WO2014207818A1 - Spin wave circuit - Google Patents
Spin wave circuit Download PDFInfo
- Publication number
- WO2014207818A1 WO2014207818A1 PCT/JP2013/067354 JP2013067354W WO2014207818A1 WO 2014207818 A1 WO2014207818 A1 WO 2014207818A1 JP 2013067354 W JP2013067354 W JP 2013067354W WO 2014207818 A1 WO2014207818 A1 WO 2014207818A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ferromagnetic
- spin wave
- information
- layer
- spin
- Prior art date
Links
- 230000005418 spin wave Effects 0.000 title claims abstract description 298
- 230000005294 ferromagnetic effect Effects 0.000 claims abstract description 214
- 230000005415 magnetization Effects 0.000 claims abstract description 91
- 239000000758 substrate Substances 0.000 claims abstract description 14
- 238000000034 method Methods 0.000 claims description 35
- 230000001902 propagating effect Effects 0.000 claims description 17
- 239000002184 metal Substances 0.000 claims description 14
- 229910052751 metal Inorganic materials 0.000 claims description 14
- 239000003302 ferromagnetic material Substances 0.000 claims description 11
- 229910045601 alloy Inorganic materials 0.000 claims description 10
- 239000000956 alloy Substances 0.000 claims description 10
- 229910052742 iron Inorganic materials 0.000 claims description 7
- 230000004888 barrier function Effects 0.000 claims description 6
- 230000007704 transition Effects 0.000 claims description 6
- 230000005291 magnetic effect Effects 0.000 abstract description 62
- 230000001360 synchronised effect Effects 0.000 abstract description 4
- 239000000463 material Substances 0.000 description 28
- 229910019236 CoFeB Inorganic materials 0.000 description 24
- 230000008878 coupling Effects 0.000 description 24
- 238000010168 coupling process Methods 0.000 description 24
- 238000005859 coupling reaction Methods 0.000 description 24
- 238000010586 diagram Methods 0.000 description 21
- 230000005540 biological transmission Effects 0.000 description 19
- 230000005684 electric field Effects 0.000 description 10
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 7
- 239000004065 semiconductor Substances 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 238000001459 lithography Methods 0.000 description 5
- 238000001514 detection method Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000007772 electrode material Substances 0.000 description 4
- 230000005284 excitation Effects 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- 230000010365 information processing Effects 0.000 description 4
- 238000001312 dry etching Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 238000007747 plating Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000005530 etching Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 229910052741 iridium Inorganic materials 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 230000010363 phase shift Effects 0.000 description 2
- 229910003321 CoFe Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 230000005293 ferrimagnetic effect Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K19/00—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
- H03K19/02—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
- H03K19/18—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using galvano-magnetic devices, e.g. Hall-effect devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/32—Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
- H01F10/324—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
- H01F10/3254—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B61/00—Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/20—Spin-polarised current-controlled devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N59/00—Integrated devices, or assemblies of multiple devices, comprising at least one galvanomagnetic or Hall-effect element covered by groups H10N50/00 - H10N52/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/32—Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
- H01F10/324—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
- H01F10/3286—Spin-exchange coupled multilayers having at least one layer with perpendicular magnetic anisotropy
Definitions
- the present invention relates to a waveguide using a spin wave as an information transmission medium, an element, and an arithmetic circuit using the same.
- CMOS-based semiconductor computing elements have improved performance along with miniaturization, but power consumption caused by leakage current that increases due to miniaturization, AC loss and Joule loss that occurs when current flows through the wiring The increase is remarkable and it is difficult to improve the operation speed.
- measures are taken to turn off the power of blocks that are not used, such as multi-core arrangement with a plurality of processors and power gating, all of which are considered to have limitations.
- Non-Patent Document 1 There are two types of spin currents: the electron spin current, in which electrons propagating on the Fermi surface are carriers, and the spin wave spin current, in which the precession of the spin confined to the atoms in the ferromagnetic waveguide propagates in the form of a wave. Type exists. Among them, the spin wave has a relatively long propagation distance of several tens of ⁇ m to several centimeters, and is expected to be applied to a large-scale arithmetic circuit.
- Patent Document 1 discloses a method for efficiently generating a spin wave and a method for controlling the phase of the spin wave, and further exhibits wave characteristics such as reflection, refraction, transmission, and interference of the spin wave.
- An applied information processing device is disclosed.
- Non-Patent Document 2 and Patent Document 2 in addition to spin wave excitation, detection, and phase control methods, specific logic operation circuits (AND circuits, OR circuits, NAND circuits, NOR circuits, etc.) using spin waves are disclosed. ) Is disclosed, and it is suggested that power consumption can be significantly reduced when a spin wave arithmetic circuit is used.
- Non-Patent Document 3 describes a spin wave calculation compatible with the current synchronous arithmetic circuit in which written information is calculated using a spin wave and then stored again and further information processing proceeds.
- a circuit is disclosed. The contents are briefly shown below.
- FIG. 1 is a schematic diagram of a spin wave arithmetic circuit shown in Non-Patent Document 3.
- 101 is a Si substrate
- 102 is a wire-shaped (linear) spin wave waveguide
- 103 is a ferromagnetic film having a magnetization easy axis in the in-plane direction of film such as Ni
- 104 is a ferroelectric film such as PZT
- 105 is Al
- a metal electrode material film 106 and the like 106 are lines of a metal material such as Al.
- Reference numeral 107 denotes a region for exciting the spin wave
- reference numeral 108 denotes a region for detecting the spin wave.
- the ferromagnetic film 103, the ferroelectric film 104, and the metal electrode material film 105 constitute an electromagnetism (ME) effect element that can control the direction of magnetic anisotropy of the ferromagnetic film 103 when an electric field is applied.
- ME electromagnetism
- Information on “0” and “1” is written in the ferromagnetic film 103 by applying an electric field of +, ⁇ (specifically, upward and downward in the direction perpendicular to the film surface) to the ME element.
- an electric field having the same polarity is again applied to the ME element to excite spin waves.
- the first calculation is performed using the wave nature of the spin wave, and the result is recorded on the Ni film.
- the second operation changes the wave nature of the spin wave. And recorded on the Ni film in the region 108.
- the calculation result is electrically detected through the ME element in the region 108.
- FIGS. 2 to 4 are explanatory views showing the spin wave waveguide 102 and the ME element in more detail.
- FIG. 2 is a schematic diagram of a connection portion between the spin wave waveguide 102 and the ME element
- FIGS. 3 and 4 are schematic diagrams showing magnetization states of the spin wave waveguide and the Ni film.
- the ME element that is a laminate of the Ni film 103, the ferroelectric film 104, and the metal electrode material film 105 is arranged so as to be inserted into a part of the spin wave waveguide.
- the magnetization of the ferromagnetic material is oriented in the direction perpendicular to the film surface.
- the magnetization of the Ni film 103 constituting the ME element has an easy axis in the in-plane direction.
- the magnetization direction cannot be completely directed in the in-film direction, and as shown in FIG. It faces in the direction between the membrane surfaces. Since there is one stable point in each of the + y / ⁇ y directions, information of “1” and “0” can be recorded on the Ni film.
- 5 to 8 are diagrams showing in more detail the information writing method using the wave nature of the spin wave described above.
- information 1 is recorded in the information input unit 301 as shown in FIG. 5, that is, the case where the magnetization is directed in the + y direction.
- the length of the spin wave waveguide 102 connecting the information input unit 301 and the information output unit 303 is equal to n times the wavelength ⁇ of the spin wave (n ⁇ : n is a natural number).
- the information input unit 301 and the information output unit 303 are connected by a spin wave waveguide 102 having a length n + (1/2) times the wavelength ⁇ of the spin wave as shown in FIG.
- the amplitude of the spin wave is in the ⁇ y direction, and this information is recorded in the information output unit 303 as it is.
- the information input unit 301 and the information output unit 303 are connected by a spin wave waveguide having a length n times (n ⁇ ) the wavelength ⁇ of the spin wave, and information 0, that is, ⁇ y is input to the information input unit 301.
- the information input unit 301 and the information output unit 303 are connected by a spin wave waveguide 102 having a length of n + 1/2 times the wavelength ⁇ of the spin wave, and information 0, that is, When magnetization in the ⁇ y direction is recorded, the amplitude of the spin wave after time t is in the + y direction, and this information is recorded in the information output unit 303 as it is.
- Non-Patent Document 2 In the spin wave arithmetic circuit described in Non-Patent Document 2, there is no mechanism for sequentially advancing the operation according to the clock, so the current mainstream synchronous information processing method cannot be used and the application is remarkable. Limited. In Non-Patent Document 3, this point is improved. However, in the spin wave circuit shown in FIG. 2, an easy axis is formed in the in-plane direction (y-axis direction) on a part of the spin wave waveguide having an easy axis in the film surface vertical direction (z-axis direction). The information recording part which has is inserted.
- the present invention relates to a spin wave circuit that efficiently propagates spin waves without reflection of spin waves, an information recording unit structure that can record information efficiently, a recording control method, and an existing synchronous arithmetic circuit using the same A compatible arithmetic circuit is presented.
- a ferromagnetic line for propagating spin waves is provided on a substrate, and a plurality of regions in which a ferromagnetic layer is laminated on a ferromagnetic line via a nonmagnetic intermediate layer are provided.
- a magnetic layer is ferromagnetically coupled through a nonmagnetic intermediate layer, and a spin wave circuit is configured by making the easy axis of magnetization of the ferromagnetic line orthogonal to the easy axis of magnetization of the ferromagnetic layer.
- the ferromagnetic line and the ferromagnetic layer formed thereon can be made of Co, Fe or an alloy thereof, or a metal containing B in the Co, Fe or an alloy thereof.
- the easy axis of the ferromagnetic line is parallel to the extending direction of the ferromagnetic line, and the easy axis of the ferromagnetic layer is perpendicular to the film surface.
- the magnetization easy axis of the ferromagnetic line is perpendicular to the extending direction of the ferromagnetic line and parallel to the substrate surface, and the magnetization easy axis of the ferromagnetic layer is perpendicular to the film surface.
- the magnetization easy axis of the ferromagnetic line is perpendicular to the substrate surface, and the magnetization easy axis of the ferromagnetic layer is parallel to the film surface.
- an insulating layer is formed on the ferromagnetic layer, and an electrode made of a nonmagnetic metal is provided on the insulating layer.
- An insulating layer is formed on the ferromagnetic layer in a predetermined region, and an electrode made of a ferromagnetic material is provided on the insulating layer.
- the ferromagnetic layer formed on the ferromagnetic line is preferably composed of two ferromagnetic layers whose magnetizations are antiparallel to each other and a nonmagnetic layer sandwiched between the two ferromagnetic layers. .
- a ferromagnetic line for propagating a spin wave is provided on a substrate, and a nonmagnetic intermediate layer, a ferromagnetic layer, an insulating layer, and an electrode layer are arranged in this order on the ferromagnetic line. Multiple layers are provided, and the ferromagnetic line and ferromagnetic layer are ferromagnetically coupled via a nonmagnetic intermediate layer.
- the easy axis of the ferromagnetic line and the easy axis of the ferromagnetic layer are orthogonal.
- the information input unit for exciting the spin wave propagating in the ferromagnetic line and the input of information, and the primary information for exciting the spin wave propagating in the ferromagnetic record Used as a recording unit or an information reproducing unit for reading information.
- the electrode layer of the information reproducing unit is a conductive ferromagnetic layer.
- a plurality of ferromagnetic lines are crossed at the primary information recording unit and the information reproducing unit. Further, the distance between the adjacent information input unit, primary information recording unit, and information reproducing unit is an even multiple or an odd multiple of the half wavelength of the spin wave propagating through the ferromagnetic line.
- a first voltage having a predetermined pulse voltage and a predetermined pulse width is applied to the electrode layer of the information input unit to apply information to the ferromagnetic layer constituting the information input unit. And applying a second voltage having a predetermined pulse width smaller than the predetermined threshold voltage to the electrode layer of the information input section or the primary information recording section where information is recorded,
- a third voltage is applied to the electrode layer of the primary information recording unit or information reproducing unit to which information is to be transmitted from the information input unit or primary information recording unit to thereby reproduce the primary information recording unit or information reproducing unit.
- the step of lowering the energy barrier value of the magnetization transition of the ferromagnetic layer constituting the part and the application of the third voltage is stopped after information is recorded in the primary information recording part or information reproducing part to which information is to be transmitted And a step of performing.
- the timing at which the third voltage is applied is the same as the timing at which the second voltage is applied, or the timing after which the spin wave reaches the primary information recording unit or information reproducing unit to which information should be transmitted. To do.
- the second voltage is a sine wave
- the third voltage is a rectangular wave
- the figure which shows the prior art example of the arithmetic circuit using a spin wave waveguide The schematic diagram of the connection part of the conventional spin wave waveguide and ME element.
- the schematic diagram which shows the magnetization state of a spin wave waveguide and Ni film The schematic diagram which shows the magnetization state of a spin wave waveguide and Ni film.
- the figure which shows the recording method of the information in a spin wave waveguide The figure which shows the recording method of the information in a spin wave wave waveguide.
- the figure which shows the recording method of the information in a spin wave waveguide The figure which shows the recording method of the information in a spin wave waveguide.
- the schematic diagram which shows one Example of a spin wave waveguide and a spin wave circuit The schematic diagram which shows one Example of a spin wave waveguide and a spin wave circuit.
- Explanatory drawing which shows the change of the internal magnetic field in the conventional spin wave waveguide.
- Explanatory drawing which shows the change of the internal magnetic field in the spin wave waveguide of this invention.
- the schematic diagram which shows one Example of a spin wave waveguide and a spin wave circuit The figure which shows the voltage application to each part of the spin wave circuit which comprises a spin arithmetic circuit.
- achieves AND logic and OR logic.
- FIG. 9 is a schematic diagram showing a first embodiment of a spin wave circuit including a spin wave waveguide and an information recording unit.
- the ferromagnetic line 405 constituting the spin wave waveguide is formed on the base film 406 as a continuous long film.
- a spin wave circuit is configured by connecting regions such as the information input unit 407, the primary information recording unit 408, and the information reproducing unit 409 with a spin wave waveguide.
- the information input unit 407 and the primary information recording unit 408 include a nonmagnetic film 404, a ferromagnetic film 403 that performs information recording and spin wave excitation, an insulating film 402, and an electrode 401 on a ferromagnetic line 405. Consists of.
- a conductive ferromagnetic film 410 is used instead of the electrode 401, and the information reproducing unit 409 is a so-called ferromagnetic tunnel junction (MTJ).
- MTJ ferromagnetic tunnel junction
- the direction perpendicular to the film surface refers to the z-axis direction
- the direction parallel to the film surface refers to a direction in the xy plane.
- the easy axis of the ferromagnetic line 405 constituting the spin wave waveguide is in the direction perpendicular to the film surface (z-axis).
- the easy magnetization axes of the ferromagnetic films 403 and 410 are in the in-plane direction (y-axis).
- the ferromagnetic line 405 constituting the spin wave waveguide and the ferromagnetic film 403 are ferromagnetically coupled via the nonmagnetic film 404.
- the magnetization direction of the ferromagnetic film 403 does not completely go in the film surface, but is slightly directed in the direction perpendicular to the film surface (z-axis) as shown in FIG.
- there are two stable directions of magnetization of the ferromagnetic film 403 in the ⁇ y-axis directions and information “1” and “0” can be represented by the magnetizations directed in these directions.
- FIGS. 10 and 11 are schematic views showing second and third embodiments of a spin wave circuit including a spin wave waveguide and an information recording unit.
- 501 is an electrode
- 502 is an insulating film
- 503 is a ferromagnetic film for recording information and spin wave excitation
- 504 is a non-magnetic film
- 505 is a ferromagnetic line constituting a spin wave waveguide
- 506 is It is a base film.
- a spin wave circuit is configured by connecting the information input unit 507, the primary information recording unit 508, the information reproducing unit 509, and the like with a spin wave waveguide.
- a conductive ferromagnetic film 510 is used instead of the electrode 501, and the information reproducing unit 509 is a so-called ferromagnetic tunnel junction (MTJ).
- MTJ ferromagnetic tunnel junction
- the magnetization easy axis of the ferromagnetic line 505 constituting the spin wave waveguide is in the in-film direction (x-axis). ), That is, the direction parallel to the extending direction of the ferromagnetic line.
- the easy axis of magnetization of the ferromagnetic films 503 and 510 is in the direction perpendicular to the film surface (z axis).
- the ferromagnetic line 505 and the ferromagnetic film 503 constituting the spin wave waveguide are ferromagnetically coupled via the nonmagnetic film 504.
- the magnetization direction of the ferromagnetic film 503 is not completely directed in the vertical direction, but rather is directed in the direction tilted slightly in the film in-plane direction (x-axis) as shown in FIG.
- the magnetization direction of the ferromagnetic film 503 is not completely directed in the vertical direction, but rather is directed in the direction tilted slightly in the film in-plane direction (x-axis) as shown in FIG.
- there are two stable directions of magnetization of the ferromagnetic film 503 in the ⁇ z-axis direction there are two stable directions of magnetization of the ferromagnetic film 503 in the ⁇ z-axis direction, and information “1” and “0” can be represented by the magnetizations directed in these directions.
- 511 is an electrode
- 512 is an insulating film
- 513 is a ferromagnetic film for recording information and exciting a spin wave
- 514 is a non-magnetic film
- 515 is a ferromagnetic line constituting a spin wave waveguide
- Reference numeral 516 denotes a base film.
- a spin wave circuit is configured by connecting the information input unit 517, the primary information recording unit 518, the information reproducing unit 519, and the like with a spin wave waveguide.
- a conductive ferromagnetic film 520 is used instead of the electrode 511, and the information reproducing unit 519 is a so-called ferromagnetic tunnel junction (MTJ).
- MTJ ferromagnetic tunnel junction
- the easy axis of magnetization of the ferromagnetic line 515 constituting the spin wave waveguide is the in-plane direction (y-axis), that is, the ferromagnetic body.
- the direction is perpendicular to the line extending direction and parallel to the substrate surface.
- the easy magnetization axes of the ferromagnetic films 513 and 520 are in the direction perpendicular to the film surface (z-axis).
- the ferromagnetic line 515 and the ferromagnetic film 513 constituting the spin wave waveguide are ferromagnetically coupled via the nonmagnetic film 514.
- the magnetization direction of the ferromagnetic film 513 does not completely turn in the vertical direction, but rather in the direction tilted slightly in the film in-plane direction (y-axis) as shown in FIG.
- the magnetization direction of the ferromagnetic film 513 does not completely turn in the vertical direction, but rather in the direction tilted slightly in the film in-plane direction (y-axis) as shown in FIG.
- the material for the ferromagnetic films 403, 503, and 513 As the material for the ferromagnetic films 403, 503, and 513, first, Fe that can modulate the anisotropy of the interface with an electric field, an alloy of Co and Fe, or an alloy to which B is added is suitable. In that case, for the insulating films 402, 502, and 512, MgO that gives a large modulation effect by an electric field to the interface anisotropy of the above material is a suitable material.
- the CoFeB film can modulate the value of the perpendicular magnetic anisotropy at the interface according to the film thickness t, and can control the direction of the magnetic anisotropy from the in-plane direction to the vertical direction according to the film thickness.
- CoFeB having a composition of Co 20 Fe 60 B 20 will be described as an example, but the present invention is not necessarily limited thereto.
- the critical film thickness at which the magnetization of the ferromagnetic film switches from perpendicular to in-plane varies depending on the composition of CoFeB, the material of the underlying film, and the like.
- the Co: Fe composition ratio of CoFeB is preferably 50:50 to 0: 100.
- the underlying films 406 and 506 are used.
- 516 is preferably an alloy based on Ta.
- nonmagnetic films 404, 504, and 514 that mediate the ferromagnetic coupling between the ferromagnetic films 403, 503, and 513 and the ferromagnetic lines 405, 505, and 515 constituting the spin wave waveguide, Ta, Ru, Ir, Os, Cr or the like is used.
- the film thickness of these materials is an important parameter that controls the strength of ferromagnetic coupling and must be carefully selected. Details will be described later.
- Ni or an alloy based on Ni and Fe can be used in addition to a CoFe based alloy.
- the type of insulating film is not limited to the MgO film.
- an oxide, nitride, or oxynitride containing at least one element selected from Al, Zn, Ti, Zr, Ni, Si, and Fe is used.
- Al is suitable as a material for the electrodes 401, 501, and 511, but a metal having a low resistivity such as Cu, Au, Ag, and alloys thereof is also desirable.
- the materials for the base films 406, 506, and 516 are appropriately selected in order to accurately control the crystal growth of the material for the spin wave waveguide.
- the width of the ferromagnetic line used in the experiment is 50 nm
- the dimensions of the ferromagnetic films 403 and 410, the MgO film 402, and the electrode 401 provided in the information input unit 407, the primary information recording unit 408, and the information reproducing unit 407 are as follows.
- the x-axis direction is 25 nm
- the y-axis direction is 50 nm
- the structure has in-plane magnetic anisotropy in the y-axis direction.
- the ferromagnetic film 403 has a rectangular shape, but this shape may be an elliptical shape, an octagonal shape, or a hexagonal shape having different values of the major axis / minor axis.
- Information recording is performed by applying an electric field pulse to the information input unit 407.
- an electric field pulse is applied from the CoFeB film 403 to the electrode 401 with the CoFeB film 403 having a positive polarity
- the electronic state of the CoFeB film 403 near the interface with the MgO film 402 changes, and the perpendicular magnetic anisotropy near the interface increases.
- the magnetization starts precession as shown in FIG.
- Vth a certain threshold voltage
- the amplitude of magnetization precession increases and the magnetization starts precessing about the z-axis. If the period of precession is T and the width ⁇ of the voltage pulse is approximately T / 2, the magnetization gradually decays around the other stable point after the voltage pulse is cut as shown in FIG. At the end, it falls to a stable point and stops.
- the principle of writing by a spin wave basically follows the method shown in FIGS. 5 to 8, but in the present invention, the spin wave waveguide uses a material having a uniform easy axis, and a nonmagnetic film is formed on the spin wave waveguide. In this structure, a ferromagnetic film ferromagnetically coupled to the spin wave waveguide is provided as a recording film.
- FIG. 14 is a diagram showing how the internal magnetic field Hin in the spin wave waveguide changes in the length direction of the waveguide with respect to the structure of the known example shown in FIGS. 2 and 3.
- the internal magnetic field Hin is the sum of all magnetic fields such as an externally applied magnetic field, an exchange coupling magnetic field, a demagnetizing field, and a magnetic field generated from a magnetostatic coupling. 2 and 3, it can be seen that the internal magnetic field changes greatly in the vicinity of the region 103 where information by spin waves is recorded.
- FIG. 15 is a diagram showing a change in the length direction of the waveguide of the internal magnetic field of the spin wave waveguide of the present invention. Since the changes in the y-axis direction component Hin_y of the internal magnetic field and the z-axis direction component Hin_z of the internal magnetic field are balanced near the region where the ferromagnetic film 403 is present, the magnitude of the total internal magnetic field Hin is the strength corresponding to the recording layer. Almost no change even immediately under the magnetic film 403.
- a major feature of the present invention is that the internal magnetic field in the spin wave waveguide is uniform. For this reason, the spin wave efficiently propagates directly below the ferromagnetic film 403, thereby enabling an efficient recording operation.
- the ferromagnetic coupling magnetic field is controlled by changing the material of the nonmagnetic film and its film thickness.
- the magnitude of the ferromagnetic coupling magnetic field can be changed between 500 and 3000 Oe by changing the film thickness between 0.4 and 1 nm. .
- the ferromagnetic coupling magnetic field is as small as less than 1000 Oe, even when a spin wave is excited by applying a maximum voltage of 0.4 V between the electrode 401 and the ferromagnetic film 403 in the structure of FIG.
- the primary information recording unit 408 recording could not be performed on the ferromagnetic film 403.
- the spin wave information was recorded in the ferromagnetic film 403 of the primary information recording unit 408 when a spin wave was excited by applying a voltage of 0.4 V.
- the ferromagnetic coupling magnetic field exceeded 2000 Oe, information was recorded in the ferromagnetic film 403 of the primary information recording unit 408 even when a spin wave was excited by applying a voltage of 0.3 V.
- the ferromagnetic coupling magnetic field exceeds 2000 Oe, the voltage value at which recording is possible does not drop below 0.3V.
- Hex Jex / (Ms ⁇ t) (Ms is strong) between the above-described nonmagnetic film material and the ferromagnetic coupling constant Jex that can be controlled by the film thickness.
- t saturation magnetization of the ferromagnetic material constituting the magnetic line or ferromagnetic film
- Jex thickness of the spin wave waveguide or ferromagnetic film.
- Jex the value of the ferromagnetic coupling constant Jex that can be controlled by the material of the nonmagnetic film and its film thickness.
- the film thickness of the spin wave waveguide or the ferromagnetic film is reduced, or the spin wave waveguide or the ferromagnetic film Reducing the saturation magnetization Ms of the film is also effective in increasing Hex.
- the effective ferromagnetic coupling magnetic field Hex can be increased.
- the magnetization direction of the ferromagnetic line is the in-film direction, so that an external magnetic field is applied in the z-axis direction.
- the ferromagnetic film 403 is also affected by the external magnetic field due to the application of the external magnetic field. However, if the saturation magnetization Ms of the ferromagnetic film 403 is made larger than NiFe, the ferromagnetic film 403 is strongly affected by the demagnetizing field acting in the direction perpendicular to the film surface. The magnetization of the magnetic film 403 is still in the in-plane direction, and the operation is not greatly affected.
- the width of the ferromagnetic material line constituting the spin wave waveguide is 50 nm
- the dimensions of the MgO films 502 and 512 and the electrodes 501 and 511 are 50 nm ⁇ 50 nm squares. This is because the easy axis of magnetization of the ferromagnetic film provided in these regions is in the direction perpendicular to the film surface (z-axis direction). This is because more coherent magnetization reversal can be realized without being affected by the magnetic field.
- the ferromagnetic films 503 and 513 have a square shape, but this shape may be a circular shape, a regular octagon, a regular hexagon, or the like.
- the magnetic anisotropy is smaller than the case of 1 (1), it is necessary to apply an external magnetic field in the x-axis or y-axis direction in order to make the magnetization state of the ferromagnetic line uniform.
- a magnetic field of 700 Oe was applied in the x-axis direction in the case of Table 1 (2) and 1500 Oe in the y-axis direction in the case of Table 1 (3).
- the ferromagnetic films 503 and 513 are also affected by the external magnetic field due to the application of the external magnetic field, but since the magnetic anisotropy is sufficiently large in the direction perpendicular to the film surfaces of the ferromagnetic films 503 and 513, the operation is greatly affected. Absent.
- the ferromagnetic coupling magnetic field can be effectively increased in the laminated structure having the same ferromagnetic coupling constant.
- NiFe is a powerful material as a material for the spin wave waveguide.
- the magnitude of the demagnetizing field generated in the waveguide is smaller than that of CoFeB, so that the external magnetic field necessary for stabilizing the above-described magnetization state can also be reduced.
- the external magnetic field in the x-axis direction is about 500 Oe in the case of Table 1 (2), and the y-axis direction in the case of Table 1 (3).
- the external magnetic field of can be about 1000 Oe.
- Information transmission and calculation processing from the primary information recording unit 408 (508, 518) to the information reproduction unit 409 (509, 519) are performed in the same procedure as described above. That is, a spin voltage is excited by applying a pulse voltage of V ⁇ Vth to the electrodes of the primary information recording unit 408 (508, 518). Then, the spin wave propagates through the ferromagnetic line 405 (505, 515) constituting the spin wave waveguide, and information is written into the information reproducing unit 409 (509, 519).
- the length of the pulse applied to the electrode of the primary information recording unit is basically an integral multiple of the period T of the magnetization precession.
- FIG. 16 is a schematic diagram showing an embodiment in which the ferromagnetic film 403 of FIG. 9 is composed of three laminated ferri layers 801, 802, and 803.
- 401 is an electrode
- 402 is an insulating film
- 801 is a first ferromagnetic film constituting the laminated ferri layer
- 803 is a second ferromagnetic film constituting the laminated ferri layer
- 802 is two ferromagnetic films.
- a nonmagnetic film provided for antiferromagnetically coupling 801 and 803, and a nonmagnetic film 404 provided for ferromagnetically coupling the ferromagnetic film 803 and the ferromagnetic material line 405 constituting the spin wave waveguide.
- a film 406 is a base film
- 407 is an information input unit
- 408 is a primary information recording unit
- 409 is an information reproducing unit.
- the material of the structure other than the laminated ferri layer and its physical properties are the same as those in FIG.
- a ferromagnetic film constituting the laminated ferri layer CoFeB can be used as in FIG.
- the ferromagnetic film 801 and the insulating film 402 are the same as in FIG. It is possible to modulate the interface magnetic anisotropy acting on the interface, and to record information on the laminated ferri layer or to excite spin waves in the laminated ferri layer.
- the nonmagnetic film 802 for example, Ru, Ir, Os, Cr, or the like can be used.
- the magnetization directions of the ferromagnetic films 801 and 803 constituting the laminated ferri layer are drawn so as to be substantially in the film plane (y-axis direction). Due to the magnetic coupling, a so-called cant state in which the magnetization directions of the two are slightly in the z-axis direction is obtained.
- the leakage magnetic fields from the two ferromagnetic films 801 and 803 are coupled to each other to form a so-called closed magnetic flux structure, so that the influence of the demagnetizing field at the time of magnetization reversal can be reduced, and writing with a smaller voltage is possible.
- the same dimensions and materials as those in FIG. 9 are used except for the laminated ferri layer, CoFeB having a thickness of 1.4 nm is used for the ferromagnetic film 801, and CoFeB having a thickness of 1.5 nm is used for the ferromagnetic film 803.
- the voltage to be applied to the electrode 401 of the information input unit 407 can be reduced by about 20% in order to excite the spin wave necessary for recording information in the primary information recording unit 408.
- FIG. 16 shows an example of a structure of a spin wave circuit having a laminated ferri layer based on the structure of FIG. 9, but a spin wave circuit having a laminated ferri layer based on the structure of FIGS. It is also possible to configure. In that case, a material having an easy axis of magnetization in the direction perpendicular to the film surface (z-axis direction) is used for the ferromagnetic film constituting the laminated ferri layer. For example, a CoFeB film having a thickness of 1.3 nm or less can be used.
- the basic spin wave waveguide structure, the recording of input information, the transmission of information by spin waves, and the recording operation have been described.
- the magnetizations of the ferromagnetic films 403, 503, and 513 in any of FIGS. 9, 10, and 11 that is, cases 1 to 3 in Table 1). It has been a condition for constituting the recording layer that has two directions equivalent in terms of energy. In order for these magnetizations oriented in the stable direction to transition to the other stable state, it is necessary to overcome the energy barrier between the two states, and the movement of the magnetization of the spin wave is via ferromagnetic coupling. The driving force that causes this transition.
- the amplitude of the excited spin wave is limited, and normally the saturation magnetization Ms of the ferromagnetic material line constituting the spin wave waveguide is 20 to 30% is the upper limit. It has also been reported that when a spin wave having an excessively large amplitude is excited, the waveform and phase of the spin wave are greatly disturbed by a nonlinear phenomenon caused in a ferromagnetic material. Therefore, a method capable of writing information by a spin wave having a relatively small amplitude that is excited with a small amount of power is strongly desired.
- FIG. 17 and FIG. 18 show one method for solving the above-described problem, and are schematic diagrams showing the principle of efficiently recording spin wave information in the information recording unit.
- FIG. 17 is a diagram showing a spin wave circuit constituting the basic spin calculation circuit shown in FIG. 9 and voltage application to each part thereof. Vi represents a voltage applied to the information input unit 407, and Vo represents a voltage applied to the primary information recording unit 408.
- FIG. 18 is a diagram showing waveforms and application timings of the voltage Vi applied to the information input unit 407, the voltage Vo applied to the primary information recording unit 408, and the like.
- the voltage Vi applied to the electrode of the information input unit 407 is turned on at a certain timing t1, as shown in FIG.
- a sinusoidal voltage having a certain frequency as shown in FIG. 18 is applied to excite a spin wave in the information input unit 407.
- the voltage waveform is not limited to a sine wave, and may be a rectangular waveform corresponding to a half cycle of the sine wave.
- the frequency of Vi varies depending on the ferromagnetic line material and structure constituting the spin wave waveguide, but is usually about several GHz to 10 GHz.
- the repetition period of the sinusoidal voltage to be applied depends on the ferromagnetic line material and structure of the spin wave waveguide and the ferromagnetic film material of the primary information recording unit, and the ferromagnetic line between the ferromagnetic line and the ferromagnetic film. Although it depends on the strength of the coupling, etc., it is usually set from 1 to several cycles.
- a negative voltage Vo is applied to the electrode of the primary information recording unit 408.
- this voltage waveform is a rectangular waveform.
- the applied voltage Vo increases the interfacial magnetic anisotropy of the ferromagnetic film 403 (for example, CoFeB).
- the magnetization of the ferromagnetic film 403 described above is more vertically oriented, so that the value of the energy barrier that blocks the two energy stable points described above is reduced, and even with a smaller amplitude spin wave, the information Recording can be performed.
- the spin wave excited by the information input unit 407 reaches the primary information recording unit 408 at the timing t2, and performs a recording operation in the primary information recording unit 408.
- the timing t3 is desirably a timing at which the amplitude of the spin wave propagating to the primary information recording unit 408 becomes zero.
- the timing at which the voltage Vo is applied to the primary information recording unit 408 is the same as the timing t1 at which the electric field Vi is applied to the information input unit 407, but the timing is after t1 and It may be until the timing t2 when the spin wave reaches the primary information recording unit 408.
- FIG. 19 shows an example of a spin wave circuit that realizes AND logic
- FIG. 20 shows an example of a spin wave circuit that realizes NAND logic
- Input terminals 1001 and 1002 are two terminals for inputting information
- output terminal 1005 is a terminal for outputting a calculation result.
- the input terminal and the output terminal are connected by spin wave waveguides 1003 and 1004, and the two spin wave waveguides 1003 and 1004 intersect at the output terminal 1005.
- information when the magnetization is downward in the figure is represented by “0”, and information when the magnetization is upward is represented by “1”.
- the length of the spin wave waveguides 1003 and 1004 is set to n times the wavelength ⁇ of the spin wave, and information “0” is recorded in advance on the output terminal 1005. deep.
- the truth table is shown in Table 2.
- OR logic can be realized by recording information “1” in advance in the output terminal 1002 in the spin wave circuit of FIG.
- the length of the spin wave waveguide connecting the input terminal 1001 and the output terminal 1005 is (n + 1/2) times the wavelength ⁇ of the spin wave.
- the length of the spin wave waveguide connecting the terminal 1002 and the output terminal 1005 is also (n + 1/2) times the wavelength ⁇ of the spin wave.
- “1” is recorded in advance in the output terminal 1005.
- Table 3 The truth table is shown in Table 3.
- the phase of the spin wave excited at the input terminal 1001 and the spin wave excited at the input terminal 1002 are shifted by ⁇ .
- the two are weak and interfere, and the information “1” remains at the output terminal 1005.
- the spin waves at the input terminal 1001 and the spin waves at the input terminal 1002 are both out of phase by ⁇ , so they are strengthened and interfered as they are.
- the information “0” is overwritten on the output terminal 1005.
- NAND logic is realized. Since the NAND logic element is a universal circuit that realizes all logic operation circuits, any logic operation circuit can be realized using the spin wave waveguide of the present invention.
- the four leftmost recording units 1101a, 1101b, 1101c, and 1101d are areas for writing input signals.
- the signal “0” is written in the recording units 1103 and 1104, and the signal “1” is written in the recording unit 1105 before the calculation.
- an electric signal is synchronously input to the four recording units 1101a to 1101d to generate a spin wave.
- the spin wave propagates rightward in FIG. 21 through the spin wave waveguide.
- the spin wave propagating through the two spin wave waveguides in the upper left of FIG. 21 writes information in the recording unit 1103 where the two spin wave waveguides 1102 merge. Only in the case of “1”, the information written in the recording unit 1103 is “1”, that is, an AND operation is realized.
- the spin wave waveguide at the lower left of FIG. 21 only the phase of the spin wave propagating through the spin wave waveguide 1102 is shifted by a half wavelength, so that only when 1101c is “1” and 1101d is “0”, recording is performed. “1” is written in the part 1104.
- a spin wave is generated by applying a voltage in synchronization with the recording units 1103 and 1104.
- the spin wave further propagates rightward through the spin wave waveguide, and information is written in the recording unit 1105.
- Information “1” is written in the recording unit 75. That is, the truth table shown in Table 4 below is established.
- the selector function is realized in which the input signal 2 is selected when the control signal is “0” and the input signal 1 is selected when the control signal is “1”.
- the phase shift of the spin wave excited in the recording units 1101a to 1101d, or the phase shift of the spin wave due to the manufacturing error of the distance between the recording units 1101a to 1101d and the recording units 1103 and 1104, can be detected once. Since it can be absorbed by the calculation operation, the operation margin can be expanded. However, in applications that require ultra-high speed operation, the recording units 1103 and 1104 can be omitted, and the operation of the selector can be completed with a single clock.
- the selector circuit shown in the present embodiment is, for example, a basic circuit of an FPGA (Field-Programmable Gate Array) logic element. Therefore, by combining the selector circuits and increasing the scale, the FPGA logic element is implemented in this embodiment.
- An example spin wave circuit can be used.
- FIG. 22 shows an example in which a full adder which is a larger-scale arithmetic circuit is configured using the spin wave waveguide of the present invention.
- Ai, Bi, Ci, Oi, Ai ′, Ci ′ (i 1, 2,...)
- Drawn in a circle correspond to an information input unit, a primary information recording unit, an information output unit, and the like.
- Ai and Bi are information recording units, and the i-th digit information “0” and “1” are recorded therein.
- Ci is a carry in the addition operation, and “1” is recorded when a carry occurs in the i-th operation result, and “0” is recorded when no carry occurs.
- Oi is an information output unit that outputs the calculation result of the i-th digit
- Ai ′, Ci ′, etc. are primary information recording units of the calculation result.
- FIG. 22 shows operations related to calculations up to the third stage.
- the arrow in the figure schematically represents the spin wave waveguide, and information is transmitted by the spin wave in the direction of the arrow. Specific operations are summarized in Table 5.
- the distance between A1 and A1 is set to (2n ⁇ 1) / 2 times the wavelength of the spin wave (n is a natural number), so that the information on A1 and A1 Is inverted from “0” to “1” or from “1” to “0”.
- the distance between B1 and B1 ′ is made an integral multiple of the wavelength of the spin wave, the information on B1 is transmitted to B1 ′ as it is.
- information transmission from A1, B1 ′ to O1 information transmission from C2 to C2 ′, writing to A2 and B2, and “0” writing to O2 are performed.
- the operation in the second stage starts with information transmission from C2 to C2 ′, writing to A2 and B2, and writing “0” to O2 in information transmission at timing T3.
- the distance between C2 and C2 ′ is made an integral multiple of the spin wave distance, information is transmitted from C2 to C2 ′ without change.
- information transmission from A2 ⁇ A2 , C2 ′ ⁇ O2, C2 ′ ⁇ C2 ′′ is performed.
- the distance between A2 and A2 is (2n ⁇ 1) / 2 of the wavelength of the spin wave.
- the distance (n is a natural number)
- the distance between C2 ′ and O2 and C2 ′ and C2 ′′ is an integral multiple of the spin wave.
- the information is inverted from A2 to A2 , and the information is held and transmitted as it is in C2 ′ ⁇ O2 and C2 ′ ⁇ C2 ′′.
- A2 ⁇ C3, B2 ⁇ C3, C2 ′′ ⁇ Information transmission to C3 and information transmission from A2 to O2 and B2 to O2 are performed.
- the distances between these information recording parts are all integer multiples of the wavelength of the spin wave.
- FIG. 23 is a schematic diagram showing an integration method of a spin wave arithmetic circuit and a CMOS circuit.
- reference numeral 1201 denotes a CMOS transistor
- reference numeral 1202 denotes a semiconductor layer in which the CMOS transistor is formed. Note that the CMOS transistor 1201 and the gate wiring 1203 extend in the depth direction of FIG. 23, but only the foremost part is shown in FIG. In FIG. 23, a normal planar CMOS transistor is shown.
- a transistor having a three-dimensional structure such as a FIN-FET or a vertical transistor having a vertical channel may be used.
- the CMOS transistor forms a clock for controlling the timing of operation, a detection circuit for a read signal, an interface circuit for exchanging information with a peripheral memory and various devices, and the like.
- FIG. 23 shows an example of generating a clock.
- 1203 is a gate wiring for controlling the timing of sending the clock signal
- 1204 is a global wiring for connecting the CMOS part for generating the clock and the spin wave arithmetic circuit section
- 1205 is an electrode.
- Reference numeral 1206 denotes a contact wiring that connects the CMOS transistor and the spin wave arithmetic circuit unit
- 1207 denotes a wiring layer in which these contact wirings are laid out.
- the illustration in the depth direction is omitted.
- the clock signal generated in the CMOS circuit portion is transmitted to the information recording unit / spin wave generating unit 1209 of the spin wave arithmetic circuit through the wiring 1208.
- the spin wave excited by the information recording unit / spin wave generation unit 1209 transmits a signal to the next information recording unit / spin wave generation device through the spin wave waveguide 1210. That is, the uppermost layer 1211 is a spin wave arithmetic circuit unit.
- the semiconductor part for forming the CMOS transistor in the lowermost layer can be formed, and the spin wave arithmetic circuit and the spin wave waveguide wiring network formed from the metal magnetic material in the uppermost layer can be formed.
- the area of the chip can be greatly reduced and the cost can be reduced.
- the voltage to be used is 0.5 V or less, which can be significantly lower than the conventional CMOS circuit, and the total number of devices can be greatly reduced.
- the logic chip using the spin wave arithmetic circuit of this embodiment it is possible to realize a significant reduction in power compared to the logic chip using the conventional CMOS circuit.
- CMOS transistor 1201 is formed on a semiconductor substrate such as a Si substrate using normal lithography, diffusion, and etching processes.
- a via for the lowermost contact 1206 is formed, and, for example, a W film is formed after pulling a base film of Ti / TiN, and planarized by CMP.
- an insulating film is formed by CVD or the like, a hole for electrode formation is formed by lithography and dry etching, and a metal such as Cu is formed in the hole by a plating method, and CMP is performed.
- An electrode is produced by planarization. After that, a via for forming the next contact 1206 is formed by lithography and dry etching, a metal such as Cu is formed in the via by a plating method, and planarized by CMP. Cu vias are formed. This process is repeated to form a desired wiring layer 1207.
- an uppermost electrode 1205 is formed and planarized by CMP, and then a base film / an insulating film such as a ferromagnetic film / MgO constituting the spin wave waveguide 1210 / an electrode film and a cap film for contact are formed.
- the films are sequentially formed by a method such as sputtering.
- a wiring pattern of the spin wave waveguide is formed by lithography, the cap film is first patterned by dry etching, and then a ferromagnetic film / insulating film such as MgO constituting the spin wave waveguide 1210 is formed using the patterned cap film as a mask. / Pattern the electrode film.
- a mask for the information recording portion is formed by lithography, the pattern is transferred again to the cap film, and then the information recording portion is etched and patterned using the cap film as a mask.
- a passivation film such as SiN without breaking the vacuum
- the wafer is taken out, an insulating film is formed by CVD or the like, and then flattened by CMP.
- a via connecting the electrode 1205 and the clock transmission wiring 1208 is formed, and a metal such as Cu is formed in the plating via and then flattened by CMP, and the contact 1206 and the information recording unit / spin wave generating unit 1209 are formed.
- wiring 1208 is formed on it with Cu or the like, and the whole is again embedded in the insulating film by CVD or the like, thereby completing the chip fabrication.
- this invention is not limited to the above-mentioned Example, Various modifications are included.
- the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
- a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
- spin wave waveguide 1004 ... spin wave waveguide 1005 ... output terminal 1006 ... information input section 1007 ... Primary recording unit 1008 ... Information reproducing unit 1101 ... Recording unit 1102 ... Spin wave waveguide 1103 ... Recording unit 1104 ... Recording unit 1105 ... Recording unit 1201 ... CMOS transistor 1202 ... CMOS semiconductor layer 1203 ... Gate wiring 1204 ... Global wiring 1205... Electrode 1206... Contact wiring 1207... CMOS semiconductor layer 1208... Wiring 1209... Information recording unit / spin wave generation unit 1210.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Power Engineering (AREA)
- Hall/Mr Elements (AREA)
Abstract
Provided is a spin wave guide which is compatible with an existing synchronous processing unit and for which power consumption is small, as well as a calculating circuit using same. A spin wave circuit is configured such that: upon a ferromagnetic line which propagates a spin wave and which is disposed upon a substrate, a plurality of areas in which ferromagnetic layers are stacked are provided across a non-magnetic intermediate layer; the ferromagnetic line and the ferromagnetic layers disposed thereupon are ferromagnetically coupled across the non-magnetic intermediate layer; and the easy axis of magnetization of the ferromagnetic line and the easy axis of magnetization of the ferromagnetic layers disposed thereupon are orthogonalized.
Description
本発明は、スピン波を情報伝達媒体として用いる導波路、素子及びそれを用いた演算回路に関するものである。
The present invention relates to a waveguide using a spin wave as an information transmission medium, an element, and an arithmetic circuit using the same.
情報化社会の爆発的な進展とともに、単位時間内に処理すべき情報量は指数関数的に増加する一方で、地球環境やエネルギーの制約から、情報処理に供するエネルギーは飛躍的に低減することが強く求められている。これまでのCMOSをベースとした半導体演算素子は、微細化とともに性能を向上させてきたが、微細化によって増大するリーク電流や、配線を電流が流れる際に生じる交流損失やジュール損失が引き起こす消費電力増大が顕著となり、動作速度を向上させることが困難となってきている。この状況に対応するため、プロセッサを複数配置するマルチコア化や、パワーゲーティングなど使用しないブロックの電力をオフする対策がとられているが、いずれも限界があると考えられている。
Along with the explosive progress of the information society, the amount of information to be processed within a unit time increases exponentially, but the energy used for information processing can be drastically reduced due to global environment and energy constraints. There is a strong demand. Conventional CMOS-based semiconductor computing elements have improved performance along with miniaturization, but power consumption caused by leakage current that increases due to miniaturization, AC loss and Joule loss that occurs when current flows through the wiring The increase is remarkable and it is difficult to improve the operation speed. In order to cope with this situation, measures are taken to turn off the power of blocks that are not used, such as multi-core arrangement with a plurality of processors and power gating, all of which are considered to have limitations.
近年、低消費電力化を実現する技術として、電流の流れを伴わずスピンの流れによって情報を伝達するスピン流が注目されている、スピン流には、例えば非特許文献1に記載されている、フェルミ面上を伝搬する電子が担体である電子スピン流と、強磁性体の導波路内を原子に束縛されたスピンの歳差運動が波の形で伝搬してゆくスピン波スピン流の2つのタイプが存在する。このうち、スピン波は伝搬距離が数10μmから数cmと比較的長いので、規模の大きな演算回路への応用が期待されている。
In recent years, as a technique for realizing low power consumption, attention has been paid to a spin current that transmits information by a spin flow without a current flow. The spin current is described in Non-Patent Document 1, for example. There are two types of spin currents: the electron spin current, in which electrons propagating on the Fermi surface are carriers, and the spin wave spin current, in which the precession of the spin confined to the atoms in the ferromagnetic waveguide propagates in the form of a wave. Type exists. Among them, the spin wave has a relatively long propagation distance of several tens of μm to several centimeters, and is expected to be applied to a large-scale arithmetic circuit.
たとえば、特許文献1には、スピン波の効率的な発生方法や、スピン波の位相を制御する方法が開示されており、さらにスピン波の反射、屈折、透過、干渉などの波動的な性質を応用した情報処理素子が開示されている。また非特許文献2、特許文献2には、スピン波の励起、検出、位相制御方法に加えて、スピン波を用いた具体的な論理演算回路(AND回路、OR回路、NAND回路、NOR回路など)が開示され、スピン波演算回路を用いた場合、消費電力を大幅に低減できることが示唆されている。
For example, Patent Document 1 discloses a method for efficiently generating a spin wave and a method for controlling the phase of the spin wave, and further exhibits wave characteristics such as reflection, refraction, transmission, and interference of the spin wave. An applied information processing device is disclosed. In Non-Patent Document 2 and Patent Document 2, in addition to spin wave excitation, detection, and phase control methods, specific logic operation circuits (AND circuits, OR circuits, NAND circuits, NOR circuits, etc.) using spin waves are disclosed. ) Is disclosed, and it is suggested that power consumption can be significantly reduced when a spin wave arithmetic circuit is used.
さらに、非特許文献3には、書込まれた情報をスピン波を用いて演算したのち再度格納し、さらに次の情報処理を進めていくという、現在の同期式演算回路とコンパチブルなスピン波演算回路が開示されている。以下その内容を簡潔に示す。
Further, Non-Patent Document 3 describes a spin wave calculation compatible with the current synchronous arithmetic circuit in which written information is calculated using a spin wave and then stored again and further information processing proceeds. A circuit is disclosed. The contents are briefly shown below.
図1は、非特許文献3に示されたスピン波演算回路の概略図である。101はSi基板、102はワイヤ状(線状)のスピン波導波路、103はNiなどの膜面内方向に磁化容易軸を有する強磁性膜、104はPZTなどの強誘電体膜、105はAlなどの金属電極材料膜、106はAlなどの金属材料の線路である。107はスピン波を励起する領域、108はスピン波を検出する領域である。強磁性膜103と強誘電体膜104と金属電極材料膜105は、電界を印加すると強磁性膜103の磁気異方性の方向が制御可能な、電気磁気(ME)効果素子を構成する。
FIG. 1 is a schematic diagram of a spin wave arithmetic circuit shown in Non-Patent Document 3. 101 is a Si substrate, 102 is a wire-shaped (linear) spin wave waveguide, 103 is a ferromagnetic film having a magnetization easy axis in the in-plane direction of film such as Ni, 104 is a ferroelectric film such as PZT, and 105 is Al A metal electrode material film 106 and the like 106 are lines of a metal material such as Al. Reference numeral 107 denotes a region for exciting the spin wave, and reference numeral 108 denotes a region for detecting the spin wave. The ferromagnetic film 103, the ferroelectric film 104, and the metal electrode material film 105 constitute an electromagnetism (ME) effect element that can control the direction of magnetic anisotropy of the ferromagnetic film 103 when an electric field is applied.
また、以下では、図1に示されているx,y,z座標系を用いて説明を行う。本明細書で膜面に垂直な方向とはz軸方向を指すものとし、膜面に平行な方向とはxy平面内の方向とする。この回路においてスピン波を用いた演算は、以下のように行われる。
In the following, description will be made using the x, y, z coordinate system shown in FIG. In this specification, the direction perpendicular to the film surface refers to the z-axis direction, and the direction parallel to the film surface refers to a direction in the xy plane. In this circuit, calculation using spin waves is performed as follows.
ME素子に+、-(具体的には膜面垂直方向上、下)の電界をかけることで、強磁性膜103に“0”,“1”の情報を書き込む。次に、ME素子に再び同じ極性の電界を印加してスピン波を励起する。スピン波がスピン波導波路102を伝搬して電極線路106の下部にあるNi膜に到達する間に、最初の演算がスピン波の波動的性質を用いて行われ、その結果がNi膜に記録される。次に、電極線路106が活性化されて再びスピン波が励起され、スピン波がスピン波導波路102を伝搬して検出領域108に到達する間に、第2の演算がスピン波の波動的性質を用いて行われ、領域108にあるNi膜に記録される。演算結果は、領域108にあるME素子を通じて電気的に検出される。
Information on “0” and “1” is written in the ferromagnetic film 103 by applying an electric field of +, − (specifically, upward and downward in the direction perpendicular to the film surface) to the ME element. Next, an electric field having the same polarity is again applied to the ME element to excite spin waves. While the spin wave propagates through the spin wave waveguide 102 and reaches the Ni film below the electrode line 106, the first calculation is performed using the wave nature of the spin wave, and the result is recorded on the Ni film. The Next, while the electrode line 106 is activated and the spin wave is excited again, and the spin wave propagates through the spin wave waveguide 102 and reaches the detection region 108, the second operation changes the wave nature of the spin wave. And recorded on the Ni film in the region 108. The calculation result is electrically detected through the ME element in the region 108.
図2~4は、スピン波導波路102とME素子をさらに詳細に示した説明図である。図2はスピン波導波路102とME素子の接続部の模式図、図3及び図4はスピン波導波路とNi膜の磁化状態を示す模式図である。
2 to 4 are explanatory views showing the spin wave waveguide 102 and the ME element in more detail. FIG. 2 is a schematic diagram of a connection portion between the spin wave waveguide 102 and the ME element, and FIGS. 3 and 4 are schematic diagrams showing magnetization states of the spin wave waveguide and the Ni film.
図2に示すように、Ni膜103、強誘電体膜104、金属電極材料膜105の積層体であるME素子はスピン波導波路の一部に挿入されるようにして配置されている。
As shown in FIG. 2, the ME element that is a laminate of the Ni film 103, the ferroelectric film 104, and the metal electrode material film 105 is arranged so as to be inserted into a part of the spin wave waveguide.
図3に示すように、スピン波導波路102では強磁性体の磁化は膜面垂直方向を向いている。これに対し、ME素子を構成するNi膜103の磁化は膜面内方向に磁化容易軸を有する。しかし、Ni膜103は垂直磁化の強磁性膜102と磁気的に結合しているため、その磁化方向は完全に膜面内方向を向くことができず、図4のように、膜面垂直/膜面内の間の方向を向く。この安定点は、+y/-y方向にそれぞれ一つずつあるので、Ni膜に“1”,“0”の情報を記録することができる。
As shown in FIG. 3, in the spin wave waveguide 102, the magnetization of the ferromagnetic material is oriented in the direction perpendicular to the film surface. On the other hand, the magnetization of the Ni film 103 constituting the ME element has an easy axis in the in-plane direction. However, since the Ni film 103 is magnetically coupled to the perpendicularly magnetized ferromagnetic film 102, the magnetization direction cannot be completely directed in the in-film direction, and as shown in FIG. It faces in the direction between the membrane surfaces. Since there is one stable point in each of the + y / −y directions, information of “1” and “0” can be recorded on the Ni film.
図5~8は、上記で述べたスピン波の波動的な性質を用いた情報の書込み方法について、さらに詳しく示した図である。図5のように、情報入力部301に情報1が記録されている場合、すなわち+y方向に磁化が向いている場合を考える。図5の場合、情報入力部301と情報出力部303を接続するスピン波導波路102の長さがスピン波の波長λのn倍(nλ:nは自然数)に等しいので、電界によって励起されたスピン波304は、スピン波が励起されてから時間t=λ/v(vはスピン波の速度)後の情報出力部303での振幅は+y方向となる。この情報がそのまま情報出力部303に記録される。他方、図6のように、情報入力部301と情報出力部303が、スピン波の波長λのn+(1/2)倍の長さのスピン波導波路102で接続されているときには、時間t後のスピン波の振幅は-y方向となり、この情報がそのまま情報出力部303に記録される。図7のように、情報入力部301と情報出力部303が、スピン波の波長λのn倍(nλ)の長さのスピン波導波路で接続され、情報入力部301に情報0、すなわち-y方向向きの磁化が記録されている場合には、時間t後のスピン波の振幅は-y方向となり、この情報が情報出力部303にそのまま記録される。また、図8のように、情報入力部301と情報出力部303が、スピン波の波長λのn+1/2倍の長さのスピン波導波路102で接続され、かつ情報入力部に情報0、すなわち-y方向向きの磁化が記録されている場合には、時間t後のスピン波の振幅は+y方向となり、この情報が情報出力部303にそのまま記録される。
5 to 8 are diagrams showing in more detail the information writing method using the wave nature of the spin wave described above. Consider the case where information 1 is recorded in the information input unit 301 as shown in FIG. 5, that is, the case where the magnetization is directed in the + y direction. In the case of FIG. 5, the length of the spin wave waveguide 102 connecting the information input unit 301 and the information output unit 303 is equal to n times the wavelength λ of the spin wave (nλ: n is a natural number). The wave 304 has an amplitude in the + y direction at the information output unit 303 after time t = λ / v (v is the speed of the spin wave) after the spin wave is excited. This information is recorded in the information output unit 303 as it is. On the other hand, when the information input unit 301 and the information output unit 303 are connected by a spin wave waveguide 102 having a length n + (1/2) times the wavelength λ of the spin wave as shown in FIG. The amplitude of the spin wave is in the −y direction, and this information is recorded in the information output unit 303 as it is. As shown in FIG. 7, the information input unit 301 and the information output unit 303 are connected by a spin wave waveguide having a length n times (nλ) the wavelength λ of the spin wave, and information 0, that is, −y is input to the information input unit 301. When the magnetization in the direction is recorded, the amplitude of the spin wave after time t is in the −y direction, and this information is recorded in the information output unit 303 as it is. As shown in FIG. 8, the information input unit 301 and the information output unit 303 are connected by a spin wave waveguide 102 having a length of n + 1/2 times the wavelength λ of the spin wave, and information 0, that is, When magnetization in the −y direction is recorded, the amplitude of the spin wave after time t is in the + y direction, and this information is recorded in the information output unit 303 as it is.
しかし、上記で示したスピン波演算回路には、以下のような課題がある。
However, the spin wave arithmetic circuit shown above has the following problems.
非特許文献2に記載されているスピン波演算回路では、演算をクロックに応じて逐次進めていくという機構がないので、現在主流である同期式情報処理方式を用いることができず、応用が著しく限定される。非特許文献3では、この点が改善されている。しかし、図2に示されたスピン波回路では、膜面垂直方向(z軸方向)に磁化容易軸を有するスピン波導波路の一部に、膜面内方向(y軸方向)に磁化容易軸を有する情報記録部が挿入されている。このような構造の場合、例えば、JOURNAL OF APPLIED PHYSICS Vol.104, 063921 (2008)に記載されているように、磁気異方性の異なった領域の境界でスピン波の反射が生じてしまい、スピン波が効率よく伝搬しないという問題がある。
In the spin wave arithmetic circuit described in Non-Patent Document 2, there is no mechanism for sequentially advancing the operation according to the clock, so the current mainstream synchronous information processing method cannot be used and the application is remarkable. Limited. In Non-Patent Document 3, this point is improved. However, in the spin wave circuit shown in FIG. 2, an easy axis is formed in the in-plane direction (y-axis direction) on a part of the spin wave waveguide having an easy axis in the film surface vertical direction (z-axis direction). The information recording part which has is inserted. In the case of such a structure, for example, as described in JOURNAL OF APPLIED PHYSICS Vol.104, 063921 (2008), reflection of spin waves occurs at the boundary between regions having different magnetic anisotropy, and spin There is a problem that waves do not propagate efficiently.
本発明は、スピン波の反射がなく効率よくスピン波が伝搬するスピン波回路、効率よく情報を記録できる情報記録部の構造、及び記録制御の方法と、それを用いた既存の同期式演算回路とコンパチブルな演算回路を提示するものである。
The present invention relates to a spin wave circuit that efficiently propagates spin waves without reflection of spin waves, an information recording unit structure that can record information efficiently, a recording control method, and an existing synchronous arithmetic circuit using the same A compatible arithmetic circuit is presented.
本発明では、基板上にスピン波を伝搬させる強磁性体線路が設け、強磁性体線路上に非磁性中間層を介して強磁性層が積層された領域を複数設け、強磁性体線路と強磁性層を非磁性中間層を介して強磁性結合させ、強磁性体線路の磁化容易軸と強磁性層の磁化容易軸を直交させてスピン波回路を構成する。
In the present invention, a ferromagnetic line for propagating spin waves is provided on a substrate, and a plurality of regions in which a ferromagnetic layer is laminated on a ferromagnetic line via a nonmagnetic intermediate layer are provided. A magnetic layer is ferromagnetically coupled through a nonmagnetic intermediate layer, and a spin wave circuit is configured by making the easy axis of magnetization of the ferromagnetic line orthogonal to the easy axis of magnetization of the ferromagnetic layer.
強磁性体線路及びその上に形成される強磁性層はCo,Feないしそれらの合金、あるいは前記Co,Feないしそれらの合金にBを含有する金属で構成することができる。
The ferromagnetic line and the ferromagnetic layer formed thereon can be made of Co, Fe or an alloy thereof, or a metal containing B in the Co, Fe or an alloy thereof.
強磁性体線路の磁化容易軸を強磁性体線路の延伸方向に平行とし、強磁性層の磁化容易軸を膜面に垂直とする。あるいは、強磁性体線路の磁化容易軸を強磁性体線路の延伸方向と直交かつ基板表面に平行とし、強磁性層の磁化容易軸を膜面に垂直とする。あるいはまた、強磁性体線路の磁化容易軸を基板面に垂直とし、強磁性層の磁化容易軸を膜面に平行とする。
The easy axis of the ferromagnetic line is parallel to the extending direction of the ferromagnetic line, and the easy axis of the ferromagnetic layer is perpendicular to the film surface. Alternatively, the magnetization easy axis of the ferromagnetic line is perpendicular to the extending direction of the ferromagnetic line and parallel to the substrate surface, and the magnetization easy axis of the ferromagnetic layer is perpendicular to the film surface. Alternatively, the magnetization easy axis of the ferromagnetic line is perpendicular to the substrate surface, and the magnetization easy axis of the ferromagnetic layer is parallel to the film surface.
更に、強磁性層の上に絶縁層を形成し、その絶縁層の上に非磁性金属からなる電極を設ける。また、所定の領域の強磁性層の上に絶縁層を形成し、その絶縁層の上に強磁性体からなる電極を設ける。
Furthermore, an insulating layer is formed on the ferromagnetic layer, and an electrode made of a nonmagnetic metal is provided on the insulating layer. An insulating layer is formed on the ferromagnetic layer in a predetermined region, and an electrode made of a ferromagnetic material is provided on the insulating layer.
強磁性体線路上に形成する強磁性層は、互いに磁化が反平行に向いた2層の強磁性層と、その2層の強磁性層に挟まれた非磁性層とで構成するのが好ましい。
The ferromagnetic layer formed on the ferromagnetic line is preferably composed of two ferromagnetic layers whose magnetizations are antiparallel to each other and a nonmagnetic layer sandwiched between the two ferromagnetic layers. .
また、本発明のスピン波回路は、基板上にスピン波を伝搬させる強磁性体線路が設けられ、強磁性体線路上に非磁性中間層、強磁性層、絶縁層及び電極層がこの順で積層された領域が複数設けられ、強磁性体線路と強磁性層は非磁性中間層を介して強磁性結合しており、強磁性体線路の磁化容易軸と強磁性層の磁化容易軸が直交しており、上記領域は情報の入力及び強磁性体線路を伝搬するスピン波を励起するための情報入力部、情報の一次記録及び強磁性体線路を伝搬するスピン波を励起するための一次情報記録部、又は情報を読み出すための情報再生部として使用される。ここで、情報再生部の電極層は導電性強磁性層である。
In the spin wave circuit of the present invention, a ferromagnetic line for propagating a spin wave is provided on a substrate, and a nonmagnetic intermediate layer, a ferromagnetic layer, an insulating layer, and an electrode layer are arranged in this order on the ferromagnetic line. Multiple layers are provided, and the ferromagnetic line and ferromagnetic layer are ferromagnetically coupled via a nonmagnetic intermediate layer. The easy axis of the ferromagnetic line and the easy axis of the ferromagnetic layer are orthogonal. The information input unit for exciting the spin wave propagating in the ferromagnetic line and the input of information, and the primary information for exciting the spin wave propagating in the ferromagnetic record Used as a recording unit or an information reproducing unit for reading information. Here, the electrode layer of the information reproducing unit is a conductive ferromagnetic layer.
更に、一次情報記録部及び情報再生部で複数の強磁性体線路を交差させる。また、隣接する情報入力部、一次情報記録部、情報再生部の間の距離は、強磁性体線路を伝搬するスピン波の半波長の偶数倍あるいは奇数倍とする。
Further, a plurality of ferromagnetic lines are crossed at the primary information recording unit and the information reproducing unit. Further, the distance between the adjacent information input unit, primary information recording unit, and information reproducing unit is an even multiple or an odd multiple of the half wavelength of the spin wave propagating through the ferromagnetic line.
本発明によるスピン波回路の動作制御方法は、情報入力部の電極層に所定の閾電圧以上かつ所定のパルス幅の第1の電圧を印加して当該情報入力部を構成する強磁性層に情報の書込みを行う工程と、情報が記録されている情報入力部又は一次情報記録部の電極層に前記所定の閾電圧より小さい所定のパルス幅の第2の電圧を印加して強磁性体線路中にスピン波を励起させると共に、情報入力部又は一次情報記録部から情報を伝達すべき一次情報記録部又は情報再生部の電極層に第3の電圧を印加して当該一次情報記録部又は情報再生部を構成する強磁性層の磁化遷移のエネルギー障壁の値を低下させる工程と、情報を伝達すべき一次情報記録部又は情報再生部に情報が記録された後、第3の電圧の印加を停止する工程と、を含む。
According to the spin wave circuit operation control method of the present invention, a first voltage having a predetermined pulse voltage and a predetermined pulse width is applied to the electrode layer of the information input unit to apply information to the ferromagnetic layer constituting the information input unit. And applying a second voltage having a predetermined pulse width smaller than the predetermined threshold voltage to the electrode layer of the information input section or the primary information recording section where information is recorded, In addition to exciting a spin wave, a third voltage is applied to the electrode layer of the primary information recording unit or information reproducing unit to which information is to be transmitted from the information input unit or primary information recording unit to thereby reproduce the primary information recording unit or information reproducing unit. The step of lowering the energy barrier value of the magnetization transition of the ferromagnetic layer constituting the part and the application of the third voltage is stopped after information is recorded in the primary information recording part or information reproducing part to which information is to be transmitted And a step of performing.
ここで、第3の電圧を印加するタイミングは、第2の電圧印加と同じタイミングあるいはそれ以降でスピン波が情報を伝達すべき一次情報記録部又は情報再生部に到達するまでの間のタイミングとする。
Here, the timing at which the third voltage is applied is the same as the timing at which the second voltage is applied, or the timing after which the spin wave reaches the primary information recording unit or information reproducing unit to which information should be transmitted. To do.
また、第2の電圧は正弦波とし、第3の電圧は矩形波とする。
In addition, the second voltage is a sine wave, and the third voltage is a rectangular wave.
本発明によると、スピン波の反射がなく効率よくスピン波が伝搬し、効率よく情報を記録できるスピン波回路及び記録制御の方法を提供することができる。
According to the present invention, it is possible to provide a spin wave circuit and a recording control method that can efficiently record information without spin wave reflection and efficiently propagating spin waves.
上記した以外の、課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
Issues, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
以下、図面を参照して本発明の各種の実施例を説明する。
Hereinafter, various embodiments of the present invention will be described with reference to the drawings.
図9は、スピン波導波路及び情報記録部を備えるスピン波回路の第1の実施例を示す模式図である。
FIG. 9 is a schematic diagram showing a first embodiment of a spin wave circuit including a spin wave waveguide and an information recording unit.
スピン波導波路を構成する強磁性体線路405は、連続した長尺形状の膜として下地膜406の上に形成されている。情報入力部407、情報の一次記録部408、情報再生部409などの領域をスピン波導波路で結ぶことでスピン波回路が構成される。情報入力部407、情報の一次記録部408は、強磁性体線路405上に非磁性膜404、情報の記録及びスピン波の励起を行う強磁性膜403、絶縁膜402、電極401を積層することによって構成される。情報再生部409では、電極401の代わりに導電性強磁性膜410が用いられており、情報再生部409はいわゆる強磁性トンネル接合(MTJ)となっている。
The ferromagnetic line 405 constituting the spin wave waveguide is formed on the base film 406 as a continuous long film. A spin wave circuit is configured by connecting regions such as the information input unit 407, the primary information recording unit 408, and the information reproducing unit 409 with a spin wave waveguide. The information input unit 407 and the primary information recording unit 408 include a nonmagnetic film 404, a ferromagnetic film 403 that performs information recording and spin wave excitation, an insulating film 402, and an electrode 401 on a ferromagnetic line 405. Consists of. In the information reproducing unit 409, a conductive ferromagnetic film 410 is used instead of the electrode 401, and the information reproducing unit 409 is a so-called ferromagnetic tunnel junction (MTJ).
以下では、図9に示されているx,y,z座標系を用いて説明を行う。本実施例で膜面に垂直な方向とはz軸方向を指すものとし、膜面に平行な方向とはxy平面内の方向とする。この定義は、図1~4の場合と全く同一であり、以下に説明する他の実施例でも同様の定義を用いる。
Hereinafter, description will be made using the x, y, z coordinate system shown in FIG. In this embodiment, the direction perpendicular to the film surface refers to the z-axis direction, and the direction parallel to the film surface refers to a direction in the xy plane. This definition is exactly the same as in FIGS. 1 to 4, and the same definition is used in other embodiments described below.
図9の実施例では、スピン波導波路を構成する強磁性体線路405の磁化容易軸は膜面垂直方向(z軸)を向いている。これに対し、強磁性膜403,410の磁化容易軸は膜面内方向(y軸)を向いている。スピン波導波路を構成する強磁性体線路405と強磁性膜403とは、非磁性膜404を介して強磁性結合している。このため、強磁性膜403の磁化方向は完全に膜面内を向くことはなく、図9に示されているようにやや膜面垂直方向(z軸)に立った方向を向いている。図9の例では、強磁性膜403の磁化の安定方向は、±y軸方向に2つあり、これらの方向を向いた磁化に情報“1”と“0”を代表させることができる。
In the embodiment of FIG. 9, the easy axis of the ferromagnetic line 405 constituting the spin wave waveguide is in the direction perpendicular to the film surface (z-axis). On the other hand, the easy magnetization axes of the ferromagnetic films 403 and 410 are in the in-plane direction (y-axis). The ferromagnetic line 405 constituting the spin wave waveguide and the ferromagnetic film 403 are ferromagnetically coupled via the nonmagnetic film 404. For this reason, the magnetization direction of the ferromagnetic film 403 does not completely go in the film surface, but is slightly directed in the direction perpendicular to the film surface (z-axis) as shown in FIG. In the example of FIG. 9, there are two stable directions of magnetization of the ferromagnetic film 403 in the ± y-axis directions, and information “1” and “0” can be represented by the magnetizations directed in these directions.
図10及び図11は、スピン波導波路及び情報記録部を備えるスピン波回路の第2、第3の実施例を示す模式図である。
FIGS. 10 and 11 are schematic views showing second and third embodiments of a spin wave circuit including a spin wave waveguide and an information recording unit.
図10において、501は電極、502は絶縁膜、503は情報の記録及びスピン波の励起を行う強磁性膜、504は非磁性膜、505はスピン波導波路を構成する強磁性体線路、506は下地膜である。情報入力部507、情報の一次記録部508、情報再生部509などをスピン波導波路で結ぶことでスピン波回路が構成される。情報再生部509では、電極501の代わりに導電性強磁性膜510が用いられており、情報再生部509はいわゆる強磁性トンネル接合(MTJ)となっている。図10に示したスピン波回路の基本的な構成は図9と同様であるが、図10の場合、スピン波導波路を構成する強磁性体線路505の磁化容易軸は膜面内方向(x軸)、すなわち強磁性体線路の延伸方向と平行な方向を向いている。これに対し、強磁性膜503,510の磁化容易軸は膜面垂直方向(z軸)を向いている。スピン波導波路を構成する強磁性体線路505と強磁性膜503とは、非磁性膜504を介して強磁性結合している。このため、強磁性膜503の磁化方向は完全に垂直方向を向くことはなく、図10に示されているようにやや膜面内方向(x軸)に倒れた方向を向いている。図10の例では、強磁性膜503の磁化の安定方向は±z軸方向に2つあり、これらの方向を向いた磁化に情報“1”と“0”を代表させることができる。
In FIG. 10, 501 is an electrode, 502 is an insulating film, 503 is a ferromagnetic film for recording information and spin wave excitation, 504 is a non-magnetic film, 505 is a ferromagnetic line constituting a spin wave waveguide, and 506 is It is a base film. A spin wave circuit is configured by connecting the information input unit 507, the primary information recording unit 508, the information reproducing unit 509, and the like with a spin wave waveguide. In the information reproducing unit 509, a conductive ferromagnetic film 510 is used instead of the electrode 501, and the information reproducing unit 509 is a so-called ferromagnetic tunnel junction (MTJ). The basic configuration of the spin wave circuit shown in FIG. 10 is the same as that of FIG. 9, but in the case of FIG. 10, the magnetization easy axis of the ferromagnetic line 505 constituting the spin wave waveguide is in the in-film direction (x-axis). ), That is, the direction parallel to the extending direction of the ferromagnetic line. On the other hand, the easy axis of magnetization of the ferromagnetic films 503 and 510 is in the direction perpendicular to the film surface (z axis). The ferromagnetic line 505 and the ferromagnetic film 503 constituting the spin wave waveguide are ferromagnetically coupled via the nonmagnetic film 504. For this reason, the magnetization direction of the ferromagnetic film 503 is not completely directed in the vertical direction, but rather is directed in the direction tilted slightly in the film in-plane direction (x-axis) as shown in FIG. In the example of FIG. 10, there are two stable directions of magnetization of the ferromagnetic film 503 in the ± z-axis direction, and information “1” and “0” can be represented by the magnetizations directed in these directions.
また、図11では、511は電極、512は絶縁膜、513は情報の記録及びスピン波の励起を行う強磁性膜、514は非磁性膜、515はスピン波導波路を構成する強磁性体線路、516は下地膜である。情報入力部517、情報の一次記録部518、情報再生部519などをスピン波導波路で結ぶことでスピン波回路が構成される。情報再生部519では、電極511のかわりに導電性強磁性膜520が用いられており、情報再生部519はいわゆる強磁性トンネル接合(MTJ)となっている。図11の基本的な構成は図9と同様であるが、図11の場合、スピン波導波路を構成する強磁性体線路515の磁化容易軸は膜面内方向(y軸)、すなわち強磁性体線路の延伸方向と直交かつ基板表面に平行な方向を向いている。これに対し、強磁性膜513,520の磁化容易軸は膜面垂直方向(z軸)を向いている。スピン波導波路を構成する強磁性体線路515と強磁性膜513とは、非磁性膜514を介して強磁性結合している。このため、強磁性膜513の磁化方向は完全に垂直方向を向くことはなく、図11に示されているようにやや膜面内方向(y軸)に倒れた方向を向いている。図11の例では、強磁性膜513の磁化の安定方向は±z軸方向に2つあり、これらの方向を向いた磁化に情報“1”と“0”を代表させることができる。
In FIG. 11, 511 is an electrode, 512 is an insulating film, 513 is a ferromagnetic film for recording information and exciting a spin wave, 514 is a non-magnetic film, 515 is a ferromagnetic line constituting a spin wave waveguide, Reference numeral 516 denotes a base film. A spin wave circuit is configured by connecting the information input unit 517, the primary information recording unit 518, the information reproducing unit 519, and the like with a spin wave waveguide. In the information reproducing unit 519, a conductive ferromagnetic film 520 is used instead of the electrode 511, and the information reproducing unit 519 is a so-called ferromagnetic tunnel junction (MTJ). The basic configuration of FIG. 11 is the same as that of FIG. 9, but in the case of FIG. 11, the easy axis of magnetization of the ferromagnetic line 515 constituting the spin wave waveguide is the in-plane direction (y-axis), that is, the ferromagnetic body. The direction is perpendicular to the line extending direction and parallel to the substrate surface. On the other hand, the easy magnetization axes of the ferromagnetic films 513 and 520 are in the direction perpendicular to the film surface (z-axis). The ferromagnetic line 515 and the ferromagnetic film 513 constituting the spin wave waveguide are ferromagnetically coupled via the nonmagnetic film 514. For this reason, the magnetization direction of the ferromagnetic film 513 does not completely turn in the vertical direction, but rather in the direction tilted slightly in the film in-plane direction (y-axis) as shown in FIG. In the example of FIG. 11, there are two stable directions of magnetization of the ferromagnetic film 513 in the ± z-axis direction, and information “1” and “0” can be represented by the magnetizations directed in these directions.
以上のように、本発明では、スピン波導波路を構成する強磁性体線路と強磁性膜の磁化容易軸の組み合わせに異なった3つの組み合わせがあることがわかる。
As described above, in the present invention, it can be seen that there are three different combinations of the combination of the ferromagnetic line constituting the spin wave waveguide and the easy magnetization axis of the ferromagnetic film.
次に、これらの実施例で用いられる材料について述べる。本発明では、スピン波の発生及び情報の記録を、電界の印加によって行う。したがって、強磁性膜403,503,513用の材料としては、まず界面の異方性を電界で変調できるFe、ないしCoとFeの合金、ないしそれにBが添加された合金が適している。その場合、絶縁膜402,502,512としては、上記材料の界面異方性に電界による大きな変調効果を与えるMgOが適した材料となる。特にCoFeB膜は、膜厚tにより界面の垂直磁気異方性の値を変調でき、膜厚に応じて磁気異方性の方向を膜面内方向ないし膜面垂直方向に制御できることが、Nature Materials, Vol.9, pp.721-724 (2010)に示されている。以下の詳細説明では組成をCo20Fe60B20としたCoFeBを例にして説明するが、必ずしもこれに限られるものではない。
Next, materials used in these examples will be described. In the present invention, generation of a spin wave and recording of information are performed by applying an electric field. Therefore, as the material for the ferromagnetic films 403, 503, and 513, first, Fe that can modulate the anisotropy of the interface with an electric field, an alloy of Co and Fe, or an alloy to which B is added is suitable. In that case, for the insulating films 402, 502, and 512, MgO that gives a large modulation effect by an electric field to the interface anisotropy of the above material is a suitable material. In particular, the CoFeB film can modulate the value of the perpendicular magnetic anisotropy at the interface according to the film thickness t, and can control the direction of the magnetic anisotropy from the in-plane direction to the vertical direction according to the film thickness. , Vol.9, pp.721-724 (2010). In the following detailed description, CoFeB having a composition of Co 20 Fe 60 B 20 will be described as an example, but the present invention is not necessarily limited thereto.
本実施例では、CoFeBの膜厚tがt>1.3nmの場合に、磁化方向が膜面垂直方向から膜面内方向に変化した。強磁性膜の磁化が垂直から面内に切り替わる臨界膜厚は、CoFeBの組成や下部の下地膜の材料等で変化する。比較的大きな臨界膜厚を得るには、CoFeBのCoとFeの組成比は50:50~0:100が望ましい、またCoFeB膜をスピン波導波路用の材料として用いる場合は、下地膜406,506,516としてTaをベースとした合金を用いることが望ましい。
In this example, when the thickness t of CoFeB was t> 1.3 nm, the magnetization direction changed from the direction perpendicular to the film surface to the in-film direction. The critical film thickness at which the magnetization of the ferromagnetic film switches from perpendicular to in-plane varies depending on the composition of CoFeB, the material of the underlying film, and the like. In order to obtain a relatively large critical film thickness, the Co: Fe composition ratio of CoFeB is preferably 50:50 to 0: 100. When the CoFeB film is used as a material for a spin wave waveguide, the underlying films 406 and 506 are used. , 516 is preferably an alloy based on Ta.
スピン導波路を構成する強磁性体線路及び情報記録部の強磁性膜として用いるCoFeBの膜厚に関しては、表1に示した場合の実験例を示すが、これに限定されるものではない。
Regarding the film thickness of the CoFeB used as the ferromagnetic film constituting the spin waveguide and the ferromagnetic film of the information recording unit, an experimental example shown in Table 1 is shown, but is not limited to this.
試料振動型磁力計(VSM)によってCoFeB膜の飽和磁化Msを測定したところ、その値は1.6Tであった。
When the saturation magnetization Ms of the CoFeB film was measured by a sample vibration magnetometer (VSM), the value was 1.6T.
強磁性膜403,503,513と、スピン波導波路を構成する強磁性体線路405,505,515との強磁性結合を媒介する非磁性膜404,504,514の材料としては、Ta,Ru,Ir,Os,Cr等を用いる。これらの材料の膜厚は強磁性結合の強さを制御する重要なパラメータとなるので、慎重に選択しなければならない。詳細は後で詳述する。
As materials for the nonmagnetic films 404, 504, and 514 that mediate the ferromagnetic coupling between the ferromagnetic films 403, 503, and 513 and the ferromagnetic lines 405, 505, and 515 constituting the spin wave waveguide, Ta, Ru, Ir, Os, Cr or the like is used. The film thickness of these materials is an important parameter that controls the strength of ferromagnetic coupling and must be carefully selected. Details will be described later.
強磁性体線路及び情報記録部の強磁性膜用のその他の材料としては、CoFeベースの合金のほか、Ni、あるいはNiとFeをベースとした合金を用いることもできる。また、絶縁膜の種類はMgO膜に限られるものではなく、例えばAl,Zn,Ti,Zr,Ni,Si,Feより選択された少なくとも一つの元素を含む酸化物、窒化物、酸窒化物を用いることができる。電極401,501,511の材料としてはAlが適しているが、このほかCu,Au,Ag及びこれらの合金のように抵抗率の小さな金属が望ましい。また、下地膜406,506,516の材料は、スピン波導波路用の材料の結晶成長を的確に制御するために適宜選択する。
As other materials for the ferromagnetic film and the ferromagnetic film of the information recording portion, Ni or an alloy based on Ni and Fe can be used in addition to a CoFe based alloy. The type of insulating film is not limited to the MgO film. For example, an oxide, nitride, or oxynitride containing at least one element selected from Al, Zn, Ti, Zr, Ni, Si, and Fe is used. Can be used. Al is suitable as a material for the electrodes 401, 501, and 511, but a metal having a low resistivity such as Cu, Au, Ag, and alloys thereof is also desirable. The materials for the base films 406, 506, and 516 are appropriately selected in order to accurately control the crystal growth of the material for the spin wave waveguide.
以下、本実施例のスピン波導波路を用いたスピン波回路での情報記録、情報伝達の方法について、図9(表1、項番(1))のケースを例に説明する。なお、実験に用いた強磁性体線路の幅は50nm、情報入力部407、一次情報記録部408、情報再生部407に設けられた強磁性膜403,410、MgO膜402、電極401の寸法は、x軸方向が25nm、y軸方向が50nmであり、y軸方向に面内の形状磁気異方性を有する構造となっている。なお、本実施例では強磁性膜403の形状は長方形としたが、この形状は、長径/短径の値が異なっている楕円形状や、八角形、六角形でもよい。
Hereinafter, the method of information recording and information transmission in the spin wave circuit using the spin wave waveguide of the present embodiment will be described by taking the case of FIG. 9 (Table 1, item number (1)) as an example. The width of the ferromagnetic line used in the experiment is 50 nm, and the dimensions of the ferromagnetic films 403 and 410, the MgO film 402, and the electrode 401 provided in the information input unit 407, the primary information recording unit 408, and the information reproducing unit 407 are as follows. The x-axis direction is 25 nm, the y-axis direction is 50 nm, and the structure has in-plane magnetic anisotropy in the y-axis direction. In the present embodiment, the ferromagnetic film 403 has a rectangular shape, but this shape may be an elliptical shape, an octagonal shape, or a hexagonal shape having different values of the major axis / minor axis.
情報の記録は、情報入力部407に電界パルスを印加して行う。電界パルスを、CoFeB膜403を+の極性としてCoFeB膜403から電極401にかけると、CoFeB膜403のMgO膜402との界面付近の電子状態が変化し、界面付近の垂直磁気異方性が大きくなる。これに伴って、図12に示すように磁化が歳差運動を始める。印加電圧がある閾電圧Vthより大きい場合、磁化の歳差運動の振幅が大きくなり、磁化はz軸を中心とした歳差運動を始める。歳差運動の周期をTとするとき、電圧パルスの幅τを略T/2とした場合、図12のように、電圧パルスを切った後、磁化はもう一方の安定点の周りで次第に減衰し、最後は安定点に落ち込んで静止する。
Information recording is performed by applying an electric field pulse to the information input unit 407. When an electric field pulse is applied from the CoFeB film 403 to the electrode 401 with the CoFeB film 403 having a positive polarity, the electronic state of the CoFeB film 403 near the interface with the MgO film 402 changes, and the perpendicular magnetic anisotropy near the interface increases. Become. Along with this, the magnetization starts precession as shown in FIG. When the applied voltage is greater than a certain threshold voltage Vth, the amplitude of magnetization precession increases and the magnetization starts precessing about the z-axis. If the period of precession is T and the width τ of the voltage pulse is approximately T / 2, the magnetization gradually decays around the other stable point after the voltage pulse is cut as shown in FIG. At the end, it falls to a stable point and stops.
パルス幅τをTとすると、磁化は元の安定点で静止する。以上のように、τ=(T/2)×(2n-1)(nは自然数)とすれば、磁化の遷移が起こり、τ=nTとすれば磁化の遷移は起こらない。本実施例の場合、Vthは約0.4Vであり、T=300psであった。高速動作の観点からは、τ=150psで記録を行うことが望ましいが、周辺回路がそこまで高速化できない場合には、τ=450ps,750psなどの高次の周期のパルス幅を用いればよい。実際の回路動作では、前回の記録動作で情報入力部407のCoFeB膜には-y方向(情報0)、ないし+y方向(情報1)の磁化が記録されている。もし前回と同じ情報を記録したければ電圧を印加せず、前回の情報を書き換えたい場合にパルス幅τ=(T/2)×(2n-1)のパルス電圧を印加することにすればよい。
When the pulse width τ is T, the magnetization stops at the original stable point. As described above, if τ = (T / 2) × (2n−1) (n is a natural number), a magnetization transition occurs, and if τ = nT, a magnetization transition does not occur. In this example, Vth was about 0.4 V and T = 300 ps. From the viewpoint of high-speed operation, it is desirable to perform recording at τ = 150 ps. However, if the peripheral circuit cannot achieve such a high speed, a pulse width of a high-order period such as τ = 450 ps or 750 ps may be used. In actual circuit operation, magnetization in the −y direction (information 0) or + y direction (information 1) is recorded in the CoFeB film of the information input unit 407 in the previous recording operation. If you want to record the same information as the previous time, do not apply a voltage, and if you want to rewrite the previous information, apply a pulse voltage of pulse width τ = (T / 2) × (2n−1). .
情報の伝達にはスピン波を用いる。この場合には、図13に示すように、閾電圧Vthより小さなパルス電圧を印加する。印加するパルスの長さは、基本的に周期Tの整数倍とする。前述した2つの安定な磁化方向を切り替えるには、磁化に両者の間のエネルギー障壁ΔEを超える運動エネルギーを供給する必要があるが、V<Vthの場合にはエネルギーが不足しているため磁化のスイッチングは起こらず、磁化は磁化安定点のまわりで歳差運動を行う。この歳差運動は情報入力部407からスピン波導波路にスピン波として伝わり、スピン波は情報0,1を一次情報記録部408の強磁性膜に記録する。
* Spin waves are used to transmit information. In this case, as shown in FIG. 13, a pulse voltage smaller than the threshold voltage Vth is applied. The length of the pulse to be applied is basically an integer multiple of the period T. In order to switch the two stable magnetization directions described above, it is necessary to supply the kinetic energy exceeding the energy barrier ΔE between the two to the magnetization. However, when V <Vth, the energy is insufficient, so Switching does not occur and the magnetization precesses around the magnetization stable point. This precession is transmitted as a spin wave from the information input unit 407 to the spin wave waveguide, and the spin wave records information 0 and 1 on the ferromagnetic film of the primary information recording unit 408.
スピン波による書込み原理は、基本的には図5~8の方式を踏襲するが、本発明では、スピン波導波路は磁化容易軸が一様な材料を用い、スピン波導波路の上に非磁性膜を介して、スピン波導波路と強磁性結合した強磁性膜を記録用の膜として設置する構造となっているところに特徴がある。
The principle of writing by a spin wave basically follows the method shown in FIGS. 5 to 8, but in the present invention, the spin wave waveguide uses a material having a uniform easy axis, and a nonmagnetic film is formed on the spin wave waveguide. In this structure, a ferromagnetic film ferromagnetically coupled to the spin wave waveguide is provided as a recording film.
まず、本発明のスピン波導波路で、何故効率よくスピン波が伝搬するか、その理由を説明する。図14は、図2、図3に示した公知例の構造に関して、スピン波導波路内の内部磁界Hinが、導波路の長さ方向にどのように変化するかを示した図である。内部磁界Hinとは、外部からの印加磁界、交換結合磁界、反磁界、静磁気結合から発生する磁界等のすべての磁界の和である。図2、図3に示した公知例の構造では、内部磁界が、スピン波による情報を記録する領域103付近で、大きく変化することがわかる。これは、内部磁界のy軸方向成分Hin_yと、内部磁界のz軸方向成分Hin_zの変化が、領域103付近で釣り合っていないため起こる現象である。このような内部磁界の変動がスピン波導波路内部で発生すると、スピン波の伝搬特性が内部磁界によって支配されているため、内部磁界が変動する場所でスピン波の反射が起こってしまう。このため、伝搬してきたスピン波が情報の記録領域103に到達しにくくなり、効率よい記録動作が行えない。
First, the reason why spin waves propagate efficiently in the spin wave waveguide of the present invention will be described. FIG. 14 is a diagram showing how the internal magnetic field Hin in the spin wave waveguide changes in the length direction of the waveguide with respect to the structure of the known example shown in FIGS. 2 and 3. The internal magnetic field Hin is the sum of all magnetic fields such as an externally applied magnetic field, an exchange coupling magnetic field, a demagnetizing field, and a magnetic field generated from a magnetostatic coupling. 2 and 3, it can be seen that the internal magnetic field changes greatly in the vicinity of the region 103 where information by spin waves is recorded. This is a phenomenon that occurs because the changes in the y-axis direction component Hin_y of the internal magnetic field and the z-axis direction component Hin_z of the internal magnetic field are not balanced in the vicinity of the region 103. When such a fluctuation of the internal magnetic field occurs inside the spin wave waveguide, the propagation characteristics of the spin wave are dominated by the internal magnetic field, so that the reflection of the spin wave occurs at a place where the internal magnetic field fluctuates. For this reason, the propagating spin wave does not easily reach the information recording area 103, and an efficient recording operation cannot be performed.
図15は、本発明のスピン波導波路の内部磁界の、導波路の長さ方向の変化の様子を表した図である。内部磁界のy軸方向成分Hin_yと、内部磁界のz軸方向成分Hin_zの変化が、強磁性膜403の存在する領域付近で釣り合っているため、全内部磁界Hinの大きさは、記録層にあたる強磁性膜403の直下でもほとんど変化しない。本発明では、スピン波導波路内の内部磁界が一様であることが大きな特徴であり、このため、スピン波は効率よく強磁性膜403の直下まで伝搬し、効率よい記録動作が可能となる。
FIG. 15 is a diagram showing a change in the length direction of the waveguide of the internal magnetic field of the spin wave waveguide of the present invention. Since the changes in the y-axis direction component Hin_y of the internal magnetic field and the z-axis direction component Hin_z of the internal magnetic field are balanced near the region where the ferromagnetic film 403 is present, the magnitude of the total internal magnetic field Hin is the strength corresponding to the recording layer. Almost no change even immediately under the magnetic film 403. A major feature of the present invention is that the internal magnetic field in the spin wave waveguide is uniform. For this reason, the spin wave efficiently propagates directly below the ferromagnetic film 403, thereby enabling an efficient recording operation.
効率のよい記録動作を行うための、もう一つの重要なパラメータは、非磁性膜404(504,514)を介した強磁性結合の強さである。本発明では、非磁性膜の材料及びその膜厚を変えることにより、強磁性結合磁界を制御した。例えば、非磁性膜材料としてRuを用いた場合、その膜厚を0.4~1nmの間で変化させることで、強磁性結合磁界の大きさを500~3000Oeの間で変化させることができた。強磁性結合磁界が1000Oe未満と小さい場合、図9の構造において、最大0.4Vの電圧を、電極401と強磁性膜403の間に与えてスピン波を励起した場合でも、スピン波の情報は、一次情報記録部408の強磁性膜403には記録できなかった。強磁性結合磁界が1000Oeの場合には、0.4Vの電圧を与えてスピン波を励起すると、スピン波の情報が一次情報記録部408の強磁性膜403に記録された。強磁性結合磁界が2000Oeを超えると、0.3Vの電圧を与えてスピン波を励起したケースでも、一次情報記録部408の強磁性膜403に情報が記録された。記録が可能となる電圧の値は、強磁性結合磁界が2000Oeを超えると、0.3Vより下がらなくなった。すなわち、図9(すなわち表1(1))に対応する、スピン波導波路を構成する強磁性体線路405、強磁性膜403の材料としてCoFeBを用いる場合には、2000Oeより大きな強磁性結合磁界を実現することが望ましい。
Another important parameter for performing an efficient recording operation is the strength of the ferromagnetic coupling through the nonmagnetic film 404 (504, 514). In the present invention, the ferromagnetic coupling magnetic field is controlled by changing the material of the nonmagnetic film and its film thickness. For example, when Ru is used as the nonmagnetic film material, the magnitude of the ferromagnetic coupling magnetic field can be changed between 500 and 3000 Oe by changing the film thickness between 0.4 and 1 nm. . In the case where the ferromagnetic coupling magnetic field is as small as less than 1000 Oe, even when a spin wave is excited by applying a maximum voltage of 0.4 V between the electrode 401 and the ferromagnetic film 403 in the structure of FIG. In the primary information recording unit 408, recording could not be performed on the ferromagnetic film 403. When the ferromagnetic coupling magnetic field was 1000 Oe, the spin wave information was recorded in the ferromagnetic film 403 of the primary information recording unit 408 when a spin wave was excited by applying a voltage of 0.4 V. When the ferromagnetic coupling magnetic field exceeded 2000 Oe, information was recorded in the ferromagnetic film 403 of the primary information recording unit 408 even when a spin wave was excited by applying a voltage of 0.3 V. When the ferromagnetic coupling magnetic field exceeds 2000 Oe, the voltage value at which recording is possible does not drop below 0.3V. That is, when CoFeB is used as the material of the ferromagnetic line 405 and the ferromagnetic film 403 constituting the spin wave waveguide corresponding to FIG. 9 (that is, Table 1 (1)), a ferromagnetic coupling magnetic field larger than 2000 Oe is applied. It is desirable to realize.
強磁性結合磁界をHexとすると、上に述べた非磁性膜の材料及びその膜厚で本来制御できる強磁性結合定数Jexとの間には、Hex=Jex/(Ms・t)(Msは強磁性体線路ないし強磁性膜を構成する強磁性体の飽和磁化、tはスピン波導波路ないし強磁性膜の厚さ)の関係がある。非磁性膜の材料及びその膜厚で制御できる強磁性結合定数Jexの値には限界があるので、例えば、スピン波導波路や強磁性膜の膜厚を薄くする、あるいは、スピン波導波路や強磁性膜の飽和磁化Msを低減するということも、Hexの増加に効果がある。たとえば、強磁性体線路用の材料として、飽和磁化MsがCoFeBより小さいNiFeを使うと、実効的な強磁性結合磁界Hexの増加を図ることができる。ただし、NiFeを用いる場合には、図9(すなわち表1、項番(1))のケースでは、強磁性体線路の磁化方向は膜面内方向となるので、z軸方向に外部磁界を与えてNiFeの磁化方向をz軸方向へ向ける必要がある。なお、外部磁界の印加により強磁性膜403も外部磁界の影響を受けるが、強磁性膜403の飽和磁化Msの値をNiFeより大きくすれば、膜面垂直方向に働く反磁界の影響で、強磁性膜403の磁化は相変わらず膜面内方向を向いており、その動作に大きな影響はない。
Assuming that the ferromagnetic coupling magnetic field is Hex, Hex = Jex / (Ms · t) (Ms is strong) between the above-described nonmagnetic film material and the ferromagnetic coupling constant Jex that can be controlled by the film thickness. There is a relationship of saturation magnetization of the ferromagnetic material constituting the magnetic line or ferromagnetic film, and t is the thickness of the spin wave waveguide or ferromagnetic film. There is a limit to the value of the ferromagnetic coupling constant Jex that can be controlled by the material of the nonmagnetic film and its film thickness. For example, the film thickness of the spin wave waveguide or the ferromagnetic film is reduced, or the spin wave waveguide or the ferromagnetic film Reducing the saturation magnetization Ms of the film is also effective in increasing Hex. For example, when NiFe whose saturation magnetization Ms is smaller than CoFeB is used as the material for the ferromagnetic line, the effective ferromagnetic coupling magnetic field Hex can be increased. However, when NiFe is used, in the case of FIG. 9 (that is, Table 1, item number (1)), the magnetization direction of the ferromagnetic line is the in-film direction, so that an external magnetic field is applied in the z-axis direction. Therefore, it is necessary to direct the magnetization direction of NiFe in the z-axis direction. The ferromagnetic film 403 is also affected by the external magnetic field due to the application of the external magnetic field. However, if the saturation magnetization Ms of the ferromagnetic film 403 is made larger than NiFe, the ferromagnetic film 403 is strongly affected by the demagnetizing field acting in the direction perpendicular to the film surface. The magnetization of the magnetic film 403 is still in the in-plane direction, and the operation is not greatly affected.
次に、表1の(2)、(3)のケースについて説明する。これらのケースでは、スピン波導波路を構成する強磁性体線路の幅は50nmとし、情報入力部507,517、一次情報記録部508,518、情報再生部509,519における強磁性膜503,513、MgO膜502,512、及び電極501,511の寸法は、50nm×50nmの正方形とした。この理由は、これらの領域に設けられた強磁性膜の磁化容易軸が膜面垂直方向(z軸方向)であるため、正方形のように対称性の良い構造のほうが、磁化反転時に無用の反磁界の影響を受けず、よりコヒーレントな磁化反転が実現できるためである。なお、本実施例では強磁性膜503,513の形状は正方形としたが、この形状は、円形状や、正八角形、正六角形等でもよい。
Next, cases (2) and (3) in Table 1 will be described. In these cases, the width of the ferromagnetic material line constituting the spin wave waveguide is 50 nm, the information input units 507 and 517, the primary information recording units 508 and 518, the ferromagnetic films 503 and 513 in the information reproducing units 509 and 519, The dimensions of the MgO films 502 and 512 and the electrodes 501 and 511 are 50 nm × 50 nm squares. This is because the easy axis of magnetization of the ferromagnetic film provided in these regions is in the direction perpendicular to the film surface (z-axis direction). This is because more coherent magnetization reversal can be realized without being affected by the magnetic field. In this embodiment, the ferromagnetic films 503 and 513 have a square shape, but this shape may be a circular shape, a regular octagon, a regular hexagon, or the like.
これらのケースにおいても、強磁性結合磁界が1000Oeを超えると、Vth<0.4Vの印加電圧を情報入力部507,517の電極501,511に印加した場合に、励起、伝搬したスピン波で、一次情報記録部508,518の強磁性膜に磁化反転を誘起し情報を記録可能である。これらの例のように、スピン波導波路を構成する強磁性体線路の磁化容易軸が、膜面内(xないしy軸方向)を向いている場合は、z軸方向の磁化容易軸を有する表1(1)のケースに比べ磁気異方性が小さいので、強磁性体線路の磁化状態を一様化するためには、x軸ないしy軸方向への外部磁界の印加が必要である。本実験では、表1(2)の場合にx軸方向に700Oe、表1(3)の場合にはy軸方向へ1500Oeの磁界を印加した。ただし、外部磁界の印加により強磁性膜503,513も外部磁界の影響を受けるが、強磁性膜503,513の膜面垂直方向に磁気異方性が十分に大きいので、その動作に大きな影響はない。
Even in these cases, when the ferromagnetic coupling magnetic field exceeds 1000 Oe, when an applied voltage of Vth <0.4 V is applied to the electrodes 501 and 511 of the information input units 507 and 517, Information can be recorded by inducing magnetization reversal in the ferromagnetic films of the primary information recording units 508 and 518. As in these examples, when the magnetization easy axis of the ferromagnetic material line constituting the spin wave waveguide is in the film plane (x or y axis direction), the table having the magnetization easy axis in the z axis direction is used. Since the magnetic anisotropy is smaller than the case of 1 (1), it is necessary to apply an external magnetic field in the x-axis or y-axis direction in order to make the magnetization state of the ferromagnetic line uniform. In this experiment, a magnetic field of 700 Oe was applied in the x-axis direction in the case of Table 1 (2) and 1500 Oe in the y-axis direction in the case of Table 1 (3). However, the ferromagnetic films 503 and 513 are also affected by the external magnetic field due to the application of the external magnetic field, but since the magnetic anisotropy is sufficiently large in the direction perpendicular to the film surfaces of the ferromagnetic films 503 and 513, the operation is greatly affected. Absent.
上述のように、スピン波導波路を構成する強磁性体線路の飽和磁化Msを低減すると、同一の強磁性結合定数の積層構造において、実効的に強磁性結合磁界を大きくすることができる。本ケースにおいても、例えばスピン波導波路用の材料としてNiFeは有力な材料である。NiFeを用いた場合には、導波路内で発生する反磁界の大きさもCoFeBに比べて小さくなるので、上述した磁化状態を安定化するために必要な外部磁界も低減できる。たとえば、膜厚2nmのNiFe膜をスピン波導波路用材料として用いる場合には、表1(2)のケースでx軸方向の外部磁界を500Oe程度に、表1(3)のケースでy軸方向の外部磁界は1000Oe程度にすることができた。
As described above, when the saturation magnetization Ms of the ferromagnetic line constituting the spin wave waveguide is reduced, the ferromagnetic coupling magnetic field can be effectively increased in the laminated structure having the same ferromagnetic coupling constant. Also in this case, for example, NiFe is a powerful material as a material for the spin wave waveguide. When NiFe is used, the magnitude of the demagnetizing field generated in the waveguide is smaller than that of CoFeB, so that the external magnetic field necessary for stabilizing the above-described magnetization state can also be reduced. For example, when a NiFe film having a thickness of 2 nm is used as a material for a spin wave waveguide, the external magnetic field in the x-axis direction is about 500 Oe in the case of Table 1 (2), and the y-axis direction in the case of Table 1 (3). The external magnetic field of can be about 1000 Oe.
一次情報記録部408(508,518)から情報再生部409(509,519)への情報伝達、演算処理も上記と全く同じような手続きで行われる。すなわち、一次情報記録部408(508,518)の電極にV<Vthのパルス電圧を印加してスピン波を励起する。すると、スピン波がスピン波導波路を構成する強磁性体線路405(505,515)を伝搬して、情報再生部409(509,519)へ情報が書き込まれる。一次情報記録部の電極に印加するパルスの長さは、基本的に磁化の歳差運動の周期Tの整数倍とする。最後に、情報再生部409(509,519)の上部のCoFeB膜と、下部のCoFeB膜との間に微小な電流を流し、TMR効果によって情報再生部に記録された情報(“0”,“1”)を読み出す。
Information transmission and calculation processing from the primary information recording unit 408 (508, 518) to the information reproduction unit 409 (509, 519) are performed in the same procedure as described above. That is, a spin voltage is excited by applying a pulse voltage of V <Vth to the electrodes of the primary information recording unit 408 (508, 518). Then, the spin wave propagates through the ferromagnetic line 405 (505, 515) constituting the spin wave waveguide, and information is written into the information reproducing unit 409 (509, 519). The length of the pulse applied to the electrode of the primary information recording unit is basically an integral multiple of the period T of the magnetization precession. Finally, a minute current is passed between the upper CoFeB film and the lower CoFeB film of the information reproducing unit 409 (509, 519), and the information (“0”, “0” recorded in the information reproducing unit by the TMR effect). 1 ") is read.
図16は、図9の強磁性膜403を、3層の積層フェリ層801,802,803で構成した実施例を示す摸式図である。図16において、401は電極、402は絶縁膜、801は積層フェリ層を構成する第一の強磁性膜、803は積層フェリ層を構成する第二の強磁性膜、802は2つの強磁性膜801,803を反強磁性的に結合するために設けられた非磁性膜、404は強磁性膜803とスピン波導波路を構成する強磁性体線路405を強磁性結合させるために設けられた非磁性膜、406は下地膜であり、407は情報入力部、408は一次情報記録部、409は情報再生部である。
FIG. 16 is a schematic diagram showing an embodiment in which the ferromagnetic film 403 of FIG. 9 is composed of three laminated ferri layers 801, 802, and 803. In FIG. 16, 401 is an electrode, 402 is an insulating film, 801 is a first ferromagnetic film constituting the laminated ferri layer, 803 is a second ferromagnetic film constituting the laminated ferri layer, and 802 is two ferromagnetic films. A nonmagnetic film provided for antiferromagnetically coupling 801 and 803, and a nonmagnetic film 404 provided for ferromagnetically coupling the ferromagnetic film 803 and the ferromagnetic material line 405 constituting the spin wave waveguide. A film 406 is a base film, 407 is an information input unit, 408 is a primary information recording unit, and 409 is an information reproducing unit.
本実施例において、積層フェリ層以外の構造の材料及びその物性は、図9と同様である。積層フェリ層を構成する強磁性膜としては、図9と同様にCoFeBを用いることができる。この場合、図9におけるデバイス動作に関して説明したとおり、絶縁膜402(例えばMgO)を介して、電極401に負の電圧を印加すると、図9の場合と同様に、強磁性膜801と絶縁膜402の界面に働く界面磁気異方性を変調でき、その効果によって積層フェリ層への情報記録、ないし積層フェリ層でのスピン波の励起を行うことができる。非磁性膜802としては、例えばRu,Ir,Os,Cr等を用いることができる。図16には、積層フェリ層を構成する強磁性膜801,803の磁化方向は、ほぼ膜面内(y軸方向)を向いているように描かれているが、実際はスピン波導波路との強磁性結合により、両者の磁化方向が少しz軸方向に立った、いわゆるキャント状態になっている。
In this example, the material of the structure other than the laminated ferri layer and its physical properties are the same as those in FIG. As a ferromagnetic film constituting the laminated ferri layer, CoFeB can be used as in FIG. In this case, as described with reference to the device operation in FIG. 9, when a negative voltage is applied to the electrode 401 via the insulating film 402 (for example, MgO), the ferromagnetic film 801 and the insulating film 402 are the same as in FIG. It is possible to modulate the interface magnetic anisotropy acting on the interface, and to record information on the laminated ferri layer or to excite spin waves in the laminated ferri layer. As the nonmagnetic film 802, for example, Ru, Ir, Os, Cr, or the like can be used. In FIG. 16, the magnetization directions of the ferromagnetic films 801 and 803 constituting the laminated ferri layer are drawn so as to be substantially in the film plane (y-axis direction). Due to the magnetic coupling, a so-called cant state in which the magnetization directions of the two are slightly in the z-axis direction is obtained.
積層フェリ構造を導入すると、2つの強磁性膜801,803からの漏洩磁界が互いにカップルし、いわゆる閉磁束構造をとるので、磁化反転時の反磁界の影響を低減でき、より小さな電圧での書き込み、またより小さな振幅のスピン波での情報書込みが可能となる。実際、積層フェリ層以外は全く図9と同一の寸法、材料を用い、強磁性膜801に厚さ1.4nmのCoFeBを用い、強磁性膜803に厚さ1.5nmのCoFeBを用いた場合、図9の構造に比べて、一次情報記録部408へ情報記録するために必要なスピン波を励起するのに、情報入力部407の電極401に印加すべき電圧を20%程度低減できた。
When the laminated ferrimagnetic structure is introduced, the leakage magnetic fields from the two ferromagnetic films 801 and 803 are coupled to each other to form a so-called closed magnetic flux structure, so that the influence of the demagnetizing field at the time of magnetization reversal can be reduced, and writing with a smaller voltage is possible. In addition, it is possible to write information with a spin wave having a smaller amplitude. Actually, the same dimensions and materials as those in FIG. 9 are used except for the laminated ferri layer, CoFeB having a thickness of 1.4 nm is used for the ferromagnetic film 801, and CoFeB having a thickness of 1.5 nm is used for the ferromagnetic film 803. Compared with the structure of FIG. 9, the voltage to be applied to the electrode 401 of the information input unit 407 can be reduced by about 20% in order to excite the spin wave necessary for recording information in the primary information recording unit 408.
図16は、図9の構造をベースに構成した積層フェリ層を有するスピン波回路の構造例であったが、図10、図11の構造をベースにして、積層フェリ層を有するスピン波回路を構成することも可能である。その場合、積層フェリ層を構成する強磁性膜は、膜面垂直方向(z軸方向)に磁化容易軸を有する材料を用いる。例えば、厚さが1.3nm以下のCoFeB膜などが利用できる。
FIG. 16 shows an example of a structure of a spin wave circuit having a laminated ferri layer based on the structure of FIG. 9, but a spin wave circuit having a laminated ferri layer based on the structure of FIGS. It is also possible to configure. In that case, a material having an easy axis of magnetization in the direction perpendicular to the film surface (z-axis direction) is used for the ferromagnetic film constituting the laminated ferri layer. For example, a CoFeB film having a thickness of 1.3 nm or less can be used.
上記では、基本的なスピン波導波路構造と、入力情報の記録、スピン波による情報の伝送、記録動作に関して説明した。すでに述べたように、本発明のスピン波演算回路では、図9、図10、図11(すなわち表1のケース1~3)のいずれの場合においても、強磁性膜403,503,513の磁化がエネルギー的に等価な2つの方向を有することが、記録層を構成する条件であった。これらの安定な磁化方向に向いた磁化がもう一方の安定状態に遷移するためには、2つの状態間にあるエネルギー障壁を乗り越える必要があり、スピン波の磁化の運動が、強磁性結合を介して、この遷移を引き起こすドライビングフォースとなる。しかしながら、本発明のように電界を用いてスピン波を励起する場合、励起されるスピン波の振幅には限界があり、通常、スピン波導波路を構成する強磁性体線路の飽和磁化Msの20~30%が上限である。また、振幅が大きすぎるスピン波が励起されると、強磁性体中で引き起こされる非線形な現象で、スピン波の波形や位相が大きく乱れることも報告されている。したがって、少ない電力で励起される比較的小さな振幅を有するスピン波によって、情報の書込みが可能な方式が強く望まれる。
In the above, the basic spin wave waveguide structure, the recording of input information, the transmission of information by spin waves, and the recording operation have been described. As already described, in the spin wave arithmetic circuit of the present invention, the magnetizations of the ferromagnetic films 403, 503, and 513 in any of FIGS. 9, 10, and 11 (that is, cases 1 to 3 in Table 1). It has been a condition for constituting the recording layer that has two directions equivalent in terms of energy. In order for these magnetizations oriented in the stable direction to transition to the other stable state, it is necessary to overcome the energy barrier between the two states, and the movement of the magnetization of the spin wave is via ferromagnetic coupling. The driving force that causes this transition. However, when a spin wave is excited by using an electric field as in the present invention, the amplitude of the excited spin wave is limited, and normally the saturation magnetization Ms of the ferromagnetic material line constituting the spin wave waveguide is 20 to 30% is the upper limit. It has also been reported that when a spin wave having an excessively large amplitude is excited, the waveform and phase of the spin wave are greatly disturbed by a nonlinear phenomenon caused in a ferromagnetic material. Therefore, a method capable of writing information by a spin wave having a relatively small amplitude that is excited with a small amount of power is strongly desired.
図17及び図18は、上記の課題を解決する一方式を示すものであり、スピン波の情報を効率よく情報記録部に記録する原理を示す模式図である。図17は、図9に示した基本的なスピン演算回路を構成するスピン波回路とその各部への電圧印加を示す図である。Viは、情報入力部407に印加する電圧を、Voは一次情報記録部408に印加する電圧を表す。
FIG. 17 and FIG. 18 show one method for solving the above-described problem, and are schematic diagrams showing the principle of efficiently recording spin wave information in the information recording unit. FIG. 17 is a diagram showing a spin wave circuit constituting the basic spin calculation circuit shown in FIG. 9 and voltage application to each part thereof. Vi represents a voltage applied to the information input unit 407, and Vo represents a voltage applied to the primary information recording unit 408.
図18は、情報入力部407に印加する電圧Viと一次情報記録部408に印加する電圧Voの波形と印加タイミングを示す図である。スピン波による情報の伝送を開始するため、図18のように、あるタイミングt1で情報入力部407の電極に印加する電圧ViをONする。Viとしては通常、図18に示されるようなある周波数を有する正弦波状の電圧を印加して、情報入力部407にスピン波を励起する。ただし電圧波形は正弦波に限定されるものではなく、正弦波の半周期に相当する矩形状の波形であってもよい。Viの周波数は、スピン波導波路を構成する強磁性体線路材料や構造によって異なるが、通常数GHz~10GHz程度である。また、印加する正弦波状の電圧の繰り返し周期は、スピン波導波路を構成する強磁性体線路材料や構造及び一次情報記録部の強磁性膜材料、強磁性体線路と強磁性膜の間の強磁性結合の強さなどによって異なるが、通常1から数周期に設定する。
FIG. 18 is a diagram showing waveforms and application timings of the voltage Vi applied to the information input unit 407, the voltage Vo applied to the primary information recording unit 408, and the like. In order to start transmission of information by a spin wave, the voltage Vi applied to the electrode of the information input unit 407 is turned on at a certain timing t1, as shown in FIG. As the Vi, a sinusoidal voltage having a certain frequency as shown in FIG. 18 is applied to excite a spin wave in the information input unit 407. However, the voltage waveform is not limited to a sine wave, and may be a rectangular waveform corresponding to a half cycle of the sine wave. The frequency of Vi varies depending on the ferromagnetic line material and structure constituting the spin wave waveguide, but is usually about several GHz to 10 GHz. In addition, the repetition period of the sinusoidal voltage to be applied depends on the ferromagnetic line material and structure of the spin wave waveguide and the ferromagnetic film material of the primary information recording unit, and the ferromagnetic line between the ferromagnetic line and the ferromagnetic film. Although it depends on the strength of the coupling, etc., it is usually set from 1 to several cycles.
さらに、このタイミングt1において、一次情報記録部408の電極に負電圧Voを印加する。この電圧波形は、Viと異なり、矩形の波形である。印加された電圧Voは、強磁性膜403(たとえばCoFeB)の界面磁気異方性を増加させる。このようにすると、上述した強磁性膜403の磁化は一層垂直方向に向き、このため上述した2つのエネルギー安定点を遮るエネルギー障壁の値が低下し、より小さな振幅のスピン波によってでも、情報の記録が行えるようになる。情報入力部407で励起されたスピン波は、タイミングt2において一次情報記録部408に到達し、一次情報記録部408での記録動作を行う。その動作が終了するタイミングt3でVoの値をゼロにすれば、一次情報記録部408の強磁性膜の磁化方向はより膜面内方向に倒れ、2つのエネルギー安定点を遮るエネルギー障壁の高さが高くなるので、記録された情報は安定に記録され続けることになる。タイミングt3は、一次情報記録部408へ伝播してきたスピン波の振幅がゼロとなるタイミングであることが望ましい。
Furthermore, at this timing t1, a negative voltage Vo is applied to the electrode of the primary information recording unit 408. Unlike the Vi, this voltage waveform is a rectangular waveform. The applied voltage Vo increases the interfacial magnetic anisotropy of the ferromagnetic film 403 (for example, CoFeB). In this way, the magnetization of the ferromagnetic film 403 described above is more vertically oriented, so that the value of the energy barrier that blocks the two energy stable points described above is reduced, and even with a smaller amplitude spin wave, the information Recording can be performed. The spin wave excited by the information input unit 407 reaches the primary information recording unit 408 at the timing t2, and performs a recording operation in the primary information recording unit 408. If the value of Vo is made zero at the timing t3 when the operation ends, the magnetization direction of the ferromagnetic film of the primary information recording unit 408 falls more in the in-plane direction, and the height of the energy barrier that blocks the two energy stable points Therefore, the recorded information continues to be recorded stably. The timing t3 is desirably a timing at which the amplitude of the spin wave propagating to the primary information recording unit 408 becomes zero.
なお、図18においては、一次情報記録部408へ電圧Voを印加するタイミングを、情報入力部407に電界Viが印加されるタイミングt1と同一としたが、そのタイミングは、t1以降であり、かつスピン波が一次情報記録部408に到達するタイミングt2までの間であればよい。
In FIG. 18, the timing at which the voltage Vo is applied to the primary information recording unit 408 is the same as the timing t1 at which the electric field Vi is applied to the information input unit 407, but the timing is after t1 and It may be until the timing t2 when the spin wave reaches the primary information recording unit 408.
本実施例では、基本ゲートであるAND論理、OR論理、NAND論理、及びそれを利用した最も基本的な組み合わせ回路であるセレクタ及び全加算器を、本発明の導波路を用いて構成する方法を示す。
In the present embodiment, there is provided a method of configuring a selector and a full adder, which are AND logic, OR logic, NAND logic, which are basic gates, and the most basic combination circuit using the basic gate, using the waveguide of the present invention. Show.
図19はAND論理を実現するスピン波回路の例を示し、図20はNAND論理を実現するスピン波回路の例を示す図である。入力端子1001,1002は情報の入力を行う2つの端子、出力端子1005は演算結果を出力する端子である。入力端子と出力端子の間はスピン波導波路1003,1004によって結ばれており、出力端子1005の個所で2つのスピン波導波路1003,1004が交差している。以下、図19及び図20の記録部で、磁化が図の下向きである場合の情報を「0」、上向きである場合の情報を「1」で表すことにする。
FIG. 19 shows an example of a spin wave circuit that realizes AND logic, and FIG. 20 shows an example of a spin wave circuit that realizes NAND logic. Input terminals 1001 and 1002 are two terminals for inputting information, and output terminal 1005 is a terminal for outputting a calculation result. The input terminal and the output terminal are connected by spin wave waveguides 1003 and 1004, and the two spin wave waveguides 1003 and 1004 intersect at the output terminal 1005. Hereinafter, in the recording unit of FIGS. 19 and 20, information when the magnetization is downward in the figure is represented by “0”, and information when the magnetization is upward is represented by “1”.
図19に示したAND論理を構成するスピン波回路では、スピン波導波路1003,1004の長さをスピン波の波長λのn倍とし、さらに出力端子1005には予め情報“0”を記録しておく。真理値表を表2に示す。
In the spin wave circuit constituting the AND logic shown in FIG. 19, the length of the spin wave waveguides 1003 and 1004 is set to n times the wavelength λ of the spin wave, and information “0” is recorded in advance on the output terminal 1005. deep. The truth table is shown in Table 2.
図19では、2本のスピン波導波路1003,1004の長さが等しいので、入力端子1001と入力端子1002の位相(すなわち記録された情報)が等しいとき、入力端子1001で励起されたスピン波と入力端子1002で励起されたスピン波は強め合って干渉し、もともとの入力情報が(“0”,“0”)の場合は“0”が、(“1”,“1”)の場合は“1”が、出力端子1005に記録される。
In FIG. 19, since the lengths of the two spin wave waveguides 1003 and 1004 are equal, when the phases of the input terminal 1001 and the input terminal 1002 are equal (that is, recorded information), the spin wave excited at the input terminal 1001 The spin waves excited at the input terminal 1002 intensify and interfere with each other. When the original input information is (“0”, “0”), “0” is obtained, and (“1”, “1”). “1” is recorded in the output terminal 1005.
他方、入力端子1001と入力端子1002の位相(すなわち記録された情報)が等しくないとき、入力端子1001で励起されたスピン波と入力端子1002で励起されたスピン波は弱め合って干渉し、情報は上書きされず、いずれも“0”が記録されたままになる。以上で表2の論理が実現される。
On the other hand, when the phases (that is, recorded information) of the input terminal 1001 and the input terminal 1002 are not equal, the spin wave excited at the input terminal 1001 and the spin wave excited at the input terminal 1002 weaken each other and interfere with each other. Are not overwritten, and in either case, “0” remains recorded. Thus, the logic of Table 2 is realized.
OR論理は、図19のスピン波回路において、出力端子1002に予め情報“1”を記録しておくことで実現できる。
OR logic can be realized by recording information “1” in advance in the output terminal 1002 in the spin wave circuit of FIG.
図20に示したNAND論理を実現するスピン波回路の例では、入力端子1001と出力端子1005をつなぐスピン波導波路の長さは、スピン波の波長λの(n+1/2)倍であり、入力端子1002と出力端子1005をつなぐスピン波導波路の長さも、スピン波の波長λの(n+1/2)倍である。また出力端子1005には予め“1”を記録しておく。真理値表を表3に示す。
In the example of the spin wave circuit that realizes the NAND logic shown in FIG. 20, the length of the spin wave waveguide connecting the input terminal 1001 and the output terminal 1005 is (n + 1/2) times the wavelength λ of the spin wave. The length of the spin wave waveguide connecting the terminal 1002 and the output terminal 1005 is also (n + 1/2) times the wavelength λ of the spin wave. Further, “1” is recorded in advance in the output terminal 1005. The truth table is shown in Table 3.
図20において、2つの入力端子に記録された情報が(“0”,“0”)の場合、入力端子1001のスピン波、入力端子1002のスピン波の位相がともにπずれているので、そのまま強め合って干渉し、出力端子1005の情報“1”を上書きする。2つの入力端子に記録された情報が(“0”,“1”)の場合は、入力端子1001で励起されたスピン波と入力端子1002で励起されたスピン波の位相がπずれているので、両者は弱めあって干渉し、情報“1”が出力端子1005にそのまま残る。
In FIG. 20, when the information recorded in the two input terminals is (“0”, “0”), the phase of the spin wave at the input terminal 1001 and the phase of the spin wave at the input terminal 1002 are both shifted by π. The information “1” of the output terminal 1005 is overwritten by constructive interference. When the information recorded on the two input terminals is (“0”, “1”), the phase of the spin wave excited at the input terminal 1001 and the phase of the spin wave excited at the input terminal 1002 are shifted by π. , Both weakly interfere with each other, and the information “1” remains in the output terminal 1005 as it is.
2つの入力端子に記録された情報が(“1”,“0”)の場合、入力端子1001で励起されたスピン波と入力端子1002で励起されたスピン波の位相がπずれているので、両者は弱めあって干渉し、情報“1”が出力端子1005にそのまま残る。2つの入力端子に記録された情報が(“1”,“1”)の場合、入力端子1001のスピン波、入力端子1002のスピン波の位相がともにπずれているので、そのまま強め合って干渉し、出力端子1005に情報“0”を上書きする。
When the information recorded in the two input terminals is (“1”, “0”), the phase of the spin wave excited at the input terminal 1001 and the spin wave excited at the input terminal 1002 are shifted by π. The two are weak and interfere, and the information “1” remains at the output terminal 1005. When the information recorded on the two input terminals is (“1”, “1”), the spin waves at the input terminal 1001 and the spin waves at the input terminal 1002 are both out of phase by π, so they are strengthened and interfered as they are. The information “0” is overwritten on the output terminal 1005.
以上のようにして、NAND論理が実現される。NAND論理素子は、すべての論理演算回路を実現するユニバーサルな回路なので、以上から、本発明のスピン波導波路を用いて、あらゆる論理演算回路が実現できる。
As described above, NAND logic is realized. Since the NAND logic element is a universal circuit that realizes all logic operation circuits, any logic operation circuit can be realized using the spin wave waveguide of the present invention.
次に、AND論理とOR論理を組み合わせた少し規模の大きな論理回路であるセレクタ回路の実現方法を、図21を用いて説明する。
Next, a method for realizing a selector circuit, which is a slightly larger logic circuit combining AND logic and OR logic, will be described with reference to FIG.
まず、図21において、最も左側にある4つの記録部1101a,1101b,1101c,1101dは、入力信号を書き込む領域である。記録部1103,1104には信号“0”を、記録部1105には信号“1”を、演算前に書き込んでおく。
First, in FIG. 21, the four leftmost recording units 1101a, 1101b, 1101c, and 1101d are areas for writing input signals. The signal “0” is written in the recording units 1103 and 1104, and the signal “1” is written in the recording unit 1105 before the calculation.
次に、4つの記録部1101a~1101dに電気信号を同期して入力し、スピン波を発生させる。スピン波はスピン波導波路を通って図21の右方向に伝搬していく。図21の左上の2つのスピン波導波路を伝搬するスピン波は、2つのスピン波導波路1102が合流する記録部1103に情報を書き込むが、スピン波の干渉効果により、1101a及び1101bの情報がともに“1”の場合のみ、記録部1103に書き込まれる情報は“1”となる、すなわちAND動作が実現する。一方、図21の左下部のスピン波導波路では、スピン波導波路1102を伝搬するスピン波の位相のみが半波長分ずれているため、1101cが“1”、1101dが“0”の場合のみ、記録部1104に“1”が書き込まれる。
Next, an electric signal is synchronously input to the four recording units 1101a to 1101d to generate a spin wave. The spin wave propagates rightward in FIG. 21 through the spin wave waveguide. The spin wave propagating through the two spin wave waveguides in the upper left of FIG. 21 writes information in the recording unit 1103 where the two spin wave waveguides 1102 merge. Only in the case of “1”, the information written in the recording unit 1103 is “1”, that is, an AND operation is realized. On the other hand, in the spin wave waveguide at the lower left of FIG. 21, only the phase of the spin wave propagating through the spin wave waveguide 1102 is shifted by a half wavelength, so that only when 1101c is “1” and 1101d is “0”, recording is performed. “1” is written in the part 1104.
次に、記録部1103,1104に同期して電圧印加してスピン波を発生させる。スピン波はさらにスピン波導波路を右方向に伝搬して、情報が記録部1105に書き込まれるが、ここでは記録部1103,1104に書き込まれた情報が(“0”,“0”)でない限り、情報“1”が記録部75に書き込まれる。すなわち、以下の表4に示す真理値表が成り立つ。
Next, a spin wave is generated by applying a voltage in synchronization with the recording units 1103 and 1104. The spin wave further propagates rightward through the spin wave waveguide, and information is written in the recording unit 1105. Here, unless the information written in the recording units 1103 and 1104 is (“0”, “0”), Information “1” is written in the recording unit 75. That is, the truth table shown in Table 4 below is established.
以上から、制御信号が“0”のとき、入力信号2が、制御信号が“1”のとき入力信号1が選択されるセレクタの機能が実現されている。なお、上記説明では、セレクタ中間部に2つの記録部1103と1104を設置する例を示した。このようにすると、記録部1101a~1101dにおいて励起されるスピン波の位相ずれ、あるいは記録部1101a~1101dと記録部1103,1104の距離の作製誤差によるスピン波の位相ずれを、1回1回の演算動作で吸収できるので、動作のマージンを拡大することができる。しかし超高速な動作が必要な用途では、記録部1103,1104を省略して、1回のクロックでセレクタの動作を完了することもできる。
From the above, the selector function is realized in which the input signal 2 is selected when the control signal is “0” and the input signal 1 is selected when the control signal is “1”. In the above description, an example in which two recording units 1103 and 1104 are installed in the selector intermediate unit is shown. In this way, the phase shift of the spin wave excited in the recording units 1101a to 1101d, or the phase shift of the spin wave due to the manufacturing error of the distance between the recording units 1101a to 1101d and the recording units 1103 and 1104, can be detected once. Since it can be absorbed by the calculation operation, the operation margin can be expanded. However, in applications that require ultra-high speed operation, the recording units 1103 and 1104 can be omitted, and the operation of the selector can be completed with a single clock.
本実施例で示したセレクタ回路は、例えばFPGA(Field-Programmable Gate Array)のロジックエレメントの基本回路であるので、このセレクタ回路を結合して大規模化することで、FPGAのロジックエレメントを本実施例のスピン波回路を用いて構成することができる。
The selector circuit shown in the present embodiment is, for example, a basic circuit of an FPGA (Field-Programmable Gate Array) logic element. Therefore, by combining the selector circuits and increasing the scale, the FPGA logic element is implemented in this embodiment. An example spin wave circuit can be used.
次に、さらに大規模な演算回路である全加算器を、本発明のスピン波導波路を用いて構成する例を、図22に示す。図22において、丸で描かれたAi,Bi,Ci,Oi,Ai’,Ci’(i=1,2,‥)は、情報入力部、一次情報記録部、情報出力部等に相当する。具体的には、Ai,Biが情報記録部で、ここにi番目の桁の情報“0”,“1”が記録される。Ciは、加算演算におけるキャリーであり、i番目の演算結果で桁上がりが生じる場合には“1”、生じない場合は“0”が記録される。Oiはi桁目の演算結果を出力する情報出力部であり、Ai’,Ci’等は、演算結果の一次情報記録部である。図22では、3段目までの演算に関する動作が示されている。図中の矢印はスピン波導波路を模式的に表現したもので、矢印の方向にスピン波による情報の伝達が行われる。具体的な動作を、表5に纏めた。
Next, FIG. 22 shows an example in which a full adder which is a larger-scale arithmetic circuit is configured using the spin wave waveguide of the present invention. In FIG. 22, Ai, Bi, Ci, Oi, Ai ′, Ci ′ (i = 1, 2,...) Drawn in a circle correspond to an information input unit, a primary information recording unit, an information output unit, and the like. Specifically, Ai and Bi are information recording units, and the i-th digit information “0” and “1” are recorded therein. Ci is a carry in the addition operation, and “1” is recorded when a carry occurs in the i-th operation result, and “0” is recorded when no carry occurs. Oi is an information output unit that outputs the calculation result of the i-th digit, and Ai ′, Ci ′, etc. are primary information recording units of the calculation result. FIG. 22 shows operations related to calculations up to the third stage. The arrow in the figure schematically represents the spin wave waveguide, and information is transmitted by the spin wave in the direction of the arrow. Specific operations are summarized in Table 5.
まず、1段目の動作に関して説明する。タイミングT1において、情報入力部A1,B1へ情報を書込み、同時に情報出力部O1、キャリーC2に情報“0”を書き込んでおく。次のタイミングT2で、A1,B1でスピン波を励起し、C2への情報伝達を行うと同時に、A1からA1、B1からB1’への情報伝達を行う。まず、A1,B1からC2への情報伝達では、A1とC2、B1とC2の距離をスピン波の波長の整数倍に設定しておくことで、すでに述べたAND演算が実行され、A1,B1がともに“1”の場合のみ、C2に“1”が記録され、「桁上がり」が生じる。一方、A1→A1、B1→B1’の情報伝達では、A1とA1の距離をスピン波の波長の(2n-1)/2倍(nは自然数)にしておくことで、A1とA1の情報を“0”から“1”ないし、“1”から“0”に反転させる。一方、B1とB1’の距離をスピン波の波長の整数倍にすることで、B1の情報がそのままB1’へ伝達される。次のタイミングT3では、A1,B1’→O1への情報伝達、C2→C2’への情報伝達、A2,B2への書込み、O2への“0”書込みを行う。このうち、A1,B1’→O1への情報伝達のみが、第1段目の動作であり、A1とO1、B1’とO1の距離をスピン波の整数倍としておくことで、A1とB1の情報が異なっている場合にのみ、O1に伝搬してくるスピン波は強めあうので、情報が“0”から“1”に書き換えられる。したがって、真理値表は、表6のようになり、加算器の動作が行われていることがわかる。
First, the operation of the first stage will be described. At timing T1, information is written to the information input units A1 and B1, and simultaneously information "0" is written to the information output unit O1 and the carry C2. At the next timing T2, the spin waves are excited at A1 and B1, and information is transmitted to C2, and at the same time, information is transmitted from A1 to A1 and from B1 to B1 ′. First, in the information transmission from A1, B1 to C2, by setting the distances of A1 and C2 and B1 and C2 to integer multiples of the wavelength of the spin wave, the AND operation described above is executed, and A1, B1 Only when both are “1”, “1” is recorded in C2, and “carry” occurs. On the other hand, in the information transmission of A1 → A1 and B1 → B1 ′, the distance between A1 and A1 is set to (2n−1) / 2 times the wavelength of the spin wave (n is a natural number), so that the information on A1 and A1 Is inverted from “0” to “1” or from “1” to “0”. On the other hand, by making the distance between B1 and B1 ′ an integral multiple of the wavelength of the spin wave, the information on B1 is transmitted to B1 ′ as it is. At the next timing T3, information transmission from A1, B1 ′ to O1, information transmission from C2 to C2 ′, writing to A2 and B2, and “0” writing to O2 are performed. Of these, only the transmission of information from A1 and B1 ′ to O1 is the first stage operation. By setting the distance between A1 and O1 and B1 ′ and O1 to be an integral multiple of the spin wave, A1 and B1 Only when the information is different, spin waves propagating to O1 strengthen each other, so that the information is rewritten from “0” to “1”. Therefore, the truth table is as shown in Table 6, and it can be seen that the operation of the adder is performed.
2段目の動作は、タイミングT3での情報伝達における、C2→C2’への情報伝達、A2,B2への書込み、O2への“0”書込みに始まる。ここで、C2とC2’の距離をスピン波の距離を整数倍としておくと、C2からC2’へ情報は変化せず伝達される。次のタイミングT4では、A2→A2、C2’→O2、C2’→C2”への情報伝達が行われる。ここで、A2とA2の距離は、スピン波の波長の(2n-1)/2倍(nは自然数)、C2’とO2、C2’とC2”の距離はスピン波の整数倍とする。A2からA2には情報が反転して、C2’→O2、C2’→C2”では、情報がそのまま保持されて伝達される。次のタイミングT5では、A2→C3、B2→C3、C2”→C3への情報伝達、A2→O2、B2→O2への情報伝達が行われる。これらの情報記録部間の距離は、すべてスピン波の波長の整数倍としておく。まず、A2→C3、B2→C3、C2”→C3の情報伝達では、A2,B2,C2”のうち数が多いほうの情報が、C3に書き込まれる。A2→O2、B2→O2の情報伝達では、A2,B2の情報が異なっている場合のみ、すでにO2に書き込まれている情報の書換えが行われる。以上から、2段目の加算器の動作真理値表は、表7のようになり、全加算器の動作が実現されていることがわかる。
The operation in the second stage starts with information transmission from C2 to C2 ′, writing to A2 and B2, and writing “0” to O2 in information transmission at timing T3. Here, if the distance between C2 and C2 ′ is made an integral multiple of the spin wave distance, information is transmitted from C2 to C2 ′ without change. At the next timing T4, information transmission from A2 → A2 , C2 ′ → O2, C2 ′ → C2 ″ is performed. Here, the distance between A2 and A2 is (2n−1) / 2 of the wavelength of the spin wave. The distance (n is a natural number), the distance between C2 ′ and O2, and C2 ′ and C2 ″ is an integral multiple of the spin wave. The information is inverted from A2 to A2 , and the information is held and transmitted as it is in C2 ′ → O2 and C2 ′ → C2 ″. At the next timing T5, A2 → C3, B2 → C3, C2 ″ → Information transmission to C3 and information transmission from A2 to O2 and B2 to O2 are performed. The distances between these information recording parts are all integer multiples of the wavelength of the spin wave. First, in the information transmission of A2 → C3, B2 → C3, and C2 ″ → C3, the information having the larger number among A2, B2, and C2 ″ is written in C3. In the information transmission of A2 → O2, B2 → O2, only when the information of A2 and B2 is different, the information already written in O2 is rewritten. From the above, the operation truth table of the adder at the second stage is as shown in Table 7, and it can be seen that the operation of the full adder is realized.
3段目以降の動作も、2段目の動作と同様に行われ、n桁のビット同士の加算が実現できる。
The operation after the third stage is performed in the same manner as the operation of the second stage, and an addition of n-digit bits can be realized.
以上述べた、スピン波演算回路を実際のロジックチップに搭載する場合は、外部メモリとのインターフェースなどの周辺回路、クロック回路などは、従来のCMOS回路を用いる必要がある。これらの2つの回路の集積化方法を示す。
When the spin wave arithmetic circuit described above is mounted on an actual logic chip, it is necessary to use a conventional CMOS circuit as a peripheral circuit such as an interface with an external memory and a clock circuit. A method of integrating these two circuits is shown.
図23は、スピン波演算回路とCMOS回路の集積化方法を示した模式図である。図23において、1201はCMOSトランジスタであり、1202はCMOSトランジスタが形成される半導体レイヤーである。なお、CMOSトランジスタ1201やゲート配線1203は図23の奥行き方向にも延伸しているが、図23ではその最前部のみを図示している。また、図23では通常の平面型のCMOSトランジスタが図示されているが。用いるプロセスノードによっては、FIN-FETなどの立体構造を有するトランジスタや、チャネルが縦型になっている縦型のトランジスタなどを用いる場合もある。
FIG. 23 is a schematic diagram showing an integration method of a spin wave arithmetic circuit and a CMOS circuit. In FIG. 23, reference numeral 1201 denotes a CMOS transistor, and reference numeral 1202 denotes a semiconductor layer in which the CMOS transistor is formed. Note that the CMOS transistor 1201 and the gate wiring 1203 extend in the depth direction of FIG. 23, but only the foremost part is shown in FIG. In FIG. 23, a normal planar CMOS transistor is shown. Depending on the process node to be used, a transistor having a three-dimensional structure such as a FIN-FET or a vertical transistor having a vertical channel may be used.
本実施例において、CMOSトランジスタは、演算のタイミングを制御するクロックの生成や、読み出された信号の検出回路、及び周辺のメモリや様々なデバイスとの情報のやりとりを行うインターフェース回路などを形成するために使用される。図23はクロックを生成する場合の例である。1203はクロック信号を送付するタイミングを制御するゲート配線であり、1204はクロック生成を行うCMOS部分とスピン波演算回路部をつなぐグローバルな配線、1205は電極である。1206はCMOSトランジスタとスピン波演算回路部を接続するコンタクト配線であり、1207はこれらのコンタクト配線がレイアウトされている配線レイヤーである。なお、配線部分1207においても、奥行き方向の図示は省略している。CMOS回路部分で生成されたクロック信号は、配線1208によってスピン波演算回路の情報記録部/スピン波発生部1209に伝達される。情報記録部/スピン波発生部1209で励起されたスピン波は、スピン波導波路1210を通じて、次の情報記録部/スピン波発生デバイスへ信号を伝達する。すなわち最上部レイヤー1211が、スピン波演算回路部である。
In this embodiment, the CMOS transistor forms a clock for controlling the timing of operation, a detection circuit for a read signal, an interface circuit for exchanging information with a peripheral memory and various devices, and the like. Used for. FIG. 23 shows an example of generating a clock. 1203 is a gate wiring for controlling the timing of sending the clock signal, 1204 is a global wiring for connecting the CMOS part for generating the clock and the spin wave arithmetic circuit section, and 1205 is an electrode. Reference numeral 1206 denotes a contact wiring that connects the CMOS transistor and the spin wave arithmetic circuit unit, and 1207 denotes a wiring layer in which these contact wirings are laid out. In the wiring portion 1207 as well, the illustration in the depth direction is omitted. The clock signal generated in the CMOS circuit portion is transmitted to the information recording unit / spin wave generating unit 1209 of the spin wave arithmetic circuit through the wiring 1208. The spin wave excited by the information recording unit / spin wave generation unit 1209 transmits a signal to the next information recording unit / spin wave generation device through the spin wave waveguide 1210. That is, the uppermost layer 1211 is a spin wave arithmetic circuit unit.
以上のように、スピン波演算回路においては、最下層にCMOSトランジスタを形成する半導体部分を、最上層に金属磁性体から形成されたスピン波演算回路及びスピン波導波路配線網を形成できるので、従来のロジックチップに比べ、チップの面積を大幅に低減でき、低コスト化を実現できる。さらに、ロジックエレメント部分でも、またスピン波スイッチ群においても、使用する電圧を0.5V以下と、従来のCMOS回路に比べて大幅に低電圧化できるうえ、デバイスの総数を大幅に削減できるので、本実施例のスピン波演算回路を用いたロジックチップでは、従来のCMOS回路を用いたロジックチップに対して、大幅な低電力化を実現することが可能となる。
As described above, in the spin wave arithmetic circuit, the semiconductor part for forming the CMOS transistor in the lowermost layer can be formed, and the spin wave arithmetic circuit and the spin wave waveguide wiring network formed from the metal magnetic material in the uppermost layer can be formed. Compared with this logic chip, the area of the chip can be greatly reduced and the cost can be reduced. Furthermore, in the logic element part and also in the spin wave switch group, the voltage to be used is 0.5 V or less, which can be significantly lower than the conventional CMOS circuit, and the total number of devices can be greatly reduced. In the logic chip using the spin wave arithmetic circuit of this embodiment, it is possible to realize a significant reduction in power compared to the logic chip using the conventional CMOS circuit.
次に、図23に示したCMOSとスピン波演算回路を集積化したチップの製造方法について簡単に述べる。まず最初に、Si基板等の半導体基板に、通常のリソグラフィ、拡散、エッチング工程を用いて、CMOSトランジスタ1201を形成する。次に、最下部コンタクト1206用のビアを形成し、例えば、Ti/TiNの下地膜を引いた上でW膜を形成し、CMPによって平坦化する。引続いて絶縁膜をCVD等で製膜し、電極形成のためのホールをリソグラフィとドライエッチングで形成して、そのホールの中に、例えばCu等の金属をめっき法で製膜し、CMPで平坦化して電極を作製する。その後、さらに次のコンタクト1206を形成するためのビアを、リソグラフィとドライエッチングで形成して、そのビアの中に、例えばCu等の金属をめっき法で製膜し、CMPで平坦化を行ってCuのビアを形成する。このプロセスを繰り返し、所望の配線レイヤー1207を形成する。
Next, a method for manufacturing a chip in which the CMOS and the spin wave arithmetic circuit shown in FIG. 23 are integrated will be briefly described. First, a CMOS transistor 1201 is formed on a semiconductor substrate such as a Si substrate using normal lithography, diffusion, and etching processes. Next, a via for the lowermost contact 1206 is formed, and, for example, a W film is formed after pulling a base film of Ti / TiN, and planarized by CMP. Subsequently, an insulating film is formed by CVD or the like, a hole for electrode formation is formed by lithography and dry etching, and a metal such as Cu is formed in the hole by a plating method, and CMP is performed. An electrode is produced by planarization. After that, a via for forming the next contact 1206 is formed by lithography and dry etching, a metal such as Cu is formed in the via by a plating method, and planarized by CMP. Cu vias are formed. This process is repeated to form a desired wiring layer 1207.
最後に最上部の電極1205を形成して、CMPで平坦化したのち、下地膜/スピン波導波1210を構成する強磁性膜/MgO等の絶縁膜/電極膜及びコンタクトをとるためのキャップ膜を、例えばスパッタリング等の方法で順に製膜する。引き続き、リソグラフィでスピン波導波路の配線パターンを形成し、キャップ膜をまずドライエッチングでパターニングした後、パターニングされたキャップ膜をマスクとして、スピン波導波1210を構成する強磁性膜/MgO等の絶縁膜/電極膜をパターニングする。続いて、情報記録部部分のマスクをリソグラフィで形成し、再びキャップ膜にパターンを転写したのち、キャップ膜をマスクとして情報記録部をエッチングして、パターニングする。このとき、CoFeBを用いる場合は、スピン波導波路のCoFeBの膜厚が所定の値となるよう、エンドポイントモニターによって終点検知して、エッチングを止めることが重要である。引き続き、真空を破らずSiN等のパッシべーション膜を製膜した後ウェハを取り出し、CVD等で絶縁膜を形成した後、CMPで平坦化を行う。最後に、電極1205とクロック伝達用配線1208を接続するビアを形成し、Cu等の金属をめっきビア内に形成した後CMPで平坦化して、コンタクト1206及び情報記録部/スピン波発生部1209のキャップ膜の頭出しを行ったのち、その上にCu等で配線1208を形成し、再びCVD等で全体を絶縁膜に埋め込んで、チップの作製を完了する。
Finally, an uppermost electrode 1205 is formed and planarized by CMP, and then a base film / an insulating film such as a ferromagnetic film / MgO constituting the spin wave waveguide 1210 / an electrode film and a cap film for contact are formed. For example, the films are sequentially formed by a method such as sputtering. Subsequently, a wiring pattern of the spin wave waveguide is formed by lithography, the cap film is first patterned by dry etching, and then a ferromagnetic film / insulating film such as MgO constituting the spin wave waveguide 1210 is formed using the patterned cap film as a mask. / Pattern the electrode film. Subsequently, a mask for the information recording portion is formed by lithography, the pattern is transferred again to the cap film, and then the information recording portion is etched and patterned using the cap film as a mask. At this time, when using CoFeB, it is important to stop etching by detecting the end point with an end point monitor so that the thickness of the CoFeB of the spin wave waveguide becomes a predetermined value. Subsequently, after forming a passivation film such as SiN without breaking the vacuum, the wafer is taken out, an insulating film is formed by CVD or the like, and then flattened by CMP. Finally, a via connecting the electrode 1205 and the clock transmission wiring 1208 is formed, and a metal such as Cu is formed in the plating via and then flattened by CMP, and the contact 1206 and the information recording unit / spin wave generating unit 1209 are formed. After capping the cap film, wiring 1208 is formed on it with Cu or the like, and the whole is again embedded in the insulating film by CVD or the like, thereby completing the chip fabrication.
なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
In addition, this invention is not limited to the above-mentioned Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
101…Si基板
102…スピン波導波路
103…面内磁化強磁性膜
104…強誘電体膜
105…金属電極材料膜
106…金属線路
107…スピン波を励起する領域
108…スピン波検出領域
301…情報入力部
302…スピン波導波路
303…情報出力部
304…スピン波
401…電極
402…絶縁膜
403…強磁性膜
404…非磁性膜
405…強磁性体線路
406…下地膜
407…情報入力部
408…一次情報記録部
409…情報再生部
501…電極
502…絶縁膜
503…強磁性膜
504…非磁性膜
505…強磁性体線路
506…下地膜
507…情報入力部
508…一次情報記録部
509…情報再生部
511…電極
512…絶縁膜
513…強磁性膜
514…非磁性膜
515…強磁性体線路
516…下地膜
517…情報入力部
518…一次情報記録部
519…情報再生部
801…強磁性膜
802…非磁性膜
803…強磁性膜
1001…入力端子
1002…入力端子
1003…スピン波導波路
1004…スピン波導波路
1005…出力端子
1006…情報入力部
1007…情報の一次記録部
1008…情報再生部
1101…記録部
1102…スピン波導波路
1103…記録部
1104…記録部
1105…記録部
1201…CMOSトランジスタ
1202…CMOS半導体レイヤー
1203…ゲート配線
1204…グローバル配線
1205…電極
1206…コンタクト配線
1207…CMOS半導体レイヤー
1208…配線
1209…情報記録部/スピン波発生部
1210…スピン波導波路
1211…スピン波演算回路レイヤー DESCRIPTION OFSYMBOLS 101 ... Si substrate 102 ... Spin wave waveguide 103 ... In-plane magnetization ferromagnetic film 104 ... Ferroelectric film 105 ... Metal electrode material film 106 ... Metal line 107 ... Area | region 108 which excites a spin wave ... Spin wave detection area 301 ... Information Input unit 302 ... spin wave waveguide 303 ... information output unit 304 ... spin wave 401 ... electrode 402 ... insulating film 403 ... ferromagnetic film 404 ... nonmagnetic film 405 ... ferromagnetic material line 406 ... base film 407 ... information input unit 408 ... Primary information recording unit 409 ... information reproducing unit 501 ... electrode 502 ... insulating film 503 ... ferromagnetic film 504 ... nonmagnetic film 505 ... ferromagnetic line 506 ... underlayer film 507 ... information input unit 508 ... primary information recording unit 509 ... information Reproduction unit 511 ... electrode 512 ... insulating film 513 ... ferromagnetic film 514 ... nonmagnetic film 515 ... ferromagnetic material line 516 ... underlayer film 517 ... information input unit 518 ... one Information recording section 519 ... information reproducing section 801 ... ferromagnetic film 802 ... nonmagnetic film 803 ... ferromagnetic film 1001 ... input terminal 1002 ... input terminal 1003 ... spin wave waveguide 1004 ... spin wave waveguide 1005 ... output terminal 1006 ... information input section 1007 ... Primary recording unit 1008 ... Information reproducing unit 1101 ... Recording unit 1102 ... Spin wave waveguide 1103 ... Recording unit 1104 ... Recording unit 1105 ... Recording unit 1201 ... CMOS transistor 1202 ... CMOS semiconductor layer 1203 ... Gate wiring 1204 ... Global wiring 1205... Electrode 1206... Contact wiring 1207... CMOS semiconductor layer 1208... Wiring 1209... Information recording unit / spin wave generation unit 1210.
102…スピン波導波路
103…面内磁化強磁性膜
104…強誘電体膜
105…金属電極材料膜
106…金属線路
107…スピン波を励起する領域
108…スピン波検出領域
301…情報入力部
302…スピン波導波路
303…情報出力部
304…スピン波
401…電極
402…絶縁膜
403…強磁性膜
404…非磁性膜
405…強磁性体線路
406…下地膜
407…情報入力部
408…一次情報記録部
409…情報再生部
501…電極
502…絶縁膜
503…強磁性膜
504…非磁性膜
505…強磁性体線路
506…下地膜
507…情報入力部
508…一次情報記録部
509…情報再生部
511…電極
512…絶縁膜
513…強磁性膜
514…非磁性膜
515…強磁性体線路
516…下地膜
517…情報入力部
518…一次情報記録部
519…情報再生部
801…強磁性膜
802…非磁性膜
803…強磁性膜
1001…入力端子
1002…入力端子
1003…スピン波導波路
1004…スピン波導波路
1005…出力端子
1006…情報入力部
1007…情報の一次記録部
1008…情報再生部
1101…記録部
1102…スピン波導波路
1103…記録部
1104…記録部
1105…記録部
1201…CMOSトランジスタ
1202…CMOS半導体レイヤー
1203…ゲート配線
1204…グローバル配線
1205…電極
1206…コンタクト配線
1207…CMOS半導体レイヤー
1208…配線
1209…情報記録部/スピン波発生部
1210…スピン波導波路
1211…スピン波演算回路レイヤー DESCRIPTION OF
Claims (14)
- 基板上にスピン波を伝搬させる強磁性体線路が設けられ、
前記強磁性体線路上に非磁性中間層を介して強磁性層が積層された領域が複数設けられ、
前記強磁性体線路と前記強磁性層は前記非磁性中間層を介して強磁性結合しており、前記強磁性体線路の磁化容易軸と前記強磁性層の磁化容易軸が直交していることを特徴とするスピン波回路。 A ferromagnetic line for propagating spin waves is provided on the substrate,
A plurality of regions in which a ferromagnetic layer is laminated via a nonmagnetic intermediate layer on the ferromagnetic line are provided,
The ferromagnetic line and the ferromagnetic layer are ferromagnetically coupled via the nonmagnetic intermediate layer, and the easy axis of magnetization of the ferromagnetic line is orthogonal to the easy axis of magnetization of the ferromagnetic layer. A spin wave circuit. - 請求項1記載のスピン波回路において、前記強磁性体線路及び前記強磁性層がCo,Feないしそれらの合金、あるいは前記Co,Feないしそれらの合金にBを含有する金属で構成されていることを特徴とするスピン波回路。 2. The spin wave circuit according to claim 1, wherein the ferromagnetic line and the ferromagnetic layer are made of Co, Fe or an alloy thereof, or a metal containing B in the Co, Fe or an alloy thereof. A spin wave circuit.
- 請求項1記載のスピン波回路において、前記強磁性体線路の磁化容易軸は前記強磁性体線路の延伸方向に平行であり、前記強磁性層の磁化容易軸は膜面に垂直であることを特徴とするスピン波回路。 2. The spin wave circuit according to claim 1, wherein an easy axis of magnetization of the ferromagnetic line is parallel to an extending direction of the ferromagnetic line, and an easy axis of magnetization of the ferromagnetic layer is perpendicular to the film surface. Characteristic spin wave circuit.
- 請求項1記載のスピン波回路において、前記強磁性体線路の磁化容易軸は前記強磁性体線路の延伸方向と直交かつ基板表面に平行であり、前記強磁性層の磁化容易軸は膜面に垂直であることを特徴とするスピン波回路。 2. The spin wave circuit according to claim 1, wherein an easy axis of magnetization of the ferromagnetic line is perpendicular to a direction in which the ferromagnetic line is stretched and parallel to the substrate surface, and the easy axis of magnetization of the ferromagnetic layer is on the film surface. A spin wave circuit characterized by being vertical.
- 請求項1記載のスピン波回路において、前記強磁性体線路の磁化容易軸は基板面に垂直であり、前記強磁性層の磁化容易軸は膜面に平行であることを特徴とするスピン波回路。 2. The spin wave circuit according to claim 1, wherein an easy axis of magnetization of the ferromagnetic line is perpendicular to a substrate surface, and an easy axis of magnetization of the ferromagnetic layer is parallel to the film surface. .
- 請求項1記載のスピン波回路において、前記強磁性層の上に絶縁層が形成され、前記絶縁層の上に非磁性金属からなる電極が設けられていることを特徴とするスピン波回路。 2. The spin wave circuit according to claim 1, wherein an insulating layer is formed on the ferromagnetic layer, and an electrode made of a nonmagnetic metal is provided on the insulating layer.
- 請求項1記載のスピン波回路において、所定の領域の前記強磁性層の上に絶縁層が形成され、前記絶縁層の上に強磁性体からなる電極が設けられていることを特徴とするスピン波回路。 2. The spin wave circuit according to claim 1, wherein an insulating layer is formed on the ferromagnetic layer in a predetermined region, and an electrode made of a ferromagnetic material is provided on the insulating layer. Wave circuit.
- 請求項1記載のスピン波回路において、前記強磁性層は、互いに磁化が反平行に向いた2層の強磁性層と、前記2層の強磁性層に挟まれた非磁性層からなることを特徴とするスピン波回路。 2. The spin wave circuit according to claim 1, wherein the ferromagnetic layer is composed of two ferromagnetic layers whose magnetizations are antiparallel to each other and a nonmagnetic layer sandwiched between the two ferromagnetic layers. Characteristic spin wave circuit.
- 基板上にスピン波を伝搬させる強磁性体線路が設けられ、前記強磁性体線路上に非磁性中間層、強磁性層、絶縁層及び電極層がこの順で積層された領域が複数設けられ、前記強磁性体線路と前記強磁性層は前記非磁性中間層を介して強磁性結合しており、前記強磁性体線路の磁化容易軸と前記強磁性層の磁化容易軸が直交しており、
前記領域は情報の入力及び前記強磁性体線路を伝搬するスピン波を励起するための情報入力部、情報の一次記録及び前記強磁性体線路を伝搬するスピン波を励起するための一次情報記録部、又は情報を読み出すための情報再生部として使用され、前記情報再生部の電極層は導電性強磁性層であることを特徴とするスピン波回路。 A ferromagnetic line for propagating spin waves is provided on the substrate, and a plurality of regions in which a nonmagnetic intermediate layer, a ferromagnetic layer, an insulating layer, and an electrode layer are stacked in this order are provided on the ferromagnetic line. The ferromagnetic line and the ferromagnetic layer are ferromagnetically coupled via the nonmagnetic intermediate layer, and the easy axis of magnetization of the ferromagnetic line is orthogonal to the easy axis of magnetization of the ferromagnetic layer,
The area includes information input and an information input unit for exciting spin waves propagating through the ferromagnetic line, primary recording of information, and primary information recording unit for exciting spin waves propagating through the ferromagnetic line The spin wave circuit is used as an information reproducing unit for reading information, and an electrode layer of the information reproducing unit is a conductive ferromagnetic layer. - 請求項9記載のスピン波回路において、前記一次情報記録部及び前記情報再生部で複数の強磁性体線路が交差していることを特徴とするスピン波回路。 10. The spin wave circuit according to claim 9, wherein a plurality of ferromagnetic lines intersect at the primary information recording unit and the information reproducing unit.
- 請求項9記載のスピン波回路において、隣接する前記領域間の距離は、前記強磁性体線路を伝搬するスピン波の半波長の偶数倍あるいは奇数倍であることを特徴とするスピン波回路。 10. The spin wave circuit according to claim 9, wherein the distance between the adjacent regions is an even multiple or an odd multiple of a half wavelength of a spin wave propagating through the ferromagnetic line.
- スピン波を伝搬させる強磁性体線路上に非磁性中間層、強磁性層、絶縁層及び電極層がこの順で積層された領域が情報入力部、一次情報記録部又は情報再生部として複数設けられ、前記強磁性体線路と前記強磁性層は前記非磁性中間層を介して強磁性結合しており、前記強磁性体線路の磁化容易軸と前記強磁性層の磁化容易軸が直交しており、前記情報再生部の電極層は導電性強磁性層であるスピン波回路の動作制御方法であって、
前記情報入力部の電極層に所定の閾電圧以上かつ所定のパルス幅の第1の電圧を印加して当該情報入力部を構成する前記強磁性層に情報の書込みを行う工程と、
情報が記録されている前記情報入力部又は前記一次情報記録部の電極層に前記所定の閾電圧より小さい所定のパルス幅の第2の電圧を印加して前記強磁性体線路中にスピン波を励起させると共に、前記情報入力部又は前記一次情報記録部から情報を伝達すべき一次情報記録部又は情報再生部の電極層に第3の電圧を印加して当該一次情報記録部又は情報再生部を構成する前記強磁性層の磁化遷移のエネルギー障壁の値を低下させる工程と、
前記情報を伝達すべき一次情報記録部又は情報再生部に情報が記録された後、前記第3の電圧の印加を停止する工程と、
を含むことを特徴とするスピン波回路の動作制御方法。 A plurality of regions in which a nonmagnetic intermediate layer, a ferromagnetic layer, an insulating layer, and an electrode layer are laminated in this order on a ferromagnetic line that propagates spin waves are provided as an information input unit, a primary information recording unit, or an information reproducing unit. The ferromagnetic line and the ferromagnetic layer are ferromagnetically coupled via the nonmagnetic intermediate layer, and the easy axis of the ferromagnetic line and the easy axis of the ferromagnetic layer are orthogonal to each other. The method for controlling the operation of the spin wave circuit, wherein the electrode layer of the information reproducing unit is a conductive ferromagnetic layer,
Applying a first voltage having a predetermined pulse voltage and a predetermined pulse width to the electrode layer of the information input unit to write information to the ferromagnetic layer constituting the information input unit;
A second voltage having a predetermined pulse width smaller than the predetermined threshold voltage is applied to the electrode layer of the information input unit or the primary information recording unit in which information is recorded to generate a spin wave in the ferromagnetic line. The primary information recording unit or the information reproducing unit is excited by applying a third voltage to the electrode layer of the primary information recording unit or the information reproducing unit to transmit information from the information input unit or the primary information recording unit. Reducing the value of the energy barrier of the magnetization transition of the ferromagnetic layer to constitute,
Stopping the application of the third voltage after information is recorded in the primary information recording unit or the information reproducing unit to which the information is to be transmitted;
An operation control method for a spin wave circuit, comprising: - 請求項12記載のスピン波回路の動作制御方法において、
前記第3の電圧を印加するタイミングは、前記第2の電圧印加と同じタイミングあるいはそれ以降で前記スピン波が前記情報を伝達すべき一次情報記録部又は情報再生部に到達するまでの間のタイミングであることを特徴とするスピン波回路の動作制御方法。 The operation control method for a spin wave circuit according to claim 12,
The timing at which the third voltage is applied is the same as the timing at which the second voltage is applied or the timing after which the spin wave reaches the primary information recording unit or information reproducing unit to which the information is to be transmitted. An operation control method for a spin wave circuit, characterized in that: - 請求項12記載のスピン波回路の動作制御方法において、
前記第2の電圧は正弦波であり、前記第3の電圧は矩形波であることを特徴とするスピン波回路の動作制御方法。 The operation control method for a spin wave circuit according to claim 12,
The method of controlling operation of a spin wave circuit, wherein the second voltage is a sine wave and the third voltage is a rectangular wave.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2013/067354 WO2014207818A1 (en) | 2013-06-25 | 2013-06-25 | Spin wave circuit |
JP2015523696A JP6081591B2 (en) | 2013-06-25 | 2013-06-25 | Operation control method of spin wave circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2013/067354 WO2014207818A1 (en) | 2013-06-25 | 2013-06-25 | Spin wave circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014207818A1 true WO2014207818A1 (en) | 2014-12-31 |
Family
ID=52141225
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/067354 WO2014207818A1 (en) | 2013-06-25 | 2013-06-25 | Spin wave circuit |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6081591B2 (en) |
WO (1) | WO2014207818A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104779342A (en) * | 2015-04-20 | 2015-07-15 | 北京航空航天大学 | Logic device based on spin wave interference and multiferroic material |
JP2019087697A (en) * | 2017-11-09 | 2019-06-06 | 株式会社日立製作所 | Thermoelectric converter and heat transport system |
CN110265479A (en) * | 2019-05-27 | 2019-09-20 | 叶建国 | Logical device, logic module and its manufacturing method |
JP6620913B1 (en) * | 2018-09-12 | 2019-12-18 | Tdk株式会社 | Reservoir element and neuromorphic element |
EP3632840A1 (en) * | 2018-10-05 | 2020-04-08 | IMEC vzw | Arrangement for use in a magnonic matrix-vector-multiplier |
JP2020528662A (en) * | 2018-04-25 | 2020-09-24 | 南方科技大学South University Of Science And Technology Of China | A method and system for combining any two bits of multiple superconducting qubits |
CN113555496A (en) * | 2021-06-30 | 2021-10-26 | 中国计量大学 | Strain-controlled reconfigurable spin wave channel and control method |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114639529B (en) * | 2022-03-15 | 2022-12-09 | 南京大学 | Artificial spinning ice nanostructure and spinning wave transmission regulation and control method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007124340A (en) * | 2005-10-28 | 2007-05-17 | Toshiba Corp | High-frequency oscillation element, onboard radar device using same, inter-vehicle communication device and inter-information terminal communication device |
JP2010205975A (en) * | 2009-03-04 | 2010-09-16 | Toshiba Corp | Signal processing device using magnetic film, and signal processing method |
JP2013045840A (en) * | 2011-08-23 | 2013-03-04 | National Institute Of Advanced Industrial & Technology | Electrical field ferromagnetic resonance excitation method and magnetic functional element using the same |
JP2013120915A (en) * | 2011-12-09 | 2013-06-17 | Hitachi Ltd | Spin-wave waveguide and spin-wave operation circuit |
-
2013
- 2013-06-25 WO PCT/JP2013/067354 patent/WO2014207818A1/en active Application Filing
- 2013-06-25 JP JP2015523696A patent/JP6081591B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007124340A (en) * | 2005-10-28 | 2007-05-17 | Toshiba Corp | High-frequency oscillation element, onboard radar device using same, inter-vehicle communication device and inter-information terminal communication device |
JP2010205975A (en) * | 2009-03-04 | 2010-09-16 | Toshiba Corp | Signal processing device using magnetic film, and signal processing method |
JP2013045840A (en) * | 2011-08-23 | 2013-03-04 | National Institute Of Advanced Industrial & Technology | Electrical field ferromagnetic resonance excitation method and magnetic functional element using the same |
JP2013120915A (en) * | 2011-12-09 | 2013-06-17 | Hitachi Ltd | Spin-wave waveguide and spin-wave operation circuit |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104779342A (en) * | 2015-04-20 | 2015-07-15 | 北京航空航天大学 | Logic device based on spin wave interference and multiferroic material |
JP2019087697A (en) * | 2017-11-09 | 2019-06-06 | 株式会社日立製作所 | Thermoelectric converter and heat transport system |
JP2020528662A (en) * | 2018-04-25 | 2020-09-24 | 南方科技大学South University Of Science And Technology Of China | A method and system for combining any two bits of multiple superconducting qubits |
EP3786858A4 (en) * | 2018-04-25 | 2022-02-16 | Southern University of Science and Technology | Method and system for coupling any two bits from among multiple superconductor quantum bits |
US12093781B2 (en) | 2018-04-25 | 2024-09-17 | Southern University Of Science And Technology | Method and system for coupling any two qubits from among multiple superconductor quantum bits |
JP6620913B1 (en) * | 2018-09-12 | 2019-12-18 | Tdk株式会社 | Reservoir element and neuromorphic element |
EP3632840A1 (en) * | 2018-10-05 | 2020-04-08 | IMEC vzw | Arrangement for use in a magnonic matrix-vector-multiplier |
US11599138B2 (en) | 2018-10-05 | 2023-03-07 | Imec Vzw | System and method for applying a magnonic matrix-vector-multiplier arrangement |
CN110265479A (en) * | 2019-05-27 | 2019-09-20 | 叶建国 | Logical device, logic module and its manufacturing method |
CN110265479B (en) * | 2019-05-27 | 2024-05-31 | 叶建国 | Logic device, logic assembly and manufacturing method thereof |
CN113555496A (en) * | 2021-06-30 | 2021-10-26 | 中国计量大学 | Strain-controlled reconfigurable spin wave channel and control method |
CN113555496B (en) * | 2021-06-30 | 2024-03-29 | 中国计量大学 | Strain-controlled reconfigurable spin wave channel and control method |
Also Published As
Publication number | Publication date |
---|---|
JPWO2014207818A1 (en) | 2017-02-23 |
JP6081591B2 (en) | 2017-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6081591B2 (en) | Operation control method of spin wave circuit | |
JP5431400B2 (en) | Magnetic memory element | |
US9941468B2 (en) | Magnetoresistance effect element and magnetic memory device | |
JP5759882B2 (en) | Spin wave waveguide and spin wave arithmetic circuit | |
JP6280195B1 (en) | Magnetic memory | |
CN110061127B (en) | Magnetic tunnel junction forming method and magneto-resistive random access memory | |
EP1600977B1 (en) | Multi-bit magnetic random acces memory device | |
CN108011038B (en) | Spin orbit torque type magnetoresistance effect element and method for manufacturing the same | |
CN104241286B (en) | Memory element, storage device, the method and magnetic head for manufacturing memory element | |
CN105280214A (en) | Current-driven magnetic random access memory and spin logic device | |
JP2009158665A (en) | Magnetic memory and method for writing the same | |
WO2014188525A1 (en) | Spin wave device and logic circuit in which spin wave device is used | |
WO2006046591A1 (en) | Magnetoresistive element and magnetic memory device | |
CN105449097B (en) | Double magnetism potential barrier tunnel knots and the spintronics devices including it | |
JP2014078617A (en) | Magnetic memory | |
JP5443783B2 (en) | Magnetic oscillation element | |
JP2012069958A (en) | Magnetic recording element | |
JP2012028489A (en) | Magnetic storage device | |
KR20060124578A (en) | Magnetic storage element storing data by magnetoresistive effect | |
TW201222546A (en) | Memory element and memory device | |
JP5576960B2 (en) | Magnetic storage element, magnetic storage device, and magnetic memory | |
CN110366756A (en) | Magnetic memory, semiconductor device, electronic equipment and the method for reading magnetic memory | |
WO2014038015A1 (en) | Spin wave switch and fpga using same | |
JP2007281334A (en) | Spin injection magnetism inverting element and its manufacturing method, and magnetic recording device using same | |
JP2004296858A (en) | Magnetic memory element and magnetic memory device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13888084 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015523696 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13888084 Country of ref document: EP Kind code of ref document: A1 |