[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014136204A1 - Solar battery module - Google Patents

Solar battery module Download PDF

Info

Publication number
WO2014136204A1
WO2014136204A1 PCT/JP2013/055959 JP2013055959W WO2014136204A1 WO 2014136204 A1 WO2014136204 A1 WO 2014136204A1 JP 2013055959 W JP2013055959 W JP 2013055959W WO 2014136204 A1 WO2014136204 A1 WO 2014136204A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive adhesive
interconnector
width
solar battery
adhesive layer
Prior art date
Application number
PCT/JP2013/055959
Other languages
French (fr)
Japanese (ja)
Inventor
大内正純
Original Assignee
長州産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 長州産業株式会社 filed Critical 長州産業株式会社
Priority to PCT/JP2013/055959 priority Critical patent/WO2014136204A1/en
Publication of WO2014136204A1 publication Critical patent/WO2014136204A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F19/00Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules
    • H10F19/90Structures for connecting between photovoltaic cells, e.g. interconnections or insulating spacers
    • H10F19/902Structures for connecting between photovoltaic cells, e.g. interconnections or insulating spacers for series or parallel connection of photovoltaic cells
    • H10F19/904Structures for connecting between photovoltaic cells, e.g. interconnections or insulating spacers for series or parallel connection of photovoltaic cells characterised by the shapes of the structures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F19/00Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules
    • H10F19/90Structures for connecting between photovoltaic cells, e.g. interconnections or insulating spacers
    • H10F19/902Structures for connecting between photovoltaic cells, e.g. interconnections or insulating spacers for series or parallel connection of photovoltaic cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/20Electrodes
    • H10F77/206Electrodes for devices having potential barriers
    • H10F77/211Electrodes for devices having potential barriers for photovoltaic cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell module in which a plurality of solar cells are electrically connected via an interconnector.
  • a solar battery cell constituting a solar battery module includes a plurality of finger electrodes provided on the surface thereof in parallel with each other with a certain distance between each other, and the plurality of finger electrodes are electrically connected by an interconnector.
  • the interconnector is also used for electrical connection between a plurality of solar cells constituting the solar cell module.
  • a method of connecting the interconnector to each finger electrode there is a method using a conductive double-sided tape (conductive film) (see, for example, Patent Document 1).
  • conductive double-sided tape is expensive and hinders cost reduction of solar cells. Therefore, it is conceivable that a conductive adhesive is applied to the surface of the solar cell along a direction orthogonal to the longitudinal direction of each finger electrode, and the interconnector is electrically connected to each finger electrode via the conductive adhesive. .
  • the conductive adhesive is applied linearly to the surface of the solar cell along the direction perpendicular to the longitudinal direction of the electrode, a large amount of conductive is required for electrical connection between the interconnector and each electrode. Adhesive is required and the cost cannot be reduced sufficiently. On the other hand, when the amount of the conductive adhesive applied to the surface of the solar battery cell is insufficient, the connection strength between the interconnector and each electrode becomes insufficient.
  • An object of the present invention is to form an electrically conductive adhesive with a non-uniform width along a direction orthogonal to the longitudinal direction of each electrode, so that the interconnector and each electrode can be electrically connected reliably and at low cost.
  • the object is to provide a solar cell module.
  • a solar battery cell constituting the solar battery module of the present invention includes a plurality of finger electrodes, an interconnector, and a conductive adhesive layer.
  • the plurality of finger electrodes are formed in parallel with each other with a certain distance between each other on the surface of the solar battery cell in a state of protruding from the surface of the solar battery cell.
  • the interconnector has a band shape with a constant width and is disposed along a direction orthogonal to the longitudinal direction of the plurality of finger electrodes.
  • the conductive adhesive layer is made of a conductive adhesive, and is fixed to the surface of the solar battery cell in a state where the interconnector is electrically connected to the plurality of finger electrodes.
  • the conductive adhesive layer is formed on the surface of the solar cell at a portion including at least the intervals of the plurality of finger electrodes and in a range in which the interconnector is disposed, and the conductive adhesive layer has a certain width or less in the longitudinal direction of the finger electrodes. A first width portion and a second width portion narrower than the first width.
  • the interconnector is attached to the surface of the solar cell via the conductive adhesive layer. Since the conductive adhesive layer has a first width portion equal to or less than a certain width of the interconnector and a second width portion narrower than the first width, the conductive adhesive layer has a uniform width over the entire length of the interconnector. The required amount of conductive adhesive is reduced compared to the case where it is formed. Moreover, since a conductive adhesive layer is below the fixed width of an interconnector, the light reception amount of a photovoltaic cell does not reduce.
  • the first width is preferably 50% or more of the constant width of the interconnector.
  • the interconnector can be reliably bonded to the surface of the solar battery cell.
  • the second width is preferably 60% or less of the first width.
  • the amount of conductive adhesive applied can be reliably reduced.
  • the conductive adhesive layer may be a portion where each of the plurality of finger electrodes and the interconnector overlap each other so as not to be continuous in a direction perpendicular to the longitudinal direction of the finger electrodes.
  • the second width becomes 0, and the application amount of the conductive adhesive can be surely reduced.
  • the interconnector and each electrode can be securely and It can be electrically connected at low cost.
  • (A) And (B) is the top view and side sectional drawing of the solar cell module which concern on 1st Embodiment of this invention.
  • (A) And (B) is the top view and sectional drawing of the principal part of the photovoltaic cell which comprises the solar cell module.
  • (A) And (B) is a figure explaining the manufacturing method of the photovoltaic cell,
  • (A) and (B) are the top views and sectional drawings which show an application
  • the top view and sectional drawing which show a process, (E) and (F) are the top view and sectional drawing which show a sticking process.
  • (A) And (B) is the top view and sectional drawing of the principal part of the photovoltaic cell which comprise the solar cell module which concerns on the 2nd Embodiment of this invention.
  • (A) to (L) are a plan view and a cross-sectional view of a main part of a solar battery cell constituting a solar battery module according to third to eighth embodiments of the present invention.
  • (A) to (C) are plan views of the main part of the solar battery cell constituting the solar battery module according to the embodiment of the present invention.
  • a solar cell module 20 includes, for example, a total of nine bus barless solar cells 10 of 3 rows ⁇ 3 columns, and a filler layer between a glass plate 21 on the front surface and a back sheet 22 on the back surface. 23.
  • each solar cell 10 On the front and back surfaces of each solar cell 10, a plurality of finger electrodes 1 are formed in parallel with each other at regular intervals, and two interconnectors 2 are attached in a direction perpendicular to the finger electrodes 1.
  • the interconnector 2 electrically connects the plurality of finger electrodes 1 to each other on the front and back surfaces of each solar battery cell 10 and connects one surface of the two solar battery cells 10 arranged in the column direction to the other back surface. Connect between them.
  • the interconnectors 2 of the two solar cells 10 aligned in the row direction at the end in the column direction are connected by a tab line 4.
  • the interconnector 2 has a band shape with a constant width in a plan view, and is arranged along a direction orthogonal to the longitudinal direction of the finger electrode 1.
  • each finger electrode 1 is formed with at least one pad portion 11 in the middle portion in the longitudinal direction.
  • a measurement terminal (not shown) is brought into contact with the pad portion 11.
  • the interconnector 2 is disposed on the pad portion 11 of each finger electrode 1.
  • a conductive adhesive layer 3 is formed between the pad portions 11 of each finger electrode 1 on the surface of the solar battery cell 10.
  • the conductive adhesive layer 3 is composed of a conductive adhesive applied to the surface of the solar battery cell 10.
  • the conductive adhesive is obtained by adding conductive particles to a resin having adhesiveness.
  • a known conductive adhesive used for semiconductor manufacturing can be used.
  • Each conductive adhesive layer 3 is in contact with each pad portion 11 of two adjacent finger electrodes 1.
  • the interconnector 2 is affixed to the surface of the solar battery cell 10 with the lower surface in contact with the upper surface of the portion including the pad portion 11 of each finger electrode 1 via each conductive adhesive layer 3.
  • Each finger electrode 1 is electrically connected via an interconnector 2 that is in contact with the upper surface of the portion including the respective pad portion 11, and via each conductive adhesive layer 3 that is in contact with each pad portion 11. Are electrically connected.
  • the conductive adhesive layer 3 is not formed on the pad portion 11, becomes discontinuous on the pad portion 11, and the width of the conductive adhesive layer 3 is one. Not like that. Compared with the case where the conductive adhesive layer 3 is formed with a uniform width over the entire length of the arrangement range of the interconnector 2, the amount of the conductive adhesive applied can be reduced.
  • an appropriate amount of conduction is provided between the pad portions 11 of the plurality of finger electrodes 1 on the surface of the solar cell 10 in the coating process.
  • Apply adhesive The conductive adhesive can be applied using a silk screen or a syringe. At the time of applying the conductive adhesive by the syringe, the conductive adhesive is intermittently discharged while moving the syringe with respect to the solar battery cell 10, or the discharge of the conductive adhesive and the movement of the syringe are repeated.
  • the conductive adhesive is applied only between the pad portions 11 of the plurality of finger electrodes 1 within a range where the interconnector 2 is disposed on the surface of the solar battery cell 10. Compared with the case where the conductive adhesive is applied over the entire length of the range in which the interconnector 2 is disposed, the application amount is reduced, and the cost can be reduced.
  • the amount of the conductive adhesive applied between the pad portions 11 is a predetermined height substantially equal to the height of the finger electrode 1 between two adjacent pad portions 11 and is an interconnector for the surface of the solar battery cell 10. This is a necessary and sufficient amount for filling with a predetermined width that can secure a sufficient adhesive strength of 2.
  • the predetermined width should be narrower than the width of the interconnector 2 in order to prevent a decrease in the amount of light received on the surface of the solar battery cell 10.
  • An appropriate amount of the conductive adhesive is applied between two adjacent pad portions 11 on the surface of the solar battery cell 10 so as to be higher than a predetermined height.
  • the conductive connector on the surface of the solar battery cell 10 was applied to the interconnector 2 in the placing step before the conductive adhesive was cured.
  • the longitudinal direction is placed perpendicular to the longitudinal direction of the plurality of finger electrodes 1.
  • the lower surface of the interconnector 2 is in contact with the conductive adhesive.
  • the interconnector 2 is pressed from the upper side toward the surface of the solar battery cell 10 over the entire length.
  • the conductive adhesive having flexibility before curing is pressed through the interconnector 2
  • the height from the surface of the solar battery cell 10 is reduced and the area on the surface of the solar battery cell 10 is enlarged.
  • the height of the conductive adhesive substantially matches the height of the finger electrode 1, and both ends thereof contact the pad portions 11 of the two finger electrodes 1 adjacent to each other to form the conductive adhesive layer 3.
  • the interconnector 2 is a portion including the pad portion 11 in each finger electrode 1 on the lower surface via each conductive adhesive layer 3. Attached to the surface of the solar battery cell 10 while being in contact with the upper surface of the solar cell 10.
  • the plurality of finger electrodes 1 are electrically connected to each other via an interconnector 2. Adjacent finger electrodes 1 are electrically connected via the conductive adhesive layer 3 at the respective pad portions 11. By setting the predetermined width to 30 to 50% of the interconnector, a good connection state between adjacent finger electrodes 1 could be obtained.
  • the photovoltaic cell 101 which comprises the solar cell module which concerns on the 2nd Embodiment of this invention is between each pad part 11 of the several finger electrode 1 in the surface.
  • the conductive adhesive layers 3 ⁇ / b> A and 3 ⁇ / b> B are discontinuously formed on the pads 11 along the position where the interconnector 2 is disposed.
  • the interconnector 2 is affixed to the surface of the solar battery cell 101 by the conductive adhesive layer 3A, and is affixed to each pad part 11 of the plurality of finger electrodes 1 by the conductive adhesive layer 3B. Thereby, the interconnector 2 can be firmly fixed to a predetermined position on the surface of the solar battery cell 101.
  • the plurality of finger electrodes 1 are electrically connected to each other via the conductive adhesive layer 3 ⁇ / b> B and the interconnector 2 at each pad portion 11.
  • the interconnector 2 can be kept firmly fixed on the surface of the solar battery cell 101, and compared with the case where the conductive adhesive is applied over the entire length of the area where the interconnector 2 is disposed. The application amount can be reduced.
  • each pad of the several finger electrode 1 it is also conceivable to form a conductive adhesive layer on the portion 11. In this case, by reducing the application of the conductive adhesive between the pad portions 11 and reducing the width of the conductive adhesive layer, an increase in the total amount of the conductive adhesive can be prevented. .
  • each photovoltaic cell 10 is configured similarly to the front surface side.
  • the solar battery cell 102 constituting the solar battery module according to the third embodiment of the present invention has a pad portion on any of the plurality of finger electrodes 1 on the surface. I do not have.
  • the solar battery cell 102 is configured by pasting the interconnector 2 after discontinuously forming the conductive adhesive layer 301 along the position of the interconnector 2 between the finger electrodes 1 on the surface.
  • the interconnector 2 is attached to the surface of the solar battery cell 102 without contacting the finger electrode 1 by the conductive adhesive layer 301.
  • Each of the plurality of finger electrodes 1 is electrically connected to each other by the conductive adhesive layer 301 and is also electrically connected to each other by the interconnector 2 through the conductive adhesive layer 301.
  • the conductive adhesive layer 301 can be formed by applying a conductive adhesive using a silk screen or moving a syringe while discharging the conductive adhesive at a constant discharge amount.
  • the solar battery cell 103 constituting the solar battery module according to the fourth embodiment of the present invention is between the finger electrodes 1 on the surface and on the finger electrodes 1.
  • the conductive adhesive layer 302 is formed discontinuously in a dot shape along the position where the interconnector 2 is disposed, and then the interconnector 2 is pasted.
  • the interconnector 2 comes into contact with the finger electrode 1 by being pressed toward the surface of the solar battery cell 103 at the time of pasting. At this time, the conductive adhesive 302 on the finger electrode 1 flows on both sides of the finger electrode 1.
  • the dot-like conductive adhesive layer 302 can be formed by discharging the conductive adhesive from the syringe at each position while moving the syringe intermittently with respect to the solar battery cell 103.
  • the interconnector 2 is attached to the surface of the solar battery cell 103 by the conductive adhesive layer 302.
  • the plurality of finger electrodes 1 are electrically connected to each other by the conductive adhesive layer 302 and the interconnector 2 that are in contact with both sides.
  • the solar battery cell 104 constituting the solar battery module according to the fifth embodiment of the present invention has a plurality of finger electrodes 1 on the surface in the same manner as the solar battery cell 102. None of them has a pad portion.
  • the solar battery cell 104 discontinuously forms the conductive adhesive 302 in the form of dots along the position of the interconnector 2 between the finger electrodes 1 on the surface and on the finger electrode 1. It is affixed and configured.
  • the interconnector 2 is affixed to the surface of the solar battery cell 104 without contacting the finger electrode 1 with the conductive adhesive 302.
  • the plurality of finger electrodes 1 are electrically connected by the interconnector 2 via the conductive adhesive 302.
  • a solar battery cell 105 constituting a solar battery module according to the sixth embodiment of the present invention has a plurality of finger electrodes 1 on the surface in the same manner as the solar battery cell 102. None of them has a pad portion.
  • the solar battery 105 is formed by discontinuously forming the conductive adhesive layer 302 in a dot shape between the finger electrodes 1 on the surface so that one of them is in contact with the finger electrode 1 along the position of the interconnector 2.
  • the interconnector 2 is pasted.
  • the interconnector 2 is attached to the surface of the solar battery cell 105 without contacting the finger electrode 1 by the conductive adhesive layer 302.
  • the plurality of finger electrodes 1 are electrically connected by the interconnector 2 via the conductive adhesive layer 302.
  • the solar battery cell 106 constituting the solar battery module according to the seventh embodiment of the present invention has a plurality of finger electrodes 1 on the surface in the same manner as the solar battery cell 102. None of them has a pad portion.
  • the conductive adhesive layers 302 are partially overlapped with each other in the form of dots along the arrangement position of the interconnector 2.
  • the interconnector 2 is pasted.
  • the interconnector 2 is attached to the surface of the solar battery cell 106 without contacting the finger electrode 1 by the conductive adhesive layer 302.
  • the plurality of finger electrodes 1 are electrically connected by the conductive adhesive layer 302 and also electrically connected by the interconnector 2 through the conductive adhesive layer 302.
  • the solar battery cell 107 constituting the solar battery module according to the eighth embodiment of the present invention has a plurality of finger electrodes 1 on the surface in the same manner as the solar battery cell 102. None of them has a pad portion.
  • the solar battery 107 has a conductive adhesive located between the finger electrodes 1 on the surface so that a plurality of conductive adhesive layers 302 overlap each other in a dot shape along the position where the interconnector 2 is disposed, and at both ends. After the outer side of the agent layer 302 is formed so as to be in contact with the finger electrode 1, the interconnector 2 is pasted.
  • the interconnector 2 is affixed to the surface of the solar cell 107 without contacting the finger electrode 1 by the conductive adhesive layer 302.
  • the plurality of finger electrodes 1 are electrically connected by the conductive adhesive layer 302 and also electrically connected by the interconnector 2 through the conductive adhesive layer 302.
  • the coating amount can be reduced as compared with the case where the conductive adhesive is applied over the entire length of the range in which the interconnector 2 is disposed.
  • FIGS. 5A to 5L can be similarly applied to a solar cell including the finger electrode 1 having a pad portion.
  • the conductive adhesive layer 302 is entirely before the interconnector 2 is applied.
  • the first width W1 and the second width W2 are included.
  • the conductive adhesive layer 302 is used to attach the interconnector 2 to the surface of the solar battery cell 10. Therefore, when the first width W1 which is the maximum width of the conductive adhesive layer 302 is larger than the constant width WA of the interconnector 2, the portion exceeding the constant width WA does not contact the interconnector 2, and the interconnector 2 It does not fulfill the function of attaching 2 to the surface of the solar battery cell 10. For this reason, it is desirable that the first width W1 be equal to or smaller than the constant width WA.
  • the contact area with the interconnector 2 becomes too small, and the interconnector 2 can be firmly attached to the surface of the solar battery cell 10. Since it is not possible, it is desirable to set it to 50% or more of the constant width WA.
  • the second width W2 exceeds 62% of the first width W1
  • the area of the overlapping portion SA of the adjacent conductive adhesive layer 302 is larger than the area of the hatched portion SB in FIG. Also grows.
  • the overlapping portion SA has twice as much conductive adhesive as the other portions. If the area of the overlapping portion SA is equal to the area of the hatched portion SB, the same amount of the conductive adhesive as in the case where the conductive adhesive layer 302 is uniformly formed with the first width W1 has been applied. become. Therefore, in order to reduce the application amount of the conductive adhesive compared to the case where the first width W1 is uniformly formed, it is desirable that the second width W2 is 60% or less of the first width W1.
  • the second width W2 becomes 0 and the first width The condition of 60% or less of the width W1 is satisfied.
  • the second width W2 is 0 and is 60% or less of the first width W1. Satisfy the condition of The same applies to the case where the rectangular conductive adhesive layer 301 is formed discontinuously.

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

The purpose of the present invention is to enable an interconnector and finger electrodes to be electrically connected reliably and at a low cost by forming on the surface of a solar battery cell a conductive adhesive layer along a direction orthogonal to the length direction of the finger electrodes and at a non-uniform width. A conductive adhesive layer (3), for electrically connecting a plurality of finger electrodes (1) to each other via an interconnector (2), is intermittently formed in the range in which the interconnector (2) is disposed on the surface of a solar battery module (10).

Description

太陽電池モジュールSolar cell module

 この発明は、複数の太陽電池セルをインターコネクタを介して電気的に接続した太陽電池モジュールに関する。 The present invention relates to a solar cell module in which a plurality of solar cells are electrically connected via an interconnector.

 太陽電池モジュールを構成する太陽電池セルは、表面に複数のフィンガ電極を互いの間に一定の間隔を設けて互いに平行に備え、複数のフィンガ電極をインターコネクタによって電気的に接続している。インターコネクタは、太陽電池モジュールを構成する複数の太陽電池セル同士の電気的接続にも用いられる。インターコネクタを各フィンガ電極に接続する方法として、導電性両面テープ(コンダクティブフィルム)を用いたものがある(例えば、特許文献1参照。)。 A solar battery cell constituting a solar battery module includes a plurality of finger electrodes provided on the surface thereof in parallel with each other with a certain distance between each other, and the plurality of finger electrodes are electrically connected by an interconnector. The interconnector is also used for electrical connection between a plurality of solar cells constituting the solar cell module. As a method of connecting the interconnector to each finger electrode, there is a method using a conductive double-sided tape (conductive film) (see, for example, Patent Document 1).

 ところが、導電性両面テープは高価であり、太陽電池のコストの低廉化の妨げとなる。そこで、各フィンガ電極の長手方向に直交する方向に沿って太陽電池表面に導電性接着剤を塗布し、導電性接着剤を介してインターコネクタを各フィンガ電極に電気的に接続することが考えられる。 However, conductive double-sided tape is expensive and hinders cost reduction of solar cells. Therefore, it is conceivable that a conductive adhesive is applied to the surface of the solar cell along a direction orthogonal to the longitudinal direction of each finger electrode, and the interconnector is electrically connected to each finger electrode via the conductive adhesive. .

特開2011-159937号公報JP 2011-159937 A

 しかし、導電性接着剤を電極の長手方向に直交する方向に沿って太陽電池セルの表面に直線状に塗布することとすると、インターコネクタと各電極との電気的接続のために多量の導電性接着剤が必要となり、コストを十分に削減できない。一方、太陽電池セルの表面に塗布する導電性接着剤量が不足すると、インターコネクタと各電極との接続強度が不十分になる。 However, if the conductive adhesive is applied linearly to the surface of the solar cell along the direction perpendicular to the longitudinal direction of the electrode, a large amount of conductive is required for electrical connection between the interconnector and each electrode. Adhesive is required and the cost cannot be reduced sufficiently. On the other hand, when the amount of the conductive adhesive applied to the surface of the solar battery cell is insufficient, the connection strength between the interconnector and each electrode becomes insufficient.

 この発明の目的は、各電極の長手方向に直交する方向に沿って導電性接着剤を一様でない幅で形成することで、インターコネクタと各電極とを確実かつ低コストで電気的に接続できる太陽電池モジュールを提供することにある。 An object of the present invention is to form an electrically conductive adhesive with a non-uniform width along a direction orthogonal to the longitudinal direction of each electrode, so that the interconnector and each electrode can be electrically connected reliably and at low cost. The object is to provide a solar cell module.

 この発明の太陽電池モジュールを構成する太陽電池セルは、複数のフィンガ電極、インターコネクタ、導電性接着剤層を備える。複数のフィンガ電極は、太陽電池セルの表面から突出した状態で、太陽電池セルの表面に互いの間に一定の間隔を設けて互いに平行に形成される。インターコネクタは、一定幅の帯状を呈し、複数のフィンガ電極の長手方向に直交する方向に沿って配置される。導電性接着剤層は、導電性接着剤で構成され、インターコネクタを複数のフィンガ電極に電気的に接続した状態で太陽電池セルの表面に固定する。導電性接着剤層は、太陽電池セルの表面における少なくとも複数のフィンガ電極のそれぞれの間隔を含む部分で且つインターコネクタが配置されている範囲に形成され、フィンガ電極の長手方向について一定幅以下の第1の幅の部分と、第1の幅よりも狭い第2の幅の部分と、を有する。 A solar battery cell constituting the solar battery module of the present invention includes a plurality of finger electrodes, an interconnector, and a conductive adhesive layer. The plurality of finger electrodes are formed in parallel with each other with a certain distance between each other on the surface of the solar battery cell in a state of protruding from the surface of the solar battery cell. The interconnector has a band shape with a constant width and is disposed along a direction orthogonal to the longitudinal direction of the plurality of finger electrodes. The conductive adhesive layer is made of a conductive adhesive, and is fixed to the surface of the solar battery cell in a state where the interconnector is electrically connected to the plurality of finger electrodes. The conductive adhesive layer is formed on the surface of the solar cell at a portion including at least the intervals of the plurality of finger electrodes and in a range in which the interconnector is disposed, and the conductive adhesive layer has a certain width or less in the longitudinal direction of the finger electrodes. A first width portion and a second width portion narrower than the first width.

 この構成によれば、インターコネクタが、導電性接着剤層を介して太陽電池表面に貼付される。導電性接着剤層は、インターコネクタの一定幅以下の第1の幅の部分と、第1の幅よりも狭い第2の幅の部分と、を有するため、インターコネクタの全長にわたって均一の幅で形成される場合に比較して導電性接着剤の必要量が減少する。また、導電性接着剤層は、インターコネクタの一定幅以下であるため、太陽電池セルの受光量が減少することがない。 According to this configuration, the interconnector is attached to the surface of the solar cell via the conductive adhesive layer. Since the conductive adhesive layer has a first width portion equal to or less than a certain width of the interconnector and a second width portion narrower than the first width, the conductive adhesive layer has a uniform width over the entire length of the interconnector. The required amount of conductive adhesive is reduced compared to the case where it is formed. Moreover, since a conductive adhesive layer is below the fixed width of an interconnector, the light reception amount of a photovoltaic cell does not reduce.

 この構成において、第1の幅は、インターコネクタの一定幅の50%以上とすることが好ましい。インターコネクタを太陽電池セルの表面に確実に接着することができる。 In this configuration, the first width is preferably 50% or more of the constant width of the interconnector. The interconnector can be reliably bonded to the surface of the solar battery cell.

 また、第2の幅は、第1の幅の60%以下とすることが好ましい。導電性接着剤の塗布量を確実に減少することができる。 The second width is preferably 60% or less of the first width. The amount of conductive adhesive applied can be reliably reduced.

 さらに、導電性接着剤層は、複数のフィンガ電極のそれぞれとインターコネクタとが重なる部分で、フィンガ電極の長手方向に直交する方向に連続しないようにすることもできる。第2の幅が0となり、導電性接着剤の塗布量を確実に減少することができる。 Further, the conductive adhesive layer may be a portion where each of the plurality of finger electrodes and the interconnector overlap each other so as not to be continuous in a direction perpendicular to the longitudinal direction of the finger electrodes. The second width becomes 0, and the application amount of the conductive adhesive can be surely reduced.

 この発明によれば、各フィンガ電極の長手方向に直交する方向に沿って太陽電池セルの表面に導電性接着剤層を一様でない幅で形成することで、インターコネクタと各電極とを確実かつ低コストで電気的に接続できる。 According to this invention, by forming the conductive adhesive layer with a non-uniform width on the surface of the solar cell along the direction orthogonal to the longitudinal direction of each finger electrode, the interconnector and each electrode can be securely and It can be electrically connected at low cost.

(A)及び(B)は、この発明の第1の実施形態に係る太陽電池モジュールの平面図及び側面断面図である。(A) And (B) is the top view and side sectional drawing of the solar cell module which concern on 1st Embodiment of this invention. (A)及び(B)は、同太陽電池モジュールを構成する太陽電池セルの要部の平面図及び断面図である。(A) And (B) is the top view and sectional drawing of the principal part of the photovoltaic cell which comprises the solar cell module. (A)及び(B)は同太陽電池セルの製造方法を説明する図であり、(A)及び(B)は塗布工程を示す平面図及び断面図、(C)及び(D)は載置工程を示す平面図及び断面図、(E)及び(F)は貼着工程を示す平面図及び断面図である。(A) And (B) is a figure explaining the manufacturing method of the photovoltaic cell, (A) and (B) are the top views and sectional drawings which show an application | coating process, (C) and (D) are mounting. The top view and sectional drawing which show a process, (E) and (F) are the top view and sectional drawing which show a sticking process. (A)及び(B)は、この発明の第2の実施形態に係る太陽電池モジュールを構成する太陽電池セルの要部の平面図及び断面図である。(A) And (B) is the top view and sectional drawing of the principal part of the photovoltaic cell which comprise the solar cell module which concerns on the 2nd Embodiment of this invention. (A)~(L)は、この発明の第3~第8の実施形態に係る太陽電池モジュールを構成する太陽電池セルの要部の平面図及び断面図である。(A) to (L) are a plan view and a cross-sectional view of a main part of a solar battery cell constituting a solar battery module according to third to eighth embodiments of the present invention. (A)~(C)は、この発明の実施形態に係る太陽電池モジュールを構成する太陽電池セルの要部の平面図である。(A) to (C) are plan views of the main part of the solar battery cell constituting the solar battery module according to the embodiment of the present invention.

 以下に、この発明の実施形態に係る太陽電池モジュールに図面を参照しつつ説明する。 Hereinafter, a solar cell module according to an embodiment of the present invention will be described with reference to the drawings.

 図1に示すように、太陽電池モジュール20は、一例として3行×3列の計9個のバスバーレス太陽電池セル10を、表面のガラス板21と裏面のバックシート22との間の充填剤層23に配置している。 As shown in FIG. 1, a solar cell module 20 includes, for example, a total of nine bus barless solar cells 10 of 3 rows × 3 columns, and a filler layer between a glass plate 21 on the front surface and a back sheet 22 on the back surface. 23.

 各太陽電池セル10の表裏面には、複数のフィンガ電極1が互いの間に一定の間隔で互いに平行に形成されており、それぞれ2本のインターコネクタ2がフィンガ電極1に直交する方向に貼付されている。インターコネクタ2は、各太陽電池セル10の表裏面で複数のフィンガ電極1を互いに電気的に接続するとともに、列方向に並んだ2個の太陽電池セル10の一方の表面と他方の裏面との間を接続する。列方向の端部で行方向に並んだ2個の太陽電池セル10のインターコネクタ2は、タブ線4によって接続されている。 On the front and back surfaces of each solar cell 10, a plurality of finger electrodes 1 are formed in parallel with each other at regular intervals, and two interconnectors 2 are attached in a direction perpendicular to the finger electrodes 1. Has been. The interconnector 2 electrically connects the plurality of finger electrodes 1 to each other on the front and back surfaces of each solar battery cell 10 and connects one surface of the two solar battery cells 10 arranged in the column direction to the other back surface. Connect between them. The interconnectors 2 of the two solar cells 10 aligned in the row direction at the end in the column direction are connected by a tab line 4.

 インターコネクタ2は、平面視において一定幅の帯状を呈し、フィンガ電極1の長手方向に直交する方向に沿って配置される。 The interconnector 2 has a band shape with a constant width in a plan view, and is arranged along a direction orthogonal to the longitudinal direction of the finger electrode 1.

 図2に示すように、各フィンガ電極1には、長手方向の中間部分に少なくとも1つのパッド部11が形成されている。パッド部11には、フィンガ電極1の電流測定時に、図示しない測定用端子が当接される。インターコネクタ2は、各フィンガ電極1のパッド部11上に配置される。 As shown in FIG. 2, each finger electrode 1 is formed with at least one pad portion 11 in the middle portion in the longitudinal direction. When the current of the finger electrode 1 is measured, a measurement terminal (not shown) is brought into contact with the pad portion 11. The interconnector 2 is disposed on the pad portion 11 of each finger electrode 1.

 太陽電池セル10の表面における各フィンガ電極1のパッド部11間のそれぞれには、導電性接着剤層3が形成されている。導電性接着剤層3は、太陽電池セル10の表面に塗布された導電性接着剤によって構成されている。導電性接着剤は、一例として、接着性を有する樹脂に導電性粒子を添加したものであるが、半導体製造に使用される公知の導電性接着剤を使用することができる。各導電性接着剤層3は、隣接する2つのフィンガ電極1のそれぞれのパッド部11に接触している。 A conductive adhesive layer 3 is formed between the pad portions 11 of each finger electrode 1 on the surface of the solar battery cell 10. The conductive adhesive layer 3 is composed of a conductive adhesive applied to the surface of the solar battery cell 10. As an example, the conductive adhesive is obtained by adding conductive particles to a resin having adhesiveness. However, a known conductive adhesive used for semiconductor manufacturing can be used. Each conductive adhesive layer 3 is in contact with each pad portion 11 of two adjacent finger electrodes 1.

 インターコネクタ2は、各導電性接着剤層3を介して、下面を各フィンガ電極1におけるパッド部11を含む部分の上面に接触させた状態で、太陽電池セル10の表面に貼付される。 The interconnector 2 is affixed to the surface of the solar battery cell 10 with the lower surface in contact with the upper surface of the portion including the pad portion 11 of each finger electrode 1 via each conductive adhesive layer 3.

 各フィンガ電極1は、それぞれのパッド部11を含む部分の上面に接触するインターコネクタ2を介して電気的に接続されるとともに、それぞれのパッド部11に接触する各導電性接着剤層3を介して電気的に接続される。 Each finger electrode 1 is electrically connected via an interconnector 2 that is in contact with the upper surface of the portion including the respective pad portion 11, and via each conductive adhesive layer 3 that is in contact with each pad portion 11. Are electrically connected.

 フィンガ電極1の長手方向に直交する方向について、パッド部11上には導電性接着剤層3が形成されておらず、パッド部11上で不連続となり、導電性接着剤層3の幅は一様でない。インターコネクタ2の配置範囲の全長にわたって均一の幅で導電性接着剤層3を形成する場合に比較して、導電性接着剤の塗布量を減少させることができる。 In the direction orthogonal to the longitudinal direction of the finger electrode 1, the conductive adhesive layer 3 is not formed on the pad portion 11, becomes discontinuous on the pad portion 11, and the width of the conductive adhesive layer 3 is one. Not like that. Compared with the case where the conductive adhesive layer 3 is formed with a uniform width over the entire length of the arrangement range of the interconnector 2, the amount of the conductive adhesive applied can be reduced.

 太陽電池の製造時には、先ず、図3(A)及び(B)に示すように、塗布工程において太陽電池セル10の表面における複数のフィンガ電極1のそれぞれのパッド部11の間に、適量の導電性接着剤を塗布する。導電性接着剤の塗布は、シルクスクリーン又はシリンジを用いて行うことができる。シリンジによる導電性接着剤の塗布時には、太陽電池セル10に対してシリンジを移動させつつ導電性接着剤を断続的に吐出させるか、又は導電性接着剤の吐出とシリンジの移動とを繰り返し行う。 At the time of manufacturing a solar cell, first, as shown in FIGS. 3A and 3B, an appropriate amount of conduction is provided between the pad portions 11 of the plurality of finger electrodes 1 on the surface of the solar cell 10 in the coating process. Apply adhesive. The conductive adhesive can be applied using a silk screen or a syringe. At the time of applying the conductive adhesive by the syringe, the conductive adhesive is intermittently discharged while moving the syringe with respect to the solar battery cell 10, or the discharge of the conductive adhesive and the movement of the syringe are repeated.

 導電性接着剤は、太陽電池セル10の表面におけるインターコネクタ2が配置される範囲で、複数のフィンガ電極1の各パッド部11の間のそれぞれのみに塗布される。インターコネクタ2が配置される範囲の全長にわたって導電性接着剤を塗布する場合に比較して塗布量が減少し、コストの低廉化を実現できる。 The conductive adhesive is applied only between the pad portions 11 of the plurality of finger electrodes 1 within a range where the interconnector 2 is disposed on the surface of the solar battery cell 10. Compared with the case where the conductive adhesive is applied over the entire length of the range in which the interconnector 2 is disposed, the application amount is reduced, and the cost can be reduced.

 各パッド部11間における導電性接着剤の塗布量は、隣接する2つのパッド部11の間を、フィンガ電極1の高さに略等しい所定高さで、且つ太陽電池セル10の表面に対するインターコネクタ2の十分な接着強度を確保できる所定幅で、埋めるために必要十分な量である。なお、所定幅は、太陽電池セル10の表面の受光量の減少を防ぐため、インターコネクタ2の幅よりも狭くすべきである。 The amount of the conductive adhesive applied between the pad portions 11 is a predetermined height substantially equal to the height of the finger electrode 1 between two adjacent pad portions 11 and is an interconnector for the surface of the solar battery cell 10. This is a necessary and sufficient amount for filling with a predetermined width that can secure a sufficient adhesive strength of 2. The predetermined width should be narrower than the width of the interconnector 2 in order to prevent a decrease in the amount of light received on the surface of the solar battery cell 10.

 適量の導電性接着剤は、太陽電池セル10の表面における隣接する2つのパッド部11の間に、所定高さより高くなるように塗布する。 An appropriate amount of the conductive adhesive is applied between two adjacent pad portions 11 on the surface of the solar battery cell 10 so as to be higher than a predetermined height.

 次いで、図3(C)及び(D)に示すように、載置工程においてインターコネクタ2を、導電性接着剤が硬化する前に、太陽電池セル10の表面における導電性接着剤が塗布された位置で、長手方向を複数のフィンガ電極1の長手方向に直交させて載置する。このとき、インターコネクタ2の下面は、導電性接着剤に接触する。 Next, as shown in FIGS. 3C and 3D, the conductive connector on the surface of the solar battery cell 10 was applied to the interconnector 2 in the placing step before the conductive adhesive was cured. At the position, the longitudinal direction is placed perpendicular to the longitudinal direction of the plurality of finger electrodes 1. At this time, the lower surface of the interconnector 2 is in contact with the conductive adhesive.

 最後に、図3(E)及び(F)に示すように、押圧工程においてインターコネクタ2を全長にわたって上方から太陽電池セル10の表面に向けて押圧する。硬化前の柔軟性を有する導電性接着剤は、インターコネクタ2を介して押圧されることにより、太陽電池セル10の表面からの高さを減少させるとともに、太陽電池セル10の表面における面積を拡大させる。この結果、導電性接着剤は、高さがフィンガ電極1の高さに略一致し、両端が隣接する2つのフィンガ電極1のパッド部11に接触し、導電性接着剤層3を形成する。 Finally, as shown in FIGS. 3E and 3F, in the pressing step, the interconnector 2 is pressed from the upper side toward the surface of the solar battery cell 10 over the entire length. When the conductive adhesive having flexibility before curing is pressed through the interconnector 2, the height from the surface of the solar battery cell 10 is reduced and the area on the surface of the solar battery cell 10 is enlarged. Let As a result, the height of the conductive adhesive substantially matches the height of the finger electrode 1, and both ends thereof contact the pad portions 11 of the two finger electrodes 1 adjacent to each other to form the conductive adhesive layer 3.

 この状態で各導電性接着剤層3を構成する導電性接着剤が硬化すると、インターコネクタ2は、各導電性接着剤層3を介して、下面を各フィンガ電極1におけるパッド部11を含む部分の上面に接触させた状態で、太陽電池セル10の表面に貼付される。複数のフィンガ電極1は、インターコネクタ2を介して互いに電気的に接続される。また、隣接するフィンガ電極1が、それぞれのパッド部11で導電性接着剤層3を介して電気的に接続される。所定幅をインターコネクタの30~50%とすることで、隣接するフィンガ電極1の良好な接続状態を得ることができた。 When the conductive adhesive composing each conductive adhesive layer 3 is cured in this state, the interconnector 2 is a portion including the pad portion 11 in each finger electrode 1 on the lower surface via each conductive adhesive layer 3. Attached to the surface of the solar battery cell 10 while being in contact with the upper surface of the solar cell 10. The plurality of finger electrodes 1 are electrically connected to each other via an interconnector 2. Adjacent finger electrodes 1 are electrically connected via the conductive adhesive layer 3 at the respective pad portions 11. By setting the predetermined width to 30 to 50% of the interconnector, a good connection state between adjacent finger electrodes 1 could be obtained.

 図4(A)及び(B)に示すように、この発明の第2の実施形態に係る太陽電池モジュールを構成する太陽電池セル101は、表面における複数のフィンガ電極1の各パッド部11の間、及び各パッド11上に、インターコネクタ2の配置位置に沿って不連続に導電性接着剤層3A及び3Bを形成している。 As shown to FIG. 4 (A) and (B), the photovoltaic cell 101 which comprises the solar cell module which concerns on the 2nd Embodiment of this invention is between each pad part 11 of the several finger electrode 1 in the surface. The conductive adhesive layers 3 </ b> A and 3 </ b> B are discontinuously formed on the pads 11 along the position where the interconnector 2 is disposed.

 インターコネクタ2は、導電性接着剤層3Aによって太陽電池セル101の表面に貼付されるとともに、導電性接着剤層3Bによって複数のフィンガ電極1の各パッド部11に貼付される。これによって、インターコネクタ2を太陽電池セル101の表面における所定の位置に堅牢に固定できる。また、複数のフィンガ電極1は、各パッド部11で導電性接着剤層3B及びインターコネクタ2を介して互いに電気的に接続される。 The interconnector 2 is affixed to the surface of the solar battery cell 101 by the conductive adhesive layer 3A, and is affixed to each pad part 11 of the plurality of finger electrodes 1 by the conductive adhesive layer 3B. Thereby, the interconnector 2 can be firmly fixed to a predetermined position on the surface of the solar battery cell 101. The plurality of finger electrodes 1 are electrically connected to each other via the conductive adhesive layer 3 </ b> B and the interconnector 2 at each pad portion 11.

 この構成によっても、太陽電池セル101の表面におけるインターコネクタ2の堅牢な固定状態を維持することができるとともに、インターコネクタ2が配置される範囲の全長にわたって導電性接着剤を塗布する場合に比較して塗布量を減少させることができる。 Even with this configuration, the interconnector 2 can be kept firmly fixed on the surface of the solar battery cell 101, and compared with the case where the conductive adhesive is applied over the entire length of the area where the interconnector 2 is disposed. The application amount can be reduced.

 なお、第1の実施形態に係る太陽電池モジュールを構成する太陽電池セル10においても、太陽電池セル10の表面に対するインターコネクタ2の固定状態をより堅牢にすべく、複数のフィンガ電極1の各パッド部11上に導電性接着剤層を形成することも考えられる。この場合には、各パッド部11の間における導電性接着剤の塗布を減少させて、導電性接着剤層の幅を細くすることで、導電性接着剤の全体の塗布量の増加を防止できる。 In addition, also in the photovoltaic cell 10 which comprises the photovoltaic module which concerns on 1st Embodiment, in order to make the fixing state of the interconnector 2 with respect to the surface of the photovoltaic cell 10 more robust, each pad of the several finger electrode 1 It is also conceivable to form a conductive adhesive layer on the portion 11. In this case, by reducing the application of the conductive adhesive between the pad portions 11 and reducing the width of the conductive adhesive layer, an increase in the total amount of the conductive adhesive can be prevented. .

 なお、各太陽電池セル10の裏面側は、表面側と同様に構成される。 In addition, the back surface side of each photovoltaic cell 10 is configured similarly to the front surface side.

 図5(A)及び(B)に示すように、この発明の第3の実施形態に係る太陽電池モジュールを構成する太陽電池セル102は、表面における複数のフィンガ電極1の何れにもパッド部を備えていない。太陽電池セル102は、表面におけるフィンガ電極1の間に、インターコネクタ2の配置位置に沿って導電性接着剤層301を不連続に形成したのち、インターコネクタ2を貼付して構成されている。 As shown in FIGS. 5A and 5B, the solar battery cell 102 constituting the solar battery module according to the third embodiment of the present invention has a pad portion on any of the plurality of finger electrodes 1 on the surface. I do not have. The solar battery cell 102 is configured by pasting the interconnector 2 after discontinuously forming the conductive adhesive layer 301 along the position of the interconnector 2 between the finger electrodes 1 on the surface.

 インターコネクタ2は、導電性接着剤層301によってフィンガ電極1に接触することなく、太陽電池セル102の表面に貼付される。複数のフィンガ電極1のそれぞれは、導電性接着剤層301で互いに電気的に接続されるとともに、導電性接着剤層301を介してインターコネクタ2で互いに電気的に接続される。 The interconnector 2 is attached to the surface of the solar battery cell 102 without contacting the finger electrode 1 by the conductive adhesive layer 301. Each of the plurality of finger electrodes 1 is electrically connected to each other by the conductive adhesive layer 301 and is also electrically connected to each other by the interconnector 2 through the conductive adhesive layer 301.

 導電性接着剤層301は、シルクスクリーンによる導電性接着剤の塗布、又はシリンジを一定の吐出量で導電性接着剤を吐出させつつ移動させることで形成することができる。 The conductive adhesive layer 301 can be formed by applying a conductive adhesive using a silk screen or moving a syringe while discharging the conductive adhesive at a constant discharge amount.

 図5(C)及び(D)に示すように、この発明の第4の実施形態に係る太陽電池モジュールを構成する太陽電池セル103は、表面におけるフィンガ電極1の間、及びフィンガ電極1上に、インターコネクタ2の配置位置に沿ってドット状に導電性接着剤層302を不連続に形成したのち、インターコネクタ2を貼付して構成されている。 As shown in FIGS. 5C and 5D, the solar battery cell 103 constituting the solar battery module according to the fourth embodiment of the present invention is between the finger electrodes 1 on the surface and on the finger electrodes 1. The conductive adhesive layer 302 is formed discontinuously in a dot shape along the position where the interconnector 2 is disposed, and then the interconnector 2 is pasted.

 インターコネクタ2は、貼付時に太陽電池セル103の表面に向かって押圧されることにより、フィンガ電極1に接触する。このとき、フィンガ電極1上の導電性接着剤302は、フィンガ電極1の両側に流動する。 The interconnector 2 comes into contact with the finger electrode 1 by being pressed toward the surface of the solar battery cell 103 at the time of pasting. At this time, the conductive adhesive 302 on the finger electrode 1 flows on both sides of the finger electrode 1.

 ドット状の導電性接着剤層302は、太陽電池セル103に対してシリンジを間欠的に移動させつつ各位置でシリンジから導電性接着剤を吐出させることで形成できる。 The dot-like conductive adhesive layer 302 can be formed by discharging the conductive adhesive from the syringe at each position while moving the syringe intermittently with respect to the solar battery cell 103.

 インターコネクタ2は、導電性接着剤層302によって太陽電池セル103の表面に貼付される。複数のフィンガ電極1は、両側に接触する導電性接着剤層302及びインターコネクタ2で互いに電気的に接続される。 The interconnector 2 is attached to the surface of the solar battery cell 103 by the conductive adhesive layer 302. The plurality of finger electrodes 1 are electrically connected to each other by the conductive adhesive layer 302 and the interconnector 2 that are in contact with both sides.

 図5(E)及び(F)に示すように、この発明の第5の実施形態に係る太陽電池モジュールを構成する太陽電池セル104は、太陽電池セル102と同様に表面における複数のフィンガ電極1の何れにもパッド部を備えていない。太陽電池セル104は、表面におけるフィンガ電極1の間、及びフィンガ電極1上に、インターコネクタ2の配置位置に沿ってドット状に導電性接着剤302を不連続に形成したのち、インターコネクタ2を貼付して構成されている。 As shown in FIGS. 5E and 5F, the solar battery cell 104 constituting the solar battery module according to the fifth embodiment of the present invention has a plurality of finger electrodes 1 on the surface in the same manner as the solar battery cell 102. None of them has a pad portion. The solar battery cell 104 discontinuously forms the conductive adhesive 302 in the form of dots along the position of the interconnector 2 between the finger electrodes 1 on the surface and on the finger electrode 1. It is affixed and configured.

 インターコネクタ2は、導電性接着剤302によってフィンガ電極1に接触することなく、太陽電池セル104の表面に貼付される。複数のフィンガ電極1は、導電性接着剤302を介してインターコネクタ2で電気的に接続される。 The interconnector 2 is affixed to the surface of the solar battery cell 104 without contacting the finger electrode 1 with the conductive adhesive 302. The plurality of finger electrodes 1 are electrically connected by the interconnector 2 via the conductive adhesive 302.

 図5(G)及び(H)に示すように、この発明の第6の実施形態に係る太陽電池モジュールを構成する太陽電池セル105は、太陽電池セル102と同様に表面における複数のフィンガ電極1の何れにもパッド部を備えていない。太陽電池セル105は、表面におけるフィンガ電極1の間に、インターコネクタ2の配置位置に沿ってドット状に導電性接着剤層302を一方がフィンガ電極1に接触するように不連続に形成したのち、インターコネクタ2を貼付して構成されている。 As shown in FIGS. 5G and 5H, a solar battery cell 105 constituting a solar battery module according to the sixth embodiment of the present invention has a plurality of finger electrodes 1 on the surface in the same manner as the solar battery cell 102. None of them has a pad portion. The solar battery 105 is formed by discontinuously forming the conductive adhesive layer 302 in a dot shape between the finger electrodes 1 on the surface so that one of them is in contact with the finger electrode 1 along the position of the interconnector 2. The interconnector 2 is pasted.

 インターコネクタ2は、導電性接着剤層302によってフィンガ電極1に接触することなく、太陽電池セル105の表面に貼付される。複数のフィンガ電極1は、導電性接着剤層302を介してインターコネクタ2で電気的に接続される。 The interconnector 2 is attached to the surface of the solar battery cell 105 without contacting the finger electrode 1 by the conductive adhesive layer 302. The plurality of finger electrodes 1 are electrically connected by the interconnector 2 via the conductive adhesive layer 302.

 図5(I)及び(J)に示すように、この発明の第7の実施形態に係る太陽電池モジュールを構成する太陽電池セル106は、太陽電池セル102と同様に表面における複数のフィンガ電極1の何れにもパッド部を備えていない。太陽電池セル106は、表面におけるフィンガ電極1の間及びフィンガ電極1上に、インターコネクタ2の配置位置に沿ってドット状に導電性接着剤層302を互いに一部を重複させて形成したのち、インターコネクタ2を貼付して構成されている。 As shown in FIGS. 5I and 5J, the solar battery cell 106 constituting the solar battery module according to the seventh embodiment of the present invention has a plurality of finger electrodes 1 on the surface in the same manner as the solar battery cell 102. None of them has a pad portion. After the solar battery cells 106 are formed on the surface between the finger electrodes 1 and on the finger electrodes 1, the conductive adhesive layers 302 are partially overlapped with each other in the form of dots along the arrangement position of the interconnector 2. The interconnector 2 is pasted.

 インターコネクタ2は、導電性接着剤層302によってフィンガ電極1に接触することなく、太陽電池セル106の表面に貼付される。複数のフィンガ電極1は、導電性接着剤層302で電気的に接続されるとともに、導電性接着剤層302を介してインターコネクタ2で電気的に接続される。 The interconnector 2 is attached to the surface of the solar battery cell 106 without contacting the finger electrode 1 by the conductive adhesive layer 302. The plurality of finger electrodes 1 are electrically connected by the conductive adhesive layer 302 and also electrically connected by the interconnector 2 through the conductive adhesive layer 302.

 図5(K)及び(L)に示すように、この発明の第8の実施形態に係る太陽電池モジュールを構成する太陽電池セル107は、太陽電池セル102と同様に表面における複数のフィンガ電極1の何れにもパッド部を備えていない。太陽電池セル107は、表面におけるフィンガ電極1の間に、インターコネクタ2の配置位置に沿ってドット状に複数の導電性接着剤層302を互いに重複するように、かつ両端に位置する導電性接着剤層302の外側がフィンガ電極1に接触するように形成したのち、インターコネクタ2を貼付して構成されている。 As shown in FIGS. 5K and 5L, the solar battery cell 107 constituting the solar battery module according to the eighth embodiment of the present invention has a plurality of finger electrodes 1 on the surface in the same manner as the solar battery cell 102. None of them has a pad portion. The solar battery 107 has a conductive adhesive located between the finger electrodes 1 on the surface so that a plurality of conductive adhesive layers 302 overlap each other in a dot shape along the position where the interconnector 2 is disposed, and at both ends. After the outer side of the agent layer 302 is formed so as to be in contact with the finger electrode 1, the interconnector 2 is pasted.

 インターコネクタ2は、導電性接着剤層302によってフィンガ電極1に接触することなく、太陽電池セル107の表面に貼付される。複数のフィンガ電極1は、導電性接着剤層302で電気的に接続されるとともに、導電性接着剤層302を介してインターコネクタ2で電気的に接続される。 The interconnector 2 is affixed to the surface of the solar cell 107 without contacting the finger electrode 1 by the conductive adhesive layer 302. The plurality of finger electrodes 1 are electrically connected by the conductive adhesive layer 302 and also electrically connected by the interconnector 2 through the conductive adhesive layer 302.

 図5(A)~(L)に示した構成によっても、太陽電池セル102~107の表面におけるインターコネクタ2の堅牢な固定状態を維持して複数のフィンガ電極1の電気的接続状態を確保できるとともに、インターコネクタ2が配置される範囲の全長にわたって導電性接着剤を塗布する場合に比較して塗布量を減少させることができる。 5A to 5L, it is possible to maintain a robust fixing state of the interconnector 2 on the surfaces of the solar cells 102 to 107 and to secure an electrical connection state of the plurality of finger electrodes 1. In addition, the coating amount can be reduced as compared with the case where the conductive adhesive is applied over the entire length of the range in which the interconnector 2 is disposed.

 なお、図5(A)~(L)に示した構成は、パッド部を有するフィンガ電極1を備えた太陽電池セルにも同様に適用することができる。 Note that the configuration shown in FIGS. 5A to 5L can be similarly applied to a solar cell including the finger electrode 1 having a pad portion.

 図6(A)に示すように、互いの一部を重複させて複数のドット状の導電性接着剤層302を形成すると、導電性接着剤層302は全体として、インターコネクタ2を貼付する前において、第1の幅W1の部分と第2の幅W2の部分とを有することになる。 As shown in FIG. 6A, when a plurality of dot-like conductive adhesive layers 302 are formed by overlapping a part of each other, the conductive adhesive layer 302 is entirely before the interconnector 2 is applied. The first width W1 and the second width W2 are included.

 導電性接着剤層302は、インターコネクタ2を太陽電池セル10の表面に貼着させるために用いられる。したがって、導電性接着剤層302は、その最大幅である第1の幅W1がインターコネクタ2の一定幅WAより大きいと、一定幅WAを越えた部分はインターコネクタ2に接触せず、インターコネクタ2を太陽電池セル10の表面に貼着させる機能を果たさない。このため、第1の幅W1は一定幅WA以下とすることが望ましい。 The conductive adhesive layer 302 is used to attach the interconnector 2 to the surface of the solar battery cell 10. Therefore, when the first width W1 which is the maximum width of the conductive adhesive layer 302 is larger than the constant width WA of the interconnector 2, the portion exceeding the constant width WA does not contact the interconnector 2, and the interconnector 2 It does not fulfill the function of attaching 2 to the surface of the solar battery cell 10. For this reason, it is desirable that the first width W1 be equal to or smaller than the constant width WA.

 また、第1の幅W1は、一定幅WAの50%未満であると、インターコネクタ2との接触面積が過少になり、インターコネクタ2を太陽電池セル10の表面に堅牢に貼着させることができないため、一定幅WAの50%以上とすることが望ましい。 Further, if the first width W1 is less than 50% of the constant width WA, the contact area with the interconnector 2 becomes too small, and the interconnector 2 can be firmly attached to the surface of the solar battery cell 10. Since it is not possible, it is desirable to set it to 50% or more of the constant width WA.

 一方、第2の幅W2が第1の幅W1の62%を越えると、隣接する導電性接着剤層302の重複部分SAの面積が図6(A)においてハッチングを施した部分SBの面積よりも大きくなる。導電性接着剤層302において、重複部分SAには他の部分に比較して2倍の導電性接着剤が存在している。重複部分SAの面積がハッチングを施した部分SBの面積に等しくなれば、導電性接着剤層302を第1の幅W1で均一に形成した場合と同量の導電性接着剤が塗布されたことになる。したがって、第1の幅W1で均一に形成した場合よりも導電性接着剤の塗布量を少なくするためには、第2の幅W2を第1の幅W1の60%以下とすることが望ましい。 On the other hand, when the second width W2 exceeds 62% of the first width W1, the area of the overlapping portion SA of the adjacent conductive adhesive layer 302 is larger than the area of the hatched portion SB in FIG. Also grows. In the conductive adhesive layer 302, the overlapping portion SA has twice as much conductive adhesive as the other portions. If the area of the overlapping portion SA is equal to the area of the hatched portion SB, the same amount of the conductive adhesive as in the case where the conductive adhesive layer 302 is uniformly formed with the first width W1 has been applied. become. Therefore, in order to reduce the application amount of the conductive adhesive compared to the case where the first width W1 is uniformly formed, it is desirable that the second width W2 is 60% or less of the first width W1.

 なお、図6(B)に示すように、複数のドット状の導電性接着剤層302を互いに離間させて不連続に形成した場合には、第2の幅W2は0となって第1の幅W1の60%以下の条件を満たす。また、図6(C)に示すように、長円形の導電性接着剤層301を不連続に形成した場合にも、第2の幅W2は0となって第1の幅W1の60%以下の条件を満たす。これは、矩形の導電性接着剤層301を不連続に形成した場合にも同様である。 As shown in FIG. 6B, when the plurality of dot-like conductive adhesive layers 302 are discontinuously formed apart from each other, the second width W2 becomes 0 and the first width The condition of 60% or less of the width W1 is satisfied. In addition, as shown in FIG. 6C, when the elliptical conductive adhesive layer 301 is formed discontinuously, the second width W2 is 0 and is 60% or less of the first width W1. Satisfy the condition of The same applies to the case where the rectangular conductive adhesive layer 301 is formed discontinuously.

 上述の実施形態の説明は、すべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上述の実施形態ではなく、特許請求の範囲によって示される。さらに、本発明の範囲には、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The description of the above-described embodiment is an example in all respects, and should be considered as not restrictive. The scope of the present invention is shown not by the above embodiments but by the claims. Furthermore, the scope of the present invention is intended to include all modifications within the meaning and scope equivalent to the scope of the claims.

 1-フィンガ電極
 2-インターコネクタ
 3-導電性接着剤層
 11-パッド部
 31-導電性接着剤
1-Finger electrode 2-Interconnector 3-Conductive adhesive layer 11-Pad part 31-Conductive adhesive

Claims (4)

 複数の太陽電池セルを備えた太陽電池モジュールであって、
 前記複数の太陽電池セルのそれぞれは、
 各太陽電池セルの表面から突出した状態で、前記表面に互いの間に一定の間隔を設けて互いに平行に形成された複数のフィンガ電極と、
 一定幅の帯状を呈し、前記複数のフィンガ電極の長手方向に直交する方向に沿って配置されたインターコネクタと、
 導電性接着剤で構成され、前記インターコネクタを前記複数のフィンガ電極に電気的に接続した状態で前記表面に固定する導電性接着剤層と、を備え、
 前記導電性接着剤層は、前記表面における少なくとも前記複数のフィンガ電極のそれぞれの間隔を含む部分で且つ前記インターコネクタが配置されている範囲に形成され、前記長手方向について前記一定幅よりも狭い第1の幅の部分と、前記第1の幅よりも狭い第2の幅の部分と、を有する、
太陽電池モジュール。
A solar cell module comprising a plurality of solar cells,
Each of the plurality of solar cells is
A plurality of finger electrodes formed in parallel to each other with a certain interval between the surfaces in a state protruding from the surface of each solar battery cell,
An interconnector presenting a band shape of a constant width and disposed along a direction orthogonal to the longitudinal direction of the plurality of finger electrodes;
A conductive adhesive layer configured with a conductive adhesive and fixing the interconnector to the surface in a state of being electrically connected to the plurality of finger electrodes;
The conductive adhesive layer is formed in a portion including at least the intervals of the plurality of finger electrodes on the surface and in a range where the interconnector is disposed, and is narrower than the constant width in the longitudinal direction. A portion having a width of 1 and a portion having a second width narrower than the first width.
Solar cell module.
 前記第1の幅は、前記一定幅の50%以上である請求項1に記載の太陽電池モジュール。 The solar cell module according to claim 1, wherein the first width is 50% or more of the fixed width.  前記第2の幅は、前記第1の幅の60%以下である請求項1又は2に記載の太陽電池モジュール。 The solar cell module according to claim 1 or 2, wherein the second width is 60% or less of the first width.  前記導電性接着剤層は、前記複数のフィンガ電極のそれぞれと前記インターコネクタとが重なる部分で前記フィンガ電極の長手方向に直交する方向に連続しない請求項1乃至3の何れかに記載の太陽電池モジュール。 4. The solar cell according to claim 1, wherein the conductive adhesive layer is not continuous in a direction perpendicular to a longitudinal direction of the finger electrode at a portion where each of the plurality of finger electrodes overlaps with the interconnector. 5. module.
PCT/JP2013/055959 2013-03-05 2013-03-05 Solar battery module WO2014136204A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/055959 WO2014136204A1 (en) 2013-03-05 2013-03-05 Solar battery module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/055959 WO2014136204A1 (en) 2013-03-05 2013-03-05 Solar battery module

Publications (1)

Publication Number Publication Date
WO2014136204A1 true WO2014136204A1 (en) 2014-09-12

Family

ID=51490767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/055959 WO2014136204A1 (en) 2013-03-05 2013-03-05 Solar battery module

Country Status (1)

Country Link
WO (1) WO2014136204A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106129161A (en) * 2016-02-17 2016-11-16 苏州阿特斯阳光电力科技有限公司 A kind of solar module
CN115260922A (en) * 2022-08-01 2022-11-01 晶科能源股份有限公司 Adhesive film and photovoltaic module
JP7450089B1 (en) 2023-01-16 2024-03-14 ジョジアン ジンコ ソーラー カンパニー リミテッド Photovoltaic module and its manufacturing method

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07321351A (en) * 1994-05-19 1995-12-08 Canon Inc Electrode structure of photovoltaic element and manufacture
JPH0918034A (en) * 1995-06-28 1997-01-17 Canon Inc Electrode structure of photovoltaic element and manufacturing method
JP2002314104A (en) * 2001-04-17 2002-10-25 Sharp Corp Thin film solar cell and its manufacturing method
JP2007200970A (en) * 2006-01-24 2007-08-09 Sanyo Electric Co Ltd Photovoltaic module
JP2009088152A (en) * 2007-09-28 2009-04-23 Sanyo Electric Co Ltd Solar battery module
JP2009252975A (en) * 2008-04-04 2009-10-29 Showa Shell Sekiyu Kk Solar cell module, and method for manufacturing same
JP2011507275A (en) * 2007-12-11 2011-03-03 エバーグリーン ソーラー, インコーポレイテッド Photovoltaic panel having fine fingers, photovoltaic cell, and method for producing the same
JP2011222744A (en) * 2010-04-09 2011-11-04 Sony Chemical & Information Device Corp Tab wire for connecting solar battery, connection method and solar battery module
WO2012002445A1 (en) * 2010-06-30 2012-01-05 三洋電機株式会社 Solar cell module and method for manufacturing same
JP2012084560A (en) * 2010-10-06 2012-04-26 Hitachi High-Technologies Corp Crystalline solar cell module
WO2012165001A1 (en) * 2011-05-31 2012-12-06 三洋電機株式会社 Solar cell module and method for manufacturing same
WO2013014972A1 (en) * 2011-07-28 2013-01-31 三洋電機株式会社 Photovoltaic module

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07321351A (en) * 1994-05-19 1995-12-08 Canon Inc Electrode structure of photovoltaic element and manufacture
JPH0918034A (en) * 1995-06-28 1997-01-17 Canon Inc Electrode structure of photovoltaic element and manufacturing method
JP2002314104A (en) * 2001-04-17 2002-10-25 Sharp Corp Thin film solar cell and its manufacturing method
JP2007200970A (en) * 2006-01-24 2007-08-09 Sanyo Electric Co Ltd Photovoltaic module
JP2009088152A (en) * 2007-09-28 2009-04-23 Sanyo Electric Co Ltd Solar battery module
JP2011507275A (en) * 2007-12-11 2011-03-03 エバーグリーン ソーラー, インコーポレイテッド Photovoltaic panel having fine fingers, photovoltaic cell, and method for producing the same
JP2009252975A (en) * 2008-04-04 2009-10-29 Showa Shell Sekiyu Kk Solar cell module, and method for manufacturing same
JP2011222744A (en) * 2010-04-09 2011-11-04 Sony Chemical & Information Device Corp Tab wire for connecting solar battery, connection method and solar battery module
WO2012002445A1 (en) * 2010-06-30 2012-01-05 三洋電機株式会社 Solar cell module and method for manufacturing same
JP2012084560A (en) * 2010-10-06 2012-04-26 Hitachi High-Technologies Corp Crystalline solar cell module
WO2012165001A1 (en) * 2011-05-31 2012-12-06 三洋電機株式会社 Solar cell module and method for manufacturing same
WO2013014972A1 (en) * 2011-07-28 2013-01-31 三洋電機株式会社 Photovoltaic module

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106129161A (en) * 2016-02-17 2016-11-16 苏州阿特斯阳光电力科技有限公司 A kind of solar module
CN115260922A (en) * 2022-08-01 2022-11-01 晶科能源股份有限公司 Adhesive film and photovoltaic module
CN115260922B (en) * 2022-08-01 2023-10-31 晶科能源股份有限公司 Film and photovoltaic modules
JP7450089B1 (en) 2023-01-16 2024-03-14 ジョジアン ジンコ ソーラー カンパニー リミテッド Photovoltaic module and its manufacturing method
JP2024100722A (en) * 2023-01-16 2024-07-26 ジョジアン ジンコ ソーラー カンパニー リミテッド Photovoltaic module and preparation method thereof
JP2024100651A (en) * 2023-01-16 2024-07-26 ジョジアン ジンコ ソーラー カンパニー リミテッド Photovoltaic module and preparation method thereof
US12302646B2 (en) 2023-01-16 2025-05-13 Zhejiang Jinko Solar Co., Ltd. Photovoltaic module and preparation method thereof
JP7676598B2 (en) 2023-01-16 2025-05-14 ジョジアン ジンコ ソーラー カンパニー リミテッド Photovoltaic module and method of manufacturing same

Similar Documents

Publication Publication Date Title
CN104919603B (en) The manufacturing method of solar cell module
US20100200058A1 (en) Solar battery, method for manufacturing solar battery, method for manufacturing solar cell module, and solar cell module
JP2011049525A (en) Solar cell module
US20130247958A1 (en) Solar cell module, and method of manufacturing solar cell module
KR101395486B1 (en) Solar cell module and method for producing solar cell module
US20130104961A1 (en) Solar cell module and solar cell
JP6045878B2 (en) Solar cell module
CN103797588A (en) Solar cell module manufacturing method, solar cell module, and tab wire connection method
US20130125951A1 (en) Solar cell module and method of manufacturing solar cell module
US9437765B2 (en) Solar cell module and solar cell module manufacturing method
WO2014136204A1 (en) Solar battery module
JP2012084560A (en) Crystalline solar cell module
JPWO2018116643A1 (en) Solar cell module and method of manufacturing the same
CN103367509B (en) A kind of solar cell and forming method thereof
WO2012073771A1 (en) Solar cell module
WO2011108634A1 (en) Solar cell module
JPWO2014119252A1 (en) Solar cell module manufacturing method and solar cell module manufacturing apparatus
TW201304161A (en) Solar battery module, solar battery module manufacturing method
CN104221160B (en) Solar module and manufacture method thereof
US20140246086A1 (en) Photovoltaic module and method for manufacturing same
CN106229370B (en) Solar panel and its manufacture method
CN215451434U (en) Pad, battery piece and battery pack
CN107690261B (en) Graphite flake mounting structure, mobile terminal and mounting method of graphite flake mounting structure
US20150083187A1 (en) Solar cell module and solar cell module manufacturing method
JP2015056463A (en) SOLAR CELL, SOLAR CELL MODULE, AND MANUFACTURING METHOD THEREOF

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13877071

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13877071

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP