WO2014201979A1 - 污水处理系统及其方法 - Google Patents
污水处理系统及其方法 Download PDFInfo
- Publication number
- WO2014201979A1 WO2014201979A1 PCT/CN2014/079909 CN2014079909W WO2014201979A1 WO 2014201979 A1 WO2014201979 A1 WO 2014201979A1 CN 2014079909 W CN2014079909 W CN 2014079909W WO 2014201979 A1 WO2014201979 A1 WO 2014201979A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tower
- sewage
- outlet
- inlet
- ozone
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F9/00—Multistage treatment of water, waste water or sewage
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/72—Treatment of water, waste water, or sewage by oxidation
- C02F1/725—Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/72—Treatment of water, waste water, or sewage by oxidation
- C02F1/78—Treatment of water, waste water, or sewage by oxidation with ozone
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/001—Processes for the treatment of water whereby the filtration technique is of importance
- C02F1/004—Processes for the treatment of water whereby the filtration technique is of importance using large scale industrial sized filters
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/105—Phosphorus compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/16—Nitrogen compounds, e.g. ammonia
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2201/00—Apparatus for treatment of water, waste water or sewage
- C02F2201/78—Details relating to ozone treatment devices
- C02F2201/782—Ozone generators
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/02—Aerobic processes
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/02—Aerobic processes
- C02F3/10—Packings; Fillings; Grids
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/152—Water filtration
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Definitions
- the invention relates to the technical field of sludge treatment, in particular to a sewage treatment system and a method thereof. Background technique
- the annual discharge capacity of the country is about 30 billion tons, while the treatment capacity of sewage in China only accounts for about 20%.
- the problem of water pollution is still growing, from tributaries to mainstream, from urban to rural areas, from the surface to the underground, and from the land to the sea.
- the highly polluted sewage discharged such as chemical sewage, petrochemical sewage, coking sewage, landfill leachate, pharmaceutical sewage, electroplating cyanide-containing sewage, grinding sewage, etc., which contain many difficult biodegradable organic substances and biologically toxic substances, complex organic components
- the chemical oxygen demand has a high COD concentration, which is very difficult to handle.
- environmental workers have been working hard to explore.
- most of the researches are UV-catalyzed oxidation technology.
- the vacuum ultraviolet generator is used to synchronously radiate high-intensity ultraviolet rays. High-energy photons can directly photo-decompose organic matter in wastewater, so that it can be broken and mineralized.
- high-energy photons can also sensitize refractory organic matter. It is in an unstable sensitization state, which is beneficial to further degradation; using hydrogen peroxide as an oxidant to catalyze the oxidation of organic matter under the action of a catalyst.
- ultraviolet light, catalyst and oxidant are introduced, and their synergistic action is used to generate free radicals such as hydroxyl groups and oxygen ions, and the organic pollutants in the high-concentration wastewater are completely decomposed into (3 ⁇ 4 and water-free and harmful components, and deodorization, decolorization and sterilization) Disinfection. This attackes various organic pollutants and microorganisms in the water until it degrades into C0 2 , 0 and inorganic salts.
- many sewage treatment systems require many reaction conditions, high cost and unstable treatment effect.
- Fenton method catalytic ozone oxidation method, microwave method, electrolytic catalytic method, incineration method, activated sludge method, membrane treatment method, other biological methods, etc. are used for the highly difficult sewage treatment methods.
- the Fenton method is used in research and experiments. It is a sewage treatment method in which ferrous ferrous ion Fe 2+ is used as a catalyst for chemical oxidation with hydrogen peroxide 0 2 under acidic conditions.
- the F e (0H) 3 colloid formed by the reaction has flocculation and adsorption functions, and adsorbs and removes some organic substances in the water.
- the Fenton method has a large area, complicated drug handling, large consumption of drugs, high cost of chemicals, pH adjustment and precipitation after reaction, easy to produce more sludge hazardous waste, high proportion of drug delivery during operation, reaction There are many conditions and the treatment effect is unstable, which limits the scale of industrialization.
- Ozone advanced oxidized wastewater remediation technology is a special chemical remediation technology. It refers to the hydroxyl radicals 0 ⁇ which are strongly oxidized by ozonolysis and a series of ⁇ chain reaction induced by hydroxyl radicals.
- the various organic pollutants in the water and the macromolecular refractory organic matter of the microorganism are oxidized into low-toxic or non-toxic small molecular substances.
- the ozone oxidation wastewater treatment equipment is mainly based on catalytic oxidation technology, and the ozone generating device and the ozone oxidation reactor for treating water are sequentially connected according to the process to form an integrated sewage treatment device.
- the existing ozone oxidation treatment method has low ozone utilization rate, is easy to have ozone residual, causes secondary pollution to the environment, and has high cost and small treatment flow rate, which is not conducive to large-scale use.
- An object of the present invention is to provide a system and method for treating sewage by using ozone catalytic oxidation method for sewage treatment without causing secondary pollution.
- the technical solution provided by the present invention is: a sewage treatment system, the sewage treatment system includes a sewage pump, a swash plate catalytic reaction tower, a first centrifugal pump, a first jet, a first oxygen generator, and a first An ozone machine, a first catalytic reactor, a first heat exchanger, a packed catalytic tower, an aerated biological tower and a water storage tank;
- the sewage pump, the swash plate catalytic reaction tower, the first jet, the first oxygen generator, the first ozone generator, the first catalytic reactor, the first heat exchanger, the packed catalytic tower, the aerated biological tower and the water storage tank Imports and exports are provided on both;
- the outlet of the sewage pump is connected to the first inlet of the swash plate catalytic reaction tower through a pipeline; the first outlet of the swash plate catalytic reaction tower is connected to the inlet of the first centrifugal pump through a pipeline; the first centrifugal pump The outlet is connected to the first inlet of the first jet through a pipe;
- the outlet of the first oxygen generator is connected to the inlet of the first ozone machine through a pipe; the outlet of the first ozone machine is connected to the second inlet of the first jet through a pipe; the first jet is The outlet is connected to the inlet of the first catalytic reactor through a pipeline; the outlet of the first catalytic reactor is connected to the inlet of the first heat exchanger through a pipeline; the outlet of the first heat exchanger is catalytically reacted with the inclined plate
- the second inlet of the tower is connected by a pipeline, and the second outlet of the sloping plate catalytic reaction tower is connected with the inlet of the packed catalytic tower through a pipeline, and the outlet of the packed catalytic tower and the first inlet of the aerated biological tower pass through the pipeline Connected, the outlet of the aerated biological tower is connected to the inlet of the storage tank through a pipeline.
- the outlet of the water storage tank is provided with a sampling port;
- the first oxygen generator is a molecular sieve first oxygen generator;
- the first jet is a first venturi mixer;
- the sewage treatment system further includes a cooling system including a cooling water tank, a first circulation pump, a first heat exchanger, and a first ozone machine connected in series through a pipeline to form a cooling water circulation loop;
- the side of the heat exchanger in contact with the sewage is coated with a catalyst layer for accelerating the catalytic oxidation process of the sewage;
- the sewage treatment system further includes a fan, and the second inlet of the aeration bio-tower is connected to the outlet of the fan through a pipeline; the sewage treatment system further includes a reflection that changes the water inlet direction of the ozone water and enlarges the area of the ozone water.
- the first outlet of the swash plate catalytic reaction tower is provided with a filter
- the reflector is disposed between the first ozone machine and the first venturi mixer
- the first venturi mixer inhales ozone The amount is adjusted by the flow rate of the first centrifugal pump and the valve on the pipeline;
- the sewage pump is a submersible sewage pump or a centrifugal sewage pump; a pressure controller and a flow controller are arranged on the connecting pipe of the sewage pump and the swash plate catalytic reaction tower.
- the first oxygen generator is provided with an air compressor, and the second inlet of the aeration bio-tower is connected to the second outlet of the first oxygen generator through a pipeline, and the first oxygen generator is An outlet is connected to the inlet of the first ozone machine through a pipeline;
- the second inlet of the aeration biological tower is provided with an aeration pipe network and an aeration disk, and the aeration biological tower is provided with a porous filler,
- the granule filler has a specific surface area of 0. 1-I00m7g ;
- the aerated biological tower is provided with a plurality of inclined inclined plates, each of which has a projection of a folding plate. The cross-over portion, the angle between each of the folded plates and the central axis of the tower body is 30-89 °.
- the first heat exchanger is a plate heat exchanger or a shell-and-tube heat exchanger; the length of the flap projection of the aerated biological tower exceeds the length of the central axis of the tower body by 5-500 mm ;
- the residence time in the sewage treatment system is more than 10 s; the sewage pump, the slanting plate catalytic reaction tower, the first centrifugal pump, the first venturi mixer, the first oxygen generator, the first ozone generator, the second catalytic reactor
- the first heat exchanger, the packed catalytic tower, the aerated biological tower, the air compressor and the water storage tank are integrally installed in the first tank, and the number of the first tanks is one or more, and the pipelines are connected in series .
- the method for sewage treatment of the sewage treatment system of the present invention comprises the following steps:
- the sewage is pumped to the first venturi mixer at a certain speed, and the first venturi mixer generates a vacuum to inhale the ozone generated by the first ozone machine to form a mixture of ozone and sewage;
- the mixture after passing through the first venturi mixer, the mixture enters the second catalytic reactor through a pipeline, and the mixture is in sufficient contact with the catalyst layer in the second catalytic reactor, and the redox reaction is carried out under the catalysis of the catalyst. ;
- reaction product enters the packed catalytic tower from the second outlet of the sloping plate catalytic reaction tower, and the remaining ozone and oxygen and the sewage are fully subjected to a redox reaction;
- reaction product enters the aeration biological tower through the outlet of the packed catalytic tower; after the aerated biological tower flows into the storage tank, the outlet of the storage tank is provided with a sampling port, and the sampling port is used for sampling and detection.
- the slant plate catalytic reaction tower comprises a first base, and the first base is provided with a slanting plate catalytic reaction tower main body, and the inclined plate catalytic reaction tower main body is from the bottom
- the bottom side wall is provided with an ozone water inlet and a waste water inlet; the filler layer is filled with a catalyst solid filler;
- the first tower top is provided with a first tower top, and the first tower top side is provided with a waste water outlet;
- a diversion waste water outlet is arranged below the waste water inlet.
- a filter screen is arranged on the outlet of the split waste water, the filter mesh is made of stainless steel; the water inlet of the waste water is L-shaped, and a bell mouth is connected to the tail end, and the bell mouth is facing downward, facing the filter net;
- the bottom sealing head is a curved structure;
- the first tower top head is a curved structure;
- the slanting plate catalytic reaction tower body is made of stainless steel;
- the ozone water inlet is L-shaped, and a reflector is connected;
- the first packing layer is arranged
- a filler support plate which is filled with a solid filler, the solid filler is a folded plate, a sloping plate type, which is an uneven surface, and the surface is coated with an inert precious metal catalyst, and the angle between the folded plate and the inclined plate is 80 with the horizontal plane. -90 degrees;
- the solid filler fills the inner space of the packing layer, and the solid packing is multi-layer;
- the waste water outlet is connected
- a packed catalytic tower of a sewage treatment system of the present invention the packed catalytic tower comprises a second base, the second base is provided with a packed catalytic tower main body, and the packed catalytic tower main body is provided by a bottom-up water inlet zone and a support a layer, a second packing layer, and a clear water outlet zone;
- the water inlet zone comprises a second tower bottom, a bottom of the second tower bottom is provided with a second tower bottom head, and a second tower bottom head is connected with a second exhaust valve;
- the second filler layer is filled with a filler, the upper end of the sidewall of the second filler layer is provided with a first water outlet, and the second filler layer is provided with a folded plate, one end of the folded plate is connected to the inner wall of the second filler layer, and the other end is downward.
- the clear water outlet area includes a second tower top, the second tower top is provided with a second tower top head, and the second tower top head is provided with a filler
- the main body of the packed catalytic tower is made of stainless steel; the second bottom cover is a curved structure, and the second top cover is an arc structure; the support layer is a circular plate, and a circular hole or square is evenly arranged thereon.
- the material of the support layer is stainless steel; the hole diameter of the round hole or the side length of the square hole is 4-10 mm ; the filler in the second packing layer is a porous particle filler having a particle diameter of more than 10 mm, and the surface thereof is coated with an inert precious metal catalyst.
- the second packing layer is provided with a plurality of multi-layered folding plates, and the multi-layer folding plates are staggered, and the projections of each of the folding plates in the horizontal plane have intersecting overlapping portions; the projection length of each of the folding plates in the horizontal plane exceeds the central axis of the reaction tower main body 5 -500mm, the angle between each layer of the folding plate and the central axis of the reaction tower body is 30-89 °; the first water outlet is connected with a tee and is provided with a sampling port; the first water outlet is connected with a backwashing pump.
- a system for treating sewage includes a pump, a filter mixer, a second jet, an ozone generating device, a reactor, a second heat exchanger, and a rotary mixer;
- the filter mixer, the second jet, the ozone generator, the second reactor, the second heat exchanger, and the rotary mixer are each provided with an inlet and an outlet; a first outlet of the pump and a filter mixer An inlet is connected by a pipe; a first outlet of the filter mixer is connected to a first inlet of the second jet through a pipe; a first outlet of the ozone generating device and a second inlet of the second jet are connected by a pipe; an outlet of the second jet is connected to an inlet of the reactor through a pipe; an outlet of the reactor and a second a first inlet of the heat exchanger is connected by a pipe; a first outlet of the second heat exchanger is connected to a second inlet of the filter mixer through a pipe, and a second outlet of the filter mixer is connected to the rotary mixer
- the inlets are connected by pipes.
- the pump is a submersible pump;
- the system for treating sewage further includes a second centrifugal pump disposed between the filter mixer and the second jet; the second centrifugal pump is provided with an inlet and an outlet;
- the first outlet of the filter mixer is connected to the inlet of the second centrifugal pump through a pipe;
- the outlet of the second centrifugal pump is connected to the first inlet of the second jet through a pipe;
- the inner surface of the reactor and the reaction The inner and outer surfaces of the inner member, the inner surface of the second heat exchanger, and the inner and outer surfaces of the inner portion of the second heat exchanger and the inner surface of the pipe are coated with a noble metal catalyst layer.
- the reactor is a second catalytic reactor;
- the ozone generating device is provided with a second oxygen generator and a second ozone machine connected by a pipeline; an outlet of the second oxygen generator and a second ozone
- the first inlet of the machine is connected by a pipeline; the first outlet of the second ozone machine is connected to the second inlet of the second jet through a pipeline;
- a second outlet of the second heat exchanger is connected to a second inlet of the second ozone machine through a pipe; a second outlet of the second ozone machine is connected to an inlet of the cooling water tank through a pipe;
- the outlet of the cooling water tank is connected to the inlet of the second circulation pump through a pipeline;
- the outlet of the second circulation pump is connected to the second inlet of the second heat exchanger through a pipeline;
- the second ozone machine is cooled
- the water tank, the second circulation pump and the second heat exchanger form a cooling water circulation system;
- the rotary mixer is coated with a granular porous ceramic surface-supporting catalyst layer;
- the second ozone machine is provided with a cooling chamber;
- the second ejector is a second venturi mixer;
- the second catalytic reactor is one or more, and the second catalytic reactors are connected in parallel or in series through a pipe.
- the submersible pump, the second centrifugal pump, the ozone generating device, the second jet and the second catalytic reactor are integrally installed in the second tank, and the number of the second tanks is one or more a filter is disposed in the second inlet of the filter mixer; a gas flow meter is disposed on the connecting pipe of the ozone generating device and the second catalytic reactor; The residence time of the two catalytic reactor is from 10 seconds to 500 seconds.
- the method for treating sewage in the sewage treatment system of the present invention comprises the following steps:
- the sewage is transported by the second centrifugal pump to the second jet at a certain speed, and the second jet generates negative pressure to absorb ozone generated by the ozone generating device to form a mixture of ozone and sewage;
- the mixture enters a second catalytic reactor through a conduit, and the mixture is catalyzed in a second catalytic reactor
- the agent layer is in sufficient contact, and the redox reaction is carried out under the catalysis of the catalyst
- the second ozone machine, the cooling water tank, the second circulation pump, and the second heat exchanger form a circulation system of cooling water for reducing the temperature of the second ozone machine;
- the sewage is in the second heat exchanger Heat exchange with cooling water that has cooled the second ozone machine to reduce the temperature of the cooling water;
- the second heat exchanger transports the sewage to the filter mixer, and reacts residual ozone with sewage that does not enter the second catalytic reactor Mixing;
- the treated sewage still contains some ozone. This part of the sewage enters the rotary mixer by the filter mixer. After rotating twice in the rotary mixer, it is discharged into the water by the outlet of the rotary mixer, and the water is not The treated water is mixed and consumes residual ozone.
- the invention has the advantages that the sewage treatment system and the method thereof can improve the treatment amount of the high-durability sewage, improve the ozone utilization rate, have wide application range to the sewage pH and water temperature, have a small occupied area, simple installation operation, low operation cost, and treatment. The effect is stable and there is no secondary pollution.
- a reflector for changing the water inlet direction of the ozone water and enlarging the area of the ozone water is provided between the ozone generator and the first venturi mixer; the reflector changes the water inlet direction of the ozone water, and enlarges the area of the ozone water , increase the contact area with the filler, improve the reaction efficiency, reduce the volume of the slanting plate catalytic reaction tower, and save the floor space.
- the sewage inlet of the sloping plate catalytic reaction tower is connected to the sewage pump.
- the sewage pump uses a submersible sewage pump or a centrifugal sewage pump.
- a pressure controller and a flow controller are arranged on the pipeline to automatically monitor the pressure and flow of the sewage in the pipeline. Control, when the pipeline pressure reaches the set upper limit, the sewage pump will automatically alarm or automatically protect the shutdown.
- the inlet of the swash plate catalytic reaction tower is provided with a horn, facing the filter screen in front, and backwashing the filter to prevent clogging.
- the invention can not only conveniently recycle the high-difficult sewage until reaching the standard discharge, but also can carry out over-flow or cyclic small-scale test on the high-difficult sewage, thereby providing effective data support for large-scale industrialization; Over-flow treatment of water bodies contaminated with light water and mild organic matter, or in combination with other sewage treatment methods, such as biochemical methods, catalytically oxidative pretreatment of highly difficult sewage into biochemical systems; also can be treated by other sewage treatment methods The sewage that meets the standard is reprocessed.
- the sewage treatment system and method of the invention are simple to install and convenient to use, can improve sewage treatment capacity, improve ozone utilization rate, and can effectively filter impurities in surface water at the inlet to prevent pipeline blockage.
- the sewage treatment system can be used for disinfection of surface water and rainwater, industrial wastewater treatment, and factory tail water treatment.
- the present invention has the following advantages:
- the filter mixer connected at the inlet of the equipment has the functions of filtration and self-cleaning, and does not need to replace the filter element, and can effectively remove the impurities in the sewage and prevent the pipeline from being blocked.
- the untreated sewage at the outlet of the filter mixer is mixed with the treated sewage containing residual ozone, and the unreacted ozone is fully utilized, which greatly improves the ozone utilization rate and the sewage treatment amount.
- the ozone surface water treatment equipment is an automatic integrated operation equipment, which is easy to operate, that is, it can be placed on the shore, or it can be placed on a floating water surface platform to move freely on the water surface to realize rapid sewage. governance.
- the second catalytic reactor, the second heat exchanger and the inside of the pipe of the present invention are all coated with a precious metal catalyst layer for improving the oxidizing ability of ozone to the sewage, and the granular porous ceramic surface load can still be added in the rotary mixer.
- the catalyst to a large extent, increases the rate of reaction of ozone catalytic oxidation.
- Figure 1 is a schematic view of Embodiment 1 of the present invention.
- Figure 2 is a schematic view of Embodiment 2 of the present invention.
- Figure 3 is a schematic view of a packed catalyst column of the present invention.
- Figure 4 is a schematic view of a swash plate catalytic reaction column of the present invention.
- FIG. 5 is a system process flow diagram of Embodiment 7 of the present invention.
- FIG. 6 is a schematic view of Embodiment 7 of the present invention.
- the sewage treatment system comprises a first centrifugal pump 1, a first venturi mixer 2, a 5L/min first oxygen generator 3, a 30 g/hour of first ozone generator 4, a first catalytic reactor 5 having an average outer diameter of 100 mm, a first heat exchanger 6, and a sewage pump 7 having a flow rate of 2 cubic meters per hour, a slant plate catalytic reaction Tower 8, a packed catalytic tower 9, an aerated biological tower 10, a water storage tank 11;
- the first oxygen generator 3, the first ozone machine 4, the venturi launcher 2, the first catalytic reactor 5, the sewage pump 7, the first heat exchanger 6, the sewage pump 7, and the first centrifugal pump 1 are passed through a pipeline phase
- the connection is integrated and installed in a first tank made of a steel structure, and the swash plate catalytic reaction tower 8, the packed catalytic tower 9, the aeration biological tower 10 and the water storage tank 11 are integrally installed in another first tank, two A box is connected by pipes and cables.
- the first oxygen generator 3 is formulated in accordance with the oxygen demand of the first ozone generator 4.
- the tower 9, the aeration bio-tower 10 and the water storage tank 11 are each provided with an inlet and an outlet; the outlet of the sewage pump 7 is connected to the first inlet of the swash plate catalytic reaction tower 8 through a pipeline;
- the sewage treatment system further includes a cooling system including a cooling water tank, a first circulation pump, a first heat exchanger 6, and a first ozone machine 4 connected in series through a pipeline to form a cooling water circulation loop; a side of the heat exchanger 6 in contact with the sewage is coated with a catalyst layer for accelerating the catalytic oxidation process of the sewage; the first heat exchanger 6 is a plate heat exchanger or a shell-and-tube heat exchanger;
- the sewage enters the slanting plate catalytic reaction tower 8 through the sewage pump 7 through the pipeline, and the sloping plate catalytic reaction tower 8 functions as a split; after the sloping plate catalytic reaction tower 8 is diverted, a part of the sewage is catalyzed by the inclined plate catalytic reaction tower 8 One outlet enters the first centrifugal pump 1, and another portion of the sewage remains in the swash plate catalytic reaction column 8; the redox reaction product enters the slant plate catalytic reaction column 8 through the first heat exchanger 6, and the remaining ozone and oxygen are not entered.
- the sewage of the first catalytic reactor 5 is mixed; the residual ozone and oxygen are continuously used for the catalytic reaction to accelerate the reaction rate and improve the treatment effect.
- a pressure controller and a flow controller are disposed on the connecting pipe of the sewage pump 7 and the swash plate catalytic reaction tower 8. Inclined plate catalytic reaction tower 8 Sewage inlet Connected to sewage pump 7, automatic monitoring and control of sewage pressure and flow in the pipeline. When the pipeline pressure reaches the set upper limit value, the sewage pump 7 will automatically alarm or automatically protect the shutdown.
- the first outlet of the swash plate catalytic reaction column 8 is connected to the inlet of the first centrifugal pump 1 through a pipeline; the horn of the swash plate catalytic reaction tower 8 is provided with a bell mouth, and the direction is opposite to the filter mesh in front, Wash the filter to prevent blockage.
- the outlet of the first centrifugal pump 1 is connected to the first inlet of the first venturi mixer 2 through a pipe; the sewage is delivered by the first centrifugal pump 1 to the first venturi mixer 2 at a certain speed,
- the first venturi mixer 2 generates a vacuum to inhale the ozone generated by the first ozone machine 4 to form a mixture of ozone and sewage; the first venturi mixer 2 draws the amount of ozone through the flow of the first centrifugal pump 1 and the valve on the pipeline Make adjustments.
- the first oxygen generator 3 is provided with an air compressor, and the second inlet of the aeration bio-tower 10 and the second outlet of the first oxygen generator 3 are connected by a pipeline, and the first oxygen generator 3 The first outlet is connected to the inlet of the first ozone machine 4 through a pipe Pick up. Make full use of the air generated by the first oxygen machine 3 air compressor to save energy.
- the first oxygen generator 3 produces oxygen, and oxygen is introduced into the first ozone machine 4, and the outlet of the first ozone machine 4 is connected to the second inlet of the first venturi mixer 2 through a pipe;
- the outlet of the first venturi mixer 2 is connected to the inlet of the first catalytic reactor 5 through a pipeline; the sewage is in full contact with the catalyst layer in the first catalytic reactor 5, and the redox reaction is carried out under the catalysis of the catalyst. .
- the outlet of the first catalytic reactor 5 is connected to the inlet of the first heat exchanger 6 through a pipe; the outlet of the first heat exchanger 6 is connected to the second inlet of the swash plate catalytic reaction column 8 through a pipe.
- the sloping plate catalytic reaction column 8 is filled with an inert precious metal catalyst solid filler, and the filler is folded and slanted, sequentially discharged according to the direction of water flow, filling the inner space of the tower, and the filler can be discharged by dividing the n layer to effectively increase the contact area of the catalytic reaction. And reduce the catalytic reactor volume and plant footprint.
- the second outlet of the swash plate catalytic reaction column 8 is connected to the inlet of the packed catalyst column 9 through a pipeline, and the slant plate catalytic reaction column 8 continues to utilize the residual ozone and oxygen for catalytic reaction, thereby accelerating the reaction rate and improving the treatment effect.
- the top of the folded plate of the packed catalytic tower 9 has an unfilled space, and the added granular filler is not only coated with an inert precious metal powder catalyst, but also has a porous surface, a large specific surface area, a large contact area of the filler, and a large contact area with the sewage, which can be effectively utilized.
- Ozone reacts with oxygen.
- the packed catalytic tower 9 continues to utilize the residual ozone and oxygen for catalytic oxidation reaction to further improve the sewage treatment effect.
- the ozone and oxygen gas are blocked in this space, due to space constraints.
- the gas will enter the sewage again, prolong the contact reaction time between the gas and the sewage, increase the ozone utilization rate, and have high reaction efficiency.
- the outlet of the packed catalytic tower 9 is connected to the first inlet of the aerated biological tower 10 through a pipe.
- the packing catalytic tower 9 is internally provided with a plurality of inclined folding plates, and the granular catalytic packing coated with the inert precious metal powder is input from the top filling inlet, filling the space between the folding plates, and leaving a triangular top angle at the top of the folding plate. Filling space, when the remaining ozone and oxygen enter the packed catalytic tower 9, ozone and oxygen gas are blocked in this space after gas-liquid separation. Due to space constraints, the gas will accumulate again and then enter the sewage again, prolonging the contact between gas and sewage. The reaction time increases the ozone utilization rate and the reaction efficiency is high.
- the aerated biological tower 10 is provided with a porous filler suitable for microbial adhesion growth, and the aerated biological tower 10 and the packed catalytic tower 9 are provided with a plurality of inclined inclined plates, and each layer of the folding projection has a cross-over In part, the angle between each of the folding plates and the central axis of the tower body is 30-89 °.
- the length of the flap projection is more than the length of the central axis of the tower body is 5-500mm ;
- the aerated biological tower 10 utilizes the corner space of the flap to block air from escaping, prolongs the reaction time of the air and sewage contact, improves the air utilization efficiency, and ensures the dissolved oxygen concentration in the tower.
- the aerated biological tower 10 is filled with a porous filler capable of attaching microorganisms, and the filler has a large specific surface area, which is more conducive to the growth and reproduction of microorganisms.
- the outlet of the aerated biological tower 10 is connected to the inlet of the storage tank 11 through a pipe.
- the outlet of the aerated biological tower 10 is connected to the inlet of the water storage tank 11, and a sampling port is arranged at the outlet of the water storage tank 11, and the sewage that meets the standard is sampled and analyzed for discharge.
- the aeration air in the tower of the aeration bio-tower 10 is from the air compressor split pipe of the first oxygen generator 3, and can effectively utilize the amount of air generated by the air compressor without wasting energy.
- the second inlet of the aeration bio-tower 10 is provided with an aeration pipe network and an aeration disk, so that the air can diffuse into small bubbles, increase the contact area between the air and the sewage, increase the utilization efficiency of the air, and ensure that the living organism Growing and reproducing in an aerobic environment and degrading organic matter in sewage.
- the sewage treatment system further includes a reflector and a filter that change an inflow direction of the ozone water and enlarge an area of the ozone water; the reflector is disposed between the ozone generator and the first venturi mixer 2; Change the direction of ozone water inflow, expand the area of ozone water, increase the contact area with the filler, increase the reaction efficiency, and reduce the sloping plate catalytic reaction tower
- a filter screen is disposed at the first outlet of the swash plate catalytic reaction column 8 to filter impurities in the sewage to prevent entry into the slant plate catalytic reaction column 8 and the equipment pipeline.
- the sewage can wash away the impurities on the surface of the filter and clean the filter.
- the heat exchanger 6, the packed catalytic tower 9, the aeration biological tower 10 and the outlet of the water storage tank 11 are all connected with the tee, and a sampling port valve is arranged to facilitate sampling and analysis.
- the sewage pump 7 is a submersible sewage pump; the residence time of the mixture in the sewage treatment system is 10 s or more.
- the reaction time is determined by the flow rate of the sewage pump 7 and the number and specifications of the series or parallel reactors.
- the sewage treatment effect is controlled by the amount of ozone inhaled, the number of integrated sewage treatment units, and the operation time.
- the internal fittings of the equipment or the inclined plate catalytic reaction tower 8, the packed catalytic tower 9, and the aerated biological tower 10 can be changed according to the water quantity and water quality of different high-difficult sewage, the reaction residence time is changed, the catalyst dosage is changed, and the change is changed.
- Method such as size, process system device with different processing amount, catalyst dosage, ozone dosage, reaction time, and the process system can be made into one or more modular devices according to different treatment water quantity and sewage water quality, equipment room It is easy to remove and install by connecting by pipe or cable.
- a sewage treatment method of the present invention comprises the following steps:
- the sewage enters the sloping plate catalytic reaction tower 8 through the sewage pump 7 through the pipeline, and the slanting plate catalytic reaction tower 8 functions as a split; the sloping plate catalytic reaction tower After the splitting, a part of the sewage enters the first centrifugal pump 1 from the first outlet of the slanting plate catalytic reaction tower 8, and the other part of the sewage remains in the swash plate catalytic reaction tower 8; the slanting plate catalytic reaction tower 8 is large, only a part of the inside
- the water is pumped into the first catalytic reactor 5 via the first centrifugal pump 1, and then returned to the swash plate catalytic reaction column 8, mixed with the unpumped sewage in the swash plate catalytic reaction column 8, and then enters the packing catalysis together.
- Tower 9 a pressure controller and a flow controller are disposed on the connecting pipe of the sewage pump 7 and the swash plate catalytic reaction tower 8.
- the tower 9, the aeration bio-tower 10 and the water storage tank 11 are each provided with an inlet and an outlet.
- the sewage is delivered by the first centrifugal pump 1 to the first venturi mixer 2 at a certain speed, the first venturi
- the mixer 2 generates a negative pressure to inhale the ozone generated by the first ozone machine 4 to form a mixture of ozone and sewage;
- the amount of ozone inhaled by the first venturi mixer 2 is regulated by the flow rate of the first centrifugal pump 1 and a valve on the pipeline;
- the first oxygen generator 3 is provided with an air compressor, and the second inlet of the aeration bio-tower 10 is connected to the second outlet of the first oxygen generator 3; the inlet of the first ozone machine 4 passes The pipe is connected to the first outlet of the first oxygen generator 3; the first oxygen generator 3 produces oxygen, and the oxygen is introduced into the first ozone machine 4; the first oxygen generator 3 is required according to the first ozone machine 4.
- the amount of oxygen is set.
- a reflector for changing the water inlet direction of the ozone water and enlarging the area of the ozone water is disposed between the first ozone machine 4 and the first venturi mixer 2; the reflector changes the water inlet direction of the ozone water, and enlarges the area of the ozone water Increase the contact area with the filler, increase the reaction efficiency, reduce the volume of the sloping plate catalytic reaction column 8, and save floor space.
- the redox reaction product enters the slanting plate catalytic reaction column 8 through the heat exchanger, and the remaining ozone and oxygen in the reaction are mixed with the sewage not entering the first catalytic reactor 5; the catalytic reaction of the remaining ozone and oxygen is continued to accelerate The reaction rate and the treatment effect are improved.
- the swash plate catalytic reaction column 8 is internally filled with a solid filler of an inert noble metal catalyst, and the inclined plate catalyzed reaction column 8 is provided with a plurality of inclined inclined plates.
- the internal packing of the sloping plate catalytic reaction tower 8 is sequentially discharged according to the direction of water flow, filling the inner space of the sloping plate catalytic reaction tower 8, and the packing can be discharged by dividing the n layer, effectively increasing the contact area of the catalytic reaction, and reducing the volume of the catalytic reaction tower. And the footprint of the device.
- a filter screen for filtering sewage impurities is disposed at the first outlet of the swash plate catalytic reaction column 8, and the filter mesh is a stainless steel filter.
- the filter screen filters impurities in the sewage to prevent impurities from entering the slanting plate catalytic reaction column 8 and equipment piping.
- the sewage can wash away the impurities on the surface of the filter and clean the filter.
- the reaction product enters the packed catalytic tower from the second outlet of the slanting plate catalytic reaction column 8, and the residual ozone and oxygen and the sewage are fully subjected to a redox reaction to improve the sewage treatment effect;
- the packed catalytic tower 9 is coated with an inert precious metal a particle-catalyzed filler of the powder having a specific surface area of from 0.1 to 100 m 2 /g ;
- the inside of the packed catalytic column 9 is provided with a slanted folded plate, and the filler is filled in the inner wall of the tower of the folded plate and the packed catalytic tower 9 The space between.
- Ozone and oxygen gas are trapped in this space after the gas-liquid separation of the apex angle inside the packed catalytic tower 9. Due to space constraints, the gas will enter the sewage again, prolong the contact reaction time between the gas and the sewage, and improve the ozone utilization rate. , the reaction efficiency is high.
- the outlet of the packed catalytic tower 9 is connected to the first inlet of the aerated biological tower 10 through a pipeline, and the reaction product enters the aerated biological tower 10 through the outlet of the packed catalytic tower 9;
- the outlet is connected to the inlet of the water storage tank 11 through a pipe.
- the outlet of the water storage tank 11 is provided with a sampling port, and sampling is performed at the sampling port.
- the aerated biological tower 10 is provided with a porous filler suitable for microbial adhesion growth; the aerated biological tower 10 and the packed catalytic tower 9 are each provided with a plurality of folding plates, and each layer of the folding plate projection has a cross-overlapping portion.
- the angle between each of the folding plates and the central axis of the tower body is 30-89 °.
- the length of the flap projection exceeds the central axis of the tower by a length of 5-500 mm.
- the corner space of the flap prevents air from escaping, prolongs the reaction time between the air and the sewage, improves the air utilization efficiency, and ensures the dissolved oxygen concentration in the tower.
- An aeration pipe network and an aeration disk are disposed at the second inlet of the aeration bio-tower 10. Increase the utilization efficiency of air, ensure that organisms grow and reproduce under aerobic environment and degrade organic matter in sewage.
- the aerated air in the aerated biological tower 10 is from the air compressor splitting pipe of the first aerobic machine 3, and can effectively utilize the amount of air generated by the air compressor without wasting energy.
- the apparatus in the sewage treatment method comprises a first centrifugal pump 1, a first venturi mixer 2, a 5L/min first oxygen generator 3, a 30g/hour first ozone machine 4, an average a first catalytic reactor 5 having an outer diameter of 100 mm, a first heat exchanger 6, a sewage pump 7 having a flow rate of 2 cubic meters per hour, a swash plate catalytic reaction column 8, a packed catalytic column 9, and an aeration Biological tower 10, a water storage tank 11;
- the sewage pump 7 is a submersible sewage pump; the residence time of the mixture in the sewage treatment system is at least 10 seconds, and may also reach hundreds of hours.
- the reaction time is determined by the flow rate of the sewage pump 7 and the number and specifications of the series or parallel reactors.
- the effect of the sewage treatment is controlled by the amount of ozone inhaled, the number of integrated sewage treatment units, and the operating time.
- the outlet of the sewage pump 7 is connected to the first inlet of the swash plate catalytic reaction column 8 through a pipe; the first outlet of the swash plate catalytic reaction column 8 is connected to the inlet of the centrifugal pump 7 through a pipe.
- the invention can improve the sewage treatment amount, improve the ozone utilization rate, has wide application range for sewage pH and water temperature, has small occupied area, simple installation operation, low operation cost, stable treatment effect, no secondary pollution problem, and can Effectively filter the debris in the sewage at the entrance to prevent blockage of the pipeline.
- This kind of equipment can not only treat all kinds of difficult sewage in the industry, but also meet the standard treatment of industrial tail water, and it can also process industrial circulating water, especially difficult sewage treatment.
- a reflector for changing the water inlet direction of the ozone water and enlarging the area of the ozone water is provided between the first ozone machine 4 and the first venturi mixer 2; the reflector changes the water inlet direction of the ozone water, and expands the ozone
- the area of water increases the contact area with the filler, improves the reaction efficiency, reduces the volume of the sloping plate catalytic reaction column 8, and saves the floor space.
- the packed catalytic tower 9 is provided with a plurality of inclined inclined plates, and is arranged at an angle of 30-89 °, and the particulate catalytic filler coated with the inert precious metal powder is input from the top filling inlet to fill the space between the folding plates. , and there is a triangle at the top of the folding plate with unfilled space.
- ozone and oxygen remain in the tower, ozone and oxygen gas are blocked in this space after gas-liquid separation. Due to space constraints, the gas will accumulate more. Re-enter the sewage, prolong the contact reaction time between the gas and the sewage, increase the ozone utilization rate, and have high reaction efficiency.
- the added particulate filler is not only coated with an inert precious metal powder catalyst, but also porous, has a large specific surface area, and has a large contact area with sewage, and can effectively utilize ozone and oxygen for catalytic oxidation reaction, and has a high reaction speed and high efficiency.
- the second inlet of the aeration bio-tower 10 is connected to the air compressor of the first oxygen generator 3, and the air generated by the air compressor of the first oxygen generator 3 can be fully utilized, thereby effectively saving energy.
- An aeration pipe network and an aeration disk are arranged at the second inlet of the aeration bio-tower 10, so that the air can diffuse into small bubbles, increase the contact area between the air and the sewage, effectively increase the utilization efficiency of the air, and ensure that the organism is in aerobic The environment grows and reproduces and degrades the organic matter in the sewage.
- a plurality of inclined folding plates are arranged in the aerated biological tower 10, and Set at an angle of 50-60 °, use the corner space of the flap to block air escape, prolong the reaction time of air and sewage contact, improve air utilization efficiency, and ensure the dissolved oxygen concentration in the tower.
- the column is filled with a porous filler capable of attaching microorganisms, and has a large specific surface area, which is more conducive to the growth and reproduction of microorganisms.
- the invention adopts advanced catalytic oxidation technology, and the hydroxyl radical is generated by the technology, and the treatment effect on most sewage is remarkable, and the sewage after the catalytic reaction is further subjected to the reaction of the inclined plate catalytic reaction tower and the packed catalytic tower, which can effectively degrade the chemical demand. Oxygen C0D, increased B/C ratio, degradation of toxic and harmful organic substances, wide range of use.
- the organic water-contaminated water body is subjected to over-flow treatment, or combined with other sewage treatment means, such as biochemical methods, to carry out catalytic oxidation pretreatment of the highly difficult sewage into the biochemical system; it is also possible to treat the sewage that has not been treated by other sewage treatment means. deal with.
- the equipment in the invention is made of stainless steel, can withstand weak acid and alkali, and has a wide range of application for catalytic oxidation reaction on pH and water temperature of the sewage, from pH>6.5, water temperature 0-50°C. Ensure the treatment effect of the system on sewage.
- the invention can change the parameters of the internal fittings of the equipment or the slanting plate catalytic reaction tower 8, the packed catalytic tower 9, and the aerated biological tower 10 according to the water quantity and water quality of different highly difficult sewages, change the reaction residence time, change the catalyst dosage, and change Method such as size, process system device with different processing amount, catalyst dosage, ozone dosage, reaction time, and the process system can be made into one or more modular devices according to different treatment water quantity and sewage water quality, equipment room It is easy to remove and install by connecting by pipe or cable.
- the difference between Embodiment 2 and Embodiment 1 is that: the sewage treatment system further includes a fan 12, and the second inlet of the aerated biological tower 10 is connected to the second outlet of the fan 12 through a pipeline; The outlet of the fan 12 and the The inlet of the first oxygen generator 3 is connected by a pipe.
- the sewage pump 7 is a centrifugal sewage pump; the first oxygen generator 3 is a molecular sieve oxygen generator;
- the second inlet of the aerated biological tower 10 is connected to the blower 12 through a pipe.
- the chemical oxygen demand COD of the sewage is reduced from 7525 mg / L to 1956 mg / L, after the treatment for 2 h, the chemical oxygen demand COD decreased to 752. 5 mg / L, chemical O. 6%, 55.9%, 91.4%.
- the degradation rate of ammonia, total phosphorus, and chromaticity were 37.6%, 55.9%, and 91.4%, respectively.
- the difference between the embodiment 3 and the embodiment 1 is as follows: The flow treatment of the tail water of an alcohol plant sewage treatment station is carried out, and the data before and after the treatment are compared as shown in Table 3 below.
- the difference between the embodiment 4 and the embodiment 1 is that: a printing and dyeing wastewater is subjected to an over-flow treatment experiment, and the sewage is treated in the system of the treatment method once as a cycle treatment process, when the water inflow of the sewage is 100 L/H.
- the sewage treatment method is used to perform two cycles of sewage treatment, and the following chart 4 is a data comparison between a cycle treatment process and two cycle treatment processes.
- the wastewater treatment method is used for two cycles of treatment of a certain printing and dyeing wastewater.
- the flow rate of the sewage is 100L/H.
- the treatment method has certain chemical oxygen demand C0D in the sewage. Degradation, when the sewage is treated by the method for secondary circulation, the reaction time is longer, the treatment efficiency is higher, the chemical oxygen demand C0D degradation rate is higher, and the degradation of chroma is more obvious.
- the swash plate catalytic reaction tower 8 of the present invention comprises a first base 801.
- the first base 801 is provided with a reaction tower main body, and the reaction tower main body is composed of a first bottom 814 from bottom to top and a first filler.
- the layer 815 is composed of a first tower top 806; the bottom of the first tower bottom 814 is provided with a first bottom sealing head 802, and the first bottom sealing head 802 is connected with an emptying valve 813, and the side wall of the first bottom 814 is disposed.
- the nozzle 808, on the side wall of the first bottom 814, is provided below the waste water inlet 809 with a split waste water outlet 811.
- a filter 812 is disposed on the split waste water outlet 811.
- the waste water inlet 809 is L-shaped, and a tail port 810 is connected to the tail end thereof, and the bell mouth 810 faces downward, facing the said Filter 812. Backwash the particulate impurities on the filter to ensure that the filter is not blocked.
- the water discharge area is increased, the area of the washing filter is increased, and the mixing efficiency is improved.
- the first bottom sealing head 802 is a curved structure, which increases the storage sediment volume, facilitates the sediment to settle by gravity, and the venting valve 813 at the bottom thereof facilitates timely discharge of the sediment in the waste water to prevent clogging of the filter mesh and the packing.
- the top of the tower adopts a curved structure to increase the gas bearing capacity in the tower, and the waste water outlet 811 is connected to the filter to filter suspended particles and large fiber impurities, ensuring normal operation of the pump and subsequent systems, and avoiding blockage of large particulate matter. Pipes and winding pump impellers make the catalytic reaction more efficient for treating wastewater.
- the sloping plate catalytic reaction tower 8 is mainly made of stainless steel to effectively prevent wastewater corrosion and ozone corrosion.
- the ozone water inlet 803 is L-shaped and is connected to a reflector 804. After the ozone water inflow is reflected by the reflector, the direction of the water flow is changed, the water flow speed is slowed down, the wastewater in the tower is more uniformly mixed, the contact area with the catalyst in the column is increased, the reaction time is prolonged, and the reaction efficiency is improved.
- the first filler layer 815 is provided with a filler supporting plate, which is filled with a solid filler, which is a folded plate and a slanted plate shape, which is an uneven surface coated with an inert precious metal catalyst, the folded plate and the inclined plate type.
- the angle between the sheet and the horizontal plane is 80-90 degrees, which facilitates the passage of water and reduces the resistance.
- the inert noble metal catalyst uses an existing inert noble metal catalyst, such as gold (Au) silver (Ag) platinum (Pt) palladium (Pd) ruthenium (Rh) ruthenium (Ir) ruthenium (0s) ruthenium (Ru) disclosed in the prior art.
- Inert noble metal catalyst such as gold (Au) silver (Ag) platinum (Pt) palladium (Pd) ruthenium (Rh) ruthenium (Ir) ruthenium (0s) ruthenium (Ru) disclosed in the prior art.
- Inert noble metal catalyst such as
- the solid filler fills the inner space of the first filler layer 815, and the solid filler can be discharged by dividing the n layer, effectively increasing the contact area of the catalytic reaction, and reducing the volume of the catalytic reactor and the footprint of the device.
- the waste water outlet 808 is connected with a tee and is provided with a sampling port. It is convenient to carry out sampling and analysis analysis on the treated wastewater.
- the wastewater enters the tower from the wastewater inlet 809, and the wastewater inflow flow rate is adjusted through a valve disposed at the wastewater inlet 809. The direction of the water flow is changed by the elbow of the wastewater inlet 809, and the water inlet 809 is connected with a bell mouth 810 to expand the water flow area. , effectively flushing the filter screen of the split waste water outlet 811 to prevent the filter from being clogged and save energy.
- Part of the wastewater in the tower is filtered through a filter 812 to remove some impurities and then passed through the splitting water outlet 811 into the Deyuqing equipment for mixing and reaction with ozone, and the other part flows to the upper part of the tower.
- the wastewater After the wastewater is mixed with ozone, it enters the tower through the ozone water inlet 803 on the sloping plate catalytic reaction tower 8.
- the water flows through the reflector 804 to block and reflect, change the direction of the water flow, so that the water flow spreads around, and improves the mixing efficiency with the original wastewater. Increase the contact area with the catalyst in the column, and slow down the flow rate of the water flow, reducing the erosion and wear of the internal structure of the tower.
- the waste water passes through a plurality of sloping plate catalyst solid packings arranged in a direction of water flow, catalyzing the reaction of ozone and wastewater to generate oxidizing groups, rapidly oxidizing and degrading harmful substances and macromolecular organic substances in the wastewater, and achieving the purpose of treating sewage.
- the treated wastewater is discharged through the waste water outlet 808 at the upper part of the tower, and a tee and a sampling valve are installed on the waste water outlet 808 to facilitate sampling.
- the sloping plate catalytic reaction tower 8 has a curved structure at the bottom of the tower, which increases the storage sediment volume, facilitates sedimentation by gravity, and sets a first emptying valve 813 at the bottom to facilitate timely discharge of sediment in the wastewater or to the tower.
- the internal wastewater is emptied to prevent excessive sediment from clogging the filter and packing.
- the inclined plate catalytic reaction tower 8 invented at this time can change the design of the tower body size according to the water quality of the wastewater and the amount of treated water. (It can change the diameter of the tower body and the height of the tower body to change the internal volume of the tower), or adjust the inlet flow rate through the regulating valve at the water inlet to ensure sufficient reaction residence time of the wastewater in the tower, and adapt to the treatment of various water quantities and water quality. , Wide range of applications.
- the inclined plate catalytic reaction tower 8 designed and manufactured according to the technical scheme of the present invention and the Deyuqing sewage integrated machine (providing ozone, ozone and wastewater mixed) are connected by sewage treatment, and the treated sewage is better than the ozone treated sewage alone.
- the reaction time is shortened, the reaction efficiency is improved, the COD ability for degrading chemical oxygen demand is greatly improved, and the effect on color and odor is better.
- the packed catalyst column 9 of the present invention comprises a second base 901.
- the second base 901 is provided with a reaction tower main body, and the reaction tower main body is composed of a bottom-up water inlet region, a support layer 912, and a second
- the filling layer 911 and the clear water outlet area are composed;
- the water inlet area includes a second bottom 910, the bottom of the second bottom 910 is provided with a second bottom sealing head 902, and the second bottom sealing head 902 is connected with a second emptying valve 909;
- the second filler layer 911 is filled with a filler, the upper end of the sidewall of the second filler layer 911 is provided with a first water outlet 908, the second filler layer 911 is provided with a flap 904, and one end of the flap 904 is connected to the second
- the inner wall of the packing layer 911 is inclined downwardly at the other end;
- the clear water outlet area includes a tower top 5, the tower top 5 is provided with a second tower top seal 902, and the upper end of the second
- the main body of the reaction tower of the packed catalytic tower 9 is made of stainless steel, which can effectively prevent wastewater corrosion and acid-base corrosion and prolong the service life.
- the catalytic oxidation reaction used in the tower has a wide range of application to the pH, water temperature and organic matter content of the wastewater, and the treatment of the wastewater can be ensured from the pH>6.5, the water temperature of 0-50 °C, and the concentration of C0D>50 mg/L. effect.
- the second tower bottom seal 907 is a curved structure, which can increase the storage sediment volume, facilitate sedimentation by gravity, and provide an emptying valve at the bottom to facilitate timely discharge of sediment in the waste water to prevent blockage of the packing.
- the second tower top head 902 is a curved structure, which increases the effective volume of the tower body, increases the gas bearing capacity in the tower, and avoids deformation or cracking of the tower due to an increase in gas pressure in the tower.
- the support layer 912 is a circular plate, and a circular hole or a square hole is evenly arranged thereon, and the receiving layer 912 is made of stainless steel;
- the aperture or square hole has a side length of 4-10 mm.
- the filler in the second filler layer 911 is a porous particulate filler having a particle diameter of more than 10 mm, the surface of which is coated with an inert noble metal catalyst, and the inert noble metal catalyst is an existing inert noble metal catalyst such as gold (Au) silver disclosed in the prior art.
- the inert noble metal catalyst is an existing inert noble metal catalyst such as gold (Au) silver disclosed in the prior art.
- the filler can also filter and adsorb some of the suspended particles in the wastewater to make the effluent clean.
- the second packing layer 911 is provided with a plurality of folding plates, and the multi-layer folding plates are staggered, and the length of the projection of each layer of the folding plate in the horizontal plane exceeds the central axis of the reaction tower body by 5-500 mm, that is, the projection of each layer of the folding plate in the horizontal plane has The cross-coincident portion, the angle between each layer of the flap and the central axis of the reaction tower body is 30-89 °; the particulate catalytic filler coated with the inert precious metal powder is input from the second column top 905 filler dosing port 906, filled The space between the folding plates and the top corner of the folding plate are left unfilled space.
- the first water outlet 908 is connected with a tee and is provided with a sampling port for sampling and analysis of the treated wastewater.
- the first water outlet 908 is connected to the backwashing pump, and the packed catalytic tower 9 is periodically backwashed.
- the backwashing water is discharged through the first water inlet 903 through the three-way valve. Since the inclined angle of the inclined plate inside the tower is downward, the backwashing resistance is smaller, flushing Fast and effective.
- the rinsing filler is not easy to block and knot, and prolongs the service life.
- An external three-way valve is connected at the first water outlet 908 of the packed catalytic tower 9, and a backwashing pump is connected to periodically backwash the packed catalytic tower, and the backwashing water is discharged through the first water inlet 903 through the three-way valve.
- the inclination angle is downward, the backwash resistance is smaller, the flushing speed is fast, and the effect is good.
- the rinsing filler is not easy to block and knot, and prolongs the service life.
- the wastewater containing ozone, oxygen or air enters the tower from the first water inlet 903 and flows upward, and the particulate catalytic filler coated with the inert precious metal powder is input from the second column top 905 filler dosing port 906, and is sealed after being put into the packing.
- This filler dosing port 906 prevents gas from escaping.
- the filler fills the space between the flaps and leaves unfilled space at the top of the flaps.
- the filler has a large contact area and can effectively react with ozone and oxygen. Ozone and oxygen gas are trapped in this space after the gas-liquid separation of the apex angle of the inside of the packed catalytic tower 9.
- the gas will enter the sewage again, prolong the contact reaction time between the gas and the wastewater, and improve the ozone utilization rate. , the reaction efficiency is high.
- the catalyst on the packing can catalyze the reaction of ozone, oxygen or air and wastewater to generate oxidized groups, rapidly oxidize and degrade harmful substances in the waste water and macromolecular organic matter, and achieve the purpose of treating sewage.
- the filler can filter and adsorb some suspended particles to make the effluent clean.
- the treated wastewater is discharged through the first water outlet 908 in the upper portion of the tower, and a tee and a sampling valve are installed on the first water outlet 908 pipe for sampling.
- the second bottom sealing head 907 of the packed catalytic tower 9 adopts an arc structure to increase the volume of the stored sediment, so that larger and heavier sediments are allowed to settle by gravity, and a second emptying valve 909 is arranged at the bottom to facilitate the discharge of waste water.
- the sediment is discharged in time or the wastewater in the tower is evacuated to prevent excessive sediment from clogging the filler.
- the packed catalytic tower 9 of the present invention can change the design of the tower size according to the water quality of the wastewater and the amount of treated water, or Adjusting the inlet flow rate through the inlet valve to ensure the wastewater has sufficient reaction residence time in the tower, adapt to the treatment of various water quantities and water quality, and has a wide application range.
- the packed catalytic tower 9 designed and manufactured according to the technical scheme of the present invention is combined with the first catalytic reactor 5 and the Deyuqing sewage integrated machine (providing ozone, ozone and waste water mixed) through sewage pipeline treatment, and the treated sewage is more traditional than the conventional filler.
- the tower has good sewage treatment effect, shortened reaction time, improved reaction efficiency, greatly improved COD ability for degrading chemical oxygen demand, and better effect on chroma and odor.
- the sewage treatment system includes a submersible pump 14, a filter mixer 19, a second venturi mixer 16, an ozone generator, and a second catalyst. a reactor 17, a second heat exchanger 18 and a rotary mixer 20; the second catalytic reactor 17 is one, the diameter is 100 mm, the second ozone machine 22 has a yield of 50 g/h, and the ozone generating device includes a second Oxygen generator 21 and second ozone machine 22.
- the submersible pump 14, the second centrifugal pump 15, the second oxygen generator 21, the second ozone generator 22, the second venturi mixer 16, and the second catalytic reactor 17 are integrally installed in the second tank 13, The number of the second cases 13 is one.
- the filter mixer 19, the second venturi mixer 16, the second oxygen generator 21, the second ozone machine 22, the second catalytic reactor 17, the second heat exchanger 18, and the rotary mixer 20 are all provided with An inlet and an outlet; the first outlet of the submersible pump 14 is connected to the first inlet of the filter mixer 19 through a pipe; the sewage pumped by the submersible pump 14 enters from the inlet of the filter mixer 19, and the filter mixer 19 serves as a
- the splitting action wherein 10 m 3 of the flow enters the second catalytic reactor 17, and another 20 m3 of sewage flows along the straight pipe of the filter screen of the filter mixer 19, staying in the filter mixer 19; after rotating twice in the rotary mixer 20 , discharged into the water, mixed with untreated water in the water, can greatly expand the impact area of the water in the water by rotation.
- the water enters the water at high speed it will drive the water to flow and further expand the affected area.
- the gas in the water will accumulate above the cylinder. Due to space constraints, gas is forced into the water body without waste.
- the rotary mixer 19 is connected, which will still contain residual ozone.
- the treatment sewage is mixed with the nearby sewage and rotated, and the flow rate of the sewage treatment system of the present invention is 30 m 3 /h.
- the efficient diffusion of ozone into nearby waters greatly expands the amount of wastewater treatment, increases ozone utilization, and reduces energy consumption, thereby reducing operating costs.
- the first outlet of the second ozone machine 22 is connected to the second inlet of the second venturi mixer 16 through a conduit; the outlet of the second venturi mixer 16 and the inlet of the second catalytic reactor 17 are passed through a conduit
- the outlet of the second catalytic reactor 17 is connected to the first inlet of the second heat exchanger 18 through a pipeline; the sewage in the second catalytic reactor 17 enters the second heat exchanger 18, wherein the sewage It is used to cool the cooling water. Since the temperature of the cooling water is lowered after the cooling of the second ozone machine 22, it needs to be cooled before it can be circulated.
- the first outlet of the second heat exchanger 18 is connected to the second inlet of the filter mixer 19 through a pipeline, and finally enters the sewage treated by the second catalytic reactor 17 and then enters the filter mixer 19 and does not enter the second catalyst. 20 m3 of sewage from reactor 17 is mixed;
- the system for treating sewage further includes a centrifugal pump disposed between the filter mixer 19 and the second venturi mixer 16; the second centrifugal pump 15 is provided with an inlet and an outlet; and the filter mixer 19 is An outlet is connected to the inlet of the second centrifugal pump 15 through a conduit; the outlet of the second centrifugal pump 15 is connected to the first inlet of the second venturi mixer 16; the inner surface of the second catalytic reactor 17
- the inner and outer surfaces of the inner member of the second catalytic reactor 17, the inner surface of the second heat exchanger 18, and the inner and outer surfaces of the inner portion of the heat exchanger and the inner surface of the pipe are coated with a noble metal catalyst layer to increase the reaction rate of catalytic oxidation of ozone.
- a second oxygen generator 21 and a second ozone machine 22 connected by a pipe are disposed in the ozone generating device; an outlet of the second oxygen generator 21 is connected to a first inlet of the second ozone machine 22 through a pipe;
- the first outlet of the second ozone machine 22 and the second inlet of the second venturi mixer 16 are connected by a pipe;
- the second outlet of the second heat exchanger 18 is connected to the second inlet of the second ozone machine 22 through a pipe; the second outlet of the second ozone machine 22 and the inlet of the cooling water tank 23 pass through the pipeline
- the outlet of the cooling water tank 23 is connected to the inlet of the second circulation pump 24 through a pipe; the outlet of the second circulation pump 24 is connected to the second inlet of the second heat exchanger 18 through a pipe;
- the second ozone machine 22, the cooling water tank 23, the second circulation pump 24, and the second heat exchanger 18 form a cooling water circulation system.
- the second circulation pump is 0. 5m7h, the flow rate of the filter mixer 19 is 30m 3 /h, and the flow rate of the rotary mixer 20 is 30m7h.
- the filter mixer 19 is submerged and the rotary mixer 20 is suspended in the water.
- the sewage treatment system of the present invention can be placed on a floating platform on the water surface, and the integrated catalytic oxidation water treatment device is placed on the platform, fixedly connected by bolts or the like as a whole, or placed on the shore of the sewage pool for movement treatment.
- a security filter 25 is also disposed between the filter mixer 19 and the second heat exchanger 18.
- the circulating water is driven by the second circulating pump 24 to form a heat exchange cycle, and the heat generated by the operation of the ozone generating device is transferred to the treated water through the second heat exchanger 18, and the heat is taken away by the water, saving a large amount of cooling water or cooling.
- the energy consumed by the ozone generating device at the same time, since the surface of the second heat exchanger 18 is coated with a catalytic material, the ozone oxidation reaction of the sewage is catalyzed, Speed up the reaction rate.
- the rotary mixer 20 is coated with a particulate porous ceramic surface-supported catalyst layer.
- the reaction rate of ozone catalytic oxidation is greatly improved.
- the second ozone generator 22 is provided with a cooling chamber; the second catalytic reactor 17 is one or more, and the second catalytic reactors 17 are connected in parallel or in series through pipes.
- the second inlet of the filter mixer 19 is provided with a filter screen, which can filter impurities entering the sewage of the second catalytic reactor 17, and the sewage that does not enter the second catalytic reactor 17 flows directly along the filter network, Rinse the impurities on the surface of the filter to clean the filter.
- the sewage entering the second catalytic reactor 17 is subjected to catalytic oxidation, and then introduced into the filtration mixer 19 to be mixed with the sewage which has not entered the second catalytic reactor 17.
- a gas flow meter is disposed on the connecting pipe of the ozone generating device and the second catalytic reactor 17.
- the residence time of the mixture in the second catalytic reactor 17 is from 10 seconds to 500 seconds; the amount of ozone inhaled in the second venturi mixer 16 is regulated by the flow rate of the second centrifugal pump 15 and the valve on the pipe.
- the second outlet of the filter mixer 19 is connected to the inlet of the rotary mixer 20 through a pipe. After being rotated twice in the rotary mixer 20, it is discharged into the water area and mixed with the untreated water in the water, and the area of influence of the water body in the water can be greatly expanded by the rotation. As the water enters the water at high speed, it will drive the water to flow and further expand the affected area. During operation, the gas in the water will accumulate above the cylinder. Due to space constraints, gas is forced into the water body without waste.
- the rotary mixer 20 is connected to the second outlet of the filter mixer 19, and the treated sewage still containing residual ozone is rotationally mixed with the nearby sewage, and after the spin treatment, the flow rate of the system for treating sewage of the present invention is 30 m7h.
- the efficient diffusion of ozone into nearby waters greatly expands the amount of wastewater treatment, increases ozone utilization, and reduces energy consumption, thereby reducing operating costs.
- the method for treating sewage in the sewage treatment system of the present invention comprises the following steps:
- the filter mixer 19 After the splitting by the filter mixer 19, a part of the sewage enters the centrifugal pump from the outlet of the filter mixer 19, and another part of the sewage remains in the filter mixer 19; the filter mixer 19 has the function of filtering and self-cleaning, and Need to replace the filter element, can effectively remove debris in the sewage, and prevent pipe blockage.
- the untreated sewage in the filter mixer 19 is mixed with the treated wastewater containing residual ozone, and the unreacted ozone is fully utilized, which greatly improves the ozone utilization rate and the amount of sewage treatment.
- the sewage is sent to the second venturi mixer 16 by the second centrifugal pump 15 at a certain speed, and the second venturi mixer 16 generates ozone generated by the negative pressure inhalation ozone generating device to form ozone and sewage.
- the mixture enters the second catalytic reactor 17 through a pipe, the mixture is in sufficient contact with the catalyst layer in the second catalytic reactor 17, and the redox reaction is carried out under the catalysis of the catalyst;
- the second ozone machine 22, the cooling water tank 23, the second circulation pump 24, and the second heat exchanger 18 form a circulation system of cooling water for reducing the temperature of the second ozone machine 22;
- the second heat exchanger 18 exchanges heat with the cooling water that has cooled the second ozone machine 22 to lower the temperature of the cooling water;
- the second heat exchanger 18 delivers the sewage to the filter mixer 19, and reacts residual ozone with The sewage that has not entered the second catalytic reactor 17 is mixed;
- the treated sewage still contains part of ozone, which is sent to the rotary mixer 20 by the filter mixer 19, and after being rotated twice in the rotary mixer 20, is discharged into the water by the outlet of the rotary mixer 20, and The untreated water in the water is mixed, and the area affected by the water in the water can be greatly expanded by the rotation, and the residual ozone is consumed.
- the sewage treatment system of the invention adopts a PLC intelligent program monitoring and control system, and implements automatic monitoring, alarm and protection on various parameters such as water temperature, water flow, electrical parameters and gas flow, and ensures safe and normal operation of the system, and can realize automatic control according to preset programs. According to customer needs, remote centralized control can be realized, which is convenient for user management.
- the invention has simple installation and convenient use, can improve sewage treatment capacity, improve ozone utilization rate, and can effectively filter impurities in surface water at the inlet to prevent pipeline blockage.
- the system for treating sewage can be used for disinfection of surface water and rainwater, industrial wastewater treatment, and factory tail water treatment.
- the invention has the following advantages:
- the filter mixer 19 which is connected at the inlet of the equipment, has the function of filtering and self-cleaning, and does not need to replace the filter element, and can effectively remove the impurities in the sewage and prevent the pipe from being blocked.
- the untreated sewage at the outlet of the filter mixer 19 is mixed with the treated wastewater containing residual ozone, and the unreacted ozone is fully utilized, which greatly improves ozone utilization and sewage treatment.
- the rotary mixer 20 is connected to the outlet of the filter mixer 19 to rotate and mix the treated sewage still containing residual ozone with the nearby sewage, thereby efficiently diffusing the ozone into the nearby waters, thereby greatly expanding the sewage treatment.
- the amount of ozone is increased, and the energy consumption is reduced, thereby reducing operating costs.
- the ozone surface water treatment equipment is an automatic integrated operation equipment, which is easy to operate, that is, it can be placed on the shore, or it can be placed on a floating water surface platform to move freely on the water surface to realize rapid sewage. governance.
- the second catalytic reactor 17, the second heat exchanger 18 and the inside of the pipe of the present invention are all coated with a noble metal catalyst layer for improving the oxidizing ability of ozone to the sewage, and the granular porous hole can be added to the rotary mixer 20.
- the ceramic surface-loaded catalyst greatly increases the reaction rate of ozone catalytic oxidation.
- the system for treating sewage of the present embodiment comprises four second catalytic reactors 17, the second catalytic reactor 17 having a diameter of 150 mm, and an ozone generating agent having an ozone yield of 60 g/h. Device; one 5m 3 /h
- the second circulation pump 24 The outlet of the submersible pump 14 is connected to a filter mixer 19 having a flow rate of 30 m7h, and the second outlet of the filter mixer 19 is connected to a rotary mixer 20 having a flow rate of 50 m7h. After the rotary mixer 20 is rotated, the treated sewage is treated. The impact of the system flow is 50m7h.
- the system for treating sewage of the embodiment includes four second catalytic reactors 17, the second catalytic reactor 17 has a diameter of 200, and three ozone generating units have an ozone output of 60 g/h. Generator; a 12m7h second circulation pump 24.
- the outlet of the submersible pump 14 is connected to a filter mixer 19 having a flow rate of 50 m3/h, and a rotary mixer 20 having a flow rate of 50 m7h is connected to the outlet.
- the filter mixer 19 is connected to a submersible pump 14 having a flow rate of 50 m 3 per hour, and the sewage pumped by the submersible pump 14 enters from the first inlet of the filter mixer 19, and the filter mixer 19 serves as a splitting action, wherein 20 m 3 of the flow enters the first
- the second catalytic reactor 17 has another portion of 30 m 3 of sewage directly left in the filter mixer 19, and the sewage entering the second catalytic reactor 17 is passed to the filter mixer 19 and 30 m 3 which is not introduced into the second catalytic reactor 17.
- the sewage mixing reaction after the rotary mixer 20 is rotated, the flow rate of the system for treating the sewage is 50 m7h.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
- Biodiversity & Conservation Biology (AREA)
- Microbiology (AREA)
Abstract
本发明公开了一种污水处理系统包括污水泵、斜板催化反应塔、第一离心泵、第一射流器、第一制氧机、第一臭氧机、第一催化反应器、第一换热器、填料催化塔、曝气生物塔和储水箱;所述污水泵的出口与斜板催化反应塔的第一进口通过管道相连接;所述斜板催化反应塔的第一出口与第一离心泵的进口通过管道相连接;所述第一离心泵的出口与第一射流器的第一进口通过管道相连接;所述第一制氧机的出口与第一臭氧机的进口通过管道相连接;所述第一臭氧机的出口与第一射流器的第二进口通过管道相连接;所述第一射流器的出口与第一催化反应器的进口通过管道相连接;本发明的污水处理系统及其方法运行成本低,处理效果稳定,不会产生二次污染。
Description
污水处理系统及其方法 技术领域
本发明涉及污泥处理技术领域, 特别涉及一种污水处理系统及其方法。 背景技术
工业化的高速推进以及人口数量的几何增长, 使得水污染问题急剧恶化, 造成本来已是 极少的淡水资源加剧短缺, 无法为人所用。 据统计, 目前水中污染物已达 2千多种, 主要为 有机物、 碳化物、 重金属、 致病微生物等。 我国北方的海河、 淮河和辽河发黑变臭, 几乎成 了超级排污沟, 而南方的太湖、 巢湖和滇池由于接纳了大量有机污染物, 造成严重富营养化, 时常因藻类爆发而失去使用价值。 目前, 污染水的 70%〜80%直接排放, 全国每年排污量约 300 亿吨, 而我国污水的处理能力只占 20%左右。 水污染问题依然在加剧, 从支流向干流、 从城 市向农村、 从地表向地下、 从陆地向海洋蔓延发展。
其中排放的高难度污水, 如化工污水、 石化污水、 焦化污水、 垃圾渗滤液、 制药污水、 电镀含氰污水、 研磨污水等, 这些污水中含有很多难生物降解有机物和生物毒性物质, 有机 物成分复杂, 化学需氧量 COD浓度高, 此类污水非常难处理。对于难处理的重污染工业污水, 环保工作者一直努力探索。 目前研究较多的为紫外线催化氧化技术, 利用真空紫外发生器同 步辐射高强紫外线, 高能光子可以直接光解废水中的有机物, 使之断键矿化, 同时高能光子 还可以敏化难降解有机物, 使之处于不稳定的敏化状态, 有利于进一步降解; 以过氧化氢为 氧化剂, 在催化剂作用下催化氧化有机物。 同时引入紫外光、 催化剂和氧化剂, 利用它们的 协同作用产生羟基 、 氧离子等自由基, 将高浓度废水中有机污染物彻底分解成(¾和水等无 害成份, 同时除臭、 脱色及杀菌消毒。 以此攻击水中各种有机污染物及微生物, 直至使其降 解为 C02、 0及无机盐。 但是很多污水处理系统反应条件要求多, 成本高, 处理效果不稳定。
目前针对高难度污水处理方法有芬顿法、 催化臭氧氧化法、 微波法、 电解催化法、 焚烧 法、 活性污泥法、 膜处理法、 其他生物法等。 研究和实验采用较多的是芬顿法, 是在酸性条 件下, 以亚铁离子 Fe2+为催化剂用过氧化氢 02进行化学氧化的污水处理方法。由亚铁离子与 过氧化氢组成的体系, 也称芬顿试剂, 它能生成强氧化性的羟基自由基, 在水溶液中与难降 解有机物生成有机自由基使之结构破坏, 最终氧化分解, 同时, 反应生成的 Fe (0H) 3胶体具有 絮凝、 吸附功能, 吸附去除水中部分有机物。 但芬顿法装置占地面积大, 加药接管复杂, 耗 药量大, 药剂成本高, 反应后需回调 pH和沉淀, 易产生较多污泥危废, 运行中药剂投放比例 要求高, 反应条件要求多, 处理效果不稳定, 限制了工业化规模化发展。
臭氧高级氧化污水修复技术是一种特殊的化学修复技术。 它是指由臭氧分解产生具有强 氧化能力的羟基自由基 · 0Η以及由羟基自由基诱发的一系列 · 0Η链反应, 在高温高压, 电、 声、 光辐照、 催化剂等反应条件下, 使水中各种有机污染物及微生物的大分子难降解有机物 氧化成低毒或无毒的小分子物质。 臭氧氧化的污水治理设备主要为以催化氧化技术为基础, 将臭氧发生装置、 处理水的臭氧氧化反应器等按流程依次连接, 形成一体化污水处理设备。 现有的臭氧氧化处理方法臭氧利用率不高, 容易有臭氧残留, 会对环境造成二次污染, 而且 成本较高, 处理流量较小, 不利于规模化使用。
因此, 寻找一种能够高效治理而且不会造成二次污染的污水处理系统及其方法成为环境 保护急需解决的重要问题。 发明内容
本发明的目的是提供一种利用臭氧催化氧化法进行污水治理, 不会造成二次污染的处理 污水的系统及其方法。
为了实现上述技术问题, 本发明提供的技术方案为: 一种污水处理系统, 污水处理系统 包括污水泵、 斜板催化反应塔、 第一离心泵、 第一射流器、 第一制氧机、 第一臭氧机、 第一 催化反应器、 第一换热器、 填料催化塔、 曝气生物塔和储水箱;
所述污水泵、 斜板催化反应塔、 第一射流器、 第一制氧机、 第一臭氧机、 第一催化反应 器、 第一换热器、 填料催化塔、 曝气生物塔和储水箱上均设置有进口和出口;
所述污水泵的出口与斜板催化反应塔的第一进口通过管道相连接; 所述斜板催化反应塔 的第一出口与第一离心泵的进口通过管道相连接; 所述第一离心泵的出口与第一射流器的第 一进口通过管道相连接;
所述第一制氧机的出口与第一臭氧机的进口通过管道相连接; 所述第一臭氧机的出口与 第一射流器的第二进口通过管道相连接; 所述第一射流器的出口与第一催化反应器的进口通 过管道相连接; 所述第一催化反应器的出口与第一换热器的进口通过管道相连接; 所述第一 换热器的出口与斜板催化反应塔的第二进口通过管道相连接, 所述斜板催化反应塔的第二出 口与填料催化塔的进口通过管道相连接, 所述填料催化塔的出口与曝气生物塔的第一进口通 过管道相连接, 所述曝气生物塔的出口与储水箱的进口通过管道相连接。
进一步地, 所述储水箱的出口设置有取样口; 所述第一制氧机为分子筛第一制氧机; 所 述第一射流器为第一文丘里混合器;
所述污水处理系统还包括冷却系统, 该冷却系统包括依次通过管道相连接的冷却水箱、 第一循环泵、 第一换热器和第一臭氧机, 以形成冷却水循环回路; 所述第一换热器与污水接 触的一侧涂敷用于加速污水催化氧化过程的催化剂层;
所述污水处理系统还包括风机, 所述曝气生物塔的第二进口与风机的出口通过管道相连 接;所述污水处理系统还包括改变臭氧水的进水方向且扩大臭氧水的面积的反射器和过滤网; 所述斜板催化反应塔的第一出口处设置有过滤网, 所述反射器设置于第一臭氧机和第一 文丘里混合器之间; 第一文丘里混合器吸入臭氧量通过第一离心泵的流量与管道上的阀门进 行调节;
所述污水泵为潜污泵或离心污水泵; 所述污水泵与斜板催化反应塔的连接管道上设置有 压力控制器和流量控制器。
进一步地, 所述第一制氧机上设置有空压机, 所述曝气生物塔的第二进口与第一制氧机 的第二出口通过管道相连接, 所述第一制氧机的第一出口与第一臭氧机的进口通过管道相连 接; 所述曝气生物塔的第二进口处设置有曝气管网和曝气盘, 所述曝气生物塔内设置有多孔 性填料, 所述填料催化塔内设置有惰性贵金属粉末的颗粒填料, 所述颗粒填料的比表面积为 0. 1-I00m7g; 所述曝气生物塔内设置多层倾斜的折板, 每层折板投影均有交叉重合部分, 所 述每层折板与塔体中轴线之间的夹角为 30-89 ° 。
更进一步地, 所述第一换热器为板式换热器或管壳式换热器; 所述曝气生物塔的折板投 影长度超出塔体中轴线的长度为 5-500mm; 所述混合物在污水处理系统的停留时间为 10s 以 上; 所述污水泵、 斜板催化反应塔、 第一离心泵、 第一文丘里混合器、 第一制氧机、 第一臭 氧机、 第二催化反应器、 第一换热器、 填料催化塔、 曝气生物塔、 空压机和储水箱集成安装 在第一箱体内, 所述第一箱体数量为一台或一台以上, 通过管道相串接。
本发明的所述的污水处理系统进行污水处理的方法,包括以下步骤:
( 1 )对污水进行预处理, 并进行吸附和沉淀处理; 然后将污水经由污水泵进入斜板催化 反应塔, 斜板催化反应塔起到一个分流的作用; 经过斜板催化反应塔进行分流后, 一部分污 水由斜板催化反应塔的第一出口进入第一离心泵, 另一部分污水留在斜板催化反应塔中;
( 2 )污水以一定的速度由泵输送至第一文丘里混合器中, 所述第一文丘里混合器产生负 压吸入第一臭氧机产生的臭氧, 形成臭氧和污水的混合物;
( 3 )所述混合物经由第一文丘里混合器后, 通过管道进入第二催化反应器, 所述混合物 与第二催化反应器中的催化剂层充分接触, 在催化剂的催化下, 进行氧化还原反应;
( 4)氧化还原反应产物经第一换热器进入斜板催化反应塔, 反应剩余的臭氧和氧气与未 进入第二催化反应器的污水进行混合;
( 5 )反应产物由斜板催化反应塔的第二出口进入填料催化塔, 剩余臭氧和氧气与污水充 分进行氧化还原反应;
( 6 )反应产物经填料催化塔的出口进入曝气生物塔; 曝气生物塔流入储水箱后, 所述储 水箱的出口设置有取样口, 在取样口进行取样检测。
本发明的一种污水处理系统的斜板催化反应塔,所述斜板催化反应塔包括第一底座,第一 底座上设置有斜板催化反应塔主体, 斜板催化反应塔主体由自下而上的第一塔底、 第一填料 层、 第一塔顶组成; 第一塔底的底部设置有第一塔底封头, 第一塔底封头连接有第一排空阀 门, 第一塔底的侧壁设置有臭氧水进水口、 废水进水口; 填料层内填充有催化剂固体填料; 第一塔顶设置有第一塔顶封头, 第一塔顶的侧壁设置有废水出水口; 第一塔底的侧壁上, 位 于废水进水口的下方设置有分流废水出水口。
进一步地, 分流废水出水口上设置有过滤网, 过滤网为不锈钢材质; 废水进水口为 L型, 其尾端连接有一个喇叭口, 喇叭口朝下, 正对所述过滤网; 第一塔底封头为弧形结构; 第一 塔顶封头为弧形结构; 斜板催化反应塔主体采用不锈钢材质; 臭氧水进水口为 L型, 并连接 有一个反射器; 第一填料层内设置有填料支撑板, 其上装填有固体填料, 固体填料为折板、 斜板式片状, 其为凹凸面, 表面涂覆有惰性贵金属催化剂, 该折板、 斜板式片状与水平面夹 角为 80-90度; 固体填料填满填料层内空间, 固体填料为多层; 废水出水口连接有三通, 并 设置有取样口。
本发明的一种污水处理系统的填料催化塔,所述填料催化塔包括第二底座,第二底座上设 置有填料催化塔主体, 填料催化塔主体由自下而上的进水区、 承托层、 第二填料层、 清水出 水区组成; 进水区包括第二塔底, 第二塔底的底部设置有第二塔底封头, 第二塔底封头连接 有第二排空阀门; 第二填料层内填充有填料, 第二填料层的侧壁上端设置有第一出水口, 第 二填料层内设置有折板, 折板的一端连接在第二填料层内壁, 另一端向下倾斜; 清水出水区 包括第二塔顶, 第二塔顶上设有第二塔顶封头, 第二塔顶封头上端开设有填料投加口。
进一步地, 填料催化塔主体为不锈钢材质; 第二塔底封头为弧形结构, 第二塔顶封头为 弧形结构; 承托层为一个圆板, 其上均匀布置有圆孔或方孔, 承托层的材质为不锈钢; 圆孔 的孔径或方孔的边长为 4-10mm; 第二填料层内的填料为粒径大于 10mm的多孔颗粒填料, 其 表面涂覆有惰性贵金属催化剂; 第二填料层内设置有多层折板, 多层折板交错布置, 每层折 板在水平面的投影有交叉重合部分; 每层折板在水平面的投影的长度超过反应塔主体中轴线 5-500mm,每层折板与反应塔主体的中轴线之间的夹角为 30-89 ° ; 第一出水口连接有三通, 并设置有取样口; 第一出水口连接有反冲洗泵。
本发明的一种处理污水的系统, 所述处理污水的系统包括泵、过滤混合器、第二射流器、 臭氧发生装置、 反应器、 第二换热器和旋转混合器;
所述过滤混合器、 第二射流器、 臭氧发生装置、 第二反应器、 第二换热器和旋转混合器 上均设置有进口和出口; 所述泵的第一出口与过滤混合器的第一进口通过管道相连接; 所述 过滤混合器的第一出口与第二射流器的第一进口通过管道相连接;
所述臭氧发生装置的第一出口与第二射流器的第二进口通过管道相连接; 所述第二射流 器的出口与反应器的进口通过管道相连接; 所述反应器的出口与第二换热器的第一进口通过 管道相连接; 所述第二换热器的第一出口与过滤混合器的第二进口通过管道相连接, 所述过 滤混合器的第二出口与旋转混合器的进口通过管道相连接。
进一步地, 所述泵为潜水泵; 所述处理污水的系统还包括设置于过滤混合器和第二射流 器之间的第二离心泵; 所述第二离心泵上设置有进口和出口; 所述过滤混合器的第一出口与 第二离心泵的进口通过管道相连接; 所述第二离心泵的出口与第二射流器的第一进口通过管 道相连接; 所述反应器内表面及反应器内部件内外表面、 第二换热器内表面及第二换热器内 部件内外表面及管道内表面均涂覆有贵金属催化剂层。
进一步地, 所述反应器为第二催化反应器; 所述臭氧发生装置内设置有通过管道连接的 第二制氧机和第二臭氧机;所述第二制氧机的出口与第二臭氧机的第一进口通过管道相连接; 所述第二臭氧机的第一出口与第二射流器的第二进口通过管道相连接;
所述第二换热器的第二出口与所述第二臭氧机的第二进口通过管道相连接; 所述第二臭 氧机的第二出口与所述冷却水箱的进口通过管道相连接; 所述冷却水箱的出口与第二循环泵 的进口通过管道相连接; 所述第二循环泵的出口与所述第二换热器的第二进口通过管道相连 接; 所述第二臭氧机、 冷却水箱、 第二循环泵和第二换热器形成一个冷却水循环系统; 所述 旋转混合器内涂覆有颗粒状多孔陶瓷表面负载催化剂层; 所述第二臭氧机上设置有冷却室; 所述第二射流器为第二文丘里混合器; 所述第二催化反应器为一台或一台以上, 所述第二催 化反应器通过管道并联或串联连接。
更进一步地, 所述潜水泵、 第二离心泵、 臭氧发生装置、 第二射流器和第二催化反应器 集成安装在第二箱体内, 所述第二箱体数量为一台或一台以上, 通过管道相串接; 所述过滤 混合器的第二进口处设置有过滤网; 所述臭氧发生装置与所述第二催化反应器的连接管道上 设置有气体流量计; 所述混合物在第二催化反应器的停留时间为 10秒至 500秒。
本发明所述的处理污水的系统进行污水处理的方法,包括以下步骤:
( 1 ) 对污水进行预处理, 并进行吸附和沉淀处理;
( 2) 所述污水通过潜水泵进入过滤混合器, 过滤混合器起到一个分流的作用;
( 3)经过过滤混合器进行分流后, 一部分污水由过滤混合器的出口进入第二离心泵, 另 一部分污水留在过滤混合器中;
(4)污水以一定的速度由第二离心泵输送至第二射流器中, 所述第二射流器产生负压吸 入臭氧发生装置产生的臭氧, 形成臭氧和污水的混合物;
( 5)所述混合物通过管道进入第二催化反应器, 所述混合物与第二催化反应器中的催化
剂层充分接触, 在催化剂的催化下, 进行氧化还原反应;
( 6 )所述第二臭氧机、冷却水箱、第二循环泵、第二换热器形成一个冷却水的循环系统, 用以降低第二臭氧机的温度; 所述污水在第二换热器与已对第二臭氧机降温的冷却水进行换 热, 降低冷却水的温度; 所述第二换热器将污水输送至过滤混合器, 反应残留的臭氧与未进 入第二催化反应器的污水进行混合;
( 7 )处理过的污水中仍含有部分臭氧, 这部分污水由过滤混合器进入旋转混合器, 在旋 转混合器内旋转两次后, 由旋转混合器的出口排入水域, 与水域中的未处理水混合, 消耗残 留的臭氧。
有益效果: 本发明的污水处理系统及其方法能够提高高难度污水的处理量, 提高臭氧利 用率, 对污水 pH、 水温等适用范围广, 占地面积小, 安装操作简单, 运行成本低, 处理效果 稳定, 不会产生二次污染。 采用高级催化氧化技术, 通过该技术产生羟基自由基, 对大部分 污水处理效果显著, 催化反应后的污水进一步经斜板催化反应塔、 填料催化塔反应, 能有效 降解化学需氧量 C0D、 提升 BOD/化学需氧量 COD比, 降解有毒有害有机物质, 使用范围广。
( 1 )在臭氧发生器和第一文丘里混合器之间设置有改变臭氧水的进水方向且扩大臭氧水 的面积的反射器; 反射器改变臭氧水的进水方向, 扩大臭氧水的面积, 增大与填料的接触面 积, 提高反应效率, 减小斜板催化反应塔体积, 节省占地面积。
( 2 )斜板催化反应塔污水进水口接入污水泵, 污水泵采用潜污泵或离心污水泵, 管道上 设置压力控制器和流量控制器, 对管道内的污水压力和流量进行自动监测和控制, 当管道压 力达到设定上限值时, 污水泵会自动报警或自动保护停机。 斜板催化反应塔的进水口设置喇 叭口, 方向正对前面所述过滤网, 反洗过滤网, 防止堵塞。
( 3 )本发明既能方便的对高难度污水进行循环处理直至达标排放, 也能对大水量高难度 污水进行过流或循环式小试实验, 进而为大水量工业化提供有效数据支撑; 还能对大水量轻 度有机物污染的水体进行过流式处理, 或配合其他污水处理手段, 如生化方法, 对高难度污 水进行催化氧化预处理后进生化系统; 也能对已经有其他污水处理手段处理不达标的污水进 行再处理。
本发明的另一种污水处理系统及其方法安装简单, 使用便捷, 能够提高污水处理量, 提 高臭氧利用率, 并能够在进口处有效过滤地表水中的杂物, 防止管道堵塞。 这种处理污水的 系统既可进行地表水、 雨水消毒处理, 又可进行工业循环水处理, 工厂尾水达标处理。 本发 明具有如下优点:
( 1 )在设备进口处接入的过滤混合器,具有过滤和自清洁的功能,而且不需要更换滤芯, 能够高效去除污水中的杂物, 防止管道堵塞。 过滤混合器出口处未处理的污水与含残留臭氧 的已处理污水混合, 将未反应完全的臭氧充分利用, 大大提高了臭氧利用率和污水处理量。
( 2 )在过滤混合器出口接入旋转混合器, 将仍然含有残留臭氧的已处理污水与附近污水 旋转混合, 从而将臭氧高效扩散到附近水域中, 在很大程度上扩大了污水处理量, 提高了臭 氧利用率, 降低能耗, 从而降低了运行成本。
( 3 ) 臭氧地表水处理设备为自动化一体操作设备, 操作简便, 即可以将其放置在岸边, 也可以将其置于可漂浮的水面平台上, 在水面上自由移动, 以实现污水的快速治理。
( 4)本发明的第二催化反应器、第二换热器及管道内部全部涂覆有用于提高臭氧对污水 氧化能力的贵金属催化剂层, 在旋转混合器内仍可加入颗粒状多孔陶瓷表面负载催化剂, 在 很大程度上提高臭氧催化氧化的反应速率。
( 5 )能够高效降解地表水中的表面活性剂等大分子有机物, 减少水体中的总磷含量和氨 氮, 且快速杀灭藻类、 菌类物质, 使水体无毒化、 无害化。 从而从根本上解决环境污染问题, 实现零污染物排放、 无环境污染。 附图说明
图 1是本发明的实施例 1的示意图;
图 2是本发明的实施例 2的示意图;
图 3是本发明的填料催化塔的示意图;
图 4是本发明的斜板催化反应塔的示意图;
图 5是本发明的实施例 7的系统工艺流程图;
图 6是本发明的实施例 7的示意图;
其中: 1第一离心泵; 2第一文丘里混合器; 3第一制氧机; 4第一臭氧机; 5第一催化 反应器; 6第一换热器; 7污水泵; 8斜板催化反应塔; 801第一底座; 802第一塔底封头; 803臭氧水进水口; 804反射器; 805催化剂固体填料; 806第一塔顶; 807第一塔顶封头; 808废水出水口; 809废水进水口; 810喇叭口; 811分流废水出水口; 812过滤网; 813第一 排空阀门; 814第一塔底; 815第一填料层; 9填料催化塔; 901第二底座; 902第二塔顶封 头; 903第一进水口; 904折板; 905第二塔顶; 906填料投加口; 907第二塔底封头; 908第 一出水口; 909第二排空阀门; 910第二塔底; 911第二填料层; 912承托层; 10曝气生物塔; 11储水箱; 12风机; 13 第二箱体; 14潜水泵; 15第二离心泵; 16第二文丘里混合器; 17 第二催化反应器; 18第二换热器; 19过滤混合器; 20旋转混合器; 21第二制氧机; 22第二 臭氧机; 23冷却水箱; 24第二循环泵; 25保安过滤器。 具体实施方式
为了阐明本发明的技术方案及技术目的, 下面结合图及具体实施方式对本发明做进一步 的介绍。
实施例 1
如图 1所示, 本发明的一种污水处理系统, 污水处理系统包括一台第一离心泵 1、 一台 第一文丘里混合器 2、 一台 5L/min第一制氧机 3、 一个 30g/小时的第一臭氧机 4、 一个平均 外径 100mm的第一催化反应器 5、一个第一换热器 6、一台每小时流量为 2立方米的污水泵 7, 一个斜板催化反应塔 8、 一个填料催化塔 9、 一个曝气生物塔 10、 一个储水箱 11 ;
将第一制氧机 3、 第一臭氧机 4、 文丘里发射器 2、 第一催化反应器 5、 污水泵 7、 第一 换热器 6、污水泵 7、第一离心泵 1通过管道相连接, 集成安装在钢结构制成的一个第一箱体 内, 斜板催化反应塔 8、填料催化塔 9、 曝气生物塔 10和储水箱 11集成安装在另一个第一箱 体内, 两个第一箱体通过管道和电缆连接。 第一制氧机 3根据第一臭氧机 4的需氧气量进行 配制。
所述污水泵 7、 斜板催化反应塔 8、 第一文丘里混合器 2、 第一制氧机 3、 第一臭氧机 4、 第一催化反应器 5、 第一换热器 6、 填料催化塔 9、 曝气生物塔 10和储水箱 11均设置有进口 和出口; 所述污水泵 7的出口与斜板催化反应塔 8的第一进口通过管道相连接;
所述污水处理系统还包括冷却系统, 该冷却系统包括依次通过管道相连接的冷却水箱、 第一循环泵、 第一换热器 6和第一臭氧机 4, 以形成冷却水循环回路; 所述第一换热器 6与 污水接触的一侧涂敷用于加速污水催化氧化过程的催化剂层; 所述第一换热器 6为板式换热 器或管壳式换热器;
污水通过污水泵 7通过管道进入斜板催化反应塔 8, 斜板催化反应塔 8起到一个分流的 作用; 经过斜板催化反应塔 8进行分流后, 一部分污水由斜板催化反应塔 8的第一出口进入 第一离心泵 1, 另一部分污水留在斜板催化反应塔 8 中; 氧化还原反应产物经第一换热器 6 进入斜板催化反应塔 8, 反应剩余的臭氧和氧气与未进入第一催化反应器 5的污水进行混合; 继续利用剩余臭氧和氧气进行催化反应, 加快反应速率、 提高处理效果。 所述污水泵 7与斜 板催化反应塔 8的连接管道上设置有压力控制器和流量控制器。 斜板催化反应塔 8污水进口 接入污水泵 7, 对管道内的污水压力和流量进行自动监测和控制, 当管道压力达到设定上限 值时, 污水泵 7会自动报警或自动保护停机。
所述斜板催化反应塔 8的第一出口与第一离心泵 1的进口通过管道相连接; 斜板催化反 应塔 8的第二进口处设置喇叭口, 方向正对前面所述过滤网, 反洗过滤网, 防止堵塞。
所述第一离心泵 1的出口与第一文丘里混合器 2的第一进口通过管道相连接; 污水以一 定的速度由第一离心泵 1输送至第一文丘里混合器 2中, 所述第一文丘里混合器 2产生负压 吸入第一臭氧机 4产生的臭氧, 形成臭氧和污水的混合物; 第一文丘里混合器 2吸入臭氧量 通过第一离心泵 1的流量与管道上的阀门进行调节。
所述第一制氧机 3上设置有空压机,所述曝气生物塔 10的第二进口与第一制氧机 3的第 二出口通过管道相连接, 所述第一制氧机 3的第一出口与第一臭氧机 4的进口通过管道相连
接。 充分利用第一制氧机 3空压机产生的空气, 有效节约能源。
所述第一制氧机 3制得氧气, 将氧气通入第一臭氧机 4中, 所述第一臭氧机 4的出口与第 一文丘里混合器 2的第二进口通过管道相连接;
所述第一文丘里混合器 2的出口与第一催化反应器 5的进口通过管道相连接;污水与第一 催化反应器 5中的催化剂层充分接触, 在催化剂的催化下, 进行氧化还原反应。
所述第一催化反应器 5的出口与第一换热器 6的进口通过管道相连接; 所述第一换热器 6 的出口与斜板催化反应塔 8的第二进口通过管道相连接。
斜板催化反应塔 8内部装填有惰性贵金属催化剂固体填料, 填料采用折板、 斜板式, 按 水流方向顺序排放, 填满塔内空间, 填料可分 n层进行排放, 有效增大催化反应接触面积, 并减小催化反应塔体积和装置占地面积。
所述斜板催化反应塔 8的第二出口与填料催化塔 9的进口通过管道相连接, 斜板催化反 应塔 8继续利用剩余臭氧和氧气进行催化反应, 加快反应速率、 提高处理效果。
填料催化塔 9的折板顶部留有未填充空间, 投加的颗粒填料不仅表面涂覆有惰性贵金属 粉末催化剂, 而且多孔, 比表面积大, 填料接触面积大, 与污水接触面积大, 可有效利用臭 氧和氧气进行反应。
填料催化塔 9继续利用剩余臭氧和氧气进行催化氧化反应, 进一步提高污水处理效果, 填料催化塔 9内部的折板顶角空间气液分离后臭氧、 氧气气体被阻挡在此空间, 由于空间的 限制, 气体会再次进入污水中, 延长气体与污水的接触反应时间, 提高臭氧利用率, 反应效 率高。
所述填料催化塔 9的出口与曝气生物塔 10的第一进口通过管道相连接,
填料催化塔 9内部设置有多层倾斜折板, 涂覆有惰性贵金属粉末的颗粒催化填料从塔顶 填料投放口投入, 填充折板间的空间, 并在折板顶部留有一处三角形顶角未填充空间, 当剩 余臭氧和氧气进入填料催化塔 9, 气液分离后臭氧、 氧气气体被阻挡在此空间, 由于空间的 限制, 气体聚集多了后会再次进入污水中, 延长气体与污水的接触反应时间, 提高臭氧利用 率, 反应效率高。
所述曝气生物塔 10内设置有适合微生物附着生长的多孔性填料, 所述曝气生物塔 10和 填料催化塔 9内均设置多层倾斜的折板, 每层折板投影均有交叉重合部分, 所述每层折板与 塔体中轴线之间的夹角为 30-89 ° 。 折板投影长度超出塔体中轴线的长度为 5-500mm;
所述曝气生物塔 10的利用折板顶角空间阻挡空气逸出, 延长空气与污水接触反应时间, 提高空气利用效率, 保证塔内溶解氧浓度。所述曝气生物塔 10塔内填充能附着微生物的多孔 性填料, 填料比表面积大, 更利于微生物附着生长繁殖。
所述曝气生物塔 10的出口与储水箱 11的进口通过管道相连接。 所述填料催化塔 9内设 置有惰性贵金属粉末的颗粒填料, 所述颗粒填料的比表面积为 0. l-100m2/g。
所述曝气生物塔 10的出口与储水箱 11的进口相连接, 在储水箱 11出口处设置取样口, 经取样分析处理达标的污水进行排放。曝气生物塔 10的塔内曝气的空气来自第一制氧机 3的 空压机分流管道, 可有效利用空压机产生的空气量, 不浪费能量。所述曝气生物塔 10的第二 进口处设置有曝气管网和曝气盘, 使空气能呈微小气泡扩散, 增大空气与污水的接触面积, 增大空气的利用效率, 保证生物在好氧环境下生长繁殖并降解污水中的有机物质。
所述污水处理系统还包括改变臭氧水的进水方向且扩大臭氧水的面积的反射器和过滤 网; 所述反射器设置于臭氧发生器和第一文丘里混合器 2之间; 所述反射器改变臭氧水的进 水方向, 扩大臭氧水的面积, 增大与填料的接触面积, 提高反应效率, 减小斜板催化反应塔
8体积, 节省占地面积。
所述斜板催化反应塔 8的第一出口处设置有过滤网, 过滤污水中的杂质, 防止进入斜板 催化反应塔 8及设备管道。 污水能够把过滤网表面的杂质冲洗掉, 起到清洁过滤网的效果。
所述污水泵 7、 斜板催化反应塔 8、 第一离心泵 1、 第一文丘里混合器 2、 第一制氧机 3、 第一臭氧机 4、 第一催化反应器 5、 第一换热器 6、 填料催化塔 9、 曝气生物塔 10和储水箱 11的出口均与三通相连接, 设置取样口阀门, 方便进行取样检测分析。
所述污水泵 7为潜污泵; 所述混合物在污水处理系统的停留时间为 10s以上。 反应时间 由污水泵 7的流量以及串联或并联反应器的数量和规格来确定,污水处理效果由吸入臭氧量、 污水处理一体化设备机组的数量以及运行时间来控制。
本发明可根据不同高难度污水的水量、 水质情况将设备内部配件或斜板催化反应塔 8、 填料催化塔 9、 曝气生物塔 10均改变参数, 改变反应停留时间, 改变催化剂投放量, 改变尺 寸等方法, 组成处理量、 催化剂投放量、 臭氧投放量、 反应时间不同的工艺系统装置, 并且 可以根据不同处理水量和污水水质情况将工艺系统制成一个或多个模块化的设备, 设备间通 过管道或电缆进行连接, 拆卸和安装简单方便。
本发明的一种污水处理方法,包括以下步骤:
( 1 )对污水进行预处理, 并进行吸附和沉淀处理; 污水通过污水泵 7通过管道进入斜板 催化反应塔 8, 斜板催化反应塔 8起到一个分流的作用; 经过斜板催化反应塔 8进行分流后, 一部分污水由斜板催化反应塔 8的第一出口进入第一离心泵 1, 另一部分污水留在斜板催化 反应塔 8中; 斜板催化反应塔 8较大, 里面只有一部分水经第一离心泵 1抽吸至第一催化反 应器 5中, 然后回流到斜板催化反应塔 8, 与斜板催化反应塔 8内未被抽吸的污水相混合, 然后一起进入填料催化塔 9; 所述污水泵 7与斜板催化反应塔 8的连接管道上设置有压力控 制器和流量控制器。 所述污水泵 7、 斜板催化反应塔 8、 第一文丘里混合器 2、 第一制氧机 3、 第一臭氧机 4、 第一催化反应器 5、 第一换热器 6、 填料催化塔 9、 曝气生物塔 10和储水箱 11均设置有进口和出口。
( 2 )污水以一定的速度由第一离心泵 1输送至第一文丘里混合器 2中, 所述第一文丘里
混合器 2产生负压吸入第一臭氧机 4产生的臭氧, 形成臭氧和污水的混合物; 第一文丘里混 合器 2吸入臭氧量通过第一离心泵 1的流量与管道上的阀门进行调节;
所述第一制氧机 3上设置有空压机,所述曝气生物塔 10的第二进口与第一制氧机 3的第 二出口相连接; 所述第一臭氧机 4的进口通过管道与第一制氧机 3的第一出口相连接; 第一 制氧机 3制得氧气, 将氧气通入第一臭氧机 4中; 第一制氧机 3根据第一臭氧机 4的需氧气 量进行设置。
在第一臭氧机 4和第一文丘里混合器 2之间设置有改变臭氧水的进水方向且扩大臭氧水 的面积的反射器; 反射器改变臭氧水的进水方向, 扩大臭氧水的面积, 增大与填料的接触面 积, 提高反应效率, 减小斜板催化反应塔 8体积, 节省占地面积。
( 3 )所述混合物经由第一文丘里混合器 2后, 通过管道进入第一催化反应器 5, 所述混 合物与第一催化反应器 5中的催化剂层充分接触, 在催化剂的催化下, 进行氧化还原反应;
( 4)氧化还原反应产物经换热器进入斜板催化反应塔 8, 反应剩余的臭氧和氧气与未进 入第一催化反应器 5的污水进行混合; 继续利用剩余臭氧和氧气进行催化反应, 加快反应速 率、 提高处理效果。 所述斜板催化反应塔 8内部装填有惰性贵金属催化剂的固体填料, 所述 斜板催化反应塔 8内设置多层倾斜的折板。斜板催化反应塔 8内部填料按水流方向顺序排放, 填满斜板催化反应塔 8的塔内空间, 填料可分 n层进行排放, 有效增大催化反应接触面积, 并减小催化反应塔体积和装置占地面积。 所述斜板催化反应塔 8的第一出口处设置有过滤污 水杂质的过滤网, 所述过滤网为不锈钢过滤网。 所述过滤网过滤污水中的杂质, 防止杂质进 入斜板催化反应塔 8及设备管道。 污水能够把过滤网表面的杂质冲洗掉, 起到清洁过滤网的 效果。
( 5 )反应产物由斜板催化反应塔 8的第二出口进入填料催化塔, 剩余臭氧和氧气与污水 充分进行氧化还原反应, 提高污水处理效果; 所述填料催化塔 9内涂覆有惰性贵金属粉末的 颗粒催化填料, 所述填料的比表面积为 0. l-100m2/g; 填料催化塔 9内部设置有倾斜的折板, 所述填料填充在折板与填料催化塔 9的塔的内壁之间的空间。 填料催化塔 9内部的折板顶角 空间气液分离后臭氧、氧气气体被阻挡在此空间, 由于空间的限制, 气体会再次进入污水中, 延长气体与污水的接触反应时间, 提高臭氧利用率, 反应效率高。
( 6 ) 所述填料催化塔 9的出口与曝气生物塔 10的第一进口通过管道相连接, 反应产物 经填料催化塔 9的出口进入曝气生物塔 10; 所述曝气生物塔 10的出口与储水箱 11的进口通 过管道相连接, 曝气生物塔 10流入储水箱 11后, 储水箱 11的出口设置有取样口, 在取样口 进行取样检测。
所述曝气生物塔 10内设置有适合微生物附着生长的多孔性填料; 所述曝气生物塔 10和 填料催化塔 9内均设置有多层折板, 每层折板投影均有交叉重合部分, 所述每层折板与塔体 中轴线之间的夹角为 30-89 ° 。
折板投影长度超出塔体中轴线的长度为 5-500mm。
折板顶角空间阻挡空气逸出, 延长空气与污水接触反应时间, 提高空气利用效率, 保证 塔内溶解氧浓度。
所述曝气生物塔 10的第二进口处设置有曝气管网和曝气盘。增大空气的利用效率, 保证 生物在好氧环境下生长繁殖并降解污水中的有机物质。曝气生物塔 10内曝气的空气来自第一 制氧机 3的空压机分流管道, 可有效利用空压机产生的空气量, 不浪费能量。
污水处理方法中的装置包括一台第一离心泵 1、 一台第一文丘里混合器 2、 一台 5L/min 第一制氧机 3、 一个 30g/小时的第一臭氧机 4、 一个平均外径 100mm的第一催化反应器 5、 一 个第一换热器 6、 一台每小时流量为 2立方米的污水泵 7, 一个斜板催化反应塔 8、 一个填料 催化塔 9、 一个曝气生物塔 10、 一个储水箱 11 ;
所述污水泵 7为潜污泵; 所述混合物在污水处理系统的停留时间至少为 10秒钟, 也可以 达到上百小时。 反应时间由污水泵 7的流量以及串联或并联反应器的数量和规格来确定, 污 水处理效果由吸入臭氧量、 污水处理一体化设备机组的数量以及运行时间来控制。
所述污水泵 7的出口与斜板催化反应塔 8的第一进口通过管道相连接; 所述斜板催化反 应塔 8的第一出口与离心泵 7的进口通过管道相连接。
本发明能够提高污水处理量, 提高臭氧利用率, 对污水 pH、 水温等适用范围广, 占地面 积小, 安装操作简单, 运行成本低, 处理效果稳定, 不会产生二次污染问题, 并能够在入口 处有效过滤污水中的杂物, 防止管道堵塞。 这种设备既可对工业各种高难度污水进行处理、 工厂尾水达标处理, 又可进行工业循环水处理, 尤其是高难度污水处理。
( 1 )在第一臭氧机 4和第一文丘里混合器 2之间设置有改变臭氧水的进水方向且扩大臭 氧水的面积的反射器; 反射器改变臭氧水的进水方向, 扩大臭氧水的面积, 增大与填料的接 触面积, 提高反应效率, 减小斜板催化反应塔 8体积, 节省占地面积。
( 3 )填料催化塔 9内部设置有多层倾斜折板, 并按 30-89 ° 角度进行设置, 涂覆有惰性 贵金属粉末的颗粒催化填料从塔顶填料投放口投入, 填充折板间的空间, 并在折板顶部留有 一处三角形顶角未填充空间, 当剩余臭氧和氧气进入此塔, 气液分离后臭氧、 氧气气体被阻 挡在此空间, 由于空间的限制, 气体聚集多了后会再次进入污水中, 延长气体与污水的接触 反应时间, 提高臭氧利用率, 反应效率高。 投加的颗粒填料不仅表面涂覆有惰性贵金属粉末 催化剂, 而且多孔, 比表面积大, 与污水接触面积大, 可有效利用臭氧和氧气进行催化氧化 反应, 反应速度快, 效率高。
( 4) 曝气生物塔 10的第二进口接第一制氧机 3的空压机, 可充分利用第一制氧机 3空 压机产生的空气, 有效节约能源。 曝气生物塔 10的第二进口处设置曝气管网和曝气盘, 使空 气能呈微小气泡扩散, 增大空气与污水的接触面积, 有效增大空气的利用效率, 保证生物在 好氧环境下生长繁殖并降解污水中的有机物质。 曝气生物塔 10 内设置多层倾斜折板, 并按
50-60 ° 角度进行设置, 利用折板顶角空间阻挡空气逸出, 延长空气与污水接触反应时间, 提 高空气利用效率, 保证塔内溶解氧浓度。塔内填充能附着微生物的多孔性填料, 比表面积大, 更利于微生物附着生长繁殖。
( 5 )本发明采用高级催化氧化技术, 通过该技术产生羟基自由基, 对大部分污水处理效 果显著, 催化反应后的污水进一步经斜板催化反应塔、 填料催化塔反应, 能有效降解化学需 氧量 C0D、 提升 B/C比, 降解有毒有害有机物质, 使用范围广。 既能方便的对高难度污水进 行循环处理直至达标排放, 也能对大水量高难度污水进行过流或循环式小试实验, 进而为大 水量工业化提供有效数据支撑; 还能对大水量轻度有机物污染的水体进行过流式处理, 或配 合其他污水处理手段, 如生化方法, 对高难度污水进行催化氧化预处理后进生化系统; 也能 对已经有其他污水处理手段处理不达标的污水进行再处理。
( 6 )本发明中的设备均采用不锈钢材质, 能耐弱酸、 耐碱, 并采用的催化氧化反应对污 水 pH、 水温的适用范围广, 从 pH>6. 5, 水温 0-50°C都能够保证系统对污水的处理效果。 本 发明可根据不同高难度污水的水量、 水质情况将设备内部配件或斜板催化反应塔 8、 填料催 化塔 9、 曝气生物塔 10的参数改变, 改变反应停留时间, 改变催化剂投放量, 改变尺寸等方 法, 组成处理量、 催化剂投放量、 臭氧投放量、 反应时间不同的工艺系统装置, 并且可以根 据不同处理水量和污水水质情况将工艺系统制成一个或多个模块化的设备, 设备间通过管道 或电缆进行连接, 拆卸和安装方便简单。
对某石油化工厂含高浓度苯酚污水进行循环处理实验, 经处理 3小时后, 污水化学需氧 量 COD由 1840mg/L降至 714mg/L, 化学需氧量 COD降解率为 61. 2%, 具体数据如下表 1。
表 1
实施例 2
如图 2所示, 实施例 2与实施例 1的区别在于: 所述污水处理系统还包括风机 12, 所述 曝气生物塔 10的第二进口与风机 12的第二出口通过管道相连接;所述风机 12的出口与所述
第一制氧机 3的入口通过管道相连接。 所述污水泵 7为离心污水泵; 所述第一制氧机 3为分 子筛制氧机;
在步骤 (2 ) 中, 所述曝气生物塔 10的第二进口与风机 12通过管道相连接。
对某垃圾渗滤液污水进行循环处理, 处理前后数据对比如下表 2。
表 2
如表 2可知, 对某垃圾渗滤液污水处理 30min后, 污水化学需氧量 COD由 7525mg/L降至 1956mg/L,继续处理 2h后,化学需氧量 COD降至 752. 5mg/L,化学需氧量 COD降解率达到 90%; 氨氮、 总磷、 色度经处理 2h后, 降解率分别为 37. 6%、 55. 9%、 91. 4%。
实施例 3
实施例 3与实施例 1的区别在于: 对某酒精厂污水处理站尾水进行过流式处理实验, 处 理前后数据对比如下表 3。
表 3
700 468. 5 429. 4 8. 35
800 452. 6 423. 1 6. 52
900 468. 5 439. 2 6. 25
1000 450. 8 411. 6 8. 70
如表 3可知,对某酒精厂污水处理站尾水进行过流式处理, 通入不同过流水量, 对污水中 的化学需氧量 COD都有一定的降解, 污水流入量越小, 因反应时间长, 处理效率越高, 化学 需氧量 COD降解率也越高。
实施例 4
实施例 4与实施例 1的区别在于: 某印染废水进行过流式处理实验, 污水在此处理方法 的系统中进行处理一次视为一个循环处理过程, 在污水的进水量均为 100L/H时, 用该污水处 理方法对污水进行两次循环处理, 下图表 4为一个循环处理过程和二个循环处理过程的数据 对比。
表 4
如表 4可知,对某印染废水使用该污水处理方法进行两次循环处理,通入的污水的流量相 同, 均为 100L/H; 本处理方法对污水中的化学需氧量 C0D都有一定的降解, 污水在使用本方 法进行二次循环处理时, 因反应时间长, 处理效率越高, 化学需氧量 C0D降解率也越高, 对 色度的降解也越明显。
实施例 5
如图 4所示, 本发明的斜板催化反应塔 8包括第一底座 801, 第一底座 801上设置有反 应塔主体, 反应塔主体由自下而上的第一塔底 814、 第一填料层 815、 第一塔顶 806组成; 第 一塔底 814的底部设置有第一塔底封头 802, 第一塔底封头 802连接有排空阀门 813, 第一塔 底 814的侧壁设置有臭氧水进水口 803、废水进水口 809; 第一填料层 815内填充有催化剂固 体填料 805; 第一塔顶 806设置有塔顶封头 7, 第一塔顶 806的侧壁设置有废水出水口 808, 第一塔底 814的侧壁上, 位于废水进水口 809的下方设置有分流废水出水口 811。
分流废水出水口 811上设置有过滤网 812。
废水进水口 809为 L型, 其尾端连接有一个喇叭口 810, 喇叭口 810朝下, 正对所述过
滤网 812。 反洗过滤网上的颗粒杂质, 保证过滤网不被堵塞。 通过喇叭口的口径变化, 增大 出水面积, 提高冲洗过滤网面积, 提高混合效率。
第一塔底封头 802为弧形结构, 增大存储沉淀物体积, 便于沉淀物依靠重力沉降, 其底 部的排空阀门 813, 便于将废水中的沉淀物及时排出, 防止堵塞过滤网和填料; 塔顶封头采 用弧形结构, 增大塔内气体承压能力, 分流废水出水口 811连接过滤网, 过滤悬浮颗粒和大 的纤维杂质, 保证泵以及后续系统的正常运行, 避免大颗粒物质堵塞管道和缠绕水泵叶轮, 使催化反应更高效的用于处理污水。
斜板催化反应塔 8主体全部采用不锈钢材质, 有效防止废水腐蚀和臭氧腐蚀。
臭氧水进水口 803为 L型, 并连接有一个反射器 804。 臭氧水进水经反射器反射后, 改 变水流方向, 减缓水流速度, 与塔内的废水混合更均匀, 增大与塔内催化剂的接触面积, 并 延长反应时间, 提高反应效率。
第一填料层 815内设置有填料支撑板, 其上装填有固体填料, 该固体填料为折板、 斜板 式片状, 其为凹凸面, 表面涂覆有惰性贵金属催化剂, 该折板、 斜板式片状与水平面夹角为 80-90 度, 方便水流通过, 减小阻力。 惰性贵金属催化剂采用现有的惰性贵金属催化剂, 如 现有技术中公开的金 (Au) 银 (Ag) 铂 (Pt ) 钯 (Pd) 铑 (Rh) 铱 (Ir) 锇 (0s ) 钌 (Ru) 等惰性贵金属催化剂
固体填料填满第一填料层 815内空间, 固体填料可分 n层进行排放, 有效增大催化反应 接触面积, 并减小催化反应器体积和装置占地面积
废水出水口 808连接有三通, 并设置有取样口。方便对处理后的废水进行取样化验分析。 废水从废水进水口 809进入塔内,通过设置在废水进水口 809的阀门调节废水进水流量, 通过废水进水口 809的弯头改变水流方向, 废水进水口 809连接有喇叭口 810, 扩大水流面 积, 有效冲洗分流废水出水口 811的过滤网, 防止过滤网堵塞, 节省能量。 塔内的废水一部 分经过滤网 812过滤去除一些杂质后通过分流废水出水口 811进入德宇清设备进行与臭氧的 混合和反应, 另一部分向塔上部流动。 废水与臭氧混合后通过斜板催化反应塔 8上的臭氧水 进水口 803进入塔内, 水流经过反射器 804的阻挡和反射, 改变水流方向, 使得水流向四周 扩散, 提高与原废水的混合效率, 增大与塔内催化剂的接触面积, 并减缓水流流速, 减小对 塔内部结构的冲刷和磨损。 废水经过多层与水流方向一致排列的斜板催化剂固体填料, 催化 臭氧和废水反应产生氧化基团, 快速氧化降解废水中的有害物质和大分子有机物, 达到处理 污水的目的。 经处理后的废水通过塔上部的废水出水口 808排出, 废水出水口 808管道上安 装三通和取样阀门, 方便取样。 斜板催化反应塔 8塔底封头采用弧形结构, 增大存储沉淀物 体积, 便于沉淀物依靠重力沉降, 底部设置第一排空阀门 813, 便于将废水中的沉淀物及时 排出或将塔内废水排空, 防止过多的沉淀物堵塞过滤网和填料。
本时发明的斜板催化反应塔 8可根据废水水质情况和处理水量进行塔体尺寸的设计改变
(可改变塔体直径、塔体高度使得塔内容积改变),或者通过进水口处调节阀门调节进水流量, 保证废水在塔内有充足的反应停留时间, 适应于多种水量、 水质的处理, 应用范围广。
按本发明技术方案设计制作出的斜板催化反应塔 8与德宇清污水一体机 (提供臭氧、 臭 氧与废水混合)通过管道连接进行污水处理, 处理后的污水比单独使用臭氧处理污水效果好, 反应时间缩短, 反应效率提高, 降解化学需氧量 COD能力大幅提高, 对色度、 臭味效果更好。
例如: 斜板催化反应塔 8与德宇清污水一体机连接后对某印染废水进行处理, 经 30min 处理后, 脱色效果明显, 而且化学需氧量 COD从原来的 1660mg/L降至 907mg/L, 降解率达到 45. 4%。 详见下表 5: 表 5
如图 3所示, 本发明的填料催化塔 9包括第二底座 901, 第二底座 901上设置有反应塔 主体, 反应塔主体由自下而上的进水区、 承托层 912、 第二填料层 911、 清水出水区组成; 进 水区包括第二塔底 910, 第二塔底 910的底部设置有第二塔底封头 902, 第二塔底封头 902连 接有第二排空阀门 909; 第二填料层 911 内填充有填料, 第二填料层 911的侧壁上端设置有 第一出水口 908, 第二填料层 911内设置有折板 904, 折板 904的一端连接在第二填料层 911 内壁, 另一端向下倾斜; 清水出水区包括塔顶 5, 塔顶 5上设有第二塔顶封头 902, 第二塔顶 封头 902上端开设有填料投加口 906。
填料催化塔 9的反应塔主体为不锈钢材质, 能够有效防止废水腐蚀和酸碱腐蚀, 延长使 用寿命。并且塔内采用的催化氧化反应对废水 pH、水温、有机物含量的适用范围广,从 pH>6. 5, 水温 0-50°C, C0D>50mg/L的浓度都能够保证系统对废水的处理效果。
第二塔底封头 907为弧形结构, 能增大存储沉淀物体积, 便于沉淀物依靠重力沉降, 底 部设置排空阀门, 便于将废水中的沉淀物及时排出, 防止堵塞填料。
第二塔顶封头 902为弧形结构, 增大塔体有效容积, 增大塔内气体承压能力, 避免因塔 内气体压力增大造成塔顶变形或裂缝。
承托层 912为一个圆板, 其上均匀布置有圆孔或方孔, 承托层 912为不锈钢材质; 圆孔
的孔径或方孔的边长为 4-10mm。
第二填料层 911内的填料为粒径大于 10mm的多孔颗粒填料,其表面涂覆有惰性贵金属催 化剂,惰性贵金属催化剂采用现有的惰性贵金属催化剂,如现有技术中公开的金(Au)银(Ag) 铂 (Pt ) 钯 (Pd) 铑 (Rh) 铱 (Ir) 锇 (0s) 钌 (Ru) 等惰性贵金属催化剂, 其比表面积大, 为 0. l-100m2/g, 与废水接触面积大, 可有效利用臭氧和氧气进行催化氧化反应, 反应速度 快, 效率高。 填料还能过滤、 吸附去除废水中的一些悬浮颗粒, 使得出水清洁。
第二填料层 911 内设置有多层折板, 多层折板交错布置, 每层折板在水平面的投影的长 度超过反应塔主体中轴线 5-500mm, 即每层折板在水平面的投影有交叉重合部分, 每层折板 与反应塔主体的中轴线之间的夹角为 30-89 ° ; 涂覆有惰性贵金属粉末的颗粒催化填料从第 二塔顶 905填料投加口 906投入, 填充折板间的空间, 并在折板顶部留有顶角未填充空间, 当剩余臭氧和氧气进入此塔, 气液分离后臭氧、氧气气体被阻挡在此空间, 由于空间的限制, 气体聚集多了后会再次进入废水中, 延长气体与废水的接触反应时间, 提高臭氧利用率, 反 应效率高, 可有效缩短废水反应时间, 减小填料催化塔体积, 节省占地面积。
第一出水口 908连接有三通, 并设置有取样口, 方便对处理后的废水进行取样化验分析。 第一出水口 908连接反冲洗泵, 定期对填料催化塔 9进行反冲洗, 反冲洗出水通过第一 进水口 903三通阀门排出, 由于塔内斜板倾角向下, 反洗阻力更小, 冲洗速度快, 效果好。 冲洗后的填料不易堵塞和板结, 延长使用寿命。
在填料催化塔 9的第一出水口 908处外接三通阀门, 连接反冲洗泵, 定期对填料催化塔 进行反冲洗, 反冲洗出水通过第一进水口 903三通阀门排出, 由于塔内斜板倾角向下, 反洗 阻力更小, 冲洗速度快, 效果好。 冲洗后的填料不易堵塞和板结, 延长使用寿命。
含臭氧、 氧气或空气的废水从第一进水口 903进入塔内, 并向上流动, 涂覆有惰性贵金 属粉末的颗粒催化填料从第二塔顶 905填料投加口 906投入, 投入填料后需封闭此填料投加 口 906, 防止气体逸散。 填料填充折板间的空间, 并在折板顶部留有未填充空间, 填料接触 面积大, 可有效利用臭氧和氧气进行反应。 填料催化塔 9内部的折板顶角空间气液分离后臭 氧、 氧气气体被阻挡在此空间, 由于空间的限制, 气体会再次进入污水中, 延长气体与废水 的接触反应时间, 提高臭氧利用率, 反应效率高。 废水经过填料层时, 填料上的催化剂能催 化臭氧、 氧气或空气和废水反应产生氧化基团, 快速氧化降解废水中的有害物质和大分子有 机物, 达到处理污水的目的。 同时填料能过滤、 吸附去除一些悬浮颗粒, 使得出水清洁。 经 处理后的废水通过塔上部的第一出水口 908排出, 第一出水口 908管道上安装三通和取样阀 门, 方便取样。 填料催化塔 9的第二塔底封头 907采用弧形结构, 增大存储沉淀物体积, 便 于较大较重的沉淀物依靠重力沉降, 底部设置第二排空阀门 909, 便于将废水中的沉淀物及 时排出或将塔内废水排空, 防止过多的沉淀物堵塞填料。
本发明的填料催化塔 9可根据废水水质情况和处理水量进行塔体尺寸的设计改变, 或者
通过进水口处调节阀门调节进水流量, 保证废水在塔内有充足的反应停留时间, 适应于多种 水量、 水质的处理, 应用范围广。
按本发明技术方案设计制作出的填料催化塔 9与第一催化反应器 5、 德宇清污水一体机 (提供臭氧、 臭氧与废水混合) 通过管道连接进行污水处理, 处理后的污水比传统填料塔处 理污水效果好, 反应时间缩短, 反应效率提高, 降解化学需氧量 COD能力大幅提高, 对色度、 臭味效果更好。
例如: 将填料催化塔 9与第一催化反应器 5、 德宇清污水一体机连接后对某印染废水进 行处理, 经 30min 处理后, 脱色效果明显, 悬浮颗粒减少, 而且化学需氧量 COD 从原来的 1860mg/L降至 867mg/L, 降解率达到 53. 4%。 详见下表 6:
表 6
如图 5和图 6所示,本发明的一种处理污水的系统,所述处理污水的系统包括潜水泵 14、 过滤混合器 19、 第二文丘里混合器 16、 臭氧发生装置、 第二催化反应器 17、 第二换热器 18 和旋转混合器 20; 所述第二催化反应器 17为一台, 直径为 100mm, 第二臭氧机 22的产量为 50g/h, 臭氧发生装置包括第二制氧机 21和第二臭氧机 22。 所述潜水泵 14、 第二离心泵 15、 第二制氧机 21、第二臭氧机 22、第二文丘里混合器 16和第二催化反应器 17集成安装在第二 箱体 13内, 所述第二箱体 13数量为一台。
所述过滤混合器 19、 第二文丘里混合器 16、 第二制氧机 21、 第二臭氧机 22、 第二催化 反应器 17、 第二换热器 18和旋转混合器 20上均设置有进口和出口; 所述潜水泵 14的第一 出口与过滤混合器 19的第一进口通过管道相连接;潜水泵 14抽入的污水从过滤混合器 19的 入口进入, 过滤混合器 19起到一个分流作用, 其中 10m3流量进入第二催化反应器 17, 另外 20m3污水沿着过滤混合器 19的过滤网的直管流动, 停留在过滤混合器 19中; 在旋转混合器 20内旋转两次后, 排入水域, 与水域中的未处理水混合, 通过旋转作用能够大大扩大水体在 水域中的影响面积。 由于水体是在高速下进入水域, 会带动水域流动, 进一步扩大影响面积。 运行过程中, 水体中的气体会在筒体上方积聚。 由于空间的限制, 气体被强迫进入水体中, 不产生浪费。 在过滤混合器 19的第二出口处接入旋转混合器 19, 将仍然含有残留臭氧的已
处理污水与附近污水旋转混合, 进行旋转处理后, 本发明的处理污水的系统的影响流量为 30m3/h。 从而将臭氧高效扩散到附近水域中, 在很大程度上扩大了污水处理量, 提高了臭氧 利用率, 降低能耗, 从而降低了运行成本。
所述第二臭氧机 22的第一出口与第二文丘里混合器 16的第二进口通过管道相连接; 所 述第二文丘里混合器 16的出口与第二催化反应器 17的进口通过管道相连接; 所述第二催化 反应器 17的出口与第二换热器 18的第一进口通过管道相连接;第二催化反应器 17中的污水 进入第二换热器 18中, 其中的污水用来为冷却水降温, 由于冷却水给第二臭氧机 22降温后 温度升高, 需要降温后才能循环。
所述第二换热器 18的第一出口与过滤混合器 19的第二进口通过管道相连接, 最后进入 第二催化反应器 17处理过的污水再进入过滤混合器 19与未进第二催化反应器 17的 20m3的 污水进行混合;
所述处理污水的系统还包括设置于过滤混合器 19和第二文丘里混合器 16之间的离心泵; 所述第二离心泵 15上设置有进口和出口;所述过滤混合器 19的第一出口与第二离心泵 15的 进口通过管道相连接;所述第二离心泵 15的出口与第二文丘里混合器 16的第一进口相连接; 所述第二催化反应器 17的内表面及第二催化反应器 17的内部件内外表面、第二换热器 18内 表面及换热器内部件内外表面及管道内表面均涂覆有贵金属催化剂层, 提高了臭氧催化氧化 的反应速率。
所述臭氧发生装置内设置有通过管道连接的第二制氧机 21和第二臭氧机 22; 所述第二 制氧机 21的出口与第二臭氧机 22的第一进口通过管道相连接;所述第二臭氧机 22的第一出 口与第二文丘里混合器 16的第二进口通过管道相连接;
所述第二换热器 18的第二出口与所述第二臭氧机 22的第二进口通过管道相连接; 所述 第二臭氧机 22的第二出口与所述冷却水箱 23的进口通过管道相连接;所述冷却水箱 23的出 口与第二循环泵 24的进口通过管道相连接; 所述第二循环泵 24的出口与所述第二换热器 18 的第二进口通过管道相连接; 所述第二臭氧机 22、 冷却水箱 23、 第二循环泵 24和第二换热 器 18形成一个冷却水循环系统。所述第二循环泵为 0. 5m7h,过滤混合器 19的流量为 30m3/h, 旋转混合器 20的流量为 30m7h。 过滤混合器 19没入水中, 旋转混合器 20悬浮在水中。
本发明的处理污水的系统既可以放置在水面的漂浮平台上, 将催化氧化水处理一体化设 备置于平台上, 通过螺栓等固定连接为一个整体, 也可以放置在污水池岸边移动处理。 所述 过滤混合器 19与第二换热器 18之间还设置有保安过滤器 25。
用第二循环泵 24驱动循环水形成换热循环,将臭氧发生装置工作产生的热量通过第二换 热器 18传递给处理的水, 由水将热量带走, 节省大量的冷却水或因冷却臭氧发生装置耗费的 能量; 与此同时, 由于第二换热器 18表面涂有催化材料, 对污水的臭氧氧化反应进行催化,
加快反应速率。
所述旋转混合器 20内涂覆有颗粒状多孔陶瓷表面负载催化剂层。在很大程度上提高臭氧 催化氧化的反应速率。 所述第二臭氧机 22上设置有冷却室; 所述第二催化反应器 17为一台 或一台以上, 所述第二催化反应器 17通过管道并联或串联连接。
所述过滤混合器 19的第二进口处设置有过滤网, 可以过滤掉进入第二催化反应器 17污 水中的杂质, 而不进入第二催化反应器 17的污水直接沿着过滤网流动, 能够把过滤网表面的 杂质冲洗掉, 起到清洁过滤网的效果。进入第二催化反应器 17的污水经过催化氧化后, 再进 入过滤混合器 19与未进第二催化反应器 17的污水混合反应。 所述臭氧发生装置与所述第二 催化反应器 17的连接管道上设置有气体流量计。
所述混合物在第二催化反应器 17的停留时间为 10秒至 500秒; 所述第二文丘里混合器 16内吸入臭氧量通过第二离心泵 15的流量与管道上的阀门进行调节。
所述过滤混合器 19的第二出口与旋转混合器 20的进口通过管道相连接。 在旋转混合器 20内旋转两次后, 排入水域, 与水域中的未处理水混合, 通过旋转作用能够大大扩大水体在 水域中的影响面积。 由于水体是在高速下进入水域, 会带动水域流动, 进一步扩大影响面积。 运行过程中, 水体中的气体会在筒体上方积聚。 由于空间的限制, 气体被强迫进入水体中, 不产生浪费。 在过滤混合器 19的第二出口处接入旋转混合器 20, 将仍然含有残留臭氧的已 处理污水与附近污水旋转混合, 进行旋转处理后, 本发明的处理污水的系统的影响流量为 30m7h。 从而将臭氧高效扩散到附近水域中, 在很大程度上扩大了污水处理量, 提高了臭氧 利用率, 降低能耗, 从而降低了运行成本。
本发明所述的处理污水的系统进行污水处理的方法,包括以下步骤:
( 1 ) 对污水进行预处理, 并进行吸附和沉淀处理;
( 2)所述污水通过潜水泵 14进入过滤混合器 19, 过滤混合器 19起到一个分流的作用;
( 3) 经过过滤混合器 19进行分流后, 一部分污水由过滤混合器 19的出口进入离心泵, 另一部分污水留在过滤混合器 19中; 过滤混合器 19具有过滤和自清洁的功能, 而且不需要 更换滤芯, 能够高效去除污水中的杂物, 防止管道堵塞。过滤混合器 19中未处理污水与含残 留臭氧的已处理污水混合, 将未反应完全的臭氧充分利用, 大大提高了臭氧利用率和污水处 理量。
(4)污水以一定的速度由第二离心泵 15输送至第二文丘里混合器 16中, 所述第二文丘 里混合器 16产生负压吸入臭氧发生装置产生的臭氧, 形成臭氧和污水的混合物;
( 5)所述混合物通过管道进入第二催化反应器 17, 所述混合物与第二催化反应器 17中 的催化剂层充分接触, 在催化剂的催化下, 进行氧化还原反应;
( 6 ) 所述第二臭氧机 22、 冷却水箱 23、 第二循环泵 24、 第二换热器 18形成一个冷却 水的循环系统, 用以降低第二臭氧机 22的温度; 所述污水在第二换热器 18与已对第二臭氧 机 22降温的冷却水进行换热, 降低冷却水的温度; 所述第二换热器 18将污水输送至过滤混 合器 19, 反应残留的臭氧与未进入第二催化反应器 17的污水进行混合;
( 7 )处理过的污水中仍含有部分臭氧,这部分污水由过滤混合器 19进入旋转混合器 20, 在旋转混合器 20内旋转两次后, 由旋转混合器 20的出口排入水域, 与水域中的未处理水混 合, 通过旋转作用能够大大扩大水体在水域中的影响面积, 消耗残留的臭氧。
本发明的处理污水的系统采用 PLC智能程序监测控制系统, 对水温、 水流、 电参数、 气 流量等多种参数实施自动监测, 报警与保护, 保证系统安全正常运行可按预置程序实现自动 控制, 根据客户需要, 可实现远程集中控制, 方便用户管理。
本发明安装简单, 使用便捷, 能够提高污水处理量, 提高臭氧利用率, 并能够在进口处 有效过滤地表水中的杂物, 防止管道堵塞。 这种处理污水的系统既可进行地表水、 雨水消毒 处理, 又可进行工业循环水处理, 工厂尾水达标处理。 本发明具有如下优点:
( 1 ) 在设备进口处接入的过滤混合器 19, 具有过滤和自清洁的功能, 而且不需要更换 滤芯, 能够高效去除污水中的杂物, 防止管道堵塞。过滤混合器 19出口处未处理的污水与含 残留臭氧的已处理污水混合, 将未反应完全的臭氧充分利用, 大大提高了臭氧利用率和污水 处理量。
( 2 )在过滤混合器 19出口接入旋转混合器 20, 将仍然含有残留臭氧的已处理污水与附 近污水旋转混合, 从而将臭氧高效扩散到附近水域中, 在很大程度上扩大了污水处理量, 提 高了臭氧利用率, 降低能耗, 从而降低了运行成本。
( 3 ) 臭氧地表水处理设备为自动化一体操作设备, 操作简便, 即可以将其放置在岸边, 也可以将其置于可漂浮的水面平台上, 在水面上自由移动, 以实现污水的快速治理。
( 4)本发明的第二催化反应器 17、 第二换热器 18及管道内部全部涂覆有用于提高臭氧 对污水氧化能力的贵金属催化剂层,在旋转混合器 20内仍可加入颗粒状多孔陶瓷表面负载催 化剂, 在很大程度上提高臭氧催化氧化的反应速率。
( 5 )能够高效降解地表水中的表面活性剂等大分子有机物, 减少水体中的总磷含量和氨 氮, 且快速杀灭藻类、 菌类物质, 使水体无毒化、 无害化。 从而从根本上解决环境污染问题, 实现零污染物排放、 无环境污染。
实施例 8
实施例 8与实施例 7的区别在于: 本实施例的处理污水的系统包括四台第二催化反应器 17, 第二催化反应器 17直径为 150mm, 一台臭氧产量为 60g/h的臭氧发生装置; 一台 5m3/h
的第二循环泵 24。将潜水泵 14出口处与流量为 30m7h的过滤混合器 19相连接, 过滤混合器 19的第二出口处接入流量为 50m7h的旋转混合器 20, 旋转混合器 20进行旋转处理后, 本处 理污水的系统的影响流量为 50m7h。
实施例 9
实施例 9与实施例 7的区别在于: 本实施例的处理污水的系统包括四台第二催化反应器 17, 第二催化反应器 17直径为 200讓, 三台臭氧产量为 60g/h的臭氧发生装置; 一台 12m7h 的第二循环泵 24。 潜水泵 14的出口处与流量为 50m3/h的过滤混合器 19相连接, 出口处接 入流量为 50m7h的旋转混合器 20。 过滤混合器 19进口接每小时 50m3流量的潜水泵 14, 潜水 泵 14抽入的污水从过滤混合器 19的第一进口进入, 过滤混合器 19起到一个分流作用, 其中 20m3流量进入第二催化反应器 17, 另外一部分 30m3污水直接留在过滤混合器 19中, 进入第 二催化反应器 17处理过的污水再进入过滤混合器 19与未进第二催化反应器 17的 30m3的污水 混合反应, 旋转混合器 20进行旋转处理后, 本处理污水的系统的影响流量为 50m7h。
以上显示和描述了本发明的基本原理、 主要特征和本发明的优点。 本行业的技术人员应 该了解, 本发明不受上述实施例的限制, 上述实施例和说明书中描述的只是说明本发明的原 理, 在不脱离本发明精神和范围的前提下, 本发明还会有各种变化和改进, 本发明要求保护 范围由所附的权利要求书、 说明书及其等效物界定。
Claims
1、 一种污水处理系统, 其特征在于: 污水处理系统包括污水泵、 斜板催化反应塔、 第一 离心泵、 第一射流器、 第一制氧机、 第一臭氧机、 第一催化反应器、 第一换热器、 填料催化 塔、 曝气生物塔和储水箱;
所述污水泵、 斜板催化反应塔、 第一射流器、 第一制氧机、 第一臭氧机、 第一催化反应 器、 第一换热器、 填料催化塔、 曝气生物塔和储水箱上均设置有进口和出口;
所述污水泵的出口与斜板催化反应塔的第一进口通过管道相连接; 所述斜板催化反应塔 的第一出口与第一离心泵的进口通过管道相连接; 所述第一离心泵的出口与第一射流器的第 一进口通过管道相连接;
所述第一制氧机的出口与第一臭氧机的进口通过管道相连接; 所述第一臭氧机的出口与 第一射流器的第二进口通过管道相连接; 所述第一射流器的出口与第一催化反应器的进口通 过管道相连接; 所述第一催化反应器的出口与第一换热器的进口通过管道相连接; 所述第一 换热器的出口与斜板催化反应塔的第二进口通过管道相连接, 所述斜板催化反应塔的第二出 口与填料催化塔的进口通过管道相连接, 所述填料催化塔的出口与曝气生物塔的第一进口通 过管道相连接, 所述曝气生物塔的出口与储水箱的进口通过管道相连接。
2、根据权利要求 1所述的污水处理系统,其特征在于: 所述储水箱的出口设置有取样口; 所述第一制氧机为分子筛第一制氧机; 所述第一射流器为第一文丘里混合器;
所述污水处理系统还包括冷却系统, 该冷却系统包括依次通过管道相连接的冷却水箱、 第一循环泵、 第一换热器和第一臭氧机, 以形成冷却水循环回路; 所述第一换热器与污水接 触的一侧涂敷用于加速污水催化氧化过程的催化剂层;
所述污水处理系统还包括风机, 所述曝气生物塔的第二进口与风机的出口通过管道相连 接;所述污水处理系统还包括改变臭氧水的进水方向且扩大臭氧水的面积的反射器和过滤网; 所述斜板催化反应塔的第一出口处设置有过滤网, 所述反射器设置于第一臭氧机和第一 文丘里混合器之间; 第一文丘里混合器吸入臭氧量通过第一离心泵的流量与管道上的阀门进 行调节;
所述污水泵为潜污泵或离心污水泵; 所述污水泵与斜板催化反应塔的连接管道上设置有 压力控制器和流量控制器。
3、根据权利要求 1所述的污水处理系统,其特征在于: 所述第一制氧机上设置有空压机, 所述曝气生物塔的第二进口与第一制氧机的第二出口通过管道相连接, 所述第一制氧机的第 一出口与第一臭氧机的进口通过管道相连接; 所述曝气生物塔的第二进口处设置有曝气管网
和曝气盘, 所述曝气生物塔内设置有多孔性填料, 所述填料催化塔内设置有惰性贵金属粉末 的颗粒填料, 所述颗粒填料的比表面积为 0. l-100m2/g; 所述曝气生物塔内设置多层倾斜的 折板, 每层折板投影均有交叉重合部分, 所述每层折板与塔体中轴线之间的夹角为 30-89 ° 。
4、 根据权利要求 3所述的污水处理系统,其特征在于: 所述第一换热器为板式换热器或 管壳式换热器; 所述曝气生物塔的折板投影长度超出塔体中轴线的长度为 5-500mm; 所述混 合物在污水处理系统的停留时间为 10s以上; 所述污水泵、 斜板催化反应塔、 第一离心泵、 第一文丘里混合器、 第一制氧机、 第一臭氧机、 第二催化反应器、 第一换热器、 填料催化塔、 曝气生物塔、空压机和储水箱集成安装在第一箱体内, 所述第一箱体数量为一台或一台以上, 通过管道相串接。
5、利用权利要求 1所述的污水处理系统进行污水处理的方法,其特征在于包括以下步骤:
( 1 )对污水进行预处理, 并进行吸附和沉淀处理; 然后将污水经由污水泵进入斜板催化 反应塔, 斜板催化反应塔起到一个分流的作用; 经过斜板催化反应塔进行分流后, 一部分污 水由斜板催化反应塔的第一出口进入第一离心泵, 另一部分污水留在斜板催化反应塔中;
( 2 )污水以一定的速度由泵输送至第一文丘里混合器中, 所述第一文丘里混合器产生负 压吸入第一臭氧机产生的臭氧, 形成臭氧和污水的混合物;
( 3 )所述混合物经由第一文丘里混合器后, 通过管道进入第二催化反应器, 所述混合物 与第二催化反应器中的催化剂层充分接触, 在催化剂的催化下, 进行氧化还原反应;
( 4)氧化还原反应产物经第一换热器进入斜板催化反应塔, 反应剩余的臭氧和氧气与未 进入第二催化反应器的污水进行混合;
( 5 )反应产物由斜板催化反应塔的第二出口进入填料催化塔, 剩余臭氧和氧气与污水充 分进行氧化还原反应;
( 6 )反应产物经填料催化塔的出口进入曝气生物塔; 曝气生物塔流入储水箱后, 所述储 水箱的出口设置有取样口, 在取样口进行取样检测。
6、 一种污水处理系统的斜板催化反应塔,其特征在于: 所述斜板催化反应塔包括第一底 座, 第一底座上设置有斜板催化反应塔主体, 斜板催化反应塔主体由自下而上的第一塔底、 第一填料层、 第一塔顶组成; 第一塔底的底部设置有第一塔底封头, 第一塔底封头连接有第 一排空阀门, 第一塔底的侧壁设置有臭氧水进水口、 废水进水口; 填料层内填充有催化剂固 体填料; 第一塔顶设置有第一塔顶封头, 第一塔顶的侧壁设置有废水出水口; 第一塔底的侧 壁上, 位于废水进水口的下方设置有分流废水出水口。
7、 根据权利要求 6所述的斜板催化反应塔,其特征在于: 分流废水出水口上设置有过滤 网, 过滤网为不锈钢材质; 废水进水口为 L型, 其尾端连接有一个喇叭口, 喇叭口朝下, 正 对所述过滤网; 第一塔底封头为弧形结构; 第一塔顶封头为弧形结构; 斜板催化反应塔主体 采用不锈钢材质; 臭氧水进水口为 L型, 并连接有一个反射器; 第一填料层内设置有填料支 撑板, 其上装填有固体填料, 固体填料为折板、 斜板式片状, 其为凹凸面, 表面涂覆有惰性 贵金属催化剂, 该折板、斜板式片状与水平面夹角为 80-90度; 固体填料填满填料层内空间, 固体填料为多层; 废水出水口连接有三通, 并设置有取样口。
8、 一种污水处理系统的填料催化塔,其特征在于: 所述填料催化塔包括第二底座, 第二 底座上设置有填料催化塔主体, 填料催化塔主体由自下而上的进水区、承托层、第二填料层、 清水出水区组成; 进水区包括第二塔底, 第二塔底的底部设置有第二塔底封头, 第二塔底封 头连接有第二排空阀门; 第二填料层内填充有填料, 第二填料层的侧壁上端设置有第一出水 口, 第二填料层内设置有折板, 折板的一端连接在第二填料层内壁, 另一端向下倾斜; 清水 出水区包括第二塔顶, 第二塔顶上设有第二塔顶封头, 第二塔顶封头上端开设有填料投加口。
9、 根据权利要求 8所述的填料催化塔,其特征在于: 填料催化塔主体为不锈钢材质; 第 二塔底封头为弧形结构, 第二塔顶封头为弧形结构; 承托层为一个圆板, 其上均匀布置有圆 孔或方孔, 承托层的材质为不锈钢; 圆孔的孔径或方孔的边长为 4-10mm; 第二填料层内的填 料为粒径大于 10mm的多孔颗粒填料, 其表面涂覆有惰性贵金属催化剂; 第二填料层内设置有 多层折板, 多层折板交错布置, 每层折板在水平面的投影有交叉重合部分; 每层折板在水平 面的投影的长度超过反应塔主体中轴线 5-500mm,每层折板与反应塔主体的中轴线之间的夹角 为 30-89 ° ; 第一出水口连接有三通, 并设置有取样口; 第一出水口连接有反冲洗泵。
10、 一种处理污水的系统, 其特征在于: 所述处理污水的系统包括泵、 过滤混合器、 第 二射流器、 臭氧发生装置、 反应器、 第二换热器和旋转混合器;
所述过滤混合器、 第二射流器、 臭氧发生装置、 第二反应器、 第二换热器和旋转混合器 上均设置有进口和出口; 所述泵的第一出口与过滤混合器的第一进口通过管道相连接; 所述 过滤混合器的第一出口与第二射流器的第一进口通过管道相连接;
所述臭氧发生装置的第一出口与第二射流器的第二进口通过管道相连接; 所述第二射流 器的出口与反应器的进口通过管道相连接; 所述反应器的出口与第二换热器的第一进口通过 管道相连接; 所述第二换热器的第一出口与过滤混合器的第二进口通过管道相连接, 所述过
滤混合器的第二出口与旋转混合器的进口通过管道相连接。
11、 根据权利要求 10所述的处理污水的系统,其特征在于: 所述泵为潜水泵; 所述处理 污水的系统还包括设置于过滤混合器和第二射流器之间的第二离心泵; 所述第二离心泵上设 置有进口和出口; 所述过滤混合器的第一出口与第二离心泵的进口通过管道相连接; 所述第 二离心泵的出口与第二射流器的第一进口通过管道相连接; 所述反应器内表面及反应器内部 件内外表面、 第二换热器内表面及第二换热器内部件内外表面及管道内表面均涂覆有贵金属 催化剂层。
12、 根据权利要求 11所述的处理污水的系统,其特征在于: 所述反应器为第二催化反应 器; 所述臭氧发生装置内设置有通过管道连接的第二制氧机和第二臭氧机; 所述第二制氧机 的出口与第二臭氧机的第一进口通过管道相连接; 所述第二臭氧机的第一出口与第二射流器 的第二进口通过管道相连接;
所述第二换热器的第二出口与所述第二臭氧机的第二进口通过管道相连接; 所述第二臭 氧机的第二出口与所述冷却水箱的进口通过管道相连接; 所述冷却水箱的出口与第二循环泵 的进口通过管道相连接; 所述第二循环泵的出口与所述第二换热器的第二进口通过管道相连 接; 所述第二臭氧机、 冷却水箱、 第二循环泵和第二换热器形成一个冷却水循环系统; 所述 旋转混合器内涂覆有颗粒状多孔陶瓷表面负载催化剂层; 所述第二臭氧机上设置有冷却室; 所述第二射流器为第二文丘里混合器; 所述第二催化反应器为一台或一台以上, 所述第二催 化反应器通过管道并联或串联连接。
13、 根据权利要求 12所述的处理污水的系统,其特征在于: 所述潜水泵、 第二离心泵、 臭氧发生装置、 第二射流器和第二催化反应器集成安装在第二箱体内, 所述第二箱体数量为 一台或一台以上, 通过管道相串接; 所述过滤混合器的第二进口处设置有过滤网; 所述臭氧 发生装置与所述第二催化反应器的连接管道上设置有气体流量计; 所述混合物在第二催化反 应器的停留时间为 10秒至 500秒。
14、 利用权利要求 10所述的处理污水的系统进行污水处理的方法,其特征在于包括以下 步骤:
( 1 ) 对污水进行预处理, 并进行吸附和沉淀处理;
( 2) 所述污水通过潜水泵进入过滤混合器, 过滤混合器起到一个分流的作用;
( 3)经过过滤混合器进行分流后, 一部分污水由过滤混合器的出口进入第二离心泵, 另
一部分污水留在过滤混合器中;
( 4)污水以一定的速度由第二离心泵输送至第二射流器中, 所述第二射流器产生负压吸 入臭氧发生装置产生的臭氧, 形成臭氧和污水的混合物;
( 5 )所述混合物通过管道进入第二催化反应器, 所述混合物与第二催化反应器中的催化 剂层充分接触, 在催化剂的催化下, 进行氧化还原反应;
( 6 )所述第二臭氧机、冷却水箱、第二循环泵、第二换热器形成一个冷却水的循环系统, 用以降低第二臭氧机的温度; 所述污水在第二换热器与已对第二臭氧机降温的冷却水进行换 热, 降低冷却水的温度; 所述第二换热器将污水输送至过滤混合器, 反应残留的臭氧与未进 入第二催化反应器的污水进行混合;
( 7 )处理过的污水中仍含有部分臭氧, 这部分污水由过滤混合器进入旋转混合器, 在旋 转混合器内旋转两次后, 由旋转混合器的出口排入水域, 与水域中的未处理水混合, 消耗残 留的臭氧。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/899,354 US20160137539A1 (en) | 2013-06-17 | 2014-06-16 | Sewage treatment system and method thereof |
Applications Claiming Priority (12)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310238756.5 | 2013-06-17 | ||
CN201310238756.5A CN103304056B (zh) | 2013-06-17 | 2013-06-17 | 一种催化氧化污水处理设备 |
CN201410154047.3 | 2014-04-16 | ||
CN201410154047.3A CN103991979B (zh) | 2014-04-16 | 2014-04-16 | 处理污水的系统及其方法 |
CN201410255792.7A CN103979752B (zh) | 2014-06-10 | 2014-06-10 | 污水处理方法 |
CN201410254417.0A CN104085977B (zh) | 2014-06-10 | 2014-06-10 | 一种填料催化反应塔 |
CN201410255792.7 | 2014-06-10 | ||
CN201410254495.0A CN104071888B (zh) | 2014-06-10 | 2014-06-10 | 一种斜板催化反应塔 |
CN201410255026.0A CN104098222B (zh) | 2014-06-10 | 2014-06-10 | 污水处理系统 |
CN201410255026.0 | 2014-06-10 | ||
CN201410254417.0 | 2014-06-10 | ||
CN201410254495.0 | 2014-06-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014201979A1 true WO2014201979A1 (zh) | 2014-12-24 |
Family
ID=52103951
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2014/079909 WO2014201979A1 (zh) | 2013-06-17 | 2014-06-16 | 污水处理系统及其方法 |
Country Status (2)
Country | Link |
---|---|
US (1) | US20160137539A1 (zh) |
WO (1) | WO2014201979A1 (zh) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105417678A (zh) * | 2015-12-31 | 2016-03-23 | 北京清大国华环境股份有限公司 | 一种臭氧催化氧化的方法与装置 |
CN110002576A (zh) * | 2019-04-24 | 2019-07-12 | 中冶赛迪工程技术股份有限公司 | 一种臭氧催化氧化反应器及其污水处理方法 |
CN110963609A (zh) * | 2019-12-17 | 2020-04-07 | 江苏晟农玮业环保装备有限公司 | 一种小型升流式臭氧电子均相有机废水的反应方法 |
CN111484118A (zh) * | 2020-04-28 | 2020-08-04 | 光大水务科技发展(南京)有限公司 | 一种粉末催化剂臭氧催化氧化废水处理系统 |
CN112429834A (zh) * | 2020-11-13 | 2021-03-02 | 江苏通用环保集团有限公司 | 一种催化氧化装置 |
CN115231738A (zh) * | 2022-08-04 | 2022-10-25 | 北控水务(中国)投资有限公司 | 芬顿工艺废水处理方法 |
CN115477369A (zh) * | 2022-04-28 | 2022-12-16 | 中国矿业大学 | 一种基于气化细渣的铁碳填料及其制备方法、应用 |
CN115554746A (zh) * | 2022-07-25 | 2023-01-03 | 陈晓彬 | 一种地热全流发电系统用的废水过滤装置 |
CN116495868A (zh) * | 2023-06-27 | 2023-07-28 | 中铁建工集团有限公司 | 臭氧催化氧化塔 |
CN116899388A (zh) * | 2023-07-12 | 2023-10-20 | 湖南九九智能环保股份有限公司 | 一种微纳米臭氧气泡处理VOCs集成反应装置和方法 |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106007252A (zh) * | 2016-07-28 | 2016-10-12 | 南京德磊科技有限公司 | 高级氧化和多级生化组合的废水处理系统及工艺方法 |
CN106745674A (zh) * | 2017-03-10 | 2017-05-31 | 北京科技大学 | 一种水处理中光催化臭氧接触池 |
HRP20211905T1 (hr) | 2017-08-11 | 2022-03-18 | Polar Vortex, Llc | Uređaj za obradu vode |
CN107376494A (zh) * | 2017-08-31 | 2017-11-24 | 山西农业大学 | 一种马铃薯残渣、废液处理设备 |
CN107986425A (zh) * | 2017-12-15 | 2018-05-04 | 江苏湖大化工科技有限公司 | 一种污水处理用臭氧氧化反应器 |
CN108675543B (zh) * | 2018-06-27 | 2023-10-31 | 北京市惠全成环境治理工程有限责任公司 | 一种低消耗催化分离装置及废水处理系统 |
CN108569755A (zh) * | 2018-07-03 | 2018-09-25 | 北京市市政工程设计研究总院有限公司 | 大规模市政臭氧催化氧化滤池水处理系统 |
CN109775896B (zh) * | 2019-03-20 | 2024-03-15 | 南京大学 | 一种臭氧催化氧化耦合混凝沉淀深度净化生化尾水的装置及方法 |
CN109809535A (zh) * | 2019-03-26 | 2019-05-28 | 中国地质大学(北京) | 一种处理垃圾渗滤液反渗透浓缩液的反应器和方法 |
CN109970172A (zh) * | 2019-04-09 | 2019-07-05 | 威海百克环保工程有限公司 | 一种雾化与射流曝气复合式污水臭氧氧化处理系统 |
PL429685A1 (pl) * | 2019-04-18 | 2020-10-19 | Id'eau Spółka Z Ograniczoną Odpowiedzialnością | Układ technologiczny do strukturyzowania wody przemysłowej |
CN111018243A (zh) * | 2019-12-12 | 2020-04-17 | 陕西欧菲德环保科技有限公司 | 一种焦化废水处理方法 |
CN111302478B (zh) * | 2020-03-03 | 2024-03-12 | 清华大学 | 污泥及废水处理装置、污泥或废水处理方法 |
CN111517449A (zh) * | 2020-05-29 | 2020-08-11 | 浙江中誉生态环境科技有限公司 | 高效臭氧氧化装置 |
CN114314889A (zh) * | 2020-10-09 | 2022-04-12 | 南京工大开元环保科技(滁州)有限公司 | 一种臭氧催化氧化装置 |
CN112811737A (zh) * | 2021-01-19 | 2021-05-18 | 宜兴市清泰净化剂有限公司 | 一种脱色絮凝丝绸染色废水处理工艺及装置 |
CN113509891B (zh) * | 2021-05-11 | 2022-04-12 | 南京大学 | 一种原位活化固定床非均相催化剂反应器 |
CN113716756B (zh) * | 2021-09-18 | 2022-06-21 | 上海中耀环保实业有限公司 | 一种非负载型臭氧催化氧化处理污水系统及其方法 |
CN115057519B (zh) * | 2022-07-15 | 2023-07-18 | 浙江树人学院 | 一种氧化处理有机废水装置 |
CN115504562A (zh) * | 2022-10-20 | 2022-12-23 | 哈尔滨工业大学水资源国家工程研究中心有限公司 | 一种催化臭氧氧化反应器 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006305546A (ja) * | 2005-03-29 | 2006-11-09 | Yaskawa Electric Corp | 汚水処理装置 |
CN101172741A (zh) * | 2007-10-25 | 2008-05-07 | 王爱月 | 印染清废、综合废水深度处理循环生产回用工艺 |
CN101229936A (zh) * | 2005-10-27 | 2008-07-30 | 韩春来 | 一种用于对炼油及化工污水进行回收的方法和设备 |
CN101781036A (zh) * | 2009-12-23 | 2010-07-21 | 新奥科技发展有限公司 | 利用臭氧催化氧化处理难降解废水的设备和方法 |
CN102730897A (zh) * | 2011-04-07 | 2012-10-17 | 陈凯华 | 一种碎煤加压气化污水处理与回用工艺 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2033707T3 (es) * | 1986-03-14 | 1993-04-01 | Forschungszentrum Julich Gmbh | Procedimiento para la realizacion de procesos biotecnologicos, que se desarrollan con formacion de gas, en reactores de lecho solido y dispositivos apropiados para gasificacion y desgasificacion. |
JP2628089B2 (ja) * | 1989-08-18 | 1997-07-09 | 大阪瓦斯株式会社 | 廃水の処理方法 |
US5118422A (en) * | 1990-07-24 | 1992-06-02 | Photo-Catalytics, Inc. | Photocatalytic treatment of water |
US5178755A (en) * | 1992-02-20 | 1993-01-12 | Estr Inc. | UV-enhanced ozone wastewater treatment system |
US6270733B1 (en) * | 1998-04-09 | 2001-08-07 | Raymond M. Rodden | Ozone generator |
US7371323B1 (en) * | 2004-08-11 | 2008-05-13 | Spielman Rick B | System and method for reducing wastewater contaminants |
EP1931459A4 (en) * | 2005-09-12 | 2012-11-21 | Haggerty Ken | TRANSFER APPARATUS AND SYSTEM AND USES THEREOF |
WO2010049515A2 (de) * | 2008-10-31 | 2010-05-06 | Basf Se | Ionentauscher-formkoerper und verfahren zu ihrer herstellung |
US9180411B2 (en) * | 2011-09-22 | 2015-11-10 | Chevron U.S.A. Inc. | Apparatus and process for treatment of water |
US9428385B2 (en) * | 2013-01-24 | 2016-08-30 | Fujian Newland Entech Co., Ltd. | Exhaust gas expansion tank and ozone generator system applying the same |
-
2014
- 2014-06-16 US US14/899,354 patent/US20160137539A1/en not_active Abandoned
- 2014-06-16 WO PCT/CN2014/079909 patent/WO2014201979A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006305546A (ja) * | 2005-03-29 | 2006-11-09 | Yaskawa Electric Corp | 汚水処理装置 |
CN101229936A (zh) * | 2005-10-27 | 2008-07-30 | 韩春来 | 一种用于对炼油及化工污水进行回收的方法和设备 |
CN101172741A (zh) * | 2007-10-25 | 2008-05-07 | 王爱月 | 印染清废、综合废水深度处理循环生产回用工艺 |
CN101781036A (zh) * | 2009-12-23 | 2010-07-21 | 新奥科技发展有限公司 | 利用臭氧催化氧化处理难降解废水的设备和方法 |
CN102730897A (zh) * | 2011-04-07 | 2012-10-17 | 陈凯华 | 一种碎煤加压气化污水处理与回用工艺 |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105417678A (zh) * | 2015-12-31 | 2016-03-23 | 北京清大国华环境股份有限公司 | 一种臭氧催化氧化的方法与装置 |
CN110002576A (zh) * | 2019-04-24 | 2019-07-12 | 中冶赛迪工程技术股份有限公司 | 一种臭氧催化氧化反应器及其污水处理方法 |
CN110002576B (zh) * | 2019-04-24 | 2023-11-14 | 中冶赛迪工程技术股份有限公司 | 一种臭氧催化氧化反应器及其污水处理方法 |
CN110963609A (zh) * | 2019-12-17 | 2020-04-07 | 江苏晟农玮业环保装备有限公司 | 一种小型升流式臭氧电子均相有机废水的反应方法 |
CN111484118A (zh) * | 2020-04-28 | 2020-08-04 | 光大水务科技发展(南京)有限公司 | 一种粉末催化剂臭氧催化氧化废水处理系统 |
CN112429834A (zh) * | 2020-11-13 | 2021-03-02 | 江苏通用环保集团有限公司 | 一种催化氧化装置 |
CN115477369A (zh) * | 2022-04-28 | 2022-12-16 | 中国矿业大学 | 一种基于气化细渣的铁碳填料及其制备方法、应用 |
CN115554746A (zh) * | 2022-07-25 | 2023-01-03 | 陈晓彬 | 一种地热全流发电系统用的废水过滤装置 |
CN115231738A (zh) * | 2022-08-04 | 2022-10-25 | 北控水务(中国)投资有限公司 | 芬顿工艺废水处理方法 |
CN115231738B (zh) * | 2022-08-04 | 2024-01-26 | 北控水务(中国)投资有限公司 | 芬顿工艺废水处理方法 |
CN116495868A (zh) * | 2023-06-27 | 2023-07-28 | 中铁建工集团有限公司 | 臭氧催化氧化塔 |
CN116495868B (zh) * | 2023-06-27 | 2023-10-20 | 中铁建工集团有限公司 | 臭氧催化氧化塔 |
CN116899388A (zh) * | 2023-07-12 | 2023-10-20 | 湖南九九智能环保股份有限公司 | 一种微纳米臭氧气泡处理VOCs集成反应装置和方法 |
CN116899388B (zh) * | 2023-07-12 | 2024-05-17 | 湖南九九智能环保股份有限公司 | 一种微纳米臭氧气泡处理VOCs集成反应装置和方法 |
Also Published As
Publication number | Publication date |
---|---|
US20160137539A1 (en) | 2016-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014201979A1 (zh) | 污水处理系统及其方法 | |
CN101376556B (zh) | 臭氧氧化消毒与下流式曝气生物滤池结合的废水处理装置 | |
CN108483806B (zh) | 一种利用活性炭催化臭氧预氧化的废水深度处理系统及工艺 | |
CN102180556B (zh) | 一种吸附再生-光催化高级氧化水处理设备 | |
CN102225827B (zh) | 一种草浆造纸中段废水的处理方法 | |
CN203144227U (zh) | 多级氧化处理难降解废水的一体化装置 | |
CN104150698B (zh) | 一种m型人工湿地深度处理农村生活污水的装置和方法 | |
WO2023072097A1 (zh) | 复合式芬顿法辅以陶瓷薄膜过滤污水处理器 | |
CN208684701U (zh) | 一种难降解工业废水生化处理系统 | |
CN106007228A (zh) | 一种基于abr的一体化污水处理设备 | |
CN101898847B (zh) | 处理含壬基酚聚氧乙烯醚及代谢产物污水的系统 | |
CN216946374U (zh) | 一种臭氧双氧水高效联合催化氧化废水处理装置 | |
CN102167424B (zh) | 一种含盐难降解有机废水的u型流处理方法 | |
CN101468855A (zh) | 饮用水净化系统 | |
CN204550132U (zh) | 一种新型光催化水处理设备 | |
CN112520923A (zh) | 一种脲醛树脂、酚醛树脂生产企业废水处理方法 | |
CN106044934A (zh) | 二氧化钛光触媒降解高氨氮废水的方法和装置 | |
CN106082559A (zh) | 一种节能高效的一体化废水处理装置 | |
CN210163286U (zh) | 一种基于分段曝气生物处理技术的生活污水处理系统 | |
CN110204119B (zh) | 羟基自由基-气浮-脱气自动化水处理设备 | |
CN103979752B (zh) | 污水处理方法 | |
CN211813791U (zh) | 一种有机废水光催化处理装置 | |
CN210393863U (zh) | 一种养殖废水臭氧处理设备 | |
CN114956443A (zh) | 一种工业污水自循环处理装置 | |
CN103991979B (zh) | 处理污水的系统及其方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14813180 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14899354 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14813180 Country of ref document: EP Kind code of ref document: A1 |