[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014203356A1 - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
WO2014203356A1
WO2014203356A1 PCT/JP2013/066868 JP2013066868W WO2014203356A1 WO 2014203356 A1 WO2014203356 A1 WO 2014203356A1 JP 2013066868 W JP2013066868 W JP 2013066868W WO 2014203356 A1 WO2014203356 A1 WO 2014203356A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
amount
polymerization
expansion device
refrigeration cycle
Prior art date
Application number
PCT/JP2013/066868
Other languages
English (en)
French (fr)
Inventor
加藤 央平
岡崎 多佳志
伊東 大輔
裕樹 宇賀神
英明 前山
康巨 鈴木
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2015522421A priority Critical patent/JP6157616B2/ja
Priority to PCT/JP2013/066868 priority patent/WO2014203356A1/ja
Priority to EP13887161.1A priority patent/EP3012556B1/en
Priority to CN201420321403.1U priority patent/CN204027110U/zh
Publication of WO2014203356A1 publication Critical patent/WO2014203356A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • C09K5/045Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/006Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant containing more than one component
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/126Unsaturated fluorinated hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/04Clogging

Definitions

  • the present invention relates to a refrigeration cycle apparatus.
  • a refrigeration cycle apparatus for determining the cause of a decrease in the amount of refrigerant circulation has been proposed as a conventional refrigeration cycle apparatus.
  • this refrigeration cycle apparatus it is determined whether the cause of the decrease in the refrigerant circulation amount is due to the sludge clogging the expansion device or the refrigerant leakage from the refrigerant circuit.
  • a coolant such as cutting oil or rust preventive oil adhering to the pipes and compressor parts constituting the refrigeration cycle apparatus when they are processed.
  • HFO-1234yf refrigerant which is a propylene-based fluorinated hydrocarbon, has a high standard boiling point of -29 ° C, compared to R410A refrigerant (standard boiling point -51 ° C) and the like conventionally used in stationary air conditioners. Low operating pressure and low refrigeration capacity per suction volume. In order to obtain a refrigeration capacity equivalent to that of R410A refrigerant using HFO-1234yf refrigerant in a stationary air conditioner, the volume flow rate of the refrigerant must be increased, which is a problem for increasing the displacement of the compressor In addition, there are problems of increase in pressure loss and decrease in efficiency due to increase in volume flow rate.
  • a low GWP refrigerant with a low standard boiling point is suitable, and generally a molecular structure with a small number of carbon atoms is a low boiling point refrigerant. It is known to be. Therefore, the inventors have studied a compound having a molecular structure having a carbon number smaller than that of a conventional propylene fluorocarbon having 3 carbon atoms through trial and error, and selected from among various compounds an ethylene fluoride having 2 carbon atoms. The use of hydrocarbons as a refrigerant was considered. When this ethylene-based fluorinated hydrocarbon can be used as a refrigerant, it is possible to obtain a refrigerant having low boiling point physical properties equivalent to those of the conventional R410A refrigerant.
  • ethylene-based fluorinated hydrocarbons are more reactive than propylene-based fluorinated hydrocarbons, are thermally and chemically unstable, and are susceptible to decomposition and polymerization. For this reason, when ethylene fluorocarbon is used as a refrigerant, it is difficult to suppress decomposition and polymerization only by configuring the surface of the sliding portion of the compressor shown in Patent Document 1 with non-metallic parts. There is a concern that the expansion device may be clogged by a product generated by polymerization (hereinafter also referred to as sludge by polymerization).
  • Patent Document 2 detects one of clogging of an expansion device or the like or a decrease in the amount of refrigerant in the refrigerant circuit, and does not detect both of them.
  • ethylene-based fluorohydrocarbon is used as a refrigerant and sludge is generated due to polymerization
  • both the expansion device and the like are clogged and the amount of refrigerant in the refrigerant circuit is reduced in the refrigeration cycle apparatus.
  • the technique described in Patent Document 2 has a problem that it cannot be determined whether the cause of the decrease in the refrigerant circulation rate is due to sludge caused by polymerization. there were.
  • the conventional technique when ethylene-based fluorinated hydrocarbon is used as a refrigerant in the refrigeration cycle apparatus, the conventional technique has a problem that the cause of the decrease in the circulation amount of the refrigerant cannot be determined and it takes time for repair work.
  • the present invention has been made in order to solve the above-described problems, and an object of the present invention is to provide a refrigeration cycle apparatus capable of detecting clogging of an expansion device due to sludge due to polymerization.
  • a refrigeration cycle apparatus includes at least a compressor, a condenser, an expansion device, and an evaporator, and uses a refrigerant circuit that uses ethylene-based fluorinated hydrocarbon or a mixture containing ethylene-based fluorinated hydrocarbon as a refrigerant, Of the control device that controls the rotation speed of the compressor and the opening of the expansion device, the clogging amount detection device that detects the clogging amount of the expansion device, and the substance that causes clogging in the expansion device, And a polymerization amount estimation device used for estimating an amount occupied by a product generated by polymerization of the refrigerant.
  • the refrigeration cycle apparatus includes a clogging amount detection device that detects a clogging amount of an expansion device, and an estimation of an amount occupied by a product generated by polymerization of a refrigerant among substances that are clogging the expansion device. And a polymerization amount estimation device used in the above. For this reason, in the refrigeration cycle apparatus according to the present invention, it is possible to detect clogging of the expansion device due to the sludge due to polymerization, so that repair work can be performed quickly.
  • Embodiment 1 is a configuration diagram of a refrigeration cycle apparatus according to Embodiment 1 of the present invention. It is a block diagram which shows the control part of the refrigerating-cycle apparatus which concerns on Embodiment 1 of this invention. It is a figure which shows an example of the ethylene-type fluorocarbon used as a refrigerant
  • FIG. 7 is a ph diagram for explaining a normal operation state and a refrigerant shortage operation state in the refrigeration cycle apparatus according to Embodiment 2 of the present invention. It is a figure for demonstrating the integration
  • FIG. 1 is a configuration diagram of a refrigeration cycle apparatus according to Embodiment 1 of the present invention.
  • the refrigeration cycle apparatus 100 is an apparatus used for cooling and heating an air-conditioning target space such as indoors by performing a vapor compression refrigeration cycle operation.
  • the outdoor unit 61 and the indoor unit 62 are connected to the liquid pipe 5 and the gas. It is configured to be connected via a pipe 7.
  • the liquid pipe 5 is detachably connected to the outdoor unit 61 via the connection device 11 (joint or the like), and is connected to the indoor unit 62 via the connection device 13 (joint or the like).
  • the gas pipe 7 is detachably connected to the outdoor unit 61 via a connection device 12 (joint or the like), and is detachably connected to the indoor unit 62 via a connection device 14 (joint or the like).
  • the refrigeration cycle apparatus 100 has a configuration in which two indoor units 62 (indoor units 62a and 62b) are connected in parallel, but the number of indoor units 62 is arbitrary. is there.
  • the symbols “a” and “b” are added to the end of the reference numerals to distinguish them.
  • the outdoor unit 61 installed outdoors constitutes an outdoor refrigerant circuit that is a part of the refrigerant circuit, and includes a compressor 1, a flow switching device 8 such as a four-way valve, the outdoor heat exchanger 2, and an outdoor unit.
  • a fan 31, an expansion device 3 capable of controlling the opening degree, an accumulator 9 that is a refrigerant container, and the like are provided.
  • the compressor 1 is a compressor capable of changing the rotation speed (that is, the operation capacity) by, for example, inverter control.
  • the flow path switching device 8 is for switching the direction of refrigerant flow. Specifically, the flow path switching device 8 discharges the compressor 1 during cooling operation so that the outdoor heat exchanger 2 functions as a condenser and the indoor heat exchanger 6 (6a, 6b) functions as an evaporator.
  • the refrigerant flow path so as to connect the suction side of the compressor 1 and the gas pipe 7 side (that is, the gas side of the indoor heat exchanger 6). Switch.
  • the flow path switching device 8 is configured so that the indoor heat exchanger 6 (6a, 6b) functions as a condenser and the outdoor heat exchanger 2 functions as an evaporator during heating operation. And the gas pipe 7 side are connected, and the refrigerant flow path is switched so that the suction side of the compressor 1 and the gas side of the outdoor heat exchanger 2 are connected.
  • the outdoor heat exchanger 2 is, for example, a fin-and-tube heat exchanger, the gas side of which is connected to the flow path switching device 8, and the liquid side of which is the liquid pipe 5 (that is, the liquid side of the indoor heat exchanger 6). It is connected to the.
  • the outdoor heat exchanger 2 functions as a condenser during the cooling operation, and functions as an evaporator during the heating operation.
  • the outdoor fan 31 is a fan that can change, for example, the number of rotations (that is, a flow rate of air supplied to the outdoor heat exchanger 2.
  • the outdoor fan 31 rotates to cause outdoor air to enter the outdoor unit 61. And the air heat-exchanged with the refrigerant by the outdoor heat exchanger 2 is discharged to the outside.
  • the expansion device 3 is, for example, an electronic expansion valve (LEV), and is connected to the liquid side of the outdoor unit 61 in order to adjust the flow rate of the refrigerant flowing in the refrigerant circuit.
  • LEV electronic expansion valve
  • the accumulator 9 stores excess liquid refrigerant.
  • the accumulator 9 supplies only the gas refrigerant to the suction side of the compressor 1 in order to prevent liquid back, and is connected to the suction side of the compressor 1.
  • the outdoor unit 61 is provided with various sensors. Specifically, a discharge temperature sensor 41 that detects a discharge temperature Td that is the temperature of the refrigerant discharged from the compressor 1 is provided on the discharge side pipe of the compressor 1.
  • the outdoor heat exchanger 2 includes an outdoor unit gas side temperature sensor that detects the temperature of the refrigerant in the gas-liquid two-phase state (condensation temperature CT during cooling operation, refrigerant temperature corresponding to the evaporation temperature ET during heating operation). 42 is provided.
  • An outdoor unit liquid side temperature sensor 43 that detects the temperature of the refrigerant in the liquid state or the gas-liquid two-phase state is provided on the liquid side of the outdoor heat exchanger 2.
  • the configuration of the indoor units 62a and 62b will be described. Since the indoor unit 62a and the indoor unit 62b have the same configuration, the configuration of the indoor unit 62a will be described as a representative here.
  • the indoor unit 62a constitutes an indoor refrigerant circuit that is a part of the refrigerant circuit, and includes an indoor fan 32a, an indoor heat exchanger 6a, and the like.
  • the indoor heat exchanger 6 a is, for example, a fin-and-tube heat exchanger, the gas side of which is connected to the flow path switching device 8 via the gas pipe 7, and the liquid side thereof is connected to the expansion device 3 via the liquid pipe 5. Connected with.
  • the indoor heat exchanger 6a functions as an evaporator during the cooling operation and functions as a condenser during the heating operation.
  • the indoor fan 32a is a fan that can change, for example, the number of rotations (that is, a flow rate of air supplied to the indoor heat exchanger 6a.
  • the indoor heat exchanger 6a rotates to enter the indoor unit 62a. Indoor air is inhaled, and the indoor air heat-exchanged with the refrigerant by the indoor heat exchanger 6a is supplied indoors as conditioned air.
  • an indoor unit liquid side temperature sensor 35a that detects the temperature of the refrigerant in the liquid state or the gas-liquid two-phase state is provided on the liquid side of the indoor heat exchanger 6a.
  • the indoor heat exchanger 6a has an indoor unit gas side temperature sensor 44a that detects the temperature of the refrigerant in the gas-liquid two-phase state (condensation temperature CT during heating operation, refrigerant temperature corresponding to the evaporation temperature ET during cooling operation). Is provided.
  • Control of the rotational speed of the compressor 1 in the outdoor unit 61 configured as described above, flow path switching of the flow path switching device 8, control of the rotational speed of the outdoor fan 31, and control of the opening degree of the expansion device 3 are controlled. Performed by the unit 50.
  • the control unit 50 also controls the rotation speed of the indoor fan 32 of the indoor unit 62.
  • the control unit 50 is configured as follows.
  • FIG. 2 is a block diagram showing a control unit of the refrigeration cycle apparatus according to Embodiment 1 of the present invention.
  • the control unit 50 includes a storage device 51, a control device 52, an arithmetic device 53, and a determination device 54.
  • the storage device 51 stores detection values of various sensors provided in the outdoor unit 61 and the indoor unit 62.
  • the storage device 51 includes the rotation speed of the compressor 1, the flow path of the flow path switching device 8, the rotation speed of the outdoor fan 31, the opening degree of the expansion device 3, the rotation speed of the indoor fan 32, and the like.
  • the operation state (control state of the control device 52) is stored.
  • the storage device 51 stores data (formulas, tables, etc.) used by the arithmetic device 53 for various arithmetic operations, and arithmetic results of the arithmetic device 53.
  • the storage device 51 stores a control target value that is a control reference of the control device 52, a threshold value that is a determination reference of the determination device 54, and the like.
  • the control device 52 controls the compressor 1 so that the refrigerant condensing temperature CT, the refrigerant evaporating temperature ET, the refrigerant supercooling degree SC, the refrigerant superheating degree SH, the discharge temperature Td of the compressor 1 and the like become control target values.
  • the rotational speed of the outdoor fan 31, the opening degree of the expansion device 3, the rotational speed of the indoor fan 32, and the like are controlled.
  • the control device 52 switches the flow path of the flow path switching device 8 so that the operation mode (heating operation, cooling operation) instructed by the user via, for example, a remote controller or the like is set.
  • the computing device 53 computes the degree of supercooling SC, the degree of superheat SH, the amount of clogging of the expansion device 3, and the like using the detection values of various sensors provided in the outdoor unit 61 and the indoor unit 62.
  • the refrigerant supercooling degree SC and the refrigerant superheating degree SH are obtained, for example, as follows.
  • the supercooling degree SC of the refrigerant is obtained as a value obtained by subtracting the detection value of the outdoor unit liquid side temperature sensor 43 from the detection value of the outdoor unit gas side temperature sensor 42.
  • the supercooling degree SC of the refrigerant is obtained as a value obtained by subtracting the detection values of the indoor unit liquid side temperature sensors 35a and 35b from the detection values of the indoor unit gas side temperature sensors 44a and 44b.
  • the superheat degree SH of the refrigerant is obtained as a value obtained by subtracting the detected values of the indoor unit gas side temperature sensors 44a and 44b from the refrigerant temperature Ts sucked by the compressor 1.
  • the superheat degree SH of the refrigerant is obtained as a value obtained by subtracting the outdoor unit gas side temperature sensor 42 from the refrigerant temperature Ts sucked by the compressor 1.
  • the refrigerant temperature Ts sucked by the compressor 1 is calculated from the discharge temperature Td detected by the discharge temperature sensor 41 by converting the evaporation temperature ET of the refrigerant into the evaporation pressure Ps and converting the condensation temperature CT into the condensation pressure Pd.
  • the compression process of the compressor 1 can be calculated from the following equation (1), assuming a polytropic change of the polytropic index n.
  • Ts and Td are temperature [K]
  • Ps and Pd are pressure [MPa]
  • n is a polytropic index [ ⁇ ].
  • the determination device 54 compares the detection values of various sensors provided in the outdoor unit 61 and the indoor unit 62 and the calculation result of the calculation device 53 with the threshold value stored in the storage device 51, and the expansion device 3 is clogged. It is determined whether or not the amount of refrigerant circulating in the refrigerant circuit has decreased by a predetermined amount or more.
  • Refrigeration cycle apparatus 100 configured as described above performs cooling operation and heating operation as follows.
  • the flow path switching device 8 is in the state indicated by the broken line in FIG. 1, that is, the discharge side of the compressor 1 is connected to the gas side of the outdoor heat exchanger 2, and the suction side of the compressor 1 is the indoor heat exchanger. It is switched to the state connected to the gas side of 6a, 6b.
  • the compressor 1 the outdoor fan 31 and the indoor fans 32a and 32b are started in the state of this refrigerant circuit, the low-pressure gas refrigerant is sucked into the compressor 1 and compressed to become a high-pressure gas refrigerant.
  • the high-pressure gas refrigerant is sent to the outdoor heat exchanger 2 via the flow path switching device 8, exchanges heat with the outdoor air supplied by the outdoor fan 31, and is condensed to form a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant is decompressed by the expansion device 3 to become a low-temperature and low-pressure gas-liquid two-phase refrigerant, sent to the indoor units 62a and 62b via the liquid pipe 5, and the indoor heat exchangers 6a and 6b. In this way, heat is exchanged with room air, and it is evaporated to become a low-pressure gas refrigerant.
  • the low-pressure gas refrigerant is sent to the outdoor unit 61 via the gas pipe 7 and is again sucked into the compressor 1 via the flow path switching device 8.
  • the flow path switching device 8 is in the state indicated by the solid line in FIG. 1, that is, the discharge side of the compressor 1 is connected to the gas side of the indoor heat exchangers 6a and 6b, and the suction side of the compressor 1 is the outdoor heat. It is connected to the gas side of the exchanger 2.
  • the compressor 1 the outdoor fan 31, and the indoor fans 32a and 32b are started in the state of the refrigerant circuit, the low-pressure gas refrigerant is sucked into the compressor 1 and compressed to become a high-pressure gas refrigerant. 8 and the gas pipe 7 are sent to the indoor units 62a and 62b.
  • the high-pressure gas refrigerant sent to the indoor units 62a and 62b is condensed by exchanging heat with indoor air in the indoor heat exchangers 6a and 6b, Then, the pressure is reduced by the expansion device 3 to become a low-pressure gas-liquid two-phase refrigerant.
  • the low-pressure gas-liquid two-phase refrigerant flows into the outdoor heat exchanger 2 of the outdoor unit 61. Then, the low-pressure gas-liquid two-phase refrigerant flowing into the outdoor heat exchanger 2 is condensed by exchanging heat with the outdoor air supplied by the outdoor fan 31, and becomes a low-pressure gas refrigerant. Is again sucked into the compressor 1.
  • the refrigerant that circulates in the refrigerant circuit including the compressor 1, the outdoor heat exchanger 2, the expansion device 3, the indoor heat exchangers 6a and 6b, and the like is the same as R410A.
  • FIG. 3 shows an example of an ethylene-based fluorinated hydrocarbon used as a refrigerant in the refrigeration cycle apparatus 100 according to the present embodiment.
  • trans-1,2 difluoroethylene (R1132 (E)) shown in the uppermost part of FIG. 3 is used as the refrigerant, but the ethylene-based fluorocarbon shown in the other part of FIG.
  • Other ethylene-based fluorohydrocarbons can also be used.
  • R1132 (E) cis-1,2 difluoroethylene (R1132 (Z)), 1,1 difluoroethylene (R1132a), 1,1,2, trifluoroethylene (R1123), fluoroethylene ( R1141), or those having one of fluorine (F) in these compositions substituted with another halogen element (Cl, Br, I or At), etc. Can do.
  • Such ethylene-based fluorohydrocarbons have high reactivity, are unstable thermally and chemically, and are liable to be decomposed or polymerized. For this reason, when ethylene fluorocarbon is used as a refrigerant, there is a concern that the expansion device 3 may be clogged by a product generated by polymerization (hereinafter also referred to as sludge by polymerization).
  • the refrigeration cycle device when the expansion device is clogged, the refrigeration cycle device is in a state where the amount of refrigerant circulating in the refrigerant circuit is reduced. Further, even when the refrigerant leaks from the refrigerant circuit, the refrigeration cycle apparatus is in a state where the amount of refrigerant circulating in the refrigerant circuit is reduced.
  • the sludge generated in the conventional refrigeration cycle apparatus is, for example, a coolant such as cutting oil or rust preventive oil that adheres to pipes and compressor parts that constitute the refrigeration cycle apparatus.
  • Oils that do not dissolve in the oil, and those in which refrigeration oil and cutting oil deteriorate due to high temperatures when metal contact occurs in the sliding part of the compressor (hereinafter referred to as sludge other than sludge by such polymerization, Called normal sludge).
  • sludge other than sludge by such polymerization Called normal sludge.
  • Such normal sludge does not cause a decrease in the amount of refrigerant in the production process. For this reason, the conventional refrigeration cycle apparatus has determined whether the refrigerant circulation amount has decreased due to sludge clogged in the expansion device or refrigerant leakage from the refrigerant circuit.
  • a strainer is provided on the upstream side of the expansion device 3, that is, between the condenser and the expansion device 3, and the clogging amount of the expansion device 3 is detected. ing.
  • the refrigeration cycle apparatus 100 according to the first embodiment can detect clogging of the expansion device 3 due to the sludge due to polymerization, so that the repair work can be quickly performed.
  • the refrigeration cycle apparatus 100 can perform both the cooling operation and the heating operation. For this reason, as shown in FIG. 1, the refrigeration cycle apparatus 100 is provided with a strainer 3a at a position upstream of the expansion device 3 during the cooling operation, and at a position upstream of the expansion device 3 during the heating operation. 3b is provided. As a result, the sludge resulting from the polymerization and normal sludge that is about to pass through the strainers 3a and 3b are captured by the strainers 3a and 3b.
  • the amount of normal sludge does not increase between the condenser (the outdoor heat exchanger 2 during heating operation and the indoor heat exchangers 6a and 6b during cooling operation) and the expansion device 3.
  • the polymerization of the ethylene-based fluorohydrocarbon also occurs between the condenser and the expansion device 3
  • the sludge due to the polymerization increases between the condenser and the expansion device 3.
  • the strainers 3a and 3b correspond to the polymerization amount estimation device of the present invention (a device used to estimate the amount occupied by the product generated by polymerization among the substances causing clogging in the expansion device 3).
  • the refrigeration cycle apparatus 100 expands calculated from the theoretical Cv value of the expansion device 3 (hereinafter, theoretical Cv value) and the operating state of the refrigeration cycle apparatus 100 (that is, the refrigerant circuit).
  • the clogging amount of the expansion device 3 is detected by comparing the Cv value of the device 3.
  • a valve is selected, a Cv value is obtained from a fluid specification and is compared with the Cv value indicated by the valve manufacturer.
  • FIG. 4 is a ph diagram showing the state change of the refrigerant in the refrigeration cycle apparatus.
  • the horizontal axis indicates the enthalpy [kJ / kg] of the refrigerant
  • the vertical axis indicates the pressure [MPa] of the refrigerant.
  • M is the flow rate [gal / min] of the refrigerant flowing through the expansion device 3
  • G is the specific gravity of the refrigerant
  • ⁇ P is the differential pressure [psi] before and after the expansion device 3.
  • the specific gravity G of the refrigerant is a value obtained by calculating the density of the refrigerant if the refrigerant flowing through the refrigerant circuit of the refrigeration cycle apparatus 100 is determined. For this reason, when the refrigerant circulation amount in the refrigerant circuit is Gr [kg / s] and the refrigerant density is ⁇ l [kg / m 3 ], the expression (2) can be transformed into the expression (3) by the SI unit system.
  • the refrigerant circulation amount Gr [kg / s] includes a displacement amount Vst [m 3 ] of the compressor 1, a frequency F [Hz] (rotational speed) of the compressor 1, and a refrigerant density ⁇ s [kg / m] sucked by the compressor 1. 3 ] from the equation (4).
  • the refrigerant density ⁇ s sucked by the compressor 1 can be estimated from the evaporation temperature ET if the compressor 1 sucks the refrigerant as a saturated gas.
  • the equation (3) can be calculated from the operating state of the refrigeration cycle apparatus 100 (that is, the refrigerant circuit).
  • the calculated Cv value of the expansion device 3 can be obtained.
  • the differential pressure ⁇ P before and after the expansion device 3 may directly measure the pressure at the inlet / outlet of the expansion device 3, but the condensation temperature CT is converted into the condensation pressure, and the evaporation temperature ET is converted into the evaporation pressure. These pressure differences are defined as a differential pressure ⁇ P before and after the expansion device 3.
  • the refrigerant density ⁇ l at the inlet of the expansion device 3 is the refrigerant temperature at the outlet of the condenser (the temperature detected by the outdoor unit liquid side temperature sensor 43 during the cooling operation, the indoor unit liquid side temperature sensors 35a and 35b during the heating operation). (Detected temperature).
  • the sludge adhesion operation mode is set, the rotation speed of the compressor 1, the rotation speed of the outdoor fan 31, and the rotation of the indoor fans 32a and 32b. It is preferable to perform the calculation while fixing the operating state of each actuator of the refrigeration cycle apparatus 100, such as the number, the opening degree of the expansion device 3, and the like. As a result, the flow rate of the refrigerant circulating in the refrigerant circuit can be stabilized, and the accuracy of the Cv value of the expansion device 3 calculated from the operating state of the refrigeration cycle apparatus 100 is improved.
  • FIG. 5 is a diagram showing a relationship between the opening degree of the expansion device and the Cv value in the refrigeration cycle apparatus according to Embodiment 1 of the present invention.
  • the horizontal axis indicates the opening of the expansion device 3
  • the vertical axis indicates the Cv value.
  • the theoretical Cv value of the expansion device 3 that is an expansion valve is determined in advance according to the opening degree.
  • the opening degree of the expansion device 3 is controlled by controlling a driving unit such as a motor by the control device 52. For this reason, the arithmetic unit 53 stores the Cv value table (FIG.
  • the theoretical Cv value at a predetermined opening degree of the expansion device 3 can be calculated from the control amount (number of pulses) of the driving means.
  • the Cv value increases as the flow path diameter increases, and decreases as the flow path narrows. For this reason, the Cv value of the expansion device 3 calculated from the operating state of the refrigeration cycle apparatus 100 becomes smaller as sludge due to polymerization becomes clogged in the expansion device 3.
  • the Cv value of the expansion device 3 calculated from the operating state of the refrigeration cycle apparatus 100 is to be set to the same value Cv0 as the theoretical Cv value, the expansion device for the theoretical opening degree.
  • the change rate of the opening degree of 3 increases from P0 to P2. Therefore, the Cv value of the expansion device 3 is sequentially calculated from the operation state of the refrigeration cycle apparatus 100, and the Cv value of the expansion device 3 calculated from the operation state of the refrigeration cycle apparatus 100 is compared with the theoretical Cv value.
  • the presence or absence of clogging (in other words, the amount of clogging) can be detected.
  • the sensor for measuring the condensation temperature CT and the evaporation temperature ET, the storage device 51, and the calculation device 53 correspond to the clogging amount detection device of the present invention.
  • the expansion device 3 varies for each solid, and even when the expansion device 3 is not clogged, the Cv value of the expansion device 3 calculated from the operating state of the refrigeration cycle apparatus 100 (equation (3)) And the theoretical Cv value do not always coincide with each other. Further, there may be a difference between the Cv value of the expansion device 3 calculated from the operating state of the refrigeration cycle apparatus 100 and the theoretical Cv value due to pressure loss and height difference of the piping of the refrigerant circuit. For this reason, the Cv value is calculated by the equation (3) at the time of initial installation (the expansion device 3 is not clogged), and the difference between the Cv value and the theoretical Cv value is stored in the storage device 51 as a correction amount. By correcting the Cv value calculated by the equation 3) with the correction amount, the clogging amount of the expansion device 3 can be detected with higher accuracy.
  • the clogging amount of the expansion device 3 can be detected by the clogging amount detection device (the storage device 51 and the arithmetic device 53).
  • the clogging amount detection device the storage device 51 and the arithmetic device 53.
  • strainers 3a and 3b most of the substances causing clogging in the expansion device 3, in other words, the material causing the increase in the clogging amount of the expansion device 3 may be sludge by polymerization. I understand.
  • the expansion amount of the expansion device 3 becomes equal to or greater than a predetermined amount and the expansion device 3 needs to be replaced, the cause of the expansion device 3 is clogged. It can be identified as being caused by sludge from polymerization. For this reason, repair work of the refrigeration cycle apparatus 100 can be performed quickly.
  • the threshold value of the clogging amount of the expansion device 3 may be stored in the storage device 51, and the determination device 54 may determine whether or not the clogging amount of the expansion device 3 is equal to or greater than the threshold value. Thereby, before the refrigeration cycle apparatus 100 becomes uncontrollable, the user or the like can be prompted to replace the expansion device 3.
  • FIG. 6 is a diagram showing the relationship between the change rate of the opening degree of the expansion device and the amount of sludge due to polymerization in the refrigeration cycle apparatus according to Embodiment 1 of the present invention.
  • the horizontal axis indicates the rate of change of the opening degree of the expansion device 3 (that is, the clogging amount of the expansion device 3), and the vertical axis indicates the amount of sludge generated by polymerization.
  • the strainers 3a and 3b are provided so that most of the substances that cause the expansion device 3 to be clogged, in other words, the expansion device 3 is blocked.
  • the substance responsible for the increase in amount is sludge from polymerization. Therefore, a generation amount table (FIG. 6) representing the relationship between the clogging amount of the expansion device 3 and the sludge due to polymerization is stored in the storage device 51, so that the expansion amount is based on the clogging amount and the generation amount table of the expansion device 3.
  • the amount of sludge produced by the polymerization can be calculated by the calculation device 53.
  • the refrigerant in the refrigerant circuit decreases. For this reason, if the amount of sludge produced by the polymerization is known, the amount of decrease in the refrigerant in the refrigerant circuit can also be grasped. Therefore, when performing repair work (such as replacement of the expansion device 3) of the refrigeration cycle apparatus 100, the refrigerant circuit It becomes easy to grasp the amount of refrigerant charged in the refrigeration cycle, and the refrigeration cycle apparatus 100 can be repaired more quickly.
  • the conversion from the amount of sludge produced by polymerization to the amount of refrigerant reduced is performed by the arithmetic unit 53 by storing in the storage device 51 a table indicating the relationship between the amount of sludge produced and the amount of refrigerant reduced. be able to.
  • the configuration used for detecting the clogging amount of the expansion device 3 in the first embodiment is not a configuration specific to the expansion device 3.
  • it can be used for detecting the amount of clogging of all the elements that cause clogging, such as the outdoor heat exchanger 2 and the indoor heat exchangers 6a and 6b. That is, in the element where clogging occurs, the refrigerant circulation amount Gr, the front and rear differential pressure ⁇ P, and the refrigerant density ⁇ l at the inlet are obtained, and the Cv value of the element is calculated from the equation (3). By comparing the theoretical Cv value of the element, the clogging amount of the element can be detected.
  • the determination device 54 determines whether or not the clogging amount of the expansion device 3 is equal to or larger than a predetermined amount (whether the clogging amount of the expansion device 3 is equal to or larger than the threshold stored in the storage device 51).
  • the opening degree of the expansion device 3 may be made larger than that during normal operation (for example, the maximum opening degree), and clogging elimination control for washing away sludge with the momentum of the refrigerant flowing through the expansion device 3 may be performed. Thereby, the expansion device 3 can be eliminated.
  • the polymerization amount estimation device is composed of the strainers 3a and 3b. Not limited to this, the polymerization amount estimation device may be configured as follows. In the second embodiment, items that are not particularly described are the same as those in the first embodiment, and the same functions and configurations are described using the same reference numerals.
  • FIG. 7 is a configuration diagram of a refrigeration cycle apparatus according to Embodiment 2 of the present invention.
  • the refrigeration cycle apparatus 100 according to the second embodiment has a configuration in which strainers 3a and 3b, which are polymerization amount estimation apparatuses, are not provided in the refrigeration cycle apparatus 100 shown in the first embodiment. For this reason, the refrigeration cycle apparatus 100 according to the second embodiment detects a decrease in the amount of refrigerant circulating in the refrigerant circuit with the following configuration, and clogs the expansion device 3 and the refrigerant amount circulating in the refrigerant circuit. Based on this decrease, it is determined whether or not the cause of clogging of the expansion device 3 is due to sludge caused by polymerization.
  • FIG. 8 is a ph diagram for explaining the normal operating state and the operating state when the refrigerant is insufficient in the refrigeration cycle apparatus according to Embodiment 2 of the present invention.
  • the horizontal axis indicates the enthalpy [kJ / kg] of the refrigerant
  • the vertical axis indicates the pressure [MPa] of the refrigerant.
  • the opening degree of the expansion device 3 is controlled by the control device 52 so that the supercooling degree SC of the refrigerant becomes constant. Further, the rotation speed of the compressor 1 is controlled by the control device 52 so that the air conditioning capability is constant (for example, the evaporation temperature ET, the condensation temperature CT, and the superheat degree SH are set to desired values).
  • the control device 52 reduces the opening degree of the expansion device 3 in order to increase the degree of supercooling SC.
  • the amount of refrigerant supplied to the evaporator decreases, and the superheat degree SH at the evaporator outlet increases, and the capacity of the evaporator decreases.
  • the compressor 1 increases the number of rotations so that the air conditioning capability is constant.
  • At least one of the lower limit value (threshold value) of the supercooling degree SC, the upper limit value (threshold value) of the superheat degree SH, and the upper limit value (threshold value) of the discharge temperature Td is stored in the storage device 51. I am letting.
  • the determination device 54 reduces the amount of refrigerant circulating in the refrigerant circuit when at least one of the supercooling degree SC, the superheating degree SH, and the discharge temperature Td exceeds each threshold stored in the storage device 51. Judging.
  • the determination device 54 determines that the amount of refrigerant circulating in the refrigerant circuit has decreased, the clogging of the expansion device 3 is detected with the same configuration as in the first embodiment (the clogging amount is a predetermined value). In the case of the above, it can be determined that the cause of the clogging of the expansion device 3 is due to the sludge by polymerization.
  • the indoor unit gas side temperature sensors 44a and 44b, the storage device 51, and the calculation device 53 correspond to the refrigerant state detection device of the present invention.
  • the refrigerant state detection device, the storage device 51, and the determination device 54 correspond to the polymerization amount estimation device of the present invention.
  • the refrigeration cycle apparatus 100 it is determined whether the cause of the decrease in the amount of refrigerant circulating in the refrigerant circuit is due to the polymerization of the refrigerant or the refrigerant leakage from the refrigerant circuit. You can also Since ethylene-based fluorohydrocarbon is a flammable substance, if the cause of the decrease in the amount of refrigerant circulating in the refrigerant circuit is not known, the refrigeration cycle apparatus 100 can be changed in consideration of the possibility of refrigerant leakage from the refrigerant circuit. It is necessary to stop immediately.
  • the refrigeration cycle apparatus 100 according to the second embodiment when the cause of the decrease in the refrigerant amount circulating in the refrigerant circuit is due to the polymerization of the refrigerant, the decrease in the refrigerant interferes with the operation of the refrigeration cycle apparatus 100. If the amount is not sufficient, the operation of the refrigeration cycle apparatus 100 can be continued. For this reason, the refrigeration cycle apparatus 100 according to the second embodiment can also achieve the effect of improved usability. Whether or not to continue the operation of the refrigeration cycle apparatus 100 may be determined by comparing the amount of refrigerant decrease with the threshold stored in the storage device 51 by the determination device 54.
  • both the polymerization amount estimation device described in the second embodiment and the polymerization amount estimation device described in the first embodiment may be mounted on the refrigeration cycle apparatus 100.
  • Embodiment 3 instead of the polymerization amount estimation device shown in the first and second embodiments, or in addition to the polymerization amount estimation device shown in the first and second embodiments, the following polymerization amount estimation device is adopted. May be.
  • Embodiment 3 items that are not particularly described are the same as those in Embodiment 1 or Embodiment 2, and the same functions and configurations are described using the same reference numerals.
  • FIG. 9 is a diagram for explaining a method of integrating the polymerization occurrence time in the refrigeration cycle apparatus according to Embodiment 3 of the present invention.
  • FIG. 10 is a diagram showing a relationship between integration of polymerization occurrence time and sludge amount by polymerization in the refrigeration cycle apparatus according to Embodiment 3 of the present invention.
  • the refrigeration cycle apparatus 100 causes the storage device 51 to store the operation time (“polymerization occurrence time” in FIG. 9) under conditions where polymerization is likely to occur during operation.
  • the operation time under conditions where polymerization is likely to occur is, for example, the time during which the refrigeration cycle apparatus 100 is operated under conditions where the temperature of the refrigerant is equal to or higher than the specified temperature stored in the storage device 51 (polymerization generation temperature operation time ).
  • the operation time under conditions where polymerization is likely to occur is the time during which the refrigeration cycle apparatus 100 is operated under conditions where the refrigerant pressure is equal to or higher than the specified pressure stored in the storage device 51 (polymerization generation pressure operation time). is there.
  • the refrigeration cycle apparatus 100 integrates the operation time under conditions where polymerization is likely to occur in the arithmetic unit 53.
  • the refrigeration cycle apparatus 100 according to the third embodiment is based on a table (FIG. 10) in which the arithmetic unit 53 estimates the amount of sludge generated by polymerization from the integrated value of operation time under conditions where polymerization is likely to occur. Estimate the amount of sludge produced by polymerization.
  • the table is stored in the storage device 51.
  • the amount of sludge produced by the polymerization is a predetermined threshold value (storage device 51). If this is the case, it can be determined that the cause of the clogging of the expansion device 3 is due to sludge caused by polymerization. Further, when the clogging amount of the expansion device 3 is detected in the same configuration as in the first embodiment, if the amount of sludge generated by polymerization is less than a predetermined threshold (stored in the storage device 51), the expansion device 3 is clogged. It can be determined that the cause of this is due to normal sludge. This determination may be made by an operator or may be made to be performed by the determination device 54.
  • the polymerization amount estimation device (the storage device 51 and the arithmetic device) shown in the third embodiment together with the polymerization amount estimation device shown in the first and second embodiments, detection of the amount of sludge produced by polymerization is detected. It is also possible to obtain an effect that accuracy is improved.
  • connection device 1 compressor, 2 outdoor heat exchanger, 3 expansion device, 3a, 3b strainer, 5 liquid pipe, 6 (6a, 6b) indoor heat exchanger, 7 gas pipe, 8 flow path switching device, 9 accumulator, 11 connection device , 12 connection device, 13 connection device, 14 connection device, 31 outdoor fan, 32 (32a, 32b) indoor fan, 35 (35a, 35b) indoor unit liquid side temperature sensor, 41 discharge temperature sensor, 42 outdoor unit gas side temperature Sensor, 43 outdoor unit liquid side temperature sensor, 44 (44a, 44b) indoor unit gas side temperature sensor, 61 outdoor unit, 62 (62a, 62b) indoor unit, 50 control unit, 51 storage device, 52 control unit, 53 calculation Device, 54 determination device, 100 refrigeration cycle device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Lubricants (AREA)

Abstract

 冷凍サイクル装置100は、圧縮機1、凝縮器、膨張装置3及び蒸発器を少なくとも備え、エチレン系フッ化炭化水素、又は、エチレン系フッ化炭化水素を含む混合物を冷媒として用いる冷媒回路と、圧縮機1の回転数及び膨張装置3の開度を制御する制御装置52と、膨張装置3の詰まり量を検出する詰まり量検出装置(記憶装置51及び演算装置53)と、膨張装置3に詰まりを発生させている物質のうち、前記冷媒の重合で生成される生成物が占める量の推定に用いられる重合量推定装置(ストレーナ3a,3b)と、を備えたものである。

Description

冷凍サイクル装置
 本発明は、冷凍サイクル装置に関するものである。
 カーエアコンの分野において、低GWP(地球温暖化係数)冷媒として、プロピレン系フッ化炭化水素であるHFO-1234yf(CF3CF=CH2)が使用されている。
 このような組成中に二重結合を有するプロピレン系フッ化炭化水素は、一般的に、二重結合の存在により、高温条件下で分解や重合が発生しやすいという特徴を有する。このため、圧縮機の中で高温となる金属製の摺動部の表面を非金属部品で構成することで冷媒の分解や重合を抑制する圧縮機の構成が開示されている(特許文献1を参照)。
 また、組成中に二重結合を有するプロピレン系フッ化炭化水素を用いた冷凍サイクル装置ではないが、従来の冷凍サイクル装置として、冷媒循環量が減少した原因を判定する冷凍サイクル装置が提案されている(特許文献2を参照)。この冷凍サイクル装置は、冷媒循環量が減少した原因を、スラッジが膨張装置に詰まったことに起因するのか、あるいは、冷媒回路からの冷媒漏れであるかを判定する。
 なお、膨張装置に詰まる一般的なスラッジとしては、例えば、冷凍サイクル装置を構成する配管及び圧縮機の部品を加工する際にこれらに付着する切削加工油、防錆油等のような冷媒に溶解しない油、並びに、圧縮機の摺動部で金属接触が生じた場合に冷凍機油及び切削加工油が高温により劣化したもの等である。
特開2009-299649号公報 特開2009-250554号公報
 プロピレン系フッ化炭化水素であるHFO-1234yf冷媒では、標準沸点が-29℃と高く、従来より定置式の空気調和機に用いられていたR410A冷媒(標準沸点-51℃)等に比べて、動作圧力が低く吸入容積当たりの冷凍能力が小さい。定置式の空気調和機にて、HFO-1234yf冷媒を使用しR410A冷媒と同等の冷凍能力を得るには、冷媒の体積流量を増大しなければならず、圧縮機の押しのけ量増大のための課題や、体積流量増大に伴う圧力損失の増加、効率低下の課題があった。
 したがって、定置式の空気調和機用に低GWP冷媒を適用するためには、標準沸点の低い低GWP冷媒が適当であり、一般的に、炭素数の少ない分子構造の方が低沸点の冷媒となることが知られている。
 そこで発明者らは、従来の炭素数3のプロピレン系フッ化炭化水素より炭素数の少ない分子構造の化合物を試行錯誤しながら研究し、様々な化合物の中から炭素数が2のエチレン系フッ化炭化水素を冷媒として使用することを考えた。
 このエチレン系フッ化炭化水素を冷媒として使用することができる場合には、従来のR410A冷媒と同等の低沸点の物性を備える冷媒を得ることが可能となる。
 しかしながら、エチレン系フッ化炭化水素は、プロピレン系フッ化炭化水素に比べて反応性が高く、熱的、化学的に不安定で分解や重合を発生しやすい。このため、エチレン系フッ化炭化水素を冷媒として使用した場合、特許文献1に示される圧縮機の摺動部の表面を非金属部品で構成することだけでは分解や重合を抑制することが困難であり、重合で生成される生成物(以下、重合によるスラッジとも称する)によって膨張装置に詰まりが発生することが懸念される。
 このため、エチレン系フッ化炭化水素を冷媒として使用する場合には、膨張装置の詰まりを検出するための構成が必要となる。そこで、エチレン系フッ化炭化水素を冷媒として使用した冷凍サイクル装置に、特許文献2に記載の膨張装置の詰まりを検出する技術を採用することが考えられる。
 しかしながら、特許文献2に記載の技術は、膨張装置等の詰まり又は冷媒回路内の冷媒量の減少の一方を検出するものであり、これらの双方を検出するものではない。一方、エチレン系フッ化炭化水素を冷媒として使用し、重合によるスラッジが発生した場合には、冷凍サイクル装置では、膨張装置等の詰まり及び冷媒回路内の冷媒量の減少の双方が発生する。このため、エチレン系フッ化炭化水素を冷媒として使用する場合、特許文献2に記載の技術では、冷媒循環量が減少した原因を、重合によるスラッジに起因するものなのかを判定できないという問題点があった。
 つまり、冷凍サイクル装置にエチレン系フッ化炭化水素を冷媒として使用する場合、従来の技術では、冷媒循環量が減少した原因を究明できず、修理作業に時間がかかるという問題点があった。
 本発明は、上記のような課題を解決するためになされたものであり、重合によるスラッジに起因する膨張装置の詰まりを検出することが可能な冷凍サイクル装置を提供することを目的とする。
 本発明に係る冷凍サイクル装置は、圧縮機、凝縮器、膨張装置及び蒸発器を少なくとも備え、エチレン系フッ化炭化水素、又は、エチレン系フッ化炭化水素を含む混合物を冷媒として用いる冷媒回路と、前記圧縮機の回転数及び前記膨張装置の開度を制御する制御装置と、前記膨張装置の詰まり量を検出する詰まり量検出装置と、前記膨張装置に詰まりを発生させている物質のうち、前記冷媒の重合で生成される生成物が占める量の推定に用いられる重合量推定装置と、を備えたものである。
 本発明に係る冷凍サイクル装置は、膨張装置の詰まり量を検出する詰まり量検出装置と、膨張装置に詰まりを発生させている物質のうち、冷媒の重合で生成される生成物が占める量の推定に用いられる重合量推定装置と、を備えている。このため、本発明に係る冷凍サイクル装置においては、重合によるスラッジに起因する膨張装置の詰まりを検出することができるので、修理作業を迅速におこなうことができる。
本発明の実施の形態1に係る冷凍サイクル装置の構成図である。 本発明の実施の形態1に係る冷凍サイクル装置の制御部を示すブロック図である。 本発明の実施の形態1に係る冷凍サイクル装置において冷媒として用いられるエチレン系フッ化炭化水素の一例を示す図である。 冷凍サイクル装置の冷媒の状態変化を表すp-h線図である。 本発明の実施の形態1に係る冷凍サイクル装置における膨張装置の開度とCv値との関係を示す図である。 本発明の実施の形態1に係る冷凍サイクル装置における膨張装置の開度の変化率と重合によるスラッジ量との関係を示す図である。 本発明の実施の形態2に係る冷凍サイクル装置の構成図である。 本発明の実施の形態2に係る冷凍サイクル装置における正常時の運転状態及び冷媒不足時の運転状態を説明するためのp-h線図である。 本発明の実施の形態3に係る冷凍サイクル装置における重合発生時間の積算方法を説明するための図である。 本発明の実施の形態3に係る冷凍サイクル装置における重合発生時間の積算と重合によるスラッジ量との関係を示す図である。
実施の形態1.
 以下、図面を参照して本発明の実施の形態について説明する。図1は、本発明の実施の形態1に係る冷凍サイクル装置の構成図である。
 冷凍サイクル装置100は、蒸気圧縮式の冷凍サイクル運転を行うことによって、屋内等の空調対象空間の冷房及び暖房に使用される装置であり、室外機61と室内機62とが液管5及びガス管7を介して接続されて構成されている。なお、本実施の形態1では、液管5は、接続装置11(継手等)を介して室外機61と着脱自在に接続されており、接続装置13(継手等)を介して室内機62と着脱自在に接続されている。また、ガス管7は、接続装置12(継手等)を介して室外機61と着脱自在に接続されており、接続装置14(継手等)を介して室内機62と着脱自在に接続されている。
 ここで、本実施の形態1に係る冷凍サイクル装置100は、2台の室内機62(室内機62a,62b)が並列に接続された構成となっているが、室内機62の台数は任意である。以下では、2台の室内機62及び室内機62の構成を区別して記載する際には、符号の末尾に記号「a」,「b」を付して区別する。
 例えば屋外に設置される室外機61は、冷媒回路の一部である室外側冷媒回路を構成しており、圧縮機1、四方弁等である流路切替装置8、室外熱交換器2、室外ファン31、開度を制御可能な膨張装置3、及び、冷媒容器であるアキュムレータ9等を備えている。
 圧縮機1は、例えばインバータ制御等によって回転数(つまり運転容量)を変更することが可能な圧縮機である。
 流路切替装置8は、冷媒の流れの方向を切り換えるためのものである。詳しくは、流路切替装置8は、冷房運転時には、室外熱交換器2を凝縮器として機能させ、室内熱交換器6(6a,6b)を蒸発器として機能させるために、圧縮機1の吐出側と室外熱交換器2のガス側とを接続するとともに、圧縮機1の吸入側とガス管7側(つまり、室内熱交換器6のガス側)とを接続するように、冷媒流路を切り換える。また、流路切替装置8は、暖房運転時には、室内熱交換器6(6a,6b)を凝縮器として機能させ、室外熱交換器2を蒸発器として機能させるために、圧縮機1の吐出側とガス管7側とを接続するとともに、圧縮機1の吸入側と室外熱交換器2のガス側とを接続するように、冷媒流路を切り換える。
 室外熱交換器2は、例えばフィン・アンド・チューブ型熱交換器であり、そのガス側が流路切替装置8に接続され、その液側が液管5(つまり、室内熱交換器6の液側)に接続されている。室外熱交換器2は、冷房運転時には凝縮器として機能し、暖房運転時には蒸発器として機能する。
 室外ファン31は、例えば回転数を変更可能な(つまり、室外熱交換器2に供給する空気の流量を変更可能なファンである。室外ファン31が回転することにより、室外機61内に室外空気を吸入し、室外熱交換器2により冷媒との間で熱交換した空気を室外に排出する。
 膨張装置3は、例えば電子式膨張弁(LEV)であり、冷媒回路内を流れる冷媒の流量の調節等を行うために、室外機61の液側に接続配置されている。
 アキュムレータ9は、余剰な液冷媒を貯留するものである。また、アキュムレータ9は、液バックを防止するためにガス冷媒のみを圧縮機1の吸入側に供給するものであり、圧縮機1の吸入側に接続されている。
 また、室外機61には、各種のセンサが設置されている。詳しくは、圧縮機1の吐出側の配管には、圧縮機1から吐出される冷媒の温度である吐出温度Tdを検出する吐出温度センサ41が設けられている。また、室外熱交換器2には、気液二相状態の冷媒の温度(冷房運転時における凝縮温度CT、暖房運転時における蒸発温度ETに対応する冷媒温度)を検出する室外機ガス側温度センサ42が設けられている。また、室外熱交換器2の液側には、液状態又は気液二相状態の冷媒の温度を検出する室外機液側温度センサ43が設けられている。
 次に、室内機62a,62bの構成について説明する。なお、室内機62aと室内機62bとは同様の構成を有しているため、ここでは代表して室内機62aの構成について説明する。
 室内機62aは、冷媒回路の一部である室内側冷媒回路を構成しており、室内ファン32a、及び、室内熱交換器6a等を備えている。
 室内熱交換器6aは、例えばフィン・アンド・チューブ型熱交換器であり、そのガス側がガス管7を介して流路切替装置8に接続され、その液側が液管5を介して膨張装置3と接続されている。室内熱交換器6aは、冷房運転時には蒸発器として機能し、暖房運転時には凝縮器として機能する。
 室内ファン32aは、例えば回転数を変更可能な(つまり、室内熱交換器6aに供給する空気の流量を変更可能なファンである。室内熱交換器6aが回転することにより、室内機62a内に屋内空気を吸入し、室内熱交換器6aにより冷媒との間で熱交換した屋内空気を空調空気として室内に供給する。
 また、室内機62aには、各種のセンサが設置されている。詳しくは、室内熱交換器6aの液側には、液状態又は気液二相状態の冷媒の温度を検出する室内機液側温度センサ35aが設けられている。また室内熱交換器6aには、気液二相状態の冷媒の温度(暖房運転時における凝縮温度CT、冷房運転時における蒸発温度ETに対応する冷媒温度)を検出する室内機ガス側温度センサ44aが設けられている。
 上記のように構成された室外機61における圧縮機1の回転数の制御、流路切替装置8の流路切り替え、室外ファン31の回転数の制御、膨張装置3の開度の制御は、制御部50によって行われる。また、室内機62の室内ファン32の回転数の制御も、制御部50によって行われる。この制御部50は、例えば次のように構成されている。
 図2は、本発明の実施の形態1に係る冷凍サイクル装置の制御部を示すブロック図である。
 制御部50は、記憶装置51、制御装置52、演算装置53、及び、判定装置54を備えている。
 記憶装置51は、室外機61及び室内機62に設けられた各種センサの検出値を記憶するものである。また、記憶装置51は、圧縮機1の回転数、流路切替装置8の流路、室外ファン31の回転数、膨張装置3の開度及び室内ファン32の回転数等、冷凍サイクル装置100の動作状態(制御装置52の制御状態)を記憶するものである。また、記憶装置51は、演算装置53が各種の演算に用いるデータ(数式やテーブル等)、及び、演算装置53の演算結果を記憶するものである。また、記憶装置51は、制御装置52の制御基準となる制御目標値、及び、判定装置54の判定基準となる閾値等を記憶するものである。
 制御装置52は、冷媒の凝縮温度CT、冷媒の蒸発温度ET、冷媒の過冷却度SC、冷媒の過熱度SH、圧縮機1の吐出温度Td等が制御目標値となるように、圧縮機1の回転数、室外ファン31の回転数、膨張装置3の開度、及び、室内ファン32の回転数等を制御するものである。また、制御装置52は、例えばリモコン等を介してユーザーから指令された運転モード(暖房運転、冷房運転)となるように、流路切替装置8の流路を切り替えるものである。
 演算装置53は、室外機61及び室内機62に設けられた各種センサの検出値を用いて、過冷却度SC、過熱度SH、膨張装置3の詰まり量等を演算するものである。
 なお、本実施の形態1においては、冷媒の過冷却度SC及び冷媒の過熱度SHは、例えば次のようにして求めている。冷房運転においては、冷媒の過冷却度SCは、室外機ガス側温度センサ42の検出値から室外機液側温度センサ43の検出値を引いた値として求めている。暖房運転においては、冷媒の過冷却度SCは、室内機ガス側温度センサ44a,44bの検出値から室内機液側温度センサ35a,35bの検出値を引いた値として求めている。また、冷房運転においては、冷媒の過熱度SHは、圧縮機1が吸入する冷媒の温度Tsから室内機ガス側温度センサ44a,44bの検出値を引いた値として求めている。暖房運転においては、冷媒の過熱度SHは、圧縮機1が吸入する冷媒の温度Tsから室外機ガス側温度センサ42を引いた値として求めている。
 また、圧縮機1が吸入する冷媒の温度Tsは、冷媒の蒸発温度ETを蒸発圧力Psに換算し、凝縮温度CTを凝縮圧力Pdに換算し、吐出温度センサ41により検出される吐出温度Tdより、圧縮機1の圧縮工程はポリトロープ指数nのポリトロープ変化と仮定し、下記(1)式より算出することができる。
Figure JPOXMLDOC01-appb-M000001
 ここで、Ts、Tdは温度[K]、Ps、Pdは圧力[MPa]、nはポリトロープ指数[-]である。ポリトロープ指数は一定値(例えばn=1.2)としてもよいが、Ps、Pdの関数として定義することで、圧縮機1が吸入する冷媒の温度Tsをより精度よく推測することができる。
 判定装置54は、室外機61及び室内機62に設けられた各種センサの検出値及び演算装置53の演算結果と、記憶装置51に記憶された閾値と、を比較し、膨張装置3の詰まり、冷媒回路内を循環する冷媒量が所定量以上減少したか否か等を判定するものである。
 このように構成された冷凍サイクル装置100は、次のように冷房運転及び暖房運転を行う。
 冷房運転時には、流路切替装置8が図1の破線で示される状態、すなわち、圧縮機1の吐出側が室外熱交換器2のガス側に接続され、かつ圧縮機1の吸入側が室内熱交換器6a,6bのガス側に接続された状態に切り替えられる。この冷媒回路の状態で、圧縮機1、室外ファン31及び室内ファン32a,32bを起動すると、低圧のガス冷媒は、圧縮機1に吸入されて圧縮されて高圧のガス冷媒となる。その後、高圧のガス冷媒は、流路切替装置8を経由して室外熱交換器2に送られて、室外ファン31によって供給される室外空気と熱交換を行って凝縮されて高圧の液冷媒となる。そして、この高圧の液冷媒は、膨張装置3によって減圧されて、低温低圧の気液二相冷媒となり、液管5を経由して室内機62a,62bに送られ、室内熱交換器6a,6bで室内空気と熱交換を行って蒸発されて低圧のガス冷媒となる。この低圧のガス冷媒は、ガス管7を経由して室外機61に送られ、流路切替装置8を経由して、再び、圧縮機1に吸入される。
 暖房運転時には、流路切替装置8が図1の実線で示される状態、すなわち、圧縮機1の吐出側が室内熱交換器6a,6bのガス側に接続され、かつ圧縮機1の吸入側が室外熱交換器2のガス側に接続された状態となっている。この冷媒回路の状態で、圧縮機1、室外ファン31及び室内ファン32a,32bを起動すると、低圧のガス冷媒は、圧縮機1に吸入されて圧縮されて高圧のガス冷媒となり、流路切替装置8及びガス管7を経由して、室内機62a,62bに送られる。そして、室内機62a,62bに送られた高圧のガス冷媒は、室内熱交換器6a,6bにおいて、室内空気と熱交換を行って凝縮されて高圧の液冷媒となった後、液管5を経由して、膨張装置3によって減圧されて低圧の気液二相状態の冷媒となる。この低圧の気液二相状態の冷媒は、室外機61の室外熱交換器2に流入する。そして、室外熱交換器2に流入した低圧の気液二相状態の冷媒は、室外ファン31によって供給される室外空気と熱交換を行って凝縮されて低圧のガス冷媒となり、流路切替装置8を経由して再び、圧縮機1に吸入される。
 ここで、本実施の形態1では、圧縮機1、室外熱交換器2、膨張装置3及び室内熱交換器6a,6b等を備えた上記の冷媒回路内を循環させる冷媒として、R410Aと同様に低沸点冷媒である、エチレン系フッ化炭化水素、又はエチレン系フッ化炭化水素を含む混合物が用いられる。
 図3は、本実施の形態に係る冷凍サイクル装置100において冷媒として用いられるエチレン系フッ化炭化水素の一例を示している。本例では、例えば図3の最上段に示すトランス-1,2ジフルオロエチレン(R1132(E))を冷媒として用いているが、図3の他の段に示すエチレン系フッ化炭化水素、又はそれ以外のエチレン系フッ化炭化水素を用いることもできる。具体的には、R1132(E)以外に、シス-1,2ジフルオロエチレン(R1132(Z))、1,1ジフルオロエチレン(R1132a)、1,1,2トリフルオロエチレン(R1123)、フルオロエチレン(R1141)、又は、これらの組成においてフッ素(F)のうちの1個が別のハロゲン元素(Cl、Br、I又はAt)と置換されたもの、のいずれか1つを含むもの等を用いることができる。
 このようなエチレン系フッ化炭化水素は、反応性が高く、熱的、化学的に不安定で分解や重合を発生しやすい。このため、エチレン系フッ化炭化水素を冷媒として使用した場合、重合で生成される生成物(以下、重合によるスラッジとも称する)によって膨張装置3に詰まりが発生することが懸念される。
 このため、エチレン系フッ化炭化水素を冷媒として使用する場合には、膨張装置3の詰まりを検出するための構成が必要となる。しかしながら、従来の膨張装置の詰まり検出技術を本実施の形態1に係る冷凍サイクル装置100に採用した場合、以下のような問題点が発生する。
 詳しくは、膨張装置に詰まりが発生すると、冷凍サイクル装置は、冷媒回路内を循環する冷媒量が減少した状態となる。また、冷媒回路からの冷媒漏れが発生した場合にも、冷凍サイクル装置は、冷媒回路内を循環する冷媒量が減少した状態となる。ここで、従来の冷凍サイクル装置に発生するスラッジとは、例えば、冷凍サイクル装置を構成する配管及び圧縮機の部品を加工する際にこれらに付着する切削加工油、防錆油等のような冷媒に溶解しない油、並びに、圧縮機の摺動部で金属接触が生じた場合に冷凍機油及び切削加工油が高温により劣化したもの等である(以下、このような重合によるスラッジ以外のスラッジを、通常のスラッジと称する)。このような通常のスラッジは、その生成過程において冷媒量の減少が生じない。このため、従来の冷凍サイクル装置は、冷媒循環量が減少した原因を、スラッジが膨張装置に詰まったことに起因するのか、あるいは、冷媒回路からの冷媒漏れであるかを判定していた。
 一方、エチレン系フッ化炭化水素を冷媒として使用した場合、重合によってスラッジが生成されることにより、冷媒量そのものも減少する。そして、従来の膨張装置の詰まり検出技術は、膨張装置に詰まったスラッジの種類までは特定できない。このため、冷凍サイクル装置100において膨張装置3の詰まりが発生し、作業者が冷凍サイクル装置100の修理作業をおこなう場合、作業者は、膨張装置3の交換の他に冷媒の充填作業が必要なのか否かがわからず、修理作業に時間がかかってしまう。
 そこで、本実施の形態1に係る冷凍サイクル装置100においては、膨張装置3の上流側、つまり凝縮器と膨張装置3との間にストレーナ(フィルタ)を設け、膨張装置3の詰まり量を検出している。これにより、本実施の形態1に係る冷凍サイクル装置100は、重合によるスラッジに起因する膨張装置3の詰まりを検出することができるので、修理作業を迅速におこなうことができる。
 詳しくは、本実施の形態1に係る冷凍サイクル装置100は、冷房運転及び暖房運転の双方を行うことが可能となっている。このため、図1に示すように、冷凍サイクル装置100には、冷房運転時に膨張装置3の上流側となる位置にストレーナ3aが設けられ、暖房運転時に膨張装置3の上流側となる位置にストレーナ3bが設けられている。これにより、ストレーナ3a,3bを通過しようとする重合によるスラッジ及び通常のスラッジは、ストレーナ3a,3bで捕捉されることとなる。
 ここで、通常のスラッジは、凝縮器(暖房運転時における室外熱交換器2、冷房運転時における室内熱交換器6a,6b)と膨張装置3との間において、その量は増加しない。一方、エチレン系フッ化炭化水素の重合は凝縮器と膨張装置3との間においても発生するため、重合によるスラッジは、凝縮器と膨張装置3との間において増加していく。このため、ストレーナ3a,3bを設けることにより、膨張装置3に詰まりを発生させている物質の大部分、換言すると、膨張装置3の詰まり量の増加の原因となる物質が重合によるスラッジであることが分かる。つまり、ストレーナ3a,3bが、本発明の重合量推定装置(膨張装置3に詰まりを発生させている物質のうち、重合で生成される生成物が占める量の推定に用いられる装置)に相当する。
 そして、本実施の形態1に係る冷凍サイクル装置100は、膨張装置3の理論上のCv値(以下、理論Cv値)と、冷凍サイクル装置100(つまり、冷媒回路)の運転状態から演算した膨張装置3のCv値とを比較することにより、膨張装置3の詰まり量を検出している。
 なお、Cv値とは「バルブの特定な開度において、圧力差が1lb/in[6.895kPa] のときバルブを流れる60゜F(約15.5℃)の温度の水の流量が、US gal/min (1US gal=3.785 L)で表される数値(無次元)」と定義するものである。一般的にバルブの選定を行う時に、流体仕様からCv値を求め、弁メーカが示すCv値と対比させることで弁種、口径を定めるときに用いられる簡便な方法のひとつである。
 まず、冷凍サイクル装置100(つまり、冷媒回路)の運転状態から膨張装置3のCv値を演算する方法について説明する。
 図4は、冷凍サイクル装置の冷媒の状態変化を表すp-h線図である。この図4は、横軸に冷媒のエンタルピー[kJ/kg]を示し、縦軸に冷媒の圧力[MPa]を示している。
 図4にΔPで示す膨張装置3の前後の差圧と、膨張装置3を流れる冷媒の流量との関係をCv値という無次元数の指標で表すと、下記の(2)式のようになる。
Figure JPOXMLDOC01-appb-M000002
 ここで、Mは膨張装置3を流れる冷媒の流量[gal/min]、Gは冷媒の比重、ΔPは膨張装置3の前後の差圧[psi]である。
 (2)式より、膨張装置3を流れる冷媒の流量M、冷媒の比重G、膨張装置3の前後の差圧ΔPが求まれば、Cv値が求まる。
 ここで、冷媒の比重Gは、冷凍サイクル装置100の冷媒回路を流れる冷媒が決まっていれば、冷媒の密度を計算することで求まる値である。このため、冷媒回路内の冷媒循環量をGr[kg/s]とし、冷媒の密度をρl[kg/m]として(2)式をSI単位系で表すと(3)式に変形できる。
Figure JPOXMLDOC01-appb-M000003
 冷媒循環量Gr[kg/s]は、圧縮機1の押しのけ量Vst[m]、圧縮機1の周波数F[Hz](回転数)、圧縮機1が吸入する冷媒密度ρs[kg/m]より(4)式から演算可能である。
Figure JPOXMLDOC01-appb-M000004
 なお、圧縮機1が吸入する冷媒密度ρsは、圧縮機1が飽和ガスとして冷媒を吸入すると仮定すれば、蒸発温度ETより推定可能である。
 (3)式は、冷媒循環量Gr、膨張装置3の前後の差圧ΔP、及び膨張装置3の入口での冷媒密度ρlが計測できれば、冷凍サイクル装置100(つまり、冷媒回路)の運転状態から演算した膨張装置3のCv値を得ることができる。本実施の形態1においては、膨張装置3の前後の差圧ΔPは膨張装置3の出入口の圧力を直接測定してもよいが、凝縮温度CTを凝縮圧力に換算し、蒸発温度ETを蒸発圧力に換算し、これらの圧力差を膨張装置3の前後の差圧ΔPとしている。また、膨張装置3の入口での冷媒密度ρlは、凝縮器出口の冷媒温度(冷房運転時における室外機液側温度センサ43の検出温度、暖房運転時における室内機液側温度センサ35a,35bの検出温度)から求めることができる。
 なお、冷凍サイクル装置100の運転状態から膨張装置3のCv値を演算する際、スラッジ付着運転モードを設定し、圧縮機1の回転数、室外ファン31の回転数、室内ファン32a,32bの回転数、膨張装置3の開度等、冷凍サイクル装置100の各アクチュエータの動作状態を固定して演算することが好ましい。これにより、冷媒回路内を循環する冷媒の流量を安定させることができ、冷凍サイクル装置100の運転状態から演算する膨張装置3のCv値の精度が向上する。
 次に、膨張装置3の理論Cv値の求め方について説明する。
 図5は、本発明の実施の形態1に係る冷凍サイクル装置における膨張装置の開度とCv値との関係を示す図である。なお、この図5は、横軸に膨張装置3の開度を示し、縦軸にCv値を示している。
 膨張弁である膨張装置3は、開度に合わせて予め理論Cv値が決まっている。また、膨張装置3は、制御装置52によってモータ等の駆動手段を制御することにより、開度が制御される。このため、膨張装置3の開度と理論Cv値との関係を表すCv値テーブル(図5)を記憶装置51に記憶させておくことで、演算装置53は、当該Cv値テーブルと制御装置52による駆動手段の制御量(パルス数)とから、膨張装置3の所定の開度における理論Cv値を演算することができる。
 ここで、Cv値は、流路径が広くなるほどその値が大きくなり、流路が狭くなるほどその値が小さくなる。このため、重合によるスラッジが膨張装置3に詰まるにつれて、冷凍サイクル装置100の運転状態から演算した膨張装置3のCv値が小さくなっていく。
 つまり、図5に示すように、重合によるスラッジが膨張装置3に全く詰まっていない状態(図5における「適正状態」)においては、冷凍サイクル装置100の運転状態から演算した膨張装置3のCv値と理論Cv値とは一致する。しかしながら、重合によるスラッジが膨張装置3に詰まるにつれて(重合によるスラッジの生成量がM1,M2と増えるにつれて)、冷凍サイクル装置100の運転状態から演算した膨張装置3のCv値を理論Cv値と同じ値Cv0にしようとすると、膨張装置3の開度はP0からP2へと大きくなっていく。すなわち、重合によるスラッジが膨張装置3に詰まるにつれて、冷凍サイクル装置100の運転状態から演算した膨張装置3のCv値を理論Cv値と同じ値Cv0にしようとすると、理論上の開度に対する膨張装置3の開度の変化率はP0からP2へと大きくなっていく。したがって、冷凍サイクル装置100の運転状態から膨張装置3のCv値を逐次演算し、冷凍サイクル装置100の運転状態から演算した膨張装置3のCv値と理論Cv値を比較することにより、膨張装置3の詰まりの有無(換言すると、詰まり量)を検出することができる。
 ここで、凝縮温度CT及び蒸発温度ETを測定するセンサ、記憶装置51、並びに、演算装置53が、本発明の詰まり量検出装置に相当する。
 なお、膨張装置3は、各固体毎にバラツキがあり、膨張装置3に詰まりが発生していない状態においても、冷凍サイクル装置100の運転状態から演算した膨張装置3のCv値((3)式から求めたCv値)と理論Cv値とが一致するとは限らない。また、冷媒回路の配管の圧損及び高低差によっても、冷凍サイクル装置100の運転状態から演算した膨張装置3のCv値と理論Cv値との間にズレが生じる場合がある。このため、初期設置時(膨張装置3が詰まっていない状態)で(3)式によりCv値を算出し、当該Cv値と理論Cv値との差を補正量として記憶装置51に記憶させ、(3)式により演算されたCv値を当該補正量で補正することにより、膨張装置3の詰まり量をより精度良く検出することができる。
 以上、本実施の形態1に係る冷凍サイクル装置100においては、詰まり量検出装置(記憶装置51及び演算装置53)によって、膨張装置3の詰まり量を検出することができる。また、ストレーナ3a,3bを設けることにより、膨張装置3に詰まりを発生させている物質の大部分、換言すると、膨張装置3の詰まり量の増加の原因となる物質が重合によるスラッジであることが分かる。このため、本実施の形態1に係る冷凍サイクル装置100においては、膨張装置3の詰まり量が所定量以上となって膨張装置3の交換が必要となった場合、膨張装置3の詰まりの原因が重合によるスラッジに起因するものであると特定することができる。このため、冷凍サイクル装置100の修理作業を迅速におこなうことができる。
 なお、膨張装置3の詰まり量の閾値を記憶装置51に記憶させ、膨張装置3の詰まり量が当該閾値以上になったか否かを判定装置54に判定させてもよい。これにより、冷凍サイクル装置100が制御不能となる前に、膨張装置3の交換をユーザー等に促すことができる。
 また、膨張装置3の詰まり量に基づいて、重合によるスラッジの生成量を演算してもよい。
 図6は、本発明の実施の形態1に係る冷凍サイクル装置における膨張装置の開度の変化率と重合によるスラッジ量との関係を示す図である。なお、この図6は、横軸に膨張装置3の開度の変化率(つまり、膨張装置3の詰まり量)を示し、縦軸に重合によるスラッジの生成量を示している。
 上述のように、本実施の形態1に係る冷凍サイクル装置100は、ストレーナ3a,3bを設けることにより、膨張装置3に詰まりを発生させている物質の大部分、換言すると、膨張装置3の詰まり量の増加の原因となる物質が重合によるスラッジであることが分かる。このため、膨張装置3の詰まり量と重合によるスラッジとの関係を表す生成量テーブル(図6)を記憶装置51に記憶させておくことにより、膨張装置3の詰まり量と生成量テーブルとに基づいて重合によるスラッジの生成量を、演算装置53で演算することができる。ここで、重合によるスラッジの生成量が増えるにつれて、冷媒回路内の冷媒は減少する。このため、重合によるスラッジの生成量がわかれば、冷媒回路内の冷媒の減少量も把握することができるので、冷凍サイクル装置100の修理作業(膨張装置3の交換等)を行う際、冷媒回路に充填する冷媒量の把握が容易となり、冷凍サイクル装置100の修理作業をより迅速におこなうことができる。
 なお、重合によるスラッジの生成量から冷媒の減少量への換算は、スラッジの生成量と冷媒の減少量との関係を示すテーブルを記憶装置51に記憶させておくことにより、演算装置53で行うことができる。
 また、本実施の形態1で膨張装置3の詰まり量の検出に用いた構成は、膨張装置3特有の構成ではない。例えば室外熱交換器2及び室内熱交換器6a,6b等、詰まりが発生する要素全般において、当該要素の詰まり量の検出に用いることも可能である。つまり、詰まりが発生する要素において、冷媒循環量Gr、前後の差圧ΔP及び入口での冷媒密度ρlを求めて(3)式より当該要素のCv値を演算し、この演算したCv値と当該要素の理論Cv値とを比較することにより、当該要素の詰まり量を検出することができる。
 また、判定装置54に、膨張装置3の詰まり量が所定量以上であるか否か(記憶装置51に記憶した閾値以上であるか)を判定させ、膨張装置3の詰まり量が所定量以上の場合、膨張装置3の開度を通常運転時よりも大きくし(例えば、最大開度とし)、膨張装置3を流れる冷媒の勢いによってスラッジを洗い流す詰まり解消制御を行ってもよい。これにより、膨張装置3を解消することが可能となる。
実施の形態2.
 実施の形態1では、重合量推定装置をストレーナ3a,3bで構成した。これに限らず、以下のように重合量推定装置を構成してもよい。なお、本実施の形態2において、特に記述しない項目については実施の形態1と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
 図7は、本発明の実施の形態2に係る冷凍サイクル装置の構成図である。
 本実施の形態2に係る冷凍サイクル装置100は、実施の形態1で示した冷凍サイクル装置100に対して、重合量推定装置であるストレーナ3a,3bが設けられていない構成となっている。このため、本実施の形態2に係る冷凍サイクル装置100は、以下のような構成で冷媒回路内を循環する冷媒量の減少を検出し、膨張装置3の詰まりと冷媒回路内を循環する冷媒量の減少とに基づいて、膨張装置3の詰まりの原因が重合によるスラッジに起因するものであるか否かを判定している。
 図8は、本発明の実施の形態2に係る冷凍サイクル装置における正常時の運転状態及び冷媒不足時の運転状態を説明するためのp-h線図である。この図8は、横軸に冷媒のエンタルピー[kJ/kg]を示し、縦軸に冷媒の圧力[MPa]を示している。
 冷媒回路内を循環する冷媒量が減少していない状態(図8における「正常状態」)では、冷媒回路内を循環する冷媒の冷凍サイクル状態は、図8の「a」に示す状態となる。一方、冷媒回路内を循環する冷媒量が減少すると(図8における「冷媒不足状態」)、冷媒回路内を循環する冷媒の冷凍サイクル状態は、図8の「b」に示す状態となる。
 詳しくは、冷凍サイクル装置100においては、膨張装置3の開度は、冷媒の過冷却度SCが一定となるように制御装置52によって制御される。また、圧縮機1の回転数は、空調能力が一定となるように(例えば、蒸発温度ET、凝縮温度CT及び過熱度SHが所望の値となるように)制御装置52によって制御される。
 このとき、冷媒回路内を循環する冷媒量が減少してくると、凝縮器内の冷媒量が不足するため、凝縮器出口の過冷却度SCが低下する。このため、制御装置52は、過冷却度SCを大きくするために、膨張装置3の開度を小さくする。これにより、蒸発器へ供給される冷媒量が低下し、そのうち蒸発器出口の過熱度SHが増加して、蒸発器の能力が低下する。このため、圧縮機1は空調能力が一定となるように回転数を増加させる。圧縮機1の回転数を増加させると、冷媒回路内の圧力損失が増加し、圧縮機1が吸入する冷媒の圧力が下がりやすくなるため、結果として圧縮機1の吐出温度Tdが上昇する。冷媒回路内を循環する冷媒量が減少してくると、吐出温度Tdがユニットで定められている上限値に達するため、吐出温度Tdを下げようと膨張弁開度が開き、過冷却度SCはさらに小さくなる。そして、冷媒回路内を循環する冷媒量の減少に伴って、上記の動作が繰り返される。つまり、冷媒回路内を循環する冷媒量が減少すると、冷媒回路内を循環する冷媒量が減少していない状態と比べて、過冷却度SCが次第に小さくなり、過熱度SHが大きくなり、吐出温度Tdが高くなる。
 したがって、本実施の形態2では、過冷却度SCの下限値(閾値)、過熱度SHの上限値(閾値)及び吐出温度Tdの上限値(閾値)の少なくとも1つを、記憶装置51に記憶させている。そして、判定装置54は、過冷却度SC、過熱度SH及び吐出温度Tdのうちの少なくとも1つが記憶装置51に記憶された各閾値を超えたか場合、冷媒回路内を循環する冷媒量が減少したと判断している。
 ここで、上述のように、エチレン系フッ化炭化水素を冷媒として使用した場合、重合によってスラッジが生成されることにより、冷媒量そのものも減少する。このため、判定装置54が、冷媒回路内を循環する冷媒量が減少したと判断した際、実施の形態1と同様の構成にて膨張装置3の詰まりを検出した場合(詰まり量が所定の値以上となっていた場合)、膨張装置3の詰まりの原因が重合によるスラッジに起因するものと判断することができる。また、冷媒回路内を循環する冷媒量が減少していない状態において、膨張装置3の詰まりを検出した場合、膨張装置3の詰まりの原因が通常のスラッジに起因するものと判断することができる。また、冷媒回路内を循環する冷媒量が減少したと判断した際、膨張装置3に詰まりが発生していなかった場合(詰まり量が所定の値よりも小さくなっていた場合)、冷媒回路からの冷媒漏れが発生したと判断することができる。
 つまり、過冷却度SC、過熱度SH及び吐出温度Tdの検出に必要な、室内機液側温度センサ35a,35b、吐出温度センサ41、室外機ガス側温度センサ42、室外機液側温度センサ43、室内機ガス側温度センサ44a,44b、記憶装置51及び演算装置53が、本発明の冷媒状態検出装置に相当する。また、本実施の形態2においては、この冷媒状態検出装置、記憶装置51及び判定装置54が、本発明の重合量推定装置に相当する。
 以上、本実施の形態2に係る冷凍サイクル装置100においても、実施の形態1と同様に、重合によるスラッジに起因する膨張装置3の詰まりを検出することができる。このため、冷凍サイクル装置100の修理作業を迅速におこなうことができる。
 また、本実施の形態2に係る冷凍サイクル装置100においては、冷媒回路内を循環する冷媒量が減少した原因が冷媒の重合に起因するものなのか、冷媒回路からの冷媒漏れであるのかを判断することもできる。エチレン系フッ化炭化水素は可燃性の物質であるため、冷媒回路内を循環する冷媒量が減少した原因がわからない場合、冷媒回路からの冷媒漏れの可能性を考慮して、冷凍サイクル装置100を即座に停止させる必要がある。しかしながら、本実施の形態2に係る冷凍サイクル装置100においては、冷媒回路内を循環する冷媒量が減少した原因が冷媒の重合に起因する場合、冷媒の減少量が冷凍サイクル装置100の運転に支障をきたす量でなければ、冷凍サイクル装置100の運転を継続することができる。このため、本実施の形態2に係る冷凍サイクル装置100は、使い勝手が向上するという効果を得ることもできる。なお、冷凍サイクル装置100の運転を継続するか否かの判断は、判定装置54が冷媒の減少量と記憶装置51に記憶した閾値とを比較して行えばよい。
 なお、本実施の形態2で説明した重合量推定装置と、実施の形態1で説明した重合量推定装置との双方を冷凍サイクル装置100に搭載しても勿論よい。
実施の形態3.
 実施の形態1及び実施の形態2で示した重合量推定装置に換えて、あるいは、実施の形態1及び実施の形態2で示した重合量推定装置と共に、以下のような重合量推定装置を採用してもよい。なお、本実施の形態3において、特に記述しない項目については実施の形態1又は実施の形態2と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
 エチレン系フッ化炭化水素の重合は、一般的には高温高圧で発生しやすい傾向がある。つまり、エチレン系フッ化炭化水素の種類毎に、重合が発生する下限温度、重合が発生する下限圧力が決まる。このため、本実施の形態3では、冷媒に重合が発生する、もしくは発生しやすい条件での運転時間を記憶し、これらを積算することで、重合による生成物の発生量を推定する。
 図9は、本発明の実施の形態3に係る冷凍サイクル装置における重合発生時間の積算方法を説明するための図である。また、図10は、本発明の実施の形態3に係る冷凍サイクル装置における重合発生時間の積算と重合によるスラッジ量との関係を示す図である。
 本実施の形態3に係る冷凍サイクル装置100は、運転中、重合が発生しやすい条件での運転時間(図9における「重合発生時間」)を記憶装置51に記憶させる。ここで、重合が発生しやすい条件での運転時間とは、例えば、冷媒の温度が記憶装置51に記憶された規定温度以上となる条件で冷凍サイクル装置100を運転した時間(重合発生温度運転時間)である。また例えば、重合が発生しやすい条件での運転時間とは、冷媒の圧力が記憶装置51に記憶された規定圧力以上となる条件で冷凍サイクル装置100を運転した時間(重合発生圧力運転時間)である。
 また、本実施の形態3に係る冷凍サイクル装置100は、演算装置53において、重合が発生しやすい条件での運転時間を積算する。そして、本実施の形態3に係る冷凍サイクル装置100は、演算装置53において、重合が発生しやすい条件での運転時間の積算値から重合によるスラッジの生成量を推定するテーブル(図10)に基づき、重合によるスラッジの生成量を推定する。なお、当該テーブルは、記憶装置51に記憶されている。
 以上、本実施の形態3に係る冷凍サイクル装置100は、実施の形態1と同様の構成にて膨張装置3の詰まり量を検出した際、重合によるスラッジの生成量が所定の閾値(記憶装置51に記憶)以上であれば、膨張装置3の詰まりの原因が重合によるスラッジに起因するものと判断することができる。また、実施の形態1と同様の構成にて膨張装置3の詰まり量を検出した際、重合によるスラッジの生成量が所定の閾値(記憶装置51に記憶)よりも少なければ、膨張装置3の詰まりの原因が通常のスラッジに起因するものと判断することができる。なお、この判断は、作業者が行ってもよいし、判定装置54に行わせてもよい。
 また、本実施の形態3で示した重合量推定装置(記憶装置51及び演算装置)を実施の形態1,2で示した重合量推定装置と併用することにより、重合によるスラッジの生成量の検出精度が向上するという効果を得ることもできる。
 1 圧縮機、2 室外熱交換器、3 膨張装置、3a,3b ストレーナ、5 液管、6(6a,6b) 室内熱交換器、7 ガス管、8 流路切替装置、9 アキュムレータ、11 接続装置、12 接続装置、13 接続装置、14 接続装置、31 室外ファン、32(32a,32b) 室内ファン、35(35a,35b) 室内機液側温度センサ、41 吐出温度センサ、42 室外機ガス側温度センサ、43 室外機液側温度センサ、44(44a,44b) 室内機ガス側温度センサ、61 室外機、62(62a,62b) 室内機、50 制御部、51 記憶装置、52 制御装置、53 演算装置、54 判定装置、100 冷凍サイクル装置。

Claims (9)

  1.  圧縮機、凝縮器、膨張装置及び蒸発器を少なくとも備え、エチレン系フッ化炭化水素、又は、エチレン系フッ化炭化水素を含む混合物を冷媒として用いる冷媒回路と、
     前記圧縮機の回転数及び前記膨張装置の開度を制御する制御装置と、
     前記膨張装置の詰まり量を検出する詰まり量検出装置と、
     前記膨張装置に詰まりを発生させている物質のうち、前記冷媒の重合で生成される生成物が占める量の推定に用いられる重合量推定装置と、
     を備えたことを特徴とする冷凍サイクル装置。
  2.  前記重合量推定装置は、
     前記膨張装置の上流側に設けられたストレーナを備えたことを特徴とする請求項1に記載の冷凍サイクル装置。
  3.  前記重合量推定装置は、
     前記冷媒の過冷却度、前記冷媒の過熱度、及び前記圧縮機から吐出される前記冷媒の吐出温度のうちの少なくとも1つを検出する冷媒状態検出装置と、
     前記冷媒状態検出装置の検出結果と比較する閾値を記憶する記憶装置と、
     前記冷媒状態検出装置の検出結果が前記閾値を超えたことを判定する判定装置と、
     を備えたことを特徴とする請求項1又は請求項2に記載の冷凍サイクル装置。
  4.  前記詰まり量検出装置は、
     前記膨張装置の開度と理論Cv値との関係を表すCv値テーブルを記憶した記憶装置と、
     前記冷媒回路の運転状態から演算した前記膨張装置の実際のCv値を演算し、当該運転状態における前記膨張装置の理論Cv値を前記Cv値テーブルより演算し、これら実際のCv値及び理論Cv値に基づいて前記膨張装置の詰まり量を演算する演算装置と、
     を備えたことを特徴とする請求項1~請求項3のいずれか一項に記載の冷凍サイクル装置。
  5.  前記膨張装置の詰まり量と前記生成物の生成量との関係を表す生成量テーブルを記憶した記憶装置と、
     前記詰まり量検出装置で検出した前記膨張装置の詰まり量と前記生成量テーブルとに基づき、前記生成物の生成量を演算する演算装置と、
     を備えたことを特徴とする請求項1~請求項4のいずれか一項に記載の冷凍サイクル装置。
  6.  前記重合量推定装置は、
     前記冷媒が規定温度以上となる条件で前記冷媒回路を運転した時間である重合発生温度運転時間と、前記重合発生温度運転時間の積算値から前記生成物の生成量を推定するテーブルを記憶する記憶装置と、
     前記重合発生温度運転時間の積算値を演算すると共に、前記重合発生温度運転時間の積算値から前記生成物の生成量を推定するテーブルに基づき、前記生成物の生成量を演算する演算装置と、
    を備えたことを特徴とする請求項1~請求項5のいずれか一項に記載の冷凍サイクル装置。
  7.  前記重合量推定装置は、
     前記冷媒が規定圧力以上となる条件で前記冷媒回路を運転した時間である重合発生圧力運転時間と、前記重合発生圧力運転時間の積算値から前記生成物の生成量を推定するテーブルを記憶する記憶装置と、
     前記重合発生圧力運転時間の積算値を演算すると共に、前記重合発生圧力運転時間の積算値から前記生成物の生成量を推定するテーブルに基づき、前記生成物の生成量を演算する演算装置と、
    を備えたことを特徴とする請求項1~請求項6のいずれか一項に記載の冷凍サイクル装置。
  8.  前記膨張装置に所定量以上の詰まりが発生しているか否かを判定する判定装置を備え、
     前記制御装置は、
     前記膨張装置に所定量以上の詰まりが発生していると前記判定装置が判定した際、前記膨張装置の開度を大きくする詰まり解消制御を行うことを特徴とする請求項1~請求項7のいずれか一項に記載の冷凍サイクル装置。
  9.  前記エチレン系フッ化炭化水素は、フルオロエチレン(R1141)、トランス-1,2ジフルオロエチレン(R1132(E))、シス-1,2ジフルオロエチレン(R1132(Z))、1,1ジフルオロエチレン(R1132a)、1,1,2トリフルオロエチレン(R1123)のいずれか1つを含むことを特徴とする請求項1~請求項8のいずれか一項に記載の冷凍サイクル装置。
PCT/JP2013/066868 2013-06-19 2013-06-19 冷凍サイクル装置 WO2014203356A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015522421A JP6157616B2 (ja) 2013-06-19 2013-06-19 冷凍サイクル装置
PCT/JP2013/066868 WO2014203356A1 (ja) 2013-06-19 2013-06-19 冷凍サイクル装置
EP13887161.1A EP3012556B1 (en) 2013-06-19 2013-06-19 Refrigeration cycle device
CN201420321403.1U CN204027110U (zh) 2013-06-19 2014-06-17 制冷循环装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/066868 WO2014203356A1 (ja) 2013-06-19 2013-06-19 冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2014203356A1 true WO2014203356A1 (ja) 2014-12-24

Family

ID=52066955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/066868 WO2014203356A1 (ja) 2013-06-19 2013-06-19 冷凍サイクル装置

Country Status (4)

Country Link
EP (1) EP3012556B1 (ja)
JP (1) JP6157616B2 (ja)
CN (1) CN204027110U (ja)
WO (1) WO2014203356A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016189698A1 (ja) * 2015-05-27 2016-12-01 三菱電機株式会社 圧縮機及び冷凍サイクル装置
JP2017156019A (ja) * 2016-03-02 2017-09-07 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
CN109737654A (zh) * 2018-12-11 2019-05-10 珠海格力电器股份有限公司 一种堵塞检测方法及能够检测堵塞的机组
WO2019207618A1 (ja) * 2018-04-23 2019-10-31 三菱電機株式会社 冷凍サイクル装置および冷凍装置
JP2020091079A (ja) * 2018-12-06 2020-06-11 三菱電機株式会社 空気調和システム
WO2020256131A1 (ja) * 2019-06-19 2020-12-24 ダイキン工業株式会社 ジフルオロエチレン(hfo-1132)を作動流体として含む冷凍機
WO2022013927A1 (ja) * 2020-07-13 2022-01-20 三菱電機株式会社 空気調和装置
US11525076B2 (en) 2019-01-30 2022-12-13 Daikin Industries, Ltd. Composition containing refrigerant, and refrigeration method using said composition, operating method for refrigeration device, and refrigeration device
US11827833B2 (en) 2019-02-06 2023-11-28 Daikin Industries, Ltd. Refrigerant-containing composition, and refrigerating method, refrigerating device operating method, and refrigerating device using said composition
US11834601B2 (en) 2019-01-30 2023-12-05 Daikin Industries, Ltd. Composition containing refrigerant, refrigeration method using said composition, method for operating refrigeration device, and refrigeration device
US11834602B2 (en) 2019-02-05 2023-12-05 Daikin Industries, Ltd. Refrigerant-containing composition, and refrigerating method, refrigerating device operating method, and refrigerating device using said composition
US11912922B2 (en) 2018-07-17 2024-02-27 Daikin Industries, Ltd. Refrigerant cycle apparatus
US11920077B2 (en) 2018-07-17 2024-03-05 Daikin Industries, Ltd. Refrigeration cycle device for vehicle
US11939515B2 (en) 2018-07-17 2024-03-26 Daikin Industries, Ltd. Refrigerant-containing composition, heat transfer medium, and heat cycle system
US12146697B2 (en) 2019-01-30 2024-11-19 Daikin Industries, Ltd. Inside air-conditioning device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108050648B (zh) * 2017-11-29 2023-09-26 广东美的制冷设备有限公司 空调器油堵故障检测方法以及空调器
JPWO2019123898A1 (ja) * 2017-12-18 2020-12-10 ダイキン工業株式会社 冷媒用または冷媒組成物用の冷凍機油、冷凍機油の使用方法、および、冷凍機油としての使用
CN115605374A (zh) * 2020-03-27 2023-01-13 埃克森美孚技术与工程公司(Us) 电气系统用传热流体的状况监测
WO2021240599A1 (ja) * 2020-05-25 2021-12-02 三菱電機株式会社 空気調和機
FR3110957A1 (fr) * 2020-06-01 2021-12-03 Valeo Systemes Thermiques Procédé de contrôle d’un circuit de régulation thermique, notamment pour un véhicule automobile.

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10506131A (ja) * 1994-07-11 1998-06-16 ソルヴェイ 冷媒類
JP2001153477A (ja) * 1999-12-02 2001-06-08 Matsushita Refrig Co Ltd 冷凍装置
JP2001227828A (ja) * 2000-02-17 2001-08-24 Daikin Ind Ltd 冷凍装置
JP2009250554A (ja) 2008-04-09 2009-10-29 Daikin Ind Ltd 冷凍装置
JP2009299649A (ja) 2008-06-17 2009-12-24 Mitsubishi Electric Corp ロータリ圧縮機
JP2010007874A (ja) * 2008-06-24 2010-01-14 Mitsubishi Electric Corp 冷凍サイクル装置
JP2010065982A (ja) * 2008-09-12 2010-03-25 Mitsubishi Electric Corp 冷凍サイクル装置
JP2011226729A (ja) * 2010-04-22 2011-11-10 Panasonic Corp 冷凍装置
JP2012131994A (ja) * 2010-11-30 2012-07-12 Jx Nippon Oil & Energy Corp 冷凍機用作動流体組成物および冷凍機油

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4315585B2 (ja) * 2000-09-21 2009-08-19 三菱電機株式会社 空気調和機
JP2009298918A (ja) * 2008-06-13 2009-12-24 Mitsubishi Electric Corp 液体組成物及びこれを使用した冷凍サイクル装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10506131A (ja) * 1994-07-11 1998-06-16 ソルヴェイ 冷媒類
JP2001153477A (ja) * 1999-12-02 2001-06-08 Matsushita Refrig Co Ltd 冷凍装置
JP2001227828A (ja) * 2000-02-17 2001-08-24 Daikin Ind Ltd 冷凍装置
JP2009250554A (ja) 2008-04-09 2009-10-29 Daikin Ind Ltd 冷凍装置
JP2009299649A (ja) 2008-06-17 2009-12-24 Mitsubishi Electric Corp ロータリ圧縮機
JP2010007874A (ja) * 2008-06-24 2010-01-14 Mitsubishi Electric Corp 冷凍サイクル装置
JP2010065982A (ja) * 2008-09-12 2010-03-25 Mitsubishi Electric Corp 冷凍サイクル装置
JP2011226729A (ja) * 2010-04-22 2011-11-10 Panasonic Corp 冷凍装置
JP2012131994A (ja) * 2010-11-30 2012-07-12 Jx Nippon Oil & Energy Corp 冷凍機用作動流体組成物および冷凍機油

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016189698A1 (ja) * 2015-05-27 2017-09-07 三菱電機株式会社 圧縮機及び冷凍サイクル装置
KR20170139100A (ko) * 2015-05-27 2017-12-18 미쓰비시덴키 가부시키가이샤 압축기 및 냉동사이클 장치
KR101943789B1 (ko) * 2015-05-27 2019-01-29 미쓰비시덴키 가부시키가이샤 압축기 및 냉동사이클 장치
AU2015396402B2 (en) * 2015-05-27 2019-03-07 Mitsubishi Electric Corporation Compressor and refrigeration cycle apparatus
WO2016189698A1 (ja) * 2015-05-27 2016-12-01 三菱電機株式会社 圧縮機及び冷凍サイクル装置
US11313593B2 (en) 2015-05-27 2022-04-26 Mitsubishi Electric Corporation Compressor and refrigeration cycle apparatus
JP2017156019A (ja) * 2016-03-02 2017-09-07 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
WO2017150735A1 (ja) * 2016-03-02 2017-09-08 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
JPWO2019207618A1 (ja) * 2018-04-23 2021-02-12 三菱電機株式会社 冷凍サイクル装置および冷凍装置
WO2019207618A1 (ja) * 2018-04-23 2019-10-31 三菱電機株式会社 冷凍サイクル装置および冷凍装置
US11912922B2 (en) 2018-07-17 2024-02-27 Daikin Industries, Ltd. Refrigerant cycle apparatus
US11939515B2 (en) 2018-07-17 2024-03-26 Daikin Industries, Ltd. Refrigerant-containing composition, heat transfer medium, and heat cycle system
US11920077B2 (en) 2018-07-17 2024-03-05 Daikin Industries, Ltd. Refrigeration cycle device for vehicle
WO2020115935A1 (ja) * 2018-12-06 2020-06-11 三菱電機株式会社 空気調和システム
JP2020091079A (ja) * 2018-12-06 2020-06-11 三菱電機株式会社 空気調和システム
JP7257782B2 (ja) 2018-12-06 2023-04-14 三菱電機株式会社 空気調和システム
CN109737654B (zh) * 2018-12-11 2024-01-23 珠海格力电器股份有限公司 一种堵塞检测方法及能够检测堵塞的机组
CN109737654A (zh) * 2018-12-11 2019-05-10 珠海格力电器股份有限公司 一种堵塞检测方法及能够检测堵塞的机组
US12146697B2 (en) 2019-01-30 2024-11-19 Daikin Industries, Ltd. Inside air-conditioning device
US11525076B2 (en) 2019-01-30 2022-12-13 Daikin Industries, Ltd. Composition containing refrigerant, and refrigeration method using said composition, operating method for refrigeration device, and refrigeration device
US11840658B2 (en) 2019-01-30 2023-12-12 Daikin Industries, Ltd. Composition containing refrigerant, and refrigeration method using said composition, operating method for refrigeration device, and refrigeration device
US11834601B2 (en) 2019-01-30 2023-12-05 Daikin Industries, Ltd. Composition containing refrigerant, refrigeration method using said composition, method for operating refrigeration device, and refrigeration device
US11834602B2 (en) 2019-02-05 2023-12-05 Daikin Industries, Ltd. Refrigerant-containing composition, and refrigerating method, refrigerating device operating method, and refrigerating device using said composition
US11827833B2 (en) 2019-02-06 2023-11-28 Daikin Industries, Ltd. Refrigerant-containing composition, and refrigerating method, refrigerating device operating method, and refrigerating device using said composition
JP2021001722A (ja) * 2019-06-19 2021-01-07 ダイキン工業株式会社 ジフルオロエチレン(hfo−1132)を作動流体として含む冷凍機
WO2020256131A1 (ja) * 2019-06-19 2020-12-24 ダイキン工業株式会社 ジフルオロエチレン(hfo-1132)を作動流体として含む冷凍機
JP7378627B2 (ja) 2020-07-13 2023-11-13 三菱電機株式会社 空気調和装置
GB2610983A (en) * 2020-07-13 2023-03-22 Mitsubishi Electric Corp Air conditioning apparatus
JPWO2022013927A1 (ja) * 2020-07-13 2022-01-20
WO2022013927A1 (ja) * 2020-07-13 2022-01-20 三菱電機株式会社 空気調和装置
GB2610983B (en) * 2020-07-13 2024-03-27 Mitsubishi Electric Corp Air-conditioning apparatus

Also Published As

Publication number Publication date
EP3012556B1 (en) 2018-12-26
JPWO2014203356A1 (ja) 2017-02-23
EP3012556A1 (en) 2016-04-27
JP6157616B2 (ja) 2017-07-05
CN204027110U (zh) 2014-12-17
EP3012556A4 (en) 2017-03-29

Similar Documents

Publication Publication Date Title
JP6157616B2 (ja) 冷凍サイクル装置
US8443624B2 (en) Non-Azeotropic refrigerant mixture and refrigeration cycle apparatus
JP5147889B2 (ja) 空気調和装置
JP6141429B2 (ja) 空気調和機
EP3088819B1 (en) Air conditioning device
US10247459B2 (en) Refrigeration cycle apparatus
JP4785935B2 (ja) 冷凍サイクル装置
JP5094801B2 (ja) 冷凍サイクル装置及び空気調和装置
JP5036790B2 (ja) 空気調和装置
JP6192806B2 (ja) 冷凍装置
WO2019053880A1 (ja) 冷凍空調装置
JP5078817B2 (ja) 冷凍サイクル装置
WO2020039707A1 (ja) 冷凍サイクル装置および冷凍サイクル装置の冷媒温度管理方法
JP2011099591A (ja) 冷凍装置
JP6902390B2 (ja) 冷凍サイクル装置
WO2015140883A1 (ja) 空気調和機
JP5505477B2 (ja) 空気調和装置および空気調和装置の冷媒量判定方法
JP6790966B2 (ja) 空気調和装置
JP6739664B2 (ja) 冷凍空調装置及び制御装置
JP6410935B2 (ja) 空気調和機
JP6111692B2 (ja) 冷凍装置
JP2010133636A (ja) 冷凍装置
WO2022210872A1 (ja) ヒートポンプ装置
JP4548502B2 (ja) 冷凍装置
JP5505126B2 (ja) 冷凍装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13887161

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015522421

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013887161

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE