, hydroxyl-1-pentene, hydroxyl-1-hexene, hydroxyl-1-octene, and hydroxyl-1-decene. , Hydroxyl-1-dodecene, hydroxyl-1-tetradecene, hydroxyl-1-hexadecene, hydroxyl-1-octadecene, hydroxyl-1-octadecene, hydroxyl-1-eicosene, etc., having 4 to 20 carbon atoms (preferably 2 to 10) Linear hydroxylated α-olefin; hydroxylated 3-methyl-1-butene, hydroxylated 4-methyl-1-pentene, hydroxylated 3-methyl-1-pentene, hydroxylated 3-ethyl- 1-pentene, hydroxyl-4,4-dimethyl-1-pentene, hydroxyl-4-methyl-1-hexene, hydroxyl-4,4-dimethyl-1-hexene, hydroxyl-4-ethyl-1- Hexene, hydroxy acid Preferably, such 3-ethyl-1-hexene, and the like branched hydroxide α- olefin of from 5 to 20 carbon atoms (more preferably 5-10).
4-メチル-1-ペンテン系共重合体の構成単位となり得るハロゲン化オレフィンとしては、例えば、ハロゲン化-1-ブテン、ハロゲン化-1-ペンテン、ハロゲン化-1-ヘキセン、ハロゲン化-1-オクテン、ハロゲン化-1-デセン、ハロゲン化-1-ドデセン、ハロゲン化-1-テトラデセン、ハロゲン化-1-ヘキサデセン、ハロゲン化-1-オクタデセン、ハロゲン化-1-エイコセン等の炭素数4~20(好ましくは4~10)の直鎖状のハロゲン化α-オレフィン;ハロゲン化-3-メチル-1-ブテン、ハロゲン化-4-メチル-1-ペンテン、ハロゲン化-3-メチル-1-ペンテン、ハロゲン化-3-エチル-1-ペンテン、ハロゲン化-4,4-ジメチル-1-ペンテン、ハロゲン化-4-メチル-1-ヘキセン、ハロゲン化-4,4-ジメチル-1-ヘキセン、ハロゲン化-4-エチル-1-ヘキセン、ハロゲン化-3-エチル-1-ヘキセン等の炭素数5~20(より好ましくは5~10)の分岐状のハロゲン化α-オレフィンなどが挙げられる。
Examples of the halogenated olefin that can be a constituent unit of the 4-methyl-1-pentene copolymer include, for example, halogenated-1-butene, halogenated-1-pentene, halogenated-1-hexene, and halogenated-1- 4 to 20 carbon atoms such as octene, halogenated-1-decene, halogenated-1-dodecene, halogenated-1-tetradecene, halogenated-1-hexadecene, halogenated-1-octadecene, halogenated-1-eicocene (Preferably 4 to 10) linear halogenated α-olefin; halogenated-3-methyl-1-butene, halogenated-4-methyl-1-pentene, halogenated-3-methyl-1-pentene Halogenated-3-ethyl-1-pentene, halogenated-4,4-dimethyl-1-pentene, halogenated-4-methyl-1-hexe , Halogenated-4,4-dimethyl-1-hexene, halogenated-4-ethyl-1-hexene, halogenated-3-ethyl-1-hexene, etc., having 5 to 20 carbon atoms (more preferably 5 to 10) And branched halogenated α-olefins.
4-メチル-1-ペンテン系共重合体の構成単位となり得る4-メチル-1-ペンテン以外の炭素数4~20のα-オレフィンに由来する構成単位としては、上記の中でも、1-ブテン、1-ペンテン、1-ヘキセン、3-メチル-1-ブテン、3-メチル-1-ペンテン、3-エチル-1-ペンテン、4-メチル-1-ヘキセン、4,4-ジメチル-1-ヘキセン、4,4-ジメチル-1-ペンテン、4-エチル-1-ヘキセン、3-エチル-1-ヘキセン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセン、ビニルシクロヘキサン、及びスチレンからなる群より選ばれる少なくとも1種が特に好ましい。
4-メチル-1-ペンテン系共重合体に、4-メチル-1-ペンテン以外の炭素数4~20のα-オレフィンに由来する構成単位が含まれる場合、4-メチル-1-ペンテン以外の炭素数4~20のα-オレフィンに由来する構成単位が1種のみ含まれていてもよく、2種以上含まれていてもよい。 Examples of the structural unit derived from an α-olefin having 4 to 20 carbon atoms other than 4-methyl-1-pentene that can be a structural unit of the 4-methyl-1-pentene copolymer include 1-butene, 1-pentene, 1-hexene, 3-methyl-1-butene, 3-methyl-1-pentene, 3-ethyl-1-pentene, 4-methyl-1-hexene, 4,4-dimethyl-1-hexene, 4,4-dimethyl-1-pentene, 4-ethyl-1-hexene, 3-ethyl-1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, Particularly preferred is at least one selected from the group consisting of 1-eicosene, vinylcyclohexane, and styrene.
When the 4-methyl-1-pentene copolymer contains a structural unit derived from an α-olefin having 4 to 20 carbon atoms other than 4-methyl-1-pentene, other than 4-methyl-1-pentene Only one type of structural unit derived from an α-olefin having 4 to 20 carbon atoms may be contained, or two or more types of structural units may be contained.
4-メチル-1-ペンテン系共重合体に、4-メチル-1-ペンテン以外の炭素数4~20のα-オレフィンに由来する構成単位が含まれる場合、4-メチル-1-ペンテン以外の炭素数4~20のα-オレフィンに由来する構成単位が1種のみ含まれていてもよく、2種以上含まれていてもよい。 Examples of the structural unit derived from an α-olefin having 4 to 20 carbon atoms other than 4-methyl-1-pentene that can be a structural unit of the 4-methyl-1-pentene copolymer include 1-butene, 1-pentene, 1-hexene, 3-methyl-1-butene, 3-methyl-1-pentene, 3-ethyl-1-pentene, 4-methyl-1-hexene, 4,4-dimethyl-1-hexene, 4,4-dimethyl-1-pentene, 4-ethyl-1-hexene, 3-ethyl-1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, Particularly preferred is at least one selected from the group consisting of 1-eicosene, vinylcyclohexane, and styrene.
When the 4-methyl-1-pentene copolymer contains a structural unit derived from an α-olefin having 4 to 20 carbon atoms other than 4-methyl-1-pentene, other than 4-methyl-1-pentene Only one type of structural unit derived from an α-olefin having 4 to 20 carbon atoms may be contained, or two or more types of structural units may be contained.
本発明の第1の態様における4-メチル-1-ペンテン系共重合体に含まれる、4-メチル-1-ペンテンに由来する構成単位、炭素数2又は3のα-オレフィンに由来する構成単位、及び4-メチル-1-ペンテン以外の炭素数4~20のα-オレフィンに由来する構成単位の含有率(モル%)は、下記の方法により測定することができる。
A structural unit derived from 4-methyl-1-pentene, a structural unit derived from an α-olefin having 2 or 3 carbon atoms, contained in the 4-methyl-1-pentene copolymer in the first embodiment of the present invention And the content (mol%) of the structural unit derived from an α-olefin having 4 to 20 carbon atoms other than 4-methyl-1-pentene can be measured by the following method.
~条件~
測定装置:核磁気共鳴装置(ECP500型、日本電子(株)製)
観測核:13C(125MHz)
シーケンス:シングルパルスプロトンデカップリング
パルス幅:4.7μ秒(45°パルス)
繰り返し時間:5.5秒
積算回数:1万回以上
溶媒:オルトジクロロベンゼン/重水素化ベンゼン(容量比:80/20)混合溶媒
試料濃度:55mg/0.6mL
測定温度:120℃
ケミカルシフトの基準値:27.50ppm ~ Conditions ~
Measuring apparatus: Nuclear magnetic resonance apparatus (ECP500 type, manufactured by JEOL Ltd.)
Observation nucleus: 13 C (125 MHz)
Sequence: Single pulse proton decoupling Pulse width: 4.7 μsec (45 ° pulse)
Repeat time: 5.5 seconds Accumulated number: 10,000 times or more Solvent: Orthodichlorobenzene / deuterated benzene (volume ratio: 80/20) mixed solvent Sample concentration: 55 mg / 0.6 mL
Measurement temperature: 120 ° C
Standard value of chemical shift: 27.50ppm
測定装置:核磁気共鳴装置(ECP500型、日本電子(株)製)
観測核:13C(125MHz)
シーケンス:シングルパルスプロトンデカップリング
パルス幅:4.7μ秒(45°パルス)
繰り返し時間:5.5秒
積算回数:1万回以上
溶媒:オルトジクロロベンゼン/重水素化ベンゼン(容量比:80/20)混合溶媒
試料濃度:55mg/0.6mL
測定温度:120℃
ケミカルシフトの基準値:27.50ppm ~ Conditions ~
Measuring apparatus: Nuclear magnetic resonance apparatus (ECP500 type, manufactured by JEOL Ltd.)
Observation nucleus: 13 C (125 MHz)
Sequence: Single pulse proton decoupling Pulse width: 4.7 μsec (45 ° pulse)
Repeat time: 5.5 seconds Accumulated number: 10,000 times or more Solvent: Orthodichlorobenzene / deuterated benzene (volume ratio: 80/20) mixed solvent Sample concentration: 55 mg / 0.6 mL
Measurement temperature: 120 ° C
Standard value of chemical shift: 27.50ppm
4-メチル-1-ペンテン系共重合体は、本発明の第1の態様の効果を損なわない範囲で、4-メチル-1-ペンテンに由来する構成単位、炭素数2又は3のα-オレフィンに由来する構成単位、及び4-メチル-1-ペンテン以外の炭素数4~20のα-オレフィンに由来する構成単位以外の構成単位を含んでいてもよい。
The 4-methyl-1-pentene copolymer is a structural unit derived from 4-methyl-1-pentene and an α-olefin having 2 or 3 carbon atoms within the range not impairing the effect of the first aspect of the present invention. And a structural unit other than a structural unit derived from an α-olefin having 4 to 20 carbon atoms other than 4-methyl-1-pentene.
本発明の第1の態様における4-メチル1-ペンテン系共重合体は、デカリン溶媒中、135℃で測定される極限粘度[η]が、0.5dl/g~5.0dl/gであることが好ましく、0.5dl/g~4.0dl/gであることがより好ましい。4-メチル1-ペンテン系共重合体の極限粘度[η]が、上記範囲内であると、低分子量体が少ないためフィルムのべたつきが少なくなり、また、押出フィルム成形が可能となる。
上記4-メチル1-ペンテン系共重合体の極限粘度[η]は、ウベローデ粘度計を用い、下記の方法により測定される値である。
約20mgの4-メチル1-ペンテン系共重合体をデカリン25mlに溶解させた後、ウベローデ粘度計を用い、135℃のオイルバス中で比粘度ηspを測定する。このデカリン溶液にデカリンを5ml加えて希釈した後、上記と同様にして比粘度ηspを測定する。この希釈操作を更に2回繰り返し、濃度(C)を0に外挿した時のηsp/Cの値を極限粘度[η](単位:dl/g)として求める(下記の式1参照)。
[η]=lim(ηsp/C) (C→0)・・・式1 The 4-methyl 1-pentene copolymer according to the first aspect of the present invention has an intrinsic viscosity [η] measured at 135 ° C. in a decalin solvent of 0.5 dl / g to 5.0 dl / g. It is preferably 0.5 dl / g to 4.0 dl / g. When the intrinsic viscosity [η] of the 4-methyl 1-pentene copolymer is within the above range, the low molecular weight is small and the stickiness of the film is reduced, and the extrusion film can be formed.
The intrinsic viscosity [η] of the 4-methyl 1-pentene copolymer is a value measured by the following method using an Ubbelohde viscometer.
After dissolving about 20 mg of 4-methyl 1-pentene copolymer in 25 ml of decalin, the specific viscosity ηsp is measured in an oil bath at 135 ° C. using an Ubbelohde viscometer. After 5 ml of decalin is added to the decalin solution for dilution, the specific viscosity ηsp is measured in the same manner as described above. This dilution operation is further repeated twice, and the value of ηsp / C when the concentration (C) is extrapolated to 0 is obtained as the intrinsic viscosity [η] (unit: dl / g) (see the following formula 1).
[Η] = lim (ηsp / C) (C → 0) Equation 1
上記4-メチル1-ペンテン系共重合体の極限粘度[η]は、ウベローデ粘度計を用い、下記の方法により測定される値である。
約20mgの4-メチル1-ペンテン系共重合体をデカリン25mlに溶解させた後、ウベローデ粘度計を用い、135℃のオイルバス中で比粘度ηspを測定する。このデカリン溶液にデカリンを5ml加えて希釈した後、上記と同様にして比粘度ηspを測定する。この希釈操作を更に2回繰り返し、濃度(C)を0に外挿した時のηsp/Cの値を極限粘度[η](単位:dl/g)として求める(下記の式1参照)。
[η]=lim(ηsp/C) (C→0)・・・式1 The 4-methyl 1-pentene copolymer according to the first aspect of the present invention has an intrinsic viscosity [η] measured at 135 ° C. in a decalin solvent of 0.5 dl / g to 5.0 dl / g. It is preferably 0.5 dl / g to 4.0 dl / g. When the intrinsic viscosity [η] of the 4-methyl 1-pentene copolymer is within the above range, the low molecular weight is small and the stickiness of the film is reduced, and the extrusion film can be formed.
The intrinsic viscosity [η] of the 4-methyl 1-pentene copolymer is a value measured by the following method using an Ubbelohde viscometer.
After dissolving about 20 mg of 4-methyl 1-pentene copolymer in 25 ml of decalin, the specific viscosity ηsp is measured in an oil bath at 135 ° C. using an Ubbelohde viscometer. After 5 ml of decalin is added to the decalin solution for dilution, the specific viscosity ηsp is measured in the same manner as described above. This dilution operation is further repeated twice, and the value of ηsp / C when the concentration (C) is extrapolated to 0 is obtained as the intrinsic viscosity [η] (unit: dl / g) (see the following formula 1).
[Η] = lim (ηsp / C) (C → 0) Equation 1
本発明の第1の態様における4-メチル-1-ペンテン系共重合体の重量平均分子量(Mw)は、フィルム成形性の観点から、1×104~2×106であることが好ましく、1×104~1×106であることがより好ましい。
また、本発明の第1の態様における4-メチル-1-ペンテン系共重合体の分子量分布(Mw/Mn)は、フィルムべたつき及び外観の観点から、1.0~3.5であることが好ましく、1.1~3.0であることがより好ましい。 The weight average molecular weight (Mw) of the 4-methyl-1-pentene copolymer in the first embodiment of the present invention is preferably 1 × 10 4 to 2 × 10 6 from the viewpoint of film moldability, More preferably, it is 1 × 10 4 to 1 × 10 6 .
The molecular weight distribution (Mw / Mn) of the 4-methyl-1-pentene copolymer in the first embodiment of the present invention is 1.0 to 3.5 from the viewpoint of film stickiness and appearance. Preferably, it is 1.1 to 3.0.
また、本発明の第1の態様における4-メチル-1-ペンテン系共重合体の分子量分布(Mw/Mn)は、フィルムべたつき及び外観の観点から、1.0~3.5であることが好ましく、1.1~3.0であることがより好ましい。 The weight average molecular weight (Mw) of the 4-methyl-1-pentene copolymer in the first embodiment of the present invention is preferably 1 × 10 4 to 2 × 10 6 from the viewpoint of film moldability, More preferably, it is 1 × 10 4 to 1 × 10 6 .
The molecular weight distribution (Mw / Mn) of the 4-methyl-1-pentene copolymer in the first embodiment of the present invention is 1.0 to 3.5 from the viewpoint of film stickiness and appearance. Preferably, it is 1.1 to 3.0.
上記4-メチル-1-ペンテン系共重合体の重量平均分子量(Mw)、及び重量平均分子量(Mw)と数平均分子量(Mn)との比で表される分子量分布(Mw/Mn)は、下記のゲルパーミエーションクロマトグラフィー(GPC)を用いた標準ポリスチレン換算法により算出される値である。
The weight average molecular weight (Mw) of the 4-methyl-1-pentene copolymer and the molecular weight distribution (Mw / Mn) represented by the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) are: It is a value calculated by the standard polystyrene conversion method using the following gel permeation chromatography (GPC).
~条件~
測定装置:GPC(ALC/GPC 150-C plus型、示唆屈折計検出器一体型、Waters製)
カラム:GMH6-HT(東ソー(株)製)2本、及びGMH6-HTL(東ソー(株)製)2本を直列に接続
溶離液:o-ジクロロベンゼン
カラム温度:140℃
流量:1.0mL/min ~ Conditions ~
Measuring device: GPC (ALC / GPC 150-C plus type, suggested refractometer detector integrated type, manufactured by Waters)
Column: Two GMH6-HT (manufactured by Tosoh Corp.) and two GMH6-HTL (manufactured by Tosoh Corp.) connected in series Eluent: o-dichlorobenzene Column temperature: 140 ° C
Flow rate: 1.0 mL / min
測定装置:GPC(ALC/GPC 150-C plus型、示唆屈折計検出器一体型、Waters製)
カラム:GMH6-HT(東ソー(株)製)2本、及びGMH6-HTL(東ソー(株)製)2本を直列に接続
溶離液:o-ジクロロベンゼン
カラム温度:140℃
流量:1.0mL/min ~ Conditions ~
Measuring device: GPC (ALC / GPC 150-C plus type, suggested refractometer detector integrated type, manufactured by Waters)
Column: Two GMH6-HT (manufactured by Tosoh Corp.) and two GMH6-HTL (manufactured by Tosoh Corp.) connected in series Eluent: o-dichlorobenzene Column temperature: 140 ° C
Flow rate: 1.0 mL / min
本発明の第1の態様における4-メチル1-ペンテン系共重合体のメルトフローレート(MFR:Melt Flow Rate)は、成形時の流動性の観点から、0.1g/10min~100g/10minであることが好ましく、0.5g/10min~50g/10minであることがより好ましく、0.5g/10min~30g/10minであることが更に好ましい。
上記4-メチル1-ペンテン系共重合体のメルトフローレート(MFR)は、ASTM D1238に準拠して、測定される値である。具体的には、4-メチル1-ペンテン系共重合体のメルトフローレート(MFR)は、230℃で2.16kgの荷重にて測定される値である。 The melt flow rate (MFR) of the 4-methyl 1-pentene copolymer in the first embodiment of the present invention is 0.1 g / 10 min to 100 g / 10 min from the viewpoint of fluidity during molding. It is preferably 0.5 g / 10 min to 50 g / 10 min, more preferably 0.5 g / 10 min to 30 g / 10 min.
The melt flow rate (MFR) of the 4-methyl 1-pentene copolymer is a value measured according to ASTM D1238. Specifically, the melt flow rate (MFR) of the 4-methyl 1-pentene copolymer is a value measured at 230 ° C. with a load of 2.16 kg.
上記4-メチル1-ペンテン系共重合体のメルトフローレート(MFR)は、ASTM D1238に準拠して、測定される値である。具体的には、4-メチル1-ペンテン系共重合体のメルトフローレート(MFR)は、230℃で2.16kgの荷重にて測定される値である。 The melt flow rate (MFR) of the 4-methyl 1-pentene copolymer in the first embodiment of the present invention is 0.1 g / 10 min to 100 g / 10 min from the viewpoint of fluidity during molding. It is preferably 0.5 g / 10 min to 50 g / 10 min, more preferably 0.5 g / 10 min to 30 g / 10 min.
The melt flow rate (MFR) of the 4-methyl 1-pentene copolymer is a value measured according to ASTM D1238. Specifically, the melt flow rate (MFR) of the 4-methyl 1-pentene copolymer is a value measured at 230 ° C. with a load of 2.16 kg.
本発明の第1の態様における4-メチル1-ペンテン系共重合体の密度は、ハンドリング性の観点から、820kg/m3~870kg/m3であることが好ましく、830kg/m3~850kg/m3であることがより好ましい。
上記4-メチル1-ペンテン系共重合体の密度は、JIS K7112(密度勾配管法)に準拠して、測定される値である。 Density of the first 4-methyl-1-pentene copolymer in the embodiment of the present invention is preferably from the viewpoint of handling properties, it is 820kg / m 3 ~ 870kg / m 3, 830kg / m 3 ~ 850kg / more preferably m 3.
The density of the 4-methyl 1-pentene copolymer is a value measured according to JIS K7112 (density gradient tube method).
上記4-メチル1-ペンテン系共重合体の密度は、JIS K7112(密度勾配管法)に準拠して、測定される値である。 Density of the first 4-methyl-1-pentene copolymer in the embodiment of the present invention is preferably from the viewpoint of handling properties, it is 820kg / m 3 ~ 870kg / m 3, 830kg / m 3 ~ 850kg / more preferably m 3.
The density of the 4-methyl 1-pentene copolymer is a value measured according to JIS K7112 (density gradient tube method).
本発明の第1の態様における4-メチル1-ペンテン系共重合体の融点(Tm)は、観察されないか、又は100℃~180℃であることが好ましく、観察されないか、又は110℃~160℃であることがより好ましい。
上記4-メチル1-ペンテン系共重合体の融点(Tm)は、示差走査熱量計(DSC:Differential scanning calorimetry)を用い、下記の方法により測定される値である。
約5mgの4-メチル1-ペンテン系共重合体を、セイコーインスツル(株)製の示差走査熱量計(DSC220C型)の測定用アルミニウムパン中に密封し、室温から10℃/minで200℃まで加熱する。4-メチル1-ペンテン系共重合体を完全融解させるために、200℃で5分間保持し、次いで、10℃/minで-50℃まで冷却する。-50℃で5分間置いた後、10℃/minで200℃まで2度目の加熱を行ない、この2度目の加熱でのピーク温度(℃)を共重合体の融点(Tm)とする。なお、複数のピークが検出される場合には、最も高温側で検出されるピークを採用する。 The melting point (Tm) of the 4-methyl 1-pentene copolymer in the first embodiment of the present invention is not observed or preferably 100 ° C. to 180 ° C., not observed, or 110 ° C. to 160 ° C. More preferably, it is ° C.
The melting point (Tm) of the 4-methyl 1-pentene copolymer is a value measured by the following method using a differential scanning calorimetry (DSC).
About 5 mg of 4-methyl 1-pentene copolymer was sealed in an aluminum pan for measurement of a differential scanning calorimeter (DSC220C type) manufactured by Seiko Instruments Inc., and was cooled from room temperature to 200 ° C. at 10 ° C./min. Until heated. In order to completely melt the 4-methyl 1-pentene copolymer, it is held at 200 ° C. for 5 minutes and then cooled to −50 ° C. at 10 ° C./min. After 5 minutes at −50 ° C., the second heating is performed to 200 ° C. at 10 ° C./min, and the peak temperature (° C.) at the second heating is defined as the melting point (Tm) of the copolymer. When a plurality of peaks are detected, the peak detected on the highest temperature side is adopted.
上記4-メチル1-ペンテン系共重合体の融点(Tm)は、示差走査熱量計(DSC:Differential scanning calorimetry)を用い、下記の方法により測定される値である。
約5mgの4-メチル1-ペンテン系共重合体を、セイコーインスツル(株)製の示差走査熱量計(DSC220C型)の測定用アルミニウムパン中に密封し、室温から10℃/minで200℃まで加熱する。4-メチル1-ペンテン系共重合体を完全融解させるために、200℃で5分間保持し、次いで、10℃/minで-50℃まで冷却する。-50℃で5分間置いた後、10℃/minで200℃まで2度目の加熱を行ない、この2度目の加熱でのピーク温度(℃)を共重合体の融点(Tm)とする。なお、複数のピークが検出される場合には、最も高温側で検出されるピークを採用する。 The melting point (Tm) of the 4-methyl 1-pentene copolymer in the first embodiment of the present invention is not observed or preferably 100 ° C. to 180 ° C., not observed, or 110 ° C. to 160 ° C. More preferably, it is ° C.
The melting point (Tm) of the 4-methyl 1-pentene copolymer is a value measured by the following method using a differential scanning calorimetry (DSC).
About 5 mg of 4-methyl 1-pentene copolymer was sealed in an aluminum pan for measurement of a differential scanning calorimeter (DSC220C type) manufactured by Seiko Instruments Inc., and was cooled from room temperature to 200 ° C. at 10 ° C./min. Until heated. In order to completely melt the 4-methyl 1-pentene copolymer, it is held at 200 ° C. for 5 minutes and then cooled to −50 ° C. at 10 ° C./min. After 5 minutes at −50 ° C., the second heating is performed to 200 ° C. at 10 ° C./min, and the peak temperature (° C.) at the second heating is defined as the melting point (Tm) of the copolymer. When a plurality of peaks are detected, the peak detected on the highest temperature side is adopted.
本発明の第1の態様における4-メチル1-ペンテン系共重合体は、厚さ50μmのフィルムを形成し、フィルム形成の3日後に測定した損失正接(tanδ)の最大値が、-5℃~50℃の温度範囲内にあり、好ましくは0℃~45℃、更に好ましくは0℃~40℃の温度範囲内にあり、かつ、損失正接(tanδ)の最大値が0.5以上であることが好ましく、1.0以上であることがより好ましく、1.2以上であることが更に好ましい。4-メチル1-ペンテン系共重合体は、その損失正接(tanδ)の最大値が、上記温度範囲内にあり、かつ、最大値が0.5以上であると、応力緩和性により優れる。
上記4-メチル1-ペンテン系共重合体の損失正接(tanδ)の最大値及びその最大値を示す際の温度は、50μmのフィルム状にしたものを、粘弾性測定装置(MCR301、Anton Paar社製)を用い、周波数10rad/sで、-70~180℃の温度範囲の動的粘弾性を測定することにより、得られる値である。 The 4-methyl 1-pentene copolymer in the first embodiment of the present invention forms a film having a thickness of 50 μm, and the maximum value of the loss tangent (tan δ) measured 3 days after the film formation is −5 ° C. Within a temperature range of ˜50 ° C., preferably within a temperature range of 0 ° C. to 45 ° C., more preferably within a temperature range of 0 ° C. to 40 ° C., and the maximum value of loss tangent (tan δ) is 0.5 or more. It is preferably 1.0 or more, more preferably 1.2 or more. The 4-methyl 1-pentene copolymer has excellent stress relaxation properties when the maximum value of the loss tangent (tan δ) is within the above temperature range and the maximum value is 0.5 or more.
The maximum value of the loss tangent (tan δ) of the 4-methyl 1-pentene copolymer and the temperature at which the maximum value is shown were measured as a viscoelasticity measuring device (MCR301, Anton Paar). And a dynamic viscoelasticity in the temperature range of −70 to 180 ° C. is measured at a frequency of 10 rad / s.
上記4-メチル1-ペンテン系共重合体の損失正接(tanδ)の最大値及びその最大値を示す際の温度は、50μmのフィルム状にしたものを、粘弾性測定装置(MCR301、Anton Paar社製)を用い、周波数10rad/sで、-70~180℃の温度範囲の動的粘弾性を測定することにより、得られる値である。 The 4-methyl 1-pentene copolymer in the first embodiment of the present invention forms a film having a thickness of 50 μm, and the maximum value of the loss tangent (tan δ) measured 3 days after the film formation is −5 ° C. Within a temperature range of ˜50 ° C., preferably within a temperature range of 0 ° C. to 45 ° C., more preferably within a temperature range of 0 ° C. to 40 ° C., and the maximum value of loss tangent (tan δ) is 0.5 or more. It is preferably 1.0 or more, more preferably 1.2 or more. The 4-methyl 1-pentene copolymer has excellent stress relaxation properties when the maximum value of the loss tangent (tan δ) is within the above temperature range and the maximum value is 0.5 or more.
The maximum value of the loss tangent (tan δ) of the 4-methyl 1-pentene copolymer and the temperature at which the maximum value is shown were measured as a viscoelasticity measuring device (MCR301, Anton Paar). And a dynamic viscoelasticity in the temperature range of −70 to 180 ° C. is measured at a frequency of 10 rad / s.
本発明の第1の態様における4-メチル1-ペンテン系共重合体は、従来知られているメタロセン系触媒による合成方法、例えば、国際公開第2005/121192号パンフレット、国際公開第2011/055803号パンフレット等に記載された方法により合成することができる。
The 4-methyl 1-pentene copolymer in the first aspect of the present invention is synthesized by a conventionally known metallocene catalyst synthesis method, for example, International Publication No. 2005/121192, International Publication No. 2011/055803. It can be synthesized by a method described in a pamphlet or the like.
本発明の第1の態様に係る応力緩和性フィルムにおける熱可塑性樹脂Aの含有量は、応力緩和性フィルムの全質量に対して、50質量%~98質量%であり、50質量%~96質量%であることが好ましく、60質量%~95質量%であることがより好ましい。
熱可塑性樹脂Aの含有量が、応力緩和性フィルムの全質量に対して、50質量%未満であると、保護フィルムとして優れた応力緩和性を得ることができない。
熱可塑性樹脂Aの含有量が、応力緩和性フィルムの全質量に対して、98質量%を超えると、保護フィルムとして優れた耐衝撃性を得ることができない。 The content of the thermoplastic resin A in the stress relaxation film according to the first embodiment of the present invention is 50% by mass to 98% by mass, and 50% by mass to 96% by mass with respect to the total mass of the stress relaxation film. %, And more preferably 60% by mass to 95% by mass.
When the content of the thermoplastic resin A is less than 50% by mass with respect to the total mass of the stress relaxation film, it is not possible to obtain excellent stress relaxation properties as a protective film.
If the content of the thermoplastic resin A exceeds 98% by mass with respect to the total mass of the stress relaxation film, excellent impact resistance as a protective film cannot be obtained.
熱可塑性樹脂Aの含有量が、応力緩和性フィルムの全質量に対して、50質量%未満であると、保護フィルムとして優れた応力緩和性を得ることができない。
熱可塑性樹脂Aの含有量が、応力緩和性フィルムの全質量に対して、98質量%を超えると、保護フィルムとして優れた耐衝撃性を得ることができない。 The content of the thermoplastic resin A in the stress relaxation film according to the first embodiment of the present invention is 50% by mass to 98% by mass, and 50% by mass to 96% by mass with respect to the total mass of the stress relaxation film. %, And more preferably 60% by mass to 95% by mass.
When the content of the thermoplastic resin A is less than 50% by mass with respect to the total mass of the stress relaxation film, it is not possible to obtain excellent stress relaxation properties as a protective film.
If the content of the thermoplastic resin A exceeds 98% by mass with respect to the total mass of the stress relaxation film, excellent impact resistance as a protective film cannot be obtained.
〔熱可塑性樹脂B〕
本発明の第1の態様における熱可塑性樹脂Bは、エチレン系重合体、プロピレン系重合体、ブテン系重合体、及び4-メチル-1-ペンテン系重合体からなる群より選ばれる少なくとも1種の重合体(但し、上述の熱可塑性樹脂Aを除く。)である。本発明における熱可塑性樹脂Bは、エチレン系重合体及びプロピレン系重合体からなる群より選ばれる少なくとも1種の重合体であることが好ましい。 [Thermoplastic resin B]
The thermoplastic resin B in the first aspect of the present invention is at least one selected from the group consisting of ethylene polymers, propylene polymers, butene polymers, and 4-methyl-1-pentene polymers. Polymer (however, excluding the above-mentioned thermoplastic resin A). The thermoplastic resin B in the present invention is preferably at least one polymer selected from the group consisting of ethylene polymers and propylene polymers.
本発明の第1の態様における熱可塑性樹脂Bは、エチレン系重合体、プロピレン系重合体、ブテン系重合体、及び4-メチル-1-ペンテン系重合体からなる群より選ばれる少なくとも1種の重合体(但し、上述の熱可塑性樹脂Aを除く。)である。本発明における熱可塑性樹脂Bは、エチレン系重合体及びプロピレン系重合体からなる群より選ばれる少なくとも1種の重合体であることが好ましい。 [Thermoplastic resin B]
The thermoplastic resin B in the first aspect of the present invention is at least one selected from the group consisting of ethylene polymers, propylene polymers, butene polymers, and 4-methyl-1-pentene polymers. Polymer (however, excluding the above-mentioned thermoplastic resin A). The thermoplastic resin B in the present invention is preferably at least one polymer selected from the group consisting of ethylene polymers and propylene polymers.
エチレン系重合体としては、エチレンの単独重合体(ホモポリマー)であってもよく、エチレンと他のモノマーとの共重合体(コポリマー)であってもよい。エチレン系重合体としては、例えば、従来公知の手法で製造されている、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、高圧法低密度ポリエチレン等が挙げられる。また、エチレン系重合体としては、例えば、エチレン系重合体系エラストマーも挙げられる。
また、熱可塑性樹脂Bにおける好ましいエチレン系重合体としては、後述の熱可塑性樹脂Cにおける好ましいエチレン系重合体が挙げられる。 The ethylene polymer may be a homopolymer of ethylene or a copolymer (copolymer) of ethylene and another monomer. Examples of the ethylene polymer include low-density polyethylene, medium-density polyethylene, high-density polyethylene, and high-pressure method low-density polyethylene, which are produced by a conventionally known method. Examples of the ethylene polymer also include an ethylene polymer elastomer.
Moreover, as a preferable ethylene-type polymer in the thermoplastic resin B, the preferable ethylene-type polymer in the below-mentioned thermoplastic resin C is mentioned.
また、熱可塑性樹脂Bにおける好ましいエチレン系重合体としては、後述の熱可塑性樹脂Cにおける好ましいエチレン系重合体が挙げられる。 The ethylene polymer may be a homopolymer of ethylene or a copolymer (copolymer) of ethylene and another monomer. Examples of the ethylene polymer include low-density polyethylene, medium-density polyethylene, high-density polyethylene, and high-pressure method low-density polyethylene, which are produced by a conventionally known method. Examples of the ethylene polymer also include an ethylene polymer elastomer.
Moreover, as a preferable ethylene-type polymer in the thermoplastic resin B, the preferable ethylene-type polymer in the below-mentioned thermoplastic resin C is mentioned.
プロピレン系重合体としては、プロピレンの単独重合体(ホモポリマー)であってもよく、プロピレンと他のモノマーとの共重合体(コポリマー)であってもよい。プロピレン系重合体としては、例えば、アイソタクティックプロピレン系重合体、シンジオタクティックプロピレン系重合体等が挙げられる。アイソタクティックプロピレン系重合体としては、ホモプロピレン系重合体であってもよく、プロピレン・炭素数2~20のα-オレフィン(但し、プロピレンを除く。)ランダム共重合体であってもよく、プロピレンブロック共重合体であってもよい。また、プロピレン系重合体としては、例えば、プロピレン系重合体系エラストマーも挙げられる。
また、熱可塑性樹脂Bにおける好ましいプロピレン系重合体としては、後述の熱可塑性樹脂Cにおける好ましいプロピレン系重合体が挙げられる。 The propylene polymer may be a propylene homopolymer (homopolymer) or a copolymer of propylene and another monomer (copolymer). Examples of the propylene polymer include isotactic propylene polymer and syndiotactic propylene polymer. The isotactic propylene polymer may be a homopropylene polymer or a propylene / α-olefin having 2 to 20 carbon atoms (excluding propylene) random copolymer, A propylene block copolymer may be used. Examples of the propylene polymer include a propylene polymer elastomer.
Moreover, as a preferable propylene-type polymer in the thermoplastic resin B, the preferable propylene-type polymer in the thermoplastic resin C mentioned later is mentioned.
また、熱可塑性樹脂Bにおける好ましいプロピレン系重合体としては、後述の熱可塑性樹脂Cにおける好ましいプロピレン系重合体が挙げられる。 The propylene polymer may be a propylene homopolymer (homopolymer) or a copolymer of propylene and another monomer (copolymer). Examples of the propylene polymer include isotactic propylene polymer and syndiotactic propylene polymer. The isotactic propylene polymer may be a homopropylene polymer or a propylene / α-olefin having 2 to 20 carbon atoms (excluding propylene) random copolymer, A propylene block copolymer may be used. Examples of the propylene polymer include a propylene polymer elastomer.
Moreover, as a preferable propylene-type polymer in the thermoplastic resin B, the preferable propylene-type polymer in the thermoplastic resin C mentioned later is mentioned.
ブテン系重合体としては、ブテンの単独重合体(ホモポリマー)であってもよく、ブテンと他のモノマーとの共重合体(コポリマー)であってもよい。ブテン系重合体としては、例えば、1-ブテンのホモポリマー、1-ブテンと1-ブテンを除くオレフィンとの共重合体等が挙げられる。該共重合体としては、例えば、1-ブテン・エチレンランダム共重合体、1-ブテン・プロピレンランダム共重合体、1-ブテン・メチルペンテン共重合体、1-ブテン・メチルブテン共重合体、1-ブテン・プロピレン・エチレン共重合体等が挙げられる。
また、熱可塑性樹脂Bにおける好ましいブテン系重合体としては、後述の熱可塑性樹脂Cにおける好ましいブテン系重合体が挙げられる。 The butene-based polymer may be a butene homopolymer (homopolymer) or a copolymer of butene and another monomer (copolymer). Examples of the butene polymer include a homopolymer of 1-butene, a copolymer of 1-butene and an olefin excluding 1-butene, and the like. Examples of the copolymer include 1-butene / ethylene random copolymer, 1-butene / propylene random copolymer, 1-butene / methylpentene copolymer, 1-butene / methylbutene copolymer, Examples include butene / propylene / ethylene copolymer.
Moreover, as a preferable butene polymer in the thermoplastic resin B, a preferable butene polymer in the thermoplastic resin C to be described later can be cited.
また、熱可塑性樹脂Bにおける好ましいブテン系重合体としては、後述の熱可塑性樹脂Cにおける好ましいブテン系重合体が挙げられる。 The butene-based polymer may be a butene homopolymer (homopolymer) or a copolymer of butene and another monomer (copolymer). Examples of the butene polymer include a homopolymer of 1-butene, a copolymer of 1-butene and an olefin excluding 1-butene, and the like. Examples of the copolymer include 1-butene / ethylene random copolymer, 1-butene / propylene random copolymer, 1-butene / methylpentene copolymer, 1-butene / methylbutene copolymer, Examples include butene / propylene / ethylene copolymer.
Moreover, as a preferable butene polymer in the thermoplastic resin B, a preferable butene polymer in the thermoplastic resin C to be described later can be cited.
4-メチル-1-ペンテン系重合体としては、4-メチル-1-ペンテンの単独重合体(ホモポリマー)であってもよく、4-メチル-1-ペンテンと他のモノマーとの共重合体(コポリマー)であってもよい。4-メチル-1-ペンテン系重合体としては、例えば、4-メチル-1-ペンテンのホモポリマー、4-メチル-1-ペンテンと1-ヘキセン、1-デセン、1-オクタデセン、1-ヘキサデセン等とのランダム共重合体などが挙げられる。
The 4-methyl-1-pentene polymer may be a homopolymer of 4-methyl-1-pentene, or a copolymer of 4-methyl-1-pentene and other monomers. (Copolymer) may be used. Examples of 4-methyl-1-pentene polymers include 4-methyl-1-pentene homopolymer, 4-methyl-1-pentene and 1-hexene, 1-decene, 1-octadecene, 1-hexadecene, etc. And a random copolymer.
本発明の第1の態様における熱可塑性樹脂Bのメルトフローレート(MFR)は、フィルム成形性及びフィルムの機械物性の観点から、0.1g/10min~100g/10minであることが好ましく、0.5g/10min~50g/10minであることがより好ましい。
上記熱可塑性樹脂Bのメルトフローレート(MFR)は、ASTM D1238に準拠して、測定される値である。具体的には、エチレン系重合体及びブテン系重合体のメルトフローレート(MFR)は、190℃で2.16kgの荷重にて測定される値であり、プロピレン系重合体のメルトフローレート(MFR)は、230℃で2.16kgの荷重にて測定される値であり、4-メチル-1-ペンテン系重合体のメルトフローレート(MFR)は、260℃で5.0kgの荷重にて測定される値である。 The melt flow rate (MFR) of the thermoplastic resin B in the first aspect of the present invention is preferably 0.1 g / 10 min to 100 g / 10 min from the viewpoint of film moldability and mechanical properties of the film. More preferably, it is 5 g / 10 min to 50 g / 10 min.
The melt flow rate (MFR) of the thermoplastic resin B is a value measured in accordance with ASTM D1238. Specifically, the melt flow rate (MFR) of the ethylene polymer and the butene polymer is a value measured at 190 ° C. with a load of 2.16 kg, and the melt flow rate (MFR) of the propylene polymer. ) Is a value measured at 230 ° C. under a load of 2.16 kg, and the melt flow rate (MFR) of 4-methyl-1-pentene polymer is measured at 260 ° C. under a load of 5.0 kg. Is the value to be
上記熱可塑性樹脂Bのメルトフローレート(MFR)は、ASTM D1238に準拠して、測定される値である。具体的には、エチレン系重合体及びブテン系重合体のメルトフローレート(MFR)は、190℃で2.16kgの荷重にて測定される値であり、プロピレン系重合体のメルトフローレート(MFR)は、230℃で2.16kgの荷重にて測定される値であり、4-メチル-1-ペンテン系重合体のメルトフローレート(MFR)は、260℃で5.0kgの荷重にて測定される値である。 The melt flow rate (MFR) of the thermoplastic resin B in the first aspect of the present invention is preferably 0.1 g / 10 min to 100 g / 10 min from the viewpoint of film moldability and mechanical properties of the film. More preferably, it is 5 g / 10 min to 50 g / 10 min.
The melt flow rate (MFR) of the thermoplastic resin B is a value measured in accordance with ASTM D1238. Specifically, the melt flow rate (MFR) of the ethylene polymer and the butene polymer is a value measured at 190 ° C. with a load of 2.16 kg, and the melt flow rate (MFR) of the propylene polymer. ) Is a value measured at 230 ° C. under a load of 2.16 kg, and the melt flow rate (MFR) of 4-methyl-1-pentene polymer is measured at 260 ° C. under a load of 5.0 kg. Is the value to be
本発明の第1の態様における熱可塑性樹脂Bの密度は、軽量性、及び4-メチル-1-ペンテン系共重合体と組成物としたときの分散性の観点から、820kg/m3~960kg/m3であることが好ましく、830kg/m3~950kg/m3であることがより好ましい。
上記熱可塑性樹脂Bの密度は、JIS K7112(密度勾配管法)に準拠して、測定される値である。 The density of the thermoplastic resin B in the first embodiment of the present invention is 820 kg / m 3 to 960 kg from the viewpoint of light weight and dispersibility when a 4-methyl-1-pentene copolymer is used as a composition. / M 3 is preferable, and 830 kg / m 3 to 950 kg / m 3 is more preferable.
The density of the thermoplastic resin B is a value measured according to JIS K7112 (density gradient tube method).
上記熱可塑性樹脂Bの密度は、JIS K7112(密度勾配管法)に準拠して、測定される値である。 The density of the thermoplastic resin B in the first embodiment of the present invention is 820 kg / m 3 to 960 kg from the viewpoint of light weight and dispersibility when a 4-methyl-1-pentene copolymer is used as a composition. / M 3 is preferable, and 830 kg / m 3 to 950 kg / m 3 is more preferable.
The density of the thermoplastic resin B is a value measured according to JIS K7112 (density gradient tube method).
本発明の第1の態様に係る応力緩和性フィルムにおける熱可塑性樹脂Bの含有量は、応力緩和性フィルムの全質量に対して、2質量%~50質量%であり、4質量%~50質量%であることが好ましく、5質量%~40質量%であることがより好ましい。
熱可塑性樹脂Bの含有量が、応力緩和性フィルムの全質量に対して、2質量%未満であると、保護フィルムとして優れた耐衝撃性を得ることができない。
熱可塑性樹脂Bの含有量が、応力緩和性フィルムの全質量に対して、50質量%を超えると、保護フィルムとして優れた応力緩和性を得ることができない。 The content of the thermoplastic resin B in the stress relaxation film according to the first embodiment of the present invention is 2% by mass to 50% by mass, and 4% by mass to 50% by mass with respect to the total mass of the stress relaxation film. %, Preferably 5% by mass to 40% by mass.
When the content of the thermoplastic resin B is less than 2% by mass with respect to the total mass of the stress relaxation film, excellent impact resistance as a protective film cannot be obtained.
When the content of the thermoplastic resin B exceeds 50% by mass with respect to the total mass of the stress relaxation film, stress relaxation excellent as a protective film cannot be obtained.
熱可塑性樹脂Bの含有量が、応力緩和性フィルムの全質量に対して、2質量%未満であると、保護フィルムとして優れた耐衝撃性を得ることができない。
熱可塑性樹脂Bの含有量が、応力緩和性フィルムの全質量に対して、50質量%を超えると、保護フィルムとして優れた応力緩和性を得ることができない。 The content of the thermoplastic resin B in the stress relaxation film according to the first embodiment of the present invention is 2% by mass to 50% by mass, and 4% by mass to 50% by mass with respect to the total mass of the stress relaxation film. %, Preferably 5% by mass to 40% by mass.
When the content of the thermoplastic resin B is less than 2% by mass with respect to the total mass of the stress relaxation film, excellent impact resistance as a protective film cannot be obtained.
When the content of the thermoplastic resin B exceeds 50% by mass with respect to the total mass of the stress relaxation film, stress relaxation excellent as a protective film cannot be obtained.
〔その他の樹脂〕
本発明の第1の態様に係る応力緩和性フィルムは、本発明の第1の態様の目的を損なわない範囲内において、上述の熱可塑性樹脂A及び熱可塑性樹脂B以外のその他の樹脂を含有していてもよい。 [Other resins]
The stress relaxation film according to the first aspect of the present invention contains other resins other than the above-described thermoplastic resin A and thermoplastic resin B within a range not impairing the object of the first aspect of the present invention. It may be.
本発明の第1の態様に係る応力緩和性フィルムは、本発明の第1の態様の目的を損なわない範囲内において、上述の熱可塑性樹脂A及び熱可塑性樹脂B以外のその他の樹脂を含有していてもよい。 [Other resins]
The stress relaxation film according to the first aspect of the present invention contains other resins other than the above-described thermoplastic resin A and thermoplastic resin B within a range not impairing the object of the first aspect of the present invention. It may be.
〔応力緩和性フィルムの構造〕
本発明の第1の態様に係る応力緩和性フィルムは、熱可塑性樹脂Aを含んでなる海部と、実質的に熱可塑性樹脂Bからなる島部と、から構成される海島構造を有することが好ましい。
本発明において、「実質的に熱可塑性樹脂Bからなる」島部とは、島部における熱可塑性樹脂Bの含有量が、島部の構成成分の全質量に対して、70質量%以上であることを意味する。 [Structure of stress relaxation film]
The stress relieving film according to the first aspect of the present invention preferably has a sea-island structure composed of a sea part including the thermoplastic resin A and an island part substantially made of the thermoplastic resin B. .
In the present invention, the island part “consisting essentially of the thermoplastic resin B” means that the content of the thermoplastic resin B in the island part is 70% by mass or more based on the total mass of the constituent components of the island part. Means that.
本発明の第1の態様に係る応力緩和性フィルムは、熱可塑性樹脂Aを含んでなる海部と、実質的に熱可塑性樹脂Bからなる島部と、から構成される海島構造を有することが好ましい。
本発明において、「実質的に熱可塑性樹脂Bからなる」島部とは、島部における熱可塑性樹脂Bの含有量が、島部の構成成分の全質量に対して、70質量%以上であることを意味する。 [Structure of stress relaxation film]
The stress relieving film according to the first aspect of the present invention preferably has a sea-island structure composed of a sea part including the thermoplastic resin A and an island part substantially made of the thermoplastic resin B. .
In the present invention, the island part “consisting essentially of the thermoplastic resin B” means that the content of the thermoplastic resin B in the island part is 70% by mass or more based on the total mass of the constituent components of the island part. Means that.
本発明の第1の態様に係る応力緩和性フィルムは、熱可塑性樹脂Aを含んでなる海部と、実質的に熱可塑性樹脂Bからなる島部と、から構成される海島構造を有していることにより、より優れた応力緩和性と耐衝撃性とを兼ね備えることができる。
このような効果が奏される理由は、応力緩和を担う熱可塑性樹脂Aが海部となることで、応力緩和性が担保され、かつ、衝撃強度の向上を担う熱可塑性樹脂Bが島部となり、フィルム中に分散することで、熱可塑性樹脂Bの衝撃強度向上効果が、より有効に発揮され、フィルムの耐衝撃性が高まるためであると考えられる。 The stress relaxation film according to the first aspect of the present invention has a sea-island structure composed of a sea part that includes the thermoplastic resin A and an island part that is substantially made of the thermoplastic resin B. As a result, it is possible to combine more excellent stress relaxation properties and impact resistance.
The reason why such an effect is achieved is that the thermoplastic resin A responsible for stress relaxation becomes the sea part, the stress relaxation property is ensured, and the thermoplastic resin B responsible for improvement of impact strength becomes the island part, It is considered that the effect of improving the impact strength of the thermoplastic resin B is more effectively exhibited by dispersing in the film, and the impact resistance of the film is increased.
このような効果が奏される理由は、応力緩和を担う熱可塑性樹脂Aが海部となることで、応力緩和性が担保され、かつ、衝撃強度の向上を担う熱可塑性樹脂Bが島部となり、フィルム中に分散することで、熱可塑性樹脂Bの衝撃強度向上効果が、より有効に発揮され、フィルムの耐衝撃性が高まるためであると考えられる。 The stress relaxation film according to the first aspect of the present invention has a sea-island structure composed of a sea part that includes the thermoplastic resin A and an island part that is substantially made of the thermoplastic resin B. As a result, it is possible to combine more excellent stress relaxation properties and impact resistance.
The reason why such an effect is achieved is that the thermoplastic resin A responsible for stress relaxation becomes the sea part, the stress relaxation property is ensured, and the thermoplastic resin B responsible for improvement of impact strength becomes the island part, It is considered that the effect of improving the impact strength of the thermoplastic resin B is more effectively exhibited by dispersing in the film, and the impact resistance of the film is increased.
なお、本発明の第1の態様に係る応力緩和性フィルムが、熱可塑性樹脂Aを含んでなる海部と、実質的に熱可塑性樹脂Bからなる島部と、から構成される海島構造を有していることは、例えば、透過型電子顕微鏡(TEM:Transmission Electron Microscope)により確認することができる。具体的には、フィルムを研削して超薄切片を作製し、いずれか一方の成分のみを四酸化ルテニウムや四酸化オスニウム等の重金属で選択的に染色した後、透過型電子顕微鏡を用いて観察する。
In addition, the stress relaxation film according to the first aspect of the present invention has a sea-island structure composed of a sea part that includes the thermoplastic resin A and an island part that is substantially made of the thermoplastic resin B. This can be confirmed by, for example, a transmission electron microscope (TEM). Specifically, the film is ground to produce an ultrathin section, and only one of the components is selectively stained with a heavy metal such as ruthenium tetroxide or osmium tetroxide, and then observed using a transmission electron microscope. To do.
熱可塑性樹脂Aを含んでなる海部と、実質的に熱可塑性樹脂Bからなる島部と、から構成される海島構造を有するフィルムは、例えば、熱可塑性樹脂Aと熱可塑性樹脂Bとをドライブレンドにより混合し、押出によりフィルム成形することで得られる。
A film having a sea-island structure composed of a sea part including the thermoplastic resin A and an island part substantially composed of the thermoplastic resin B is, for example, a dry blend of the thermoplastic resin A and the thermoplastic resin B. Obtained by mixing and extrusion to form a film.
〔応力緩和性フィルムの製造方法〕
本発明の第1の態様に係る応力緩和性フィルムの製造方法の一例を説明する。本発明の第1の態様に係る応力緩和性フィルムは、例えば、下記の方法により製造することができる。但し、本発明の第1の態様は、下記の方法に限定されるものではない。
熱可塑性樹脂Aと熱可塑性樹脂Bとを混合(例えば、ドライブレンド)する。次いで、得られた混合物を、Tダイを設置した押出機のホッパーに投入し、シリンダー温度を100℃~270℃、ダイス温度を200℃~270℃に設定する。Tダイから溶融混練物を押し出し、キャスト成形して、応力緩和性フィルムを得る。 [Manufacturing method of stress relaxation film]
An example of the manufacturing method of the stress relaxation film which concerns on the 1st aspect of this invention is demonstrated. The stress relaxation film according to the first aspect of the present invention can be produced, for example, by the following method. However, the first aspect of the present invention is not limited to the following method.
The thermoplastic resin A and the thermoplastic resin B are mixed (for example, dry blended). Next, the obtained mixture is put into an hopper of an extruder provided with a T die, and the cylinder temperature is set to 100 ° C. to 270 ° C. and the die temperature is set to 200 ° C. to 270 ° C. The melt-kneaded material is extruded from a T die and cast to obtain a stress relaxation film.
本発明の第1の態様に係る応力緩和性フィルムの製造方法の一例を説明する。本発明の第1の態様に係る応力緩和性フィルムは、例えば、下記の方法により製造することができる。但し、本発明の第1の態様は、下記の方法に限定されるものではない。
熱可塑性樹脂Aと熱可塑性樹脂Bとを混合(例えば、ドライブレンド)する。次いで、得られた混合物を、Tダイを設置した押出機のホッパーに投入し、シリンダー温度を100℃~270℃、ダイス温度を200℃~270℃に設定する。Tダイから溶融混練物を押し出し、キャスト成形して、応力緩和性フィルムを得る。 [Manufacturing method of stress relaxation film]
An example of the manufacturing method of the stress relaxation film which concerns on the 1st aspect of this invention is demonstrated. The stress relaxation film according to the first aspect of the present invention can be produced, for example, by the following method. However, the first aspect of the present invention is not limited to the following method.
The thermoplastic resin A and the thermoplastic resin B are mixed (for example, dry blended). Next, the obtained mixture is put into an hopper of an extruder provided with a T die, and the cylinder temperature is set to 100 ° C. to 270 ° C. and the die temperature is set to 200 ° C. to 270 ° C. The melt-kneaded material is extruded from a T die and cast to obtain a stress relaxation film.
本発明の第1の態様に係る応力緩和性フィルムの厚さは、50μm~350μmであることが好ましく、60μm~300μmであることがより好ましく、70μm~200μmであることが更に好ましい。本発明の応力緩和性フィルムの厚さが、上記範囲内であると、取り扱い性が容易である。
The thickness of the stress relaxation film according to the first aspect of the present invention is preferably 50 μm to 350 μm, more preferably 60 μm to 300 μm, and still more preferably 70 μm to 200 μm. When the thickness of the stress relaxation film of the present invention is within the above range, handleability is easy.
〔応力緩和性フィルムの用途〕
本発明の第1の態様に係る応力緩和性フィルムは、建材や光学部品等の各種樹脂製品、金属製品、ガラス製品等の輸送時、保管時、加工時等の傷付き防止や防塵を目的として、これらの表面に貼着される保護フィルムとして、好適に用いることができる。 [Use of stress relaxation film]
The stress relaxation film according to the first aspect of the present invention is used for the purpose of preventing scratches and preventing dust during transportation, storage, processing, etc. of various resin products such as building materials and optical parts, metal products, and glass products. The protective film can be suitably used as a protective film adhered to these surfaces.
本発明の第1の態様に係る応力緩和性フィルムは、建材や光学部品等の各種樹脂製品、金属製品、ガラス製品等の輸送時、保管時、加工時等の傷付き防止や防塵を目的として、これらの表面に貼着される保護フィルムとして、好適に用いることができる。 [Use of stress relaxation film]
The stress relaxation film according to the first aspect of the present invention is used for the purpose of preventing scratches and preventing dust during transportation, storage, processing, etc. of various resin products such as building materials and optical parts, metal products, and glass products. The protective film can be suitably used as a protective film adhered to these surfaces.
また、本発明の第1の態様に係る応力緩和性フィルムは、半導体基板の回路非形成面を研削して、半導体基板を所望の厚さとする際の、半導体基板の回路形成面の傷付きや破損を防止するための保護フィルムとして、特に好適に用いることができる。本発明の第1の態様に係る応力緩和性フィルムは、応力緩和性及び耐衝撃性に優れるので、半導体基板の回路形成面の傷付きや破損の防止に有効である。
In addition, the stress relaxation film according to the first aspect of the present invention provides a circuit board surface that is not damaged when the circuit board non-circuit formation surface of the semiconductor substrate is ground to a desired thickness. It can be particularly suitably used as a protective film for preventing breakage. Since the stress relaxation film according to the first aspect of the present invention is excellent in stress relaxation property and impact resistance, it is effective in preventing damage and breakage of the circuit formation surface of the semiconductor substrate.
[積層体]
本発明の第1の態様に係る積層体は、上述の本発明の第1の態様に係る応力緩和性フィルムからなる応力緩和層と、エチレン系重合体、プロピレン系重合体、及びブテン系重合体からなる群より選ばれる少なくとも1種の重合体である熱可塑性樹脂Cを含み、かつ、少なくとも一部が上記応力緩和層と接触している表面層と、を含む。
本発明の第1の態様に係る積層体は、優れた応力緩和性と耐衝撃性とを兼ね備えており、また、応力緩和層と表面層との間で層間剥離が生じ難い。 [Laminate]
The laminate according to the first aspect of the present invention includes a stress relaxation layer comprising the stress relaxation film according to the first aspect of the present invention, an ethylene polymer, a propylene polymer, and a butene polymer. A thermoplastic resin C which is at least one polymer selected from the group consisting of: and a surface layer at least partially in contact with the stress relaxation layer.
The laminate according to the first aspect of the present invention has excellent stress relaxation properties and impact resistance, and delamination does not easily occur between the stress relaxation layer and the surface layer.
本発明の第1の態様に係る積層体は、上述の本発明の第1の態様に係る応力緩和性フィルムからなる応力緩和層と、エチレン系重合体、プロピレン系重合体、及びブテン系重合体からなる群より選ばれる少なくとも1種の重合体である熱可塑性樹脂Cを含み、かつ、少なくとも一部が上記応力緩和層と接触している表面層と、を含む。
本発明の第1の態様に係る積層体は、優れた応力緩和性と耐衝撃性とを兼ね備えており、また、応力緩和層と表面層との間で層間剥離が生じ難い。 [Laminate]
The laminate according to the first aspect of the present invention includes a stress relaxation layer comprising the stress relaxation film according to the first aspect of the present invention, an ethylene polymer, a propylene polymer, and a butene polymer. A thermoplastic resin C which is at least one polymer selected from the group consisting of: and a surface layer at least partially in contact with the stress relaxation layer.
The laminate according to the first aspect of the present invention has excellent stress relaxation properties and impact resistance, and delamination does not easily occur between the stress relaxation layer and the surface layer.
〔応力緩和層〕
本発明の第1の態様に係る積層体における応力緩和層は、上述の本発明の第1の態様に係る応力緩和性フィルムからなる。本発明の第1の態様に係る積層体は、上述の本発明の第1の態様に係る応力緩和性フィルムからなる応力緩和層を含むので、優れた応力緩和性と耐衝撃性とを兼ね備える。なお、本発明の第1の態様に係る応力緩和性フィルムについては、上述したので、ここでは、説明を省略する。 (Stress relaxation layer)
The stress relaxation layer in the laminate according to the first aspect of the present invention is composed of the above-described stress relaxation film according to the first aspect of the present invention. Since the laminated body which concerns on the 1st aspect of this invention contains the stress relaxation layer which consists of the stress relaxation film which concerns on the 1st aspect of the above-mentioned this invention, it has the outstanding stress relaxation property and impact resistance. In addition, since it mentioned above about the stress relaxation film concerning the 1st aspect of this invention, description is abbreviate | omitted here.
本発明の第1の態様に係る積層体における応力緩和層は、上述の本発明の第1の態様に係る応力緩和性フィルムからなる。本発明の第1の態様に係る積層体は、上述の本発明の第1の態様に係る応力緩和性フィルムからなる応力緩和層を含むので、優れた応力緩和性と耐衝撃性とを兼ね備える。なお、本発明の第1の態様に係る応力緩和性フィルムについては、上述したので、ここでは、説明を省略する。 (Stress relaxation layer)
The stress relaxation layer in the laminate according to the first aspect of the present invention is composed of the above-described stress relaxation film according to the first aspect of the present invention. Since the laminated body which concerns on the 1st aspect of this invention contains the stress relaxation layer which consists of the stress relaxation film which concerns on the 1st aspect of the above-mentioned this invention, it has the outstanding stress relaxation property and impact resistance. In addition, since it mentioned above about the stress relaxation film concerning the 1st aspect of this invention, description is abbreviate | omitted here.
〔表面層〕
本発明の第1の態様に係る積層体における表面層は、エチレン系重合体、プロピレン系重合体、及びブテン系重合体からなる群より選ばれる少なくとも1種の重合体である熱可塑性樹脂Cを含み、かつ、少なくとも一部が応力緩和層と接触している。本発明の第1の態様に係る積層体において、表面層は、応力緩和層の片面側にのみ(即ち、1層のみ)存在していてもよいし、応力緩和層の両面側に(即ち、合計で2層)存在していてもよい。
本発明の第1の態様に係る積層体における表面層は、エチレン系重合体、プロピレン系重合体、及びブテン系重合体からなる群より選ばれる少なくとも1種の重合体である熱可塑性樹脂Cを含むので、応力緩和層との間で層間剥離が生じ難い。
本発明において、「少なくとも一部が応力緩和層と接触している」とは、表面層が応力緩和層の一部分と接触しているか、或いは、表面層が応力緩和層の全体と接触していることを意味する。本発明の第1の態様に係る積層体において、応力緩和層と表面層との接触割合は、応力緩和層の総面積に対して、30%~100%であることが好ましく、50%~100%であることがより好ましい。 [Surface layer]
The surface layer in the laminate according to the first aspect of the present invention comprises a thermoplastic resin C which is at least one polymer selected from the group consisting of an ethylene polymer, a propylene polymer, and a butene polymer. And at least a portion is in contact with the stress relaxation layer. In the laminate according to the first aspect of the present invention, the surface layer may be present only on one side of the stress relaxation layer (that is, only one layer) or on both sides of the stress relaxation layer (that is, 2 layers in total) may be present.
The surface layer in the laminate according to the first aspect of the present invention comprises a thermoplastic resin C which is at least one polymer selected from the group consisting of an ethylene polymer, a propylene polymer, and a butene polymer. Therefore, delamination is unlikely to occur between the stress relaxation layer.
In the present invention, “at least a part is in contact with the stress relaxation layer” means that the surface layer is in contact with a part of the stress relaxation layer or the surface layer is in contact with the entire stress relaxation layer. Means that. In the laminate according to the first aspect of the present invention, the contact ratio between the stress relaxation layer and the surface layer is preferably 30% to 100%, more preferably 50% to 100% with respect to the total area of the stress relaxation layer. % Is more preferable.
本発明の第1の態様に係る積層体における表面層は、エチレン系重合体、プロピレン系重合体、及びブテン系重合体からなる群より選ばれる少なくとも1種の重合体である熱可塑性樹脂Cを含み、かつ、少なくとも一部が応力緩和層と接触している。本発明の第1の態様に係る積層体において、表面層は、応力緩和層の片面側にのみ(即ち、1層のみ)存在していてもよいし、応力緩和層の両面側に(即ち、合計で2層)存在していてもよい。
本発明の第1の態様に係る積層体における表面層は、エチレン系重合体、プロピレン系重合体、及びブテン系重合体からなる群より選ばれる少なくとも1種の重合体である熱可塑性樹脂Cを含むので、応力緩和層との間で層間剥離が生じ難い。
本発明において、「少なくとも一部が応力緩和層と接触している」とは、表面層が応力緩和層の一部分と接触しているか、或いは、表面層が応力緩和層の全体と接触していることを意味する。本発明の第1の態様に係る積層体において、応力緩和層と表面層との接触割合は、応力緩和層の総面積に対して、30%~100%であることが好ましく、50%~100%であることがより好ましい。 [Surface layer]
The surface layer in the laminate according to the first aspect of the present invention comprises a thermoplastic resin C which is at least one polymer selected from the group consisting of an ethylene polymer, a propylene polymer, and a butene polymer. And at least a portion is in contact with the stress relaxation layer. In the laminate according to the first aspect of the present invention, the surface layer may be present only on one side of the stress relaxation layer (that is, only one layer) or on both sides of the stress relaxation layer (that is, 2 layers in total) may be present.
The surface layer in the laminate according to the first aspect of the present invention comprises a thermoplastic resin C which is at least one polymer selected from the group consisting of an ethylene polymer, a propylene polymer, and a butene polymer. Therefore, delamination is unlikely to occur between the stress relaxation layer.
In the present invention, “at least a part is in contact with the stress relaxation layer” means that the surface layer is in contact with a part of the stress relaxation layer or the surface layer is in contact with the entire stress relaxation layer. Means that. In the laminate according to the first aspect of the present invention, the contact ratio between the stress relaxation layer and the surface layer is preferably 30% to 100%, more preferably 50% to 100% with respect to the total area of the stress relaxation layer. % Is more preferable.
(熱可塑性樹脂C)
本発明の第1の態様における熱可塑性樹脂Cは、エチレン系重合体、プロピレン系重合体、及びブテン系重合体からなる群より選ばれる少なくとも1種の重合体である。本発明の第1の態様における熱可塑性樹脂Cとしては、応力緩和層との間で層間剥離がより生じ難い表面層を形成することができるという点において、プロピレン系重合体及びブテン系重合体からなる群より選ばれる少なくとも1種の重合体であることが好ましく、プロピレン系重合体であることがより好ましい。
ここでいう、エチレン系重合体、プロピレン系重合体、及びブテン系重合体は、それぞれ、熱可塑性樹脂Bの項で説明した、エチレン系重合体、プロピレン系重合体、及びブテン系重合体と同義である。 (Thermoplastic resin C)
The thermoplastic resin C in the first aspect of the present invention is at least one polymer selected from the group consisting of an ethylene polymer, a propylene polymer, and a butene polymer. As the thermoplastic resin C in the first aspect of the present invention, a propylene-based polymer and a butene-based polymer are used in that a surface layer that is less likely to cause delamination between the stress relaxation layer can be formed. It is preferably at least one polymer selected from the group consisting of, and more preferably a propylene-based polymer.
The ethylene-based polymer, the propylene-based polymer, and the butene-based polymer here are synonymous with the ethylene-based polymer, the propylene-based polymer, and the butene-based polymer described in the section of the thermoplastic resin B, respectively. It is.
本発明の第1の態様における熱可塑性樹脂Cは、エチレン系重合体、プロピレン系重合体、及びブテン系重合体からなる群より選ばれる少なくとも1種の重合体である。本発明の第1の態様における熱可塑性樹脂Cとしては、応力緩和層との間で層間剥離がより生じ難い表面層を形成することができるという点において、プロピレン系重合体及びブテン系重合体からなる群より選ばれる少なくとも1種の重合体であることが好ましく、プロピレン系重合体であることがより好ましい。
ここでいう、エチレン系重合体、プロピレン系重合体、及びブテン系重合体は、それぞれ、熱可塑性樹脂Bの項で説明した、エチレン系重合体、プロピレン系重合体、及びブテン系重合体と同義である。 (Thermoplastic resin C)
The thermoplastic resin C in the first aspect of the present invention is at least one polymer selected from the group consisting of an ethylene polymer, a propylene polymer, and a butene polymer. As the thermoplastic resin C in the first aspect of the present invention, a propylene-based polymer and a butene-based polymer are used in that a surface layer that is less likely to cause delamination between the stress relaxation layer can be formed. It is preferably at least one polymer selected from the group consisting of, and more preferably a propylene-based polymer.
The ethylene-based polymer, the propylene-based polymer, and the butene-based polymer here are synonymous with the ethylene-based polymer, the propylene-based polymer, and the butene-based polymer described in the section of the thermoplastic resin B, respectively. It is.
エチレン系重合体としては、エチレンに由来する構成単位の比率が50モル%以上の重合体が好ましい。また、プロピレン系重合体としては、プロピレンに由来する構成単位の比率が50モル%以上の重合体が好ましい。さらに、ブテン系重合体としては、1-ブテンに由来する構成単位の比率が50モル%以上の重合体が好ましい。
As the ethylene polymer, a polymer having a proportion of structural units derived from ethylene of 50 mol% or more is preferable. Moreover, as a propylene-type polymer, the polymer whose ratio of the structural unit derived from propylene is 50 mol% or more is preferable. Further, the butene polymer is preferably a polymer in which the proportion of structural units derived from 1-butene is 50 mol% or more.
エチレン系重合体が共重合体である場合、該共重合体としては、応力緩和層との間で層間剥離がより生じ難い表面層を形成することができる点において、エチレンと炭素数3~20のα-オレフィンとの共重合体であることが好ましく、エチレンと炭素数3~10のα-オレフィンとの共重合体であることがより好ましい。
エチレン系重合体中のエチレンに由来する構成単位の比率は、エチレン系重合体中の全構成単位を100モル%とした場合に、50モル%~100モル%であることが好ましく、60モル%~99モル%であることがより好ましい。エチレン系重合体中のエチレンに由来する構成単位の比率が上記範囲内であると、耐熱性及び衝撃性がより良い結果となる。 When the ethylene-based polymer is a copolymer, the copolymer can form a surface layer in which delamination is less likely to occur between the stress relaxation layer and ethylene with 3 to 20 carbon atoms. Of these, a copolymer of α-olefin is preferable, and a copolymer of ethylene and an α-olefin having 3 to 10 carbon atoms is more preferable.
The ratio of the structural units derived from ethylene in the ethylene polymer is preferably 50 mol% to 100 mol%, assuming that all the structural units in the ethylene polymer are 100 mol%, and 60 mol%. More preferably, it is ˜99 mol%. When the ratio of the structural unit derived from ethylene in the ethylene-based polymer is within the above range, better heat resistance and impact properties are obtained.
エチレン系重合体中のエチレンに由来する構成単位の比率は、エチレン系重合体中の全構成単位を100モル%とした場合に、50モル%~100モル%であることが好ましく、60モル%~99モル%であることがより好ましい。エチレン系重合体中のエチレンに由来する構成単位の比率が上記範囲内であると、耐熱性及び衝撃性がより良い結果となる。 When the ethylene-based polymer is a copolymer, the copolymer can form a surface layer in which delamination is less likely to occur between the stress relaxation layer and ethylene with 3 to 20 carbon atoms. Of these, a copolymer of α-olefin is preferable, and a copolymer of ethylene and an α-olefin having 3 to 10 carbon atoms is more preferable.
The ratio of the structural units derived from ethylene in the ethylene polymer is preferably 50 mol% to 100 mol%, assuming that all the structural units in the ethylene polymer are 100 mol%, and 60 mol%. More preferably, it is ˜99 mol%. When the ratio of the structural unit derived from ethylene in the ethylene-based polymer is within the above range, better heat resistance and impact properties are obtained.
プロピレン系重合体が共重合体である場合、該共重合体としては、応力緩和層との間で層間剥離がより生じ難い表面層を形成することができる点において、プロピレンと炭素数2~20のα-オレフィン(但し、プロピレンを除く。)との共重合体であることが好ましい。
プロピレン系重合体中のプロピレンに由来する構成単位の比率は、プロピレン系重合体中の全構成単位を100モル%とした場合に、50モル%~100モル%であることが好ましく、60モル%~99モル%であることがより好ましい。プロピレン系重合体中のプロピレンに由来する構成単位の比率が上記範囲内であると、耐熱性及び衝撃性がより良い結果となる。 When the propylene-based polymer is a copolymer, the copolymer can form a surface layer in which delamination is less likely to occur between the stress relaxation layer and propylene with 2 to 20 carbon atoms. Of these, a copolymer with an α-olefin (excluding propylene) is preferred.
The proportion of the structural units derived from propylene in the propylene-based polymer is preferably 50 mol% to 100 mol%, based on 100 mol% of all the structural units in the propylene-based polymer, and preferably 60 mol%. More preferably, it is ˜99 mol%. When the ratio of the structural unit derived from propylene in the propylene-based polymer is within the above range, better heat resistance and impact properties are obtained.
プロピレン系重合体中のプロピレンに由来する構成単位の比率は、プロピレン系重合体中の全構成単位を100モル%とした場合に、50モル%~100モル%であることが好ましく、60モル%~99モル%であることがより好ましい。プロピレン系重合体中のプロピレンに由来する構成単位の比率が上記範囲内であると、耐熱性及び衝撃性がより良い結果となる。 When the propylene-based polymer is a copolymer, the copolymer can form a surface layer in which delamination is less likely to occur between the stress relaxation layer and propylene with 2 to 20 carbon atoms. Of these, a copolymer with an α-olefin (excluding propylene) is preferred.
The proportion of the structural units derived from propylene in the propylene-based polymer is preferably 50 mol% to 100 mol%, based on 100 mol% of all the structural units in the propylene-based polymer, and preferably 60 mol%. More preferably, it is ˜99 mol%. When the ratio of the structural unit derived from propylene in the propylene-based polymer is within the above range, better heat resistance and impact properties are obtained.
ブテン系重合体が共重合体である場合、該共重合体としては、応力緩和層との間で層間剥離がより生じ難い表面層を形成することができる点において、1-ブテンと1-ブテンを除くオレフィンとの共重合体であることが好ましい。
ブテン系共重合体中の1-ブテンに由来する構成単位の比率は、ブテン系重合体中の全構成単位を100モル%とした場合に、50モル%~100モル%であることが好ましく、70モル%~99モル%であることがより好ましい。ブテン系重合体中の1-ブテンに由来する構成単位の比率が上記範囲内であると、衝撃性がより良い結果となる。 When the butene polymer is a copolymer, the copolymer can form a surface layer in which delamination is less likely to occur between the stress relaxation layer and 1-butene and 1-butene. It is preferable that it is a copolymer with an olefin excluding.
The proportion of structural units derived from 1-butene in the butene-based copolymer is preferably 50 mol% to 100 mol%, assuming that all the structural units in the butene-based polymer are 100 mol%. More preferably, it is 70 mol% to 99 mol%. When the ratio of the structural unit derived from 1-butene in the butene polymer is within the above range, the impact property is better.
ブテン系共重合体中の1-ブテンに由来する構成単位の比率は、ブテン系重合体中の全構成単位を100モル%とした場合に、50モル%~100モル%であることが好ましく、70モル%~99モル%であることがより好ましい。ブテン系重合体中の1-ブテンに由来する構成単位の比率が上記範囲内であると、衝撃性がより良い結果となる。 When the butene polymer is a copolymer, the copolymer can form a surface layer in which delamination is less likely to occur between the stress relaxation layer and 1-butene and 1-butene. It is preferable that it is a copolymer with an olefin excluding.
The proportion of structural units derived from 1-butene in the butene-based copolymer is preferably 50 mol% to 100 mol%, assuming that all the structural units in the butene-based polymer are 100 mol%. More preferably, it is 70 mol% to 99 mol%. When the ratio of the structural unit derived from 1-butene in the butene polymer is within the above range, the impact property is better.
本発明の第1の態様における熱可塑性樹脂Cのメルトフローレート(MFR)は、フィルム成形性及びフィルムの機械物性の観点から、0.1g/10min~100g/10minであることが好ましく、0.5g/10min~50g/10minであることがより好ましい。
上記熱可塑性樹脂Cのメルトフローレート(MFR)は、ASTM D1238に準拠して、測定される値である。具体的には、プロピレン系重合体のメルトフローレート(MFR)は、230℃で2.16kgの荷重にて測定される値であり、エチレン系重合体及びブテン系重合体のメルトフローレート(MFR)は、190℃で2.16kgの荷重にて測定される値である。 The melt flow rate (MFR) of the thermoplastic resin C in the first embodiment of the present invention is preferably 0.1 g / 10 min to 100 g / 10 min from the viewpoint of film moldability and mechanical properties of the film. More preferably, it is 5 g / 10 min to 50 g / 10 min.
The melt flow rate (MFR) of the thermoplastic resin C is a value measured in accordance with ASTM D1238. Specifically, the melt flow rate (MFR) of the propylene polymer is a value measured at 230 ° C. with a load of 2.16 kg, and the melt flow rate (MFR) of the ethylene polymer and the butene polymer. ) Is a value measured at 190 ° C. with a load of 2.16 kg.
上記熱可塑性樹脂Cのメルトフローレート(MFR)は、ASTM D1238に準拠して、測定される値である。具体的には、プロピレン系重合体のメルトフローレート(MFR)は、230℃で2.16kgの荷重にて測定される値であり、エチレン系重合体及びブテン系重合体のメルトフローレート(MFR)は、190℃で2.16kgの荷重にて測定される値である。 The melt flow rate (MFR) of the thermoplastic resin C in the first embodiment of the present invention is preferably 0.1 g / 10 min to 100 g / 10 min from the viewpoint of film moldability and mechanical properties of the film. More preferably, it is 5 g / 10 min to 50 g / 10 min.
The melt flow rate (MFR) of the thermoplastic resin C is a value measured in accordance with ASTM D1238. Specifically, the melt flow rate (MFR) of the propylene polymer is a value measured at 230 ° C. with a load of 2.16 kg, and the melt flow rate (MFR) of the ethylene polymer and the butene polymer. ) Is a value measured at 190 ° C. with a load of 2.16 kg.
本発明の第1の態様における熱可塑性樹脂Cの密度は、軽量性の観点から、820kg/m3~960kg/m3であることが好ましく、830kg/m3~940kg/m3であることがより好ましく、860kg/m3~940kg/m3であることが更に好ましい。
上記熱可塑性樹脂Cの密度は、JIS K7112(密度勾配管法)に準拠して、測定される値である。 The density of the thermoplastic resin C in the first aspect of the present invention, from the viewpoint of light weight, is preferably from 820kg / m 3 ~ 960kg / m 3, it is 830kg / m 3 ~ 940kg / m 3 More preferred is 860 kg / m 3 to 940 kg / m 3 .
The density of the thermoplastic resin C is a value measured according to JIS K7112 (density gradient tube method).
上記熱可塑性樹脂Cの密度は、JIS K7112(密度勾配管法)に準拠して、測定される値である。 The density of the thermoplastic resin C in the first aspect of the present invention, from the viewpoint of light weight, is preferably from 820kg / m 3 ~ 960kg / m 3, it is 830kg / m 3 ~ 940kg / m 3 More preferred is 860 kg / m 3 to 940 kg / m 3 .
The density of the thermoplastic resin C is a value measured according to JIS K7112 (density gradient tube method).
表面層における熱可塑性樹脂Cの含有量は、表面層の全質量に対して、50質量%~100質量%であることが好ましく、70質量%~100質量%であることがより好ましい。
熱可塑性樹脂Cの含有量が、表面層の全質量に対して、上記範囲内であると、応力緩和層との間で層間剥離がより生じ難い表面層を形成することができる。 The content of the thermoplastic resin C in the surface layer is preferably 50% by mass to 100% by mass, and more preferably 70% by mass to 100% by mass with respect to the total mass of the surface layer.
When the content of the thermoplastic resin C is within the above range with respect to the total mass of the surface layer, a surface layer in which delamination is less likely to occur with the stress relaxation layer can be formed.
熱可塑性樹脂Cの含有量が、表面層の全質量に対して、上記範囲内であると、応力緩和層との間で層間剥離がより生じ難い表面層を形成することができる。 The content of the thermoplastic resin C in the surface layer is preferably 50% by mass to 100% by mass, and more preferably 70% by mass to 100% by mass with respect to the total mass of the surface layer.
When the content of the thermoplastic resin C is within the above range with respect to the total mass of the surface layer, a surface layer in which delamination is less likely to occur with the stress relaxation layer can be formed.
本発明の第1の態様に係る積層体における表面層は、本発明の第1の態様の目的を損なわない範囲内において、上述の熱可塑性樹脂C以外のその他の樹脂を含んでいてもよい。
その他の樹脂としては、例えば、スチレン系共重合体、エチレン・酢酸ビニル共重合体(EVA)等が挙げられる。 The surface layer in the laminate according to the first aspect of the present invention may contain other resins other than the above-mentioned thermoplastic resin C within a range not impairing the object of the first aspect of the present invention.
Examples of other resins include styrene copolymers and ethylene / vinyl acetate copolymers (EVA).
その他の樹脂としては、例えば、スチレン系共重合体、エチレン・酢酸ビニル共重合体(EVA)等が挙げられる。 The surface layer in the laminate according to the first aspect of the present invention may contain other resins other than the above-mentioned thermoplastic resin C within a range not impairing the object of the first aspect of the present invention.
Examples of other resins include styrene copolymers and ethylene / vinyl acetate copolymers (EVA).
〔その他の層〕
本発明の積層体は、本発明の第1の態様の目的を損なわない範囲内において、応力緩和層及び表面層以外のその他の層を含んでいてもよい。 [Other layers]
The laminated body of the present invention may contain other layers other than the stress relaxation layer and the surface layer within a range not impairing the object of the first aspect of the present invention.
本発明の積層体は、本発明の第1の態様の目的を損なわない範囲内において、応力緩和層及び表面層以外のその他の層を含んでいてもよい。 [Other layers]
The laminated body of the present invention may contain other layers other than the stress relaxation layer and the surface layer within a range not impairing the object of the first aspect of the present invention.
〔積層体の製造方法〕
本発明の第1の態様に係る積層体の製造方法は、特に限定されるものではない。本発明の第1の態様に係る積層体の製造方法としては、応力緩和層の構成成分として含まれる4-メチル-1-ペンテン系共重合体と、表面層の構成成分として含まれる熱可塑性樹脂Cと、が界面付近で混ざり合うことで接着し、積層体が形成される方法が好ましい。このような方法としては、例えば、溶融させた樹脂を積層する共押出法、予め形成された樹脂フィルムを熱融着させる熱融着法等が挙げられ、応力緩和層と表面層との層間接着性がより高く、応力緩和層と表面層との間で層間剥離がより生じ難い積層体を形成することができる点において、溶融させた樹脂を積層する共押出法がより好ましい。 [Method for producing laminate]
The manufacturing method of the laminated body which concerns on the 1st aspect of this invention is not specifically limited. The method for producing a laminate according to the first aspect of the present invention includes a 4-methyl-1-pentene copolymer contained as a constituent component of a stress relaxation layer and a thermoplastic resin contained as a constituent component of a surface layer. A method in which C and C are bonded together by mixing in the vicinity of the interface to form a laminate is preferable. Examples of such a method include a co-extrusion method in which a molten resin is laminated, a heat fusion method in which a previously formed resin film is thermally fused, and an interlayer adhesion between a stress relaxation layer and a surface layer. The coextrusion method of laminating a molten resin is more preferable in that a laminate having higher properties and less delamination between the stress relaxation layer and the surface layer can be formed.
本発明の第1の態様に係る積層体の製造方法は、特に限定されるものではない。本発明の第1の態様に係る積層体の製造方法としては、応力緩和層の構成成分として含まれる4-メチル-1-ペンテン系共重合体と、表面層の構成成分として含まれる熱可塑性樹脂Cと、が界面付近で混ざり合うことで接着し、積層体が形成される方法が好ましい。このような方法としては、例えば、溶融させた樹脂を積層する共押出法、予め形成された樹脂フィルムを熱融着させる熱融着法等が挙げられ、応力緩和層と表面層との層間接着性がより高く、応力緩和層と表面層との間で層間剥離がより生じ難い積層体を形成することができる点において、溶融させた樹脂を積層する共押出法がより好ましい。 [Method for producing laminate]
The manufacturing method of the laminated body which concerns on the 1st aspect of this invention is not specifically limited. The method for producing a laminate according to the first aspect of the present invention includes a 4-methyl-1-pentene copolymer contained as a constituent component of a stress relaxation layer and a thermoplastic resin contained as a constituent component of a surface layer. A method in which C and C are bonded together by mixing in the vicinity of the interface to form a laminate is preferable. Examples of such a method include a co-extrusion method in which a molten resin is laminated, a heat fusion method in which a previously formed resin film is thermally fused, and an interlayer adhesion between a stress relaxation layer and a surface layer. The coextrusion method of laminating a molten resin is more preferable in that a laminate having higher properties and less delamination between the stress relaxation layer and the surface layer can be formed.
本発明の第1の態様に係る積層体における表面層と応力緩和層との厚さの比(表面層の厚さ/応力緩和層の厚さ)は、1/99~60/40であることが好ましく、10/90~60/40であることがより好ましい。
In the laminate according to the first aspect of the present invention, the thickness ratio of the surface layer to the stress relaxation layer (the thickness of the surface layer / the thickness of the stress relaxation layer) is 1/99 to 60/40. Is preferable, and 10/90 to 60/40 is more preferable.
本発明の第1の態様に係る積層体の厚さは、取り扱い性が容易である点において、20μm~500μmであることが好ましく、20μm~350μmであることがより好ましく、50μm~300μmであることが更に好ましい。
The thickness of the laminate according to the first aspect of the present invention is preferably 20 μm to 500 μm, more preferably 20 μm to 350 μm, and more preferably 50 μm to 300 μm in terms of easy handling. Is more preferable.
[半導体用表面保護フィルム]
本発明の第1の態様に係る半導体用表面保護フィルム(以下、単に「表面保護フィルム」ともいう。)は、半導体基板の研削時に該半導体基板の回路形成面を保護するものであり、本発明の第1の態様に係る応力緩和性フィルムを含む。本発明の第1の態様に係る表面保護フィルムは、本発明の第1の態様に係る応力緩和性フィルムのみからなるものであってもよいし、本発明の第1の態様に係る応力緩和性フィルムと他の層との積層体であってもよい。他の層は、本発明の第1の態様に係る応力緩和性フィルムの効果を損なわない範囲で、適宜、選択することが望ましい。
本発明の第1の態様に係る表面保護フィルムは、上述の本発明の第1の態様に係る応力緩和性フィルムを含むため、応力緩和性及び耐衝撃性に優れる。よって、本発明の第1の態様に係る表面保護フィルムによれば、半導体基板の回路形成面の傷付きや破損を効果的に防止することができる。 [Surface protective film for semiconductors]
The surface protective film for a semiconductor according to the first aspect of the present invention (hereinafter also simply referred to as “surface protective film”) protects the circuit forming surface of the semiconductor substrate during grinding of the semiconductor substrate. The stress relaxation film which concerns on the 1st aspect of is included. The surface protective film according to the first aspect of the present invention may consist only of the stress relaxation film according to the first aspect of the present invention, or the stress relaxation property according to the first aspect of the present invention. It may be a laminate of a film and other layers. It is desirable that other layers be appropriately selected within a range that does not impair the effects of the stress relaxation film according to the first aspect of the present invention.
Since the surface protective film according to the first aspect of the present invention includes the above-described stress relaxation film according to the first aspect of the present invention, the surface protective film is excellent in stress relaxation and impact resistance. Therefore, according to the surface protective film which concerns on the 1st aspect of this invention, the damage | wound and damage of the circuit formation surface of a semiconductor substrate can be prevented effectively.
本発明の第1の態様に係る半導体用表面保護フィルム(以下、単に「表面保護フィルム」ともいう。)は、半導体基板の研削時に該半導体基板の回路形成面を保護するものであり、本発明の第1の態様に係る応力緩和性フィルムを含む。本発明の第1の態様に係る表面保護フィルムは、本発明の第1の態様に係る応力緩和性フィルムのみからなるものであってもよいし、本発明の第1の態様に係る応力緩和性フィルムと他の層との積層体であってもよい。他の層は、本発明の第1の態様に係る応力緩和性フィルムの効果を損なわない範囲で、適宜、選択することが望ましい。
本発明の第1の態様に係る表面保護フィルムは、上述の本発明の第1の態様に係る応力緩和性フィルムを含むため、応力緩和性及び耐衝撃性に優れる。よって、本発明の第1の態様に係る表面保護フィルムによれば、半導体基板の回路形成面の傷付きや破損を効果的に防止することができる。 [Surface protective film for semiconductors]
The surface protective film for a semiconductor according to the first aspect of the present invention (hereinafter also simply referred to as “surface protective film”) protects the circuit forming surface of the semiconductor substrate during grinding of the semiconductor substrate. The stress relaxation film which concerns on the 1st aspect of is included. The surface protective film according to the first aspect of the present invention may consist only of the stress relaxation film according to the first aspect of the present invention, or the stress relaxation property according to the first aspect of the present invention. It may be a laminate of a film and other layers. It is desirable that other layers be appropriately selected within a range that does not impair the effects of the stress relaxation film according to the first aspect of the present invention.
Since the surface protective film according to the first aspect of the present invention includes the above-described stress relaxation film according to the first aspect of the present invention, the surface protective film is excellent in stress relaxation and impact resistance. Therefore, according to the surface protective film which concerns on the 1st aspect of this invention, the damage | wound and damage of the circuit formation surface of a semiconductor substrate can be prevented effectively.
〔基材層〕
本発明の第1の態様に係る表面保護フィルムが基材層を含む場合には、該基材層は、弾性率が高いことが好ましい。基材層は、通常、上述した本発明の第1の態様に係る応力緩和性フィルムの一方の面に積層される。本発明の第1の態様に係る表面保護フィルムは、基材層を含むことで、その変形が防止される。
基材層の弾性率は、周波数1.6Hzにて測定される25℃での貯蔵弾性率G’(25)が、5×107Pa以上であることが好ましく、1×108Pa~2×1010Paであることがより好ましい。
基材層の貯蔵弾性率G’(25)が5×107Pa以上であると、半導体基板の研削中又は研削後に、表面保護フィルムに起因する半導体基板の変形、及び該変形に伴う半導体基板の割れが生じ難い。 [Base material layer]
When the surface protection film according to the first aspect of the present invention includes a base material layer, the base material layer preferably has a high elastic modulus. The base material layer is usually laminated on one surface of the stress relaxation film according to the first aspect of the present invention described above. The surface protection film according to the first aspect of the present invention includes a base material layer, thereby preventing deformation thereof.
As for the elastic modulus of the base material layer, the storage elastic modulus G ′ (25) at 25 ° C. measured at a frequency of 1.6 Hz is preferably 5 × 10 7 Pa or more, and 1 × 10 8 Pa to 2 It is more preferable that it is × 10 10 Pa.
When the storage elastic modulus G ′ (25) of the base material layer is 5 × 10 7 Pa or more, the semiconductor substrate is deformed due to the surface protective film during or after grinding of the semiconductor substrate, and the semiconductor substrate accompanying the deformation It is difficult for cracks to occur.
本発明の第1の態様に係る表面保護フィルムが基材層を含む場合には、該基材層は、弾性率が高いことが好ましい。基材層は、通常、上述した本発明の第1の態様に係る応力緩和性フィルムの一方の面に積層される。本発明の第1の態様に係る表面保護フィルムは、基材層を含むことで、その変形が防止される。
基材層の弾性率は、周波数1.6Hzにて測定される25℃での貯蔵弾性率G’(25)が、5×107Pa以上であることが好ましく、1×108Pa~2×1010Paであることがより好ましい。
基材層の貯蔵弾性率G’(25)が5×107Pa以上であると、半導体基板の研削中又は研削後に、表面保護フィルムに起因する半導体基板の変形、及び該変形に伴う半導体基板の割れが生じ難い。 [Base material layer]
When the surface protection film according to the first aspect of the present invention includes a base material layer, the base material layer preferably has a high elastic modulus. The base material layer is usually laminated on one surface of the stress relaxation film according to the first aspect of the present invention described above. The surface protection film according to the first aspect of the present invention includes a base material layer, thereby preventing deformation thereof.
As for the elastic modulus of the base material layer, the storage elastic modulus G ′ (25) at 25 ° C. measured at a frequency of 1.6 Hz is preferably 5 × 10 7 Pa or more, and 1 × 10 8 Pa to 2 It is more preferable that it is × 10 10 Pa.
When the storage elastic modulus G ′ (25) of the base material layer is 5 × 10 7 Pa or more, the semiconductor substrate is deformed due to the surface protective film during or after grinding of the semiconductor substrate, and the semiconductor substrate accompanying the deformation It is difficult for cracks to occur.
基材層は、所望の形状に成形することができ、かつ、本発明の第1の態様に係る応力緩和性フィルムに含まれる熱可塑性樹脂A及び熱可塑性樹脂Bとの親和性が良好な樹脂からなることが好ましい。例えば、基材層は、ポリエチレン、エチレン-酢酸ビニル共重合体、ポリプロピレン、ポリエチレンテレフタレート等からなる層であることが好ましい。
The base material layer can be formed into a desired shape and has good affinity with the thermoplastic resin A and the thermoplastic resin B contained in the stress relaxation film according to the first aspect of the present invention. Preferably it consists of. For example, the base material layer is preferably a layer made of polyethylene, ethylene-vinyl acetate copolymer, polypropylene, polyethylene terephthalate, or the like.
本発明の第1の態様に係る表面保護フィルムが基材層を含む場合、該基材層の厚さは、20μm~100μmであることが好ましく、38μm~50μmであることがより好ましい。基材層の厚さが、上記範囲内であると、半導体基板の研削中又は研削後に、表面保護フィルムに起因する半導体基板の変形、及び該変形に伴う半導体基板の割れが生じ難く、また、表面保護フィルムの取り扱い性が良好である。
When the surface protective film according to the first aspect of the present invention includes a base material layer, the thickness of the base material layer is preferably 20 μm to 100 μm, and more preferably 38 μm to 50 μm. When the thickness of the base material layer is within the above range, during or after grinding of the semiconductor substrate, deformation of the semiconductor substrate caused by the surface protective film, and cracking of the semiconductor substrate due to the deformation hardly occur, The handleability of the surface protective film is good.
〔粘着層〕
本発明の第1の態様に係る表面保護フィルムは、半導体基板の回路形成面に貼着するための粘着層を含んでいることが好ましい。本発明の第1の態様に係る表面保護フィルムが基材層と粘着層とを含む場合、該粘着層は、本発明の第1の態様に係る応力緩和性フィルムの基材層が存在する側とは反対側に含まれていることが好ましい。 (Adhesive layer)
The surface protective film according to the first aspect of the present invention preferably includes an adhesive layer for adhering to the circuit forming surface of the semiconductor substrate. When the surface protective film according to the first aspect of the present invention includes a base material layer and an adhesive layer, the adhesive layer is on the side where the base material layer of the stress relaxation film according to the first aspect of the present invention is present. It is preferable that it is contained on the opposite side.
本発明の第1の態様に係る表面保護フィルムは、半導体基板の回路形成面に貼着するための粘着層を含んでいることが好ましい。本発明の第1の態様に係る表面保護フィルムが基材層と粘着層とを含む場合、該粘着層は、本発明の第1の態様に係る応力緩和性フィルムの基材層が存在する側とは反対側に含まれていることが好ましい。 (Adhesive layer)
The surface protective film according to the first aspect of the present invention preferably includes an adhesive layer for adhering to the circuit forming surface of the semiconductor substrate. When the surface protective film according to the first aspect of the present invention includes a base material layer and an adhesive layer, the adhesive layer is on the side where the base material layer of the stress relaxation film according to the first aspect of the present invention is present. It is preferable that it is contained on the opposite side.
粘着層は、粘着剤等からなる層であってもよい。粘着層を構成する粘着剤は、特に限定されるものではなく、例えば、天然ゴム系;合成ゴム系;シリコーンゴム系;アクリル酸アルキルエステル、メタクリル酸アルキルエステル等のアクリル系の粘着剤等が挙げられる。これらの中でも、粘着剤は、粘着性等の観点からアクリル系の粘着剤が好ましい。
The adhesive layer may be a layer made of an adhesive or the like. The pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer is not particularly limited, and examples thereof include natural rubber-based; synthetic rubber-based; silicone rubber-based; acrylic pressure-sensitive adhesives such as acrylic acid alkyl esters and methacrylic acid alkyl esters. It is done. Among these, the adhesive is preferably an acrylic adhesive from the viewpoint of adhesiveness.
粘着層を構成する粘着剤は、放射線硬化型、熱硬化型、加熱発泡型等の一定条件により粘着力が低下する粘着力スイッチング機能を有する粘着剤、又は該スイッチング機能を有さない粘着剤のいずれであってもよい。
本発明の第1の態様に係る表面保護フィルムでは、回路形成面から容易に剥離することができ、回路形成面を損傷するおそれが少ないという観点から、粘着剤は、粘着力スイッチング機能を有するアクリル系の紫外線硬化型粘着剤が好ましい。 The pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer is a pressure-sensitive adhesive having a pressure-sensitive adhesive switching function in which the pressure-sensitive adhesive force is reduced depending on certain conditions such as a radiation-curing type, a heat-curing type, and a heat-foaming type. Either may be sufficient.
In the surface protective film according to the first aspect of the present invention, the adhesive is an acrylic having an adhesive force switching function from the viewpoint that it can be easily peeled off from the circuit forming surface and there is little risk of damaging the circuit forming surface. A UV curable pressure sensitive adhesive is preferred.
本発明の第1の態様に係る表面保護フィルムでは、回路形成面から容易に剥離することができ、回路形成面を損傷するおそれが少ないという観点から、粘着剤は、粘着力スイッチング機能を有するアクリル系の紫外線硬化型粘着剤が好ましい。 The pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer is a pressure-sensitive adhesive having a pressure-sensitive adhesive switching function in which the pressure-sensitive adhesive force is reduced depending on certain conditions such as a radiation-curing type, a heat-curing type, and a heat-foaming type. Either may be sufficient.
In the surface protective film according to the first aspect of the present invention, the adhesive is an acrylic having an adhesive force switching function from the viewpoint that it can be easily peeled off from the circuit forming surface and there is little risk of damaging the circuit forming surface. A UV curable pressure sensitive adhesive is preferred.
アクリル系の紫外線硬化型粘着剤としては、例えば、分子中に光重合性炭素-炭素二重結合が導入されたアクリル酸エステル系共重合体100質量部と、分子内に光重合性炭素-炭素二重結合を2個以上有する低分子量化合物0.1質量部~20質量部と、光開始剤5~15質量部と、を含む粘着剤等が挙げられる。
Examples of the acrylic UV curable pressure-sensitive adhesive include, for example, 100 parts by mass of an acrylic ester copolymer in which a photopolymerizable carbon-carbon double bond is introduced in the molecule, and a photopolymerizable carbon-carbon in the molecule. Examples thereof include a pressure-sensitive adhesive containing 0.1 to 20 parts by mass of a low molecular weight compound having two or more double bonds and 5 to 15 parts by mass of a photoinitiator.
アクリル系の紫外線硬化型粘着剤に含まれる、アクリル酸エステル系共重合体としては、例えば、エチレン性二重結合を有するモノマー、及び反応性官能基を有する共重合性モノマーを共重合した共重合体と、上記反応性官能基と反応し得る基を有する光重合性炭素-炭素二重結合を含むモノマーと、を反応させた化合物等が挙げられる。
Examples of the acrylic ester copolymer contained in the acrylic UV curable pressure-sensitive adhesive include a copolymer obtained by copolymerizing a monomer having an ethylenic double bond and a copolymerizable monomer having a reactive functional group. Examples thereof include compounds obtained by reacting a combination with a monomer containing a photopolymerizable carbon-carbon double bond having a group capable of reacting with the reactive functional group.
アクリル酸エステル系共重合体を得るための、共重合体に含まれるエチレン性二重結合を有するモノマーとしては、例えば、メタクリル酸メチル、アクリル酸-2-エチルヘキシル、アクリル酸ブチル、アクリル酸エチル等のアクリル酸アルキルエステル及びメタクリル酸アルキルエステルモノマー;酢酸ビニル等のビニルエステル;アクリロニトリル;アクリアミド;スチレン;等のエチレン性二重結合を有するモノマーなどが挙げられる。
Examples of the monomer having an ethylenic double bond contained in the copolymer for obtaining an acrylic ester copolymer include, for example, methyl methacrylate, 2-ethylhexyl acrylate, butyl acrylate, ethyl acrylate, etc. Acrylic acid alkyl ester and methacrylic acid alkyl ester monomers; vinyl esters such as vinyl acetate; monomers having an ethylenic double bond such as acrylonitrile; acrylamide; styrene;
また、アクリル酸エステル系共重合体を得るための、共重合体に含まれる反応性官能基を有する共重合性モノマーとしては、例えば、(メタ)アクリル酸、マレイン酸、2-ヒドロキシエチル(メタ)アクリレート、グリシジル(メタ)アクリレート、N-メチロール(メタ)アクリルアミド等が挙げられる。これらのうち1種のみを、上記エチレン性二重結合を有するモノマーと重合させてもよく、これらの2種以上を、上記エチレン性二重結合を有するモノマーと重合させてもよい。
Examples of the copolymerizable monomer having a reactive functional group contained in the copolymer for obtaining an acrylic ester copolymer include (meth) acrylic acid, maleic acid, 2-hydroxyethyl (meta ) Acrylate, glycidyl (meth) acrylate, N-methylol (meth) acrylamide and the like. Only one of these may be polymerized with the monomer having an ethylenic double bond, and two or more of these may be polymerized with the monomer having an ethylenic double bond.
アクリル酸エステル系共重合体を得る場合における、エチレン性二重結合を有するモノマーと、反応性官能基を有する共重合性モノマーとの重合比は、70質量%~99質量%:30質量%~1質量%であることが好ましく、80質量%~95質量%:20質量%~5質量%であることがより好ましい。
In the case of obtaining an acrylic ester copolymer, the polymerization ratio of the monomer having an ethylenic double bond and the copolymerizable monomer having a reactive functional group is 70% by mass to 99% by mass: 30% by mass to It is preferably 1% by mass, more preferably 80% by mass to 95% by mass: 20% by mass to 5% by mass.
また、アクリル酸エステル系共重合体を得るための、光重合性炭素-炭素二重結合を含むモノマーは、特に限定されるものではなく、共重合体に含まれる反応性官能基(例えば、カルボキシル基、ヒドロキシル基、グリシジル基等)と反応し得る基を有する、光重合性炭素-炭素二重結合を含む光反応性モノマーであればよい。
In addition, a monomer containing a photopolymerizable carbon-carbon double bond for obtaining an acrylate copolymer is not particularly limited, and a reactive functional group (for example, carboxyl group) contained in the copolymer is not limited. Any photoreactive monomer containing a photopolymerizable carbon-carbon double bond having a group capable of reacting with a group, a hydroxyl group, a glycidyl group, etc.
共重合体に含まれる反応性官能基と、光反応性モノマーの反応性官能基と反応し得る基と、の組み合わせの例としては、カルボキシル基とエポキシ基、カルボキシル基とアジリジル基、水酸基とイソシアネート基等が挙げられる。このような組み合わせの中でも、容易に付加反応が起こる組み合わせが望ましい。また、光反応性モノマーの反応性官能基と反応し得る基は、共重合体の反応性官能基と付加反応する基に限定されず、共重合体の反応性官能基と縮合反応する基であってもよい。
Examples of combinations of the reactive functional group contained in the copolymer and the group capable of reacting with the reactive functional group of the photoreactive monomer include a carboxyl group and an epoxy group, a carboxyl group and an aziridyl group, and a hydroxyl group and an isocyanate. Groups and the like. Among such combinations, a combination that easily causes an addition reaction is desirable. In addition, the group capable of reacting with the reactive functional group of the photoreactive monomer is not limited to a group that undergoes an addition reaction with the reactive functional group of the copolymer, and is a group that undergoes a condensation reaction with the reactive functional group of the copolymer. There may be.
アクリル系の紫外線硬化型粘着剤に含まれる、分子中に光重合性炭素-炭素二重結合を2個以上有する低分子量化合物としては、例えば、トリプロピレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、テトラメチロールメタンテトラアクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールモノヒドロキシペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられる。低分子量化合物は、アクリル系の紫外線硬化型粘着剤に、1種のみが含まれていてもよく、2種以上含まれていてもよい。
ここでいう「低分子量化合物」とは、分子量が10,000以下の化合物を指し、上記低分子量化合物の分子量は、より好ましくは5,000以下である。 Examples of the low molecular weight compound having two or more photopolymerizable carbon-carbon double bonds in the molecule contained in the acrylic UV curable pressure-sensitive adhesive include tripropylene glycol di (meth) acrylate and trimethylolpropane tri (Meth) acrylate, tetramethylolmethane tetraacrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol monohydroxypenta (meth) acrylate, dipentaerythritol hexa (meth) acrylate and the like. Only one type of low molecular weight compound may be contained in the acrylic ultraviolet curable pressure-sensitive adhesive, or two or more types may be contained.
The “low molecular weight compound” as used herein refers to a compound having a molecular weight of 10,000 or less, and the molecular weight of the low molecular weight compound is more preferably 5,000 or less.
ここでいう「低分子量化合物」とは、分子量が10,000以下の化合物を指し、上記低分子量化合物の分子量は、より好ましくは5,000以下である。 Examples of the low molecular weight compound having two or more photopolymerizable carbon-carbon double bonds in the molecule contained in the acrylic UV curable pressure-sensitive adhesive include tripropylene glycol di (meth) acrylate and trimethylolpropane tri (Meth) acrylate, tetramethylolmethane tetraacrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol monohydroxypenta (meth) acrylate, dipentaerythritol hexa (meth) acrylate and the like. Only one type of low molecular weight compound may be contained in the acrylic ultraviolet curable pressure-sensitive adhesive, or two or more types may be contained.
The “low molecular weight compound” as used herein refers to a compound having a molecular weight of 10,000 or less, and the molecular weight of the low molecular weight compound is more preferably 5,000 or less.
アクリル系の紫外線硬化型粘着剤に含まれる光開始剤としては、例えば、ベンゾイン、イソプロピルベンゾインエーテル、イソブチルベンゾインエーテル、ベンゾフェノン、ミヒラーケトン、クロロチオキサントン、ドデシルチオキサントン、ジメチルチオキサントン、ジエチルチオキサントン、アセトフェノンジエチルケタール、ベンジルジメチルケタール、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン等が挙げられる。光開始剤は、紫外線硬化型粘着剤に、1種のみが含まれていてもよく、2種以上含まれていてもよい。紫外線硬化型粘着剤中の光開始剤の含有量は、アクリル酸エステル系共重合体100質量部に対して、5質量部~15質量部であることが好ましく、5質量部~10質量部であることがより好ましい。
Examples of the photoinitiator contained in the acrylic ultraviolet curable adhesive include, for example, benzoin, isopropyl benzoin ether, isobutyl benzoin ether, benzophenone, Michler ketone, chlorothioxanthone, dodecylthioxanthone, dimethylthioxanthone, diethylthioxanthone, acetophenone diethyl ketal, benzyl Examples include dimethyl ketal, 1-hydroxycyclohexyl phenyl ketone, and 2-hydroxy-2-methyl-1-phenylpropan-1-one. As for a photoinitiator, only 1 type may be contained in the ultraviolet curing adhesive, and 2 or more types may be contained. The content of the photoinitiator in the ultraviolet curable pressure-sensitive adhesive is preferably 5 parts by mass to 15 parts by mass with respect to 100 parts by mass of the acrylate copolymer, and 5 parts by mass to 10 parts by mass. More preferably.
アクリル系の紫外線硬化型粘着剤は、架橋剤を含んでいてもよい。架橋剤としては、例えば、ソルビトールポリグリシジルエーテル、ポリーグリセロールポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、ジグリセロールポリグリシジルエーテル等のエポキシ系化合物;テトラメチロールメタン-トリ-β-アジリジニルプロピオネート、トリメチロールプロパン-トリ-β-アジリジニルプロピオネート、N,N’-ジフェニルメタン-4,4’-ビス(1-アジリジンカルボキシアミド)、N,N’-ヘキサメチレン-1,6-ビス(1-アジリジンカルボキシアミド)等のアジリジン系化合物;テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、ポリイソシアネート等のイソシアネート系化合物などが挙げられる。
The acrylic UV curable pressure-sensitive adhesive may contain a crosslinking agent. Examples of the crosslinking agent include epoxy compounds such as sorbitol polyglycidyl ether, polyglycerol polyglycidyl ether, pentaerythritol polyglycidyl ether, diglycerol polyglycidyl ether; tetramethylolmethane-tri-β-aziridinyl propionate, Trimethylolpropane-tri-β-aziridinylpropionate, N, N′-diphenylmethane-4,4′-bis (1-aziridinecarboxamide), N, N′-hexamethylene-1,6-bis ( Aziridine compounds such as 1-aziridinecarboxyamide); isocyanate compounds such as tetramethylene diisocyanate, hexamethylene diisocyanate, and polyisocyanate.
アクリル系の紫外線硬化型粘着剤は、ロジン樹脂系、テルペン樹脂系等のタッキファイヤー、各種界面活性剤等を含んでいてもよい。これらによれば、アクリル系の紫外線硬化型粘着剤の粘着特性を調整することができる。
The acrylic UV curable adhesive may contain rosin resin-based, terpene resin-based tackifiers, various surfactants, and the like. According to these, it is possible to adjust the adhesive properties of the acrylic ultraviolet curable adhesive.
本発明の第1の態様に係る表面保護フィルムが粘着層を含む場合、該粘着層の厚さは、特に限定されるものではなく、3μm~100μmであることが好ましく、10~100μmであることがより好ましい。粘着層の厚さが、上記範囲内であると、十分な粘着性を得ることができ、また、本発明の第1の態様に係る応力緩和性フィルムの効果が損なわれ難い。
When the surface protective film according to the first aspect of the present invention includes an adhesive layer, the thickness of the adhesive layer is not particularly limited, and is preferably 3 μm to 100 μm, and preferably 10 to 100 μm. Is more preferable. When the thickness of the adhesive layer is within the above range, sufficient adhesiveness can be obtained, and the effect of the stress relaxation film according to the first aspect of the present invention is hardly impaired.
粘着層を含む本発明の第1の態様に係る表面保護フィルムの粘着力は、SUS304-BA板に対する粘着力に換算して0.1N/25mm~5N/25mmであることが好ましく、0.1N/25mm~3N/25mmであることがより好ましい。表面保護フィルムの粘着力が、上記範囲内であると、表面保護フィルムを半導体基板の回路形成面に対して十分に貼着することができ、また、回路形成面から表面保護フィルムを剥離する際に、半導体基板の破損が生じ難く、さらに、半導体基板の回路形成面から表面保護フィルムを剥離した後に、回路形成面に粘着層が残り難い。
なお、粘着剤が、放射線硬化型、熱硬化型、加熱発泡型等の粘着力スイッチング機能を有する場合には、放射線照射等により粘着力をスイッチングさせて低下させた後の粘着力が、上記範囲内にあることが好ましい。 The adhesive strength of the surface protective film according to the first aspect of the present invention including the adhesive layer is preferably 0.1 N / 25 mm to 5 N / 25 mm in terms of adhesive strength to the SUS304-BA plate, / 25 mm to 3 N / 25 mm is more preferable. When the adhesive strength of the surface protective film is within the above range, the surface protective film can be sufficiently adhered to the circuit forming surface of the semiconductor substrate, and when the surface protective film is peeled off from the circuit forming surface In addition, the semiconductor substrate is hardly damaged, and further, the adhesive layer hardly remains on the circuit forming surface after the surface protective film is peeled off from the circuit forming surface of the semiconductor substrate.
In addition, when the adhesive has an adhesive force switching function such as a radiation curable type, a thermosetting type, a heated foam type, etc., the adhesive force after the adhesive force is switched and reduced by radiation irradiation or the like is within the above range. It is preferable to be within.
なお、粘着剤が、放射線硬化型、熱硬化型、加熱発泡型等の粘着力スイッチング機能を有する場合には、放射線照射等により粘着力をスイッチングさせて低下させた後の粘着力が、上記範囲内にあることが好ましい。 The adhesive strength of the surface protective film according to the first aspect of the present invention including the adhesive layer is preferably 0.1 N / 25 mm to 5 N / 25 mm in terms of adhesive strength to the SUS304-BA plate, / 25 mm to 3 N / 25 mm is more preferable. When the adhesive strength of the surface protective film is within the above range, the surface protective film can be sufficiently adhered to the circuit forming surface of the semiconductor substrate, and when the surface protective film is peeled off from the circuit forming surface In addition, the semiconductor substrate is hardly damaged, and further, the adhesive layer hardly remains on the circuit forming surface after the surface protective film is peeled off from the circuit forming surface of the semiconductor substrate.
In addition, when the adhesive has an adhesive force switching function such as a radiation curable type, a thermosetting type, a heated foam type, etc., the adhesive force after the adhesive force is switched and reduced by radiation irradiation or the like is within the above range. It is preferable to be within.
〔その他の層〕
本発明の第1の態様に係る表面保護フィルムは、例えば、本発明の第1の態様に係る応力緩和性フィルムと粘着層との間に、弾性率の低いその他の層を含んでいてもよい。その他の層の弾性率は、本発明の第1の態様に係る応力緩和性フィルムの弾性率よりも低いことが好ましい。その他の層の具体的な弾性率としては、周波数1.6Hzで測定した25℃における貯蔵弾性率G’(25)が、8×106Pa以下であることが好ましく、1×104Pa~8×106Paであることがより好ましい。その他の層の貯蔵弾性率G’(25)が、8×106Pa以下であると、本発明の第1の態様に係る応力緩和性フィルムの効果が損なわれ難い。 [Other layers]
The surface protective film according to the first aspect of the present invention may include, for example, another layer having a low elastic modulus between the stress relaxation film according to the first aspect of the present invention and the adhesive layer. . The elastic modulus of the other layers is preferably lower than the elastic modulus of the stress relaxation film according to the first aspect of the present invention. As specific elastic modulus of the other layers, the storage elastic modulus G ′ (25) at 25 ° C. measured at a frequency of 1.6 Hz is preferably 8 × 10 6 Pa or less, preferably 1 × 10 4 Pa to More preferably, it is 8 × 10 6 Pa. When the storage elastic modulus G ′ (25) of the other layers is 8 × 10 6 Pa or less, the effect of the stress relaxation film according to the first aspect of the present invention is hardly impaired.
本発明の第1の態様に係る表面保護フィルムは、例えば、本発明の第1の態様に係る応力緩和性フィルムと粘着層との間に、弾性率の低いその他の層を含んでいてもよい。その他の層の弾性率は、本発明の第1の態様に係る応力緩和性フィルムの弾性率よりも低いことが好ましい。その他の層の具体的な弾性率としては、周波数1.6Hzで測定した25℃における貯蔵弾性率G’(25)が、8×106Pa以下であることが好ましく、1×104Pa~8×106Paであることがより好ましい。その他の層の貯蔵弾性率G’(25)が、8×106Pa以下であると、本発明の第1の態様に係る応力緩和性フィルムの効果が損なわれ難い。 [Other layers]
The surface protective film according to the first aspect of the present invention may include, for example, another layer having a low elastic modulus between the stress relaxation film according to the first aspect of the present invention and the adhesive layer. . The elastic modulus of the other layers is preferably lower than the elastic modulus of the stress relaxation film according to the first aspect of the present invention. As specific elastic modulus of the other layers, the storage elastic modulus G ′ (25) at 25 ° C. measured at a frequency of 1.6 Hz is preferably 8 × 10 6 Pa or less, preferably 1 × 10 4 Pa to More preferably, it is 8 × 10 6 Pa. When the storage elastic modulus G ′ (25) of the other layers is 8 × 10 6 Pa or less, the effect of the stress relaxation film according to the first aspect of the present invention is hardly impaired.
その他の層としては、例えば、エチレン-酢酸ビニル共重合体、エチレン-アルキルアクリレート共重合体(アルキル基の炭素数1~4)、低密度ポリエチレン、エチレン-α-オレフィン共重合体(α-オレフィンの炭素数3~8)等を含む樹脂層が挙げられる。これら中でも、その他の層は、酢酸ビニル単位の含有量が5質量%~50質量%であるエチレン-酢酸ビニル共重合体を含む樹脂層であることが好ましい。
Other layers include, for example, ethylene-vinyl acetate copolymer, ethylene-alkyl acrylate copolymer (alkyl group having 1 to 4 carbon atoms), low density polyethylene, ethylene-α-olefin copolymer (α-olefin). And a resin layer containing 3 to 8 carbon atoms. Among these, the other layer is preferably a resin layer containing an ethylene-vinyl acetate copolymer having a vinyl acetate unit content of 5% by mass to 50% by mass.
〔表面保護フィルムの製造方法〕
本発明の第1の態様に係る表面保護フィルムの製造方法は、特に限定されるものではない。例えば、本発明の第1の態様に係る応力緩和性フィルム、基材層、及び粘着層を含む表面保護フィルムは、本発明の第1の態様に係る応力緩和性フィルムと基材層とを積層し、さらに、該応力緩和性フィルムの基材層が存在する側とは反対側に粘着層を形成することで得られる。 [Method for producing surface protective film]
The method for producing the surface protective film according to the first aspect of the present invention is not particularly limited. For example, the surface protection film including the stress relaxation film, the base material layer, and the adhesive layer according to the first aspect of the present invention is formed by laminating the stress relaxation film according to the first aspect of the present invention and the base material layer. Furthermore, it is obtained by forming an adhesive layer on the side opposite to the side where the base material layer of the stress relaxation film is present.
本発明の第1の態様に係る表面保護フィルムの製造方法は、特に限定されるものではない。例えば、本発明の第1の態様に係る応力緩和性フィルム、基材層、及び粘着層を含む表面保護フィルムは、本発明の第1の態様に係る応力緩和性フィルムと基材層とを積層し、さらに、該応力緩和性フィルムの基材層が存在する側とは反対側に粘着層を形成することで得られる。 [Method for producing surface protective film]
The method for producing the surface protective film according to the first aspect of the present invention is not particularly limited. For example, the surface protection film including the stress relaxation film, the base material layer, and the adhesive layer according to the first aspect of the present invention is formed by laminating the stress relaxation film according to the first aspect of the present invention and the base material layer. Furthermore, it is obtained by forming an adhesive layer on the side opposite to the side where the base material layer of the stress relaxation film is present.
本発明の第1の態様に係る応力緩和性フィルムと基材層とを積層する方法としては、例えば、本発明の第1の態様に係る応力緩和性フィルムを形成する樹脂と基材層を形成する樹脂とを多層製膜機により押出製膜する方法、本発明の第1の態様に係る応力緩和性フィルム及び基材層を、それぞれカレンダー法、Tダイ押出法、インフレーション法、キャスト法等の公知の方法により成膜した後、これらをドライラミネートにより積層する方法等が挙げられる。後者の場合には、本発明の第1の態様に係る応力緩和性フィルムと基材層との接着力を高めるために、両者の間に新たに接着層を形成してもよいし、本発明の第1の態様に係る応力緩和性フィルム及び基材層のそれぞれに、コロナ放電処理等の易接着処理を施してもよい。
As a method of laminating the stress relaxation film and the base material layer according to the first aspect of the present invention, for example, a resin and a base material layer that form the stress relaxation film according to the first aspect of the present invention are formed. A method of extruding a resin with a multilayer film forming machine, a stress relaxation film and a base material layer according to the first aspect of the present invention, respectively, such as a calendar method, a T-die extrusion method, an inflation method, a casting method, etc. Examples of the method include forming a film by a known method and then laminating these by dry lamination. In the latter case, in order to increase the adhesive force between the stress relaxation film and the base material layer according to the first aspect of the present invention, a new adhesive layer may be formed between the two, or the present invention. Each of the stress relaxation film and the base material layer according to the first aspect may be subjected to easy adhesion treatment such as corona discharge treatment.
粘着層は、上記粘着剤を溶液、エマルション液等の粘着剤塗布液とし、この粘着剤塗布液をロールコーター、コンマコーター、ダイコーター、メイヤーバーコーター、リバースロールコーター、グラビアコーター等の公知の方法で、本発明の第1の態様に係る応力緩和性フィルム上に塗布し、乾燥させることにより形成することができる。粘着層を形成した後は、粘着層の汚染防止のため、粘着層表面に剥離フィルムを貼着することが好ましい。
The pressure-sensitive adhesive layer is a known method such as a roll coater, a comma coater, a die coater, a Mayer bar coater, a reverse roll coater, a gravure coater, etc. Thus, it can be formed by applying on the stress relaxation film according to the first aspect of the present invention and drying. After forming the adhesive layer, it is preferable to stick a release film on the surface of the adhesive layer in order to prevent contamination of the adhesive layer.
剥離フィルムの一方の面に、上述の方法で粘着剤塗布液を塗布し、乾燥させて粘着層を形成した後、該粘着層をドライラミネート法等により、本発明の第1の態様に係る応力緩和性フィルム上に転写してもよい。
After applying the pressure-sensitive adhesive coating solution on one surface of the release film by the above method and drying to form a pressure-sensitive adhesive layer, the stress according to the first aspect of the present invention is applied to the pressure-sensitive adhesive layer by a dry laminating method or the like. You may transfer on a relaxation film.
粘着剤塗布液を乾燥させる際の乾燥条件は、特に限定されるものではなく、一般的には、80℃~300℃の温度範囲において、10秒間~10分間乾燥することが好ましく、80℃~200℃の温度範囲において、15秒間~5分間乾燥することがより好ましい。また、粘着剤塗布液の乾燥終了後、表面保護フィルムを40℃~80℃で5時間~300時間程度加熱してもよい。
The drying conditions for drying the pressure-sensitive adhesive coating solution are not particularly limited, and in general, drying is preferably performed for 10 seconds to 10 minutes in a temperature range of 80 ° C. to 300 ° C., preferably 80 ° C. to It is more preferable to dry in the temperature range of 200 ° C. for 15 seconds to 5 minutes. Further, after the drying of the pressure-sensitive adhesive coating solution, the surface protective film may be heated at 40 to 80 ° C. for about 5 to 300 hours.
本発明の第1の態様に係る表面保護フィルムでは、半導体基板の回路形成面の汚染防止の観点から、本発明の第1の態様に係る応力緩和性フィルム、基材層、粘着層等の全ての製膜環境、及びこれらの原料資材の製造環境が、米国連邦規格209bに規定されるクラス1,000以下のクリーン度に維持されていることが好ましい。
In the surface protective film according to the first aspect of the present invention, from the viewpoint of preventing contamination of the circuit forming surface of the semiconductor substrate, all of the stress relaxation film, the base material layer, the adhesive layer, and the like according to the first aspect of the present invention. It is preferable that the film forming environment and the manufacturing environment for these raw materials are maintained at a cleanness of class 1,000 or less as defined in the US Federal Standard 209b.
〔半導体装置の製造方法〕
本発明の第1の態様に係る半導体装置の製造方法は、一方の面のみに回路が形成された半導体基板を準備する準備工程と、上記半導体基板の回路形成面に、本発明の第1の態様に係る表面保護フィルムを、該表面保護フィルムの上記粘着層と、上記半導体基板の回路形成面と、が対向するように貼着する貼着工程と、上記半導体基板の回路非形成面を研削する研削工程と、上記半導体基板の回路形成面に貼着された表面保護フィルムを、上記半導体基板の回路形成面から剥離する剥離工程と、を含む。 [Method of Manufacturing Semiconductor Device]
According to a first aspect of the present invention, there is provided a semiconductor device manufacturing method comprising: a preparatory step of preparing a semiconductor substrate having a circuit formed only on one surface; An adhesion step of adhering the surface protective film according to the embodiment so that the adhesive layer of the surface protective film and the circuit forming surface of the semiconductor substrate face each other, and grinding the circuit non-forming surface of the semiconductor substrate And a peeling step of peeling the surface protection film attached to the circuit forming surface of the semiconductor substrate from the circuit forming surface of the semiconductor substrate.
本発明の第1の態様に係る半導体装置の製造方法は、一方の面のみに回路が形成された半導体基板を準備する準備工程と、上記半導体基板の回路形成面に、本発明の第1の態様に係る表面保護フィルムを、該表面保護フィルムの上記粘着層と、上記半導体基板の回路形成面と、が対向するように貼着する貼着工程と、上記半導体基板の回路非形成面を研削する研削工程と、上記半導体基板の回路形成面に貼着された表面保護フィルムを、上記半導体基板の回路形成面から剥離する剥離工程と、を含む。 [Method of Manufacturing Semiconductor Device]
According to a first aspect of the present invention, there is provided a semiconductor device manufacturing method comprising: a preparatory step of preparing a semiconductor substrate having a circuit formed only on one surface; An adhesion step of adhering the surface protective film according to the embodiment so that the adhesive layer of the surface protective film and the circuit forming surface of the semiconductor substrate face each other, and grinding the circuit non-forming surface of the semiconductor substrate And a peeling step of peeling the surface protection film attached to the circuit forming surface of the semiconductor substrate from the circuit forming surface of the semiconductor substrate.
一般的な半導体装置の製造方法では、500μm~1000μm程度の厚さの半導体基板の一方の面に、回路を形成する。その後、回路を形成していない側の面(回路非形成面)を研削し、半導体基板を薄層化する。
準備工程は、回路非形成面を研削する前の、厚みのある半導体基板を準備する工程である。半導体基板としては、例えば、シリコンウェハ、ゲルマニウム、ガリウム-ヒ素、ガリウム-リン、ガリウム-ヒ素-アルミニウム等の基板が挙げられる。 In a general method for manufacturing a semiconductor device, a circuit is formed on one surface of a semiconductor substrate having a thickness of about 500 μm to 1000 μm. Thereafter, the surface on which the circuit is not formed (circuit non-formation surface) is ground to thin the semiconductor substrate.
The preparation step is a step of preparing a thick semiconductor substrate before grinding the non-circuit-formed surface. Examples of the semiconductor substrate include silicon wafers, germanium, gallium-arsenic, gallium-phosphorus, and gallium-arsenic-aluminum substrates.
準備工程は、回路非形成面を研削する前の、厚みのある半導体基板を準備する工程である。半導体基板としては、例えば、シリコンウェハ、ゲルマニウム、ガリウム-ヒ素、ガリウム-リン、ガリウム-ヒ素-アルミニウム等の基板が挙げられる。 In a general method for manufacturing a semiconductor device, a circuit is formed on one surface of a semiconductor substrate having a thickness of about 500 μm to 1000 μm. Thereafter, the surface on which the circuit is not formed (circuit non-formation surface) is ground to thin the semiconductor substrate.
The preparation step is a step of preparing a thick semiconductor substrate before grinding the non-circuit-formed surface. Examples of the semiconductor substrate include silicon wafers, germanium, gallium-arsenic, gallium-phosphorus, and gallium-arsenic-aluminum substrates.
貼着工程は、上記半導体基板の回路形成面に、本発明の第1の態様に係る表面保護フィルムを、該表面保護フィルムの上記粘着層と、上記半導体基板の回路形成面と、が対向するように貼着する工程である。
貼着は、人の手で行なってもよいが、通常、ロール状の表面保護フィルムを取り付けた自動貼り機によって行なう。自動貼り機としては、例えば、タカトリ(株)製、型式:ATM-1000B、同ATM-1100、同TEAM-100、帝国精機(株)製、型式:STLシリーズ、日東精機(株)製、型式:DR-8500II、同DR-3000II等が挙げられる。 In the attaching step, the surface protective film according to the first aspect of the present invention is opposed to the circuit forming surface of the semiconductor substrate, and the adhesive layer of the surface protective film and the circuit forming surface of the semiconductor substrate are opposed to each other. It is the process of sticking.
The sticking may be performed manually, but is usually performed by an automatic sticking machine equipped with a roll-shaped surface protective film. As an automatic pasting machine, for example, Takatori Co., Ltd., model: ATM-1000B, ATM-1100, TEAM-100, Teikoku Seiki Co., Ltd., model: STL series, Nitto Seiki Co., Ltd., model : DR-8500II, DR-3000II and the like.
貼着は、人の手で行なってもよいが、通常、ロール状の表面保護フィルムを取り付けた自動貼り機によって行なう。自動貼り機としては、例えば、タカトリ(株)製、型式:ATM-1000B、同ATM-1100、同TEAM-100、帝国精機(株)製、型式:STLシリーズ、日東精機(株)製、型式:DR-8500II、同DR-3000II等が挙げられる。 In the attaching step, the surface protective film according to the first aspect of the present invention is opposed to the circuit forming surface of the semiconductor substrate, and the adhesive layer of the surface protective film and the circuit forming surface of the semiconductor substrate are opposed to each other. It is the process of sticking.
The sticking may be performed manually, but is usually performed by an automatic sticking machine equipped with a roll-shaped surface protective film. As an automatic pasting machine, for example, Takatori Co., Ltd., model: ATM-1000B, ATM-1100, TEAM-100, Teikoku Seiki Co., Ltd., model: STL series, Nitto Seiki Co., Ltd., model : DR-8500II, DR-3000II and the like.
研削工程は、上記半導体基板の回路非形成面を研削する工程である。
研削は、例えば、スルーフィード方式、インフィード方式等の公知の方法により行なうことができる。いずれの方法においても、砥石で半導体基板を研削する。 The grinding process is a process of grinding the circuit non-formed surface of the semiconductor substrate.
The grinding can be performed by a known method such as a through-feed method or an in-feed method. In either method, the semiconductor substrate is ground with a grindstone.
研削は、例えば、スルーフィード方式、インフィード方式等の公知の方法により行なうことができる。いずれの方法においても、砥石で半導体基板を研削する。 The grinding process is a process of grinding the circuit non-formed surface of the semiconductor substrate.
The grinding can be performed by a known method such as a through-feed method or an in-feed method. In either method, the semiconductor substrate is ground with a grindstone.
研削工程開始時の半導体基板の温度は、通常、18℃~28℃程度であり、好ましくは20℃~25℃である。また、研削工程中の半導体基板の温度は、研削する基板の材質に依存するが、通常、20℃~120℃であり、30℃~80℃であることが好ましく、40℃~70℃であることがより好ましい。
The temperature of the semiconductor substrate at the start of the grinding process is usually about 18 ° C. to 28 ° C., preferably 20 ° C. to 25 ° C. The temperature of the semiconductor substrate during the grinding process depends on the material of the substrate to be ground, but is usually 20 ° C. to 120 ° C., preferably 30 ° C. to 80 ° C., and preferably 40 ° C. to 70 ° C. It is more preferable.
研削工程後、必要に応じて、半導体基板の回路非形成面を更に処理してもよい。回路非形成面の処理は、表面保護フィルムを介して、半導体基板を裏面加工機のチャックテーブル等に固定して行なう。回路非形成面の処理としては、例えば、半導体基板のポリッシング、ケミカルエッチング、ドライエッチング、プラズマ処理等が含まれ、半導体基板の回路非形成面に生じた歪みの除去や、半導体基板の更なる薄層化、酸化膜等の除去、電極形成前の処理等を行なう。
After the grinding step, the non-circuit-formed surface of the semiconductor substrate may be further processed as necessary. The non-circuit-formed surface is processed by fixing the semiconductor substrate to a chuck table or the like of a back surface processing machine via a surface protective film. Examples of the treatment of the circuit non-formation surface include polishing of the semiconductor substrate, chemical etching, dry etching, plasma treatment, etc., and removal of distortion generated on the circuit non-formation surface of the semiconductor substrate or further thinning of the semiconductor substrate. Layering, removal of oxide film, etc., processing before electrode formation, etc. are performed.
また、上記研削工程後、半導体基板の裏面にダイボンディング用接着フィルムを、貼着する工程を行なってもよい。ダイボンディング用接着フィルムを貼着する装置としては、例えば、タカトリ(株)製、型式:ATM-8200、同DM-800等がある。また、最近では、裏面加工部、ダイボンディング用接着フィルム貼り付け部、及び表面保護フィルム剥離部が一体の装置となった、いわゆるインライン裏面加工機も実用化されている。このようなインライン裏面加工機としては、例えば、(株)東京精密製、型式:PG300RMが挙げられる。
In addition, after the grinding step, a step of attaching an adhesive film for die bonding to the back surface of the semiconductor substrate may be performed. As an apparatus for attaching the die bonding adhesive film, there are, for example, Takatori Co., Ltd., model: ATM-8200, DM-800, and the like. Recently, a so-called inline back surface processing machine in which the back surface processing unit, the die bonding adhesive film attaching unit, and the surface protection film peeling unit are integrated has been put into practical use. As such an in-line back surface processing machine, for example, model name: PG300RM manufactured by Tokyo Seimitsu Co., Ltd. may be mentioned.
剥離工程は、上記研削工程後、半導体基板の回路形成面に貼着された表面保護フィルムを、上記半導体基板の回路形成面から剥離する工程である。
表面保護フィルムの剥離は、人の手により行なってもよいが、一般的に自動剥がし機と称される装置により行なう。自動剥がし機としては、例えば、タカトリ(株)製、型式:ATRM-2000B、同ATRM-2100、帝国精機(株)製、型式:STPシリーズ、日東精機(株)製、型式:HR8500-II等がある。また、表面保護フィルムの剥離は、表面保護フィルムの剥離性を高めるため、半導体基板を加熱しながら行なってもよい。 Stripping step after the grinding step, the surface protection film is adhered to a circuit forming surface of the semi-conductor substrate, a step of peeling from the circuit formation surface of the semiconductor substrate.
The surface protective film may be peeled off by a human hand, but is generally carried out by an apparatus called an automatic peeling machine. As an automatic peeling machine, for example, Takatori Co., Ltd., model: ATRM-2000B, ATRM-2100, Teikoku Seiki Co., Ltd., model: STP series, Nitto Seiki Co., Ltd., model: HR8500-II, etc. There is. Moreover, in order to improve the peelability of the surface protective film, the surface protective film may be peeled while heating the semiconductor substrate.
表面保護フィルムの剥離は、人の手により行なってもよいが、一般的に自動剥がし機と称される装置により行なう。自動剥がし機としては、例えば、タカトリ(株)製、型式:ATRM-2000B、同ATRM-2100、帝国精機(株)製、型式:STPシリーズ、日東精機(株)製、型式:HR8500-II等がある。また、表面保護フィルムの剥離は、表面保護フィルムの剥離性を高めるため、半導体基板を加熱しながら行なってもよい。 Stripping step after the grinding step, the surface protection film is adhered to a circuit forming surface of the semi-conductor substrate, a step of peeling from the circuit formation surface of the semiconductor substrate.
The surface protective film may be peeled off by a human hand, but is generally carried out by an apparatus called an automatic peeling machine. As an automatic peeling machine, for example, Takatori Co., Ltd., model: ATRM-2000B, ATRM-2100, Teikoku Seiki Co., Ltd., model: STP series, Nitto Seiki Co., Ltd., model: HR8500-II, etc. There is. Moreover, in order to improve the peelability of the surface protective film, the surface protective film may be peeled while heating the semiconductor substrate.
表面保護フィルムを剥離した後の半導体基板の回路形成面を、必要に応じて洗浄する。 洗浄方法としては、例えば、水洗浄、溶剤洗浄等の湿式洗浄、プラズマ洗浄等の乾式洗浄等が挙げられる。湿式洗浄する場合には、超音波洗浄を併用してもよい。これらの洗浄方法は、半導体基板表面の汚染状況により適宜選択する。
回路 Clean the circuit forming surface of the semiconductor substrate after peeling off the surface protection film, if necessary. Examples of cleaning methods include wet cleaning such as water cleaning and solvent cleaning, and dry cleaning such as plasma cleaning. In the case of wet cleaning, ultrasonic cleaning may be used in combination. These cleaning methods are appropriately selected depending on the contamination state of the semiconductor substrate surface.
本発明の第1の態様に係る半導体装置の製造方法によれば、半導体基板の回路形成面に、本発明の第1の態様に係る応力緩和性フィルムを貼着するので、半導体基板の回路非形成面の研削時に、回路形成面に傷が付いたり、塵が付着したりするおそれがない。また、研削工程中に、薄い半導体基板が破損するのを防止することができる。
According to the manufacturing method of the semiconductor device according to the first aspect of the present invention, the stress relaxation film according to the first aspect of the present invention is adhered to the circuit forming surface of the semiconductor substrate. During grinding of the forming surface, there is no possibility that the circuit forming surface is scratched or dust is attached. Further, it is possible to prevent the thin semiconductor substrate from being damaged during the grinding process.
《第2の態様》
[応力緩和性フィルム]
本発明の第2の態様に係る応力緩和性フィルムは、4-メチル-1-ペンテンに由来する構成単位を70モル%~90モル%、及び炭素数2又は3のα-オレフィンに由来する構成単位を10モル%~30モル%含み、かつ、4-メチル-1-ペンテン以外の炭素数4~20のα-オレフィンに由来する構成単位の比率が10モル%以下の共重合体である熱可塑性樹脂Aと、エチレン系重合体、プロピレン系重合体、ブテン系重合体、及び4-メチル-1-ペンテン系重合体からなる群より選ばれる少なくとも1種の重合体である、上記熱可塑性樹脂A以外の熱可塑性樹脂Bと、を含有し、上記熱可塑性樹脂Aの含有量が全質量に対して2質量%以上50質量%未満であり、上記熱可塑性樹脂Bの含有量が全質量に対して50質量%以上98質量%以下である。
本発明の第2の態様に係る応力緩和性フィルムによれば、ある程度高い応力緩和性を有し、かつ、他の層と積層させた場合に層間剥離が生じ難い。 << Second aspect >>
[Stress relaxation film]
The stress relaxation film according to the second aspect of the present invention has a constitution derived from 70 mol% to 90 mol% of a structural unit derived from 4-methyl-1-pentene and an α-olefin having 2 or 3 carbon atoms. A heat which is a copolymer containing 10 mol% to 30 mol% of units and having a ratio of structural units derived from α-olefins having 4 to 20 carbon atoms other than 4-methyl-1-pentene of 10 mol% or less. The thermoplastic resin, which is a plastic resin A and at least one polymer selected from the group consisting of an ethylene polymer, a propylene polymer, a butene polymer, and a 4-methyl-1-pentene polymer A thermoplastic resin B other than A, and the content of the thermoplastic resin A is 2% by mass or more and less than 50% by mass with respect to the total mass, and the content of the thermoplastic resin B is the total mass 50 mass% or more 98 quality % Or less.
According to the stress relaxation film according to the second aspect of the present invention, delamination hardly occurs when the film has a certain degree of stress relaxation and is laminated with another layer.
[応力緩和性フィルム]
本発明の第2の態様に係る応力緩和性フィルムは、4-メチル-1-ペンテンに由来する構成単位を70モル%~90モル%、及び炭素数2又は3のα-オレフィンに由来する構成単位を10モル%~30モル%含み、かつ、4-メチル-1-ペンテン以外の炭素数4~20のα-オレフィンに由来する構成単位の比率が10モル%以下の共重合体である熱可塑性樹脂Aと、エチレン系重合体、プロピレン系重合体、ブテン系重合体、及び4-メチル-1-ペンテン系重合体からなる群より選ばれる少なくとも1種の重合体である、上記熱可塑性樹脂A以外の熱可塑性樹脂Bと、を含有し、上記熱可塑性樹脂Aの含有量が全質量に対して2質量%以上50質量%未満であり、上記熱可塑性樹脂Bの含有量が全質量に対して50質量%以上98質量%以下である。
本発明の第2の態様に係る応力緩和性フィルムによれば、ある程度高い応力緩和性を有し、かつ、他の層と積層させた場合に層間剥離が生じ難い。 << Second aspect >>
[Stress relaxation film]
The stress relaxation film according to the second aspect of the present invention has a constitution derived from 70 mol% to 90 mol% of a structural unit derived from 4-methyl-1-pentene and an α-olefin having 2 or 3 carbon atoms. A heat which is a copolymer containing 10 mol% to 30 mol% of units and having a ratio of structural units derived from α-olefins having 4 to 20 carbon atoms other than 4-methyl-1-pentene of 10 mol% or less. The thermoplastic resin, which is a plastic resin A and at least one polymer selected from the group consisting of an ethylene polymer, a propylene polymer, a butene polymer, and a 4-methyl-1-pentene polymer A thermoplastic resin B other than A, and the content of the thermoplastic resin A is 2% by mass or more and less than 50% by mass with respect to the total mass, and the content of the thermoplastic resin B is the total mass 50 mass% or more 98 quality % Or less.
According to the stress relaxation film according to the second aspect of the present invention, delamination hardly occurs when the film has a certain degree of stress relaxation and is laminated with another layer.
外的な力による傷付きや破損から対象物を保護するために用いられるフィルム(以下、「保護フィルム」ともいう。)には、例えば、応力緩和性等の特性が求められる。
本発明者らは、応力緩和性を担う樹脂として、4-メチル-1-ペンテンを骨格に多く含む特定の熱可塑性樹脂を見出した。しかしながら、該熱可塑性樹脂だけで形成したフィルムは、高い応力緩和性を有するものの、離型性が高く、他の層と積層した場合に層間剥離が生じ易い。
本発明の第2の態様においては、フィルムを、応力緩和性を担う4-メチル-1-ペンテンを骨格に多く含む特定の熱可塑性樹脂Aと、接着性及び密着性を担う特定の熱可塑性樹脂Bと、を特定の割合で含有する態様とすることにより、ある程度高い応力緩和性を有し、かつ、他の層と積層させた場合に層間剥離が生じ難いフィルムを実現する。 A film used for protecting an object from scratches or breakage due to external force (hereinafter also referred to as “protective film”) is required to have characteristics such as stress relaxation properties, for example.
The present inventors have found a specific thermoplastic resin containing a large amount of 4-methyl-1-pentene as a resin responsible for stress relaxation. However, although a film formed only of the thermoplastic resin has high stress relaxation properties, it has high release properties, and delamination is likely to occur when it is laminated with other layers.
In the second aspect of the present invention, the film comprises a specific thermoplastic resin A containing a large amount of 4-methyl-1-pentene in the skeleton, which is responsible for stress relaxation, and a specific thermoplastic resin, which is responsible for adhesion and adhesion. By making it into the aspect which contains B in a specific ratio, the film which has a certain degree of high stress relaxation property, and does not produce delamination easily when laminated | stacked with another layer is implement | achieved.
本発明者らは、応力緩和性を担う樹脂として、4-メチル-1-ペンテンを骨格に多く含む特定の熱可塑性樹脂を見出した。しかしながら、該熱可塑性樹脂だけで形成したフィルムは、高い応力緩和性を有するものの、離型性が高く、他の層と積層した場合に層間剥離が生じ易い。
本発明の第2の態様においては、フィルムを、応力緩和性を担う4-メチル-1-ペンテンを骨格に多く含む特定の熱可塑性樹脂Aと、接着性及び密着性を担う特定の熱可塑性樹脂Bと、を特定の割合で含有する態様とすることにより、ある程度高い応力緩和性を有し、かつ、他の層と積層させた場合に層間剥離が生じ難いフィルムを実現する。 A film used for protecting an object from scratches or breakage due to external force (hereinafter also referred to as “protective film”) is required to have characteristics such as stress relaxation properties, for example.
The present inventors have found a specific thermoplastic resin containing a large amount of 4-methyl-1-pentene as a resin responsible for stress relaxation. However, although a film formed only of the thermoplastic resin has high stress relaxation properties, it has high release properties, and delamination is likely to occur when it is laminated with other layers.
In the second aspect of the present invention, the film comprises a specific thermoplastic resin A containing a large amount of 4-methyl-1-pentene in the skeleton, which is responsible for stress relaxation, and a specific thermoplastic resin, which is responsible for adhesion and adhesion. By making it into the aspect which contains B in a specific ratio, the film which has a certain degree of high stress relaxation property, and does not produce delamination easily when laminated | stacked with another layer is implement | achieved.
以下、本発明の第2の態様に係る応力緩和性フィルムに含まれる成分について説明する。
Hereinafter, the components contained in the stress relaxation film according to the second aspect of the present invention will be described.
〔熱可塑性樹脂A〕
本発明の第2の態様における熱可塑性樹脂Aは、以下の点を除き、本発明の第1の態様における熱可塑性樹脂Aと同義であり、好ましい範囲(例えば、4-メチル-1-ペンテン系共重合体の構成単位及びその含有率、4-メチル-1-ペンテン系共重合体の物性(例えば、極限粘度[η]、重量平均分子量(Mw)、分子量分布(Mw/Mn)、メルトフローレート(MFR)、密度、融点(Tm)等)及びその測定方法、合成方法など)とその理由も同様である。 [Thermoplastic resin A]
The thermoplastic resin A in the second aspect of the present invention is synonymous with the thermoplastic resin A in the first aspect of the present invention except for the following points, and is preferably in a preferred range (for example, 4-methyl-1-pentene series). Copolymer constituent unit and content thereof, physical properties of 4-methyl-1-pentene copolymer (for example, intrinsic viscosity [η], weight average molecular weight (Mw), molecular weight distribution (Mw / Mn), melt flow) The rate (MFR), density, melting point (Tm), etc.) and the measurement method, synthesis method, etc.) and the reason are the same.
本発明の第2の態様における熱可塑性樹脂Aは、以下の点を除き、本発明の第1の態様における熱可塑性樹脂Aと同義であり、好ましい範囲(例えば、4-メチル-1-ペンテン系共重合体の構成単位及びその含有率、4-メチル-1-ペンテン系共重合体の物性(例えば、極限粘度[η]、重量平均分子量(Mw)、分子量分布(Mw/Mn)、メルトフローレート(MFR)、密度、融点(Tm)等)及びその測定方法、合成方法など)とその理由も同様である。 [Thermoplastic resin A]
The thermoplastic resin A in the second aspect of the present invention is synonymous with the thermoplastic resin A in the first aspect of the present invention except for the following points, and is preferably in a preferred range (for example, 4-methyl-1-pentene series). Copolymer constituent unit and content thereof, physical properties of 4-methyl-1-pentene copolymer (for example, intrinsic viscosity [η], weight average molecular weight (Mw), molecular weight distribution (Mw / Mn), melt flow) The rate (MFR), density, melting point (Tm), etc.) and the measurement method, synthesis method, etc.) and the reason are the same.
本発明の第2の態様における4-メチル-1-ペンテン系共重合体には、4-メチル-1-ペンテンに由来する構成単位が、70モル%~90モル%含まれており、70モル%~88モル%含まれていることがより好ましく、70モル%~86モル%含まれていることが更に好ましい。
4-メチル-1-ペンテン系共重合体に含まれる4-メチル-1-ペンテンに由来する構成単位が70モル%未満であると、保護フィルムに必要な程度の高い応力緩和性を得ることができない。また、4-メチル-1-ペンテン系共重合体に含まれる4-メチル-1-ペンテンに由来する構成単位が90モル%を超えると、離型性が高くなりすぎるため、他の層と積層させた場合に層間剥離が生じる。 The 4-methyl-1-pentene copolymer according to the second aspect of the present invention contains 70 mol% to 90 mol% of a structural unit derived from 4-methyl-1-pentene. % To 88 mol% is more preferable, and 70 mol% to 86 mol% is still more preferable.
When the structural unit derived from 4-methyl-1-pentene contained in the 4-methyl-1-pentene copolymer is less than 70 mol%, a high degree of stress relaxation necessary for the protective film can be obtained. Can not. In addition, if the structural unit derived from 4-methyl-1-pentene contained in the 4-methyl-1-pentene copolymer exceeds 90 mol%, the releasability becomes too high, so that it is laminated with other layers. When delaminated, delamination occurs.
4-メチル-1-ペンテン系共重合体に含まれる4-メチル-1-ペンテンに由来する構成単位が70モル%未満であると、保護フィルムに必要な程度の高い応力緩和性を得ることができない。また、4-メチル-1-ペンテン系共重合体に含まれる4-メチル-1-ペンテンに由来する構成単位が90モル%を超えると、離型性が高くなりすぎるため、他の層と積層させた場合に層間剥離が生じる。 The 4-methyl-1-pentene copolymer according to the second aspect of the present invention contains 70 mol% to 90 mol% of a structural unit derived from 4-methyl-1-pentene. % To 88 mol% is more preferable, and 70 mol% to 86 mol% is still more preferable.
When the structural unit derived from 4-methyl-1-pentene contained in the 4-methyl-1-pentene copolymer is less than 70 mol%, a high degree of stress relaxation necessary for the protective film can be obtained. Can not. In addition, if the structural unit derived from 4-methyl-1-pentene contained in the 4-methyl-1-pentene copolymer exceeds 90 mol%, the releasability becomes too high, so that it is laminated with other layers. When delaminated, delamination occurs.
本発明の第2の態様における4-メチル-1-ペンテン系共重合体には、炭素数2又は3のα-オレフィンに由来する構成単位が、10モル%~30モル%含まれており、11モル%~30モル%含まれていることがより好ましく、14モル%~30モル%含まれていることが更に好ましい。
4-メチル-1-ペンテン系共重合体に含まれる炭素数2又は3のα-オレフィンに由来する構成単位が10モル%未満であると、材料の剛性が上がりすぎるため、適切な応力緩和性が得られなくなる。また、4-メチル-1-ペンテン系共重合体に含まれる炭素数2又は3のα-オレフィンに由来する構成単位が30モル%を超えると、結晶性が落ちて融点が観測されなくなることで柔軟化が進み、フィルム成形が困難となる。 The 4-methyl-1-pentene copolymer according to the second aspect of the present invention contains 10 to 30 mol% of structural units derived from an α-olefin having 2 or 3 carbon atoms, More preferably, it is contained in an amount of 11 mol% to 30 mol%, more preferably 14 mol% to 30 mol%.
When the structural unit derived from the α-olefin having 2 or 3 carbon atoms contained in the 4-methyl-1-pentene copolymer is less than 10 mol%, the rigidity of the material is excessively increased, so that appropriate stress relaxation properties are obtained. Cannot be obtained. Further, if the structural unit derived from the α-olefin having 2 or 3 carbon atoms contained in the 4-methyl-1-pentene copolymer exceeds 30 mol%, the crystallinity is lowered and the melting point is not observed. Softening advances and film forming becomes difficult.
4-メチル-1-ペンテン系共重合体に含まれる炭素数2又は3のα-オレフィンに由来する構成単位が10モル%未満であると、材料の剛性が上がりすぎるため、適切な応力緩和性が得られなくなる。また、4-メチル-1-ペンテン系共重合体に含まれる炭素数2又は3のα-オレフィンに由来する構成単位が30モル%を超えると、結晶性が落ちて融点が観測されなくなることで柔軟化が進み、フィルム成形が困難となる。 The 4-methyl-1-pentene copolymer according to the second aspect of the present invention contains 10 to 30 mol% of structural units derived from an α-olefin having 2 or 3 carbon atoms, More preferably, it is contained in an amount of 11 mol% to 30 mol%, more preferably 14 mol% to 30 mol%.
When the structural unit derived from the α-olefin having 2 or 3 carbon atoms contained in the 4-methyl-1-pentene copolymer is less than 10 mol%, the rigidity of the material is excessively increased, so that appropriate stress relaxation properties are obtained. Cannot be obtained. Further, if the structural unit derived from the α-olefin having 2 or 3 carbon atoms contained in the 4-methyl-1-pentene copolymer exceeds 30 mol%, the crystallinity is lowered and the melting point is not observed. Softening advances and film forming becomes difficult.
炭素数2又は3のα-オレフィンに由来する構成単位は、エチレン又はプロピレンに由来する構成単位である。本発明においては、応力緩和性の観点から、炭素数2又は3のα-オレフィンに由来する構成単位は、プロピレンに由来する構成単位が特に好ましい。
The structural unit derived from an α-olefin having 2 or 3 carbon atoms is a structural unit derived from ethylene or propylene. In the present invention, from the viewpoint of stress relaxation, the structural unit derived from an α-olefin having 2 or 3 carbon atoms is particularly preferably a structural unit derived from propylene.
本発明の第2の態様に係る応力緩和性フィルムにおける熱可塑性樹脂Aの含有量は、応力緩和性フィルムの全質量に対して、2質量%以上50質量%未満であり、5質量%以上48質量%以下であることが好ましく、10質量%以上45質量%以下であることがより好ましい。
熱可塑性樹脂Aの含有量が、応力緩和性フィルムの全質量に対して、2質量%未満であると、保護フィルムに必要な程度の高い応力緩和性を得ることができない。
熱可塑性樹脂Aの含有量が、応力緩和性フィルムの全質量に対して、50質量%以上であると、離型性が高くなりすぎるため、他の層と積層させた場合に層間剥離が生じる。 The content of the thermoplastic resin A in the stress relaxation film according to the second aspect of the present invention is 2% by mass or more and less than 50% by mass, and 5% by mass or more and 48% by mass with respect to the total mass of the stress relaxation film. The content is preferably at most 10 mass%, more preferably at least 10 mass% and at most 45 mass%.
When the content of the thermoplastic resin A is less than 2% by mass with respect to the total mass of the stress relaxation film, it is not possible to obtain a high level of stress relaxation necessary for the protective film.
When the content of the thermoplastic resin A is 50% by mass or more with respect to the total mass of the stress relaxation film, the releasability becomes too high, and thus delamination occurs when laminated with other layers. .
熱可塑性樹脂Aの含有量が、応力緩和性フィルムの全質量に対して、2質量%未満であると、保護フィルムに必要な程度の高い応力緩和性を得ることができない。
熱可塑性樹脂Aの含有量が、応力緩和性フィルムの全質量に対して、50質量%以上であると、離型性が高くなりすぎるため、他の層と積層させた場合に層間剥離が生じる。 The content of the thermoplastic resin A in the stress relaxation film according to the second aspect of the present invention is 2% by mass or more and less than 50% by mass, and 5% by mass or more and 48% by mass with respect to the total mass of the stress relaxation film. The content is preferably at most 10 mass%, more preferably at least 10 mass% and at most 45 mass%.
When the content of the thermoplastic resin A is less than 2% by mass with respect to the total mass of the stress relaxation film, it is not possible to obtain a high level of stress relaxation necessary for the protective film.
When the content of the thermoplastic resin A is 50% by mass or more with respect to the total mass of the stress relaxation film, the releasability becomes too high, and thus delamination occurs when laminated with other layers. .
〔熱可塑性樹脂B〕
本発明の第2の態様における熱可塑性樹脂Bは、以下の点を除き、本発明の第1の態様における熱可塑性樹脂Bと同義であり、好ましい範囲(例えば、組成、物性(メルトフローレート(MFR)、密度等)及びその測定方法など)とその理由も同様である。 [Thermoplastic resin B]
The thermoplastic resin B in the second aspect of the present invention is synonymous with the thermoplastic resin B in the first aspect of the present invention, except for the following points, and preferred ranges (for example, composition, physical properties (melt flow rate ( MFR), density, etc.) and measurement methods thereof) and the reason are the same.
本発明の第2の態様における熱可塑性樹脂Bは、以下の点を除き、本発明の第1の態様における熱可塑性樹脂Bと同義であり、好ましい範囲(例えば、組成、物性(メルトフローレート(MFR)、密度等)及びその測定方法など)とその理由も同様である。 [Thermoplastic resin B]
The thermoplastic resin B in the second aspect of the present invention is synonymous with the thermoplastic resin B in the first aspect of the present invention, except for the following points, and preferred ranges (for example, composition, physical properties (melt flow rate ( MFR), density, etc.) and measurement methods thereof) and the reason are the same.
本発明の第2の態様に係る応力緩和性フィルムにおける熱可塑性樹脂Bの含有量は、応力緩和性フィルムの全質量に対して、50質量%以上98質量%以下であり、52質量%以上95質量%以下であることが好ましく、55質量%以上90質量%以下であることがより好ましい。
熱可塑性樹脂Bの含有量が、応力緩和性フィルムの全質量に対して、50質量%未満であると、十分な接着性及び密着性を発現させることができず、他の層と積層させた場合に層間剥離が生じる。
熱可塑性樹脂Bの含有量が、応力緩和性フィルムの全質量に対して、98質量%を超えると、保護フィルムに必要な程度の高い応力緩和性を得ることができない。 The content of the thermoplastic resin B in the stress relaxation film according to the second aspect of the present invention is 50% by mass or more and 98% by mass or less, and 52% by mass or more and 95% by mass with respect to the total mass of the stress relaxation film. It is preferable that it is mass% or less, and it is more preferable that it is 55 mass% or more and 90 mass% or less.
When the content of the thermoplastic resin B is less than 50% by mass with respect to the total mass of the stress relaxation film, sufficient adhesiveness and adhesion cannot be expressed, and the other layers are laminated. In some cases, delamination occurs.
When the content of the thermoplastic resin B exceeds 98% by mass with respect to the total mass of the stress relaxation film, it is not possible to obtain a high level of stress relaxation necessary for the protective film.
熱可塑性樹脂Bの含有量が、応力緩和性フィルムの全質量に対して、50質量%未満であると、十分な接着性及び密着性を発現させることができず、他の層と積層させた場合に層間剥離が生じる。
熱可塑性樹脂Bの含有量が、応力緩和性フィルムの全質量に対して、98質量%を超えると、保護フィルムに必要な程度の高い応力緩和性を得ることができない。 The content of the thermoplastic resin B in the stress relaxation film according to the second aspect of the present invention is 50% by mass or more and 98% by mass or less, and 52% by mass or more and 95% by mass with respect to the total mass of the stress relaxation film. It is preferable that it is mass% or less, and it is more preferable that it is 55 mass% or more and 90 mass% or less.
When the content of the thermoplastic resin B is less than 50% by mass with respect to the total mass of the stress relaxation film, sufficient adhesiveness and adhesion cannot be expressed, and the other layers are laminated. In some cases, delamination occurs.
When the content of the thermoplastic resin B exceeds 98% by mass with respect to the total mass of the stress relaxation film, it is not possible to obtain a high level of stress relaxation necessary for the protective film.
〔その他の樹脂〕
本発明の第2の態様に係る応力緩和性フィルムは、本発明の第2の態様の目的を損なわない範囲内において、上述の熱可塑性樹脂A及び熱可塑性樹脂B以外のその他の樹脂を含有していてもよい。 [Other resins]
The stress relaxation film according to the second aspect of the present invention contains other resins other than the above-described thermoplastic resin A and thermoplastic resin B within a range not impairing the object of the second aspect of the present invention. It may be.
本発明の第2の態様に係る応力緩和性フィルムは、本発明の第2の態様の目的を損なわない範囲内において、上述の熱可塑性樹脂A及び熱可塑性樹脂B以外のその他の樹脂を含有していてもよい。 [Other resins]
The stress relaxation film according to the second aspect of the present invention contains other resins other than the above-described thermoplastic resin A and thermoplastic resin B within a range not impairing the object of the second aspect of the present invention. It may be.
〔応力緩和性フィルムの構造〕
本発明の第2の態様に係る応力緩和性フィルムは、熱可塑性樹脂Aを含んでなる島部と、実質的に熱可塑性樹脂Bからなる海部と、から構成される海島構造を有することが好ましい。
本発明において、「実質的に熱可塑性樹脂Bからなる」海部とは、海部における熱可塑性樹脂Bの含有量が、海部の構成成分の全質量に対して、70質量%以上であることを意味する。 [Structure of stress relaxation film]
The stress relieving film according to the second aspect of the present invention preferably has a sea-island structure composed of an island part including the thermoplastic resin A and a sea part substantially composed of the thermoplastic resin B. .
In the present invention, the sea part “consisting essentially of the thermoplastic resin B” means that the content of the thermoplastic resin B in the sea part is 70% by mass or more based on the total mass of the constituent components of the sea part. To do.
本発明の第2の態様に係る応力緩和性フィルムは、熱可塑性樹脂Aを含んでなる島部と、実質的に熱可塑性樹脂Bからなる海部と、から構成される海島構造を有することが好ましい。
本発明において、「実質的に熱可塑性樹脂Bからなる」海部とは、海部における熱可塑性樹脂Bの含有量が、海部の構成成分の全質量に対して、70質量%以上であることを意味する。 [Structure of stress relaxation film]
The stress relieving film according to the second aspect of the present invention preferably has a sea-island structure composed of an island part including the thermoplastic resin A and a sea part substantially composed of the thermoplastic resin B. .
In the present invention, the sea part “consisting essentially of the thermoplastic resin B” means that the content of the thermoplastic resin B in the sea part is 70% by mass or more based on the total mass of the constituent components of the sea part. To do.
熱可塑性樹脂Aを含んでなる島部と、実質的に熱可塑性樹脂Bからなる海部と、から構成される海島構造を有する、本発明の応力緩和性フィルムは、より高い応力緩和性を有し、かつ、他の層を積層させた場合に層間剥離がより生じ難いものとなる。このような効果が奏される理由は、明らかではないが、本発明者らは、以下のように推測している。
接着性及び密着性を担う熱可塑性樹脂Bが海部となることで、熱可塑性樹脂Bによる接着性能及び密着性能がより有効に発揮される。その結果、他の層を積層させた場合であっても、層間剥離がより生じ難いものとなる。また、応力緩和性を担う熱可塑性樹脂Aが島部となり、フィルム中に分散することで、熱可塑性樹脂Aによる応力緩和性能がより有効に発揮される。その結果、フィルムの応力緩和性がより高いものとなる。 The stress relieving film of the present invention having a sea-island structure composed of an island part including the thermoplastic resin A and a sea part substantially consisting of the thermoplastic resin B has a higher stress relaxation property. And when other layers are laminated, delamination is less likely to occur. The reason why such an effect is achieved is not clear, but the present inventors presume as follows.
Adhesion performance and adhesion performance by the thermoplastic resin B are more effectively exhibited when the thermoplastic resin B responsible for adhesion and adhesion becomes a sea part. As a result, even when other layers are laminated, delamination is less likely to occur. Moreover, the thermoplastic resin A which bears stress relaxation becomes an island part, and the stress relaxation performance by the thermoplastic resin A is more effectively exhibited by dispersing in the film. As a result, the stress relaxation property of the film becomes higher.
接着性及び密着性を担う熱可塑性樹脂Bが海部となることで、熱可塑性樹脂Bによる接着性能及び密着性能がより有効に発揮される。その結果、他の層を積層させた場合であっても、層間剥離がより生じ難いものとなる。また、応力緩和性を担う熱可塑性樹脂Aが島部となり、フィルム中に分散することで、熱可塑性樹脂Aによる応力緩和性能がより有効に発揮される。その結果、フィルムの応力緩和性がより高いものとなる。 The stress relieving film of the present invention having a sea-island structure composed of an island part including the thermoplastic resin A and a sea part substantially consisting of the thermoplastic resin B has a higher stress relaxation property. And when other layers are laminated, delamination is less likely to occur. The reason why such an effect is achieved is not clear, but the present inventors presume as follows.
Adhesion performance and adhesion performance by the thermoplastic resin B are more effectively exhibited when the thermoplastic resin B responsible for adhesion and adhesion becomes a sea part. As a result, even when other layers are laminated, delamination is less likely to occur. Moreover, the thermoplastic resin A which bears stress relaxation becomes an island part, and the stress relaxation performance by the thermoplastic resin A is more effectively exhibited by dispersing in the film. As a result, the stress relaxation property of the film becomes higher.
なお、本発明の第2の態様に係る応力緩和性フィルムが、熱可塑性樹脂Aを含んでなる島部と、実質的に熱可塑性樹脂Bからなる海部と、から構成される海島構造を有していることは、例えば、透過型電子顕微鏡(TEM:Transmission Electron Microscope)により確認することができる。具体的には、フィルムを研削して超薄切片を作製し、いずれか一方の成分のみを四酸化ルテニウムや四酸化オスニウム等の重金属で選択的に染色した後、透過型電子顕微鏡を用いて観察する。
In addition, the stress relaxation film according to the second aspect of the present invention has a sea-island structure including an island part including the thermoplastic resin A and a sea part substantially made of the thermoplastic resin B. This can be confirmed by, for example, a transmission electron microscope (TEM). Specifically, the film is ground to produce an ultrathin section, and only one of the components is selectively stained with a heavy metal such as ruthenium tetroxide or osmium tetroxide, and then observed using a transmission electron microscope. To do.
熱可塑性樹脂Aを含んでなる島部と、実質的に熱可塑性樹脂Bからなる海部と、から構成される海島構造を有するフィルムは、例えば、熱可塑性樹脂Aと熱可塑性樹脂Bとをドライブレンドにより混合し、押出によりフィルム成形することで得られる。
A film having a sea-island structure composed of an island part including the thermoplastic resin A and a sea part substantially composed of the thermoplastic resin B is, for example, a dry blend of the thermoplastic resin A and the thermoplastic resin B. Obtained by mixing and extrusion to form a film.
〔応力緩和性フィルムの製造方法〕
本発明の第2の態様に係る応力緩和性フィルムの製造方法の一例を説明する。本発明の第2の態様に係る応力緩和性フィルムは、例えば、下記の方法により製造することができる。但し、本発明の第2の態様は、下記の方法に限定されるものではない。
熱可塑性樹脂Aと熱可塑性樹脂Bとを混合(例えば、ドライブレンド)する。上述の海島構造を形成するという観点からは、熱可塑性樹脂Aと熱可塑性樹脂Bとを溶融混練等により均一に混ぜるよりも、ドライブレンド等により適度に混練する方が好ましい。
次いで、得られた混合物を、Tダイを設置した押出機のホッパーに投入し、シリンダー温度を100℃~270℃、ダイス温度を200℃~270℃に設定する。Tダイから溶融混練物を押し出し、キャスト成形して、応力緩和性フィルムを得る。 [Manufacturing method of stress relaxation film]
An example of the manufacturing method of the stress relaxation film which concerns on the 2nd aspect of this invention is demonstrated. The stress relaxation film according to the second aspect of the present invention can be produced, for example, by the following method. However, the second aspect of the present invention is not limited to the following method.
The thermoplastic resin A and the thermoplastic resin B are mixed (for example, dry blended). From the viewpoint of forming the above-mentioned sea-island structure, it is preferable to appropriately knead the thermoplastic resin A and the thermoplastic resin B by dry blending or the like rather than uniformly mixing them by melt kneading or the like.
Next, the obtained mixture is put into an hopper of an extruder provided with a T die, and the cylinder temperature is set to 100 ° C. to 270 ° C. and the die temperature is set to 200 ° C. to 270 ° C. The melt-kneaded material is extruded from a T die and cast to obtain a stress relaxation film.
本発明の第2の態様に係る応力緩和性フィルムの製造方法の一例を説明する。本発明の第2の態様に係る応力緩和性フィルムは、例えば、下記の方法により製造することができる。但し、本発明の第2の態様は、下記の方法に限定されるものではない。
熱可塑性樹脂Aと熱可塑性樹脂Bとを混合(例えば、ドライブレンド)する。上述の海島構造を形成するという観点からは、熱可塑性樹脂Aと熱可塑性樹脂Bとを溶融混練等により均一に混ぜるよりも、ドライブレンド等により適度に混練する方が好ましい。
次いで、得られた混合物を、Tダイを設置した押出機のホッパーに投入し、シリンダー温度を100℃~270℃、ダイス温度を200℃~270℃に設定する。Tダイから溶融混練物を押し出し、キャスト成形して、応力緩和性フィルムを得る。 [Manufacturing method of stress relaxation film]
An example of the manufacturing method of the stress relaxation film which concerns on the 2nd aspect of this invention is demonstrated. The stress relaxation film according to the second aspect of the present invention can be produced, for example, by the following method. However, the second aspect of the present invention is not limited to the following method.
The thermoplastic resin A and the thermoplastic resin B are mixed (for example, dry blended). From the viewpoint of forming the above-mentioned sea-island structure, it is preferable to appropriately knead the thermoplastic resin A and the thermoplastic resin B by dry blending or the like rather than uniformly mixing them by melt kneading or the like.
Next, the obtained mixture is put into an hopper of an extruder provided with a T die, and the cylinder temperature is set to 100 ° C. to 270 ° C. and the die temperature is set to 200 ° C. to 270 ° C. The melt-kneaded material is extruded from a T die and cast to obtain a stress relaxation film.
本発明の第2の態様に係る応力緩和性フィルムの厚さは、50μm~350μmであることが好ましく、60μm~300μmであることがより好ましく、70μm~200μmであることが更に好ましい。本発明の第2の態様に係る応力緩和性フィルムの厚さが、上記範囲内であると、取り扱い性が容易である。
The thickness of the stress relaxation film according to the second aspect of the present invention is preferably 50 μm to 350 μm, more preferably 60 μm to 300 μm, and still more preferably 70 μm to 200 μm. When the thickness of the stress relaxation film according to the second aspect of the present invention is within the above range, handleability is easy.
〔応力緩和性フィルムの用途〕
本発明の第2の態様に係る応力緩和性フィルムは、建材や光学部品等の各種樹脂製品、金属製品、ガラス製品等の輸送時、保管時、加工時等の傷付き防止や防塵を目的として、これらの表面に貼着される保護フィルムとして、好適に用いることができる。 [Use of stress relaxation film]
The stress relaxation film according to the second aspect of the present invention is used for the purpose of preventing scratches and dust prevention during transportation, storage, processing, etc. of various resin products such as building materials and optical parts, metal products, and glass products. The protective film can be suitably used as a protective film adhered to these surfaces.
本発明の第2の態様に係る応力緩和性フィルムは、建材や光学部品等の各種樹脂製品、金属製品、ガラス製品等の輸送時、保管時、加工時等の傷付き防止や防塵を目的として、これらの表面に貼着される保護フィルムとして、好適に用いることができる。 [Use of stress relaxation film]
The stress relaxation film according to the second aspect of the present invention is used for the purpose of preventing scratches and dust prevention during transportation, storage, processing, etc. of various resin products such as building materials and optical parts, metal products, and glass products. The protective film can be suitably used as a protective film adhered to these surfaces.
また、本発明の第2の態様に係る応力緩和性フィルムは、半導体基板の回路非形成面を研削して、半導体基板を所望の厚さとする際の、半導体基板の回路形成面の傷付きや破損を防止するための保護フィルムとして、特に好適に用いることができる。
本発明の第2の態様に係る応力緩和性フィルムは、応力緩和性を有するため、半導体基板の回路形成面の傷付きや破損の防止に有効である。また、本発明の第2の態様に係る応力緩和性フィルムは、他の層を積層させた場合であっても、層間剥離が生じ難いため、半導体基板の回路形成面への貼着、半導体基板の回路形成面からの剥離等の作業性が良い。 In addition, the stress relaxation film according to the second aspect of the present invention can be used to grind the circuit non-formation surface of the semiconductor substrate so that the semiconductor substrate has a desired thickness. It can be particularly suitably used as a protective film for preventing breakage.
Since the stress relaxation film according to the second aspect of the present invention has stress relaxation properties, it is effective in preventing damage and breakage of the circuit formation surface of the semiconductor substrate. In addition, since the stress relaxation film according to the second aspect of the present invention hardly causes delamination even when other layers are laminated, the semiconductor substrate is adhered to a circuit forming surface. Workability such as peeling from the circuit forming surface is good.
本発明の第2の態様に係る応力緩和性フィルムは、応力緩和性を有するため、半導体基板の回路形成面の傷付きや破損の防止に有効である。また、本発明の第2の態様に係る応力緩和性フィルムは、他の層を積層させた場合であっても、層間剥離が生じ難いため、半導体基板の回路形成面への貼着、半導体基板の回路形成面からの剥離等の作業性が良い。 In addition, the stress relaxation film according to the second aspect of the present invention can be used to grind the circuit non-formation surface of the semiconductor substrate so that the semiconductor substrate has a desired thickness. It can be particularly suitably used as a protective film for preventing breakage.
Since the stress relaxation film according to the second aspect of the present invention has stress relaxation properties, it is effective in preventing damage and breakage of the circuit formation surface of the semiconductor substrate. In addition, since the stress relaxation film according to the second aspect of the present invention hardly causes delamination even when other layers are laminated, the semiconductor substrate is adhered to a circuit forming surface. Workability such as peeling from the circuit forming surface is good.
[積層体]
本発明の第2の態様に係る積層体は、上述の本発明の第2の態様に係る応力緩和性フィルムからなる応力緩和層と、エチレン系重合体、プロピレン系重合体、及びブテン系重合体からなる群より選ばれる少なくとも1種の重合体である熱可塑性樹脂Cを含み、かつ、少なくとも一部が上記応力緩和層と接触している表面層と、を含む。
本発明の第2の態様に係る積層体は、ある程度高い応力緩和性を有し、かつ、他の層と積層させた場合に層間剥離が生じ難い、上述の本発明の第2の態様に係る応力緩和性フィルムからなる応力緩和層を含むため、応力緩和性がある程度高く、また、応力緩和層と該応力緩和層が接触している層との間で層間剥離が生じ難い。 [Laminate]
The laminate according to the second aspect of the present invention includes a stress relaxation layer comprising the stress relaxation film according to the second aspect of the present invention, an ethylene polymer, a propylene polymer, and a butene polymer. A thermoplastic resin C which is at least one polymer selected from the group consisting of: and a surface layer at least partially in contact with the stress relaxation layer.
The laminate according to the second aspect of the present invention has a somewhat high stress relaxation property, and is less likely to cause delamination when laminated with other layers, according to the second aspect of the present invention described above. Since a stress relaxation layer made of a stress relaxation film is included, the stress relaxation property is high to some extent, and delamination does not easily occur between the stress relaxation layer and the layer in contact with the stress relaxation layer.
本発明の第2の態様に係る積層体は、上述の本発明の第2の態様に係る応力緩和性フィルムからなる応力緩和層と、エチレン系重合体、プロピレン系重合体、及びブテン系重合体からなる群より選ばれる少なくとも1種の重合体である熱可塑性樹脂Cを含み、かつ、少なくとも一部が上記応力緩和層と接触している表面層と、を含む。
本発明の第2の態様に係る積層体は、ある程度高い応力緩和性を有し、かつ、他の層と積層させた場合に層間剥離が生じ難い、上述の本発明の第2の態様に係る応力緩和性フィルムからなる応力緩和層を含むため、応力緩和性がある程度高く、また、応力緩和層と該応力緩和層が接触している層との間で層間剥離が生じ難い。 [Laminate]
The laminate according to the second aspect of the present invention includes a stress relaxation layer comprising the stress relaxation film according to the second aspect of the present invention, an ethylene polymer, a propylene polymer, and a butene polymer. A thermoplastic resin C which is at least one polymer selected from the group consisting of: and a surface layer at least partially in contact with the stress relaxation layer.
The laminate according to the second aspect of the present invention has a somewhat high stress relaxation property, and is less likely to cause delamination when laminated with other layers, according to the second aspect of the present invention described above. Since a stress relaxation layer made of a stress relaxation film is included, the stress relaxation property is high to some extent, and delamination does not easily occur between the stress relaxation layer and the layer in contact with the stress relaxation layer.
〔応力緩和層〕
本発明の第2の態様に係る積層体における応力緩和層は、上述の本発明の第2の態様に係る応力緩和性フィルムからなる。なお、本発明の第2の態様に係る応力緩和性フィルムについては、上述したので、ここでは、説明を省略する。 (Stress relaxation layer)
The stress relaxation layer in the laminate according to the second aspect of the present invention is composed of the stress relaxation film according to the second aspect of the present invention described above. In addition, since it mentioned above about the stress relaxation film which concerns on the 2nd aspect of this invention, description is abbreviate | omitted here.
本発明の第2の態様に係る積層体における応力緩和層は、上述の本発明の第2の態様に係る応力緩和性フィルムからなる。なお、本発明の第2の態様に係る応力緩和性フィルムについては、上述したので、ここでは、説明を省略する。 (Stress relaxation layer)
The stress relaxation layer in the laminate according to the second aspect of the present invention is composed of the stress relaxation film according to the second aspect of the present invention described above. In addition, since it mentioned above about the stress relaxation film which concerns on the 2nd aspect of this invention, description is abbreviate | omitted here.
〔表面層〕
本発明の第2の態様に係る積層体における表面層は、本発明の第1の態様に係る積層体における表面層と同義であり、好ましい範囲(例えば、組成、存在位置、応力緩和層との接触割合等)とその理由も同様である。 [Surface layer]
The surface layer in the laminated body according to the second aspect of the present invention is synonymous with the surface layer in the laminated body according to the first aspect of the present invention, and the preferred range (for example, composition, location, stress relaxation layer) The contact ratio etc.) and the reason are the same.
本発明の第2の態様に係る積層体における表面層は、本発明の第1の態様に係る積層体における表面層と同義であり、好ましい範囲(例えば、組成、存在位置、応力緩和層との接触割合等)とその理由も同様である。 [Surface layer]
The surface layer in the laminated body according to the second aspect of the present invention is synonymous with the surface layer in the laminated body according to the first aspect of the present invention, and the preferred range (for example, composition, location, stress relaxation layer) The contact ratio etc.) and the reason are the same.
(熱可塑性樹脂C)
本発明の第2の態様における熱可塑性樹脂Cは、本発明の第1の態様における熱可塑性樹脂Cと同義であり、好ましい範囲(例えば、組成、物性(メルトフローレート(MFR)、密度等)及びその測定方法、表面層における含有量など)とその理由も同様である。 (Thermoplastic resin C)
The thermoplastic resin C in the second aspect of the present invention is synonymous with the thermoplastic resin C in the first aspect of the present invention, and preferred ranges (for example, composition, physical properties (melt flow rate (MFR), density, etc.)). And the measuring method, the content in the surface layer, etc.) and the reason are the same.
本発明の第2の態様における熱可塑性樹脂Cは、本発明の第1の態様における熱可塑性樹脂Cと同義であり、好ましい範囲(例えば、組成、物性(メルトフローレート(MFR)、密度等)及びその測定方法、表面層における含有量など)とその理由も同様である。 (Thermoplastic resin C)
The thermoplastic resin C in the second aspect of the present invention is synonymous with the thermoplastic resin C in the first aspect of the present invention, and preferred ranges (for example, composition, physical properties (melt flow rate (MFR), density, etc.)). And the measuring method, the content in the surface layer, etc.) and the reason are the same.
〔その他の層〕
本発明の第2の態様に係る積層体は、本発明の第2の態様の目的を損なわない範囲内において、応力緩和層及び表面層以外のその他の層を含んでいてもよい。 [Other layers]
The laminated body according to the second aspect of the present invention may include other layers other than the stress relaxation layer and the surface layer, as long as the object of the second aspect of the present invention is not impaired.
本発明の第2の態様に係る積層体は、本発明の第2の態様の目的を損なわない範囲内において、応力緩和層及び表面層以外のその他の層を含んでいてもよい。 [Other layers]
The laminated body according to the second aspect of the present invention may include other layers other than the stress relaxation layer and the surface layer, as long as the object of the second aspect of the present invention is not impaired.
〔積層体の製造方法〕
本発明の第2の態様に係る積層体の製造方法は、本発明の第1の態様に係る積層体の製造方法と同様であり、好ましい範囲(例えば、製造条件、表面層と応力緩和層との厚さの比(表面層の厚さ/応力緩和層の厚さ)、積層体の厚さ等)とその理由も同様である。 [Method for producing laminate]
The method for manufacturing a laminate according to the second aspect of the present invention is the same as the method for manufacturing the laminate according to the first aspect of the present invention, and preferred ranges (for example, manufacturing conditions, surface layer and stress relaxation layer) The thickness ratio (the thickness of the surface layer / the thickness of the stress relaxation layer, the thickness of the laminated body, etc.) and the reason are the same.
本発明の第2の態様に係る積層体の製造方法は、本発明の第1の態様に係る積層体の製造方法と同様であり、好ましい範囲(例えば、製造条件、表面層と応力緩和層との厚さの比(表面層の厚さ/応力緩和層の厚さ)、積層体の厚さ等)とその理由も同様である。 [Method for producing laminate]
The method for manufacturing a laminate according to the second aspect of the present invention is the same as the method for manufacturing the laminate according to the first aspect of the present invention, and preferred ranges (for example, manufacturing conditions, surface layer and stress relaxation layer) The thickness ratio (the thickness of the surface layer / the thickness of the stress relaxation layer, the thickness of the laminated body, etc.) and the reason are the same.
[半導体用表面保護フィルム]
本発明の第2の態様に係る半導体用表面保護フィルム(以下、単に「表面保護フィルム」ともいう。)は、半導体基板の研削時に該半導体基板の回路形成面を保護するものであり、本発明の第2の態様に係る応力緩和性フィルムを含む。本発明の第2の態様に係る表面保護フィルムは、本発明の第2の態様に係る応力緩和性フィルムのみからなるものであってもよいし、本発明の第2の態様に係る応力緩和性フィルムと他の層との積層体であってもよい。他の層は、本発明の第2の態様に係る応力緩和性フィルムの効果を損なわない範囲で、適宜、選択することが望ましい。 [Surface protective film for semiconductors]
The semiconductor surface protective film according to the second aspect of the present invention (hereinafter also simply referred to as “surface protective film”) protects the circuit forming surface of the semiconductor substrate during grinding of the semiconductor substrate. The stress relaxation film which concerns on the 2nd aspect of is included. The surface protective film according to the second aspect of the present invention may consist only of the stress relaxation film according to the second aspect of the present invention, or the stress relaxation property according to the second aspect of the present invention. It may be a laminate of a film and other layers. It is desirable that other layers are appropriately selected as long as the effects of the stress relaxation film according to the second aspect of the present invention are not impaired.
本発明の第2の態様に係る半導体用表面保護フィルム(以下、単に「表面保護フィルム」ともいう。)は、半導体基板の研削時に該半導体基板の回路形成面を保護するものであり、本発明の第2の態様に係る応力緩和性フィルムを含む。本発明の第2の態様に係る表面保護フィルムは、本発明の第2の態様に係る応力緩和性フィルムのみからなるものであってもよいし、本発明の第2の態様に係る応力緩和性フィルムと他の層との積層体であってもよい。他の層は、本発明の第2の態様に係る応力緩和性フィルムの効果を損なわない範囲で、適宜、選択することが望ましい。 [Surface protective film for semiconductors]
The semiconductor surface protective film according to the second aspect of the present invention (hereinafter also simply referred to as “surface protective film”) protects the circuit forming surface of the semiconductor substrate during grinding of the semiconductor substrate. The stress relaxation film which concerns on the 2nd aspect of is included. The surface protective film according to the second aspect of the present invention may consist only of the stress relaxation film according to the second aspect of the present invention, or the stress relaxation property according to the second aspect of the present invention. It may be a laminate of a film and other layers. It is desirable that other layers are appropriately selected as long as the effects of the stress relaxation film according to the second aspect of the present invention are not impaired.
本発明の第2の態様に係る表面保護フィルムは、上述の本発明の第2の態様に係る応力緩和性フィルムを含むため、ある程度高い応力緩和性を有する。よって、本発明の第2の態様に係る表面保護フィルムによれば、半導体基板の回路形成面の傷付きや破損を効果的に防止することができる。
また、本発明の第2の態様に係る表面保護フィルムが、上述の本発明の第2の態様に係る応力緩和性フィルムと他の層との積層体である場合には、層間剥離が生じ難いため、半導体基板の回路形成面への貼着、半導体基板の回路形成面からの剥離等の作業を良好に行なうことができる。 Since the surface protective film according to the second aspect of the present invention includes the above-described stress relaxation film according to the second aspect of the present invention, the surface protective film has a somewhat high stress relaxation property. Therefore, according to the surface protective film which concerns on the 2nd aspect of this invention, the damage and damage of the circuit formation surface of a semiconductor substrate can be prevented effectively.
Further, when the surface protective film according to the second aspect of the present invention is a laminate of the above-described stress relaxation film according to the second aspect of the present invention and another layer, delamination hardly occurs. Therefore, operations such as attaching the semiconductor substrate to the circuit formation surface and peeling the semiconductor substrate from the circuit formation surface can be performed satisfactorily.
また、本発明の第2の態様に係る表面保護フィルムが、上述の本発明の第2の態様に係る応力緩和性フィルムと他の層との積層体である場合には、層間剥離が生じ難いため、半導体基板の回路形成面への貼着、半導体基板の回路形成面からの剥離等の作業を良好に行なうことができる。 Since the surface protective film according to the second aspect of the present invention includes the above-described stress relaxation film according to the second aspect of the present invention, the surface protective film has a somewhat high stress relaxation property. Therefore, according to the surface protective film which concerns on the 2nd aspect of this invention, the damage and damage of the circuit formation surface of a semiconductor substrate can be prevented effectively.
Further, when the surface protective film according to the second aspect of the present invention is a laminate of the above-described stress relaxation film according to the second aspect of the present invention and another layer, delamination hardly occurs. Therefore, operations such as attaching the semiconductor substrate to the circuit formation surface and peeling the semiconductor substrate from the circuit formation surface can be performed satisfactorily.
〔基材層〕
本発明の第2の態様に係る表面保護フィルムに含まれ得る基材層は、本発明の第1の態様に係る表面保護フィルムに含まれ得る基材層と同義であり、好ましい範囲(例えば、弾性率、存在位置、組成、厚さ等)とその理由も同様である。 [Base material layer]
The base material layer that can be included in the surface protective film according to the second aspect of the present invention is synonymous with the base material layer that can be included in the surface protective film according to the first aspect of the present invention, and a preferred range (for example, The elastic modulus, location, composition, thickness, etc.) and the reason are the same.
本発明の第2の態様に係る表面保護フィルムに含まれ得る基材層は、本発明の第1の態様に係る表面保護フィルムに含まれ得る基材層と同義であり、好ましい範囲(例えば、弾性率、存在位置、組成、厚さ等)とその理由も同様である。 [Base material layer]
The base material layer that can be included in the surface protective film according to the second aspect of the present invention is synonymous with the base material layer that can be included in the surface protective film according to the first aspect of the present invention, and a preferred range (for example, The elastic modulus, location, composition, thickness, etc.) and the reason are the same.
〔粘着層〕
本発明の第2の態様に係る表面保護フィルムに含まれ得る粘着層は、本発明の第1の態様に係る表面保護フィルムに含まれ得る粘着層と同義であり、好ましい範囲(例えば、存在位置、粘着層を構成する粘着剤、厚さ、粘着力等)とその理由も同様である。 (Adhesive layer)
The pressure-sensitive adhesive layer that can be included in the surface protective film according to the second aspect of the present invention is synonymous with the pressure-sensitive adhesive layer that can be included in the surface protective film according to the first aspect of the present invention, and a preferred range (for example, the location) The adhesive layer constituting the adhesive layer, the thickness, the adhesive force, etc.) and the reason are the same.
本発明の第2の態様に係る表面保護フィルムに含まれ得る粘着層は、本発明の第1の態様に係る表面保護フィルムに含まれ得る粘着層と同義であり、好ましい範囲(例えば、存在位置、粘着層を構成する粘着剤、厚さ、粘着力等)とその理由も同様である。 (Adhesive layer)
The pressure-sensitive adhesive layer that can be included in the surface protective film according to the second aspect of the present invention is synonymous with the pressure-sensitive adhesive layer that can be included in the surface protective film according to the first aspect of the present invention, and a preferred range (for example, the location) The adhesive layer constituting the adhesive layer, the thickness, the adhesive force, etc.) and the reason are the same.
〔その他の層〕
本発明の第2の態様に係る表面保護フィルムに含まれ得るその他の層は、本発明の第1の態様に係る表面保護フィルムに含まれ得るその他の層と同義であり、好ましい範囲(例えば、弾性率、組成等)とその理由も同様である。 [Other layers]
The other layer that can be included in the surface protective film according to the second aspect of the present invention is synonymous with the other layer that can be included in the surface protective film according to the first aspect of the present invention, and a preferred range (for example, The elastic modulus, composition, etc.) and the reason are the same.
本発明の第2の態様に係る表面保護フィルムに含まれ得るその他の層は、本発明の第1の態様に係る表面保護フィルムに含まれ得るその他の層と同義であり、好ましい範囲(例えば、弾性率、組成等)とその理由も同様である。 [Other layers]
The other layer that can be included in the surface protective film according to the second aspect of the present invention is synonymous with the other layer that can be included in the surface protective film according to the first aspect of the present invention, and a preferred range (for example, The elastic modulus, composition, etc.) and the reason are the same.
〔表面保護フィルムの製造方法〕
本発明の第2の態様に係る表面保護フィルムの製造方法は、本発明の第1の態様に係る表面保護フィルムの製造方法と同様であり、好ましい範囲(例えば、製造条件等)とその理由も同様である。 [Method for producing surface protective film]
The method for producing the surface protective film according to the second aspect of the present invention is the same as the method for producing the surface protective film according to the first aspect of the present invention, and the preferred range (for example, production conditions) and the reason thereof are also included. It is the same.
本発明の第2の態様に係る表面保護フィルムの製造方法は、本発明の第1の態様に係る表面保護フィルムの製造方法と同様であり、好ましい範囲(例えば、製造条件等)とその理由も同様である。 [Method for producing surface protective film]
The method for producing the surface protective film according to the second aspect of the present invention is the same as the method for producing the surface protective film according to the first aspect of the present invention, and the preferred range (for example, production conditions) and the reason thereof are also included. It is the same.
〔半導体装置の製造方法〕
本発明の第2の態様に係る半導体装置の製造方法は、本発明の第1の態様に係る半導体装置の製造方法と同様であり、好ましい範囲(例えば、製造条件等)とその理由も同様である。 [Method of Manufacturing Semiconductor Device]
The manufacturing method of the semiconductor device according to the second aspect of the present invention is the same as the manufacturing method of the semiconductor device according to the first aspect of the present invention, and the preferable range (for example, manufacturing conditions) and the reason are the same. is there.
本発明の第2の態様に係る半導体装置の製造方法は、本発明の第1の態様に係る半導体装置の製造方法と同様であり、好ましい範囲(例えば、製造条件等)とその理由も同様である。 [Method of Manufacturing Semiconductor Device]
The manufacturing method of the semiconductor device according to the second aspect of the present invention is the same as the manufacturing method of the semiconductor device according to the first aspect of the present invention, and the preferable range (for example, manufacturing conditions) and the reason are the same. is there.
本発明の第2の態様に係る半導体装置の製造方法によれば、半導体基板の回路形成面に、本発明の第2の態様に係る応力緩和性フィルムを貼着するので、半導体基板の回路非形成面の研削時に、回路形成面に傷が付いたり、塵が付着したりするおそれがなく、また、研削工程中に、薄い半導体基板が破損するのを防止することができる。
本発明の第2の態様に係る半導体装置の製造方法において、半導体基板の回路形成面に貼着する本発明の第2の態様に係る応力緩和性フィルムが他の層との積層体である場合には、層間剥離が生じ難いので、貼着作業を良好に行なうことができる。 According to the method for manufacturing a semiconductor device according to the second aspect of the present invention, the stress relaxation film according to the second aspect of the present invention is adhered to the circuit forming surface of the semiconductor substrate. During grinding of the forming surface, there is no fear that the circuit forming surface is scratched or dust is attached, and it is possible to prevent the thin semiconductor substrate from being damaged during the grinding process.
In the method for manufacturing a semiconductor device according to the second aspect of the present invention, when the stress relaxation film according to the second aspect of the present invention, which is adhered to the circuit forming surface of the semiconductor substrate, is a laminate with other layers. Since the delamination hardly occurs, the sticking work can be performed well.
本発明の第2の態様に係る半導体装置の製造方法において、半導体基板の回路形成面に貼着する本発明の第2の態様に係る応力緩和性フィルムが他の層との積層体である場合には、層間剥離が生じ難いので、貼着作業を良好に行なうことができる。 According to the method for manufacturing a semiconductor device according to the second aspect of the present invention, the stress relaxation film according to the second aspect of the present invention is adhered to the circuit forming surface of the semiconductor substrate. During grinding of the forming surface, there is no fear that the circuit forming surface is scratched or dust is attached, and it is possible to prevent the thin semiconductor substrate from being damaged during the grinding process.
In the method for manufacturing a semiconductor device according to the second aspect of the present invention, when the stress relaxation film according to the second aspect of the present invention, which is adhered to the circuit forming surface of the semiconductor substrate, is a laminate with other layers. Since the delamination hardly occurs, the sticking work can be performed well.
〔樹脂改質剤〕
本発明の第2の態様に係る樹脂改質剤は、4-メチル-1-ペンテンに由来する構成単位を70モル%~90モル%、及び炭素数2又は3のα-オレフィンに由来する構成単位を10モル%~30モル%含み、かつ、4-メチル-1-ペンテン以外の炭素数4~20のα-オレフィンに由来する構成単位の比率が10モル%以下の共重合体である熱可塑性樹脂Aと、エチレン系重合体、プロピレン系重合体、ブテン系重合体、及び4-メチル-1-ペンテン系重合体からなる群より選ばれる少なくとも1種の重合体である、上記熱可塑性樹脂A以外の熱可塑性樹脂Bと、を含有し、上記熱可塑性樹脂Aの含有量が全質量に対して2質量%以上50質量%未満であり、上記熱可塑性樹脂Bの含有量が全質量に対して50質量%以上98質量%以下である。
本発明の第2の態様に係る樹脂改質剤によれば、樹脂に対して、ある程度高い応力緩和性と、他の層と積層させた場合に層間剥離し難い接着性と、を付与することができる。 [Resin modifier]
The resin modifier according to the second aspect of the present invention has a constitution derived from 70 mol% to 90 mol% of a structural unit derived from 4-methyl-1-pentene and an α-olefin having 2 or 3 carbon atoms. A heat which is a copolymer containing 10 mol% to 30 mol% of units and having a ratio of structural units derived from α-olefins having 4 to 20 carbon atoms other than 4-methyl-1-pentene of 10 mol% or less. The thermoplastic resin, which is a plastic resin A and at least one polymer selected from the group consisting of an ethylene polymer, a propylene polymer, a butene polymer, and a 4-methyl-1-pentene polymer A thermoplastic resin B other than A, and the content of the thermoplastic resin A is 2% by mass or more and less than 50% by mass with respect to the total mass, and the content of the thermoplastic resin B is the total mass 50 mass% or more and 98 mass% or less It is.
According to the resin modifier according to the second aspect of the present invention, the resin is imparted with a certain degree of high stress relaxation and adhesion that is difficult to delaminate when laminated with other layers. Can do.
本発明の第2の態様に係る樹脂改質剤は、4-メチル-1-ペンテンに由来する構成単位を70モル%~90モル%、及び炭素数2又は3のα-オレフィンに由来する構成単位を10モル%~30モル%含み、かつ、4-メチル-1-ペンテン以外の炭素数4~20のα-オレフィンに由来する構成単位の比率が10モル%以下の共重合体である熱可塑性樹脂Aと、エチレン系重合体、プロピレン系重合体、ブテン系重合体、及び4-メチル-1-ペンテン系重合体からなる群より選ばれる少なくとも1種の重合体である、上記熱可塑性樹脂A以外の熱可塑性樹脂Bと、を含有し、上記熱可塑性樹脂Aの含有量が全質量に対して2質量%以上50質量%未満であり、上記熱可塑性樹脂Bの含有量が全質量に対して50質量%以上98質量%以下である。
本発明の第2の態様に係る樹脂改質剤によれば、樹脂に対して、ある程度高い応力緩和性と、他の層と積層させた場合に層間剥離し難い接着性と、を付与することができる。 [Resin modifier]
The resin modifier according to the second aspect of the present invention has a constitution derived from 70 mol% to 90 mol% of a structural unit derived from 4-methyl-1-pentene and an α-olefin having 2 or 3 carbon atoms. A heat which is a copolymer containing 10 mol% to 30 mol% of units and having a ratio of structural units derived from α-olefins having 4 to 20 carbon atoms other than 4-methyl-1-pentene of 10 mol% or less. The thermoplastic resin, which is a plastic resin A and at least one polymer selected from the group consisting of an ethylene polymer, a propylene polymer, a butene polymer, and a 4-methyl-1-pentene polymer A thermoplastic resin B other than A, and the content of the thermoplastic resin A is 2% by mass or more and less than 50% by mass with respect to the total mass, and the content of the thermoplastic resin B is the total mass 50 mass% or more and 98 mass% or less It is.
According to the resin modifier according to the second aspect of the present invention, the resin is imparted with a certain degree of high stress relaxation and adhesion that is difficult to delaminate when laminated with other layers. Can do.
本発明の第2の態様に係る樹脂改質剤における熱可塑性樹脂A及び熱可塑性樹脂Bは、それぞれ応力緩和性フィルムの項で説明した熱可塑性樹脂A及び熱可塑性樹脂Bと同義であり、好ましい態様も同様であるため、ここでは、説明を省略する。
また、本発明の第2の態様に係る樹脂改質剤における熱可塑性樹脂Aの含有量及び熱可塑性樹脂Bの含有量についても、それぞれ応力緩和性フィルムの項で説明した熱可塑性樹脂Aの含有量及び熱可塑性樹脂Bの含有量と同義であり、好ましい態様も同様であるため、ここでは、説明を省略する。 The thermoplastic resin A and the thermoplastic resin B in the resin modifier according to the second aspect of the present invention have the same meaning as the thermoplastic resin A and the thermoplastic resin B described in the section of the stress relaxation film, respectively. Since the aspect is also the same, the description is omitted here.
In addition, regarding the content of the thermoplastic resin A and the content of the thermoplastic resin B in the resin modifier according to the second aspect of the present invention, the content of the thermoplastic resin A described in the section of the stress relaxation film, respectively. The amount and the content of the thermoplastic resin B are synonymous, and the preferred embodiment is also the same, and thus the description thereof is omitted here.
また、本発明の第2の態様に係る樹脂改質剤における熱可塑性樹脂Aの含有量及び熱可塑性樹脂Bの含有量についても、それぞれ応力緩和性フィルムの項で説明した熱可塑性樹脂Aの含有量及び熱可塑性樹脂Bの含有量と同義であり、好ましい態様も同様であるため、ここでは、説明を省略する。 The thermoplastic resin A and the thermoplastic resin B in the resin modifier according to the second aspect of the present invention have the same meaning as the thermoplastic resin A and the thermoplastic resin B described in the section of the stress relaxation film, respectively. Since the aspect is also the same, the description is omitted here.
In addition, regarding the content of the thermoplastic resin A and the content of the thermoplastic resin B in the resin modifier according to the second aspect of the present invention, the content of the thermoplastic resin A described in the section of the stress relaxation film, respectively. The amount and the content of the thermoplastic resin B are synonymous, and the preferred embodiment is also the same, and thus the description thereof is omitted here.
本発明の第2の態様に係る樹脂改質剤の改質対象となる樹脂は、特に限定されるものではない。本発明の第2の態様に係る樹脂改質剤の改質対象となる樹脂としては、基材の剛性、耐熱性、熱可塑性樹脂Aとの分散状態が及ぼす応力緩和性等の観点から、エチレン系重合体、プロピレン系重合体、ブテン系重合体等が好ましい。
本発明の第2の態様に係る樹脂改質剤は、改質対象となる樹脂100質量部に対して、5質量部~50質量部配合することが好ましく、10質量部~45質量部配合することがより好ましい。 The resin to be modified by the resin modifier according to the second aspect of the present invention is not particularly limited. The resin to be modified by the resin modifier according to the second aspect of the present invention is ethylene from the viewpoint of rigidity of the base material, heat resistance, stress relaxation effect due to dispersion state with the thermoplastic resin A, and the like. Of these, a polymer, a propylene polymer, a butene polymer and the like are preferable.
The resin modifier according to the second aspect of the present invention is preferably blended in an amount of 5 to 50 parts by weight, preferably 10 to 45 parts by weight, based on 100 parts by weight of the resin to be modified. It is more preferable.
本発明の第2の態様に係る樹脂改質剤は、改質対象となる樹脂100質量部に対して、5質量部~50質量部配合することが好ましく、10質量部~45質量部配合することがより好ましい。 The resin to be modified by the resin modifier according to the second aspect of the present invention is not particularly limited. The resin to be modified by the resin modifier according to the second aspect of the present invention is ethylene from the viewpoint of rigidity of the base material, heat resistance, stress relaxation effect due to dispersion state with the thermoplastic resin A, and the like. Of these, a polymer, a propylene polymer, a butene polymer and the like are preferable.
The resin modifier according to the second aspect of the present invention is preferably blended in an amount of 5 to 50 parts by weight, preferably 10 to 45 parts by weight, based on 100 parts by weight of the resin to be modified. It is more preferable.
本発明の第2の態様に係る樹脂改質剤は、特定量の熱可塑性樹脂Aと特定量の熱可塑性樹脂Bとを含有し、更に、本発明の第2の態様の目的を損なわない範囲内において、例えば、耐候安定剤、耐熱安定剤、酸化防止剤、紫外線吸収剤、帯電防止剤、スリップ防止剤、アンチブロッキング剤、防曇剤、核剤、滑剤、顔料、染料、老化防止剤、塩酸吸収剤、無機又は有機の充填剤、有機系又は無機系の発泡剤、架橋剤、架橋助剤、粘着剤、軟化剤、難燃剤等の各種添加剤を含有していてもよい。
The resin modifier according to the second aspect of the present invention contains a specific amount of thermoplastic resin A and a specific amount of thermoplastic resin B, and further does not impair the purpose of the second aspect of the present invention. Inside, for example, weathering stabilizer, heat stabilizer, antioxidant, ultraviolet absorber, antistatic agent, anti-slip agent, anti-blocking agent, anti-fogging agent, nucleating agent, lubricant, pigment, dye, anti-aging agent, Various additives such as a hydrochloric acid absorbent, an inorganic or organic filler, an organic or inorganic foaming agent, a cross-linking agent, a cross-linking aid, a pressure-sensitive adhesive, a softening agent, and a flame retardant may be contained.
以下、本発明の第1の態様及び第2の態様を実施例により更に具体的に説明する。本発明の第1の態様及び第2の態様はその主旨を越えない限り、以下の実施例に限定されるものではない。
Hereinafter, the first aspect and the second aspect of the present invention will be described more specifically with reference to examples. The first and second aspects of the present invention are not limited to the following examples as long as they do not exceed the gist thereof.
《第1の態様の実施例》
[合成例1A]共重合体A-1Aの合成
充分に窒素置換した容量1.5Lの攪拌翼付のSUS製オートクレーブに、300mlのn-ヘキサン(乾燥窒素雰囲気下、活性アルミナ上で乾燥したもの)、及び450mlの4-メチル-1-ペンテンを23℃で装入した後、トリイソブチルアルミニウム(TIBAL)の1.0mmol/mlトルエン溶液を0.75ml装入し、攪拌機を回した。
次に、オートクレーブを内温が60℃になるまで加熱し、全圧(ゲージ圧)が0.19MPaとなるようにプロピレンで加圧した。
続いて、予め調製しておいた、アルミニウム(Al)換算で1mmolのメチルアルミノキサン、及び0.01mmolのジフェニルメチレン(1-エチル-3-t-ブチル-シクロペンタジエニル)(2,7-ジ-t-ブチル-フルオレニル)ジルコニウムジクロリドを含むトルエン溶液0.34mlをオートクレーブに窒素で圧入し、重合反応を開始させた。重合反応中は、オートクレーブの内温が60℃になるように温度調整した。
重合開始から60分後、オートクレーブにメタノール5mlを窒素で圧入し、重合反応を停止させた後、オートクレーブ内を大気圧まで脱圧した。脱圧後、反応溶液に、該反応溶液を攪拌しながらアセトンを添加し、溶媒を含む重合反応生成物を得た。次いで、得られた溶媒を含む重合反応生成物を減圧下、130℃で12時間乾燥させて、44.0gの粉末状の共重合体A-1Aを得た。 << Example of the first aspect >>
[Synthesis Example 1A] Synthesis of copolymer A-1A In a SUS autoclave with a 1.5 L stirring blade sufficiently purged with nitrogen, 300 ml of n-hexane (dried on activated alumina under a dry nitrogen atmosphere) ) And 450 ml of 4-methyl-1-pentene were charged at 23 ° C., then, 0.75 ml of a 1.0 mmol / ml toluene solution of triisobutylaluminum (TIBAL) was charged, and the stirrer was rotated.
Next, the autoclave was heated until the internal temperature reached 60 ° C., and pressurized with propylene so that the total pressure (gauge pressure) was 0.19 MPa.
Subsequently, 1 mmol of methylaluminoxane in terms of aluminum (Al) and 0.01 mmol of diphenylmethylene (1-ethyl-3-t-butyl-cyclopentadienyl) (2,7-di-dioxide) prepared in advance. 0.34 ml of a toluene solution containing -t-butyl-fluorenyl) zirconium dichloride was injected into the autoclave with nitrogen to start the polymerization reaction. During the polymerization reaction, the temperature was adjusted so that the internal temperature of the autoclave was 60 ° C.
Sixty minutes after the start of the polymerization, 5 ml of methanol was pressed into the autoclave with nitrogen to stop the polymerization reaction, and then the inside of the autoclave was depressurized to atmospheric pressure. After depressurization, acetone was added to the reaction solution while stirring the reaction solution to obtain a polymerization reaction product containing a solvent. Next, the obtained polymerization reaction product containing the solvent was dried at 130 ° C. under reduced pressure for 12 hours to obtain 44.0 g of a powdery copolymer A-1A.
[合成例1A]共重合体A-1Aの合成
充分に窒素置換した容量1.5Lの攪拌翼付のSUS製オートクレーブに、300mlのn-ヘキサン(乾燥窒素雰囲気下、活性アルミナ上で乾燥したもの)、及び450mlの4-メチル-1-ペンテンを23℃で装入した後、トリイソブチルアルミニウム(TIBAL)の1.0mmol/mlトルエン溶液を0.75ml装入し、攪拌機を回した。
次に、オートクレーブを内温が60℃になるまで加熱し、全圧(ゲージ圧)が0.19MPaとなるようにプロピレンで加圧した。
続いて、予め調製しておいた、アルミニウム(Al)換算で1mmolのメチルアルミノキサン、及び0.01mmolのジフェニルメチレン(1-エチル-3-t-ブチル-シクロペンタジエニル)(2,7-ジ-t-ブチル-フルオレニル)ジルコニウムジクロリドを含むトルエン溶液0.34mlをオートクレーブに窒素で圧入し、重合反応を開始させた。重合反応中は、オートクレーブの内温が60℃になるように温度調整した。
重合開始から60分後、オートクレーブにメタノール5mlを窒素で圧入し、重合反応を停止させた後、オートクレーブ内を大気圧まで脱圧した。脱圧後、反応溶液に、該反応溶液を攪拌しながらアセトンを添加し、溶媒を含む重合反応生成物を得た。次いで、得られた溶媒を含む重合反応生成物を減圧下、130℃で12時間乾燥させて、44.0gの粉末状の共重合体A-1Aを得た。 << Example of the first aspect >>
[Synthesis Example 1A] Synthesis of copolymer A-1A In a SUS autoclave with a 1.5 L stirring blade sufficiently purged with nitrogen, 300 ml of n-hexane (dried on activated alumina under a dry nitrogen atmosphere) ) And 450 ml of 4-methyl-1-pentene were charged at 23 ° C., then, 0.75 ml of a 1.0 mmol / ml toluene solution of triisobutylaluminum (TIBAL) was charged, and the stirrer was rotated.
Next, the autoclave was heated until the internal temperature reached 60 ° C., and pressurized with propylene so that the total pressure (gauge pressure) was 0.19 MPa.
Subsequently, 1 mmol of methylaluminoxane in terms of aluminum (Al) and 0.01 mmol of diphenylmethylene (1-ethyl-3-t-butyl-cyclopentadienyl) (2,7-di-dioxide) prepared in advance. 0.34 ml of a toluene solution containing -t-butyl-fluorenyl) zirconium dichloride was injected into the autoclave with nitrogen to start the polymerization reaction. During the polymerization reaction, the temperature was adjusted so that the internal temperature of the autoclave was 60 ° C.
Sixty minutes after the start of the polymerization, 5 ml of methanol was pressed into the autoclave with nitrogen to stop the polymerization reaction, and then the inside of the autoclave was depressurized to atmospheric pressure. After depressurization, acetone was added to the reaction solution while stirring the reaction solution to obtain a polymerization reaction product containing a solvent. Next, the obtained polymerization reaction product containing the solvent was dried at 130 ° C. under reduced pressure for 12 hours to obtain 44.0 g of a powdery copolymer A-1A.
得られた共重合体A-1Aの各種物性の測定結果を表1に示す。
共重合体A-1A中の4-メチル-1-ペンテンの含有率は84.1mol%であり、プロピレンの含有率は15.9mol%であった。また、共重合体A-1Aの密度は838kg/m3であった。共重合体A-1Aの極限粘度[η]は1.5dl/gであり、重量平均分子量(Mw)は340,000であり、分子量分布(Mw/Mn)は2.1であった。共重合体A-1Aの融点(Tm)は132℃であり、tanδの最大値は1.6(最大値を示す際の温度:39℃)であった。 Table 1 shows the measurement results of various physical properties of the obtained copolymer A-1A.
The content of 4-methyl-1-pentene in copolymer A-1A was 84.1 mol%, and the content of propylene was 15.9 mol%. Further, the density of the copolymer A-1A was 838 kg / m 3 . Copolymer A-1A had an intrinsic viscosity [η] of 1.5 dl / g, a weight average molecular weight (Mw) of 340,000, and a molecular weight distribution (Mw / Mn) of 2.1. The melting point (Tm) of copolymer A-1A was 132 ° C., and the maximum value of tan δ was 1.6 (temperature at which the maximum value was shown: 39 ° C.).
共重合体A-1A中の4-メチル-1-ペンテンの含有率は84.1mol%であり、プロピレンの含有率は15.9mol%であった。また、共重合体A-1Aの密度は838kg/m3であった。共重合体A-1Aの極限粘度[η]は1.5dl/gであり、重量平均分子量(Mw)は340,000であり、分子量分布(Mw/Mn)は2.1であった。共重合体A-1Aの融点(Tm)は132℃であり、tanδの最大値は1.6(最大値を示す際の温度:39℃)であった。 Table 1 shows the measurement results of various physical properties of the obtained copolymer A-1A.
The content of 4-methyl-1-pentene in copolymer A-1A was 84.1 mol%, and the content of propylene was 15.9 mol%. Further, the density of the copolymer A-1A was 838 kg / m 3 . Copolymer A-1A had an intrinsic viscosity [η] of 1.5 dl / g, a weight average molecular weight (Mw) of 340,000, and a molecular weight distribution (Mw / Mn) of 2.1. The melting point (Tm) of copolymer A-1A was 132 ° C., and the maximum value of tan δ was 1.6 (temperature at which the maximum value was shown: 39 ° C.).
[合成例2A]共重合体A-2Aの合成
充分に窒素置換した容量1.5Lの攪拌翼付のSUS製オートクレーブに、300mlのn-ヘキサン(乾燥窒素雰囲気下、活性アルミナ上で乾燥したもの)、及び450mlの4-メチル-1-ペンテンを23℃で装入した後、トリイソブチルアルミニウム(TIBAL)の1.0mmol/mlトルエン溶液を0.75ml装入し、攪拌機を回した。
次に、オートクレーブを内温が60℃になるまで加熱し、全圧(ゲージ圧)が0.40MPaとなるようにプロピレンで加圧した。
続いて、予め調製しておいた、Al換算で1mmolのメチルアルミノキサン、及び0.01mmolのジフェニルメチレン(1-エチル-3-t-ブチル-シクロペンタジエニル)(2,7-ジ-t-ブチル-フルオレニル)ジルコニウムジクロリドを含むトルエン溶液0.34mlをオートクレーブに窒素で圧入し、重合反応を開始させた。重合反応中は、オートクレーブの内温が60℃になるように温度調整した。
重合開始から60分後、オートクレーブにメタノール5mlを窒素で圧入し、重合反応を停止させた後、オートクレーブ内を大気圧まで脱圧した。脱圧後、反応溶液に、該反応溶液を攪拌しながらアセトンを添加し、溶媒を含む重合反応生成物を得た。次いで、得られた溶媒を含む重合反応生成物を減圧下、130℃で12時間乾燥させて、36.9gの粉末状の共重合体A-2Aを得た。 [Synthesis Example 2A] Synthesis of Copolymer A-2A In a SUS autoclave with a 1.5 L stirring blade sufficiently purged with nitrogen, 300 ml of n-hexane (dried on activated alumina in a dry nitrogen atmosphere) ) And 450 ml of 4-methyl-1-pentene were charged at 23 ° C., then, 0.75 ml of a 1.0 mmol / ml toluene solution of triisobutylaluminum (TIBAL) was charged, and the stirrer was rotated.
Next, the autoclave was heated to an internal temperature of 60 ° C. and pressurized with propylene so that the total pressure (gauge pressure) was 0.40 MPa.
Subsequently, 1 mmol of methylaluminoxane and 0.01 mmol of diphenylmethylene (1-ethyl-3-t-butyl-cyclopentadienyl) (2,7-di-t-) prepared in advance were converted into Al. 0.34 ml of a toluene solution containing (butyl-fluorenyl) zirconium dichloride was pressed into the autoclave with nitrogen to initiate the polymerization reaction. During the polymerization reaction, the temperature was adjusted so that the internal temperature of the autoclave was 60 ° C.
Sixty minutes after the start of the polymerization, 5 ml of methanol was injected into the autoclave with nitrogen to stop the polymerization reaction, and then the inside of the autoclave was depressurized to the atmospheric pressure. After depressurization, acetone was added to the reaction solution while stirring the reaction solution to obtain a polymerization reaction product containing a solvent. Next, the obtained polymerization reaction product containing the solvent was dried at 130 ° C. under reduced pressure for 12 hours to obtain 36.9 g of a powdery copolymer A-2A.
充分に窒素置換した容量1.5Lの攪拌翼付のSUS製オートクレーブに、300mlのn-ヘキサン(乾燥窒素雰囲気下、活性アルミナ上で乾燥したもの)、及び450mlの4-メチル-1-ペンテンを23℃で装入した後、トリイソブチルアルミニウム(TIBAL)の1.0mmol/mlトルエン溶液を0.75ml装入し、攪拌機を回した。
次に、オートクレーブを内温が60℃になるまで加熱し、全圧(ゲージ圧)が0.40MPaとなるようにプロピレンで加圧した。
続いて、予め調製しておいた、Al換算で1mmolのメチルアルミノキサン、及び0.01mmolのジフェニルメチレン(1-エチル-3-t-ブチル-シクロペンタジエニル)(2,7-ジ-t-ブチル-フルオレニル)ジルコニウムジクロリドを含むトルエン溶液0.34mlをオートクレーブに窒素で圧入し、重合反応を開始させた。重合反応中は、オートクレーブの内温が60℃になるように温度調整した。
重合開始から60分後、オートクレーブにメタノール5mlを窒素で圧入し、重合反応を停止させた後、オートクレーブ内を大気圧まで脱圧した。脱圧後、反応溶液に、該反応溶液を攪拌しながらアセトンを添加し、溶媒を含む重合反応生成物を得た。次いで、得られた溶媒を含む重合反応生成物を減圧下、130℃で12時間乾燥させて、36.9gの粉末状の共重合体A-2Aを得た。 [Synthesis Example 2A] Synthesis of Copolymer A-2A In a SUS autoclave with a 1.5 L stirring blade sufficiently purged with nitrogen, 300 ml of n-hexane (dried on activated alumina in a dry nitrogen atmosphere) ) And 450 ml of 4-methyl-1-pentene were charged at 23 ° C., then, 0.75 ml of a 1.0 mmol / ml toluene solution of triisobutylaluminum (TIBAL) was charged, and the stirrer was rotated.
Next, the autoclave was heated to an internal temperature of 60 ° C. and pressurized with propylene so that the total pressure (gauge pressure) was 0.40 MPa.
Subsequently, 1 mmol of methylaluminoxane and 0.01 mmol of diphenylmethylene (1-ethyl-3-t-butyl-cyclopentadienyl) (2,7-di-t-) prepared in advance were converted into Al. 0.34 ml of a toluene solution containing (butyl-fluorenyl) zirconium dichloride was pressed into the autoclave with nitrogen to initiate the polymerization reaction. During the polymerization reaction, the temperature was adjusted so that the internal temperature of the autoclave was 60 ° C.
Sixty minutes after the start of the polymerization, 5 ml of methanol was injected into the autoclave with nitrogen to stop the polymerization reaction, and then the inside of the autoclave was depressurized to the atmospheric pressure. After depressurization, acetone was added to the reaction solution while stirring the reaction solution to obtain a polymerization reaction product containing a solvent. Next, the obtained polymerization reaction product containing the solvent was dried at 130 ° C. under reduced pressure for 12 hours to obtain 36.9 g of a powdery copolymer A-2A.
得られた共重合体A-2Aの各種物性の測定結果を表1に示す。
共重合体A-2A中の4-メチル-1-ペンテンの含有率は72.5mol%であり、プロピレンの含有率は27.5mol%であった。また、共重合体A-2Aの密度は839kg/m3であった。共重合体A-2Aの極限粘度[η]は1.5dl/gであり、重量平均分子量(Mw)は337,000であり、分子量分布(Mw/Mn)は2.1であった。共重合体A-2Aの融点(Tm)は観察されず、tanδの最大値は2.8(最大値を示す際の温度:31℃)であった。 Table 1 shows the measurement results of various physical properties of the obtained copolymer A-2A.
The content of 4-methyl-1-pentene in the copolymer A-2A was 72.5 mol%, and the content of propylene was 27.5 mol%. Further, the density of the copolymer A-2A was 839 kg / m 3 . Copolymer A-2A had an intrinsic viscosity [η] of 1.5 dl / g, a weight average molecular weight (Mw) of 337,000, and a molecular weight distribution (Mw / Mn) of 2.1. The melting point (Tm) of the copolymer A-2A was not observed, and the maximum value of tan δ was 2.8 (temperature when showing the maximum value: 31 ° C.).
共重合体A-2A中の4-メチル-1-ペンテンの含有率は72.5mol%であり、プロピレンの含有率は27.5mol%であった。また、共重合体A-2Aの密度は839kg/m3であった。共重合体A-2Aの極限粘度[η]は1.5dl/gであり、重量平均分子量(Mw)は337,000であり、分子量分布(Mw/Mn)は2.1であった。共重合体A-2Aの融点(Tm)は観察されず、tanδの最大値は2.8(最大値を示す際の温度:31℃)であった。 Table 1 shows the measurement results of various physical properties of the obtained copolymer A-2A.
The content of 4-methyl-1-pentene in the copolymer A-2A was 72.5 mol%, and the content of propylene was 27.5 mol%. Further, the density of the copolymer A-2A was 839 kg / m 3 . Copolymer A-2A had an intrinsic viscosity [η] of 1.5 dl / g, a weight average molecular weight (Mw) of 337,000, and a molecular weight distribution (Mw / Mn) of 2.1. The melting point (Tm) of the copolymer A-2A was not observed, and the maximum value of tan δ was 2.8 (temperature when showing the maximum value: 31 ° C.).
[合成例3A]共重合体A-3A(比較共重合体)の合成
充分に窒素置換した容量1.5Lの攪拌翼付のSUS製オートクレーブに、750mlの4-メチル-1-ペンテンを23℃で装入した後、トリイソブチルアルミニウム(TIBAL)の1.0mmol/mlトルエン溶液を0.75ml装入し、攪拌機を回した。
次に、オートクレーブを内温が60℃になるまで加熱し、全圧(ゲージ圧)が0.15MPaとなるようにプロピレンで加圧した。
続いて、予め調製しておいた、Al換算で1mmolのメチルアルミノキサン、及び0.005mmolのジフェニルメチレン(1-エチル-3-t-ブチル-シクロペンタジエニル)(2,7-ジ-t-ブチル-フルオレニル)ジルコニウムジクロリドを含むトルエン溶液0.34mlをオートクレーブに窒素で圧入し、重合反応を開始させた。重合反応中は、オートクレーブの内温が60℃になるように温度調整した。
重合開始から60分後、オートクレーブにメタノール5mlを窒素で圧入し、重合反応を停止させた後、オートクレーブ内を大気圧まで脱圧した。脱圧後、反応溶液に、該反応溶液を攪拌しながらアセトンを添加し、溶媒を含む重合反応生成物を得た。次いで、得られた溶媒を含む重合反応生成物を減圧下、130℃で12時間乾燥させて、45.9gの粉末状の共重合体A-3Aを得た。 [Synthesis Example 3A] Synthesis of Copolymer A-3A (Comparative Copolymer) 750 ml of 4-methyl-1-pentene was placed at 23 ° C. in a SUS autoclave with a 1.5 L stirring blade sufficiently purged with nitrogen. Then, 0.75 ml of a 1.0 mmol / ml toluene solution of triisobutylaluminum (TIBAL) was charged, and the stirrer was rotated.
Next, the autoclave was heated until the internal temperature reached 60 ° C., and pressurized with propylene so that the total pressure (gauge pressure) was 0.15 MPa.
Subsequently, 1 mmol of methylaluminoxane and 0.005 mmol of diphenylmethylene (1-ethyl-3-t-butyl-cyclopentadienyl) (2,7-di-t-) prepared in advance were converted into Al. 0.34 ml of a toluene solution containing (butyl-fluorenyl) zirconium dichloride was pressed into the autoclave with nitrogen to initiate the polymerization reaction. During the polymerization reaction, the temperature was adjusted so that the internal temperature of the autoclave was 60 ° C.
Sixty minutes after the start of the polymerization, 5 ml of methanol was pressed into the autoclave with nitrogen to stop the polymerization reaction, and then the inside of the autoclave was depressurized to atmospheric pressure. After depressurization, acetone was added to the reaction solution while stirring the reaction solution to obtain a polymerization reaction product containing a solvent. Next, the obtained polymerization reaction product containing the solvent was dried under reduced pressure at 130 ° C. for 12 hours to obtain 45.9 g of a powdery copolymer A-3A.
充分に窒素置換した容量1.5Lの攪拌翼付のSUS製オートクレーブに、750mlの4-メチル-1-ペンテンを23℃で装入した後、トリイソブチルアルミニウム(TIBAL)の1.0mmol/mlトルエン溶液を0.75ml装入し、攪拌機を回した。
次に、オートクレーブを内温が60℃になるまで加熱し、全圧(ゲージ圧)が0.15MPaとなるようにプロピレンで加圧した。
続いて、予め調製しておいた、Al換算で1mmolのメチルアルミノキサン、及び0.005mmolのジフェニルメチレン(1-エチル-3-t-ブチル-シクロペンタジエニル)(2,7-ジ-t-ブチル-フルオレニル)ジルコニウムジクロリドを含むトルエン溶液0.34mlをオートクレーブに窒素で圧入し、重合反応を開始させた。重合反応中は、オートクレーブの内温が60℃になるように温度調整した。
重合開始から60分後、オートクレーブにメタノール5mlを窒素で圧入し、重合反応を停止させた後、オートクレーブ内を大気圧まで脱圧した。脱圧後、反応溶液に、該反応溶液を攪拌しながらアセトンを添加し、溶媒を含む重合反応生成物を得た。次いで、得られた溶媒を含む重合反応生成物を減圧下、130℃で12時間乾燥させて、45.9gの粉末状の共重合体A-3Aを得た。 [Synthesis Example 3A] Synthesis of Copolymer A-3A (Comparative Copolymer) 750 ml of 4-methyl-1-pentene was placed at 23 ° C. in a SUS autoclave with a 1.5 L stirring blade sufficiently purged with nitrogen. Then, 0.75 ml of a 1.0 mmol / ml toluene solution of triisobutylaluminum (TIBAL) was charged, and the stirrer was rotated.
Next, the autoclave was heated until the internal temperature reached 60 ° C., and pressurized with propylene so that the total pressure (gauge pressure) was 0.15 MPa.
Subsequently, 1 mmol of methylaluminoxane and 0.005 mmol of diphenylmethylene (1-ethyl-3-t-butyl-cyclopentadienyl) (2,7-di-t-) prepared in advance were converted into Al. 0.34 ml of a toluene solution containing (butyl-fluorenyl) zirconium dichloride was pressed into the autoclave with nitrogen to initiate the polymerization reaction. During the polymerization reaction, the temperature was adjusted so that the internal temperature of the autoclave was 60 ° C.
Sixty minutes after the start of the polymerization, 5 ml of methanol was pressed into the autoclave with nitrogen to stop the polymerization reaction, and then the inside of the autoclave was depressurized to atmospheric pressure. After depressurization, acetone was added to the reaction solution while stirring the reaction solution to obtain a polymerization reaction product containing a solvent. Next, the obtained polymerization reaction product containing the solvent was dried under reduced pressure at 130 ° C. for 12 hours to obtain 45.9 g of a powdery copolymer A-3A.
得られた共重合体A-3Aの各種物性の測定結果を表1に示す。
共重合体A-3A中の4-メチル-1-ペンテンの含有率は92.3mol%であり、プロピレンの含有率は7.7mol%であった。また、共重合体A-3Aの密度は832kg/m3であった。共重合体A-3Aの極限粘度[η]は1.6dl/gであり、重量平均分子量(Mw)は370,000であり、分子量分布(Mw/Mn)は2.1であった。共重合体A-3Aの融点(Tm)は178℃であり、tanδの最大値は0.4(最大値を示す際の温度:40℃)であった。 Table 1 shows the measurement results of various physical properties of the obtained copolymer A-3A.
The content of 4-methyl-1-pentene in the copolymer A-3A was 92.3 mol%, and the content of propylene was 7.7 mol%. Further, the density of the copolymer A-3A was 832 kg / m 3 . Copolymer A-3A had an intrinsic viscosity [η] of 1.6 dl / g, a weight average molecular weight (Mw) of 370,000, and a molecular weight distribution (Mw / Mn) of 2.1. The melting point (Tm) of copolymer A-3A was 178 ° C., and the maximum value of tan δ was 0.4 (temperature at which the maximum value was shown: 40 ° C.).
共重合体A-3A中の4-メチル-1-ペンテンの含有率は92.3mol%であり、プロピレンの含有率は7.7mol%であった。また、共重合体A-3Aの密度は832kg/m3であった。共重合体A-3Aの極限粘度[η]は1.6dl/gであり、重量平均分子量(Mw)は370,000であり、分子量分布(Mw/Mn)は2.1であった。共重合体A-3Aの融点(Tm)は178℃であり、tanδの最大値は0.4(最大値を示す際の温度:40℃)であった。 Table 1 shows the measurement results of various physical properties of the obtained copolymer A-3A.
The content of 4-methyl-1-pentene in the copolymer A-3A was 92.3 mol%, and the content of propylene was 7.7 mol%. Further, the density of the copolymer A-3A was 832 kg / m 3 . Copolymer A-3A had an intrinsic viscosity [η] of 1.6 dl / g, a weight average molecular weight (Mw) of 370,000, and a molecular weight distribution (Mw / Mn) of 2.1. The melting point (Tm) of copolymer A-3A was 178 ° C., and the maximum value of tan δ was 0.4 (temperature at which the maximum value was shown: 40 ° C.).
共重合体の各種物性の測定方法を以下に示す。
The methods for measuring various physical properties of the copolymer are shown below.
〔組成〕
共重合体中の4-メチル-1-ペンテン及びプロピレン(炭素数3のα-オレフィン)の含有率(モル%)は、13C-NMRにより測定した。測定条件は、下記のとおりである。 〔composition〕
The content (mol%) of 4-methyl-1-pentene and propylene (α-olefin having 3 carbon atoms) in the copolymer was measured by 13 C-NMR. The measurement conditions are as follows.
共重合体中の4-メチル-1-ペンテン及びプロピレン(炭素数3のα-オレフィン)の含有率(モル%)は、13C-NMRにより測定した。測定条件は、下記のとおりである。 〔composition〕
The content (mol%) of 4-methyl-1-pentene and propylene (α-olefin having 3 carbon atoms) in the copolymer was measured by 13 C-NMR. The measurement conditions are as follows.
~条件~
測定装置:核磁気共鳴装置(ECP500型、日本電子(株)製)
観測核:13C(125MHz)
シーケンス:シングルパルスプロトンデカップリング
パルス幅:4.7μ秒(45°パルス)
繰り返し時間:5.5秒
積算回数:1万回以上
溶媒:オルトジクロロベンゼン/重水素化ベンゼン(容量比:80/20)混合溶媒
試料濃度:55mg/0.6mL
測定温度:120℃
ケミカルシフトの基準値:27.50ppm ~ Conditions ~
Measuring apparatus: Nuclear magnetic resonance apparatus (ECP500 type, manufactured by JEOL Ltd.)
Observation nucleus: 13 C (125 MHz)
Sequence: Single pulse proton decoupling Pulse width: 4.7 μsec (45 ° pulse)
Repeat time: 5.5 seconds Accumulated number: 10,000 times or more Solvent: Orthodichlorobenzene / deuterated benzene (volume ratio: 80/20) mixed solvent Sample concentration: 55 mg / 0.6 mL
Measurement temperature: 120 ° C
Standard value of chemical shift: 27.50ppm
測定装置:核磁気共鳴装置(ECP500型、日本電子(株)製)
観測核:13C(125MHz)
シーケンス:シングルパルスプロトンデカップリング
パルス幅:4.7μ秒(45°パルス)
繰り返し時間:5.5秒
積算回数:1万回以上
溶媒:オルトジクロロベンゼン/重水素化ベンゼン(容量比:80/20)混合溶媒
試料濃度:55mg/0.6mL
測定温度:120℃
ケミカルシフトの基準値:27.50ppm ~ Conditions ~
Measuring apparatus: Nuclear magnetic resonance apparatus (ECP500 type, manufactured by JEOL Ltd.)
Observation nucleus: 13 C (125 MHz)
Sequence: Single pulse proton decoupling Pulse width: 4.7 μsec (45 ° pulse)
Repeat time: 5.5 seconds Accumulated number: 10,000 times or more Solvent: Orthodichlorobenzene / deuterated benzene (volume ratio: 80/20) mixed solvent Sample concentration: 55 mg / 0.6 mL
Measurement temperature: 120 ° C
Standard value of chemical shift: 27.50ppm
〔極限粘度[η]〕
共重合体の極限粘度[η]は、測定装置としてウベローデ粘度計を用い、デカリン溶媒中、135℃で測定した。
具体的には、約20mgの粉末状の共重合体をデカリン25mlに溶解させた後、ウベローデ粘度計を用い、135℃のオイルバス中で比粘度ηspを測定した。このデカリン溶液にデカリンを5ml加えて希釈した後、上記と同様にして比粘度ηspを測定した。この希釈操作を更に2回繰り返し、濃度(C)を0に外挿した時のηsp/Cの値を極限粘度[η](単位:dl/g)として求めた(下記の式1参照)。
[η]=lim(ηsp/C) (C→0)・・・式1 [Intrinsic viscosity [η]]
The intrinsic viscosity [η] of the copolymer was measured at 135 ° C. in a decalin solvent using an Ubbelohde viscometer as a measuring device.
Specifically, about 20 mg of the powdery copolymer was dissolved in 25 ml of decalin, and then the specific viscosity ηsp was measured in an oil bath at 135 ° C. using an Ubbelohde viscometer. After 5 ml of decalin was added to the decalin solution for dilution, the specific viscosity ηsp was measured in the same manner as described above. This dilution operation was further repeated twice, and the value of ηsp / C when the concentration (C) was extrapolated to 0 was determined as the intrinsic viscosity [η] (unit: dl / g) (see the following formula 1).
[Η] = lim (ηsp / C) (C → 0) Equation 1
共重合体の極限粘度[η]は、測定装置としてウベローデ粘度計を用い、デカリン溶媒中、135℃で測定した。
具体的には、約20mgの粉末状の共重合体をデカリン25mlに溶解させた後、ウベローデ粘度計を用い、135℃のオイルバス中で比粘度ηspを測定した。このデカリン溶液にデカリンを5ml加えて希釈した後、上記と同様にして比粘度ηspを測定した。この希釈操作を更に2回繰り返し、濃度(C)を0に外挿した時のηsp/Cの値を極限粘度[η](単位:dl/g)として求めた(下記の式1参照)。
[η]=lim(ηsp/C) (C→0)・・・式1 [Intrinsic viscosity [η]]
The intrinsic viscosity [η] of the copolymer was measured at 135 ° C. in a decalin solvent using an Ubbelohde viscometer as a measuring device.
Specifically, about 20 mg of the powdery copolymer was dissolved in 25 ml of decalin, and then the specific viscosity ηsp was measured in an oil bath at 135 ° C. using an Ubbelohde viscometer. After 5 ml of decalin was added to the decalin solution for dilution, the specific viscosity ηsp was measured in the same manner as described above. This dilution operation was further repeated twice, and the value of ηsp / C when the concentration (C) was extrapolated to 0 was determined as the intrinsic viscosity [η] (unit: dl / g) (see the following formula 1).
[Η] = lim (ηsp / C) (C → 0) Equation 1
〔重量平均分子量(Mw)及び分子量分布(Mw/Mn)〕
共重合体の重量平均分子量(Mw)、及び重量平均分子量(Mw)と数平均分子量(Mn)との比で表される分子量分布(Mw/Mn)は、ゲルパーミエーションクロマトグラフィー(GPC:Gel Permeation Chromatography)を用いた標準ポリスチレン換算法により算出した。測定条件は、下記のとおりである。 [Weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn)]
The weight average molecular weight (Mw) of the copolymer and the molecular weight distribution (Mw / Mn) represented by the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) are determined by gel permeation chromatography (GPC: Gel). It calculated by the standard polystyrene conversion method using Permeation Chromatography). The measurement conditions are as follows.
共重合体の重量平均分子量(Mw)、及び重量平均分子量(Mw)と数平均分子量(Mn)との比で表される分子量分布(Mw/Mn)は、ゲルパーミエーションクロマトグラフィー(GPC:Gel Permeation Chromatography)を用いた標準ポリスチレン換算法により算出した。測定条件は、下記のとおりである。 [Weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn)]
The weight average molecular weight (Mw) of the copolymer and the molecular weight distribution (Mw / Mn) represented by the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) are determined by gel permeation chromatography (GPC: Gel). It calculated by the standard polystyrene conversion method using Permeation Chromatography). The measurement conditions are as follows.
~条件~
測定装置:GPC(ALC/GPC 150-C plus型、示唆屈折計検出器一体型、Waters製)
カラム:GMH6-HT(東ソー(株)製)2本、及びGMH6-HTL(東ソー(株)製)2本を直列に接続
溶離液:o-ジクロロベンゼン
カラム温度:140℃
流量:1.0mL/min ~ Conditions ~
Measuring device: GPC (ALC / GPC 150-C plus type, suggested refractometer detector integrated type, manufactured by Waters)
Column: Two GMH6-HT (manufactured by Tosoh Corp.) and two GMH6-HTL (manufactured by Tosoh Corp.) connected in series Eluent: o-dichlorobenzene Column temperature: 140 ° C
Flow rate: 1.0 mL / min
測定装置:GPC(ALC/GPC 150-C plus型、示唆屈折計検出器一体型、Waters製)
カラム:GMH6-HT(東ソー(株)製)2本、及びGMH6-HTL(東ソー(株)製)2本を直列に接続
溶離液:o-ジクロロベンゼン
カラム温度:140℃
流量:1.0mL/min ~ Conditions ~
Measuring device: GPC (ALC / GPC 150-C plus type, suggested refractometer detector integrated type, manufactured by Waters)
Column: Two GMH6-HT (manufactured by Tosoh Corp.) and two GMH6-HTL (manufactured by Tosoh Corp.) connected in series Eluent: o-dichlorobenzene Column temperature: 140 ° C
Flow rate: 1.0 mL / min
〔メルトフローレート(MFR)〕
共重合体のメルトフローレート(MFR:Melt Flow Rate)は、ASTM D1238に準拠し、230℃で2.16kgの荷重にて測定した。単位は、g/10min)である。 [Melt flow rate (MFR)]
The melt flow rate (MFR) of the copolymer was measured at 230 ° C. and a load of 2.16 kg in accordance with ASTM D1238. The unit is g / 10 min).
共重合体のメルトフローレート(MFR:Melt Flow Rate)は、ASTM D1238に準拠し、230℃で2.16kgの荷重にて測定した。単位は、g/10min)である。 [Melt flow rate (MFR)]
The melt flow rate (MFR) of the copolymer was measured at 230 ° C. and a load of 2.16 kg in accordance with ASTM D1238. The unit is g / 10 min).
〔密度〕
共重合体の密度は、JIS K7112(密度勾配管法)に準拠して、測定した。この密度(kg/m3)を軽量性の指標とした。 〔density〕
The density of the copolymer was measured according to JIS K7112 (density gradient tube method). This density (kg / m 3 ) was used as an indicator of lightness.
共重合体の密度は、JIS K7112(密度勾配管法)に準拠して、測定した。この密度(kg/m3)を軽量性の指標とした。 〔density〕
The density of the copolymer was measured according to JIS K7112 (density gradient tube method). This density (kg / m 3 ) was used as an indicator of lightness.
〔融点(Tm)〕
共重合体の融点(Tm)は、測定装置として示差走査熱量計(DSC220C型、セイコーインスツル(株)製)を用いて測定した。
約5mgの共重合体を測定用アルミニウムパン中に密封し、室温から10℃/minで200℃まで加熱した。共重合体を完全融解させるために、200℃で5分間保持し、次いで、10℃/minで-50℃まで冷却した。-50℃で5分間置いた後、10℃/minで200℃まで2度目の加熱を行なった。この2度目の加熱でのピーク温度(℃)を共重合体の融点(Tm)とした。この共重合体の融点(Tm)を耐熱性の指標とした。 [Melting point (Tm)]
The melting point (Tm) of the copolymer was measured using a differential scanning calorimeter (DSC220C type, manufactured by Seiko Instruments Inc.) as a measuring device.
About 5 mg of the copolymer was sealed in a measurement aluminum pan and heated from room temperature to 200 ° C. at 10 ° C./min. In order to completely melt the copolymer, it was kept at 200 ° C. for 5 minutes and then cooled to −50 ° C. at 10 ° C./min. After 5 minutes at −50 ° C., the second heating was performed to 200 ° C. at 10 ° C./min. The peak temperature (° C.) at the second heating was defined as the melting point (Tm) of the copolymer. The melting point (Tm) of this copolymer was used as an index of heat resistance.
共重合体の融点(Tm)は、測定装置として示差走査熱量計(DSC220C型、セイコーインスツル(株)製)を用いて測定した。
約5mgの共重合体を測定用アルミニウムパン中に密封し、室温から10℃/minで200℃まで加熱した。共重合体を完全融解させるために、200℃で5分間保持し、次いで、10℃/minで-50℃まで冷却した。-50℃で5分間置いた後、10℃/minで200℃まで2度目の加熱を行なった。この2度目の加熱でのピーク温度(℃)を共重合体の融点(Tm)とした。この共重合体の融点(Tm)を耐熱性の指標とした。 [Melting point (Tm)]
The melting point (Tm) of the copolymer was measured using a differential scanning calorimeter (DSC220C type, manufactured by Seiko Instruments Inc.) as a measuring device.
About 5 mg of the copolymer was sealed in a measurement aluminum pan and heated from room temperature to 200 ° C. at 10 ° C./min. In order to completely melt the copolymer, it was kept at 200 ° C. for 5 minutes and then cooled to −50 ° C. at 10 ° C./min. After 5 minutes at −50 ° C., the second heating was performed to 200 ° C. at 10 ° C./min. The peak temperature (° C.) at the second heating was defined as the melting point (Tm) of the copolymer. The melting point (Tm) of this copolymer was used as an index of heat resistance.
〔衝撃吸収性〕
上記にて得られた粉末状の共重合体を、リップ幅240mmのTダイを設置した20mmφの単軸押出機(単軸シート形成機、(株)田中鉄工所製)のホッパーに投入した。そして、シリンダー温度を100℃~250℃、ダイス温度を250℃に設定し、Tダイから溶融混練物を押し出した。この押し出した溶融混練物を、チルロール温度20℃、引取速度10m/minで引き取ることにより、厚さ50μmのキャストフィルムを得た。このキャストフィルムを45mm×10mmに切り出し、試験片とした。
この試験片について、粘弾性測定装置(MCR301、Anton Paar社製)を用いて、周波数10rad/sで、-70~180℃の温度範囲の動的粘弾性を測定し、ガラス転移温度に起因する損失正接(tanδ)の最大値(ピーク値)と、その最大値を示す際の温度(ピーク時の温度)とを測定した。 (Shock absorption)
The powdery copolymer obtained above was charged into a hopper of a 20 mmφ single screw extruder (single screw sheet forming machine, manufactured by Tanaka Iron Works Co., Ltd.) equipped with a T die having a lip width of 240 mm. The cylinder temperature was set to 100 ° C. to 250 ° C., the die temperature was set to 250 ° C., and the melt-kneaded product was extruded from the T die. The extruded melt-kneaded product was taken up at a chill roll temperature of 20 ° C. and a take-up speed of 10 m / min to obtain a cast film having a thickness of 50 μm. This cast film was cut out to 45 mm × 10 mm to obtain a test piece.
This test piece was measured for dynamic viscoelasticity in a temperature range of −70 to 180 ° C. at a frequency of 10 rad / s using a viscoelasticity measuring device (MCR301, manufactured by Anton Paar), and was caused by the glass transition temperature. The maximum value (peak value) of the loss tangent (tan δ) and the temperature at which the maximum value was shown (temperature at the peak) were measured.
上記にて得られた粉末状の共重合体を、リップ幅240mmのTダイを設置した20mmφの単軸押出機(単軸シート形成機、(株)田中鉄工所製)のホッパーに投入した。そして、シリンダー温度を100℃~250℃、ダイス温度を250℃に設定し、Tダイから溶融混練物を押し出した。この押し出した溶融混練物を、チルロール温度20℃、引取速度10m/minで引き取ることにより、厚さ50μmのキャストフィルムを得た。このキャストフィルムを45mm×10mmに切り出し、試験片とした。
この試験片について、粘弾性測定装置(MCR301、Anton Paar社製)を用いて、周波数10rad/sで、-70~180℃の温度範囲の動的粘弾性を測定し、ガラス転移温度に起因する損失正接(tanδ)の最大値(ピーク値)と、その最大値を示す際の温度(ピーク時の温度)とを測定した。 (Shock absorption)
The powdery copolymer obtained above was charged into a hopper of a 20 mmφ single screw extruder (single screw sheet forming machine, manufactured by Tanaka Iron Works Co., Ltd.) equipped with a T die having a lip width of 240 mm. The cylinder temperature was set to 100 ° C. to 250 ° C., the die temperature was set to 250 ° C., and the melt-kneaded product was extruded from the T die. The extruded melt-kneaded product was taken up at a chill roll temperature of 20 ° C. and a take-up speed of 10 m / min to obtain a cast film having a thickness of 50 μm. This cast film was cut out to 45 mm × 10 mm to obtain a test piece.
This test piece was measured for dynamic viscoelasticity in a temperature range of −70 to 180 ° C. at a frequency of 10 rad / s using a viscoelasticity measuring device (MCR301, manufactured by Anton Paar), and was caused by the glass transition temperature. The maximum value (peak value) of the loss tangent (tan δ) and the temperature at which the maximum value was shown (temperature at the peak) were measured.
<実施例1A>
共重合体A-1A 75質量部と、プロピレン系重合体(プライムポリプロ(登録商標)F327、プロピレン・エチレン・ブテンランダム共重合体、密度:907kg/m3、MFR(230℃):7g/10min、(株)プライムポリマー製)25質量部と、を混合(ドライブレンド)した。次いで、得られた混合物を、リップ幅240mmのTダイを設置した20mmφの単軸押出機(単軸シート形成機、(株)田中鉄工所製)のホッパーに投入した。そして、シリンダー温度を230℃、ダイス温度を250℃に設定し、Tダイから溶融混練物を押し出し、キャスト成形することにより、実施例1Aのフィルムを得た。フィルムは、厚みが50μmのものと、200μmのものとを形成した。 <Example 1A>
75 parts by mass of copolymer A-1A, propylene-based polymer (Prime Polypro (registered trademark) F327, propylene / ethylene / butene random copolymer, density: 907 kg / m 3 , MFR (230 ° C.): 7 g / 10 min And 25 parts by mass (manufactured by Prime Polymer Co., Ltd.) were mixed (dry blended). Next, the obtained mixture was put into a hopper of a 20 mmφ single screw extruder (single screw sheet forming machine, manufactured by Tanaka Iron Works Co., Ltd.) equipped with a T die having a lip width of 240 mm. Then, the film of Example 1A was obtained by setting the cylinder temperature to 230 ° C. and the die temperature to 250 ° C., extruding the melt-kneaded material from the T-die and cast molding. The film had a thickness of 50 μm and a thickness of 200 μm.
共重合体A-1A 75質量部と、プロピレン系重合体(プライムポリプロ(登録商標)F327、プロピレン・エチレン・ブテンランダム共重合体、密度:907kg/m3、MFR(230℃):7g/10min、(株)プライムポリマー製)25質量部と、を混合(ドライブレンド)した。次いで、得られた混合物を、リップ幅240mmのTダイを設置した20mmφの単軸押出機(単軸シート形成機、(株)田中鉄工所製)のホッパーに投入した。そして、シリンダー温度を230℃、ダイス温度を250℃に設定し、Tダイから溶融混練物を押し出し、キャスト成形することにより、実施例1Aのフィルムを得た。フィルムは、厚みが50μmのものと、200μmのものとを形成した。 <Example 1A>
75 parts by mass of copolymer A-1A, propylene-based polymer (Prime Polypro (registered trademark) F327, propylene / ethylene / butene random copolymer, density: 907 kg / m 3 , MFR (230 ° C.): 7 g / 10 min And 25 parts by mass (manufactured by Prime Polymer Co., Ltd.) were mixed (dry blended). Next, the obtained mixture was put into a hopper of a 20 mmφ single screw extruder (single screw sheet forming machine, manufactured by Tanaka Iron Works Co., Ltd.) equipped with a T die having a lip width of 240 mm. Then, the film of Example 1A was obtained by setting the cylinder temperature to 230 ° C. and the die temperature to 250 ° C., extruding the melt-kneaded material from the T-die and cast molding. The film had a thickness of 50 μm and a thickness of 200 μm.
<実施例2A>
共重合体A-1A 60質量部と、プロピレン系重合体(プライムポリプロ(登録商標)F327、(株)プライムポリマー製)40質量部と、を混合(ドライブレンド)したこと以外は、実施例1Aと同様の方法により、実施例2Aのフィルムを得た。 <Example 2A>
Example 1A, except that 60 parts by mass of copolymer A-1A and 40 parts by mass of a propylene polymer (Prime Polypro (registered trademark) F327, manufactured by Prime Polymer Co., Ltd.) were mixed (dry blended). A film of Example 2A was obtained in the same manner as described above.
共重合体A-1A 60質量部と、プロピレン系重合体(プライムポリプロ(登録商標)F327、(株)プライムポリマー製)40質量部と、を混合(ドライブレンド)したこと以外は、実施例1Aと同様の方法により、実施例2Aのフィルムを得た。 <Example 2A>
Example 1A, except that 60 parts by mass of copolymer A-1A and 40 parts by mass of a propylene polymer (Prime Polypro (registered trademark) F327, manufactured by Prime Polymer Co., Ltd.) were mixed (dry blended). A film of Example 2A was obtained in the same manner as described above.
<実施例3A>
共重合体A-1A 60質量部と、プロピレン系重合体(プライムポリプロ(登録商標)F107、プロピレンのホモポリマー、密度:910kg/m3、MFR(230℃):7g/10min、(株)プライムポリマー製)40質量部と、を混合(ドライブレンド)したこと以外は、実施例1Aと同様の方法により、実施例3Aのフィルムを得た。 <Example 3A>
60 parts by mass of copolymer A-1A, propylene-based polymer (Prime Polypro (registered trademark) F107, homopolymer of propylene, density: 910 kg / m 3 , MFR (230 ° C.): 7 g / 10 min, Prime Co., Ltd. A film of Example 3A was obtained by the same method as Example 1A, except that 40 parts by mass of polymer) was mixed (dry blended).
共重合体A-1A 60質量部と、プロピレン系重合体(プライムポリプロ(登録商標)F107、プロピレンのホモポリマー、密度:910kg/m3、MFR(230℃):7g/10min、(株)プライムポリマー製)40質量部と、を混合(ドライブレンド)したこと以外は、実施例1Aと同様の方法により、実施例3Aのフィルムを得た。 <Example 3A>
60 parts by mass of copolymer A-1A, propylene-based polymer (Prime Polypro (registered trademark) F107, homopolymer of propylene, density: 910 kg / m 3 , MFR (230 ° C.): 7 g / 10 min, Prime Co., Ltd. A film of Example 3A was obtained by the same method as Example 1A, except that 40 parts by mass of polymer) was mixed (dry blended).
<実施例4A>
共重合体A-2A 60質量部と、プロピレン系重合体(プライムポリプロ(登録商標)F327、(株)プライムポリマー製)40質量部と、を混合(ドライブレンド)したこと以外は、実施例1Aと同様の方法により、実施例4Aのフィルムを得た。 <Example 4A>
Example 1A, except that 60 parts by mass of copolymer A-2A and 40 parts by mass of a propylene-based polymer (Prime Polypro (registered trademark) F327, manufactured by Prime Polymer Co., Ltd.) were mixed (dry blended). The film of Example 4A was obtained by the same method as described above.
共重合体A-2A 60質量部と、プロピレン系重合体(プライムポリプロ(登録商標)F327、(株)プライムポリマー製)40質量部と、を混合(ドライブレンド)したこと以外は、実施例1Aと同様の方法により、実施例4Aのフィルムを得た。 <Example 4A>
Example 1A, except that 60 parts by mass of copolymer A-2A and 40 parts by mass of a propylene-based polymer (Prime Polypro (registered trademark) F327, manufactured by Prime Polymer Co., Ltd.) were mixed (dry blended). The film of Example 4A was obtained by the same method as described above.
<実施例5A>
共重合体A-1A 60質量部と、エチレン系重合体(エボリュー(登録商標)SP2540、直鎖状低密度ポリエチレン、密度:924kg/m3、MFR(190℃):3.8g/10min、(株)プライムポリマー製)40質量部と、を混合(ドライブレンド)したこと以外は、実施例1Aと同様の方法により、実施例5Aのフィルムを得た。 <Example 5A>
60 parts by mass of copolymer A-1A, ethylene polymer (Evolue (registered trademark) SP2540, linear low density polyethylene, density: 924 kg / m 3 , MFR (190 ° C.): 3.8 g / 10 min, A film of Example 5A was obtained in the same manner as in Example 1A, except that 40 parts by mass of Prime Polymer Co., Ltd.) were mixed (dry blended).
共重合体A-1A 60質量部と、エチレン系重合体(エボリュー(登録商標)SP2540、直鎖状低密度ポリエチレン、密度:924kg/m3、MFR(190℃):3.8g/10min、(株)プライムポリマー製)40質量部と、を混合(ドライブレンド)したこと以外は、実施例1Aと同様の方法により、実施例5Aのフィルムを得た。 <Example 5A>
60 parts by mass of copolymer A-1A, ethylene polymer (Evolue (registered trademark) SP2540, linear low density polyethylene, density: 924 kg / m 3 , MFR (190 ° C.): 3.8 g / 10 min, A film of Example 5A was obtained in the same manner as in Example 1A, except that 40 parts by mass of Prime Polymer Co., Ltd.) were mixed (dry blended).
<比較例1A>
共重合体A-1A 25質量部と、プロピレン系重合体(プライムポリプロ(登録商標)F327、(株)プライムポリマー製)75質量部と、を混合(ドライブレンド)したこと以外は、実施例1Aと同様の方法により、比較例1Aのフィルムを得た。 <Comparative Example 1A>
Example 1A, except that 25 parts by mass of copolymer A-1A and 75 parts by mass of a propylene-based polymer (Prime Polypro (registered trademark) F327, manufactured by Prime Polymer Co., Ltd.) were mixed (dry blended). A film of Comparative Example 1A was obtained in the same manner as above.
共重合体A-1A 25質量部と、プロピレン系重合体(プライムポリプロ(登録商標)F327、(株)プライムポリマー製)75質量部と、を混合(ドライブレンド)したこと以外は、実施例1Aと同様の方法により、比較例1Aのフィルムを得た。 <Comparative Example 1A>
Example 1A, except that 25 parts by mass of copolymer A-1A and 75 parts by mass of a propylene-based polymer (Prime Polypro (registered trademark) F327, manufactured by Prime Polymer Co., Ltd.) were mixed (dry blended). A film of Comparative Example 1A was obtained in the same manner as above.
<比較例2A>
共重合体A-3A 60質量部と、プロピレン系重合体(プライムポリプロ(登録商標)F327、(株)プライムポリマー製)40質量部と、を混合(ドライブレンド)したこと以外は、実施例1Aと同様の方法により、比較例2Aのフィルムを得た。 <Comparative Example 2A>
Example 1A, except that 60 parts by mass of copolymer A-3A and 40 parts by mass of a propylene-based polymer (Prime Polypro (registered trademark) F327, manufactured by Prime Polymer Co., Ltd.) were mixed (dry blended). A film of Comparative Example 2A was obtained by the same method as described above.
共重合体A-3A 60質量部と、プロピレン系重合体(プライムポリプロ(登録商標)F327、(株)プライムポリマー製)40質量部と、を混合(ドライブレンド)したこと以外は、実施例1Aと同様の方法により、比較例2Aのフィルムを得た。 <Comparative Example 2A>
Example 1A, except that 60 parts by mass of copolymer A-3A and 40 parts by mass of a propylene-based polymer (Prime Polypro (registered trademark) F327, manufactured by Prime Polymer Co., Ltd.) were mixed (dry blended). A film of Comparative Example 2A was obtained by the same method as described above.
<比較例3A>
フィルムの原料として、エチレン系重合体(エボリュー(登録商標)SP2540、(株)プライムポリマー製)のみを使用したこと以外は、実施例1Aと同様の方法により、比較例3Aのフィルムを得た。 <Comparative Example 3A>
A film of Comparative Example 3A was obtained by the same method as Example 1A, except that only an ethylene polymer (Evolue (registered trademark) SP2540, manufactured by Prime Polymer Co., Ltd.) was used as a raw material for the film.
フィルムの原料として、エチレン系重合体(エボリュー(登録商標)SP2540、(株)プライムポリマー製)のみを使用したこと以外は、実施例1Aと同様の方法により、比較例3Aのフィルムを得た。 <Comparative Example 3A>
A film of Comparative Example 3A was obtained by the same method as Example 1A, except that only an ethylene polymer (Evolue (registered trademark) SP2540, manufactured by Prime Polymer Co., Ltd.) was used as a raw material for the film.
<比較例4A>
フィルムの原料として、プロピレン系重合体(プライムポリプロ(登録商標)F327、(株)プライムポリマー製)のみを使用したこと以外は、実施例1Aと同様の方法により、比較例4Aのフィルムを得た。 <Comparative Example 4A>
A film of Comparative Example 4A was obtained by the same method as Example 1A, except that only a propylene polymer (Prime Polypro (registered trademark) F327, manufactured by Prime Polymer Co., Ltd.) was used as a raw material for the film. .
フィルムの原料として、プロピレン系重合体(プライムポリプロ(登録商標)F327、(株)プライムポリマー製)のみを使用したこと以外は、実施例1Aと同様の方法により、比較例4Aのフィルムを得た。 <Comparative Example 4A>
A film of Comparative Example 4A was obtained by the same method as Example 1A, except that only a propylene polymer (Prime Polypro (registered trademark) F327, manufactured by Prime Polymer Co., Ltd.) was used as a raw material for the film. .
〔透過型電子顕微鏡(TEM)によるフィルムの観察〕
実施例1A~5A及び比較例1A~2Aのフィルムを、断面方向にマイクロトームにて研削し、フィルム断面の超薄切片をトリミングした後、四酸化ルテニウムの蒸気に一定時間晒して一方を選択的に染色させた。作製したサンプルを、日立ハイテク(株)製の透過型電子顕微鏡(TEM:Transmission Electron Microscope、型式:H-7650)を用い、加速電圧:100kV、及び観察倍率:10000倍の測定条件にて観察したところ、実施例1A~5A及び比較例1A~2Aのフィルムが、共重合体A-1A、共重合体A-2A、又は共重合体A-3Aを含む海部と、実質的にプロピレン系重合体からなる島部と、から構成される海島構造を有していることが確認された。実施例2AのフィルムのTEM画像を図1に示す。 [Observation of film by transmission electron microscope (TEM)]
The films of Examples 1A to 5A and Comparative Examples 1A to 2A were ground with a microtome in the cross-sectional direction, and after trimming the ultrathin section of the film cross section, the film was selectively exposed to ruthenium tetroxide vapor for a certain period of time. Were stained. The prepared sample was observed using a transmission electron microscope (TEM: Transmission Electron Microscope, model: H-7650) manufactured by Hitachi High-Technology Co., Ltd. under measurement conditions of acceleration voltage: 100 kV and observation magnification: 10,000 times. However, the films of Examples 1A to 5A and Comparative Examples 1A to 2A have a sea part containing copolymer A-1A, copolymer A-2A, or copolymer A-3A, and a substantially propylene-based polymer. It was confirmed that it has a sea-island structure composed of A TEM image of the film of Example 2A is shown in FIG.
実施例1A~5A及び比較例1A~2Aのフィルムを、断面方向にマイクロトームにて研削し、フィルム断面の超薄切片をトリミングした後、四酸化ルテニウムの蒸気に一定時間晒して一方を選択的に染色させた。作製したサンプルを、日立ハイテク(株)製の透過型電子顕微鏡(TEM:Transmission Electron Microscope、型式:H-7650)を用い、加速電圧:100kV、及び観察倍率:10000倍の測定条件にて観察したところ、実施例1A~5A及び比較例1A~2Aのフィルムが、共重合体A-1A、共重合体A-2A、又は共重合体A-3Aを含む海部と、実質的にプロピレン系重合体からなる島部と、から構成される海島構造を有していることが確認された。実施例2AのフィルムのTEM画像を図1に示す。 [Observation of film by transmission electron microscope (TEM)]
The films of Examples 1A to 5A and Comparative Examples 1A to 2A were ground with a microtome in the cross-sectional direction, and after trimming the ultrathin section of the film cross section, the film was selectively exposed to ruthenium tetroxide vapor for a certain period of time. Were stained. The prepared sample was observed using a transmission electron microscope (TEM: Transmission Electron Microscope, model: H-7650) manufactured by Hitachi High-Technology Co., Ltd. under measurement conditions of acceleration voltage: 100 kV and observation magnification: 10,000 times. However, the films of Examples 1A to 5A and Comparative Examples 1A to 2A have a sea part containing copolymer A-1A, copolymer A-2A, or copolymer A-3A, and a substantially propylene-based polymer. It was confirmed that it has a sea-island structure composed of A TEM image of the film of Example 2A is shown in FIG.
〔評価〕
実施例1A~5A及び比較例1A~4Aのフィルムについて、引張降伏点強度(YS)、引張破断伸び(EL)、引張破断強度(TS)、引張弾性率(YM)、耐衝撃性、及び応力緩和性の評価を行なった。評価結果を下記の表2に示す。 [Evaluation]
For the films of Examples 1A-5A and Comparative Examples 1A-4A, tensile yield strength (YS), tensile elongation at break (EL), tensile strength at break (TS), tensile modulus (YM), impact resistance, and stress The relaxation was evaluated. The evaluation results are shown in Table 2 below.
実施例1A~5A及び比較例1A~4Aのフィルムについて、引張降伏点強度(YS)、引張破断伸び(EL)、引張破断強度(TS)、引張弾性率(YM)、耐衝撃性、及び応力緩和性の評価を行なった。評価結果を下記の表2に示す。 [Evaluation]
For the films of Examples 1A-5A and Comparative Examples 1A-4A, tensile yield strength (YS), tensile elongation at break (EL), tensile strength at break (TS), tensile modulus (YM), impact resistance, and stress The relaxation was evaluated. The evaluation results are shown in Table 2 below.
1.引張降伏点強度、引張破断伸び、引張破断強度、及び引張弾性率
厚みが200μmのフィルムを幅25mm×長さ100mmのダンベル状に切断したものを試験片として用いた。
JIS K7127(1999)に準拠し、引張試験機(万能引張試験機3380、インストロン製)を用いて、チャック間距離50mm、引張速度200mm/min、及び温度23℃の条件で、試験片の引張降伏点強度(単位:MPa)、引張破断伸び(単位:%)、引張破断強度(単位:MPa)、及び引張弾性率(単位:MPa)を測定した。 1. Tensile yield point strength, tensile elongation at break, tensile strength at break, and tensile modulus A film having a thickness of 200 μm cut into a dumbbell shape having a width of 25 mm and a length of 100 mm was used as a test piece.
In accordance with JIS K7127 (1999), using a tensile tester (universal tensile tester 3380, manufactured by Instron), the tension of the test piece was measured under the conditions of a distance between chucks of 50 mm, a tensile speed of 200 mm / min, and a temperature of 23 ° C. Yield point strength (unit: MPa), tensile breaking elongation (unit:%), tensile breaking strength (unit: MPa), and tensile modulus (unit: MPa) were measured.
厚みが200μmのフィルムを幅25mm×長さ100mmのダンベル状に切断したものを試験片として用いた。
JIS K7127(1999)に準拠し、引張試験機(万能引張試験機3380、インストロン製)を用いて、チャック間距離50mm、引張速度200mm/min、及び温度23℃の条件で、試験片の引張降伏点強度(単位:MPa)、引張破断伸び(単位:%)、引張破断強度(単位:MPa)、及び引張弾性率(単位:MPa)を測定した。 1. Tensile yield point strength, tensile elongation at break, tensile strength at break, and tensile modulus A film having a thickness of 200 μm cut into a dumbbell shape having a width of 25 mm and a length of 100 mm was used as a test piece.
In accordance with JIS K7127 (1999), using a tensile tester (universal tensile tester 3380, manufactured by Instron), the tension of the test piece was measured under the conditions of a distance between chucks of 50 mm, a tensile speed of 200 mm / min, and a temperature of 23 ° C. Yield point strength (unit: MPa), tensile breaking elongation (unit:%), tensile breaking strength (unit: MPa), and tensile modulus (unit: MPa) were measured.
2.耐衝撃性
厚みが50μmのフィルムを幅100mm×長さ100mmの短冊状に切断したものを試験片として用いた。
23℃の条件下、試験片を金属製のチャックに挟み、先端径が12.7mmの円筒状の測定治具を斜め50cmの高さから落下させた。そして、目視にて試験片に接触が認められた際の試験片への衝撃強度(破壊エネルギー)を測定し、下記の評価基準に従って、フィルムの耐衝撃性の評価を行なった。
実用上許容できるものは、[A]に分類されるものである。 2. Impact resistance A film having a thickness of 50 μm cut into a strip shape having a width of 100 mm and a length of 100 mm was used as a test piece.
Under the condition of 23 ° C., the test piece was sandwiched between metal chucks, and a cylindrical measuring jig having a tip diameter of 12.7 mm was dropped from a height of 50 cm obliquely. And the impact strength (fracture energy) to the test piece when contact was visually recognized by the test piece was measured, and the impact resistance of the film was evaluated according to the following evaluation criteria.
Those practically acceptable are those classified as [A].
厚みが50μmのフィルムを幅100mm×長さ100mmの短冊状に切断したものを試験片として用いた。
23℃の条件下、試験片を金属製のチャックに挟み、先端径が12.7mmの円筒状の測定治具を斜め50cmの高さから落下させた。そして、目視にて試験片に接触が認められた際の試験片への衝撃強度(破壊エネルギー)を測定し、下記の評価基準に従って、フィルムの耐衝撃性の評価を行なった。
実用上許容できるものは、[A]に分類されるものである。 2. Impact resistance A film having a thickness of 50 μm cut into a strip shape having a width of 100 mm and a length of 100 mm was used as a test piece.
Under the condition of 23 ° C., the test piece was sandwiched between metal chucks, and a cylindrical measuring jig having a tip diameter of 12.7 mm was dropped from a height of 50 cm obliquely. And the impact strength (fracture energy) to the test piece when contact was visually recognized by the test piece was measured, and the impact resistance of the film was evaluated according to the following evaluation criteria.
Those practically acceptable are those classified as [A].
(評価基準)
A:破壊エネルギーが0.05J以上である。
B:破壊エネルギーが0.05J未満である。 (Evaluation criteria)
A: Breaking energy is 0.05 J or more.
B: Breaking energy is less than 0.05J.
A:破壊エネルギーが0.05J以上である。
B:破壊エネルギーが0.05J未満である。 (Evaluation criteria)
A: Breaking energy is 0.05 J or more.
B: Breaking energy is less than 0.05J.
3.応力緩和性
厚みが50μmのフィルムから幅10mm×長さ100mmのシートを打ち抜いたものを試験片として用いた。
引張試験機(万能引張試験機3380、インストロン製)を用いて、チャック間距離75mm、引張速度200mm/min、及び温度23℃の条件で、試験片を10%伸長させた。そして、10%伸長させた際の応力(初期応力)を計測し、そのまま試験片の伸長を120秒間保持させ、その間の応力の変化についても計測した。そして、上記初期応力と伸長から60秒後の応力との差から応力緩和率を算出し、下記の評価基準に従って、フィルムの応力緩和性の評価を行なった。
実用上許容できるものは、[A]、[B]及び[C]に分類されるものである。 3. Stress relaxation property A sheet having a thickness of 10 mm and a length of 100 mm punched out from a film having a thickness of 50 μm was used as a test piece.
Using a tensile tester (universal tensile tester 3380, manufactured by Instron), the test piece was stretched 10% under the conditions of a distance between chucks of 75 mm, a tensile speed of 200 mm / min, and a temperature of 23 ° C. And the stress (initial stress) at the time of extending | stretching 10% was measured, elongation of the test piece was hold | maintained as it was for 120 seconds, and the change of the stress in the meantime was also measured. Then, the stress relaxation rate was calculated from the difference between the initial stress and the stress 60 seconds after extension, and the stress relaxation property of the film was evaluated according to the following evaluation criteria.
Those practically acceptable are those classified into [A], [B] and [C].
厚みが50μmのフィルムから幅10mm×長さ100mmのシートを打ち抜いたものを試験片として用いた。
引張試験機(万能引張試験機3380、インストロン製)を用いて、チャック間距離75mm、引張速度200mm/min、及び温度23℃の条件で、試験片を10%伸長させた。そして、10%伸長させた際の応力(初期応力)を計測し、そのまま試験片の伸長を120秒間保持させ、その間の応力の変化についても計測した。そして、上記初期応力と伸長から60秒後の応力との差から応力緩和率を算出し、下記の評価基準に従って、フィルムの応力緩和性の評価を行なった。
実用上許容できるものは、[A]、[B]及び[C]に分類されるものである。 3. Stress relaxation property A sheet having a thickness of 10 mm and a length of 100 mm punched out from a film having a thickness of 50 μm was used as a test piece.
Using a tensile tester (universal tensile tester 3380, manufactured by Instron), the test piece was stretched 10% under the conditions of a distance between chucks of 75 mm, a tensile speed of 200 mm / min, and a temperature of 23 ° C. And the stress (initial stress) at the time of extending | stretching 10% was measured, elongation of the test piece was hold | maintained as it was for 120 seconds, and the change of the stress in the meantime was also measured. Then, the stress relaxation rate was calculated from the difference between the initial stress and the stress 60 seconds after extension, and the stress relaxation property of the film was evaluated according to the following evaluation criteria.
Those practically acceptable are those classified into [A], [B] and [C].
(評価基準)
A:応力緩和率が60%以上である。
B:応力緩和率が55%以上60%未満である。
C:応力緩和率が52%以上55%未満である。
D:応力緩和率が52%未満である。 (Evaluation criteria)
A: The stress relaxation rate is 60% or more.
B: The stress relaxation rate is 55% or more and less than 60%.
C: The stress relaxation rate is 52% or more and less than 55%.
D: Stress relaxation rate is less than 52%.
A:応力緩和率が60%以上である。
B:応力緩和率が55%以上60%未満である。
C:応力緩和率が52%以上55%未満である。
D:応力緩和率が52%未満である。 (Evaluation criteria)
A: The stress relaxation rate is 60% or more.
B: The stress relaxation rate is 55% or more and less than 60%.
C: The stress relaxation rate is 52% or more and less than 55%.
D: Stress relaxation rate is less than 52%.
表2に示すように、実施例1A~5Aのフィルムは、耐衝撃性と応力緩和性とを兼ね備えていることがわかる。これに対して、比較例1A、3A、及び4Aのフィルムは、応力緩和性に劣り、比較例2Aのフィルムは、耐衝撃性に劣ることがわかる。
As shown in Table 2, it can be seen that the films of Examples 1A to 5A have both impact resistance and stress relaxation properties. On the other hand, it can be seen that the films of Comparative Examples 1A, 3A, and 4A are inferior in stress relaxation, and the film of Comparative Example 2A is inferior in impact resistance.
<実施例6A>
共重合体A-1A 75質量部、及びエチレン系重合体(エボリュー(登録商標)SP2540、直鎖状低密度ポリエチレン、密度:924kg/m3、MFR(190℃):3.8g/10min、(株)プライムポリマー製)25質量部を混合(ドライブレンド)して得られた混合物からなる応力緩和層(厚さ:100μm)と、エチレン系重合体(エボリュー(登録商標)SP2540、(株)プライムポリマー製)100質量部からなる表面層(厚さ:30μm)と、からなる3層構成の積層体(厚さ:160μm)を、リップ幅200mmのTダイを設置した20mmφの単軸押出機(単軸二種三層シート成形機、(株)テクノベル製)を用い、共押出しにより、二種三層フィルム(中間に応力緩和層)を成形した。シリンダー温度は200℃、ダイス温度は200℃に設定した。 <Example 6A>
75 parts by mass of copolymer A-1A, and ethylene polymer (Evolue (registered trademark) SP2540, linear low density polyethylene, density: 924 kg / m 3 , MFR (190 ° C.): 3.8 g / 10 min, A stress relaxation layer (thickness: 100 μm) made of a mixture obtained by mixing (dry blending) 25 parts by mass of Prime Polymer Co., Ltd., an ethylene polymer (Evolue (registered trademark) SP2540, Prime Co., Ltd.) A 20 mmφ single-screw extruder (with a T-die having a lip width of 200 mm) is formed from a laminate (thickness: 160 μm) composed of a surface layer (thickness: 30 μm) consisting of 100 parts by mass of a polymer) Using a uniaxial two-kind three-layer sheet molding machine (manufactured by Technobel Co., Ltd.), a two-kind three-layer film (stress relaxation layer in the middle) was formed by coextrusion. The cylinder temperature was set to 200 ° C., and the die temperature was set to 200 ° C.
共重合体A-1A 75質量部、及びエチレン系重合体(エボリュー(登録商標)SP2540、直鎖状低密度ポリエチレン、密度:924kg/m3、MFR(190℃):3.8g/10min、(株)プライムポリマー製)25質量部を混合(ドライブレンド)して得られた混合物からなる応力緩和層(厚さ:100μm)と、エチレン系重合体(エボリュー(登録商標)SP2540、(株)プライムポリマー製)100質量部からなる表面層(厚さ:30μm)と、からなる3層構成の積層体(厚さ:160μm)を、リップ幅200mmのTダイを設置した20mmφの単軸押出機(単軸二種三層シート成形機、(株)テクノベル製)を用い、共押出しにより、二種三層フィルム(中間に応力緩和層)を成形した。シリンダー温度は200℃、ダイス温度は200℃に設定した。 <Example 6A>
75 parts by mass of copolymer A-1A, and ethylene polymer (Evolue (registered trademark) SP2540, linear low density polyethylene, density: 924 kg / m 3 , MFR (190 ° C.): 3.8 g / 10 min, A stress relaxation layer (thickness: 100 μm) made of a mixture obtained by mixing (dry blending) 25 parts by mass of Prime Polymer Co., Ltd., an ethylene polymer (Evolue (registered trademark) SP2540, Prime Co., Ltd.) A 20 mmφ single-screw extruder (with a T-die having a lip width of 200 mm) is formed from a laminate (thickness: 160 μm) composed of a surface layer (thickness: 30 μm) consisting of 100 parts by mass of a polymer) Using a uniaxial two-kind three-layer sheet molding machine (manufactured by Technobel Co., Ltd.), a two-kind three-layer film (stress relaxation layer in the middle) was formed by coextrusion. The cylinder temperature was set to 200 ° C., and the die temperature was set to 200 ° C.
<実施例7A>
実施例6Aと同様の方法により、共重合体A-1A 75質量部、及びプロピレン系重合体(プライムポリプロ(登録商標)F327、プロピレン・エチレン・ブテンランダム共重合体、密度:907kg/m3、MFR(230℃):7g/10min、(株)プライムポリマー製)25質量部を混合(ドライブレンド)して得られた混合物からなる応力緩和層(厚さ:100μm)と、プロピレン系重合体(プライムポリプロ(登録商標)F327、(株)プライムポリマー製)100質量部からなる表面層(厚さ:30μm)と、からなる2層構成の積層体(厚さ:130μm)を成形した。 <Example 7A>
In the same manner as in Example 6A, 75 parts by mass of copolymer A-1A and propylene-based polymer (prime polypro (registered trademark) F327, propylene / ethylene / butene random copolymer, density: 907 kg / m 3 , MFR (230 ° C.): 7 g / 10 min, manufactured by Prime Polymer Co., Ltd.) 25 parts by mass (dry blending) and a stress relaxation layer (thickness: 100 μm) composed of a mixture, and a propylene polymer ( A two-layer laminate (thickness: 130 μm) consisting of a surface layer (thickness: 30 μm) consisting of 100 parts by mass of Prime Polypro (registered trademark) F327, manufactured by Prime Polymer Co., Ltd. was molded.
実施例6Aと同様の方法により、共重合体A-1A 75質量部、及びプロピレン系重合体(プライムポリプロ(登録商標)F327、プロピレン・エチレン・ブテンランダム共重合体、密度:907kg/m3、MFR(230℃):7g/10min、(株)プライムポリマー製)25質量部を混合(ドライブレンド)して得られた混合物からなる応力緩和層(厚さ:100μm)と、プロピレン系重合体(プライムポリプロ(登録商標)F327、(株)プライムポリマー製)100質量部からなる表面層(厚さ:30μm)と、からなる2層構成の積層体(厚さ:130μm)を成形した。 <Example 7A>
In the same manner as in Example 6A, 75 parts by mass of copolymer A-1A and propylene-based polymer (prime polypro (registered trademark) F327, propylene / ethylene / butene random copolymer, density: 907 kg / m 3 , MFR (230 ° C.): 7 g / 10 min, manufactured by Prime Polymer Co., Ltd.) 25 parts by mass (dry blending) and a stress relaxation layer (thickness: 100 μm) composed of a mixture, and a propylene polymer ( A two-layer laminate (thickness: 130 μm) consisting of a surface layer (thickness: 30 μm) consisting of 100 parts by mass of Prime Polypro (registered trademark) F327, manufactured by Prime Polymer Co., Ltd. was molded.
<実施例8A>
実施例6Aと同様の方法により、共重合体A-1A 75質量部、及びエチレン系重合体(エボリュー(登録商標)SP2540、(株)プライムポリマー製)25質量部を混合(ドライブレンド)して得られた混合物からなる応力緩和層(厚さ:100μm)と、エチレン系共重合体(エボリュー(登録商標)SP2540、(株)プライムポリマー製)80質量部、及びエチレン系重合体(タフマー(登録商標)DF605、エチレン・ブテン共重合体(エチレンに由来する構成単位の比率:50モル%以上、密度:861kg/m3、MFR(230℃):0.9g/10min、三井化学(株)製)20質量部を混合(ドライブレンド)して得られた混合物からなる表面層(厚さ:30μm)と、からなる2層構成の積層体(厚さ:130μm)を成形した。 <Example 8A>
In the same manner as in Example 6A, 75 parts by mass of copolymer A-1A and 25 parts by mass of an ethylene polymer (Evolue (registered trademark) SP2540, manufactured by Prime Polymer Co., Ltd.) were mixed (dry blended). A stress relaxation layer (thickness: 100 μm) made of the obtained mixture, 80 parts by mass of an ethylene copolymer (Evolue (registered trademark) SP2540, manufactured by Prime Polymer Co., Ltd.), and an ethylene polymer (Tuffmer (registered) Trademark) DF605, ethylene-butene copolymer (ratio of structural units derived from ethylene: 50 mol% or more, density: 861 kg / m 3 , MFR (230 ° C.): 0.9 g / 10 min, manufactured by Mitsui Chemicals, Inc. ) A laminate (thickness: 1) comprising a surface layer (thickness: 30 μm) composed of a mixture obtained by mixing (dry blending) 20 parts by mass. 30 μm).
実施例6Aと同様の方法により、共重合体A-1A 75質量部、及びエチレン系重合体(エボリュー(登録商標)SP2540、(株)プライムポリマー製)25質量部を混合(ドライブレンド)して得られた混合物からなる応力緩和層(厚さ:100μm)と、エチレン系共重合体(エボリュー(登録商標)SP2540、(株)プライムポリマー製)80質量部、及びエチレン系重合体(タフマー(登録商標)DF605、エチレン・ブテン共重合体(エチレンに由来する構成単位の比率:50モル%以上、密度:861kg/m3、MFR(230℃):0.9g/10min、三井化学(株)製)20質量部を混合(ドライブレンド)して得られた混合物からなる表面層(厚さ:30μm)と、からなる2層構成の積層体(厚さ:130μm)を成形した。 <Example 8A>
In the same manner as in Example 6A, 75 parts by mass of copolymer A-1A and 25 parts by mass of an ethylene polymer (Evolue (registered trademark) SP2540, manufactured by Prime Polymer Co., Ltd.) were mixed (dry blended). A stress relaxation layer (thickness: 100 μm) made of the obtained mixture, 80 parts by mass of an ethylene copolymer (Evolue (registered trademark) SP2540, manufactured by Prime Polymer Co., Ltd.), and an ethylene polymer (Tuffmer (registered) Trademark) DF605, ethylene-butene copolymer (ratio of structural units derived from ethylene: 50 mol% or more, density: 861 kg / m 3 , MFR (230 ° C.): 0.9 g / 10 min, manufactured by Mitsui Chemicals, Inc. ) A laminate (thickness: 1) comprising a surface layer (thickness: 30 μm) composed of a mixture obtained by mixing (dry blending) 20 parts by mass. 30 μm).
<実施例9A>
実施例6Aと同様の方法により、共重合体A-2A 75質量部、及びプロピレン系重合体(プライムポリプロ(登録商標)F327、(株)プライムポリマー製)25質量部を混合(ドライブレンド)して得られた混合物からなる応力緩和層(厚さ:100μm)と、エチレン系重合体(エボリュー(登録商標)SP2540、(株)プライムポリマー製)100質量部からなる表面層(厚さ:30μm)と、からなる2層構成の積層体(厚さ:130μm)を成形した。 <Example 9A>
In the same manner as in Example 6A, 75 parts by mass of copolymer A-2A and 25 parts by mass of a propylene-based polymer (Prime Polypro (registered trademark) F327, manufactured by Prime Polymer Co., Ltd.) were mixed (dry blended). And a surface layer (thickness: 30 μm) consisting of 100 parts by mass of a stress relaxation layer (thickness: 100 μm) made of the mixture and an ethylene polymer (Evolue (registered trademark) SP2540, manufactured by Prime Polymer Co., Ltd.). A laminate (thickness: 130 μm) having a two-layer structure was formed.
実施例6Aと同様の方法により、共重合体A-2A 75質量部、及びプロピレン系重合体(プライムポリプロ(登録商標)F327、(株)プライムポリマー製)25質量部を混合(ドライブレンド)して得られた混合物からなる応力緩和層(厚さ:100μm)と、エチレン系重合体(エボリュー(登録商標)SP2540、(株)プライムポリマー製)100質量部からなる表面層(厚さ:30μm)と、からなる2層構成の積層体(厚さ:130μm)を成形した。 <Example 9A>
In the same manner as in Example 6A, 75 parts by mass of copolymer A-2A and 25 parts by mass of a propylene-based polymer (Prime Polypro (registered trademark) F327, manufactured by Prime Polymer Co., Ltd.) were mixed (dry blended). And a surface layer (thickness: 30 μm) consisting of 100 parts by mass of a stress relaxation layer (thickness: 100 μm) made of the mixture and an ethylene polymer (Evolue (registered trademark) SP2540, manufactured by Prime Polymer Co., Ltd.). A laminate (thickness: 130 μm) having a two-layer structure was formed.
<比較例5A>
実施例6Aと同様の方法により、エチレン系重合体(エボリュー(登録商標)SP2540、(株)プライムポリマー製)100質量部からなる応力緩和層(厚さ:100μm)と、エチレン系重合体(エボリュー(登録商標)SP2540、(株)プライムポリマー製)100質量部からなる表面層(厚さ:30μm)と、からなる2層構成の積層体(厚さ:130μm)を成形した。 <Comparative Example 5A>
In the same manner as in Example 6A, a stress relaxation layer (thickness: 100 μm) composed of 100 parts by mass of an ethylene polymer (Evolue (registered trademark) SP2540, manufactured by Prime Polymer Co., Ltd.) and an ethylene polymer (Evolue) (Registered trademark) SP2540, manufactured by Prime Polymer Co., Ltd.) A two-layer laminate (thickness: 130 μm) consisting of a surface layer (thickness: 30 μm) consisting of 100 parts by mass was molded.
実施例6Aと同様の方法により、エチレン系重合体(エボリュー(登録商標)SP2540、(株)プライムポリマー製)100質量部からなる応力緩和層(厚さ:100μm)と、エチレン系重合体(エボリュー(登録商標)SP2540、(株)プライムポリマー製)100質量部からなる表面層(厚さ:30μm)と、からなる2層構成の積層体(厚さ:130μm)を成形した。 <Comparative Example 5A>
In the same manner as in Example 6A, a stress relaxation layer (thickness: 100 μm) composed of 100 parts by mass of an ethylene polymer (Evolue (registered trademark) SP2540, manufactured by Prime Polymer Co., Ltd.) and an ethylene polymer (Evolue) (Registered trademark) SP2540, manufactured by Prime Polymer Co., Ltd.) A two-layer laminate (thickness: 130 μm) consisting of a surface layer (thickness: 30 μm) consisting of 100 parts by mass was molded.
<比較例6A>
実施例6Aと同様の方法により、プロピレン系重合体(プライムポリプロ(登録商標)F327、(株)プライムポリマー製)100質量部からなる応力緩和層(厚さ:100μm)と、エチレン系重合体(エボリュー(登録商標)SP2540、(株)プライムポリマー製)100質量部からなる表面層(厚さ:30μm)と、からなる2層構成の積層体(厚さ:130μm)を成形した。 <Comparative Example 6A>
In the same manner as in Example 6A, a stress relaxation layer (thickness: 100 μm) composed of 100 parts by mass of a propylene polymer (Prime Polypro (registered trademark) F327, manufactured by Prime Polymer Co., Ltd.) and an ethylene polymer ( A layered product (thickness: 130 μm) composed of a surface layer (thickness: 30 μm) composed of 100 parts by mass of Evolue (registered trademark) SP2540, manufactured by Prime Polymer Co., Ltd. was molded.
実施例6Aと同様の方法により、プロピレン系重合体(プライムポリプロ(登録商標)F327、(株)プライムポリマー製)100質量部からなる応力緩和層(厚さ:100μm)と、エチレン系重合体(エボリュー(登録商標)SP2540、(株)プライムポリマー製)100質量部からなる表面層(厚さ:30μm)と、からなる2層構成の積層体(厚さ:130μm)を成形した。 <Comparative Example 6A>
In the same manner as in Example 6A, a stress relaxation layer (thickness: 100 μm) composed of 100 parts by mass of a propylene polymer (Prime Polypro (registered trademark) F327, manufactured by Prime Polymer Co., Ltd.) and an ethylene polymer ( A layered product (thickness: 130 μm) composed of a surface layer (thickness: 30 μm) composed of 100 parts by mass of Evolue (registered trademark) SP2540, manufactured by Prime Polymer Co., Ltd. was molded.
<比較例7A>
実施例6Aと同様の方法により、共重合体A-1A 100質量部からなる応力緩和層(厚さ:100μm)と、エチレン系重合体(エボリュー(登録商標)SP2540、(株)プライムポリマー製)100質量部からなる表面層(厚さ:30μm)と、からなる2層構成の積層体(厚さ:130μm)を成形した。 <Comparative Example 7A>
In the same manner as in Example 6A, a stress relaxation layer (thickness: 100 μm) composed of 100 parts by mass of copolymer A-1A and an ethylene polymer (Evolue (registered trademark) SP2540, manufactured by Prime Polymer Co., Ltd.) A two-layer laminate (thickness: 130 μm) composed of a surface layer (thickness: 30 μm) composed of 100 parts by mass was molded.
実施例6Aと同様の方法により、共重合体A-1A 100質量部からなる応力緩和層(厚さ:100μm)と、エチレン系重合体(エボリュー(登録商標)SP2540、(株)プライムポリマー製)100質量部からなる表面層(厚さ:30μm)と、からなる2層構成の積層体(厚さ:130μm)を成形した。 <Comparative Example 7A>
In the same manner as in Example 6A, a stress relaxation layer (thickness: 100 μm) composed of 100 parts by mass of copolymer A-1A and an ethylene polymer (Evolue (registered trademark) SP2540, manufactured by Prime Polymer Co., Ltd.) A two-layer laminate (thickness: 130 μm) composed of a surface layer (thickness: 30 μm) composed of 100 parts by mass was molded.
〔評価〕
実施例6A~9A及び比較例5A~7Aの積層体について、引張降伏点強度(YS)、引張破断伸び(EL)、引張破断強度(TS)、引張弾性率(YM)、耐衝撃性、応力緩和性、及び剥離強度の評価を行なった。評価結果を下記の表3に示す。 [Evaluation]
For the laminates of Examples 6A to 9A and Comparative Examples 5A to 7A, tensile yield strength (YS), tensile elongation at break (EL), tensile strength at break (TS), tensile modulus (YM), impact resistance, stress The relaxation properties and peel strength were evaluated. The evaluation results are shown in Table 3 below.
実施例6A~9A及び比較例5A~7Aの積層体について、引張降伏点強度(YS)、引張破断伸び(EL)、引張破断強度(TS)、引張弾性率(YM)、耐衝撃性、応力緩和性、及び剥離強度の評価を行なった。評価結果を下記の表3に示す。 [Evaluation]
For the laminates of Examples 6A to 9A and Comparative Examples 5A to 7A, tensile yield strength (YS), tensile elongation at break (EL), tensile strength at break (TS), tensile modulus (YM), impact resistance, stress The relaxation properties and peel strength were evaluated. The evaluation results are shown in Table 3 below.
1.引張降伏点強度、引張破断伸び、引張破断強度、及び引張弾性率
積層体を幅25mm×長さ100mmのダンベル状に切断したものを試験片として用いた。
JIS K7127(1999)に準拠し、引張試験機(万能引張試験機3380、インストロン製)を用いて、チャック間距離50mm、引張速度200mm/min、及び温度23℃の条件で、試験片の引張降伏点強度(単位:MPa)、引張破断伸び(単位:%)、引張破断強度(単位:MPa)、及び引張弾性率(単位:MPa)を測定した。 1. Tensile yield point strength, tensile elongation at break, tensile strength at break, and tensile modulus The laminate was cut into a dumbbell shape having a width of 25 mm and a length of 100 mm was used as a test piece.
In accordance with JIS K7127 (1999), using a tensile tester (universal tensile tester 3380, manufactured by Instron), the tension of the test piece was measured under the conditions of a distance between chucks of 50 mm, a tensile speed of 200 mm / min, and a temperature of 23 ° C. Yield point strength (unit: MPa), tensile breaking elongation (unit:%), tensile breaking strength (unit: MPa), and tensile modulus (unit: MPa) were measured.
積層体を幅25mm×長さ100mmのダンベル状に切断したものを試験片として用いた。
JIS K7127(1999)に準拠し、引張試験機(万能引張試験機3380、インストロン製)を用いて、チャック間距離50mm、引張速度200mm/min、及び温度23℃の条件で、試験片の引張降伏点強度(単位:MPa)、引張破断伸び(単位:%)、引張破断強度(単位:MPa)、及び引張弾性率(単位:MPa)を測定した。 1. Tensile yield point strength, tensile elongation at break, tensile strength at break, and tensile modulus The laminate was cut into a dumbbell shape having a width of 25 mm and a length of 100 mm was used as a test piece.
In accordance with JIS K7127 (1999), using a tensile tester (universal tensile tester 3380, manufactured by Instron), the tension of the test piece was measured under the conditions of a distance between chucks of 50 mm, a tensile speed of 200 mm / min, and a temperature of 23 ° C. Yield point strength (unit: MPa), tensile breaking elongation (unit:%), tensile breaking strength (unit: MPa), and tensile modulus (unit: MPa) were measured.
2.耐衝撃性
積層体を幅100mm×長さ100mmの短冊状に切断したものを試験片として用いた。
23℃の条件下、試験片を金属製のチャックに挟み、先端径が12.7mmの円筒状の測定治具を斜め50cmの高さから落下させた。そして、目視にて試験片に接触が認められた際の試験片への衝撃強度(破壊エネルギー)を測定し、下記の評価基準に従って、積層体の耐衝撃性の評価を行なった。
実用上許容できるものは、[A]に分類されるものである。 2. Impact resistance A laminate obtained by cutting a laminate into a strip shape having a width of 100 mm and a length of 100 mm was used as a test piece.
Under the condition of 23 ° C., the test piece was sandwiched between metal chucks, and a cylindrical measuring jig having a tip diameter of 12.7 mm was dropped from a height of 50 cm obliquely. And the impact strength (fracture energy) to the test piece when contact was visually recognized by the test piece was measured, and the impact resistance of the laminate was evaluated according to the following evaluation criteria.
Those practically acceptable are those classified as [A].
積層体を幅100mm×長さ100mmの短冊状に切断したものを試験片として用いた。
23℃の条件下、試験片を金属製のチャックに挟み、先端径が12.7mmの円筒状の測定治具を斜め50cmの高さから落下させた。そして、目視にて試験片に接触が認められた際の試験片への衝撃強度(破壊エネルギー)を測定し、下記の評価基準に従って、積層体の耐衝撃性の評価を行なった。
実用上許容できるものは、[A]に分類されるものである。 2. Impact resistance A laminate obtained by cutting a laminate into a strip shape having a width of 100 mm and a length of 100 mm was used as a test piece.
Under the condition of 23 ° C., the test piece was sandwiched between metal chucks, and a cylindrical measuring jig having a tip diameter of 12.7 mm was dropped from a height of 50 cm obliquely. And the impact strength (fracture energy) to the test piece when contact was visually recognized by the test piece was measured, and the impact resistance of the laminate was evaluated according to the following evaluation criteria.
Those practically acceptable are those classified as [A].
(評価基準)
A:破壊エネルギーが0.05J以上である。
B:破壊エネルギーが0.05J未満である。 (Evaluation criteria)
A: Breaking energy is 0.05 J or more.
B: Breaking energy is less than 0.05J.
A:破壊エネルギーが0.05J以上である。
B:破壊エネルギーが0.05J未満である。 (Evaluation criteria)
A: Breaking energy is 0.05 J or more.
B: Breaking energy is less than 0.05J.
3.応力緩和性
積層体から幅10mm×長さ100mmのシートを打ち抜いたものを試験片として用いた。
引張試験機(万能引張試験機3380、インストロン製)を用いて、チャック間距離75mm、引張速度200mm/min、及び温度23℃の条件で、試験片を10%伸長させた。そして、10%伸長させた際の応力(初期応力)を計測し、そのまま試験片の伸長を120秒間保持させ、その間の応力の変化についても計測した。そして、上記初期応力と伸長から60秒後の応力との差から応力緩和率を算出し、下記の評価基準に従って、積層体の応力緩和性の評価を行なった。
実用上許容できるものは、[A]、[B]及び[C]に分類されるものである。 3. Stress relaxation property A sheet having a width of 10 mm and a length of 100 mm punched from the laminate was used as a test piece.
Using a tensile tester (universal tensile tester 3380, manufactured by Instron), the test piece was stretched 10% under the conditions of a distance between chucks of 75 mm, a tensile speed of 200 mm / min, and a temperature of 23 ° C. And the stress (initial stress) at the time of extending | stretching 10% was measured, elongation of the test piece was hold | maintained as it was for 120 seconds, and the change of the stress in the meantime was also measured. And the stress relaxation rate was computed from the difference of the said initial stress and the stress 60 second after extension, and the stress relaxation property of the laminated body was evaluated according to the following evaluation criteria.
Those practically acceptable are those classified into [A], [B] and [C].
積層体から幅10mm×長さ100mmのシートを打ち抜いたものを試験片として用いた。
引張試験機(万能引張試験機3380、インストロン製)を用いて、チャック間距離75mm、引張速度200mm/min、及び温度23℃の条件で、試験片を10%伸長させた。そして、10%伸長させた際の応力(初期応力)を計測し、そのまま試験片の伸長を120秒間保持させ、その間の応力の変化についても計測した。そして、上記初期応力と伸長から60秒後の応力との差から応力緩和率を算出し、下記の評価基準に従って、積層体の応力緩和性の評価を行なった。
実用上許容できるものは、[A]、[B]及び[C]に分類されるものである。 3. Stress relaxation property A sheet having a width of 10 mm and a length of 100 mm punched from the laminate was used as a test piece.
Using a tensile tester (universal tensile tester 3380, manufactured by Instron), the test piece was stretched 10% under the conditions of a distance between chucks of 75 mm, a tensile speed of 200 mm / min, and a temperature of 23 ° C. And the stress (initial stress) at the time of extending | stretching 10% was measured, elongation of the test piece was hold | maintained as it was for 120 seconds, and the change of the stress in the meantime was also measured. And the stress relaxation rate was computed from the difference of the said initial stress and the stress 60 second after extension, and the stress relaxation property of the laminated body was evaluated according to the following evaluation criteria.
Those practically acceptable are those classified into [A], [B] and [C].
(評価基準)
A:応力緩和率が60%以上である。
B:応力緩和率が55%以上60%未満である。
C:応力緩和率が52%以上55%未満である。
D:応力緩和率が52%未満である。 (Evaluation criteria)
A: The stress relaxation rate is 60% or more.
B: The stress relaxation rate is 55% or more and less than 60%.
C: The stress relaxation rate is 52% or more and less than 55%.
D: Stress relaxation rate is less than 52%.
A:応力緩和率が60%以上である。
B:応力緩和率が55%以上60%未満である。
C:応力緩和率が52%以上55%未満である。
D:応力緩和率が52%未満である。 (Evaluation criteria)
A: The stress relaxation rate is 60% or more.
B: The stress relaxation rate is 55% or more and less than 60%.
C: The stress relaxation rate is 52% or more and less than 55%.
D: Stress relaxation rate is less than 52%.
4.剥離強度
積層体を幅15mm×長さ100mmの短冊状に切断したものを試験片として用いた。
測定装置として、引張試験機(万能引張試験機3380、インストロン製)を用い、チャック間距離80mm、引張速度200mm/min、及び温度23℃の条件で、応力緩和層と表面層との接着面に対して180°の方向に引っ張り、応力緩和層と表面層との間を剥離させた。5個の試験片の測定値を平均し、剥離強度とした。 4). Peeling strength The laminate was cut into strips having a width of 15 mm and a length of 100 mm, and used as a test piece.
As a measuring device, a tensile tester (universal tensile tester 3380, manufactured by Instron) was used, and the adhesion surface between the stress relaxation layer and the surface layer was obtained under the conditions of a distance between chucks of 80 mm, a tensile speed of 200 mm / min, and a temperature of 23 ° C. The film was pulled in the direction of 180 ° to peel off the stress relaxation layer and the surface layer. The measured values of the five test pieces were averaged to obtain the peel strength.
積層体を幅15mm×長さ100mmの短冊状に切断したものを試験片として用いた。
測定装置として、引張試験機(万能引張試験機3380、インストロン製)を用い、チャック間距離80mm、引張速度200mm/min、及び温度23℃の条件で、応力緩和層と表面層との接着面に対して180°の方向に引っ張り、応力緩和層と表面層との間を剥離させた。5個の試験片の測定値を平均し、剥離強度とした。 4). Peeling strength The laminate was cut into strips having a width of 15 mm and a length of 100 mm, and used as a test piece.
As a measuring device, a tensile tester (universal tensile tester 3380, manufactured by Instron) was used, and the adhesion surface between the stress relaxation layer and the surface layer was obtained under the conditions of a distance between chucks of 80 mm, a tensile speed of 200 mm / min, and a temperature of 23 ° C. The film was pulled in the direction of 180 ° to peel off the stress relaxation layer and the surface layer. The measured values of the five test pieces were averaged to obtain the peel strength.
表3に示すように、実施例6A~9Aの積層体は、耐衝撃性と応力緩和性とを兼ね備えていることがわかる。また、実施例6A~9Aの積層体では、応力緩和層及び表面層の層間の剥離強度が高く、応力緩和層と表面層との密着性が良好であることがわかる。これに対して、比較例5A及び6Aの積層体は、応力緩和性に劣り、比較例7Aの積層体は、応力緩和層及び表面層の層間の剥離強度が低く、層間剥離し易いことがわかる。
As shown in Table 3, it can be seen that the laminates of Examples 6A to 9A have both impact resistance and stress relaxation properties. In addition, it can be seen that in the laminates of Examples 6A to 9A, the peel strength between the stress relaxation layer and the surface layer is high, and the adhesion between the stress relaxation layer and the surface layer is good. On the other hand, the laminates of Comparative Examples 5A and 6A are inferior in stress relaxation properties, and the laminate of Comparative Example 7A has low peel strength between the stress relaxation layer and the surface layer, and is easily peeled off. .
《第2の態様の実施例》
[合成例1B]共重合体A-1Bの合成
充分に窒素置換した容量1.5Lの攪拌翼付のSUS製オートクレーブに、300mlのn-ヘキサン(乾燥窒素雰囲気下、活性アルミナ上で乾燥したもの)、及び450mlの4-メチル-1-ペンテンを23℃で装入した後、トリイソブチルアルミニウム(TIBAL)の1.0mmol/mlトルエン溶液を0.75ml装入し、攪拌機を回した。
次に、オートクレーブを内温が60℃になるまで加熱し、全圧(ゲージ圧)が0.19MPaとなるようにプロピレンで加圧した。
続いて、予め調製しておいた、Al換算で1mmolのメチルアルミノキサン、及び0.01mmolのジフェニルメチレン(1-エチル-3-t-ブチル-シクロペンタジエニル)(2,7-ジ-t-ブチル-フルオレニル)ジルコニウムジクロリドを含むトルエン溶液0.34mlをオートクレーブに窒素で圧入し、重合反応を開始させた。重合反応中は、オートクレーブの内温が60℃になるように温度調整した。
重合開始から60分後、オートクレーブにメタノール5mlを窒素で圧入し、重合反応を停止させた後、オートクレーブ内を大気圧まで脱圧した。脱圧後、反応溶液に、該反応溶液を攪拌しながらアセトンを添加し、溶媒を含む重合反応生成物を得た。次いで、得られた溶媒を含む重合反応生成物を減圧下、130℃で12時間乾燥させて、44.0gの粉末状の共重合体A-1Bを得た。 << Example of the second aspect >>
[Synthesis Example 1B] Synthesis of Copolymer A-1B A 300-liter n-hexane (dried over activated alumina under a dry nitrogen atmosphere in an SUS autoclave with a 1.5 L stirring blade sufficiently purged with nitrogen. ) And 450 ml of 4-methyl-1-pentene were charged at 23 ° C., then, 0.75 ml of a 1.0 mmol / ml toluene solution of triisobutylaluminum (TIBAL) was charged, and the stirrer was rotated.
Next, the autoclave was heated until the internal temperature reached 60 ° C., and pressurized with propylene so that the total pressure (gauge pressure) was 0.19 MPa.
Subsequently, 1 mmol of methylaluminoxane and 0.01 mmol of diphenylmethylene (1-ethyl-3-t-butyl-cyclopentadienyl) (2,7-di-t-) prepared in advance were converted into Al. 0.34 ml of a toluene solution containing (butyl-fluorenyl) zirconium dichloride was pressed into the autoclave with nitrogen to initiate the polymerization reaction. During the polymerization reaction, the temperature was adjusted so that the internal temperature of the autoclave was 60 ° C.
Sixty minutes after the start of the polymerization, 5 ml of methanol was injected into the autoclave with nitrogen to stop the polymerization reaction, and then the inside of the autoclave was depressurized to the atmospheric pressure. After depressurization, acetone was added to the reaction solution while stirring the reaction solution to obtain a polymerization reaction product containing a solvent. Next, the obtained polymerization reaction product containing the solvent was dried at 130 ° C. under reduced pressure for 12 hours to obtain 44.0 g of a powdery copolymer A-1B.
[合成例1B]共重合体A-1Bの合成
充分に窒素置換した容量1.5Lの攪拌翼付のSUS製オートクレーブに、300mlのn-ヘキサン(乾燥窒素雰囲気下、活性アルミナ上で乾燥したもの)、及び450mlの4-メチル-1-ペンテンを23℃で装入した後、トリイソブチルアルミニウム(TIBAL)の1.0mmol/mlトルエン溶液を0.75ml装入し、攪拌機を回した。
次に、オートクレーブを内温が60℃になるまで加熱し、全圧(ゲージ圧)が0.19MPaとなるようにプロピレンで加圧した。
続いて、予め調製しておいた、Al換算で1mmolのメチルアルミノキサン、及び0.01mmolのジフェニルメチレン(1-エチル-3-t-ブチル-シクロペンタジエニル)(2,7-ジ-t-ブチル-フルオレニル)ジルコニウムジクロリドを含むトルエン溶液0.34mlをオートクレーブに窒素で圧入し、重合反応を開始させた。重合反応中は、オートクレーブの内温が60℃になるように温度調整した。
重合開始から60分後、オートクレーブにメタノール5mlを窒素で圧入し、重合反応を停止させた後、オートクレーブ内を大気圧まで脱圧した。脱圧後、反応溶液に、該反応溶液を攪拌しながらアセトンを添加し、溶媒を含む重合反応生成物を得た。次いで、得られた溶媒を含む重合反応生成物を減圧下、130℃で12時間乾燥させて、44.0gの粉末状の共重合体A-1Bを得た。 << Example of the second aspect >>
[Synthesis Example 1B] Synthesis of Copolymer A-1B A 300-liter n-hexane (dried over activated alumina under a dry nitrogen atmosphere in an SUS autoclave with a 1.5 L stirring blade sufficiently purged with nitrogen. ) And 450 ml of 4-methyl-1-pentene were charged at 23 ° C., then, 0.75 ml of a 1.0 mmol / ml toluene solution of triisobutylaluminum (TIBAL) was charged, and the stirrer was rotated.
Next, the autoclave was heated until the internal temperature reached 60 ° C., and pressurized with propylene so that the total pressure (gauge pressure) was 0.19 MPa.
Subsequently, 1 mmol of methylaluminoxane and 0.01 mmol of diphenylmethylene (1-ethyl-3-t-butyl-cyclopentadienyl) (2,7-di-t-) prepared in advance were converted into Al. 0.34 ml of a toluene solution containing (butyl-fluorenyl) zirconium dichloride was pressed into the autoclave with nitrogen to initiate the polymerization reaction. During the polymerization reaction, the temperature was adjusted so that the internal temperature of the autoclave was 60 ° C.
Sixty minutes after the start of the polymerization, 5 ml of methanol was injected into the autoclave with nitrogen to stop the polymerization reaction, and then the inside of the autoclave was depressurized to the atmospheric pressure. After depressurization, acetone was added to the reaction solution while stirring the reaction solution to obtain a polymerization reaction product containing a solvent. Next, the obtained polymerization reaction product containing the solvent was dried at 130 ° C. under reduced pressure for 12 hours to obtain 44.0 g of a powdery copolymer A-1B.
得られた共重合体A-1Bの各種物性の測定結果を表4に示す。
共重合体A-1B中の4-メチル-1-ペンテンの含有率は84.1mol%であり、プロピレンの含有率は15.9mol%であった。また、共重合体A-1Bの密度は838kg/m3であった。共重合体A-1Bの極限粘度[η]は1.5dl/gであり、重量平均分子量(Mw)は340,000であり、分子量分布(Mw/Mn)は2.1であり、メルトフローレート(MFR)は11g/10minであった。共重合体A-1Bの融点(Tm)は132℃であり、tanδの最大値は1.6(最大値を示す際の温度:39℃)であった。 Table 4 shows the measurement results of various physical properties of the obtained copolymer A-1B.
The content of 4-methyl-1-pentene in copolymer A-1B was 84.1 mol%, and the content of propylene was 15.9 mol%. Further, the density of the copolymer A-1B was 838 kg / m 3 . Copolymer A-1B has an intrinsic viscosity [η] of 1.5 dl / g, a weight average molecular weight (Mw) of 340,000, a molecular weight distribution (Mw / Mn) of 2.1, and a melt flow The rate (MFR) was 11 g / 10 min. The melting point (Tm) of copolymer A-1B was 132 ° C., and the maximum value of tan δ was 1.6 (temperature at which the maximum value was shown: 39 ° C.).
共重合体A-1B中の4-メチル-1-ペンテンの含有率は84.1mol%であり、プロピレンの含有率は15.9mol%であった。また、共重合体A-1Bの密度は838kg/m3であった。共重合体A-1Bの極限粘度[η]は1.5dl/gであり、重量平均分子量(Mw)は340,000であり、分子量分布(Mw/Mn)は2.1であり、メルトフローレート(MFR)は11g/10minであった。共重合体A-1Bの融点(Tm)は132℃であり、tanδの最大値は1.6(最大値を示す際の温度:39℃)であった。 Table 4 shows the measurement results of various physical properties of the obtained copolymer A-1B.
The content of 4-methyl-1-pentene in copolymer A-1B was 84.1 mol%, and the content of propylene was 15.9 mol%. Further, the density of the copolymer A-1B was 838 kg / m 3 . Copolymer A-1B has an intrinsic viscosity [η] of 1.5 dl / g, a weight average molecular weight (Mw) of 340,000, a molecular weight distribution (Mw / Mn) of 2.1, and a melt flow The rate (MFR) was 11 g / 10 min. The melting point (Tm) of copolymer A-1B was 132 ° C., and the maximum value of tan δ was 1.6 (temperature at which the maximum value was shown: 39 ° C.).
[合成例2B]共重合体A-2Bの合成
充分に窒素置換した容量1.5Lの攪拌翼付のSUS製オートクレーブに、300mlのn-ヘキサン(乾燥窒素雰囲気下、活性アルミナ上で乾燥したもの)、及び450mlの4-メチル-1-ペンテンを23℃で装入した後、トリイソブチルアルミニウム(TIBAL)の1.0mmol/mlトルエン溶液を0.75ml装入し、攪拌機を回した。
次に、オートクレーブを内温が60℃になるまで加熱し、全圧(ゲージ圧)が0.40MPaとなるようにプロピレンで加圧した。
続いて、予め調製しておいた、Al換算で1mmolのメチルアルミノキサン、及び0.01mmolのジフェニルメチレン(1-エチル-3-t-ブチル-シクロペンタジエニル)(2,7-ジ-t-ブチル-フルオレニル)ジルコニウムジクロリドを含むトルエン溶液0.34mlをオートクレーブに窒素で圧入し、重合反応を開始させた。重合反応中は、オートクレーブの内温が60℃になるように温度調整した。
重合開始から60分後、オートクレーブにメタノール5mlを窒素で圧入し、重合反応を停止させた後、オートクレーブ内を大気圧まで脱圧した。脱圧後、反応溶液に、該反応溶液を攪拌しながらアセトンを添加し、溶媒を含む重合反応生成物を得た。次いで、得られた溶媒を含む重合反応生成物を減圧下、130℃で12時間乾燥させて、36.9gの粉末状の共重合体A-2Bを得た。 [Synthesis Example 2B] Synthesis of Copolymer A-2B To a SUS autoclave with a 1.5-liter stirring blade sufficiently purged with nitrogen, 300 ml of n-hexane (dried on activated alumina in a dry nitrogen atmosphere) ) And 450 ml of 4-methyl-1-pentene were charged at 23 ° C., then, 0.75 ml of a 1.0 mmol / ml toluene solution of triisobutylaluminum (TIBAL) was charged, and the stirrer was rotated.
Next, the autoclave was heated to an internal temperature of 60 ° C. and pressurized with propylene so that the total pressure (gauge pressure) was 0.40 MPa.
Subsequently, 1 mmol of methylaluminoxane and 0.01 mmol of diphenylmethylene (1-ethyl-3-t-butyl-cyclopentadienyl) (2,7-di-t-) prepared in advance were converted into Al. 0.34 ml of a toluene solution containing (butyl-fluorenyl) zirconium dichloride was pressed into the autoclave with nitrogen to initiate the polymerization reaction. During the polymerization reaction, the temperature was adjusted so that the internal temperature of the autoclave was 60 ° C.
Sixty minutes after the start of the polymerization, 5 ml of methanol was injected into the autoclave with nitrogen to stop the polymerization reaction, and then the inside of the autoclave was depressurized to the atmospheric pressure. After depressurization, acetone was added to the reaction solution while stirring the reaction solution to obtain a polymerization reaction product containing a solvent. Subsequently, the obtained polymerization reaction product containing the solvent was dried at 130 ° C. under reduced pressure for 12 hours to obtain 36.9 g of a powdery copolymer A-2B.
充分に窒素置換した容量1.5Lの攪拌翼付のSUS製オートクレーブに、300mlのn-ヘキサン(乾燥窒素雰囲気下、活性アルミナ上で乾燥したもの)、及び450mlの4-メチル-1-ペンテンを23℃で装入した後、トリイソブチルアルミニウム(TIBAL)の1.0mmol/mlトルエン溶液を0.75ml装入し、攪拌機を回した。
次に、オートクレーブを内温が60℃になるまで加熱し、全圧(ゲージ圧)が0.40MPaとなるようにプロピレンで加圧した。
続いて、予め調製しておいた、Al換算で1mmolのメチルアルミノキサン、及び0.01mmolのジフェニルメチレン(1-エチル-3-t-ブチル-シクロペンタジエニル)(2,7-ジ-t-ブチル-フルオレニル)ジルコニウムジクロリドを含むトルエン溶液0.34mlをオートクレーブに窒素で圧入し、重合反応を開始させた。重合反応中は、オートクレーブの内温が60℃になるように温度調整した。
重合開始から60分後、オートクレーブにメタノール5mlを窒素で圧入し、重合反応を停止させた後、オートクレーブ内を大気圧まで脱圧した。脱圧後、反応溶液に、該反応溶液を攪拌しながらアセトンを添加し、溶媒を含む重合反応生成物を得た。次いで、得られた溶媒を含む重合反応生成物を減圧下、130℃で12時間乾燥させて、36.9gの粉末状の共重合体A-2Bを得た。 [Synthesis Example 2B] Synthesis of Copolymer A-2B To a SUS autoclave with a 1.5-liter stirring blade sufficiently purged with nitrogen, 300 ml of n-hexane (dried on activated alumina in a dry nitrogen atmosphere) ) And 450 ml of 4-methyl-1-pentene were charged at 23 ° C., then, 0.75 ml of a 1.0 mmol / ml toluene solution of triisobutylaluminum (TIBAL) was charged, and the stirrer was rotated.
Next, the autoclave was heated to an internal temperature of 60 ° C. and pressurized with propylene so that the total pressure (gauge pressure) was 0.40 MPa.
Subsequently, 1 mmol of methylaluminoxane and 0.01 mmol of diphenylmethylene (1-ethyl-3-t-butyl-cyclopentadienyl) (2,7-di-t-) prepared in advance were converted into Al. 0.34 ml of a toluene solution containing (butyl-fluorenyl) zirconium dichloride was pressed into the autoclave with nitrogen to initiate the polymerization reaction. During the polymerization reaction, the temperature was adjusted so that the internal temperature of the autoclave was 60 ° C.
Sixty minutes after the start of the polymerization, 5 ml of methanol was injected into the autoclave with nitrogen to stop the polymerization reaction, and then the inside of the autoclave was depressurized to the atmospheric pressure. After depressurization, acetone was added to the reaction solution while stirring the reaction solution to obtain a polymerization reaction product containing a solvent. Subsequently, the obtained polymerization reaction product containing the solvent was dried at 130 ° C. under reduced pressure for 12 hours to obtain 36.9 g of a powdery copolymer A-2B.
得られた共重合体A-2Bの各種物性の測定結果を表4に示す。
共重合体A-2B中の4-メチル-1-ペンテンの含有率は72.5mol%であり、プロピレンの含有率は27.5mol%であった。また、共重合体A-2Bの密度は839kg/m3であった。共重合体A-2Bの極限粘度[η]は1.5dl/gであり、重量平均分子量(Mw)は337,000であり、分子量分布(Mw/Mn)は2.1であり、メルトフローレート(MFR)は11g/10minであった。共重合体A-2Bの融点(Tm)は観察されず、tanδの最大値は2.8(最大値を示す際の温度:31℃)であった。 Table 4 shows the measurement results of various physical properties of the obtained copolymer A-2B.
The content of 4-methyl-1-pentene in the copolymer A-2B was 72.5 mol%, and the content of propylene was 27.5 mol%. Further, the density of the copolymer A-2B was 839 kg / m 3 . Copolymer A-2B has an intrinsic viscosity [η] of 1.5 dl / g, a weight average molecular weight (Mw) of 337,000, a molecular weight distribution (Mw / Mn) of 2.1, and a melt flow The rate (MFR) was 11 g / 10 min. The melting point (Tm) of the copolymer A-2B was not observed, and the maximum value of tan δ was 2.8 (temperature when showing the maximum value: 31 ° C.).
共重合体A-2B中の4-メチル-1-ペンテンの含有率は72.5mol%であり、プロピレンの含有率は27.5mol%であった。また、共重合体A-2Bの密度は839kg/m3であった。共重合体A-2Bの極限粘度[η]は1.5dl/gであり、重量平均分子量(Mw)は337,000であり、分子量分布(Mw/Mn)は2.1であり、メルトフローレート(MFR)は11g/10minであった。共重合体A-2Bの融点(Tm)は観察されず、tanδの最大値は2.8(最大値を示す際の温度:31℃)であった。 Table 4 shows the measurement results of various physical properties of the obtained copolymer A-2B.
The content of 4-methyl-1-pentene in the copolymer A-2B was 72.5 mol%, and the content of propylene was 27.5 mol%. Further, the density of the copolymer A-2B was 839 kg / m 3 . Copolymer A-2B has an intrinsic viscosity [η] of 1.5 dl / g, a weight average molecular weight (Mw) of 337,000, a molecular weight distribution (Mw / Mn) of 2.1, and a melt flow The rate (MFR) was 11 g / 10 min. The melting point (Tm) of the copolymer A-2B was not observed, and the maximum value of tan δ was 2.8 (temperature when showing the maximum value: 31 ° C.).
共重合体A-1B及びA-2Bの各種物性の測定方法を以下に示す。
Methods for measuring various physical properties of the copolymers A-1B and A-2B are shown below.
〔組成〕
共重合体中の4-メチル-1-ペンテン及びプロピレン(炭素数3のα-オレフィン)の含有率(モル%)は、13C-NMRにより測定した。測定条件は、下記のとおりである。 〔composition〕
The content (mol%) of 4-methyl-1-pentene and propylene (α-olefin having 3 carbon atoms) in the copolymer was measured by 13 C-NMR. The measurement conditions are as follows.
共重合体中の4-メチル-1-ペンテン及びプロピレン(炭素数3のα-オレフィン)の含有率(モル%)は、13C-NMRにより測定した。測定条件は、下記のとおりである。 〔composition〕
The content (mol%) of 4-methyl-1-pentene and propylene (α-olefin having 3 carbon atoms) in the copolymer was measured by 13 C-NMR. The measurement conditions are as follows.
~条件~
測定装置:核磁気共鳴装置(ECP500型、日本電子(株)製)
観測核:13C(125MHz)
シーケンス:シングルパルスプロトンデカップリング
パルス幅:4.7μ秒(45°パルス)
繰り返し時間:5.5秒
積算回数:1万回以上
溶媒:オルトジクロロベンゼン/重水素化ベンゼン(容量比:80/20)混合溶媒
試料濃度:55mg/0.6mL
測定温度:120℃
ケミカルシフトの基準値:27.50ppm ~ Conditions ~
Measuring apparatus: Nuclear magnetic resonance apparatus (ECP500 type, manufactured by JEOL Ltd.)
Observation nucleus: 13 C (125 MHz)
Sequence: Single pulse proton decoupling Pulse width: 4.7 μsec (45 ° pulse)
Repeat time: 5.5 seconds Accumulated number: 10,000 times or more Solvent: Orthodichlorobenzene / deuterated benzene (volume ratio: 80/20) mixed solvent Sample concentration: 55 mg / 0.6 mL
Measurement temperature: 120 ° C
Standard value of chemical shift: 27.50ppm
測定装置:核磁気共鳴装置(ECP500型、日本電子(株)製)
観測核:13C(125MHz)
シーケンス:シングルパルスプロトンデカップリング
パルス幅:4.7μ秒(45°パルス)
繰り返し時間:5.5秒
積算回数:1万回以上
溶媒:オルトジクロロベンゼン/重水素化ベンゼン(容量比:80/20)混合溶媒
試料濃度:55mg/0.6mL
測定温度:120℃
ケミカルシフトの基準値:27.50ppm ~ Conditions ~
Measuring apparatus: Nuclear magnetic resonance apparatus (ECP500 type, manufactured by JEOL Ltd.)
Observation nucleus: 13 C (125 MHz)
Sequence: Single pulse proton decoupling Pulse width: 4.7 μsec (45 ° pulse)
Repeat time: 5.5 seconds Accumulated number: 10,000 times or more Solvent: Orthodichlorobenzene / deuterated benzene (volume ratio: 80/20) mixed solvent Sample concentration: 55 mg / 0.6 mL
Measurement temperature: 120 ° C
Standard value of chemical shift: 27.50ppm
〔極限粘度[η]〕
共重合体の極限粘度[η]は、測定装置としてウベローデ粘度計を用い、デカリン溶媒中、135℃で測定した。
具体的には、約20mgの粉末状の共重合体をデカリン25mlに溶解させた後、ウベローデ粘度計を用い、135℃のオイルバス中で比粘度ηspを測定した。このデカリン溶液にデカリンを5ml加えて希釈した後、上記と同様にして比粘度ηspを測定した。この希釈操作を更に2回繰り返し、濃度(C)を0に外挿した時のηsp/Cの値を極限粘度[η](単位:dl/g)として求めた(下記の式1参照)。
[η]=lim(ηsp/C) (C→0)・・・式1 [Intrinsic viscosity [η]]
The intrinsic viscosity [η] of the copolymer was measured at 135 ° C. in a decalin solvent using an Ubbelohde viscometer as a measuring device.
Specifically, about 20 mg of the powdery copolymer was dissolved in 25 ml of decalin, and then the specific viscosity ηsp was measured in an oil bath at 135 ° C. using an Ubbelohde viscometer. After 5 ml of decalin was added to the decalin solution for dilution, the specific viscosity ηsp was measured in the same manner as described above. This dilution operation was further repeated twice, and the value of ηsp / C when the concentration (C) was extrapolated to 0 was determined as the intrinsic viscosity [η] (unit: dl / g) (see the following formula 1).
[Η] = lim (ηsp / C) (C → 0) Equation 1
共重合体の極限粘度[η]は、測定装置としてウベローデ粘度計を用い、デカリン溶媒中、135℃で測定した。
具体的には、約20mgの粉末状の共重合体をデカリン25mlに溶解させた後、ウベローデ粘度計を用い、135℃のオイルバス中で比粘度ηspを測定した。このデカリン溶液にデカリンを5ml加えて希釈した後、上記と同様にして比粘度ηspを測定した。この希釈操作を更に2回繰り返し、濃度(C)を0に外挿した時のηsp/Cの値を極限粘度[η](単位:dl/g)として求めた(下記の式1参照)。
[η]=lim(ηsp/C) (C→0)・・・式1 [Intrinsic viscosity [η]]
The intrinsic viscosity [η] of the copolymer was measured at 135 ° C. in a decalin solvent using an Ubbelohde viscometer as a measuring device.
Specifically, about 20 mg of the powdery copolymer was dissolved in 25 ml of decalin, and then the specific viscosity ηsp was measured in an oil bath at 135 ° C. using an Ubbelohde viscometer. After 5 ml of decalin was added to the decalin solution for dilution, the specific viscosity ηsp was measured in the same manner as described above. This dilution operation was further repeated twice, and the value of ηsp / C when the concentration (C) was extrapolated to 0 was determined as the intrinsic viscosity [η] (unit: dl / g) (see the following formula 1).
[Η] = lim (ηsp / C) (C → 0) Equation 1
〔重量平均分子量(Mw)及び分子量分布(Mw/Mn)〕
共重合体の重量平均分子量(Mw)、及び重量平均分子量(Mw)と数平均分子量(Mn)との比で表される分子量分布(Mw/Mn)は、ゲルパーミエーションクロマトグラフィー(GPC:Gel Permeation Chromatography)を用いた標準ポリスチレン換算法により算出した。測定条件は、下記のとおりである。 [Weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn)]
The weight average molecular weight (Mw) of the copolymer and the molecular weight distribution (Mw / Mn) represented by the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) are determined by gel permeation chromatography (GPC: Gel). It calculated by the standard polystyrene conversion method using Permeation Chromatography). The measurement conditions are as follows.
共重合体の重量平均分子量(Mw)、及び重量平均分子量(Mw)と数平均分子量(Mn)との比で表される分子量分布(Mw/Mn)は、ゲルパーミエーションクロマトグラフィー(GPC:Gel Permeation Chromatography)を用いた標準ポリスチレン換算法により算出した。測定条件は、下記のとおりである。 [Weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn)]
The weight average molecular weight (Mw) of the copolymer and the molecular weight distribution (Mw / Mn) represented by the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) are determined by gel permeation chromatography (GPC: Gel). It calculated by the standard polystyrene conversion method using Permeation Chromatography). The measurement conditions are as follows.
~条件~
測定装置:GPC(ALC/GPC 150-C plus型、示唆屈折計検出器一体型、Waters製)
カラム:GMH6-HT(東ソー(株)製)2本、及びGMH6-HTL(東ソー(株)製)2本を直列に接続
溶離液:o-ジクロロベンゼン
カラム温度:140℃
流量:1.0mL/min ~ Conditions ~
Measuring device: GPC (ALC / GPC 150-C plus type, suggested refractometer detector integrated type, manufactured by Waters)
Column: Two GMH6-HT (manufactured by Tosoh Corp.) and two GMH6-HTL (manufactured by Tosoh Corp.) connected in series Eluent: o-dichlorobenzene Column temperature: 140 ° C
Flow rate: 1.0 mL / min
測定装置:GPC(ALC/GPC 150-C plus型、示唆屈折計検出器一体型、Waters製)
カラム:GMH6-HT(東ソー(株)製)2本、及びGMH6-HTL(東ソー(株)製)2本を直列に接続
溶離液:o-ジクロロベンゼン
カラム温度:140℃
流量:1.0mL/min ~ Conditions ~
Measuring device: GPC (ALC / GPC 150-C plus type, suggested refractometer detector integrated type, manufactured by Waters)
Column: Two GMH6-HT (manufactured by Tosoh Corp.) and two GMH6-HTL (manufactured by Tosoh Corp.) connected in series Eluent: o-dichlorobenzene Column temperature: 140 ° C
Flow rate: 1.0 mL / min
〔メルトフローレート(MFR)〕
共重合体のメルトフローレート(MFR:Melt Flow Rate)は、ASTM D1238に準拠し、230℃で2.16kgの荷重にて測定した。単位は、g/10min)である。 [Melt flow rate (MFR)]
The melt flow rate (MFR) of the copolymer was measured at 230 ° C. and a load of 2.16 kg in accordance with ASTM D1238. The unit is g / 10 min).
共重合体のメルトフローレート(MFR:Melt Flow Rate)は、ASTM D1238に準拠し、230℃で2.16kgの荷重にて測定した。単位は、g/10min)である。 [Melt flow rate (MFR)]
The melt flow rate (MFR) of the copolymer was measured at 230 ° C. and a load of 2.16 kg in accordance with ASTM D1238. The unit is g / 10 min).
〔密度〕
共重合体の密度は、JIS K7112(密度勾配管法)に準拠して、測定した。この密度(kg/m3)を軽量性の指標とした。 〔density〕
The density of the copolymer was measured according to JIS K7112 (density gradient tube method). This density (kg / m 3 ) was used as an indicator of lightness.
共重合体の密度は、JIS K7112(密度勾配管法)に準拠して、測定した。この密度(kg/m3)を軽量性の指標とした。 〔density〕
The density of the copolymer was measured according to JIS K7112 (density gradient tube method). This density (kg / m 3 ) was used as an indicator of lightness.
〔融点(Tm)〕
共重合体の融点(Tm)は、測定装置として示差走査熱量計(DSC220C型、セイコーインスツル(株)製)を用いて測定した。
約5mgの共重合体を測定用アルミニウムパン中に密封し、室温から10℃/minで200℃まで加熱した。共重合体を完全融解させるために、200℃で5分間保持し、次いで、10℃/minで-50℃まで冷却した。-50℃で5分間置いた後、10℃/minで200℃まで2度目の加熱を行なった。この2度目の加熱でのピーク温度(℃)を共重合体の融点(Tm)とした。この共重合体の融点(Tm)を耐熱性の指標とした。 [Melting point (Tm)]
The melting point (Tm) of the copolymer was measured using a differential scanning calorimeter (DSC220C type, manufactured by Seiko Instruments Inc.) as a measuring device.
About 5 mg of the copolymer was sealed in a measurement aluminum pan and heated from room temperature to 200 ° C. at 10 ° C./min. In order to completely melt the copolymer, it was kept at 200 ° C. for 5 minutes and then cooled to −50 ° C. at 10 ° C./min. After 5 minutes at −50 ° C., the second heating was performed to 200 ° C. at 10 ° C./min. The peak temperature (° C.) at the second heating was defined as the melting point (Tm) of the copolymer. The melting point (Tm) of this copolymer was used as an index of heat resistance.
共重合体の融点(Tm)は、測定装置として示差走査熱量計(DSC220C型、セイコーインスツル(株)製)を用いて測定した。
約5mgの共重合体を測定用アルミニウムパン中に密封し、室温から10℃/minで200℃まで加熱した。共重合体を完全融解させるために、200℃で5分間保持し、次いで、10℃/minで-50℃まで冷却した。-50℃で5分間置いた後、10℃/minで200℃まで2度目の加熱を行なった。この2度目の加熱でのピーク温度(℃)を共重合体の融点(Tm)とした。この共重合体の融点(Tm)を耐熱性の指標とした。 [Melting point (Tm)]
The melting point (Tm) of the copolymer was measured using a differential scanning calorimeter (DSC220C type, manufactured by Seiko Instruments Inc.) as a measuring device.
About 5 mg of the copolymer was sealed in a measurement aluminum pan and heated from room temperature to 200 ° C. at 10 ° C./min. In order to completely melt the copolymer, it was kept at 200 ° C. for 5 minutes and then cooled to −50 ° C. at 10 ° C./min. After 5 minutes at −50 ° C., the second heating was performed to 200 ° C. at 10 ° C./min. The peak temperature (° C.) at the second heating was defined as the melting point (Tm) of the copolymer. The melting point (Tm) of this copolymer was used as an index of heat resistance.
〔衝撃吸収性〕
上記にて得られた粉末状の共重合体を、リップ幅240mmのTダイを設置した20mmφの単軸押出機(単軸シート形成機、(株)田中鉄工所製)のホッパーに投入した。そして、シリンダー温度を100℃~250℃、ダイス温度を250℃に設定し、Tダイから溶融混練物を押し出した。この押し出した溶融混練物を、チルロール温度20℃、引取速度10m/minで引き取ることにより、厚さ50μmのキャストフィルムを得た。このキャストフィルムを45mm×10mmに切り出し、試験片とした。
この試験片について、粘弾性測定装置(MCR301、Anton Paar社製)を用いて、周波数10rad/sで、-70~180℃の温度範囲の動的粘弾性を測定した。そして、得られたガラス転移温度に起因する損失正接(tanδ)の最大値と、その最大値を示す際の温度と、を衝撃吸収性の指標とした。 (Shock absorption)
The powdery copolymer obtained above was charged into a hopper of a 20 mmφ single screw extruder (single screw sheet forming machine, manufactured by Tanaka Iron Works Co., Ltd.) equipped with a T die having a lip width of 240 mm. The cylinder temperature was set to 100 ° C. to 250 ° C., the die temperature was set to 250 ° C., and the melt-kneaded product was extruded from the T die. The extruded melt-kneaded product was taken up at a chill roll temperature of 20 ° C. and a take-up speed of 10 m / min to obtain a cast film having a thickness of 50 μm. This cast film was cut out to 45 mm × 10 mm to obtain a test piece.
With respect to this test piece, the dynamic viscoelasticity in the temperature range of −70 to 180 ° C. was measured at a frequency of 10 rad / s using a viscoelasticity measuring apparatus (MCR301, manufactured by Anton Paar). Then, the maximum value of the loss tangent (tan δ) due to the obtained glass transition temperature and the temperature at which the maximum value was shown were used as an index of shock absorption.
上記にて得られた粉末状の共重合体を、リップ幅240mmのTダイを設置した20mmφの単軸押出機(単軸シート形成機、(株)田中鉄工所製)のホッパーに投入した。そして、シリンダー温度を100℃~250℃、ダイス温度を250℃に設定し、Tダイから溶融混練物を押し出した。この押し出した溶融混練物を、チルロール温度20℃、引取速度10m/minで引き取ることにより、厚さ50μmのキャストフィルムを得た。このキャストフィルムを45mm×10mmに切り出し、試験片とした。
この試験片について、粘弾性測定装置(MCR301、Anton Paar社製)を用いて、周波数10rad/sで、-70~180℃の温度範囲の動的粘弾性を測定した。そして、得られたガラス転移温度に起因する損失正接(tanδ)の最大値と、その最大値を示す際の温度と、を衝撃吸収性の指標とした。 (Shock absorption)
The powdery copolymer obtained above was charged into a hopper of a 20 mmφ single screw extruder (single screw sheet forming machine, manufactured by Tanaka Iron Works Co., Ltd.) equipped with a T die having a lip width of 240 mm. The cylinder temperature was set to 100 ° C. to 250 ° C., the die temperature was set to 250 ° C., and the melt-kneaded product was extruded from the T die. The extruded melt-kneaded product was taken up at a chill roll temperature of 20 ° C. and a take-up speed of 10 m / min to obtain a cast film having a thickness of 50 μm. This cast film was cut out to 45 mm × 10 mm to obtain a test piece.
With respect to this test piece, the dynamic viscoelasticity in the temperature range of −70 to 180 ° C. was measured at a frequency of 10 rad / s using a viscoelasticity measuring apparatus (MCR301, manufactured by Anton Paar). Then, the maximum value of the loss tangent (tan δ) due to the obtained glass transition temperature and the temperature at which the maximum value was shown were used as an index of shock absorption.
[応力緩和性フィルム]
<実施例1B>
共重合体A-1B 30質量部と、エチレン系重合体(エボリュー(登録商標)SP2540、直鎖状低密度ポリエチレン、密度:924kg/m3、MFR(190℃):3.8g/10min、(株)プライムポリマー製)70質量部と、を混合(ドライブレンド)した。次いで、得られた混合物を、リップ幅240mmのTダイを設置した20mmφの単軸押出機(単軸シート形成機、(株)田中鉄工所製)のホッパーに投入した。そして、シリンダー温度を230℃、ダイス温度を250℃に設定し、Tダイから溶融混練物を押し出し、キャスト成形することにより、応力緩和性フィルム(厚み:200μm)を得た。 [Stress relaxation film]
<Example 1B>
30 parts by mass of copolymer A-1B and an ethylene polymer (Evolue (registered trademark) SP2540, linear low density polyethylene, density: 924 kg / m 3 , MFR (190 ° C.): 3.8 g / 10 min, ( 70 parts by mass (manufactured by Prime Polymer Co., Ltd.) were mixed (dry blended). Next, the obtained mixture was put into a hopper of a 20 mmφ single screw extruder (single screw sheet forming machine, manufactured by Tanaka Iron Works Co., Ltd.) equipped with a T die having a lip width of 240 mm. The cylinder temperature was set to 230 ° C., the die temperature was set to 250 ° C., the melt-kneaded product was extruded from the T die, and cast to obtain a stress relaxation film (thickness: 200 μm).
<実施例1B>
共重合体A-1B 30質量部と、エチレン系重合体(エボリュー(登録商標)SP2540、直鎖状低密度ポリエチレン、密度:924kg/m3、MFR(190℃):3.8g/10min、(株)プライムポリマー製)70質量部と、を混合(ドライブレンド)した。次いで、得られた混合物を、リップ幅240mmのTダイを設置した20mmφの単軸押出機(単軸シート形成機、(株)田中鉄工所製)のホッパーに投入した。そして、シリンダー温度を230℃、ダイス温度を250℃に設定し、Tダイから溶融混練物を押し出し、キャスト成形することにより、応力緩和性フィルム(厚み:200μm)を得た。 [Stress relaxation film]
<Example 1B>
30 parts by mass of copolymer A-1B and an ethylene polymer (Evolue (registered trademark) SP2540, linear low density polyethylene, density: 924 kg / m 3 , MFR (190 ° C.): 3.8 g / 10 min, ( 70 parts by mass (manufactured by Prime Polymer Co., Ltd.) were mixed (dry blended). Next, the obtained mixture was put into a hopper of a 20 mmφ single screw extruder (single screw sheet forming machine, manufactured by Tanaka Iron Works Co., Ltd.) equipped with a T die having a lip width of 240 mm. The cylinder temperature was set to 230 ° C., the die temperature was set to 250 ° C., the melt-kneaded product was extruded from the T die, and cast to obtain a stress relaxation film (thickness: 200 μm).
<実施例2B>
共重合体A-1B 40質量部と、プロピレン系重合体(プライムポリプロ(登録商標)F327、プロピレン・エチレン・ブテンランダム共重合体、密度:907kg/m3、MFR(230℃):7g/10min、(株)プライムポリマー製)60質量部と、を混合(ドライブレンド)したこと以外は、実施例1Bと同様の方法により、応力緩和性フィルム(厚み:200μm)を得た。 <Example 2B>
40 parts by mass of copolymer A-1B, propylene-based polymer (Prime Polypro (registered trademark) F327, propylene / ethylene / butene random copolymer, density: 907 kg / m 3 , MFR (230 ° C.): 7 g / 10 min Except that 60 parts by mass (manufactured by Prime Polymer Co., Ltd.) were mixed (dry blended), a stress relaxation film (thickness: 200 μm) was obtained in the same manner as in Example 1B.
共重合体A-1B 40質量部と、プロピレン系重合体(プライムポリプロ(登録商標)F327、プロピレン・エチレン・ブテンランダム共重合体、密度:907kg/m3、MFR(230℃):7g/10min、(株)プライムポリマー製)60質量部と、を混合(ドライブレンド)したこと以外は、実施例1Bと同様の方法により、応力緩和性フィルム(厚み:200μm)を得た。 <Example 2B>
40 parts by mass of copolymer A-1B, propylene-based polymer (Prime Polypro (registered trademark) F327, propylene / ethylene / butene random copolymer, density: 907 kg / m 3 , MFR (230 ° C.): 7 g / 10 min Except that 60 parts by mass (manufactured by Prime Polymer Co., Ltd.) were mixed (dry blended), a stress relaxation film (thickness: 200 μm) was obtained in the same manner as in Example 1B.
<実施例3B>
共重合体A-2B 20質量部と、エチレン系重合体(エボリュー(登録商標)SP2540、(株)プライムポリマー製)80質量部と、を混合(ドライブレンド)したこと以外は、実施例1Bと同様の方法により、応力緩和性フィルム(厚み:200μm)を得た。 <Example 3B>
Example 1B except that 20 parts by mass of copolymer A-2B and 80 parts by mass of an ethylene polymer (Evolue (registered trademark) SP2540, manufactured by Prime Polymer Co., Ltd.) were mixed (dry blended). A stress relaxation film (thickness: 200 μm) was obtained by the same method.
共重合体A-2B 20質量部と、エチレン系重合体(エボリュー(登録商標)SP2540、(株)プライムポリマー製)80質量部と、を混合(ドライブレンド)したこと以外は、実施例1Bと同様の方法により、応力緩和性フィルム(厚み:200μm)を得た。 <Example 3B>
Example 1B except that 20 parts by mass of copolymer A-2B and 80 parts by mass of an ethylene polymer (Evolue (registered trademark) SP2540, manufactured by Prime Polymer Co., Ltd.) were mixed (dry blended). A stress relaxation film (thickness: 200 μm) was obtained by the same method.
<比較例1B>
原料として、エチレン系重合体(エボリュー(登録商標)SP2540、(株)プライムポリマー製)50質量部と、エチレン系重合体(エボリュー(登録商標)SP0540、直鎖状低密度ポリエチレン、密度:903kg/m3、MFR(190℃):3.8g/10min、(株)プライムポリマー製)50質量部と、を混合(ドライブレンド)して得られた混合物のみを使用したこと以外は、実施例1Bと同様の方法により、応力緩和性フィルム(厚み:200μm)を得た。 <Comparative Example 1B>
As raw materials, 50 parts by mass of an ethylene polymer (Evolue (registered trademark) SP2540, manufactured by Prime Polymer Co., Ltd.), an ethylene polymer (Evolue (registered trademark) SP0540, linear low-density polyethylene, density: 903 kg / Example 3B except that only a mixture obtained by mixing (dry blending) m 3 , MFR (190 ° C.): 3.8 g / 10 min, manufactured by Prime Polymer Co., Ltd. (50 parts by mass) was used. By the same method, a stress relaxation film (thickness: 200 μm) was obtained.
原料として、エチレン系重合体(エボリュー(登録商標)SP2540、(株)プライムポリマー製)50質量部と、エチレン系重合体(エボリュー(登録商標)SP0540、直鎖状低密度ポリエチレン、密度:903kg/m3、MFR(190℃):3.8g/10min、(株)プライムポリマー製)50質量部と、を混合(ドライブレンド)して得られた混合物のみを使用したこと以外は、実施例1Bと同様の方法により、応力緩和性フィルム(厚み:200μm)を得た。 <Comparative Example 1B>
As raw materials, 50 parts by mass of an ethylene polymer (Evolue (registered trademark) SP2540, manufactured by Prime Polymer Co., Ltd.), an ethylene polymer (Evolue (registered trademark) SP0540, linear low-density polyethylene, density: 903 kg / Example 3B except that only a mixture obtained by mixing (dry blending) m 3 , MFR (190 ° C.): 3.8 g / 10 min, manufactured by Prime Polymer Co., Ltd. (50 parts by mass) was used. By the same method, a stress relaxation film (thickness: 200 μm) was obtained.
<比較例2B>
原料として、プロピレン系重合体(プライムポリプロ(登録商標)F327、(株)プライムポリマー製)のみを使用したこと以外は、実施例1Bと同様の方法により、応力緩和性フィルム(厚み:200μm)を得た。 <Comparative Example 2B>
A stress relieving film (thickness: 200 μm) was produced in the same manner as in Example 1B except that only a propylene polymer (Prime Polypro (registered trademark) F327, manufactured by Prime Polymer Co., Ltd.) was used as a raw material. Obtained.
原料として、プロピレン系重合体(プライムポリプロ(登録商標)F327、(株)プライムポリマー製)のみを使用したこと以外は、実施例1Bと同様の方法により、応力緩和性フィルム(厚み:200μm)を得た。 <Comparative Example 2B>
A stress relieving film (thickness: 200 μm) was produced in the same manner as in Example 1B except that only a propylene polymer (Prime Polypro (registered trademark) F327, manufactured by Prime Polymer Co., Ltd.) was used as a raw material. Obtained.
<比較例3B>
原料として、共重合体A-1Bのみを使用したこと以外は、実施例1Bと同様の方法により、応力緩和性フィルム(厚み:200μm)を得た。 <Comparative Example 3B>
A stress relaxation film (thickness: 200 μm) was obtained in the same manner as in Example 1B, except that only copolymer A-1B was used as a raw material.
原料として、共重合体A-1Bのみを使用したこと以外は、実施例1Bと同様の方法により、応力緩和性フィルム(厚み:200μm)を得た。 <Comparative Example 3B>
A stress relaxation film (thickness: 200 μm) was obtained in the same manner as in Example 1B, except that only copolymer A-1B was used as a raw material.
〔透過型電子顕微鏡(TEM)によるフィルムの観察〕
実施例1B~3Bの応力緩和性フィルムを、断面方向にマイクロトームにて研削しフィルム断面の超薄切片をトリミングした後、四酸化ルテニウムの蒸気に一定時間晒して一方を選択的に染色させた。作製したサンプルを日立ハイテク(株)製の透過型電子顕微鏡(TEM:Transmission Electron Microscope、型式:H-7650)を用い、加速電圧:100kV、及び観察倍率:3000倍の測定条件にて観察したところ、実施例1Bの応力緩和性フィルムが、共重合体A-1Bを含む島部と、実質的にエチレン系重合体からなる海部と、から構成される海島構造を有しており、実施例2Bの応力緩和性フィルムが、共重合体A-1Bを含む島部と、実質的にプロピレン系重合体からなる海部と、から構成される海島構造を有しており、実施例3Bの応力緩和性フィルムが、共重合体A-2Bを含む島部と、実質的にエチレン系重合体からなる海部と、から構成される海島構造を有していることが確認された。実施例3BのフィルムのTEM画像を図2に示す。 [Observation of film by transmission electron microscope (TEM)]
The stress relaxation films of Examples 1B to 3B were ground with a microtome in the cross-sectional direction to trim an ultrathin section of the film cross section, and then exposed to ruthenium tetroxide vapor for a certain period of time to selectively stain one of them. . The prepared sample was observed using a transmission electron microscope (TEM: Transmission Electron Microscope, model: H-7650) manufactured by Hitachi High-Tech Co., Ltd. under measurement conditions of acceleration voltage: 100 kV and observation magnification: 3000 times. The stress relaxation film of Example 1B has a sea-island structure composed of an island part containing the copolymer A-1B and a sea part consisting essentially of an ethylene-based polymer. Example 2B The stress relaxation film of Example 3B has a sea-island structure composed of an island part containing the copolymer A-1B and a sea part substantially made of a propylene-based polymer. It was confirmed that the film had a sea-island structure composed of an island part containing the copolymer A-2B and a sea part consisting essentially of an ethylene-based polymer. A TEM image of the film of Example 3B is shown in FIG.
実施例1B~3Bの応力緩和性フィルムを、断面方向にマイクロトームにて研削しフィルム断面の超薄切片をトリミングした後、四酸化ルテニウムの蒸気に一定時間晒して一方を選択的に染色させた。作製したサンプルを日立ハイテク(株)製の透過型電子顕微鏡(TEM:Transmission Electron Microscope、型式:H-7650)を用い、加速電圧:100kV、及び観察倍率:3000倍の測定条件にて観察したところ、実施例1Bの応力緩和性フィルムが、共重合体A-1Bを含む島部と、実質的にエチレン系重合体からなる海部と、から構成される海島構造を有しており、実施例2Bの応力緩和性フィルムが、共重合体A-1Bを含む島部と、実質的にプロピレン系重合体からなる海部と、から構成される海島構造を有しており、実施例3Bの応力緩和性フィルムが、共重合体A-2Bを含む島部と、実質的にエチレン系重合体からなる海部と、から構成される海島構造を有していることが確認された。実施例3BのフィルムのTEM画像を図2に示す。 [Observation of film by transmission electron microscope (TEM)]
The stress relaxation films of Examples 1B to 3B were ground with a microtome in the cross-sectional direction to trim an ultrathin section of the film cross section, and then exposed to ruthenium tetroxide vapor for a certain period of time to selectively stain one of them. . The prepared sample was observed using a transmission electron microscope (TEM: Transmission Electron Microscope, model: H-7650) manufactured by Hitachi High-Tech Co., Ltd. under measurement conditions of acceleration voltage: 100 kV and observation magnification: 3000 times. The stress relaxation film of Example 1B has a sea-island structure composed of an island part containing the copolymer A-1B and a sea part consisting essentially of an ethylene-based polymer. Example 2B The stress relaxation film of Example 3B has a sea-island structure composed of an island part containing the copolymer A-1B and a sea part substantially made of a propylene-based polymer. It was confirmed that the film had a sea-island structure composed of an island part containing the copolymer A-2B and a sea part consisting essentially of an ethylene-based polymer. A TEM image of the film of Example 3B is shown in FIG.
〔応力緩和率の測定〕
実施例1B~3B及び比較例1B~3Bの応力緩和性フィルムから、幅10mm×長さ100mmのシートを打ち抜いたものを試験片として用いた。
引張試験機(万能引張試験機3380、インストロン製)を用いて、チャック間距離75mm、引張速度200mm/min、及び温度23℃の条件で、試験片を10%伸長させた。そして、10%伸長させた際の応力(初期応力)を計測し、そのまま試験片の伸長を120秒間保持させ、その間の応力の変化についても計測した。そして、上記初期応力と伸長から60秒後の応力との差から応力緩和率(単位:%)を算出し、応力緩和性の評価の指標とした。結果を下記の表5に示す。 [Measurement of stress relaxation rate]
From the stress relaxation films of Examples 1B to 3B and Comparative Examples 1B to 3B, a sheet having a width of 10 mm and a length of 100 mm punched out was used as a test piece.
Using a tensile tester (universal tensile tester 3380, manufactured by Instron), the test piece was stretched 10% under the conditions of a distance between chucks of 75 mm, a tensile speed of 200 mm / min, and a temperature of 23 ° C. And the stress (initial stress) at the time of extending | stretching 10% was measured, elongation of the test piece was hold | maintained as it was for 120 seconds, and the change of the stress in the meantime was also measured. Then, the stress relaxation rate (unit:%) was calculated from the difference between the initial stress and the stress 60 seconds after elongation, and used as an index for evaluating stress relaxation. The results are shown in Table 5 below.
実施例1B~3B及び比較例1B~3Bの応力緩和性フィルムから、幅10mm×長さ100mmのシートを打ち抜いたものを試験片として用いた。
引張試験機(万能引張試験機3380、インストロン製)を用いて、チャック間距離75mm、引張速度200mm/min、及び温度23℃の条件で、試験片を10%伸長させた。そして、10%伸長させた際の応力(初期応力)を計測し、そのまま試験片の伸長を120秒間保持させ、その間の応力の変化についても計測した。そして、上記初期応力と伸長から60秒後の応力との差から応力緩和率(単位:%)を算出し、応力緩和性の評価の指標とした。結果を下記の表5に示す。 [Measurement of stress relaxation rate]
From the stress relaxation films of Examples 1B to 3B and Comparative Examples 1B to 3B, a sheet having a width of 10 mm and a length of 100 mm punched out was used as a test piece.
Using a tensile tester (universal tensile tester 3380, manufactured by Instron), the test piece was stretched 10% under the conditions of a distance between chucks of 75 mm, a tensile speed of 200 mm / min, and a temperature of 23 ° C. And the stress (initial stress) at the time of extending | stretching 10% was measured, elongation of the test piece was hold | maintained as it was for 120 seconds, and the change of the stress in the meantime was also measured. Then, the stress relaxation rate (unit:%) was calculated from the difference between the initial stress and the stress 60 seconds after elongation, and used as an index for evaluating stress relaxation. The results are shown in Table 5 below.
[積層体]
<実施例4B>
共重合体A-1B 30質量部、及びエチレン系重合体(エボリュー(登録商標)SP2540、(株)プライムポリマー製)70質量部を混合(ドライブレンド)して得られた混合物からなる応力緩和層(厚さ:100μm)と、エチレン系重合体(エボリュー(登録商標)SP2540、(株)プライムポリマー製)100質量部からなる表面層(厚さ:各30μm)と、からなる二種三層構成の積層体(厚さ:160μm、層構成:表面層/応力緩和層/表面層)を、リップ幅200mmの二種三層型Tダイを設置した20mmφの単軸押出機((株)テクノベル製)を用い、共押出しにより成形した。なお、シリンダー温度は200℃、ダイス温度は200℃に設定した。 [Laminate]
<Example 4B>
Stress relaxation layer comprising a mixture obtained by mixing (dry blending) 30 parts by mass of copolymer A-1B and 70 parts by mass of an ethylene-based polymer (Evolue (registered trademark) SP2540, manufactured by Prime Polymer Co., Ltd.). (Thickness: 100 μm) and a surface layer (thickness: 30 μm each) composed of 100 parts by mass of an ethylene-based polymer (Evolue (registered trademark) SP2540, manufactured by Prime Polymer Co., Ltd.). A 20 mmφ single screw extruder (manufactured by Technobel Co., Ltd.) having a laminated body (thickness: 160 μm, layer structure: surface layer / stress relaxation layer / surface layer) provided with a two-type three-layer T-die having a lip width of 200 mm. ) And was formed by coextrusion. The cylinder temperature was set to 200 ° C., and the die temperature was set to 200 ° C.
<実施例4B>
共重合体A-1B 30質量部、及びエチレン系重合体(エボリュー(登録商標)SP2540、(株)プライムポリマー製)70質量部を混合(ドライブレンド)して得られた混合物からなる応力緩和層(厚さ:100μm)と、エチレン系重合体(エボリュー(登録商標)SP2540、(株)プライムポリマー製)100質量部からなる表面層(厚さ:各30μm)と、からなる二種三層構成の積層体(厚さ:160μm、層構成:表面層/応力緩和層/表面層)を、リップ幅200mmの二種三層型Tダイを設置した20mmφの単軸押出機((株)テクノベル製)を用い、共押出しにより成形した。なお、シリンダー温度は200℃、ダイス温度は200℃に設定した。 [Laminate]
<Example 4B>
Stress relaxation layer comprising a mixture obtained by mixing (dry blending) 30 parts by mass of copolymer A-1B and 70 parts by mass of an ethylene-based polymer (Evolue (registered trademark) SP2540, manufactured by Prime Polymer Co., Ltd.). (Thickness: 100 μm) and a surface layer (thickness: 30 μm each) composed of 100 parts by mass of an ethylene-based polymer (Evolue (registered trademark) SP2540, manufactured by Prime Polymer Co., Ltd.). A 20 mmφ single screw extruder (manufactured by Technobel Co., Ltd.) having a laminated body (thickness: 160 μm, layer structure: surface layer / stress relaxation layer / surface layer) provided with a two-type three-layer T-die having a lip width of 200 mm. ) And was formed by coextrusion. The cylinder temperature was set to 200 ° C., and the die temperature was set to 200 ° C.
<実施例5B>
実施例4Bと同様の方法により、共重合体A-1B 40質量部、及びプロピレン系重合体(プライムポリプロ(登録商標)F327、(株)プライムポリマー製)60質量部を混合(ドライブレンド)して得られた混合物からなる応力緩和層(厚さ:100μm)と、プロピレン系重合体(プライムポリプロ(登録商標)F327、(株)プライムポリマー製)100質量部からなる表面層(厚さ:各30μm)と、からなる二種三層構成の積層体(厚さ:160μm、層構成:表面層/応力緩和層/表面層)を成形した。 <Example 5B>
In the same manner as in Example 4B, 40 parts by mass of copolymer A-1B and 60 parts by mass of a propylene-based polymer (Prime Polypro (registered trademark) F327, manufactured by Prime Polymer Co., Ltd.) were mixed (dry blended). And a surface layer (thickness: each) consisting of 100 parts by mass of a stress relaxation layer (thickness: 100 μm) made of the mixture and a propylene polymer (Prime Polypro (registered trademark) F327, manufactured by Prime Polymer Co., Ltd.). 30 μm) and a laminated body having a two-layer / three-layer structure (thickness: 160 μm, layer structure: surface layer / stress relaxation layer / surface layer).
実施例4Bと同様の方法により、共重合体A-1B 40質量部、及びプロピレン系重合体(プライムポリプロ(登録商標)F327、(株)プライムポリマー製)60質量部を混合(ドライブレンド)して得られた混合物からなる応力緩和層(厚さ:100μm)と、プロピレン系重合体(プライムポリプロ(登録商標)F327、(株)プライムポリマー製)100質量部からなる表面層(厚さ:各30μm)と、からなる二種三層構成の積層体(厚さ:160μm、層構成:表面層/応力緩和層/表面層)を成形した。 <Example 5B>
In the same manner as in Example 4B, 40 parts by mass of copolymer A-1B and 60 parts by mass of a propylene-based polymer (Prime Polypro (registered trademark) F327, manufactured by Prime Polymer Co., Ltd.) were mixed (dry blended). And a surface layer (thickness: each) consisting of 100 parts by mass of a stress relaxation layer (thickness: 100 μm) made of the mixture and a propylene polymer (Prime Polypro (registered trademark) F327, manufactured by Prime Polymer Co., Ltd.). 30 μm) and a laminated body having a two-layer / three-layer structure (thickness: 160 μm, layer structure: surface layer / stress relaxation layer / surface layer).
<実施例6B>
実施例4Bと同様の方法により、共重合体A-2B 30質量部、及びエチレン系重合体(エボリュー(登録商標)SP2540、(株)プライムポリマー製)70質量部を混合(ドライブレンド)して得られた混合物からなる応力緩和層(厚さ:100μm)と、エチレン系共重合体(エボリュー(登録商標)SP2540、(株)プライムポリマー製)80質量部、及びエチレン系重合体(タフマー(登録商標)DF605、エチレン・ブテン共重合体(エチレンに由来する構成単位の比率:50モル%以上、密度:861kg/m3、MFR(230℃):0.9g/10min、三井化学(株)製)20質量部を混合(ドライブレンド)して得られた混合物からなる表面層(厚さ:各30μm)と、からなる二種三層構成の積層体(厚さ:160μm、層構成:表面層/応力緩和層/表面層)を成形した。 <Example 6B>
In the same manner as in Example 4B, 30 parts by mass of copolymer A-2B and 70 parts by mass of an ethylene polymer (Evolue (registered trademark) SP2540, manufactured by Prime Polymer Co., Ltd.) were mixed (dry blended). A stress relaxation layer (thickness: 100 μm) made of the obtained mixture, 80 parts by mass of an ethylene copolymer (Evolue (registered trademark) SP2540, manufactured by Prime Polymer Co., Ltd.), and an ethylene polymer (Tuffmer (registered) Trademark) DF605, ethylene-butene copolymer (ratio of structural units derived from ethylene: 50 mol% or more, density: 861 kg / m 3 , MFR (230 ° C.): 0.9 g / 10 min, manufactured by Mitsui Chemicals, Inc. ) A laminate (thickness) of a two-layer / three-layer structure composed of a surface layer (thickness: 30 μm each) composed of a mixture obtained by mixing (dry blending) 20 parts by mass. S: 160 μm, layer structure: surface layer / stress relaxation layer / surface layer).
実施例4Bと同様の方法により、共重合体A-2B 30質量部、及びエチレン系重合体(エボリュー(登録商標)SP2540、(株)プライムポリマー製)70質量部を混合(ドライブレンド)して得られた混合物からなる応力緩和層(厚さ:100μm)と、エチレン系共重合体(エボリュー(登録商標)SP2540、(株)プライムポリマー製)80質量部、及びエチレン系重合体(タフマー(登録商標)DF605、エチレン・ブテン共重合体(エチレンに由来する構成単位の比率:50モル%以上、密度:861kg/m3、MFR(230℃):0.9g/10min、三井化学(株)製)20質量部を混合(ドライブレンド)して得られた混合物からなる表面層(厚さ:各30μm)と、からなる二種三層構成の積層体(厚さ:160μm、層構成:表面層/応力緩和層/表面層)を成形した。 <Example 6B>
In the same manner as in Example 4B, 30 parts by mass of copolymer A-2B and 70 parts by mass of an ethylene polymer (Evolue (registered trademark) SP2540, manufactured by Prime Polymer Co., Ltd.) were mixed (dry blended). A stress relaxation layer (thickness: 100 μm) made of the obtained mixture, 80 parts by mass of an ethylene copolymer (Evolue (registered trademark) SP2540, manufactured by Prime Polymer Co., Ltd.), and an ethylene polymer (Tuffmer (registered) Trademark) DF605, ethylene-butene copolymer (ratio of structural units derived from ethylene: 50 mol% or more, density: 861 kg / m 3 , MFR (230 ° C.): 0.9 g / 10 min, manufactured by Mitsui Chemicals, Inc. ) A laminate (thickness) of a two-layer / three-layer structure composed of a surface layer (thickness: 30 μm each) composed of a mixture obtained by mixing (dry blending) 20 parts by mass. S: 160 μm, layer structure: surface layer / stress relaxation layer / surface layer).
<比較例4B>
実施例4Bと同様の方法により、エチレン系重合体(エボリュー(登録商標)SP2540、(株)プライムポリマー製)50質量部と、エチレン系重合体(エボリュー(登録商標)SP0540、(株)プライムポリマー製)50質量部と、を混合(ドライブレンド)して得られた混合物からなる応力緩和層(厚さ:100μm)と、エチレン系重合体(エボリュー(登録商標)SP2540、(株)プライムポリマー製)100質量部からなる表面層(厚さ:各30μm)と、からなる二種三層構成の積層体(厚さ:160μm、層構成:表面層/応力緩和層/表面層)を成形した。 <Comparative Example 4B>
In the same manner as in Example 4B, 50 parts by mass of an ethylene polymer (Evolue (registered trademark) SP2540, manufactured by Prime Polymer Co., Ltd.) and an ethylene polymer (Evolue (registered trademark) SP0540, Prime Polymer Co., Ltd.) were used. Made by mixing (dry blending) 50 parts by mass, a stress relaxation layer (thickness: 100 μm) made of a mixture, and an ethylene polymer (Evolue (registered trademark) SP2540, manufactured by Prime Polymer Co., Ltd.) ) A layered body (thickness: 160 μm, layer structure: surface layer / stress relaxation layer / surface layer) composed of a surface layer (thickness: 30 μm each) consisting of 100 parts by mass and two kinds and three layers.
実施例4Bと同様の方法により、エチレン系重合体(エボリュー(登録商標)SP2540、(株)プライムポリマー製)50質量部と、エチレン系重合体(エボリュー(登録商標)SP0540、(株)プライムポリマー製)50質量部と、を混合(ドライブレンド)して得られた混合物からなる応力緩和層(厚さ:100μm)と、エチレン系重合体(エボリュー(登録商標)SP2540、(株)プライムポリマー製)100質量部からなる表面層(厚さ:各30μm)と、からなる二種三層構成の積層体(厚さ:160μm、層構成:表面層/応力緩和層/表面層)を成形した。 <Comparative Example 4B>
In the same manner as in Example 4B, 50 parts by mass of an ethylene polymer (Evolue (registered trademark) SP2540, manufactured by Prime Polymer Co., Ltd.) and an ethylene polymer (Evolue (registered trademark) SP0540, Prime Polymer Co., Ltd.) were used. Made by mixing (dry blending) 50 parts by mass, a stress relaxation layer (thickness: 100 μm) made of a mixture, and an ethylene polymer (Evolue (registered trademark) SP2540, manufactured by Prime Polymer Co., Ltd.) ) A layered body (thickness: 160 μm, layer structure: surface layer / stress relaxation layer / surface layer) composed of a surface layer (thickness: 30 μm each) consisting of 100 parts by mass and two kinds and three layers.
<比較例5B>
実施例4Bと同様の方法により、プロピレン系重合体(プライムポリプロ(登録商標)F327、(株)プライムポリマー製)100質量部からなる応力緩和層(厚さ:100μm)と、エチレン系重合体(エボリュー(登録商標)SP2540、(株)プライムポリマー製)100質量部からなる表面層(厚さ:各30μm)と、からなる二種三層構成の積層体(厚さ:160μm、層構成:表面層/応力緩和層/表面層)を成形した。 <Comparative Example 5B>
In the same manner as in Example 4B, a stress relaxation layer (thickness: 100 μm) composed of 100 parts by mass of a propylene polymer (Prime Polypro (registered trademark) F327, manufactured by Prime Polymer Co., Ltd.) and an ethylene polymer ( Evolue (registered trademark) SP2540, manufactured by Prime Polymer Co., Ltd., a surface layer (thickness: 30 μm each) composed of 100 parts by mass, and a laminate of two types and three layers (thickness: 160 μm, layer configuration: surface) Layer / stress relaxation layer / surface layer).
実施例4Bと同様の方法により、プロピレン系重合体(プライムポリプロ(登録商標)F327、(株)プライムポリマー製)100質量部からなる応力緩和層(厚さ:100μm)と、エチレン系重合体(エボリュー(登録商標)SP2540、(株)プライムポリマー製)100質量部からなる表面層(厚さ:各30μm)と、からなる二種三層構成の積層体(厚さ:160μm、層構成:表面層/応力緩和層/表面層)を成形した。 <Comparative Example 5B>
In the same manner as in Example 4B, a stress relaxation layer (thickness: 100 μm) composed of 100 parts by mass of a propylene polymer (Prime Polypro (registered trademark) F327, manufactured by Prime Polymer Co., Ltd.) and an ethylene polymer ( Evolue (registered trademark) SP2540, manufactured by Prime Polymer Co., Ltd., a surface layer (thickness: 30 μm each) composed of 100 parts by mass, and a laminate of two types and three layers (thickness: 160 μm, layer configuration: surface) Layer / stress relaxation layer / surface layer).
<比較例6B>
実施例4Bと同様の方法により、共重合体A-1B 100質量部からなる応力緩和層(厚さ:100μm)と、エチレン系重合体(エボリュー(登録商標)SP2540、(株)プライムポリマー製)100質量部からなる表面層(厚さ:各30μm)と、からなる二種三層構成の積層体(厚さ:160μm、層構成:表面層/応力緩和層/表面層)を成形した。 <Comparative Example 6B>
In the same manner as in Example 4B, a stress relaxation layer (thickness: 100 μm) consisting of 100 parts by mass of copolymer A-1B and an ethylene-based polymer (Evolue (registered trademark) SP2540, manufactured by Prime Polymer Co., Ltd.) A surface layer composed of 100 parts by mass (thickness: 30 μm each) and a laminate of two types and three layers composed of (thickness: 160 μm, layer configuration: surface layer / stress relaxation layer / surface layer) were formed.
実施例4Bと同様の方法により、共重合体A-1B 100質量部からなる応力緩和層(厚さ:100μm)と、エチレン系重合体(エボリュー(登録商標)SP2540、(株)プライムポリマー製)100質量部からなる表面層(厚さ:各30μm)と、からなる二種三層構成の積層体(厚さ:160μm、層構成:表面層/応力緩和層/表面層)を成形した。 <Comparative Example 6B>
In the same manner as in Example 4B, a stress relaxation layer (thickness: 100 μm) consisting of 100 parts by mass of copolymer A-1B and an ethylene-based polymer (Evolue (registered trademark) SP2540, manufactured by Prime Polymer Co., Ltd.) A surface layer composed of 100 parts by mass (thickness: 30 μm each) and a laminate of two types and three layers composed of (thickness: 160 μm, layer configuration: surface layer / stress relaxation layer / surface layer) were formed.
〔剥離強度の測定〕
実施例4B~6B及び比較例4B~6Bの積層体を、幅15mm×長さ100mmの短冊状に切断したものを試験片として用いた。
カッターを用いて、試験片の表面(一方の面)に傷を付けた後、該試験片の両端に強粘着テープを貼り付け、該強粘着テープを手で引っ張り、表面層と応力緩和層との間を剥離させる試みを行なった。この際、剥離しなかった積層体については、下記の表5の該当欄に、「剥離しない」と記載した。剥離した積層体に関しては、別途、引張試験機(万能引張試験機3380、インストロン製)を用い、チャック間距離80mm、引張速度300mm/min、及び温度23℃の条件で、応力緩和層と表面層との接着面に対して180°の方向に引っ張り、応力緩和層と表面層との間を剥離させ、剥離強度(層間剥離強度)を測定した。剥離強度は、5個の試験片について測定し、平均値を算出した。結果を下記の表5に示す。 (Measurement of peel strength)
Samples obtained by cutting the laminates of Examples 4B to 6B and Comparative Examples 4B to 6B into strips having a width of 15 mm and a length of 100 mm were used as test pieces.
After scratching the surface (one surface) of the test piece using a cutter, a strong adhesive tape is applied to both ends of the test piece, and the strong adhesive tape is pulled by hand to obtain a surface layer and a stress relaxation layer. Attempts were made to peel the gaps. At this time, the laminate that was not peeled was described as “not peeled” in the corresponding column of Table 5 below. Regarding the peeled laminate, a stress relaxation layer and a surface were separately used with a tensile tester (universal tensile tester 3380, manufactured by Instron) under the conditions of a distance between chucks of 80 mm, a tensile speed of 300 mm / min, and a temperature of 23 ° C. The layer was pulled in the direction of 180 ° with respect to the adhesive surface with the layer, the stress relaxation layer and the surface layer were peeled, and the peel strength (interlayer peel strength) was measured. The peel strength was measured for five test pieces and the average value was calculated. The results are shown in Table 5 below.
実施例4B~6B及び比較例4B~6Bの積層体を、幅15mm×長さ100mmの短冊状に切断したものを試験片として用いた。
カッターを用いて、試験片の表面(一方の面)に傷を付けた後、該試験片の両端に強粘着テープを貼り付け、該強粘着テープを手で引っ張り、表面層と応力緩和層との間を剥離させる試みを行なった。この際、剥離しなかった積層体については、下記の表5の該当欄に、「剥離しない」と記載した。剥離した積層体に関しては、別途、引張試験機(万能引張試験機3380、インストロン製)を用い、チャック間距離80mm、引張速度300mm/min、及び温度23℃の条件で、応力緩和層と表面層との接着面に対して180°の方向に引っ張り、応力緩和層と表面層との間を剥離させ、剥離強度(層間剥離強度)を測定した。剥離強度は、5個の試験片について測定し、平均値を算出した。結果を下記の表5に示す。 (Measurement of peel strength)
Samples obtained by cutting the laminates of Examples 4B to 6B and Comparative Examples 4B to 6B into strips having a width of 15 mm and a length of 100 mm were used as test pieces.
After scratching the surface (one surface) of the test piece using a cutter, a strong adhesive tape is applied to both ends of the test piece, and the strong adhesive tape is pulled by hand to obtain a surface layer and a stress relaxation layer. Attempts were made to peel the gaps. At this time, the laminate that was not peeled was described as “not peeled” in the corresponding column of Table 5 below. Regarding the peeled laminate, a stress relaxation layer and a surface were separately used with a tensile tester (universal tensile tester 3380, manufactured by Instron) under the conditions of a distance between chucks of 80 mm, a tensile speed of 300 mm / min, and a temperature of 23 ° C. The layer was pulled in the direction of 180 ° with respect to the adhesive surface with the layer, the stress relaxation layer and the surface layer were peeled, and the peel strength (interlayer peel strength) was measured. The peel strength was measured for five test pieces and the average value was calculated. The results are shown in Table 5 below.
表5に示すように、本発明の応力緩和性フィルムは、良好な応力緩和性を有し(実施例1B~3B参照)、また、他の層と積層した場合には、他の層との間で良好な接着性を示した(実施例4B~6B参照)。
As shown in Table 5, the stress relaxation film of the present invention has good stress relaxation properties (see Examples 1B to 3B), and when laminated with other layers, Good adhesion was exhibited (see Examples 4B to 6B).
本発明の応力緩和性フィルムは、建材や光学部品等の各種樹脂製品、金属製品、ガラス製品などの輸送時、保管時、及び加工時の傷付き防止や、防塵目的で使用される表面保護フィルム又はその部材として有用である。また、本発明の応力緩和性フィルムは、半導体基板の研削時に、回路形成面を保護するフィルムとして使用することで、半導体基板に割れや傷が生じることを抑制することができる。したがって、本発明の応力緩和性フィルムは、半導体基板用の表面保護フィルム又はその部材としても、非常に有用である。
The stress relieving film of the present invention is a surface protective film used for the purpose of preventing scratches during transportation, storage and processing of various resin products such as building materials and optical parts, metal products, glass products, and dust prevention purposes. Or it is useful as the member. Moreover, when the stress relaxation film of the present invention is used as a film for protecting the circuit formation surface during grinding of the semiconductor substrate, it is possible to prevent the semiconductor substrate from being cracked or scratched. Therefore, the stress relaxation film of the present invention is very useful as a surface protective film for a semiconductor substrate or a member thereof.
日本出願2013-137495、日本出願2013-163579、及び日本出願2013-173556の開示は、その全体が参照により本明細書に取り込まれる。
本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的に、かつ、個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 The disclosures of Japanese Application 2013-137495, Japanese Application 2013-163579, and Japanese Application 2013-173556 are hereby incorporated by reference in their entirety.
All documents, patent applications, and technical standards described in this specification are specifically and individually incorporated by reference as if individual documents, patent applications, and technical standards were incorporated by reference. To the extent it is incorporated herein by reference.
本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的に、かつ、個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 The disclosures of Japanese Application 2013-137495, Japanese Application 2013-163579, and Japanese Application 2013-173556 are hereby incorporated by reference in their entirety.
All documents, patent applications, and technical standards described in this specification are specifically and individually incorporated by reference as if individual documents, patent applications, and technical standards were incorporated by reference. To the extent it is incorporated herein by reference.
Claims (19)
- 4-メチル-1-ペンテンに由来する構成単位を70モル%~90モル%、及び炭素数2又は3のα-オレフィンに由来する構成単位を10モル%~30モル%含み、かつ、4-メチル-1-ペンテン以外の炭素数4~20のα-オレフィンに由来する構成単位の比率が10モル%以下の共重合体である熱可塑性樹脂Aと、
エチレン系重合体、プロピレン系重合体、ブテン系重合体、及び4-メチル-1-ペンテン系重合体からなる群より選ばれる少なくとも1種の重合体である、前記熱可塑性樹脂A以外の熱可塑性樹脂Bと、を含有し、
前記熱可塑性樹脂Aの含有量が全質量に対して50質量%~98質量%であり、
前記熱可塑性樹脂Bの含有量が全質量に対して2質量%~50質量%である、応力緩和性フィルム。 Contains 70 mol% to 90 mol% of structural units derived from 4-methyl-1-pentene, and 10 mol% to 30 mol% of structural units derived from an α-olefin having 2 or 3 carbon atoms; A thermoplastic resin A which is a copolymer having a proportion of structural units derived from an α-olefin having 4 to 20 carbon atoms other than methyl-1-pentene of 10 mol% or less;
Thermoplastic other than the thermoplastic resin A, which is at least one polymer selected from the group consisting of ethylene polymers, propylene polymers, butene polymers, and 4-methyl-1-pentene polymers. Resin B,
The content of the thermoplastic resin A is 50% by mass to 98% by mass with respect to the total mass,
The stress relaxation film, wherein the content of the thermoplastic resin B is 2% by mass to 50% by mass with respect to the total mass. - 前記熱可塑性樹脂Aは、4-メチル-1-ペンテンに由来する構成単位を75モル%~88モル%含む共重合体である、請求項1に記載の応力緩和性フィルム。 2. The stress relieving film according to claim 1, wherein the thermoplastic resin A is a copolymer containing 75 mol% to 88 mol% of a structural unit derived from 4-methyl-1-pentene.
- 前記熱可塑性樹脂Bが、エチレン系重合体及びプロピレン系重合体からなる群より選ばれる少なくとも1種の重合体である、請求項1又は請求項2に記載の応力緩和性フィルム。 The stress relaxation film according to claim 1 or 2, wherein the thermoplastic resin B is at least one polymer selected from the group consisting of an ethylene polymer and a propylene polymer.
- 前記熱可塑性樹脂Aを含んでなる海部と、実質的に前記熱可塑性樹脂Bからなる島部と、から構成される海島構造を有する、請求項1又は請求項2に記載の応力緩和性フィルム。 The stress relieving film according to claim 1 or 2, wherein the film has a sea-island structure composed of a sea part comprising the thermoplastic resin A and an island part substantially made of the thermoplastic resin B.
- 請求項1又は請求項2に記載の応力緩和性フィルムからなる応力緩和層と、エチレン系重合体、プロピレン系重合体、及びブテン系重合体からなる群より選ばれる少なくとも1種の重合体である熱可塑性樹脂Cを含み、かつ、少なくとも一部が前記応力緩和層と接触している表面層と、を含む積層体。 A stress relaxation layer comprising the stress relaxation film according to claim 1 or 2 and at least one polymer selected from the group consisting of an ethylene polymer, a propylene polymer, and a butene polymer. A laminate including a thermoplastic resin C and a surface layer at least partially in contact with the stress relaxation layer.
- 請求項1又は請求項2に記載の応力緩和性フィルムを含む、半導体基板の研削時に該半導体基板の回路形成面を保護する、半導体用表面保護フィルム。 A surface protective film for a semiconductor that protects a circuit forming surface of the semiconductor substrate during grinding of the semiconductor substrate, including the stress relaxation film according to claim 1.
- 周波数1.6Hzにて測定される25℃での貯蔵弾性率G’(25)が、5×107Pa以上である基材層を更に含む、請求項6に記載の半導体用表面保護フィルム。 The surface protective film for a semiconductor according to claim 6, further comprising a base material layer having a storage elastic modulus G ′ (25) at 25 ° C. measured at a frequency of 1.6 Hz of 5 × 10 7 Pa or more.
- 前記応力緩和性フィルムの前記基材層が存在する側とは反対側に粘着層を含む、請求項7に記載の半導体用表面保護フィルム。 The semiconductor surface protective film according to claim 7, comprising an adhesive layer on a side opposite to the side on which the base material layer of the stress relaxation film is present.
- 一方の面のみに回路が形成された半導体基板を準備する準備工程と、
前記半導体基板の回路形成面に、請求項8に記載の半導体用表面保護フィルムを、該表面保護フィルムの前記粘着層と、前記半導体基板の回路形成面と、が対向するように貼着する貼着工程と、
前記半導体基板の回路非形成面を研削する研削工程と、
前記半導体基板の回路形成面に貼着された表面保護フィルムを、前記半導体基板の回路形成面から剥離する剥離工程と、
を含む、半導体装置の製造方法。 A preparation step of preparing a semiconductor substrate having a circuit formed only on one surface;
The sticking which sticks the surface protection film for semiconductors of Claim 8 on the circuit formation surface of the said semiconductor substrate so that the said adhesion layer of this surface protection film and the circuit formation surface of the said semiconductor substrate may oppose. Wearing process,
A grinding step of grinding a non-circuit-formed surface of the semiconductor substrate;
A peeling step of peeling the surface protective film attached to the circuit forming surface of the semiconductor substrate from the circuit forming surface of the semiconductor substrate;
A method for manufacturing a semiconductor device, comprising: - 4-メチル-1-ペンテンに由来する構成単位を70モル%~90モル%、及び炭素数2又は3のα-オレフィンに由来する構成単位を10モル%~30モル%含み、かつ、4-メチル-1-ペンテン以外の炭素数4~20のα-オレフィンに由来する構成単位の比率が10モル%以下の共重合体である熱可塑性樹脂Aと、
エチレン系重合体、プロピレン系重合体、ブテン系重合体、及び4-メチル-1-ペンテン系重合体からなる群より選ばれる少なくとも1種の重合体である、前記熱可塑性樹脂A以外の熱可塑性樹脂Bと、を含有し、
前記熱可塑性樹脂Aの含有量が全質量に対して2質量%以上50質量%未満であり、
前記熱可塑性樹脂Bの含有量が全質量に対して50質量%以上98質量%以下である、応力緩和性フィルム。 Contains 70 mol% to 90 mol% of structural units derived from 4-methyl-1-pentene, and 10 mol% to 30 mol% of structural units derived from an α-olefin having 2 or 3 carbon atoms; A thermoplastic resin A which is a copolymer having a proportion of structural units derived from an α-olefin having 4 to 20 carbon atoms other than methyl-1-pentene of 10 mol% or less;
Thermoplastic other than the thermoplastic resin A, which is at least one polymer selected from the group consisting of ethylene polymers, propylene polymers, butene polymers, and 4-methyl-1-pentene polymers. Resin B,
The content of the thermoplastic resin A is 2% by mass or more and less than 50% by mass with respect to the total mass,
The stress relaxation film whose content of the said thermoplastic resin B is 50 to 98 mass% with respect to the total mass. - 前記熱可塑性樹脂Aは、4-メチル-1-ペンテンに由来する構成単位を70モル%~88モル%含む共重合体である、請求項10に記載の応力緩和性フィルム。 11. The stress relaxation film according to claim 10, wherein the thermoplastic resin A is a copolymer containing 70 mol% to 88 mol% of a structural unit derived from 4-methyl-1-pentene.
- 前記熱可塑性樹脂Bが、エチレン系重合体及びプロピレン系重合体からなる群より選ばれる少なくとも1種の重合体である、請求項10又は請求項11に記載の応力緩和性フィルム。 The stress relaxation film according to claim 10 or 11, wherein the thermoplastic resin B is at least one polymer selected from the group consisting of an ethylene polymer and a propylene polymer.
- 前記熱可塑性樹脂Aを含んでなる島部と、実質的に前記熱可塑性樹脂Bからなる海部と、から構成される海島構造を有する、請求項10又は請求項11に記載の応力緩和性フィルム。 The stress relieving film according to claim 10 or 11, which has a sea-island structure composed of an island part comprising the thermoplastic resin A and a sea part substantially composed of the thermoplastic resin B.
- 請求項10又は請求項11に記載の応力緩和性フィルムからなる応力緩和層と、エチレン系重合体、プロピレン系重合体、及びブテン系重合体からなる群より選ばれる少なくとも1種の重合体である熱可塑性樹脂Cを含み、かつ、少なくとも一部が前記応力緩和層と接触している表面層と、を含む積層体。 A stress relaxation layer comprising the stress relaxation film according to claim 10 or 11, and at least one polymer selected from the group consisting of an ethylene polymer, a propylene polymer, and a butene polymer. A laminate including a thermoplastic resin C and a surface layer at least partially in contact with the stress relaxation layer.
- 請求項10又は請求項11に記載の応力緩和性フィルムを含む、半導体基板の研削時に該半導体基板の回路形成面を保護する、半導体用表面保護フィルム。 A surface protective film for a semiconductor that protects a circuit forming surface of the semiconductor substrate when the semiconductor substrate is ground, including the stress relaxation film according to claim 10 or 11.
- 周波数1.6Hzにて測定される25℃での貯蔵弾性率G’(25)が、5×107Pa以上である基材層を更に含む、請求項15に記載の半導体用表面保護フィルム。 The surface protection film for a semiconductor according to claim 15, further comprising a base material layer having a storage elastic modulus G ′ (25) at 25 ° C. measured at a frequency of 1.6 Hz of 5 × 10 7 Pa or more.
- 前記応力緩和性フィルムの前記基材層が存在する側とは反対側に粘着層を含む、請求項16に記載の半導体用表面保護フィルム。 The surface protective film for a semiconductor according to claim 16, comprising an adhesive layer on the side opposite to the side on which the base material layer of the stress relaxation film is present.
- 一方の面のみに回路が形成された半導体基板を準備する準備工程と、
前記半導体基板の回路形成面に、請求項17に記載の半導体用表面保護フィルムを、該表面保護フィルムの前記粘着層と、前記半導体基板の回路形成面と、が対向するように貼着する貼着工程と、
前記半導体基板の回路非形成面を研削する研削工程と、
前記半導体基板の回路形成面に貼着された表面保護フィルムを、前記半導体基板の回路形成面から剥離する剥離工程と、
を含む、半導体装置の製造方法。 A preparation step of preparing a semiconductor substrate having a circuit formed only on one surface;
The paste which sticks the surface protection film for semiconductors of Claim 17 on the circuit formation side of the semiconductor substrate so that the adhesion layer of the surface protection film and the circuit formation side of the semiconductor substrate may counter. Wearing process,
A grinding step of grinding a non-circuit-formed surface of the semiconductor substrate;
A peeling step of peeling the surface protective film attached to the circuit forming surface of the semiconductor substrate from the circuit forming surface of the semiconductor substrate;
A method for manufacturing a semiconductor device, comprising: - 4-メチル-1-ペンテンに由来する構成単位を70モル%~90モル%、及び炭素数2又は3のα-オレフィンに由来する構成単位を10モル%~30モル%含み、かつ、4-メチル-1-ペンテン以外の炭素数4~20のα-オレフィンに由来する構成単位の比率が10モル%以下の共重合体である熱可塑性樹脂Aと、
エチレン系重合体、プロピレン系重合体、ブテン系重合体、及び4-メチル-1-ペンテン系重合体からなる群より選ばれる少なくとも1種の重合体である、前記熱可塑性樹脂A以外の熱可塑性樹脂Bと、を含有し、
前記熱可塑性樹脂Aの含有量が全質量に対して2質量%以上50質量%未満であり、
前記熱可塑性樹脂Bの含有量が全質量に対して50質量%以上98質量%以下である、樹脂改質剤。 Contains 70 mol% to 90 mol% of structural units derived from 4-methyl-1-pentene, and 10 mol% to 30 mol% of structural units derived from an α-olefin having 2 or 3 carbon atoms; A thermoplastic resin A which is a copolymer having a proportion of structural units derived from an α-olefin having 4 to 20 carbon atoms other than methyl-1-pentene of 10 mol% or less;
Thermoplastic other than the thermoplastic resin A, which is at least one polymer selected from the group consisting of ethylene polymers, propylene polymers, butene polymers, and 4-methyl-1-pentene polymers. Resin B,
The content of the thermoplastic resin A is 2% by mass or more and less than 50% by mass with respect to the total mass,
The resin modifier whose content of the said thermoplastic resin B is 50 to 98 mass% with respect to the total mass.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015524064A JP5965070B2 (en) | 2013-06-28 | 2014-06-24 | Stress relaxation film and surface protection film for semiconductor |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-137495 | 2013-06-28 | ||
JP2013137495 | 2013-06-28 | ||
JP2013163579 | 2013-08-06 | ||
JP2013-163579 | 2013-08-06 | ||
JP2013-173556 | 2013-08-23 | ||
JP2013173556 | 2013-08-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014208564A1 true WO2014208564A1 (en) | 2014-12-31 |
Family
ID=52141896
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/066722 WO2014208564A1 (en) | 2013-06-28 | 2014-06-24 | Stress relaxation film, and protective film for surface of semiconductor |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5965070B2 (en) |
TW (2) | TWI642547B (en) |
WO (1) | WO2014208564A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015189872A (en) * | 2014-03-28 | 2015-11-02 | 三井化学株式会社 | Resin composition, molded article, pipe and coiled pipe |
JP2016141132A (en) * | 2015-02-05 | 2016-08-08 | 三井化学株式会社 | Laminate, and application thereof |
WO2017164364A1 (en) | 2016-03-25 | 2017-09-28 | 三井化学株式会社 | Extensible and contractile structure body, multilayered extending and contracting sheet, spun yarn and fiber structure body |
WO2018181115A1 (en) * | 2017-03-30 | 2018-10-04 | ニチハ株式会社 | Construction material |
JP2019001139A (en) * | 2017-06-20 | 2019-01-10 | 三井化学株式会社 | Multilayer biaxially oriented film and transfer film |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6466059B2 (en) * | 2013-11-12 | 2019-02-06 | 三井化学株式会社 | the film |
JP7055593B2 (en) | 2017-01-27 | 2022-04-18 | ニチハ株式会社 | Building materials, laminated bodies of building materials, and construction methods of building materials |
US20220403072A1 (en) * | 2019-11-15 | 2022-12-22 | Mitsui Chemicals, Inc. | Resin composition and molded article |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010092945A (en) * | 2008-10-03 | 2010-04-22 | Mitsui Chemicals Inc | Adhesive film for semiconductor wafer protection and method of protecting semiconductor wafer using the same |
WO2011055803A1 (en) * | 2009-11-06 | 2011-05-12 | 三井化学株式会社 | 4-METHYL-1-PENTENE/α-OLEFIN COPOLYMER, COMPOSITION COMPRISING THE COPOLYMER AND 4-METHYL-1-PENTENE COPOLYMER COMPOSITION |
JP2012082389A (en) * | 2010-09-13 | 2012-04-26 | Mitsui Chemicals Inc | Shock absorbing material, and shock absorbing member |
JP2013032005A (en) * | 2011-07-07 | 2013-02-14 | Mitsui Chemicals Inc | Surface protecting film |
WO2013099876A1 (en) * | 2011-12-27 | 2013-07-04 | 三井化学株式会社 | 4-methyl-1-pentene (co)polymer composition, and film and hollow molded body, each of which is formed from 4-methyl-1-pentene (co)polymer composition |
JP2013169685A (en) * | 2012-02-20 | 2013-09-02 | Mitsui Chemicals Inc | Surface protective film, and method of manufacturing semiconductor device using the same |
JP2014011181A (en) * | 2012-06-27 | 2014-01-20 | Mitsui Chemicals Inc | Film for capacitor, metallized film and film capacitor |
JP2014125496A (en) * | 2012-12-25 | 2014-07-07 | Mitsui Chemicals Inc | Thermoplastic resin composition and film of the same |
-
2014
- 2014-06-24 WO PCT/JP2014/066722 patent/WO2014208564A1/en active Application Filing
- 2014-06-24 JP JP2015524064A patent/JP5965070B2/en active Active
- 2014-06-26 TW TW103122113A patent/TWI642547B/en active
- 2014-06-26 TW TW107136626A patent/TWI682851B/en active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010092945A (en) * | 2008-10-03 | 2010-04-22 | Mitsui Chemicals Inc | Adhesive film for semiconductor wafer protection and method of protecting semiconductor wafer using the same |
WO2011055803A1 (en) * | 2009-11-06 | 2011-05-12 | 三井化学株式会社 | 4-METHYL-1-PENTENE/α-OLEFIN COPOLYMER, COMPOSITION COMPRISING THE COPOLYMER AND 4-METHYL-1-PENTENE COPOLYMER COMPOSITION |
JP2012082389A (en) * | 2010-09-13 | 2012-04-26 | Mitsui Chemicals Inc | Shock absorbing material, and shock absorbing member |
JP2013032005A (en) * | 2011-07-07 | 2013-02-14 | Mitsui Chemicals Inc | Surface protecting film |
WO2013099876A1 (en) * | 2011-12-27 | 2013-07-04 | 三井化学株式会社 | 4-methyl-1-pentene (co)polymer composition, and film and hollow molded body, each of which is formed from 4-methyl-1-pentene (co)polymer composition |
JP2013169685A (en) * | 2012-02-20 | 2013-09-02 | Mitsui Chemicals Inc | Surface protective film, and method of manufacturing semiconductor device using the same |
JP2014011181A (en) * | 2012-06-27 | 2014-01-20 | Mitsui Chemicals Inc | Film for capacitor, metallized film and film capacitor |
JP2014125496A (en) * | 2012-12-25 | 2014-07-07 | Mitsui Chemicals Inc | Thermoplastic resin composition and film of the same |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015189872A (en) * | 2014-03-28 | 2015-11-02 | 三井化学株式会社 | Resin composition, molded article, pipe and coiled pipe |
JP2016141132A (en) * | 2015-02-05 | 2016-08-08 | 三井化学株式会社 | Laminate, and application thereof |
WO2017164364A1 (en) | 2016-03-25 | 2017-09-28 | 三井化学株式会社 | Extensible and contractile structure body, multilayered extending and contracting sheet, spun yarn and fiber structure body |
CN108779308A (en) * | 2016-03-25 | 2018-11-09 | 三井化学株式会社 | Concertina construction body, multi-deck extension piece, textile yarn and fiber construct |
KR20200106092A (en) | 2016-03-25 | 2020-09-10 | 미쓰이 가가쿠 가부시키가이샤 | Extensible and contractile structure body, multilayered extending and contracting sheet, spun yarn and fiber structure body |
US11155063B2 (en) | 2016-03-25 | 2021-10-26 | Mitsui Chemicals, Inc. | Stretchable structure, multilayered stretchable sheet, spun yarn, and fiber structure |
WO2018181115A1 (en) * | 2017-03-30 | 2018-10-04 | ニチハ株式会社 | Construction material |
JP2018168642A (en) * | 2017-03-30 | 2018-11-01 | ニチハ株式会社 | Building material |
CN109790719A (en) * | 2017-03-30 | 2019-05-21 | 日吉华株式会社 | Building materials |
US10800139B2 (en) | 2017-03-30 | 2020-10-13 | Nichia Corporation | Building material |
CN109790719B (en) * | 2017-03-30 | 2022-10-14 | 日吉华株式会社 | Building material |
JP2019001139A (en) * | 2017-06-20 | 2019-01-10 | 三井化学株式会社 | Multilayer biaxially oriented film and transfer film |
Also Published As
Publication number | Publication date |
---|---|
JPWO2014208564A1 (en) | 2017-02-23 |
JP5965070B2 (en) | 2016-08-03 |
TW201902709A (en) | 2019-01-16 |
TW201505836A (en) | 2015-02-16 |
TWI642547B (en) | 2018-12-01 |
TWI682851B (en) | 2020-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5965070B2 (en) | Stress relaxation film and surface protection film for semiconductor | |
JP5965664B2 (en) | Surface protective film and method of manufacturing semiconductor device using the same | |
JP6542502B2 (en) | Expandable substrate film, dicing film, surface protection film for semiconductor, and method for manufacturing semiconductor device | |
KR101393878B1 (en) | Expandable film, dicing film, and method for producing semiconductor device | |
KR20140061397A (en) | Protective sheet for glass etching | |
EP2757575B1 (en) | Dicing sheet substrate film and dicing sheet | |
KR20170100543A (en) | Adhesive sheet for laser dicing and method for manufacturing semiconductor device | |
EP3125276A1 (en) | Base film for dicing sheet, dicing sheet including said base film, and process for producing said base film | |
WO2017170436A1 (en) | Adhesive sheet for semiconductor processing | |
JP5620310B2 (en) | Expandable adhesive film, semiconductor dicing film, and semiconductor device manufacturing method using the same | |
TWI654234B (en) | Adhesive sheet for semiconductor processing | |
JP2015214658A (en) | Expandable substrate film, expandable adhesive film, dicing film, production method of expandable substrate film and production method of semiconductor device | |
EP3159914B1 (en) | Dicing-sheet base film and dicing sheet | |
EP2985782A1 (en) | Dicing sheet substrate film, and dicing sheet provided with said substrate film | |
KR101283485B1 (en) | Pressure-sensitive adhesive tape for dicing semiconductor wafer | |
JP7252945B2 (en) | Self-adhesive film and electronic device manufacturing method | |
JP7049796B2 (en) | Adhesive film | |
KR20050035101A (en) | Pressure-sensitive adhesive tape for processing semiconductor and method of processing semiconductor | |
KR20190060785A (en) | Laser dicing assistance sheet | |
EP3147936A1 (en) | Dicing-sheet base film and dicing sheet | |
JP2011077235A (en) | Pressure-sensitive adhesive sheet for retaining element, and method of manufacturing element | |
JP7530176B2 (en) | Laminated Film and Laminate | |
EP3073515A1 (en) | Dicing-sheet base film and base-film manufacturing method | |
JP2018076517A (en) | Dicing film, surface protective film for semiconductor, and method of manufacturing semiconductor device | |
JP6913427B2 (en) | Auxiliary sheet for laser dicing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14818011 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015524064 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14818011 Country of ref document: EP Kind code of ref document: A1 |