[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014208087A1 - 複数の光源を有するモーションセンサ装置 - Google Patents

複数の光源を有するモーションセンサ装置 Download PDF

Info

Publication number
WO2014208087A1
WO2014208087A1 PCT/JP2014/003403 JP2014003403W WO2014208087A1 WO 2014208087 A1 WO2014208087 A1 WO 2014208087A1 JP 2014003403 W JP2014003403 W JP 2014003403W WO 2014208087 A1 WO2014208087 A1 WO 2014208087A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
light source
light
difference
mask
Prior art date
Application number
PCT/JP2014/003403
Other languages
English (en)
French (fr)
Inventor
渕上 竜司
裕史 杉澤
Original Assignee
パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ filed Critical パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Priority to CN201480002230.XA priority Critical patent/CN104685318B/zh
Priority to EP14818362.7A priority patent/EP3015819B1/en
Priority to JP2015501249A priority patent/JP6270808B2/ja
Priority to US14/423,608 priority patent/US9863767B2/en
Publication of WO2014208087A1 publication Critical patent/WO2014208087A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C11/00Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
    • G01C11/04Interpretation of pictures
    • G01C11/06Interpretation of pictures by comparison of two or more pictures of the same area
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/026Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring distance between sensor and object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C11/00Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
    • G01C11/02Picture taking arrangements specially adapted for photogrammetry or photographic surveying, e.g. controlling overlapping of pictures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C11/00Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
    • G01C11/04Interpretation of pictures
    • G01C11/06Interpretation of pictures by comparison of two or more pictures of the same area
    • G01C11/08Interpretation of pictures by comparison of two or more pictures of the same area the pictures not being supported in the same relative position as when they were taken
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/254Analysis of motion involving subtraction of images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/55Depth or shape recovery from multiple images
    • G06T7/586Depth or shape recovery from multiple images from multiple light sources, e.g. photometric stereo
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C11/00Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
    • G01C11/36Videogrammetry, i.e. electronic processing of video signals from a single source or from different sources to give parallax or range information
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10141Special mode during image acquisition
    • G06T2207/10152Varying illumination

Definitions

  • This application relates to a motion sensor device provided with a plurality of light sources.
  • Patent Document 1 measures the distance to an object based on a plurality of images acquired by one image sensor while projecting a time-division from a plurality of light sources onto a stationary or moving object (object). The technology is disclosed.
  • Patent Document 2 discloses a distance measuring device that eliminates the influence of background light. This distance measuring device acquires an image including only a background light component without causing the light source to emit light, and acquires an image for measurement while causing the light source to emit light. By subtracting the pixel value of the image including only the background light component from the pixel value of the measurement image, the influence of the background light can be removed.
  • Non-Patent Document 1 discloses a sensor device that can shoot a plurality of images without performing a read transfer and generating almost no time difference.
  • Non-Patent Document 2 discloses a method of simultaneously estimating the reflection characteristics, shape, and position of a light source of an object based on a plurality of images acquired by shooting with various positions of the light source.
  • the embodiment of the present disclosure provides a new motion sensor device that can solve this problem.
  • a motion sensor device controls an image sensor, first and second light sources, the image sensor, and the first and second light sources. And a configured control unit.
  • the controller performs imaging of the first frame with the image sensor while the first light source emits light at a first time, and the image sensor with the second light source emits light at a second time.
  • Mask processing based on the difference between the first image acquired by imaging the second frame and the second image acquired by imaging the second frame is performed on the first frame.
  • Objects executed in the first and second images, and included in the first and second images based on the first image after the mask processing and the second image after the mask processing Distance information is obtained.
  • a motion sensor device includes an image sensor, first and second light sources, and a control unit configured to control the image sensor and the first and second light sources.
  • the control unit performs imaging of the first frame with the image sensor while causing the first light source to emit light at a first time, and uses the second light source as the first light source at a second time.
  • a mask process based on the difference between the first image and the second image, and at least one of the first image after the mask process and the second image after the mask process is performed on the first and second images.
  • a luminance correction process according to a difference in light emission output of the second light source is executed, the luminance of the object obtained from the first image after the luminance correction process, and the second image after the luminance correction process Obtained from Based on the ratio of the luminance of elephant product is configured to obtain distance information to the object.
  • a motion sensor device includes an image sensor, first and second light sources, and a control unit configured to control the image sensor and the first and second light sources.
  • the controller performs imaging of the first frame with the image sensor while the first light source emits light at a first time, and the image sensor with the second light source emits light at a second time.
  • the second frame is imaged, difference data between the first image acquired by imaging the first frame and the second image acquired by imaging the second frame is generated, and the difference data In the data in the direction corresponding to the arrangement direction of the first and second light sources, the estimation object region included between the position where the difference becomes the maximum value and the position where the difference becomes the minimum value is determined.
  • a mask process based on a difference between the first image and the second image is performed on an area excluding the estimation object area in the first and second images, and the first after the mask process is performed. Paint If, on the basis of the said second image after masking, it is configured to obtain distance information to the object included in the first and second images.
  • a circuit according to another aspect of the present disclosure is a circuit used in a motion sensor device including an image sensor and first and second light sources, while causing the first light source to emit light in a first time.
  • First image acquired by imaging the first frame with the image sensor, and imaging the second frame with the image sensor while emitting the second light source at a second time.
  • a difference creation unit that obtains and outputs difference data from the second image acquired by the step S, and a maximum value search that determines whether or not the difference is equal to or greater than a first threshold in one horizontal line data in the difference data
  • a minimum value search unit that determines whether the difference is equal to or less than a second threshold value that is smaller than the first threshold value in the data of the one horizontal line in the difference data;
  • the maximum value search unit When receiving information indicating that the difference is greater than or equal to the first threshold from the mask creation unit that determines whether the absolute value of the difference data is less than or equal to a third threshold, and the maximum value search unit, When transitioning from the first operation state to the second operation state and receiving information indicating that the difference is equal to or less than the second threshold from the minimum value search unit, the second operation state When the control unit transitions to the first operation state, the mask information recording unit that stores the mask information of the background region based on the determination result of the mask creation unit, and the control unit is in the second operation state, A pairing information recording unit for
  • a recording medium stores the above-described circuit information to be executed by reconfigurable logic.
  • An image processing apparatus is an image used in a system including an image sensor, first and second light sources, and an image processing apparatus that processes a plurality of images output from the image sensor.
  • a processing apparatus comprising a processor, a memory, and a computer program stored in the memory. The computer program causes the processor to acquire the first image acquired by the image sensor while causing the first light source to emit light at a first time, and emits the second light source at a second time.
  • a second image captured by the image sensor is acquired, and a mask process based on a difference between the first image and the second image is performed on the first and second images, and Based on the first image after the masking process and the second image after the masking process, distance information to the object included in the first and second images is obtained.
  • the motion sensor device of the present disclosure it is possible to perform distance measurement while suppressing the influence of background light without imaging an extra image frame.
  • FIG. 1B is a top view of the apparatus of FIG. 1A.
  • FIG. It is a graph which shows the relationship between the radiation angle of a light source, and relative radiation intensity. It is a figure which shows the radiation angle of a light source. It is a figure which shows a mode that the target object is irradiated with the light radiated
  • FIG. It is a graph which shows the relationship between the pixel position of 1 line of imaging data, and a brightness
  • FIG. 8A shows an example of an image acquired when shooting is performed while the light source 103 is emitted in the example of FIG. 8
  • FIG. 8B is an image taken without emitting any light source in the example of FIG.
  • FIG. 9C shows a difference image obtained by subtracting the image shown in FIG. 9B from the image shown in FIG.
  • 3 is a timing chart of a light source and an image sensor in Embodiment 1.
  • It is a figure which shows the example of a motion sensor apparatus provided with the lens 901, the two image sensors 902 and 903, and the half mirror 904.
  • FIG. 3 is a flowchart illustrating an operation of a control unit 710 according to the first embodiment. It is a figure which shows typically the structure of the motion sensor apparatus in Embodiment 2 of this indication.
  • 10 is a flowchart illustrating an operation of a control unit 810 in the second embodiment.
  • 10 is a diagram for explaining mask processing in Embodiment 2.
  • FIG. (A) shows an example of a first image acquired by imaging a first image frame
  • (b) shows an example of a second image acquired by imaging a second image frame
  • (C) shows an example of the first image after the mask processing.
  • FIG. (A) shows an example of a first image acquired by imaging a first image frame
  • (b) shows an example of a second image acquired by imaging a second image frame
  • C shows an example of the first image after the mask processing.
  • It is a figure which shows the structural example of the motion sensor apparatus which has three light sources 702,703,704.
  • FIG. 10 is a diagram illustrating an example of a case where no luminance difference occurs in the configuration having three light sources according to the second embodiment.
  • (A) is a figure which shows the mask image produced
  • FIG. 6 is a circuit configuration diagram according to a fourth embodiment of the present disclosure. It is a figure which shows the display 1001 carrying the motion sensor apparatus which concerns on Embodiment 1.
  • FIG. 6 is a circuit configuration diagram according to a fourth
  • FIG. 1A is a diagram schematically showing a cross section of a motion sensor device.
  • FIG. 1B is a top view of FIG. 1A.
  • the apparatus shown in FIGS. 1A and 1B includes an image sensor 101 located at the center and two light source devices 102 and 103 located on both sides of the image sensor 101.
  • the image sensor 101 and the light source devices 102 and 103 are mounted on one substrate 100.
  • the image sensor 101 is a solid-state imaging device in which a large number of fine light detection cells (photodiodes) are arranged in rows and columns.
  • the image sensor 101 is typically a CCD (Charge Coupled Device) type or a CMOS type.
  • the light source device may be simply referred to as “light source”.
  • FIG. 1A schematically shows light 102 a emitted from the first light source 102 and light 103 a emitted from the second light source 103.
  • This apparatus can measure the distance to the measurement target object (target object) by performing imaging while alternately turning on the light sources 102 and 103.
  • the “distance measurement” includes obtaining an estimated value of the distance from the image sensor to the object or an estimated value of the position of the object in the space.
  • the object may include, for example, a person's hand, a finger, a pen held by the person, and the like. The object may move.
  • a three-dimensional motion sensor device capable of acquiring a distance to a fingertip of a person who is moving at high speed or an estimated value of the position of the fingertip in real time includes a computer, a tablet terminal, a smartphone, a game device, and a home appliance It can be used as an “input device” for various electronic devices.
  • FIG. 2 is a graph showing a radiation pattern (light distribution characteristic) of light emitted from each of the light sources 102 and 103.
  • the horizontal axis of the graph is an angle ⁇ that the direction of radiation forms with respect to the normal direction N of the substrate 100 as shown in FIG.
  • the vertical axis of the graph is the relative radiation intensity.
  • the radiation angle ⁇ may be referred to as a “radiation angle”.
  • the value of the relative radiant intensity corresponds to the illuminance (irradiance) of an object placed at a position away from the light source in the direction of a specific angle.
  • the radiation emitted from each of the light sources 102, 103 exhibits the highest intensity when the angle ⁇ is 0 °.
  • the light sources 102 and 103 have such light distribution characteristics that the radiation intensity can be approximated by I 0 ⁇ cos ⁇ .
  • the light distribution characteristics of the light sources 102 and 103 are not limited to the example of FIG.
  • the radiation emitted from the light sources 102 and 103 is not limited to visible light, but may be electromagnetic waves in a wavelength region that cannot be felt by human vision such as infrared rays. In this specification, for the sake of simplicity, radiation emitted from a light source may be simply referred to as “light”.
  • the term “light” is not limited to visible light, but widely includes electromagnetic waves that can be detected by an image sensor.
  • FIG. 4A shows a state where the object 104 is irradiated with the light emitted from the first light source 102 and a part of the light reflected by the object 104 is incident on the image sensor 101.
  • FIG. 4B shows a state in which the object 104 is irradiated with the light emitted from the second light source 103 and a part of the light reflected by the object 104 enters the image sensor 101. Assume that the position of the object 104 is substantially the same in FIGS. 4A and 4B.
  • the first imaging by the image sensor 101 is performed with the light source 102 turned on and the light source 103 turned off at the first time.
  • the second image pickup by the image sensor 101 is performed with the light source 103 turned on and the light source 102 turned off. It is assumed that each period (exposure time) of the first and second imaging is sufficiently short enough to handle the object 104 as substantially stopped.
  • the first imaging When the first imaging is performed, a part of the light emitted from the light source 102 is reflected by the object 104 and enters the image sensor 101, so that a luminance image corresponding to the intensity of the light incident on the image sensor 101 is obtained. .
  • the second imaging since a part of the light emitted from the light source 103 is reflected by the object 104 and enters the image sensor 101, the luminance corresponding to the intensity of the light incident on the image sensor 101 is obtained. An image is obtained.
  • the luminance (luminance distribution or luminance image) of the object 104 can be obtained.
  • luminance in this specification is not a psychophysical quantity having a unit of [candela / m 2 ] but “relative luminance” determined for each pixel of the image sensor.
  • Luminance in this specification corresponds to the amount of light or the amount of radiation. Each pixel constituting the image of each frame has a “luminance value” corresponding to the amount of received light.
  • the image of the object 104 in each image is usually composed of a plurality of pixels.
  • the “luminance” of the object 104 can be determined by various methods from the luminance values of a plurality of pixels constituting the image of the object 104.
  • the brightness of the brightest “pixel” or “pixel block” can be set as the brightness of the object 104, and the average brightness of all the pixels constituting the image of the object 104 can be obtained.
  • the brightness of the object 104 can also be used.
  • FIG. 5 is a graph showing the luminance value of one horizontal line that crosses the image of the object 104 in each of the two-frame images acquired by the above method.
  • the horizontal axis is the pixel position on a specific horizontal line in the image
  • the vertical axis is the relative luminance.
  • a curve 301 in the graph is a luminance when the light source 102 is turned on
  • a curve 302 is a luminance when the light source 103 is turned on.
  • “horizontal line” means a horizontal line of the image.
  • the arrangement direction of the light sources 102 and 103 corresponds to the horizontal direction of the image acquired by the image sensor 101. For this reason, the distribution of relative luminance on the horizontal line where the object in the image exists is considered.
  • the arrangement direction of the light sources 102 and 103 corresponds to a direction different from the horizontal direction of the image, the distribution of relative luminance in the corresponding direction may be considered.
  • each of the curve 301 and the curve 302 has a unimodal peak. That is, the curve 301 shows an extreme value 303 at a certain pixel position, and the curve 302 shows an extreme value 304 at another pixel position.
  • the object 104 is substantially stationary between the two frames. Therefore, the difference between the curve 301 and the curve 302 is due to the difference between the radiation pattern produced by the light source 102 and the radiation pattern produced by the light source 103.
  • Light emitted from the light source 102 is reflected by the object 104 and incident on the image sensor 101 to obtain the brightness of the image
  • light emitted from the light source 103 is reflected by the object 104 and incident on the image sensor 101.
  • the ratio with the brightness of the acquired image depends on the relationship between the distance from the light source 102 to the object 104 and the distance from the light source 103 to the object 104.
  • FIG. 6 is a graph showing an example of the relationship between the distance and the luminance ratio in the direction of an angle of 45 degrees from the normal of the imaging surface of the image sensor 101.
  • the horizontal axis of the graph of FIG. 6 indicates the relative distance to the object when the light source having the characteristics of FIG. 2 is arranged at a predetermined distance from the image sensor 101 on the left and right.
  • the vertical axis represents the luminance ratio.
  • the “distance” on the horizontal axis is based on the distance between the image sensor 101 and the light source.
  • the distance “1” means a size equal to the distance between the image sensor 101 and the light source.
  • Luminance (or illuminance) of the object attenuates in inverse proportion to the square of the distance from the light source to the object. For this reason, the ratio of luminance changes according to the distance. Since the radiation characteristic shown in FIG. 2 is known, it is possible to detect or estimate the distance with high accuracy based on this radiation characteristic.
  • FIG. 6 shows an example of the relationship between the distance and the luminance ratio when the radiation angle ⁇ is 45 degrees, but the relationship between the distance and the luminance ratio can be obtained in advance in the same manner for a plurality of different angles.
  • the angle of the object can be obtained based on the imaging position of the object acquired by the image sensor.
  • the distance between the object and the image sensor is approximately greater than 1, the distance can be measured from the ratio between the extreme value 303 and the extreme value 304.
  • the simplest method is a method in which the ratio between the luminance maximum value 303 and the other maximum value 304 shown in FIG. Even if the coordinates of the extreme value 303 and the coordinates of the extreme value 304 do not necessarily coincide with each other, if the material of the object is substantially uniform in the target region and the local distance difference is ignored as a minute one, the distance calculation The ratio of these extreme values 303 and 304 can be used as the luminance ratio.
  • a ratio of values obtained by integrating luminance values in the region of the object on the image may be used as the luminance ratio.
  • Non-Patent Document 2 when taking into account the difference in the local material of the subject, for example, a technique such as an illuminance difference stereo method disclosed in Non-Patent Document 2 can also be used. Although the amount of calculation in the illuminance difference stereo method is large, the increase in the amount of calculation can be suppressed by assuming that the amount of light in the local region is unchanged or assuming that the object is a continuum. . It is also possible to compress the amount of calculation by approximating the target shape of the motion sensor device as a shape represented by a specific equation, for example.
  • a light source whose relative radiation intensity changes according to the radiation angle is used.
  • this measurement method can be used even with a light source that does not have such characteristics.
  • the light intensity exhibits some light distribution characteristics in the three-dimensional space, and such light sources can also be used for distance measurement.
  • a “point light source” in which light distribution is isotropic the illuminance and luminance on the object attenuate in inverse proportion to the square of the distance from the light source, and therefore, a light source having a radiation pattern that is three-dimensionally spatially different It can be said.
  • FIG. 7A and FIG. 7B show a state where imaging is performed on the object 104 moved from the position shown in FIGS. 4A and 4B. If high-speed imaging and distance estimation can be performed, it is possible to measure the distance of the moving object 104 by the method described above.
  • the position of the moving object 104 can be detected by repeating alternate illumination with the light sources 102 and 103 and imaging with the image sensor 101. As a result, it is possible to detect a change in the position or movement of the object 104.
  • the monocular motion sensor device using the luminance ratio of the object in the two images as described above has a problem that the measurement accuracy is lowered due to the influence of the background light by the light source outside the device.
  • FIG. 8 is a diagram showing a situation in which the monocular motion sensor device is placed in a place with external light and a human hand is held within the measurement range.
  • FIG. 8 shows an index finger 506, a middle finger 507, and a ring finger 508 in a human hand as measurement objects.
  • Light incident on the image sensor 101 includes reflected light 509 from the light source 102 or 103, external direct light 510 from the external light source 505, external primary reflected light 511 from the external light source 505, and external light from the external light source 505. Secondary reflected light 512.
  • External direct light 510, external primary reflected light 511, and external secondary reflected light 512 are light derived from light sources 505 other than the light sources 102 and 103, and are referred to as “background light”. In the signal output from the image sensor 101, a component due to background light becomes measurement noise.
  • Patent Document 2 As a technique for removing such background light, there is a technique disclosed in Patent Document 2, for example.
  • an image including only the background light component is acquired in a state where light emission from the light source is not performed, separately from the measurement image acquired by causing the light source to emit light.
  • the background light component By subtracting the luminance value of the image including only the background light component from the luminance value of the measurement image, the background light component can be removed.
  • FIG. 9 is a diagram for explaining the effect of the background light removal.
  • FIG. 9A shows an example of an image acquired when shooting is performed while the light source 103 emits light in the example of FIG.
  • This image includes an image 601 of a hand as a subject and an image 602 of a ceiling fluorescent lamp illumination as an external light source.
  • FIG. 9 shows an example of an image acquired when shooting is performed without causing any light source to emit light in the example of FIG.
  • This image also includes an image 611 of the hand that is the subject and an image 612 of the fluorescent lamp illumination of the ceiling that is the external light source.
  • the luminance of the hand image 611 located near the image sensor is lower than the luminance in FIG.
  • FIG. 9 (c) shows a difference image obtained by subtracting the image shown in FIG. 9 (b) from the image shown in FIG. 9 (a).
  • subtracting another image from a certain image means generating a new image by subtracting the luminance value of the corresponding pixel of the other image from the luminance value of each pixel of the certain image.
  • the difference image shown in FIG. 9C the image 602 of the external light source is removed.
  • External light source images 602 and 612 are light images corresponding to the external direct light 510 shown in FIG. This image is photographed with substantially the same brightness as long as the photographing conditions such as the exposure time are the same. Therefore, in the difference image shown in FIG. 9C, the image 602 of the external light source has disappeared due to the difference calculation.
  • the subject image 601 in FIG. 9A mainly includes a component of the reflected light 509 from the light source 103. In addition to this, some components of the external primary reflected light 511 and the external secondary reflected light 512 from the external light source 505 are also included.
  • the subject image 611 in FIG. 9B includes only the components of the external primary reflected light 511 and the external secondary reflected light 512. Therefore, the subject image 621 in the difference image shown in FIG. 9C includes only the component of the reflected light 509 from the light source 103. That is, this difference image is an image equivalent to an image acquired in an environment where the external light source 505 does not exist.
  • the inventor of the present application has found the above-described problem and completed the technique of the present disclosure. According to the embodiment of the present disclosure, it is not necessary to take an extra image with the light source turned off in order to obtain the background light image. Therefore, the background light can be removed from the image without increasing the cost of the apparatus or lowering the specifications.
  • the intensity of the external primary reflected light 511 and the external secondary reflected light 512 shown in FIG. 8 is sufficiently smaller than the intensity of the light 509 from the light sources 102 and 103.
  • the reason is that the light emission of the light sources 102 and 103 is sufficiently strong in a short time, and even the reflected light 509 after being diffusely reflected by the object has an intensity equivalent to the external direct light 510.
  • the intensity of the external primary reflected light 511 that has undergone primary diffuse reflection and the intensity of the external secondary reflected light 512 that has undergone secondary diffuse reflection are compared with the intensity of the reflected light 509 from the light sources 102 and 103 and the external direct light 510. And weak enough.
  • the external primary reflected light 511 has a lower number of reflections than the external secondary reflected light 512, but has a lower intensity than the external secondary reflected light 512. This is because the light is incident on the object at a shallow angle and reflected from the arrangement relationship between the external light source and the object. Considering the diffuse reflection pattern generally known by Lambert's cosine law, the intensity of light reflected at such a shallow angle becomes very weak.
  • the motion sensor device does not completely remove the background light component as in Patent Document 2, but removes only the direct light component from the external light source.
  • the background light component can be removed without causing an increase in cost or a decrease in specifications.
  • FIG. 10 is a diagram schematically illustrating a configuration of a motion sensor device including an image sensor 701, two light sources (a first light source 702 and a second light source 703), and a control unit 710 that controls them. is there.
  • the image sensor 701 and the light sources 702 and 703 are mounted on the substrate 700.
  • an external light source 706 and an object 705 are also drawn.
  • the external light source 706 is the sun.
  • the external light source 706 may be another light source such as a fluorescent lamp.
  • control unit 710 removes the background light component from the two acquired images, and converts the background light component into two images. Based on the distance calculation processing.
  • the control unit 710 includes a difference creation unit 711, a mask processing unit 712, and a distance calculation unit 713 as functional blocks for executing these processes.
  • Part or all of the control unit 701 may be mounted on the substrate 700 or may be mounted on another substrate.
  • a part of the function of the control unit 710 may be realized by an electronic device placed at a distant position.
  • FIG. 11 is a time chart showing the control timing of the light source and the image sensor in this motion sensor device.
  • Periods 802 and 803 shown in FIG. 11 correspond to periods in which the light sources 702 and 703 are turned on, respectively.
  • the first exposure period 805 and the second exposure period 806 correspond to imaging of the first frame and the second frame by the image sensor 701, respectively.
  • the light sources 702 and 703 are lit in this order, but the lighting order is arbitrary.
  • a normal image sensor captures one frame by one exposure, reads the obtained image data to the outside, and then captures the next frame. That is, an image data read operation is executed for each frame.
  • an image sensor after the exposure in the nth frame (n is an integer) is finished, the entire charge obtained by the imaging of the nth frame is started before the exposure of the (n + 1) th frame is started. It takes time for the operation to transfer and output to the outside.
  • the second exposure period 806 starts immediately after the first exposure period 805.
  • the charge of each pixel generated by imaging the first frame in the first exposure period 805 is transferred to the storage unit before the second exposure period 806 starts and accumulated in the storage unit. After that, the charge accumulated in the storage unit and the charge signal generated in the second exposure period 806 are read out during the period Tt and output to the outside.
  • each length of the first to second exposure periods is “Te”
  • Frame image data is read out.
  • the time Tt depends on the number of pixels, but can be set to a size of, for example, about 20 milliseconds in consideration of the data transfer rate.
  • the time Te can be set to a short period of 1 millisecond or less, for example, 25 microseconds. If imaging of two frames is continuously performed within a short period, distance measurement can be performed even when the object moves at high speed like a human fingertip. For example, when 2 ⁇ Te is 50 microseconds, even if the object moves at a speed of 1 meter / second, the object to be moved moves only 0.050 mm during the first and second imaging.
  • the object moves as much as 50 millimeters. Even if high-speed shooting at 1000 frames / second is performed, the object moves as much as 3 millimeters.
  • the period from the start time of the first frame to the end time of the second frame can be shortened to, for example, 2 milliseconds or less, it is practical for various applications as a motion sensor device.
  • the distance to the target can be calculated based on the two images acquired by imaging the first and second frames.
  • the luminance of a frame shot under sufficiently strong light emission conditions in a sufficiently short time is substantially proportional to the intensity of reflected light.
  • first luminance the luminance of the object captured in the first frame
  • second luminance the luminance of the object captured in the second frame
  • Each brightness is determined according to an angle and a distance determined by the positional relationship between the object and each light source. As described above, the distance of the object can be estimated from the ratio of these luminances.
  • the motion sensor device illustrated in FIG. 12 includes a lens 901, two image sensors 902 and 903, and a half mirror 904.
  • the image sensors 902 and 903 are image sensors that can perform normal one-frame exposure.
  • the half mirror 904 transmits about 50% of incident light and reflects about 50%. Even with such a configuration, continuous exposure of a plurality of frames is possible.
  • the light sources 702 and 703 are configured to emit light having the same intensity.
  • the light sources 702 and 703 are not limited to visible light, and those that emit invisible light such as near infrared light may be used.
  • the light sources 702 and 703 are, for example, LED light sources, but are not limited thereto. Any light source can be used as long as the light source has a three-dimensional intensity distribution bias such as a point light source.
  • a laser light source can also be used. Since the laser light source emits parallel light, the light intensity does not change three-dimensionally, but it can be used by converting it into scattered light in combination with a diffusion plate.
  • a plurality of light emitting devices may be combined to form one light source device.
  • the image sensor 701 has a storage unit that temporarily accumulates charges in units of pixels. Therefore, the imaging of the (n + 1) th frame can be performed without waiting for the reading of the image data obtained by the imaging of the nth frame. If the storage unit in the image sensor 701 is increased, continuous exposure of three frames or more is possible.
  • the image sensor 701 may be a special sensor that can separately expose even / odd lines.
  • the image sensor 701 is typically a CMOS image sensor or a CCD image sensor, but is not limited thereto.
  • the control unit 710 can be configured by a CPU or other semiconductor integrated circuit, or a combination thereof.
  • the control unit 710 captures the first frame with the image sensor 701 while causing the first light source 702 to emit light at the first time, and uses the image sensor 701 while causing the second light source 703 to emit light at the second time.
  • the image sensor 701 and the light sources 702 and 703 are controlled so as to capture the second frame.
  • the control unit 710 further performs a mask process based on a difference between the first image acquired by capturing the first frame and the second image acquired by capturing the second frame on the first and second frames. Run on the image. Then, distance information to the object 705 is generated based on the first and second images after the mask processing.
  • an area where the difference (absolute value) between the luminance value of the pixel in the first image and the luminance value of the pixel in the second image corresponding to the pixel is smaller than the threshold value is This is a process of removing from the first and second images.
  • “removing” a certain region from a certain image means changing the luminance value of the region to a value closer to zero.
  • the luminance value of the pixel in the area to be removed is typically changed to 0, but may be changed to another value close to 0.
  • the control unit 710 includes a difference creating unit 711 that generates a difference image between two images, a mask processing unit 712 that executes mask processing, and first and And a distance calculation unit 713 that generates distance information to the object 705 based on the second image.
  • These functional blocks may be realized by a part of a circuit constituting the control unit 710 or a CPU that executes a computer program that defines the processing of the present embodiment.
  • FIG. 13 is a flowchart showing the operation of the control unit 710.
  • control unit 710 acquires a first image by capturing a first image frame while causing the light source 702 to emit light during the first exposure period of the image sensor 701 (step S101). Subsequently, in the second exposure period of the image sensor 701, a second image is acquired by capturing the second image frame while causing the light source 703 to emit light (step S102).
  • the image of the external light source 706 has a similar luminance level.
  • the image of the subject 705 has higher brightness in the second image acquired in a state where the light source 703 having a physical distance from the subject 705 is near.
  • the first image frame and the second image frame are read out and transferred after the exposure is completed, and sent to the difference creating unit 711 and the mask processing unit 712. At this time, if the readout control is performed so that the corresponding pixels in the first image frame and the second image frame are read out at close timing, the storage units such as the frame memory can be reduced in each subsequent processing unit.
  • the difference creating unit 711 generates difference data between the first image and the second image (step S103). More specifically, the absolute value of the difference between the luminance value of each pixel in the first image and the luminance value of the pixel in the second image corresponding to the pixel is calculated, and the result is calculated as pixel position information. Generate the associated difference data. The difference creation unit 711 sends the difference data to the mask processing unit 712.
  • the mask processing unit 712 generates mask information for distinguishing between a region where the difference exceeds a predetermined threshold and a region where the difference does not exceed based on the difference data sent from the difference creating unit 711 (step S104).
  • the mask information can be, for example, information in which the position of a pixel and a numerical value (for example, 0 or 1) indicating whether or not the difference in luminance value of the pixel exceeds a threshold value.
  • the data format of the mask information is not limited to a specific one.
  • the mask information may be information for each region including a plurality of adjacent pixels, not for each pixel. For example, it may be information indicating whether or not the average value of luminance value differences exceeds a threshold for each pixel block composed of a plurality of pixels.
  • the mask processing unit 712 performs mask processing on the first and second images based on the generated mask information (step S105).
  • the mask processing unit 712 replaces the luminance value of the corresponding pixel in the first and second images with a low value such as 0 in order to ignore the luminance value of the region where the difference does not exceed the threshold value.
  • such processing is referred to as “mask processing”.
  • the mask processing unit 712 sends the first and second images after the mask processing to the distance calculation unit 713 as a first masked image and a second masked image, respectively.
  • the distance calculation unit 713 calculates the distance to the object based on the sent first masked image and second masked image (step S106). Specifically, a region where the image of the object exists is searched from the first and second masked images, and the luminance ratio in the region is converted into distance information and output as 3D motion information. Data for converting the luminance ratio into distance information is recorded in advance in a recording medium such as a memory (not shown). The data can be in the form of a table or function.
  • the target area of motion sensing is limited to an area where a luminance difference due to light emitted from the two light sources 702 and 703 is generated, a good motion sensor with reduced influence of background light can be realized.
  • the first light source 702 and the second light source 703 are arranged at the same distance from the image sensor 701.
  • the present invention is not limited to this arrangement.
  • the second light source 703 may be disposed at a position closer to the image sensor 701 than the first light source 702.
  • the image sensor 701, the first light source 702, and the second light source 703 do not have to be arranged in a straight line, and some of them may be arranged at positions shifted from the straight line.
  • the light sources 702 and 703 may be disposed asymmetrically with respect to the image sensor 701.
  • the light emission outputs of the two light sources 702 and 703 do not have to be the same and may be different.
  • the difference in luminance of reflected light from a plurality of light sources does not increase sufficiently, so that the luminance difference cannot be detected by noise components such as light shot noise and noise due to dark current. there is a possibility. As a result, there is a problem that sufficient mask separation processing cannot be performed.
  • this problem is solved by changing the light emission outputs of the two light sources and amplifying the luminance level of the image acquired while the low output light source emits light.
  • FIG. 14 is a diagram showing a schematic configuration of the motion sensor device according to the present embodiment. 14, the same components as those in FIG. 10 are denoted by the same reference numerals, and the description thereof is omitted.
  • the control unit 810 in the present embodiment includes an amplification unit 814 that amplifies the luminance level of the second image after mask processing.
  • FIG. 15 is a flowchart illustrating an operation performed by the control unit 810 in the present embodiment.
  • the control unit 810 acquires a first image by capturing a first image frame while causing the light source 702 to emit light at the first exposure timing of the image sensor 701 (step S201).
  • the second image frame is captured while the light source 702 emits light to acquire a second image (step S202).
  • the light emission output of the light source 703 is set lower than the light emission output of the light source 702.
  • light emission output means the total amount of light emission energy during one exposure time of the image sensor 701.
  • the light emission output can also be referred to as “light emission amount”.
  • a low light emission output can be realized, for example, by shortening the light emission period during the exposure time or changing to a light emitting device having a low light emission power (wattage).
  • the image of the external light source 706 is taken at the same luminance level.
  • the image of the object 705 is captured with lower brightness in the second image frame due to the output difference between the light sources 702 and 703. As a result, a difference occurs in the brightness of the image of the object 705 between the first image frame and the second image frame.
  • the first image frame and the second image frame are read out and transferred after completion of exposure, and sent to the difference creating unit 711 and the mask processing unit 712.
  • FIG. 16 is a diagram for explaining mask processing in the present embodiment.
  • FIG. 16A shows an example of a first image acquired by imaging the first image frame.
  • FIG. 16B shows an example of the second image acquired by capturing the second image frame.
  • FIG. 16C shows an example of the first image after the mask process.
  • the object images 1001 and 1011 in FIGS. 16A and 16B are images of human hands.
  • the object 705 in FIG. 14 corresponds to the tip of the middle finger of this hand.
  • An image 1011 of an object photographed using a light source 703 having a relatively low output is photographed with a brightness smaller than that of the image 1001.
  • Images 1002 and 1012 in FIGS. 16A and 16B are images of two straight tube fluorescent lamps. Images 1002 and 1012 correspond to the external light source 706 in FIG.
  • the luminance levels of the images 1002 and 1012 are similar.
  • the difference creating unit 711 generates difference data between the first image and the second image (step S203).
  • the difference data is sent to the mask processing unit 712.
  • the mask processing unit 712 generates mask information based on the difference data sent from the difference creating unit 711 (step S204).
  • FIG. 16C is a diagram showing the mask information as an image. A region where the difference exceeds a predetermined threshold is white, and a region where the difference does not exceed the threshold is black.
  • the mask processing unit 712 performs mask processing on the first image and the second image using mask information (step S205). That is, the luminance value of the corresponding pixel is replaced with a low value such as zero in order to ignore the luminance of the region determined to have no difference.
  • the mask processing unit 712 sends the first image after the mask processing to the distance calculation unit 713 as the first masked image. On the other hand, the second image after mask processing is sent to the amplifying unit 814 as a second masked image.
  • the amplifying unit 814 amplifies the luminance level of the second masked image according to the output ratio between the light source 702 and the light source 703 (step S206).
  • a process of correcting the luminance in accordance with the difference (including the ratio) of the light emission outputs of the two light sources as in the amplification process is referred to as “brightness correction process”.
  • the amplification unit 814 sends the second image after the luminance correction processing to the distance calculation unit 713.
  • the distance calculation unit 713 can obtain two images equivalent to the case where the light source 702 and the light source 703 emit light with the same output.
  • the distance calculation unit 713 calculates the distance to the object based on the first image after the mask process and the second image after the brightness correction process (step S207).
  • the luminance level of the second image is amplified by the amplifying unit 814.
  • the luminance level of the first image is lowered or the luminance levels of both the first and second images are reduced.
  • the same effect can be obtained by adjusting the. That is, the same effect as that of the present embodiment can be obtained by executing the brightness correction processing corresponding to the difference in the light emission outputs of the first and second light sources on at least one of the first and second images after the mask processing. Obtainable.
  • distance information may be obtained using other methods as long as the same effect as that obtained by performing the luminance correction processing can be obtained.
  • an equivalent result can be obtained by correcting a table or a function for converting the distance from the luminance ratio according to the output ratios of a plurality of light sources.
  • a motion sensor device having two light sources has been described for the sake of simplicity.
  • a configuration having three light sources as shown in FIG. 17 is particularly effective.
  • FIG. 17 is a diagram illustrating a configuration example of a motion sensor device having three light sources 702, 703, and 704.
  • the image sensor 701, the first light source 702, and the second light source 703 are the same as those shown in FIG.
  • the third light source 704 emits light with a light emission output comparable to that of the first light source 702.
  • the second light source 703 is disposed at a position closer to the image sensor 701 than the first light source 701 and the third light source 704.
  • the light sources 702, 703, and 704 are disposed asymmetrically with respect to the image sensor 701.
  • the control unit 810 shown in FIG. 14 is actually connected to the image sensor 701 and the light sources 702, 703, and 704.
  • the control unit 810 uses the second image frame acquired while causing the second light source 703 to emit light and the third image frame acquired while causing the third light source 704 to emit light, as described above. Processing similar to the processing can be performed. That is, after the first and second frames are imaged, the control unit 810 captures the third frame with the image sensor 701 while causing the third light source 704 to emit light during the third exposure time. Then, a mask process based on the difference between the second image acquired by imaging the second frame and the third image acquired by imaging the third frame is executed for the second and third images. Further, a luminance correction process corresponding to the difference between the light emission outputs of the second and third light sources is performed on at least one of the second and third images after the mask process. Thereby, distance information to the object can be generated based on the brightness ratio of the object obtained from the second and third images after the brightness correction process.
  • the luminance derived from the second light source 703 is relatively strong.
  • the distance is uniquely calculated by using the luminance ratio between the light from the second light source 703 and the light from the third light source 704. Suitable for above. In this case, the luminance derived from the light source 703 is relatively strong.
  • the second embodiment it is possible to mask the background light region in a region where it is difficult to produce a luminance difference from a plurality of light sources, such as far away.
  • a luminance difference decreases depending on the distance or angle at a short distance.
  • the present embodiment solves this problem.
  • FIG. 18 is a diagram illustrating an example of a case where no luminance difference occurs in the configuration having the three light sources according to the second embodiment.
  • the light source 703 emits light at a lower output than the light sources 702 and 704.
  • the intensity of light from the light source 703 is lower than the intensity of light from the light sources 702 and 704, but the object 705 is physically close to the light source 703.
  • the luminance is similar in the three images.
  • the luminance ratio in two images selected from these three images becomes close to 0, and cannot be distinguished from the luminance by the external light source.
  • FIG. 19A is a diagram illustrating a mask image generated when an image of a hand at a short distance is actually processed using the apparatus of the second embodiment. It can be seen that the central portion of the finger, which is the original object, is masked unnecessarily. At this time, the problem is that one finger is originally recognized as a separate object, that is, as if there are two fingers, because the region is divided.
  • a large difference in the intensity of reflected light from the light source depending on the positional relationship is limited to the case where the object is relatively close to the image sensor 701 and the light sources 702 to 704.
  • Such an object at a short distance has a characteristic that a luminance difference due to the light source is greatly generated in the region of the image of the imaged object.
  • FIG. 20 is a graph showing the luminance of a specific horizontal line in an image acquired when a finger at a short distance of the motion sensor device shown in FIG. 18 is photographed.
  • the luminance 1201 in the image shot when the light source 703 emits light the luminance 1202 in the image shot when the light source 704 emits light
  • the difference 1203 between the luminance 1201 and the luminance 1202 are shown. Is shown.
  • a region 1204 in the figure is a region where an object is located
  • a region 1205 is a region where an external light source is located.
  • the luminance difference 1203 takes a positive value and an area where the luminance difference 1203 takes a negative value. At the boundary between these areas, the luminance level is zero. In the vicinity of this point, the object and the external light source cannot be distinguished. In particular, in an object having a shape with many flat portions, a region where the luminance level is close to 0 appears widely, and the determination is further difficult.
  • the control unit has a region that takes a positive value that is greater than or equal to a predetermined value including a position that takes a maximum value, and another predetermined value that appears on the right side and includes a position that takes a minimum value. Pair with the following negative region. And between the paired area
  • an area estimated as an object area in this manner is referred to as an “estimated object area”.
  • FIG. 19B shows a mask image when such processing is applied. It can be seen that splitting of the same finger is avoided. Although some incomplete parts can be seen as the outline information, there is no problem in dividing the area by a unit such as a finger as an actual action. Since the main area for calculating the luminance ratio of each area can be secured without any problem, it has been confirmed that the recognition operation as a motion sensor can be performed without any problem.
  • FIG. 21 is a diagram illustrating a configuration of the motion sensor device according to the present embodiment.
  • a configuration having two light sources 702 and 703 is adopted, but as described above, expansion to three light sources is also possible.
  • the same components as those in FIG. 14 are denoted by the same reference numerals, and description thereof is omitted.
  • the control unit 910 in the present embodiment further includes a maximum value search unit 1401, a minimum value search unit 1402, a pairing unit 1403, and a mask subtraction unit 1404.
  • FIG. 22 is a flowchart showing the operation of the control unit 910 in the present embodiment.
  • the control unit 910 acquires the first image by capturing the first image frame while causing the light source 702 to emit light at the first exposure timing of the image sensor 701 (step S301).
  • the second image frame is captured while the light source 703 emits light to acquire a second image (step S302).
  • the light emission output of the light source 703 is set lower than the light emission output of the light source 702.
  • a low light emission output can be realized, for example, by shortening the light emission period during the exposure time or changing to a light emitting device having a low light emission power (wattage).
  • the image of the external light source 706 is taken at the same luminance level.
  • the image of the object 705 is captured with lower brightness in the second image frame due to the output difference between the light sources 702 and 703. As a result, a difference occurs in the brightness of the image of the object 705 between the first image frame and the second image frame.
  • the first image frame and the second image frame are read out and transferred after completion of exposure, and sent to the difference creating unit 711 and the mask processing unit 712.
  • the difference creating unit 711 generates difference data between the first image and the second image (step S303).
  • the difference data is sent to the local maximum searching unit 1401, the local minimum searching unit 1402, and the mask processing unit 712.
  • the local maximum search unit 1401 extracts a region equal to or greater than the first value including the position where the local maximum value is obtained from the difference data, and outputs the coordinate information of that region to the pairing unit 1403 as local maximum coordinate information (step S304). ).
  • the minimum value search unit 1402 extracts a region equal to or smaller than the second value including the position where the minimum value is obtained from the difference data, and outputs the coordinate information of the region to the pairing unit 1403 as the minimum value coordinate information (step S305).
  • the first value may be a positive value close to 0, and the second value may be a negative value close to 0.
  • the pairing unit 1403 determines a region that is not to be masked from the region including the extracted maximum value and the region including the minimum value (step S306). Specifically, the coordinates to be paired are determined from the coordinates included in the local maximum coordinate information and the coordinates included in the local minimum coordinate information, and the coordinate information of the estimated object area between these coordinates is subtracted from the mask. To the unit 1404. At this time, local maximum coordinate information and local minimum coordinate information for which no corresponding pair exists are discarded.
  • the mask subtracting unit 1404 generates mask information based on the difference data sent from the difference creating unit 711 and the coordinate information indicating the non-mask target area sent from the pairing unit 1403 (step S307). More specifically, mask information excluding a region corresponding to a region that is not a mask target among regions having a value smaller than a predetermined threshold in the difference data is generated and sent to the mask processing unit 712.
  • the mask processing unit 712 performs mask processing on the first and second images using the mask information sent from the mask subtracting unit 1404 (step S308). That is, the luminance value of the corresponding pixel is replaced with a low value such as zero in order to ignore the luminance of the region determined to have no difference.
  • the mask processing unit 712 sends the first image after the mask processing to the distance calculation unit 713 as the first masked image.
  • the second image after mask processing is sent to the amplifying unit 814 as a second masked image.
  • the amplification unit 814 amplifies the luminance level of the second masked image according to the output ratio of the light source 702 and the light source 703 (step S309).
  • the amplification unit 814 sends the second image after the luminance correction processing to the distance calculation unit 713.
  • the distance calculation unit 713 calculates the distance to the object based on the first image after the mask process and the second image after the brightness correction process (step S310).
  • the brightness difference of the reflected light from the distant object can be increased, and the erroneous detection caused by the area where the brightness difference does not occur when the object is in the vicinity of the motion sensor device can be remedied. Is possible.
  • Such cases can be detected by various methods.
  • One is a method of using the results of automatic exposure control of the image sensor (control of exposure time and aperture setting values), autofocus, and automatic gain control. From these results, the level of imaging brightness and the distance to the object can be known. Based on at least one of these pieces of information, the background light removal function can be turned ON / OFF and the threshold value can be changed.
  • Another method is to use the object distance measurement function of the motion sensor. Based on the subject distance and size obtained from the luminance ratio, the intensity of the reflected light from the subject can be estimated.
  • the luminance difference stereo method is used when calculating the luminance ratio, it is also possible to obtain material information such as the reflectance of the object. For this reason, if these pieces of information are used, it is possible to estimate the intensity of the reflected light from the subject with higher accuracy. Based on these pieces of information, the background light removal function can be turned ON / OFF and the threshold value can be changed.
  • the control unit of the motion sensor device includes the light emission output of the first light source 702, the light emission output of the second light source 703, the exposure time of the image sensor 701, the gain of the image sensor 701, and the image sensor 701. Based on at least one of the focus state and the set value of the aperture, the presence / absence of mask processing or a coefficient (threshold) used for calculation of mask processing may be changed.
  • the control unit may change the presence / absence of the mask process or the coefficient used for the mask process based on at least one of the distance information, the size information, and the material information of the object.
  • Embodiment 4 As a method of configuring the apparatus according to the third embodiment, there is a method of performing processing in the procedure as shown in the above-described embodiment using, for example, a Neumann type CPU or the like.
  • the Neumann CPU has low power efficiency when used for image processing.
  • processing such as pairing in Embodiment 3 requires scanning from the left and right of the image, there is a problem that the execution time varies depending on the data.
  • the present embodiment relates to a circuit invention that solves these problems.
  • the circuit of the present embodiment is an actual integrated circuit that can be realized mainly by reconfigurable logic such as FPGA (Field Programmable Gate Array). Some integrated circuits that can operate with reconfigurable logic, such as this embodiment, operate by reading circuit information stored in a recording medium such as a flash memory when the power is turned on.
  • reconfigurable logic such as FPGA (Field Programmable Gate Array).
  • FIG. 23 is a circuit configuration diagram in the present embodiment.
  • This circuit includes a camera input unit 1501 (CAMERA-IN) for inputting camera signals, a difference creation unit 1502 (SUB) that takes a difference between two types of images input from the camera, and one line of an image.
  • CAMERA-IN camera input unit 1501
  • SUBSCRIBER-IN difference creation unit 1502
  • a maximum value search unit 1503 having a comparator that determines whether the difference signal is greater than or equal to a certain threshold from the left edge of the subject, and the right edge of the subject from one line of the image, that is, the difference
  • a minimum value search unit 1504 including a comparator that determines whether or not the signal is equal to or less than a threshold value, and a mask generation unit 1505 (including a comparator that determines whether the absolute value of the luminance difference is equal to or less than a threshold value).
  • CMP_ABS A maximum value search unit 1503 having a comparator that determines whether the difference signal is greater than or equal to a certain threshold from the left edge of the subject, and the right edge of the subject from one line of the image, that is, the difference
  • a minimum value search unit 1504 including a comparator that determines whether or not the signal is equal to or less than a threshold value
  • a mask generation unit 1505 including a comparator that determines whether the absolute value of the luminance difference is equal to or less than
  • a counter unit 1515 that counts the number of pixels in the line
  • a control unit 1506 CONTROL
  • a flip-flop 1507 MASK_FF
  • a flip-flop 1508 (PAIR_FF) as a pairing information recording unit including flip-flops having more than the number of pixels of one line of an image for temporarily holding a pairing region between the maximum value and the minimum value
  • a mask subtraction unit 1509 (AND) that takes a logical product of the mask information stored in the flip-flop 1507 and the pairing information stored in the flip-flop 1508 to remove a part of the mask area, and until the mask is completed.
  • Line memory 151 that holds one line of image When equipped 1512 (LINE_RAM), the image data and 0 is the value of the mask area by combining the mask data, the value of the other regions mask processing unit 1513 directly outputs the 1514 and (MASK).
  • the difference creating unit 1502 calculates and outputs the difference between the two signals.
  • the maximum value search unit 1503 determines whether or not the difference sent from the difference creation unit 1502 is greater than or equal to a predetermined threshold value prepared in advance. If it is equal to or greater than the threshold, it is determined that the subject is the left edge of the subject, and the result is sent to the control unit 1506.
  • the minimum value search unit 1504 determines whether or not the difference sent from the difference creation unit 1502 is equal to or less than a predetermined threshold value prepared in advance. If it is equal to or less than the threshold, it is determined that the subject is the right edge, and the result is sent to the control unit 1506.
  • the counter unit 1515 is a counter that is reset by the horizontal synchronization signal of the camera input unit 1501 and incremented by the pixel clock.
  • the value of the counter unit 1515 represents the current read pixel position in the image line. This value is sent as address information to a flip-flop 1507 as a mask information recording unit and a flip-flop 1508 as a pairing information recording unit.
  • the mask generation unit 1505 determines whether the absolute value of the difference sent from the difference generation unit 1502 is equal to or greater than a predetermined threshold value prepared in advance. If it is smaller than the threshold value, it is determined that the region is to be masked (non-subject region), and the flip-flop at the address position sent from the counter unit 1515 in the flip-flop 1507 as the mask information recording unit is set.
  • the control unit 1506 receives the horizontal synchronization signal from the camera input unit 1501 and resets all flip-flops of the flip-flop 1507 serving as a mask information recording unit.
  • the device itself enters the first operation state and waits until the left edge information comes from the maximum value search unit 1503.
  • control unit 1506 sets all the flip-flops 1508 as the pairing information recording unit, and then transitions to the second operation state.
  • control unit 1506 resets the flip-flop at the address position sent from the counter unit 1515 in the flip-flop 1508 as the pairing information recording unit.
  • the control unit 1506 pairs the reset area of the flip-flop 1508 as the pairing information recording unit at that time with the pair. The ring area. Then, using the mask subtraction unit 1509, the logical product of the flip-flop 1508 is applied to the flip-flop 1507, and the masking of the pairing area is cancelled. Subsequently, the terminal device transits to the first operation state and waits again until the left edge information comes from the maximum value search unit 1503.
  • the image data stored in the line memories 1511 and 1512 are processed by the mask processing units 1513 and 1514, respectively.
  • the image data is output as an image in which the luminance value of the pixel in the mask portion is changed to a value close to 0 based on the state of the flip-flop 1507 as the mask information recording unit, and the background light region is removed.
  • the local maximum value searched by the local maximum value searching unit 1503 and the local minimum value searched by the local minimum value searching unit 1504 depend on the sign of the signal to be handled and may be reversed depending on the definition of the signal.
  • Embodiments 1 to 4 have been described as examples of the technology of the present disclosure. However, the technology of the present disclosure is not limited to these embodiments. Hereinafter, other embodiments will be exemplified.
  • FIG. 24 shows a display 1001 equipped with the motion sensor device according to the first embodiment.
  • the display 1001 is equipped with two light sources 702 and 703. For this reason, gesture input can be performed toward the display 1001.
  • FIG. 24 schematically shows a hand for performing gesture input for reference. The hand shown is moving in the direction of the arrow. In the display shown in FIG. 24, such a hand movement can be detected with high sensitivity and a gesture input can be performed.
  • the motion sensor device can also be used for a user interface such as channel switching by gesture input. It can also be applied to a dance game that recognizes the movement of each part of a human.
  • the present disclosure provides an electronic device including the motion sensor device according to any one of the above embodiments and a display that changes display content in response to the motion of the object detected by the motion sensor device. Including.
  • each embodiment of the motion sensor device it is possible to remove the influence of background light other than the object for distance measurement, and to perform detection with higher accuracy. According to the present disclosure, it is possible to provide a 3D motion sensor device that requires real-time detection.
  • the functions of the motion sensor device according to the present disclosure may be realized by another device connected via a wired or wireless network.
  • the method based on the luminance ratio of the object in a plurality of images has been described as the method for obtaining the distance information to the object.
  • distance information to an object may be obtained based on image contour information.
  • the entire disclosure of US Patent Application Publication No. 2013/0182077 is incorporated herein by reference.
  • the embodiment of the motion sensor device has a function of measuring the three-dimensional position of an object in real time. For this reason, it is useful for the use of the non-contact gesture user interface of various electric products, such as a display apparatus.
  • a display apparatus As an in-vehicle device, it can be applied to the detection of passenger status, people outside the vehicle, and obstacles. It can also be applied to applications such as video camera autofocus.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Studio Devices (AREA)
  • Measurement Of Optical Distance (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

 本開示のある実施形態におけるモーションセンサ装置は、イメージセンサ(701)と、第1および第2の光源(702、703)と、イメージセンサ(701)および第1および第2の光源(702、703)を制御するように構成された制御部(710)とを備える。制御部(710)は、第1の時間で前記第1の光源を発光させながら前記イメージセンサで第1のフレームの撮像を行い、第2の時間で前記第2の光源を発光させながら前記イメージセンサで第2のフレームの撮像を行い、前記第1のフレームの撮像によって取得した第1の画像と、前記第2のフレームの撮像によって取得した第2の画像との差に基づくマスク処理を前記第1および第2の画像について実行し、前記マスク処理後の前記第1の画像と、前記マスク処理後の前記第2の画像とに基づいて、前記第1および第2の画像に含まれる対象物までの距離情報を得る。

Description

複数の光源を有するモーションセンサ装置
 本願は、複数の光源を備えたモーションセンサ装置に関する。
 特許文献1は、静止または運動している物体(対象物)に、複数の光源から時分割で投光しながら1つのイメージセンサによって取得した複数の画像に基づいて対象物までの距離を測定する技術を開示している。
 特許文献2は、背景光の影響を除去した距離計測装置を開示している。この距離計測装置は、光源を発光させない状態で背景光成分のみを含む画像を取得し、光源を発光させた状態で計測用の画像を取得する。計測用の画像の画素値から背景光成分のみを含む画像の画素値を減ずることにより、背景光の影響を除去することができる。
 非特許文献1は、読み出し転送を行うことなく、殆ど時間差を発生させずに複数枚の画像撮影が可能なセンサデバイスを開示している。
 非特許文献2は、光源の位置を様々に変えて撮影することによって取得した複数の画像に基づいて、物体の反射特性、形状、および光源の位置を同時に推定する方法を開示している。
特開2001-12909号公報 特開2008-122223号公報
Gordon Wan, Xiangli Li, Gennadiy Agranov, Marc Levoy, and Mark Horowitz "CMOS Image Sensors With Multi‐Bucket Pixels for Computational Photography", IEEE JOURNAL OF SOLID‐STATE CIRCUITS, VOL. 47, NO.4, APRIL 2012 荻野真佑、右田剛史、尺長健、"Torrance‐Sparrowモデルに基づく反射特性・形状・光源位置の同時推定の検討", The Institute of Electronics, Information, and Communication Engineers, IEICE Technical Report IE2007‐347, PRMU2007‐331(2008‐03)
 従来の背景光除去技術では、光源を消灯させた状態で背景光成分のみを含む画像フレームの撮像を余分に行う必要がある。このため、装置のコスト増加やスペックの低下を招く。
 本開示の実施形態は、この問題を解決しうる新しいモーションセンサ装置を提供する。
 上記課題を解決するために、本開示の一態様に係るモーションセンサ装置は、イメージセンサと、第1および第2の光源と、前記イメージセンサおよび前記第1および第2の光源を制御するように構成された制御部とを備える。前記制御部は、第1の時間で前記第1の光源を発光させながら前記イメージセンサで第1のフレームの撮像を行い、第2の時間で前記第2の光源を発光させながら前記イメージセンサで第2のフレームの撮像を行い、前記第1のフレームの撮像によって取得した第1の画像と、前記第2のフレームの撮像によって取得した第2の画像との差に基づくマスク処理を、前記第1および第2の画像について実行し、前記マスク処理後の前記第1の画像と、前記マスク処理後の前記第2の画像とに基づいて、前記第1および第2の画像に含まれる対象物までの距離情報を得るように構成されている。
 本開示の他の態様に係るモーションセンサ装置は、イメージセンサと、第1および第2の光源と、前記イメージセンサおよび前記第1および第2の光源を制御するように構成された制御部とを備える。前記制御部は、第1の時間で前記第1の光源を発光させながら前記イメージセンサで第1のフレームの撮像を行い、第2の時間で前記第2の光源を前記第1の光源とは異なる出力で発光させながら前記イメージセンサで第2のフレームの撮像を行い、前記第1のフレームの撮像によって取得した第1の画像と、前記第2のフレームの撮像によって取得した第2の画像との差に基づくマスク処理を、前記第1および第2の画像について実行し、前記マスク処理後の前記第1の画像および前記マスク処理後の前記第2の画像の少なくとも一方に、前記第1および第2の光源の発光出力の差に応じた輝度補正処理を実行し、前記輝度補正処理後の前記第1の画像から得られる対象物の輝度と、前記輝度補正処理後の前記第2の画像から得られる前記対象物の輝度との比に基づいて、前記対象物までの距離情報を得るように構成されている。
 本開示の他の態様に係るモーションセンサ装置は、イメージセンサと、第1および第2の光源と、前記イメージセンサおよび前記第1および第2の光源を制御するように構成された制御部とを備える。前記制御部は、第1の時間で前記第1の光源を発光させながら前記イメージセンサで第1のフレームの撮像を行い、第2の時間で前記第2の光源を発光させながら前記イメージセンサで第2のフレームの撮像を行い、前記第1のフレームの撮像によって取得した第1の画像と、前記第2のフレームの撮像によって取得した第2の画像との差分データを生成し、前記差分データにおける、前記第1および第2の光源の配列方向に対応する方向のデータにおいて、差分が極大値になる位置と前記差分が極小値になる位置との間に含まれる推定対象物領域を決定し、前記第1の画像と前記第2の画像との差に基づくマスク処理を、前記第1および第2の画像における前記推定対象物領域を除く領域について実行し、前記マスク処理後の前記第1の画像と、前記マスク処理後の前記第2の画像とに基づいて、前記第1および第2の画像に含まれる対象物までの距離情報を得るように構成されている。
 本開示の他の態様に係る回路は、イメージセンサと、第1および第2の光源とを備えるモーションセンサ装置において用いられる回路であって、第1の時間で前記第1の光源を発光させながら前記イメージセンサで第1のフレームの撮像を行うことによって取得された第1の画像と、第2の時間で前記第2の光源を発光させながら前記イメージセンサで第2のフレームの撮像を行うことによって取得された第2の画像との差分データを求めて出力する差分作成部と、前記差分データにおける1つの水平ラインのデータにおいて、差分が第1の閾値以上か否かを判定する極大値探索部と、前記差分データにおける前記1つの水平ラインのデータにおいて、差分が前記第1の閾値よりも小さい第2の閾値以下か否かを判定する極小値探索部と、前記差分データの絶対値が第3の閾値以下か否かを判定するマスク作成部と、前記極大値探索部から、前記差分が前記第1の閾値以上であることを示す情報を受けたとき、第1の動作状態から第2の動作状態に遷移し、前記極小値探索部から、前記差分が前記第2の閾値以下であることを示す情報を受けたとき、前記第2の動作状態から前記第1の動作状態に遷移する制御部と、前記マスク作成部の判定結果に基づいて背景領域のマスク情報を格納するマスク情報記録部と、前記制御部が前記第2の動作状態にあるとき、前記差分が前記第1の閾値以上になる位置と、前記差分が前記第2の閾値以下になる位置との間の領域であるペアリング領域の情報を格納するペアリング情報記録部と、前記制御部が前記第2の動作状態から前記第1の動作状態に遷移したとき、前記マスク情報記録部に格納された前記マスク情報に対して前記ペアリング情報記録部に格納された前記ペアリング情報の論理積を適用するマスク減算部と、を備える。
 本開示の他の態様に係る記録媒体は、再構成可能ロジックで実行するための上記の回路情報を格納している。
 本開示の他の態様に係る画像処理装置は、イメージセンサと、第1および第2の光源と、前記イメージセンサから出力された複数の画像を処理する画像処理装置を備えるシステムにおいて使用される画像処理装置であって、プロセッサと、メモリと、前記メモリに格納されたコンピュータプログラムとを備える。前記コンピュータプログラムは、前記プロセッサに、第1の時間で前記第1の光源を発光させながら前記イメージセンサで取得された第1の画像を取得させ、第2の時間で前記第2の光源を発光させながら前記イメージセンサで撮像された第2の画像を取得させ、前記第1の画像と前記第2の画像との差に基づくマスク処理を、前記第1および第2の画像について実行させ、前記マスク処理後の前記第1の画像と、前記マスク処理後の前記第2の画像とに基づいて、前記第1および第2の画像に含まれる対象物までの距離情報を得させる。
 これらの包括的または具体的な態様は、システム、方法、集積回路、コンピュータプログラム、または、記録媒体によって実現されてもよい。あるいは、システム、装置、方法、集積回路、コンピュータプログラムおよび記録媒体の任意な組み合わせによって実現されてもよい。
 本開示のモーションセンサ装置の実施形態によれば、余分な画像フレームの撮像を行うことなく、背景光の影響を抑制した距離計測が可能となる。
2個の光源を備えるモーションセンサ装置の断面を模式的に示す図である。 図1Aの装置の上面図である。 光源の放射角と相対放射強度との関係を示すグラフである。 光源の放射角を示す図である。 第1の光源102から放射された光で対象物104が照射される様子を示す図である。 第2の光源103から放射された光で対象物104が照射される様子を示す図である。 撮像データの1ラインの画素位置と輝度との関係を示すグラフである。 ある放射角における輝度比と距離との関係を示すグラフである。 第1の光源102から放射された光で僅かに移動した対象物104が照射される様子を示す図である。 第2の光源103から放射された光で僅かに移動した対象物104が照射される様子を示す図である。 モーションセンサ装置を外光のある場所に置き、計測範囲内に人間の手をかざした状況を示す図である。 従来の背景光除去の効果を説明するための図である。(a)は、図8の例において、光源103を発光させながら撮影した場合に取得される画像の例を示し、(b)は、図8の例において、いずれの光源も発光させずに撮影した場合に取得される画像の例を示し、(c)は、図9(a)に示す画像から図9(b)に示す画像を減算した差分画像を示している。 本開示の実施形態1におけるモーションセンサ装置の構成を模式的に示す図である。 実施形態1における光源及びイメージセンサのタイミングチャートである。 レンズ901と、2つのイメージセンサ902、903と、ハーフミラー904とを備えるモーションセンサ装置の例を示す図である。 実施形態1における制御部710の動作を示すフローチャートである。 本開示の実施形態2におけるモーションセンサ装置の構成を模式的に示す図である。 実施形態2における制御部810の動作を示すフローチャートである。 実施形態2におけるマスク処理を説明するための図である。(a)は、第1の画像フレームの撮像によって取得される第1の画像の例を示し、(b)は、第2の画像フレームの撮像によって取得される第2の画像の例を示し、(c)は、マスク処理後の第1の画像の例を示している。 3つの光源702、703、704を有するモーションセンサ装置の構成例を示す図である。 実施形態2の3光源を有する構成において、輝度差が発生しない場合の例を示す図である。 (a)は、実施形態2の装置を用いて近距離にある手の画像を処理したときに生成されたマスク画像を示す図であり、(b)は、実施形態3の処理によって修正されたマスク画像を示す図である。 図18に示すモーションセンサ装置の近距離にある指を撮影した場合に取得された画像における特定の水平ラインの輝度を示すグラフである。 本開示の実施形態3におけるモーションセンサ装置の構成を示す図である。 実施形態3における制御部910の動作を示すフローチャートである。 本開示の実施形態4における回路構成図である。 実施形態1に係るモーションセンサ装置を搭載したディスプレイ1001を示す図である。
 まず、本開示によるモーションセンサ装置によって対象物(被写体)までの距離を測定することができる基本原理を説明する。
 図1Aは、モーションセンサ装置の断面を模式的に示す図である。図1Bは、図1Aの上面図である。
 図1Aおよび図1Bに示されている装置は、中央に位置するイメージセンサ101と、イメージセンサ101の両側に位置する2個の光源装置102、103とを備えている。図示されている例では、イメージセンサ101および光源装置102、103は、1個の基板100に搭載されている。イメージセンサ101は、多数の微細な光検知セル(フォトダイオード)が行および列状に配列された固体撮像素子である。イメージセンサ101は、典型的にはCCD(Charge Coupled Device)型またはCMOS型である。以下の説明では、光源装置を単に「光源」と称することがある。
 図1Aには、第1の光源102から出た光102aと第2の光源103から出た光103aとが模式的に示されている。この装置は、光源102、103を交互に点灯させながら、撮像を行うことにより、計測対象物体(対象物)までの距離を測定することができる。なお、「距離の測定」は、イメージセンサから対象物までの距離の推定値、あるいは、空間内の対象物の位置の推定値を求めることを含む。対象物には、例えば、人の手、指、人が持つペンなどが含まれ得る。対象物は移動してもよい。高速で移動しつつある人の指先までの距離、または指先の位置の推定値をリアルタイムで取得することができる3次元モーションセンサ装置は、コンピュータ、タブレット端末、スマートフォン、ゲーム機器、および家電機器を含む多様な電子機器の「入力デバイス」として使用され得る。
 図2は、光源102、103の各々から出た光の放射パターン(配光特性)を表すグラフである。グラフの横軸は、図3に示されるように、放射の方向が基板100の法線方向Nに対して形成する角度θである。グラフの縦軸は、相対放射強度である。以下、放射の角度θを「放射角」と称する場合がある。なお、相対放射強度の値は、光源から特定角度の方向に離れた位置に置かれた対象物の照度(放射照度)に対応している。
 図2からわかるように、光源102、103の各々から出た放射は、角度θが0°のとき、最も高い強度を示す。図2の例において、光源102、103は、その放射強度がI0×cosθで近似できるような配光特性を示している。ただし、これは一例であり、光源102、103の配光特性は図2の例に限定されない。また、光源102、103から出る放射は、可視光に限定されず、赤外線のように人間の視覚によって感じとれない波長域の電磁波であってもよい。本明細書では、簡単のため、光源から出る放射を単に「光」と称する場合がある。この「光」の用語は、可視光に限定されず、イメージセンサで検出可能な電磁波を広く含む。
 次に、上記の装置で対象物までの距離を測定する方法を説明する。
 まず、図4Aおよび図4Bを参照する。図4Aには、第1の光源102から放射された光で対象物104が照射され、対象物104で反射された光の一部がイメージセンサ101に入射する様子が示されている。一方、図4Bには、第2の光源103から放射された光で対象物104が照射され、対象物104で反射された光の一部がイメージセンサ101に入射する様子が示されている。対象物104の位置は、図4Aおよび図4Bで実質的に同じであるとする。
 この装置によれば、第1の時刻において、図4Aに示すように、光源102を点灯し、光源103を消灯させた状態でイメージセンサ101による第1の撮像を行う。次に、第2の時刻において、図4Bに示されるように、光源103を点灯し、光源102を消灯させた状態でイメージセンサ101による第2の撮像を行う。第1および第2の撮像の各々の期間(露光時間)は、対象物104が実質的に停止していると扱える程度に十分に短いと仮定する。
 第1の撮像を行うとき、光源102から出た光の一部が対象物104によって反射されてイメージセンサ101に入射するため、イメージセンサ101に入射する光の強度に応じた輝度画像が得られる。同様に、第2の撮像を行うときは、光源103から出た光の一部が対象物104によって反射されてイメージセンサ101に入射するため、イメージセンサ101に入射する光の強度に応じた輝度画像が得られる。
 第1および第2の撮像によって取得した2フレームの画像の各々に基づいて、対象物104の輝度(輝度分布または輝度像)を求めることができる。なお、本明細書における「輝度」とは、[カンデラ/m2]の単位を有する心理物理量ではなく、イメージセンサの画素ごとに定まる「相対輝度」である。本明細書における「輝度」は、光量または放射量に相当する。各フレームの画像を構成する各画素は、受光量に応じた「輝度値」を有する。
 対象物104には大きさがあるため、各画像における対象物104の像は、通常、複数の画素によって構成される。対象物104の「輝度」は、対象物104の像を構成する複数の画素の輝度値から種々の方法によって決定することができる。対象物104の像のうち、最も明るい「画素」または「画素ブロック」の輝度を対象物104の輝度とすることも可能であるし、対象物104の像を構成する全ての画素の平均輝度を対象物104の輝度とすることもできる。
 図5は、上述の方法で取得した2フレームの画像の各々において、対象物104の像を横切る一本の水平ラインの輝度値を示すグラフである。横軸は画像内の特定の水平ライン上における画素位置であり、縦軸は相対輝度である。グラフ中の曲線301は光源102が点灯しているときの輝度であり、曲線302は光源103が点灯しているときの輝度である。ここで、「水平ライン」とは、画像の横方向のラインを意味する。この実施形態では、光源102、103の配列方向が、イメージセンサ101によって取得される画像の横方向に対応している。このため、画像内の対象物が存在する水平ライン上の相対輝度の分布を考える。光源102、103の配列方向が画像の横方向とは異なる方向に対応している場合は、その対応する方向についての相対輝度の分布を考慮すればよい。
 図5の例では、曲線301および曲線302は、それぞれ、単峰性のピークを有している。すなわち、曲線301は、ある画素位置で極値303を示し、曲線302は、他の画素位置で極値304を示している。
 前述したように、2フレームの間に対象物104は実質的に静止している。したがって、曲線301と曲線302との間にある相違は、光源102が作る放射のパターンと光源103が作る放射のパターンとが異なることに起因している。光源102から出た光が対象物104で反射されてイメージセンサ101に入射して取得される像の輝度と、光源103から出た光が対象物104で反射されてイメージセンサ101に入射して取得される像の輝度との比率は、光源102から対象物104までの距離と光源103から対象物104までの距離との関係に依存する。
 撮影した画像の輝度比から、物体の距離が計測できる。図6は、イメージセンサ101の撮像面の法線から45度の角度の方向における距離と輝度比との関係の一例を示すグラフである。図6のグラフの横軸は、図2の特性を示す光源をイメージセンサ101から左右に所定の距離だけ離して配置した場合における対象物までの相対的な距離を示している。縦軸は、輝度比を示している。横軸の「距離」は、イメージセンサ101と光源との距離を基準としている。「1」の距離は、イメージセンサ101と光源との距離に等しい大きさを意味している。
 対象物の輝度(または照度)は、光源から対象物までの距離の二乗に反比例して減衰する。このため、距離に応じて輝度の比は変化する。図2に示す放射特性が既知であるため、この放射特性に基づいて、精度の高い距離の検出または推定が可能である。
 図6は、放射角θが45度のときの距離と輝度比との関係の一例であるが、異なる複数の角度について、同様に距離と輝度比との関係を事前に得ることができる。対象物の角度は、イメージセンサで取得される対象物の撮像位置に基づいて求めることができる。
 図6からわかるように、対象物とイメージセンサとの距離が概ね1よりも離れている場合、極値303と極値304との比から距離を計測できる。
 対象物の輝度比の求め方には、多くの方法が存在する。最も簡単な方法は、図5に示す輝度の極大値303と他の極大値304との比をそのまま輝度値とする方法である。極値303の座標と極値304の座標とが必ずしも一致しなくとも、対象物の材質が対象領域内で概ね均一であり、局所的な距離差を微小なものとして無視すれば、距離計算の輝度比としてこれらの極値303、304の比を輝度比として用いることが可能である。
 また、撮像における光ショットノイズなどのノイズを抑える観点から、画像上の対象物の領域内の輝度値を積分した値の比を輝度比としてもよい。
 さらに、被写体の局所的な材質の違いまで考慮に入れる場合、例えば非特許文献2に開示されている照度差ステレオ法などの技術を用いることも出来る。照度差ステレオ法の計算量は多いが、局所的な領域内の光量が不変であると仮定したり、物体が連続体であると仮定したりすることにより、計算量の増加を抑えることができる。モーションセンサ装置のターゲットとする形状を、例えば特定の方程式で表される形状として近似することで演算量を圧縮することも可能である。
 上記の例では、放射角に応じて相対放射強度が変化する光源を用いている。しかし、この測定方法は、このような特性を有しない光源を用いても可能である。平行光線を発する光源以外であれば、光強度は3次元空間内で何らかの配光特性を示すため、そのような光源も距離測定に利用可能である。例えば、配光が等方的な「点光源」でも、対象物上の照度および輝度は、光源からの距離の2乗に反比例して減衰するため、3次元空間的に異なる輻射パターンを持つ光源と言える。
 次に、図7Aおよび図7Bを参照する。これらの図は、図4Aおよび図4Bに示される位置から移動した対象物104に対する撮像を行う様子を示している。高速な撮像および距離の推定を行うことができれば、移動する対象物104に対しても、前述した方法で距離の測定が可能である。光源102、103による交互の照明とイメージセンサ101による撮像を繰り返すことにより、移動する対象物104の位置を検出することができる。その結果、対象物104の位置の変化、または運動を検知することが可能になる。
 以上のような2つの画像における対象物の輝度の比を利用した単眼式モーションセンサ装置は、装置の外部の光源による背景光の影響によって計測精度が低下するという課題がある。
 図8は、単眼式モーションセンサ装置を外光のある場所に置き、計測範囲内に人間の手をかざした状況を示す図である。図8には、計測対象物として、人間の手における人差し指506、中指507、および薬指508が示されている。イメージセンサ101に入射する光は、光源102または103からの反射光509と、外部光源505からの外部直接光510と、外部光源505からの外部1次反射光511と、外部光源505からの外部2次反射光512とを含む。
 外部直接光510、外部1次反射光511、および外部2次反射光512は、光源102、103以外の光源505に由来する光であるため、「背景光」と称する。イメージセンサ101から出力される信号において、背景光による成分は、計測ノイズとなる。
 このような背景光を除去する技術として、例えば特許文献2に開示された技術がある。特許文献2の技術では、光源を発光させて取得される計測用の画像とは別に、光源からの発光を行わない状態で背景光成分のみを含む画像が取得される。計測用の画像の輝度値から背景光成分のみを含む画像の輝度値を減ずることにより、背景光の成分を除去することができる。
 図9は、この背景光除去の効果を説明するための図である。図9の(a)は、図8の例において、光源103を発光させながら撮影した場合に取得される画像の例を示している。この画像は、被写体である手の像601と、外部光源である天井の蛍光灯照明の像602とを含んでいる。
 図9の(b)は、図8の例において、いずれの光源も発光させずに撮影した場合に取得される画像の例を示している。この画像も、被写体である手の像611と、外部光源である天井の蛍光灯照明の像612とを含んでいる。この画像では、光源からの発光がないため、イメージセンサの近くに位置する手の像611の輝度は、図9の(a)における輝度よりも低い。
 図9の(c)は、図9の(a)に示す画像から図9の(b)に示す画像を減算した差分画像を示している。ここで、ある画像から他の画像を減算するとは、ある画像の各画素の輝度値から他の画像の対応する画素の輝度値を減算することによって新たな画像を生成することを意味する。図9の(c)に示す差分画像では、外部光源の像602が除去されている。
 外部光源の像602、612は、図8に示す外部直接光510に相当する光の像である。この像は、露光時間などの撮影条件が同一である限り、ほぼ同じ輝度で撮影される。したがって、図9の(c)に示す差分画像では、差分演算によって外部光源の像602が消滅している。
 図9の(a)における被写体の像601は、光源103からの反射光509の成分を主に含む。これに加えて、外部光源505からの外部1次反射光511および外部2次反射光512の成分も若干含まれる。これに対し、図9の(b)における被写体の像611は、外部1次反射光511および外部2次反射光512の成分のみを含む。したがって、図9の(c)に示す差分画像における被写体の像621は、光源103からの反射光509の成分のみを含む。すなわち、この差分画像は、外部光源505が存在しない環境で取得された画像と同等の画像である。
 このような方法により、背景光の影響を除去した画像を得ることができる。しかし、そのためには、光源装置を発光させない状態で画像フレームの撮像を余分に行う必要がある。モーションセンサ装置においては、計測用の画像からの時間差がほとんど生じないように背景光画像を取得する必要がある。このため、1フレーム分余分に連続して露光できる高価なイメージセンサを使用する必要が生じる。このことは、コストの増加を引き起こす。また、光源装置を発光させずに取得されるフレームデータの読み出し転送のために時間を余分に要する。このため、計測フレームレートが低下するという問題を引き起こす。このことは、モーションセンサとしてのスペックの低下を招く。
 本願発明者は、上記の課題を見出し、本開示の技術を完成させた。本開示の実施形態によれば、背景光画像を得るために、光源が消灯した状態で余分に撮像する必要はない。そのため、装置のコスト増加やスペックの低下を招くことなく、背景光を画像から除去できる。
 モーションセンサの通常の使用態様においては、イメージセンサと検出対象物との間に障害物や他の光源が置かれる事はない。したがって、背景光となり得るものは、主に壁もしくは天井の照明、または屋外の太陽からの外部光である。背景光が特に問題になるのは、図8に示すように、イメージセンサ101から見て対象物508~506の向こう側に外部光源505が存在するケースに限定できる。
 図8に示す外部1次反射光511および外部2次反射光512の強度は、光源102、103からの光509の強度と比較して十分に小さい。その理由は、光源102、103の発光は短時間ながら強度が十分に強く、対象物によって拡散反射した後の反射光509であっても、外部直接光510相当の強度をもつからである。1次の拡散反射を経た外部1次反射光511、および2次の拡散反射を経た外部2次反射光512の強度は、光源102、103からの反射光509および外部直接光510の強度と比較して、十分に弱い。
 なお、外部1次反射光511は、外部2次反射光512と比較して反射回数が少ないが、外部2次反射光512と同様に強度が低い。これは、外部光源と対象物との配置関係から、対象物に浅い角度で入射して反射された光であるからである。ランバートの余弦則によって一般に知られる拡散反射のパターンを考慮すると、このように浅い角度で反射された光の強度は非常に弱くなる。
 以上のことから、本開示の実施形態に係るモーションセンサ装置は、特許文献2のように背景光成分を完全に除去するのではなく、外部光源からの直接光の成分のみを除去する。これにより、コスト増加やスペックの低下を招くことなく、背景光の成分を除去できる。
 以下、上記の検討に基づく本開示の具体的な実施形態を説明する。
 (実施形態1)
 まず、第1の実施形態に係るモーションセンサ装置を説明する。
 図10は、イメージセンサ701と、2個の光源(第1の光源702および第2の光源703)と、これらを制御する制御部710とを備えるモーションセンサ装置の構成を模式的に示す図である。イメージセンサ701および光源702、703は、基板700上に搭載されている。図10には、外部光源706および対象物705も描かれている。図10に示す例では、外部光源706は太陽であるが、上述のように、外部光源706は蛍光灯などの他の光源であってもよい。
 制御部710は、上述した2連続露光による2つの画像フレームの撮像の制御に加え、取得された2つの画像から背景光の成分を除去する処理、および背景光の成分を除去した2つの画像に基づく距離算出処理を実行する。制御部710は、これらの処理を実行するための機能ブロックとして、差分作成部711と、マスク処理部712と、距離算出部713とを有する。制御部701の一部または全部は、基板700上に実装されていてもよいし、他の基板上に実装されていてもよい。また、制御部710の機能の一部が、離れた位置に置かれた電子装置によって実現されていてもよい。
 図11は、このモーションセンサ装置における光源とイメージセンサの制御タイミングを示すタイムチャートである。図11に示される期間802、803は、それぞれ、光源702、703が点灯する期間に相当する。第1の露光期間805および第2の露光期間806は、それぞれ、イメージセンサ701による第1フレームおよび第2フレームの撮像に対応する。図11に示すタイムチャートでは、光源702、703は、この順序で点灯しているが、点灯の順序は任意である。
 通常のイメージセンサは、1回の露光により1フレームの撮像を行い、得られた画像データを外部に読み出してから次のフレームの撮像を行う。すなわち、フレームごとに画像データの読み出し動作が実行される。そのようなイメージセンサによると、第nフレーム(nは整数)における露光が終了した後、第n+1のフレームの露光を開始するまでの間に、第nフレームの撮像によって得られた全部の電荷を転送して外部に出力する動作のための時間を要する。
 しかし、本実施形態では、図11に示されるように、第1の露光期間805のあと、すぐに第2の露光期間806が始まる。第1の露光期間805において第1フレームの撮像が行われて生じた各画素の電荷は、第2の露光期間806が始まる前に記憶部に移され、その記憶部に蓄積される。その後、記憶部に蓄積されていた電荷および第2の露光期間806に発生した電荷の信号が期間Ttに読み出され、外部に出力される。
 本実施形態では、第1~第2の露光期間の各長さを「Te」とするとき、「2×Te+Tt」に等しい長さTfの逆数(1/Tf)で決まるレートで、2枚のフレーム画像のデータが読み出される。
 時間Ttは、画素数にも依存するが、データ転送レートを考慮して、例えば20ミリ秒程度の大きさに設定され得る。一方、時間Teは、1ミリ秒以下の短い期間、例えば25マイクロ秒に設定され得る。2枚のフレームの撮像を短い期間内に連続して実行すれば、対象物が人の指先のように高速に移動する場合でも、距離計測を行うことが可能になる。例えば2×Teが50マイクロ秒の場合、対象物が1メートル/秒の速度で移動しても、第1~第2の撮像中に対処物は0.050ミリメートルしか移動しない。一方、通常のフレームレート(例えば60フレーム/秒)で撮像を行えば、対象物は50ミリメートルも移動してしまう。仮に1000フレーム/秒の高速度撮影を行っても、対象物は3ミリメートルも移動する。本実施形態では、第1のフレームの開始時点から第2のフレームの終了時点までの期間を例えば2ミリ秒以下に短縮できるため、モーションセンサ装置として各種の用途に実用的である。
 本実施形態の構成では、第1および第2のフレームの撮像で取得された2枚の画像に基づいて対象物までの距離を算出することができる。十分に短い時間に強い発光条件の元で撮影されたフレームの輝度は、ほぼ反射光の強度に比例する。ここで、第1のフレームに写った対象物の輝度を「第1の輝度」、第2のフレームに写った対象物の輝度を「第2の輝度」と呼ぶことにする。対象物と各光源との位置関係によって定まる角度および距離に応じて各輝度が決定される。前述のように、これらの輝度の比から対象物の距離を推定できる。
 本実施形態では、連続して2フレームの撮像が可能な、やや高価なイメージセンサを使用することにより、高速で移動する対象物までの距離、または対象物の3次元的な運動を検出することができる。計測対象である物体の移動速度が十分に低いことが想定される場合は、通常の1フレーム露光のイメージセンサを用いても良い。
 また、図12に示されるような構成を採用することもできる。図12に示すモーションセンサ装置は、レンズ901と、2つのイメージセンサ902、903と、ハーフミラー904とを備える。イメージセンサ902、903は、通常の1フレーム露光可能なイメージセンサである。ハーフミラー904は、入射光の約50%を透過させ、約50%を反射する。このような構成であっても、複数フレームの連続露光は可能である。
 次に、再び図10を参照して、本実施形態に係るモーションセンサ装置の構成および動作をより詳しく説明する。
 光源702、703は、同程度の強度の光を出射するように構成されている。光源702、703は、可視光に限らず、近赤外線などの不可視光を発するものを用いてもよい。光源702、703は、例えばLED光源であるが、これに限定されない。点光源などの3次元的に強度分布に偏りのある光源であればどのような光源でも利用可能である。レーザー光源を利用することもできる。レーザー光源は平行光を出射するため、3次元的に光強度が変わらないが、拡散板と組み合わせて散乱光に変換することで利用可能になる。複数の発光デバイスを組み合わせて1つの光源装置としてもよい。
 イメージセンサ701は、画素単位で電荷をいったん蓄積しておく記憶部を有している。従って、第nフレームの撮像によって得られた画像データの読み出しを待たずに第n+1フレームの撮像が行える。イメージセンサ701内の記憶部を増やせば、3フレーム以上の連続した露光も可能である。イメージセンサ701としては、偶数/奇数ラインで別々に露光できる特殊センサであってもよい。イメージセンサ701は、典型的にはCMOSイメージセンサまたはCCDイメージセンサであるが、これらに限定されない。
 制御部710は、CPUもしくはその他の半導体集積回路、またはこれらの組み合わせによって構成され得る。制御部710は、第1の時間で第1の光源702を発光させながらイメージセンサ701で第1のフレームの撮像を行い、第2の時間で第2の光源703を発光させながらイメージセンサ701で第2のフレームの撮像を行うようにイメージセンサ701および光源702、703を制御する。制御部710は、さらに、第1のフレームの撮像によって取得した第1の画像と、第2のフレームの撮像によって取得した第2の画像との差に基づくマスク処理を、第1および第2の画像について実行する。そして、マスク処理後の第1および第2の画像に基づいて、対象物705までの距離情報を生成する。
 本実施形態におけるマスク処理は、第1の画像における画素の輝度値と、その画素に対応する第2の画像における画素の輝度値との差分(絶対値)が、閾値よりも小さい領域を、第1および第2の画像から除去する処理である。ここで、ある画像からある領域を「除去する」とは、その領域の輝度値を、より0に近い値に変更することを意味する。除去される領域の画素の輝度値は、典型的には、0に変更されるが、0に近い他の値に変更されてもよい。2つの輝度値の差分が閾値よりも小さい場合には、2つの輝度値の比と1との差分が閾値よりも小さい場合が含まれるものとする。
 このような処理を実行するための要素として、制御部710は、2つの画像の差分画像を生成する差分作成部711と、マスク処理を実行するマスク処理部712と、マスク処理後の第1および第2の画像に基づいて、対象物705までの距離情報を生成する距離算出部713とを有する。これらの機能ブロックは、制御部710を構成する回路の一部、または本実施形態の処理を規定したコンピュータプログラムを実行するCPUによって実現され得る。
 次に、図13を参照しながら、制御部710の動作をより詳細に説明する。図13は、制御部710の動作を示すフローチャートである。
 制御部710は、まず、イメージセンサ701の第1の露光期間において、光源702を発光させながら第1の画像フレームの撮像を行うことによって第1の画像を取得する(ステップS101)。続いて、イメージセンサ701の第2の露光期間において、光源703を発光させながら第2の画像フレームの撮像を行うことによって第2の画像を取得する(ステップS102)。
 これらの2つの画像において、外部光源706の像は同程度の輝度レベルを有する。これに対し、被写体705の像は、被写体705からの物理的距離が近い光源703が発光している状態で取得された第2の画像においてより高い輝度を有する。
 第1の画像フレームおよび第2の画像フレームは、露光完了後、読み出し転送が行われ、差分作成部711とマスク処理部712とに送られる。この際、第1の画像フレームと第2の画像フレームで対応する画素同士が近いタイミングで読み出されるように読み出し制御すれば、この後の各処理部でフレームメモリなどの記憶部を削減できる。
 差分作成部711は、第1の画像と第2の画像との差分データを生成する(ステップS103)。より具体的には、第1の画像における各画素の輝度値と、その画素に対応する第2の画像における画素の輝度値との差の絶対値を計算し、その結果を画素の位置情報と関連付けた差分データを生成する。差分作成部711は、差分データをマスク処理部712に送る。
 マスク処理部712は、差分作成部711から送られてきた差分データに基づき、差分が所定の閾値を超えている領域と超えていない領域とを区別するマスク情報を生成する(ステップS104)。マスク情報は、例えば、画素の位置と、その画素の輝度値の差分が閾値を超えているか否かを示す数値(例えば0または1)とを関連付けた情報であり得る。マスク情報のデータ形式は特定のものに限定されない。マスク情報は、画素ごとではなく、複数の近接する画素からなる領域ごとの情報であってもよい。例えば、複数の画素から構成される画素ブロックごとに、輝度値の差分の平均値が閾値を超えているか否かを示す情報であってもよい。
 マスク処理部712は、生成したマスク情報に基づいて、第1および第2の画像に対し、マスク処理を実行する(ステップS105)。マスク情報において、差分が閾値を超えていない領域は、差分がないとみなすことができる。このため、マスク処理部712は、差分が閾値を超えていない領域の輝度値を無視するべく、第1および第2の画像における該当する画素の輝度値を0などの低い値に置換する。本明細書では、このような処理を「マスク処理」と称する。マスク処理部712は、マスク処理後の第1および第2の画像を、それぞれ、第1のマスク済み画像および第2のマスク済み画像として距離算出部713に送る。
 距離算出部713は、送られてきた第1のマスク済み画像および第2のマスク済み画像に基づいて、対象物までの距離を算出する(ステップS106)。具体的には、第1および第2のマスク済み画像から、対象物の像が存在する領域を探索し、その領域における輝度比から距離情報に換算して3Dモーション情報として出力する。輝度比から距離情報に換算するためのデータは、不図示のメモリなどの記録媒体に予め記録されている。そのデータは、テーブルまたは関数の形式であり得る。
 以上の動作により、モーションセンシングの対象領域を、2つの光源702、703からの出射光による輝度差分が発生する領域に限定すれば、背景光の影響を低減した良好なモーションセンサを実現できる。
 なお、本実施形態では、第1の光源702と第2の光源703とが、イメージセンサ701から等距離の位置に配置されているが、このような配置に限定されない。例えば、第2の光源703を、第1の光源702よりもイメージセンサ701に近い位置に配置してもよい。また、イメージセンサ701、第1の光源702、第2の光源703が一直線に配列されている必要はなく、これらの一部が直線上からずれた位置に配置されていてもよい。このように、光源702、703は、イメージセンサ701に対して非対称に配置されていてもよい。さらに、2つの光源702、703の発光出力は同じである必要はなく、異なっていてもよい。
 (実施形態2)
 次に、本開示の第2の実施形態を説明する。
 実施形態1では、被写体がある程度以上遠方にある場合、複数の光源からの反射光の輝度差が十分に大きくならないために、光ショットノイズや暗電流によるノイズなどのノイズ成分によって輝度差が検出できない可能性がある。その結果、十分なマスク分離処理が出来なくなるという課題がある。本実施形態では、2つの光源の発光出力を変え、低出力の光源が発光している間に取得された画像の輝度レベルを増幅することにより、この課題を解決する。
 図14は、本実施形態におけるモーションセンサ装置の概略構成を示す図である。図14において、図10と同じ構成要素については同じ符号を用い、説明を省略する。本実施形態における制御部810は、マスク処理後の第2の画像の輝度レベルを増幅する増幅部814を有している。
 以下、図15を参照しながら、本実施形態における制御部810の動作を説明する。図15は、本実施形態における制御部810による動作を示すフローチャートである。
 制御部810は、まず、イメージセンサ701の第1の露光タイミングで、光源702を発光させながら第1の画像フレームの撮像を行うことによって第1の画像を取得する(ステップS201)。次に、イメージセンサ701の第2の露光タイミングで、光源702を発光させながら第2の画像フレームの撮像を行うことによって第2の画像を取得する(ステップS202)。このとき光源703の発光出力を光源702の発光出力よりも低くする。
 本明細書において、「発光出力」とは、イメージセンサ701の1回の露光時間中の発光エネルギの総量を意味する。発光出力は、「発光量」ということもできる。低い発光出力は、例えば、露光時間中の発光している期間を短くしたり、発光仕事率(ワット数)の小さい発光デバイスに変更したりすることによって実現され得る。
 2つの画像フレームにおいて、外部光源706の像は同じ輝度レベルで撮影される。一方、対象物705の像は、光源702、703の出力差により、第2の画像フレームの方が低い輝度で撮影される。その結果、第1の画像フレームと第2の画像フレームとで、対象物705の像の輝度に差が生じる。
 第1の画像フレームと第2の画像フレームは、露光完了後、読み出し転送が行われ、差分作成部711およびマスク処理部712に送られる。
 図16は、本実施形態におけるマスク処理を説明するための図である。図16(a)は、第1の画像フレームの撮像によって取得される第1の画像の例を示している。図16(b)は、第2の画像フレームの撮像によって取得される第2の画像の例を示している。図16(c)は、マスク処理後の第1の画像の例を示している。図16(a)、(b)における対象物の像1001、1011は、人間の手の像である。図14における対象物705は、この手の中指の先端部に対応する。相対的に低い出力の光源703を用いて撮影された対象物の像1011の方が、像1001よりも小さい輝度で撮影されている。図16(a)、(b)における像1002、1012は、2本の直管蛍光灯の像である。像1002、1012は、図14における外部光源706に対応する。像1002、1012の輝度レベルは同程度である。
 差分作成部711は、第1の画像と第2の画像との差分データを生成する(ステップS203)。差分データは、マスク処理部712に送られる。
 マスク処理部712は、差分作成部711から送られてきた差分データに基づき、マスク情報を生成する(ステップS204)。図16(c)は、マスク情報を画像で表した図である。差分が所定の閾値を超えている領域は白で、閾値を超えていない領域は黒で表されている。マスク処理部712は、第1の画像および第2の画像に対し、マスク情報を用いてマスク処理を行う(ステップS205)。すなわち、差分がないと判定された領域の輝度を無視するべく、該当する画素の輝度値をゼロなどの低い値に置換する。マスク処理部712は、マスク処理後の第1の画像を、第1のマスク済み画像として距離算出部713に送る。一方、マスク処理後の第2の画像は、第2のマスク済み画像として増幅部814に送る。
 増幅部814は、第2のマスク済み画像の輝度レベルを、光源702と光源703の出力比に応じて増幅する(ステップS206)。本明細書では、この増幅処理のように、2つの光源の発光出力の差(比を含む)に応じて輝度を補正する処理を、「輝度補正処理」と称する。増幅部814は、輝度補正処理後の第2の画像を距離算出部713に送る。
 輝度補正処理により、距離算出部713は、光源702と光源703とが同じ出力で発光した場合と同等の2枚の画像を得ることができる。距離算出部713は、マスク処理後の第1の画像と、輝度補正処理後の第2の画像とに基づいて、対象物までの距離を算出する(ステップS207)。
 以上の構成により、実施形態1よりもさらに広い範囲において、背景光の影響を低減し、良好なモーションセンサを実現できる。
 なお、本実施の形態では、増幅部814によって第2の画像の輝度レベルの増幅のみを行ったが、第1の画像の輝度レベルを下げたり、第1および第2の画像の両方の輝度レベルを調整したりすることによって同等の効果を得ることもできる。すなわち、マスク処理後の第1および第2の画像の少なくとも一方に、第1および第2の光源の発光出力の差に応じた輝度補正処理を実行することにより、本実施形態と同様の効果を得ることができる。
 また、結果的に輝度補正処理を行ったことと同様の効果を得ることができれば、他の方法を用いて距離情報を得てもよい。例えば、輝度比から距離を換算するためのテーブルや関数を複数の光源の出力比に応じて補正しておくといった方法でも同等の結果を得ることができる。本実施形態では、距離を求めるための輝度比が適切な値になるように、輝度補正をマスク処理後に行うことが重要である。このような輝度補正を行った場合と等価の結果が得られる方法であれば、輝度補正を行ったとみなすことができる。
 本実施形態では、簡単のため、2つの光源をもつモーションセンサ装置を説明した。しかし、実際には、図17に示すような3つの光源を有する構成が特に有効である。
 図17は、3つの光源702、703、704を有するモーションセンサ装置の構成例を示す図である。イメージセンサ701、第1の光源702、第2の光源703は、図14に示すものと同じである。第3の光源704は、第1の光源702と同程度の発光出力で発光する。この例では、第2の光源703は、第1の光源701および第3の光源704よりもイメージセンサ701に近い位置に配置されている。このように、光源702、703、704は、イメージセンサ701に対して非対称に配置されている。なお、図17では省略されているが、実際には図14に示されている制御部810がイメージセンサ701および光源702、703、704に接続されている。
 この例では、制御部810は、第2の光源703を発光させながら取得した第2の画像フレームと、第3の光源704を発光させながら取得した第3の画像フレームとを用いて、上述した処理と同様の処理を行うことができる。すなわち、制御部810は、第1および第2のフレームの撮像を行った後、第3の露光時間で第3の光源704を発光させながらイメージセンサ701で第3のフレームの撮像を行う。そして、第2のフレームの撮像によって取得した第2の画像と、第3のフレームの撮像によって取得した第3の画像との差に基づくマスク処理を、第2および第3の画像について実行する。さらに、マスク処理後の第2および第3の画像の少なくとも一方に、第2および第3の光源の発光出力の差に応じた輝度補正処理を実行する。これにより、輝度補正処理後の第2および第3の画像から得られる対象物の輝度比に基づいて、対象物までの距離情報を生成することができる。
 本構成例では、図17における中心よりも右側の領域にある対象物については、第1の光源702からの光と第2の光源703からの光との輝度比を用いることが、距離を一意に算出する上で適している。その際の輝度は、第2の光源703に由来するものが相対的に強い。一方、図17における中心よりも左側の領域にある対象物については、第2の光源703からの光と第3の光源704からの光との輝度比を用いることが、距離を一意に算出する上で適している。その際の輝度は、光源703に由来するものが相対的に強い。
 この点を考慮すると、図17に示す第2の光源703のように、イメージセンサ701に物理的に近い光源の出力を他の光源の出力よりも弱くすることがシステム全体として都合がよい。なぜなら、輝度比を求めるにあたって行われる除算演算では、除算結果の有効精度が除数と被除数のうちの低精度の方に律速されるからである。撮像によって取得された画像の各画素の輝度値の精度は、光ショットノイズに制約されるが、光ショットノイズは輝度の平方根に比例する。したがって、除数と被除数の精度を揃えることが、同等の精度をより少ない発光電力で得られることに繋がる。
 (実施形態3)
 次に、本開示の第3の実施形態を説明する。
 実施形態2では、遠方など、単純には複数の光源からの輝度差が出にくい領域において、背景光領域をマスクすることを可能にした。しかし、近距離において距離や角度によって輝度差が低下する領域の検出が出来ないという課題が残る。本実施形態は、この課題を解決する。
 図18は、実施形態2の3光源を有する構成において、輝度差が発生しない場合の例を示す図である。光源703は、光源702、704と比べ、低い出力で発光する。図18のような位置関係では、光源703からの光の強度は光源702、704からの光の強度よりも低いものの、対象物705が光源703に物理的に近いため、対象物の特定部分の輝度が3つの画像において同程度になってしまう場合がある。その結果、これらの3つの画像から選択された2つの画像における輝度比が0に近くなり、外部光源による輝度と区別がつかなくなる。この状態で実施形態2のマスク処理を実行すると、距離を計測すべき対象物の領域であるにもかかわらず、マスクされて計測処理から外されてしまうという課題が発生する。
 図19の(a)は、実際に実施形態2の装置を用いて近距離にある手の画像を処理したときに生成されたマスク画像を示す図である。本来対象物である指の中央部が不要にマスクされていることがわかる。この際、本来は1本である指が、領域が分断されてしまうことで別々の対象物として、すなわち、指が2本あるように認識されてしまうという課題を引き起こす。
 本実施形態によれば、この問題を解決することができる。
 まず、位置関係によって光源からの反射光の強度に大きな差が発生するのは、対象物がイメージセンサ701や光源702~704に比較的近い場合に限定される。そのような近距離の対象物に関しては、撮像された対象物の像の領域内で光源による輝度差が大きく発生するという特性がある。
 図20は、図18に示すモーションセンサ装置の近距離にある指を撮影した場合に取得された画像における特定の水平ラインの輝度を示すグラフである。図20には、光源703が発光しているときに撮影された画像における輝度1201と、光源704が発光しているときに撮影された画像における輝度1202と、輝度1201と輝度1202との差分1203とが示されている。図中の領域1204は、対象物が位置する領域であり、領域1205は、外部光源が位置する領域である。
 外部光源が位置する外部光源領域1205では、輝度1201および輝度1202の両方について、輝度レベルの盛り上がりが存在する。しかし、これらは、2つの画像で同じ輝度レベルにあるため、輝度差分1203には殆ど現れない。
 対象物が存在する対象物領域1204では、輝度差分1203が正の値をとる領域と負の値をとる領域とが存在する。これらの領域の境界では、輝度レベルが0になる。この点の付近では、対象物と外部光源との区別がつかない。特に、平坦部の多い形状を有する対象物では、輝度レベルが0に近い領域が広く現れ、一層判定が困難である。
 対象物領域1204全体に着目すると、領域の左端では輝度1201が高く、輝度差分1203は正の値を示す。領域の右端では輝度1202が高く、輝度差分1203は負の値を示す。したがって、本実施形態の制御部は、輝度差分1203において、極大値をとる位置を含む所定値以上の正の値をとる領域と、その右側に現れる、極小値をとる位置を含む他の所定値以下の負の値をとる領域とをペアリングする。そして、そのペアリングされた領域間においては、輝度差分1203がゼロ近辺の値であっても対象物領域と推定して処理する。本明細書では、そのようにして対象物領域と推定された領域を「推定対象物領域」と称する。
 図19の(b)は、このような処理を加えた場合のマスク画像を示している。同一の指の分断が回避されていることがわかる。外形情報としてやや不完全な部分も見受けられるが、実際の動作として指などの単位で領域を区分けする上では問題ない。各領域の輝度比計算のための主要領域が問題なく確保できているため、モーションセンサとしての認識動作は問題なく行えることが確認できている。
 次に、上記の処理を行うモーションセンサ装置の構成を説明する。
 図21は、本実施形態におけるモーションセンサ装置の構成を示す図である。ここでは、簡単のため、2つの光源702、703を有する構成を採用するが、上述のように、3光源への拡張も可能である。図21において、図14と同じ構成要素については同じ符号を用い、説明を省略する。本実施形態における制御部910は、実施形態2における構成要素に加え、さらに極大値探索部1401と、極小値探索部1402と、ペアリング部1403と、マスク減算部1404とを有している。
 以下、図22を参照しながら、本実施形態における制御部910の動作を説明する。図22は、本実施形態における制御部910の動作を示すフローチャートである。
 制御部910は、まず、イメージセンサ701の第1の露光タイミングで、光源702を発光させながら第1の画像フレームの撮像を行うことによって第1の画像を取得する(ステップS301)。次に、イメージセンサ701の第2の露光タイミングで、光源703を発光させながら第2の画像フレームの撮像を行うことによって第2の画像を取得する(ステップS302)。この際、光源703の発光出力を光源702の発光出力よりも低くする。低い発光出力は、例えば、露光時間中の発光している期間を短くしたり、発光仕事率(ワット数)の小さい発光デバイスに変更したりすることによって実現され得る。
 2つの画像フレームにおいて、外部光源706の像は同じ輝度レベルで撮影される。一方、対象物705の像は、光源702、703の出力差により、第2の画像フレームの方が低い輝度で撮影される。その結果、第1の画像フレームと第2の画像フレームとで、対象物705の像の輝度に差が生じる。
 第1の画像フレームと第2の画像フレームは、露光完了後、読み出し転送が行われ、差分作成部711およびマスク処理部712に送られる。
 差分作成部711は、第1の画像と第2の画像との差分データを生成する(ステップS303)。差分データは、極大値探索部1401、極小値探索部1402、およびマスク処理部712に送られる。
 極大値探索部1401は、差分データから極大値をとる位置を含む第1の値以上の領域を抽出し、その領域の座標情報を、極大値座標情報としてペアリング部1403に出力する(ステップS304)。極小値探索部1402は、差分データから極小値をとる位置を含む第2の値以下の領域を抽出し、その領域の座標情報を、極小値座標情報としてペアリング部1403に出力する(ステップS305)。ここで、第1の値は0に近い正の値であり、第2の値は0に近い負の値であり得る。
 ペアリング部1403は、抽出された極大値を含む領域と、極小値を含む領域とから、マスク対象外とする領域を決定する(ステップS306)。具体的には、極大値座標情報に含まれる座標および極小値座標情報に含まれる座標のそれぞれから、ペアになる座標を決定し、それらの座標の間の推定対象物領域の座標情報をマスク減算部1404に送出する。この際、対応するペアの存在しない極大値座標情報および極小値座標情報は破棄する。
 マスク減算部1404は、差分作成部711から送られてきた差分データおよびペアリング部1403から送られてきたマスク対象外の領域を示す座標情報に基づき、マスク情報を生成する(ステップS307)。より具体的には、差分データにおいて所定の閾値よりも小さい値をもつ領域のうち、マスク対象外の領域に該当する領域を除外したマスク情報を生成し、マスク処理部712に送出する。
 マスク処理部712は、マスク減算部1404から送られてきたマスク情報を用いて、第1および第2の画像に対してマスク処理を行う(ステップS308)。すなわち、差分がないと判定された領域の輝度を無視するべく、該当する画素の輝度値をゼロなどの低い値に置換する。マスク処理部712は、マスク処理後の第1の画像を、第1のマスク済み画像として距離算出部713に送る。一方、マスク処理後の第2の画像は、第2のマスク済み画像として増幅部814に送る。
 増幅部814は、第2のマスク済み画像の輝度レベルを、光源702と光源703の出力比に応じて増幅する(ステップS309)。増幅部814は、輝度補正処理後の第2の画像を距離算出部713に送る。
 距離算出部713は、マスク処理後の第1の画像と、輝度補正処理後の第2の画像とに基づいて、対象物までの距離を算出する(ステップS310)。
 以上の処理により、遠方の対象物からの反射光の輝度差を大きくすることができるとともに、モーションセンサ装置付近に対象物がある場合に発生する輝度差が生じない領域による誤検出を救済することが可能となる。
 なお、本実施形態の背景光除去機能自体のON/OFFや、マスク作成時や極値探索時の閾値の動的な変更を可能にすることで更なる性能向上が可能である。例えば、対象物が非常に近くにあり、強い反射光がある場合は、イメージセンサの露光時間を短くし、アナログゲイン値も下げる必要が生じる。そのとき、外部光源の写り込みレベルが低下するため、背景光除去機能を作用させても電力の無駄にしかならない。
 このようなケースはいろいろな方法で検知できる。ひとつはイメージセンサの自動露光制御(露光時間および絞りの設定値の制御)、オートフォーカス、自動ゲイン制御の結果を使う方法である。これらの結果から撮像輝度のレベルや、対象物までの距離を知ることが出来る。これらの情報の少なくとも1つに基づいて、背景光除去機能のON/OFFや、閾値の変更が可能である。
 もうひとつの方法は、モーションセンサの持つ被写体距離計測の機能を使うものである。輝度比から求めた被写体距離やサイズに基づいて被写体からの反射光の強度推定が行える。輝度比算出の際に、照度差ステレオ法を用いた場合、物体の反射率などの材質情報も得ることが可能である。このため、これらの情報を用いれば、さらに高精度な被写体からの反射光の強度推定が可能である。これらの情報に基づき、背景光除去機能のON/OFFや、閾値の変更が可能である。
 このように、本開示のモーションセンサ装置の制御部は、第1の光源702の発光出力、第2の光源703の発光出力、イメージセンサ701の露光時間、イメージセンサ701のゲイン、イメージセンサ701のフォーカス状態、および絞りの設定値の少なくとも1つに基づいて、マスク処理の有無またはマスク処理の計算に使用する係数(閾値)を変化させてもよい。また、制御部は、対象物の距離情報、サイズ情報、および材質情報の少なくとも1つに基づいて、マスク処理の有無またはマスク処理に使用する係数を変化させてもよい。
 (実施形態4)
 実施の形態3における装置を構成する方法には、例えばノイマン型CPUなどを用いて前述の実施形態で示したとおりの手順で処理を実施する方法がある。しかし、ノイマン型CPUは画像処理に使用された場合、電力効率が低い。さらに、実施形態3におけるペアリングのような処理では画像の左右からの走査が必要であるため、実行時間がデータに依存して変動してしまうという課題がある。
 本実施形態は、これらの課題を解決する回路発明に関する。本実施形態の回路は、主にFPGA(Field Programmable Gate Array)などの再構成可能ロジックによって実現可能な実際の集積回路である。本実施形態のような再構成可能ロジックで動作可能な集積回路には、フラッシュメモリなどの記録媒体に格納された回路情報を電源投入時に読み込んで動作するものがある。
 図23は、本実施形態における回路構成図である。この回路は、カメラ信号の入力を行うためのカメラ入力部1501(CAMERA‐IN)と、カメラから入力された2種類の画像の差分をとる差分作成部1502(SUB)と、画像の1ラインの中から被写体の左エッジ、即ち差分信号がある閾値以上であるか否かを判定するコンパレータを備えた極大値探索部1503(CMP_L)と、画像の1ラインの中から被写体の右エッジ、即ち差分信号がある閾値以下であるか否かを判定するコンパレータを備えた極小値探索部1504(CMP_R)と、輝度差の絶対値がある閾値以下かどうかを判定するコンパレータを備えたマスク生成部1505(CMP_ABS)とを備えている。さらに、ライン内のピクセル数を数えるカウンタ部1515(COUNTER)と、制御部1506(CONTROL)と、画像の1ラインのピクセル数以上のフリップフロップを備えたマスク情報記録部としてのフリップフロップ1507(MASK_FF)と、極大値と極小値とのペアリング領域を一時的に保持する為の画像の1ラインのピクセル数以上のフリップフロップを備えたペアリング情報記録部としてのフリップフロップ1508(PAIR_FF)と、フリップフロップ1507に保存されたマスク情報とフリップフロップ1508に保存されたペアリング情報との論理積をとってマスク領域を一部取り除くマスク減算部1509(AND)と、マスクが完成するまでの間、画像を1ライン保持しておくラインメモリ1511と1512(LINE_RAM)と、画像データとマスクデータとを組み合わせてマスク領域の値は0に、それ以外の領域の値はそのまま出力するマスク処理部1513と1514(MASK)とを備える。
 続いて、本実施形態の回路の動作を説明する。
 カメラにおいて異なる発光条件で露光されて取得された2種類の画像は、カメラ入力部1501から同時に回路内に取り込まれる。これらの画像は、1ラインごとにラインメモリ1511、1512に保存されると共に、差分作成部1502に送られる。差分作成部1502は2つの信号の差を求めて出力する。極大値探索部1503は、差分作成部1502から送られてきた差分があらかじめ用意した一定の閾値以上かどうかを判定する。閾値以上であれば被写体の左エッジであると判定して、その結果を制御部1506に送る。極小値探索部1504は、差分作成部1502から送られてきた差分があらかじめ用意した一定の閾値以下かどうかを判定する。閾値以下であれば被写体の右エッジであると判定して、その結果を制御部1506に送る。
 カウンタ部1515は、カメラ入力部1501の水平同期信号でリセットされ、ピクセルクロックでインクリメントされるカウンタである。カウンタ部1515の値は画像ライン中の現在の読み込みピクセル位置を表す。この値は、マスク情報記録部としてのフリップフロップ1507とペアリング情報記録部としてのフリップフロップ1508にアドレス情報として送られる。
 マスク生成部1505は、差分作成部1502から送られてきた差分の絶対値が、あらかじめ用意した一定の閾値以上かどうかを判定する。閾値よりも小さければマスクすべき領域(非被写体領域)と判定して、マスク情報記録部としてのフリップフロップ1507における、カウンタ部1515から送られてきているアドレス位置のフリップフロップをセットする。
 制御部1506は、カメラ入力部1501の水平同期信号を受けて、マスク情報記録部としてのフリップフロップ1507のすべてのフリップフロップをリセットする。自らは第1の動作状態になり、極大値探索部1503から左エッジ情報が来るまで待機する。
 制御部1506は、極大値探索部1503から左エッジ情報が来た場合、ペアリング情報記録部としてのフリップフロップ1508のすべてのフリップフロップをセットした後に、第2の動作状態に遷移する。
 制御部1506は、第2の動作状態では、ペアリング情報記録部としてのフリップフロップ1508における、カウンタ部1515から送られてきているアドレス位置のフリップフロップをリセットする。
 制御部1506は、第2の動作状態の時に極小値探索部1504から右エッジ情報が送られてきた場合は、そのときのペアリング情報記録部としてのフリップフロップ1508のリセットされている領域をペアリング領域とする。そして、マスク減算部1509を利用して、フリップフロップ1507にフリップフロップ1508の論理積を適用し、ペアリング領域のマスクを解除する。続けて、自らは第1の動作状態に遷移し、再び、極大値探索部1503から左エッジ情報が来るまで待機する。
 この操作を1ラインの終了まで続けた後に、ラインメモリ1511と1512に蓄えられた画像データは、それぞれマスク処理部1513と1514で処理される。これらの画像データは、マスク情報記録部としてのフリップフロップ1507の状態に基づいてマスク部分の画素の輝度値が0に近い値に変更されて、背景光領域の除去が行われた画像として出力される。
 以上の回路を構成することで、データの内容に依存することなく、すべてのケースで同一の時間で処理を完了できる背景光除去回路が実現できる。
 なお、極大値探索部1503が探索する極大値と極小値探索部1504が探索する極小値は、扱う信号の符号に依存し、信号の定義次第で逆になる場合もある。
 (他の実施形態)
 以上、本開示の技術の例示として、実施形態1~4を説明した。しかし、本開示の技術はこれらの実施形態に限定されない。以下、他の実施形態を例示する。
 図24は、実施形態1に係るモーションセンサ装置を搭載したディスプレイ1001を示している。このディスプレイ1001は、2つの光源702、703を搭載している。このため、ディスプレイ1001に向かってジェスチャー入力を行うことができる。図24には、参考のため、ジェスチャー入力を行う手が模式的に示されている。図示されている手は、矢印の方向に移動しつつある。図24に示されるディスプレイでは、このような手の動きを高い感度で検知してジェスチャー入力を行うことができる。
 本実施形態に係るモーションセンサ装置をディスプレイなどに利用すれば、ジェスチャー入力によるチャンネルの切り替えなどのユーザーインターフェースに用いることもできる。また、人間の各部の動きを認識したダンスゲームなどへの応用も可能である。
 図24のディスプレイには、実施形態2などの他の実施形態に係るモーションセンサ装置を組み込んでも良い。このように、本開示は、上記のいずれかの実施形態に係るモーションセンサ装置と、当該モーションセンサ装置によって検出された対象物の運動に応答して表示内容を変化させるディスプレイとを備える電子装置を含む。
 本開示によるモーションセンサ装置の各実施形態によれば、距離計測の対象物以外の背景光の影響を除去し、より高精度な検出が可能になる。本開示によれば、リアルタイムな検出が求められる3Dモーションセンサ装置を提供できる。
 なお、本開示によるモーションセンサ装置の少なくとも一部の機能が有線または無線のネットワークを介して接続された他の装置によって実現されていてもよい。
 以上の実施形態では、対象物までの距離情報を得る方法として、複数の画像における当該対象物の輝度の比に基づく方法を説明した。しかし、輝度比によらず、例えば米国特許出願公開第2013/0182077号明細書に開示されているように、像の輪郭情報に基づいて対象物までの距離情報を得てもよい。米国特許出願公開第2013/0182077号明細書の開示内容全体を本願明細書に援用する。
 本開示によるモーションセンサ装置の実施形態は、リアルタイムに物体の3次元位置を計測できる機能を有する。このため、表示装置などの各種電気製品の非接触ジェスチャーユーザーインターフェースの用途に有用である。車載機器として搭乗者の状態、車外の人物や障害物の検知へも応用できる。ビデオカメラのオートフォーカス等の用途にも応用できる。
 100、700  基板
 101,701  イメージセンサ
 102,103,702,703,704  光源装置
 104,506,507,508,705,  対象物
 301,302,1201,1202  輝度
 303,304  輝度の極大値
 505,706  外部光源
 509  光源装置からの反射光
 510  外部直接光
 511  外部1次反射光
 512  外部2次反射光
 601,611,621,1001,1011  対象物の像
 602,612,1002,1012  外部光源の像
 710、810、910  制御部
 711,1502  差分作成部
 712,1513,1514  マスク処理部
 713  距離算出部
 814  増幅部
 901  レンズ
 902,903  撮像素子
 904  ハーフミラー
 1001  ディスプレイ
 1203  輝度差分
 1204  被写体領域
 1205  外部光源領域
 1401,1503  極大値探索部
 1402,1504  極小値探索部
 1403  ペアリング部
 1404,1509  マスク減算部
 1501  カメラ入力部
 1505  マスク生成部
 1507  マスク情報記録部としてのフリップフロップ
 1508  ペアリング情報記録部としてのフリップフロップ
 1511,1512  ラインメモリ
 1515  カウンタ部

Claims (15)

  1.  イメージセンサと、
     第1および第2の光源と、
     前記イメージセンサおよび前記第1および第2の光源を制御するように構成された制御部と、
    を備え、
     前記制御部は、
     第1の時間で前記第1の光源を発光させながら前記イメージセンサで第1のフレームの撮像を行い、
     第2の時間で前記第2の光源を発光させながら前記イメージセンサで第2のフレームの撮像を行い、
     前記第1のフレームの撮像によって取得した第1の画像と、前記第2のフレームの撮像によって取得した第2の画像との差に基づくマスク処理を、前記第1および第2の画像について実行し、
     前記マスク処理後の前記第1の画像と、前記マスク処理後の前記第2の画像とに基づいて、前記第1および第2の画像に含まれる対象物までの距離情報を得るように構成されている、
    モーションセンサ装置。
  2.  前記マスク処理は、前記第1の画像における画素の輝度値と、前記画素に対応する前記第2の画像における画素の輝度値との差分が閾値よりも小さい領域を、前記第1および第2の画像から除去する処理である、請求項1に記載のモーションセンサ装置。
  3.  前記制御部は、前記第2の光源を、前記第1の光源とは異なる出力で発光させるように構成されている、請求項1または2に記載のモーションセンサ装置。
  4.  イメージセンサと、
     第1および第2の光源と、
     前記イメージセンサおよび前記第1および第2の光源を制御するように構成された制御部と、
    を備え、
     前記制御部は、
     第1の時間で前記第1の光源を発光させながら前記イメージセンサで第1のフレームの撮像を行い、
     第2の時間で前記第2の光源を前記第1の光源とは異なる出力で発光させながら前記イメージセンサで第2のフレームの撮像を行い、
     前記第1のフレームの撮像によって取得した第1の画像と、前記第2のフレームの撮像によって取得した第2の画像との差に基づくマスク処理を、前記第1および第2の画像について実行し、
     前記マスク処理後の前記第1の画像および前記マスク処理後の前記第2の画像の少なくとも一方に、前記第1および第2の光源の発光出力の差に応じた輝度補正処理を実行し、
     前記輝度補正処理後の前記第1の画像から得られる対象物の輝度と、前記輝度補正処理後の前記第2の画像から得られる前記対象物の輝度との比に基づいて、前記対象物までの距離情報を得るように構成されている、
    モーションセンサ装置。
  5.  前記マスク処理は、前記第1の画像における画素の輝度値と、前記画素に対応する前記第2の画像における画素の輝度値との差分が閾値よりも小さい領域を、前記第1および第2の画像から除去する処理である、請求項4に記載のモーションセンサ装置。
  6.  前記第2の光源は、前記第1の光源よりも前記イメージセンサの近くに配置され、
     前記制御部は、前記第2の光源を前記第1の光源よりも低い出力で発光させながら前記イメージセンサで前記第2のフレームの撮像を行うように構成されている、
    請求項4または5に記載のモーションセンサ装置。
  7.  第3の光源をさらに備え、
     前記マスク処理を第1のマスク処理、前記輝度補正処理を第1の輝度補正処理、前記距離情報を第1の距離情報とするとき、
     前記制御部は、
     第3の時間で前記第3の光源を発光させながら前記イメージセンサで第3のフレームの撮像を行い、
     前記第2のフレームの撮像によって取得した前記第2の画像と、前記第3のフレームの撮像によって取得した第3の画像との差に基づく第2のマスク処理を、前記第2および第3の画像について実行し、
     前記第2のマスク処理後の前記第2の画像および前記第2のマスク処理後の前記第3の画像の少なくとも一方に、前記第2および第3の光源の発光出力の差に応じた第2の輝度補正処理を実行し、
     前記第2の輝度補正処理後の前記第2の画像から得られる前記対象物の輝度と、前記第2の輝度補正処理後の前記第3の画像から得られる前記対象物の輝度との比に基づいて、前記対象物までの第2の距離情報を生成するように構成されている、
    請求項4から6のいずれかに記載のモーションセンサ装置。
  8.  前記第2の光源は、前記第1および第3の光源よりも前記イメージセンサの近くに配置され、
     前記制御部は、前記第2の光源を前記第1および第3の光源よりも低い出力で発光させながら前記イメージセンサで前記第2のフレームの撮像を行うように構成されている、
    請求項7に記載のモーションセンサ装置。
  9.  イメージセンサと、
     第1および第2の光源と、
     前記イメージセンサおよび前記第1および第2の光源を制御するように構成された制御部と、
    を備え、
     前記制御部は、
     第1の時間で前記第1の光源を発光させながら前記イメージセンサで第1のフレームの撮像を行い、
     第2の時間で前記第2の光源を発光させながら前記イメージセンサで第2のフレームの撮像を行い、
     前記第1のフレームの撮像によって取得した第1の画像と、前記第2のフレームの撮像によって取得した第2の画像との差分データを生成し、
     前記差分データにおける、前記第1および第2の光源の配列方向に対応する方向のデータにおいて、差分が極大値になる位置と前記差分が極小値になる位置との間に含まれる推定対象物領域を決定し、
     前記第1の画像と前記第2の画像との差に基づくマスク処理を、前記第1および第2の画像における前記推定対象物領域を除く領域について実行し、
     前記マスク処理後の前記第1の画像と、前記マスク処理後の前記第2の画像とに基づいて、前記第1および第2の画像に含まれる対象物までの距離情報を得るように構成されている、
    モーションセンサ装置。
  10.  前記マスク処理は、前記第1の画像における画素の輝度値と、前記画素に対応する前記第2の画像における画素における輝度値との差分が、閾値よりも小さい領域を、前記第1および第2の画像から除去する処理である、請求項9に記載のモーションセンサ装置。
  11.  前記制御部は、前記第1の光源の発光出力、前記第2の光源の発光出力、前記イメージセンサの露光時間、前記イメージセンサのゲイン、前記イメージセンサのフォーカス状態、および絞りの設定値の少なくとも1つに基づいて、前記マスク処理の有無または前記マスク処理の計算に使用する係数を変化させるように構成されている、請求項1から10のいずれかに記載のモーションセンサ装置。
  12.  前記制御部は、前記対象物の距離情報、サイズ情報、および材質情報の少なくとも1つに基づいて、前記マスク処理の有無または前記マスク処理に使用する係数を変化させるように構成されている、請求項1から11のいずれかに記載のモーションセンサ装置。
  13.  イメージセンサと、第1および第2の光源とを備えるモーションセンサ装置において用いられる回路であって、
     第1の時間で前記第1の光源を発光させながら前記イメージセンサで第1のフレームの撮像を行うことによって取得された第1の画像と、第2の時間で前記第2の光源を発光させながら前記イメージセンサで第2のフレームの撮像を行うことによって取得された第2の画像との差分データを求めて出力する差分作成部と、
     前記差分データにおける1つの水平ラインのデータにおいて、差分が第1の閾値以上か否かを判定する極大値探索部と、
     前記差分データにおける前記1つの水平ラインのデータにおいて、差分が前記第1の閾値よりも小さい第2の閾値以下か否かを判定する極小値探索部と、
     前記差分データの絶対値が第3の閾値以下か否かを判定するマスク作成部と、
     前記極大値探索部から、前記差分が前記第1の閾値以上であることを示す情報を受けたとき、第1の動作状態から第2の動作状態に遷移し、前記極小値探索部から、前記差分が前記第2の閾値以下であることを示す情報を受けたとき、前記第2の動作状態から前記第1の動作状態に遷移する制御部と、
     前記マスク作成部の判定結果に基づいて背景領域のマスク情報を格納するマスク情報記録部と、
     前記制御部が前記第2の動作状態にあるとき、前記差分が前記第1の閾値以上になる位置と、前記差分が前記第2の閾値以下になる位置との間の領域であるペアリング領域の情報を格納するペアリング情報記録部と、
     前記制御部が前記第2の動作状態から前記第1の動作状態に遷移したとき、前記マスク情報記録部に格納された前記マスク情報に対して前記ペアリング情報記録部に格納された前記ペアリング情報の論理積を適用するマスク減算部と、
     を備えた回路。
  14.  再構成可能ロジックで実行するための請求項13の回路情報を格納した記録媒体。
  15.  イメージセンサと、第1および第2の光源と、前記イメージセンサから出力された複数の画像を処理する画像処理装置を備えるシステムにおいて使用される画像処理装置であって、
     プロセッサと、
     メモリと、
     前記メモリに格納されたコンピュータプログラムと、
    を備え、
     前記コンピュータプログラムは、前記プロセッサに、
     第1の時間で前記第1の光源を発光させながら前記イメージセンサで取得された第1の画像を取得させ、
     第2の時間で前記第2の光源を発光させながら前記イメージセンサで撮像された第2の画像を取得させ、
     前記第1の画像と前記第2の画像との差に基づくマスク処理を、前記第1および第2の画像について実行させ、
     前記マスク処理後の前記第1の画像と、前記マスク処理後の前記第2の画像とに基づいて、前記第1および第2の画像に含まれる対象物までの距離情報を得させる、
    画像処理装置。
PCT/JP2014/003403 2013-06-27 2014-06-25 複数の光源を有するモーションセンサ装置 WO2014208087A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480002230.XA CN104685318B (zh) 2013-06-27 2014-06-25 运动传感器装置、电路、记录介质以及图像处理装置
EP14818362.7A EP3015819B1 (en) 2013-06-27 2014-06-25 Motion sensor device having plurality of light sources
JP2015501249A JP6270808B2 (ja) 2013-06-27 2014-06-25 複数の光源を有するモーションセンサ装置
US14/423,608 US9863767B2 (en) 2013-06-27 2014-06-25 Motion sensor device having plurality of light sources

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-134600 2013-06-27
JP2013134600 2013-06-27

Publications (1)

Publication Number Publication Date
WO2014208087A1 true WO2014208087A1 (ja) 2014-12-31

Family

ID=52141446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/003403 WO2014208087A1 (ja) 2013-06-27 2014-06-25 複数の光源を有するモーションセンサ装置

Country Status (5)

Country Link
US (1) US9863767B2 (ja)
EP (1) EP3015819B1 (ja)
JP (1) JP6270808B2 (ja)
CN (1) CN104685318B (ja)
WO (1) WO2014208087A1 (ja)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9285893B2 (en) 2012-11-08 2016-03-15 Leap Motion, Inc. Object detection and tracking with variable-field illumination devices
CN105758311A (zh) * 2016-03-31 2016-07-13 浙江工业大学 一种利用轮循光源进行货架横梁安装孔检测的装置
US9436998B2 (en) 2012-01-17 2016-09-06 Leap Motion, Inc. Systems and methods of constructing three-dimensional (3D) model of an object using image cross-sections
US9465461B2 (en) 2013-01-08 2016-10-11 Leap Motion, Inc. Object detection and tracking with audio and optical signals
US9495613B2 (en) 2012-01-17 2016-11-15 Leap Motion, Inc. Enhanced contrast for object detection and characterization by optical imaging using formed difference images
US9613262B2 (en) 2014-01-15 2017-04-04 Leap Motion, Inc. Object detection and tracking for providing a virtual device experience
US9679215B2 (en) 2012-01-17 2017-06-13 Leap Motion, Inc. Systems and methods for machine control
JP2017146753A (ja) * 2016-02-17 2017-08-24 セイコーエプソン株式会社 位置検出装置、及び、そのコントラスト調整方法
US10585193B2 (en) 2013-03-15 2020-03-10 Ultrahaptics IP Two Limited Determining positional information of an object in space
US10609285B2 (en) 2013-01-07 2020-03-31 Ultrahaptics IP Two Limited Power consumption in motion-capture systems
US10691219B2 (en) 2012-01-17 2020-06-23 Ultrahaptics IP Two Limited Systems and methods for machine control
WO2020137199A1 (ja) * 2018-12-27 2020-07-02 株式会社デンソー 物体検出装置および物体検出方法
US10846942B1 (en) 2013-08-29 2020-11-24 Ultrahaptics IP Two Limited Predictive information for free space gesture control and communication
US11099653B2 (en) 2013-04-26 2021-08-24 Ultrahaptics IP Two Limited Machine responsiveness to dynamic user movements and gestures
US11353962B2 (en) 2013-01-15 2022-06-07 Ultrahaptics IP Two Limited Free-space user interface and control using virtual constructs
US11402202B2 (en) * 2017-06-15 2022-08-02 Ams Sensors Singapore Pte. Ltd. Proximity sensors and methods for operating the same
US11720180B2 (en) 2012-01-17 2023-08-08 Ultrahaptics IP Two Limited Systems and methods for machine control
US11740705B2 (en) 2013-01-15 2023-08-29 Ultrahaptics IP Two Limited Method and system for controlling a machine according to a characteristic of a control object
US11778159B2 (en) 2014-08-08 2023-10-03 Ultrahaptics IP Two Limited Augmented reality with motion sensing
US11775033B2 (en) 2013-10-03 2023-10-03 Ultrahaptics IP Two Limited Enhanced field of view to augment three-dimensional (3D) sensory space for free-space gesture interpretation
US11868687B2 (en) 2013-10-31 2024-01-09 Ultrahaptics IP Two Limited Predictive information for free space gesture control and communication
US11994377B2 (en) 2012-01-17 2024-05-28 Ultrahaptics IP Two Limited Systems and methods of locating a control object appendage in three dimensional (3D) space
CN113227840B (zh) * 2018-12-27 2024-11-19 株式会社电装 物体检测装置以及物体检测方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016195592A1 (en) * 2015-06-03 2016-12-08 Heptagon Micro Optics Pte. Ltd. Optoelectronic module operable for distance measurements
WO2017209707A1 (en) * 2016-06-03 2017-12-07 Buyuksahin Utku A system and a method for capturing and generating 3d image
US10430647B2 (en) 2017-01-13 2019-10-01 Microsoft Licensing Technology, LLC Tailored illumination profile for articulated hand tracking
US10627518B2 (en) * 2017-06-02 2020-04-21 Pixart Imaging Inc Tracking device with improved work surface adaptability
US10489925B2 (en) * 2017-08-13 2019-11-26 Shenzhen GOODIX Technology Co., Ltd. 3D sensing technology based on multiple structured illumination
JP6970376B2 (ja) * 2017-12-01 2021-11-24 オムロン株式会社 画像処理システム、及び画像処理方法
EP3804604A4 (en) * 2018-05-31 2022-04-13 Panasonic i-PRO Sensing Solutions Co., Ltd. CAMERA APPARATUS, IMAGE PROCESSING METHOD AND CAMERA SYSTEM
TWI662940B (zh) * 2018-06-01 2019-06-21 廣達電腦股份有限公司 影像擷取裝置
US10599964B1 (en) 2019-01-15 2020-03-24 Capital One Services, Llc System and method for transmitting financial information via color matrix code
US10628638B1 (en) 2019-03-22 2020-04-21 Capital One Services, Llc Techniques to automatically detect fraud devices
US11506565B2 (en) 2019-09-24 2022-11-22 Falk PLI Engineering & Surveying, Inc. Four-dimensional crane rail measurement
US11995841B2 (en) 2019-09-24 2024-05-28 Falk PLI Engineering & Surveying, Inc. Four-dimensional crane rail measurement systems
WO2021166912A1 (ja) * 2020-02-18 2021-08-26 株式会社デンソー 物体検出装置
CN112615979B (zh) * 2020-12-07 2022-03-15 江西欧迈斯微电子有限公司 图像获取方法、图像获取装置、电子装置和存储介质
TWI757015B (zh) * 2020-12-29 2022-03-01 財團法人工業技術研究院 取像方法
US11662828B2 (en) * 2021-05-28 2023-05-30 Pixart Imaging Inc. Method for identifying object, optical sensing apparatus and system
US12079971B2 (en) * 2022-02-07 2024-09-03 Samsung Electronics Co., Ltd. Hand motion pattern modeling and motion blur synthesizing techniques

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0642915A (ja) * 1992-06-03 1994-02-18 Stanley Electric Co Ltd 光学的測定装置
JP2001012909A (ja) 1998-05-25 2001-01-19 Matsushita Electric Ind Co Ltd レンジファインダ装置及びカメラ
JP2004117235A (ja) * 2002-09-27 2004-04-15 Nippon Telegr & Teleph Corp <Ntt> 3次元形状計測方法および3次元形状計測装置
JP2008122223A (ja) 2006-11-13 2008-05-29 Suzuki Motor Corp 距離計測装置
JP2012117896A (ja) * 2010-11-30 2012-06-21 Saxa Inc 測距装置、侵入者監視装置、距離計測方法、及びプログラム
US20130182077A1 (en) 2012-01-17 2013-07-18 David Holz Enhanced contrast for object detection and characterization by optical imaging

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2356996A (en) * 1999-12-03 2001-06-06 Hewlett Packard Co Improvements to digital cameras
US7095002B2 (en) * 2004-02-23 2006-08-22 Delphi Technologies, Inc. Adaptive lighting control for vision-based occupant sensing
JP5073273B2 (ja) 2006-11-21 2012-11-14 スタンレー電気株式会社 遠近判定方法およびその装置
WO2008066742A1 (en) * 2006-11-22 2008-06-05 Geng Z Jason Wide field-of-view reflector and method of designing and making same
WO2008120321A1 (ja) * 2007-03-28 2008-10-09 Fujitsu Limited 画像処理装置、画像処理方法、画像処理プログラム
US7961365B2 (en) * 2007-05-10 2011-06-14 Ricoh Company, Ltd. Image reading apparatus and image forming apparatus
US20090073307A1 (en) * 2007-09-14 2009-03-19 Marcus Kramer Digital image capture device and method
US20110035174A1 (en) * 2008-04-07 2011-02-10 Nxp B.V. Time synchronization in an image processing circuit
EP2537332A1 (en) * 2010-02-19 2012-12-26 Dual Aperture, Inc. Processing multi-aperture image data
EP2558775B1 (en) * 2010-04-16 2019-11-13 FLEx Lighting II, LLC Illumination device comprising a film-based lightguide
BR112013033552B1 (pt) * 2011-06-30 2022-02-22 Microsoft Technology Licensing, Llc Método em um sistema de computador que implementa um decodificador de vídeo, método em um sistema de computação, meio legível por computador e sistema de computação
US8934675B2 (en) * 2012-06-25 2015-01-13 Aquifi, Inc. Systems and methods for tracking human hands by performing parts based template matching using images from multiple viewpoints
US20140198363A1 (en) * 2013-01-17 2014-07-17 Qualcomm Mems Technologies, Inc. Method for generating a point light source in a plane at an arbitrary location using a dynamic hologram

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0642915A (ja) * 1992-06-03 1994-02-18 Stanley Electric Co Ltd 光学的測定装置
JP2001012909A (ja) 1998-05-25 2001-01-19 Matsushita Electric Ind Co Ltd レンジファインダ装置及びカメラ
JP2004117235A (ja) * 2002-09-27 2004-04-15 Nippon Telegr & Teleph Corp <Ntt> 3次元形状計測方法および3次元形状計測装置
JP2008122223A (ja) 2006-11-13 2008-05-29 Suzuki Motor Corp 距離計測装置
JP2012117896A (ja) * 2010-11-30 2012-06-21 Saxa Inc 測距装置、侵入者監視装置、距離計測方法、及びプログラム
US20130182077A1 (en) 2012-01-17 2013-07-18 David Holz Enhanced contrast for object detection and characterization by optical imaging

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GORDON WAN; XIANGLI LI; GENNADIY AGRANOV; MARC LEVOY; MARK HOROWITZ: "CMOS Image Sensors with Multi-bucket Pixels for Computational Photography", IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol. 47, no. 4, April 2012 (2012-04-01), XP011440036, DOI: doi:10.1109/JSSC.2012.2185189
SHINSUKE OGINO; TSUYOSHI MIGITA; TAKESHI SHAKUNAGA: "Simultaneous Recovery of Reflectance Property, Shape and Light Position Based on Torrance-Sparrow Model", THE INSTITUTE OF ELECTRONICS, INFORMATION, AND COMMUNICATION ENGINEERS, IEICE TECHNICAL REPORT IE2007-347, vol. PRMU2007, March 2008 (2008-03-01)

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10699155B2 (en) 2012-01-17 2020-06-30 Ultrahaptics IP Two Limited Enhanced contrast for object detection and characterization by optical imaging based on differences between images
US9934580B2 (en) 2012-01-17 2018-04-03 Leap Motion, Inc. Enhanced contrast for object detection and characterization by optical imaging based on differences between images
US9436998B2 (en) 2012-01-17 2016-09-06 Leap Motion, Inc. Systems and methods of constructing three-dimensional (3D) model of an object using image cross-sections
US12086327B2 (en) 2012-01-17 2024-09-10 Ultrahaptics IP Two Limited Differentiating a detected object from a background using a gaussian brightness falloff pattern
US9495613B2 (en) 2012-01-17 2016-11-15 Leap Motion, Inc. Enhanced contrast for object detection and characterization by optical imaging using formed difference images
US11994377B2 (en) 2012-01-17 2024-05-28 Ultrahaptics IP Two Limited Systems and methods of locating a control object appendage in three dimensional (3D) space
US9626591B2 (en) 2012-01-17 2017-04-18 Leap Motion, Inc. Enhanced contrast for object detection and characterization by optical imaging
US11782516B2 (en) 2012-01-17 2023-10-10 Ultrahaptics IP Two Limited Differentiating a detected object from a background using a gaussian brightness falloff pattern
US9652668B2 (en) 2012-01-17 2017-05-16 Leap Motion, Inc. Enhanced contrast for object detection and characterization by optical imaging based on differences between images
US9672441B2 (en) 2012-01-17 2017-06-06 Leap Motion, Inc. Enhanced contrast for object detection and characterization by optical imaging based on differences between images
US9679215B2 (en) 2012-01-17 2017-06-13 Leap Motion, Inc. Systems and methods for machine control
US9697643B2 (en) 2012-01-17 2017-07-04 Leap Motion, Inc. Systems and methods of object shape and position determination in three-dimensional (3D) space
US9741136B2 (en) 2012-01-17 2017-08-22 Leap Motion, Inc. Systems and methods of object shape and position determination in three-dimensional (3D) space
US11720180B2 (en) 2012-01-17 2023-08-08 Ultrahaptics IP Two Limited Systems and methods for machine control
US9767345B2 (en) 2012-01-17 2017-09-19 Leap Motion, Inc. Systems and methods of constructing three-dimensional (3D) model of an object using image cross-sections
US9778752B2 (en) 2012-01-17 2017-10-03 Leap Motion, Inc. Systems and methods for machine control
US10565784B2 (en) 2012-01-17 2020-02-18 Ultrahaptics IP Two Limited Systems and methods for authenticating a user according to a hand of the user moving in a three-dimensional (3D) space
US11308711B2 (en) 2012-01-17 2022-04-19 Ultrahaptics IP Two Limited Enhanced contrast for object detection and characterization by optical imaging based on differences between images
US10691219B2 (en) 2012-01-17 2020-06-23 Ultrahaptics IP Two Limited Systems and methods for machine control
US10366308B2 (en) 2012-01-17 2019-07-30 Leap Motion, Inc. Enhanced contrast for object detection and characterization by optical imaging based on differences between images
US10410411B2 (en) 2012-01-17 2019-09-10 Leap Motion, Inc. Systems and methods of object shape and position determination in three-dimensional (3D) space
US9285893B2 (en) 2012-11-08 2016-03-15 Leap Motion, Inc. Object detection and tracking with variable-field illumination devices
US10609285B2 (en) 2013-01-07 2020-03-31 Ultrahaptics IP Two Limited Power consumption in motion-capture systems
US10097754B2 (en) 2013-01-08 2018-10-09 Leap Motion, Inc. Power consumption in motion-capture systems with audio and optical signals
US9465461B2 (en) 2013-01-08 2016-10-11 Leap Motion, Inc. Object detection and tracking with audio and optical signals
US9626015B2 (en) 2013-01-08 2017-04-18 Leap Motion, Inc. Power consumption in motion-capture systems with audio and optical signals
US11353962B2 (en) 2013-01-15 2022-06-07 Ultrahaptics IP Two Limited Free-space user interface and control using virtual constructs
US11874970B2 (en) 2013-01-15 2024-01-16 Ultrahaptics IP Two Limited Free-space user interface and control using virtual constructs
US11740705B2 (en) 2013-01-15 2023-08-29 Ultrahaptics IP Two Limited Method and system for controlling a machine according to a characteristic of a control object
US10585193B2 (en) 2013-03-15 2020-03-10 Ultrahaptics IP Two Limited Determining positional information of an object in space
US11693115B2 (en) 2013-03-15 2023-07-04 Ultrahaptics IP Two Limited Determining positional information of an object in space
US11099653B2 (en) 2013-04-26 2021-08-24 Ultrahaptics IP Two Limited Machine responsiveness to dynamic user movements and gestures
US11461966B1 (en) 2013-08-29 2022-10-04 Ultrahaptics IP Two Limited Determining spans and span lengths of a control object in a free space gesture control environment
US11282273B2 (en) 2013-08-29 2022-03-22 Ultrahaptics IP Two Limited Predictive information for free space gesture control and communication
US12086935B2 (en) 2013-08-29 2024-09-10 Ultrahaptics IP Two Limited Predictive information for free space gesture control and communication
US10846942B1 (en) 2013-08-29 2020-11-24 Ultrahaptics IP Two Limited Predictive information for free space gesture control and communication
US11776208B2 (en) 2013-08-29 2023-10-03 Ultrahaptics IP Two Limited Predictive information for free space gesture control and communication
US11775033B2 (en) 2013-10-03 2023-10-03 Ultrahaptics IP Two Limited Enhanced field of view to augment three-dimensional (3D) sensory space for free-space gesture interpretation
US11868687B2 (en) 2013-10-31 2024-01-09 Ultrahaptics IP Two Limited Predictive information for free space gesture control and communication
US9613262B2 (en) 2014-01-15 2017-04-04 Leap Motion, Inc. Object detection and tracking for providing a virtual device experience
US12095969B2 (en) 2014-08-08 2024-09-17 Ultrahaptics IP Two Limited Augmented reality with motion sensing
US11778159B2 (en) 2014-08-08 2023-10-03 Ultrahaptics IP Two Limited Augmented reality with motion sensing
JP2017146753A (ja) * 2016-02-17 2017-08-24 セイコーエプソン株式会社 位置検出装置、及び、そのコントラスト調整方法
CN105758311B (zh) * 2016-03-31 2018-06-26 浙江工业大学 一种利用轮循光源进行货架横梁安装孔检测的装置
CN105758311A (zh) * 2016-03-31 2016-07-13 浙江工业大学 一种利用轮循光源进行货架横梁安装孔检测的装置
US11402202B2 (en) * 2017-06-15 2022-08-02 Ams Sensors Singapore Pte. Ltd. Proximity sensors and methods for operating the same
JP7135846B2 (ja) 2018-12-27 2022-09-13 株式会社デンソー 物体検出装置および物体検出方法
JP2020106341A (ja) * 2018-12-27 2020-07-09 株式会社デンソー 物体検出装置および物体検出方法
CN113227840A (zh) * 2018-12-27 2021-08-06 株式会社电装 物体检测装置以及物体检测方法
WO2020137199A1 (ja) * 2018-12-27 2020-07-02 株式会社デンソー 物体検出装置および物体検出方法
CN113227840B (zh) * 2018-12-27 2024-11-19 株式会社电装 物体检测装置以及物体检测方法

Also Published As

Publication number Publication date
EP3015819A4 (en) 2016-07-06
CN104685318B (zh) 2018-01-26
US20150226553A1 (en) 2015-08-13
JP6270808B2 (ja) 2018-01-31
EP3015819B1 (en) 2019-10-23
JPWO2014208087A1 (ja) 2017-02-23
CN104685318A (zh) 2015-06-03
EP3015819A1 (en) 2016-05-04
US9863767B2 (en) 2018-01-09

Similar Documents

Publication Publication Date Title
JP6270808B2 (ja) 複数の光源を有するモーションセンサ装置
JP6270813B2 (ja) 複数の光源を有するモーションセンサ装置
JP6299983B2 (ja) 複数の光源を有するモーションセンサ装置
US12003853B2 (en) Systems and methods for adjusting focus based on focus target information
KR102471148B1 (ko) 주변광을 차단하는 3차원 이미징 및 깊이 측정을 위한 씨모스 이미지 센서
CN107424186B (zh) 深度信息测量方法及装置
JP6946188B2 (ja) 複数技術奥行きマップ取得および融合のための方法および装置
JP6302414B2 (ja) 複数の光源を有するモーションセンサ装置
JP6756747B2 (ja) time−of−flightセンサを使用して露出推定を実行するための方法および装置
KR102473740B1 (ko) 동시 rgbz 센서 및 시스템
CN108648225B (zh) 目标图像获取系统与方法
CN111982023B (zh) 图像捕捉装置组件、三维形状测量装置和运动检测装置
WO2019184184A1 (zh) 目标图像获取系统与方法
US9659379B2 (en) Information processing system and information processing method
JP2017506740A (ja) 深さ情報抽出装置および方法
JP2013124941A (ja) 測距装置、及び測距方法
JP2016075658A (ja) 情報処理システムおよび情報処理方法
US10447998B2 (en) Power efficient long range depth sensing
JP2017134561A (ja) 画像処理装置、撮像装置および画像処理プログラム
KR20120000234A (ko) 조도 센서를 이용한 백색광 3차원 스캐너의 자동 노출 제어 방법
JP2016133440A (ja) 撮像システム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015501249

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14818362

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14423608

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE