[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014129313A1 - Conductive composition, collector with base layer for electricity storage devices, electrode for electricity storage devices, and electricity storage device - Google Patents

Conductive composition, collector with base layer for electricity storage devices, electrode for electricity storage devices, and electricity storage device Download PDF

Info

Publication number
WO2014129313A1
WO2014129313A1 PCT/JP2014/052780 JP2014052780W WO2014129313A1 WO 2014129313 A1 WO2014129313 A1 WO 2014129313A1 JP 2014052780 W JP2014052780 W JP 2014052780W WO 2014129313 A1 WO2014129313 A1 WO 2014129313A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
meth
water
group
electricity storage
Prior art date
Application number
PCT/JP2014/052780
Other languages
French (fr)
Japanese (ja)
Inventor
順幸 諸石
剛士 松本
友明 枡岡
大 稲垣
Original Assignee
東洋インキScホールディングス株式会社
トーヨーカラー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋インキScホールディングス株式会社, トーヨーカラー株式会社 filed Critical 東洋インキScホールディングス株式会社
Priority to CN201480009437.XA priority Critical patent/CN105074978B/en
Priority to KR1020157024141A priority patent/KR102155177B1/en
Publication of WO2014129313A1 publication Critical patent/WO2014129313A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a conductive composition, a current collector with an underlayer for an electricity storage device having an underlayer obtained by using the composition, an electrode for an electricity storage device, and an electricity storage device obtained using the electrode.
  • the important properties required for the composite ink used for forming the electrode and the composition for forming the underlayer include the uniformity in which the active material and the conductive carbon material are appropriately dispersed, and the composite ink and the undercoat layer.
  • the adhesiveness of the electrode formed after drying of the composition for formation is mentioned.
  • the distribution of the active material and conductive carbon material in the mixture layer depends on the dispersion state of the active material and conductive carbon material in the mixture ink and the dispersion state of the conductive carbon material in the composition for forming the underlayer. It is related to the state and the distribution state of the conductive carbon material in the underlayer, and affects the physical properties of the electrode and thus the battery performance.
  • a carbon material excellent in electrical conductivity has a high structure and specific surface area, and therefore has a strong cohesive force, and it is difficult to uniformly mix and disperse it in a composite ink or an underlayer forming composition.
  • the composite ink and the underlayer forming composition are required to have appropriate fluidity so as to be coated on the surface of the metal foil functioning as a current collector. Furthermore, in order to form a composite material layer or a base layer having a surface that is as flat as possible and having a uniform thickness, the composite ink or the base layer forming composition is required to have an appropriate viscosity. In the case of applying the mixture ink after forming the underlayer, solvent resistance is also required for the underlayer in order to form the mixture layer.
  • the composite layer formed from the composite ink and the base layer formed from the composition for forming the base layer after being formed, can be cut into pieces of the desired size and shape together with the metal foil as the base material. Or punched. Therefore, the composite material layer and the base layer are required to have hardness that is not damaged and adhesion that does not crack or peel off by cutting or punching.
  • electrode adhesion is important because it greatly affects the performance of the electricity storage device. Taking lithium-ion batteries as an example, if the electrode adhesion is poor, the electrode structure collapses due to expansion / contraction of the active material due to lithium ion intercalation / deintercalation during charge / discharge Electrode peeling occurs, leading to deterioration of battery life.
  • Batteries are used in a variety of environments, and are particularly susceptible to deterioration in high-temperature environments, so that they can withstand charge / discharge cycles while maintaining electrode adhesion and conductivity even in high-temperature environments. It becomes important.
  • Patent Document 1 discloses an undercoat layer in which a conductive composition containing conductive carbon powder and a water-soluble binder such as an acrylic acid polymer is coated on a current collector of an electrode.
  • Patent Document 2 discloses an undercoat forming composition prepared by mixing carbon black powder and butyl rubber in toluene.
  • these compositions require further improvement in the adhesion to the current collector when used as an underlayer, and further improve the conductivity and coatability resulting from insufficient dispersion of the carbon material.
  • Patent Documents 3 to 7 improvement of the binder by introducing a crosslinking component or the like, use of carbon fibers having high conductivity, and a composition for forming a base using a dispersant are disclosed. It is disclosed that an electrode having high conductivity can be obtained by using it.
  • the environment in which the battery is used varies, and in a battery that can withstand an environment such as a high temperature, further improvement in electrode adhesion and charge / discharge cycle characteristics is required.
  • An object of the present invention is a conductive composition excellent in conductivity and adhesion, and is a conductive composition for forming an electricity storage device excellent in charge / discharge cycle characteristics, including dispersibility of a conductive carbon material, It is to provide a conductive composition having excellent electrode adhesion.
  • the present invention is a conductive composition containing a conductive carbon material (A), a water-soluble resin binder (B), and a water-dispersible resin fine particle binder (C) in a specific range, and the conductive carbon material. Without impairing the dispersibility of (A), the adhesion and solvent resistance of the electrodes, and further the charge / discharge cycle characteristics of the electricity storage device can be improved. That is, a conductive composition comprising a conductive carbon material (A), a water-soluble resin binder (B), a water-dispersible resin fine particle binder (C), and an aqueous liquid medium (D).
  • the total content of the conductive carbon material (A), the water-soluble resin binder (B) and the water-dispersible resin fine particle binder (C) is 100% by weight, and the content of the conductive carbon material (A) is 20%. Up to 70% by weight, The content of the water-soluble resin binder (B) is 40 to 95% by weight in the total solid content of 100% by weight of the water-soluble resin binder (B) and the water-dispersible resin fine particle binder (C).
  • the present invention relates to a conductive composition.
  • the present invention also relates to the above conductive composition, characterized in that it is used for forming a base layer of an electrode for an electricity storage device.
  • the present invention also relates to a current collector with a base layer for an electricity storage device, which includes a current collector and a base layer formed from the conductive composition.
  • the present invention also provides an electricity storage device comprising a current collector, a base layer formed from the conductive composition, and a composite layer formed from an electrode forming composition containing an electrode active material and a binder.
  • the present invention relates to an electrode.
  • the present invention also relates to an electricity storage device comprising a positive electrode, a negative electrode, and an electrolyte solution, wherein at least one of the positive electrode or the negative electrode is the electrode for the electricity storage device.
  • the present invention relates to the conductive composition, the current collector with an underlayer, the electrode, or the power storage device, wherein the power storage device is a secondary battery or a capacitor.
  • the conductive carbon material (A), the water-soluble resin binder (B), and the water-dispersible resin fine particle binder (C) at a specific ratio, the conductive carbon material in the conductive composition
  • a base layer having excellent adhesion to a current collector can be formed without impairing dispersibility, and an electricity storage device having good charge / discharge cycle characteristics can be provided even under harsh environments such as high temperatures where the electricity storage device is used. .
  • An electrode for an electricity storage device can be obtained by various methods. For example, on the surface of a current collector such as a metal foil, (1) an ink-like composition containing an active material and a solvent (hereinafter referred to as composite ink), (2) a mixed ink containing an active material, a conductive additive and a solvent; (3) a mixed ink containing an active material, a binder and a solvent; (4) A mixed ink containing an active material, a conductive additive, a binder and a solvent, It can be used to form a composite layer and obtain an electrode.
  • composite ink an ink-like composition containing an active material and a solvent
  • an underlayer is formed on the surface of the current collector of the metal foil using a composition for forming an underlayer containing a conductive carbon material and a liquid medium, and the above-mentioned composite ink is formed on the underlayer
  • An electrode can also be obtained by forming a composite layer using (1) to (4) or other composite ink.
  • the state of dispersion of the conductive carbon material and the adhesion of the electrodes influence the performance of the electricity storage device as described in detail in the Background Art section. Therefore, the conductive composition of the present invention can be used to satisfactorily form an underlayer.
  • the conductive composition of the present invention can be used for forming a base layer of an electricity storage device.
  • the conductive composition contains a conductive carbon material (A), a water-soluble resin binder (B), a water-dispersible resin fine particle binder (C), and an aqueous liquid medium (D).
  • the proportion of the conductive carbon material (A) in the total solid content of the conductive composition is 20% by weight or more and 70% by weight or less, preferably 25% by weight or more and 60% by weight or less. If the amount of the conductive carbon material (A) is too small, the conductivity of the underlayer may not be maintained. On the other hand, if the amount of the conductive carbon material (A) is too large, the durability such as adhesion of the coating film may be obtained. May decrease.
  • the ratio of the water-soluble resin binder (B) to the total solid content of the water-soluble resin binder (B) and the water-dispersible resin fine particle binder (C) is 40% by weight or more and 95% by weight or less.
  • the proportion of the water-soluble resin binder (B) is too large, the adhesion of the electrode may be insufficient. On the other hand, if the proportion of the water-soluble resin binder (B) is too small, the solvent resistance is insufficient. In some cases, a good underlying layer cannot be formed. It is very important to use the water-soluble resin binder (B) and the water-dispersible resin fine particle binder (C) in the above specific ratio in order to form a good underlayer.
  • the proper viscosity of the conductive composition is preferably 10 mPa ⁇ s or more and 30,000 mPa ⁇ s or less, although it depends on the method of applying the conductive composition.
  • the conductive carbon material (A) is not particularly limited as long as it is a conductive carbon material, but graphite, carbon black, conductive carbon fiber (carbon nanotube, carbon nanofiber, carbon fiber), Fullerenes or the like can be used alone or in combination of two or more. From the viewpoint of conductivity, availability, and cost, it is preferable to use carbon black.
  • Carbon black is a furnace black produced by continuously pyrolyzing a gas or liquid raw material in a reactor, especially ketjen black using ethylene heavy oil as a raw material.
  • Ordinarily oxidized carbon black, hollow carbon and the like can also be used.
  • the oxidation treatment of carbon is performed by treating carbon at a high temperature in the air or by secondary treatment with nitric acid, nitrogen dioxide, ozone, etc., for example, such as phenol group, quinone group, carboxyl group, carbonyl group.
  • This is a treatment for directly introducing (covalently bonding) an oxygen-containing polar functional group to the carbon surface, and is generally performed to improve the dispersibility of carbon.
  • it since it is common for the conductivity of carbon to fall, so that the introduction amount of a functional group increases, it is preferable to use the carbon which has not been oxidized.
  • the specific surface area (BET) determined from the adsorption amount of nitrogen is 20 m 2 / g or more and 1500 m 2 / g or less, preferably 50 m 2 / g or more and 1500 m 2 / g or less, more preferably 100 m 2. / G or more and 1500 m 2 / g or less are desirable.
  • BET specific surface area
  • the particle size of the carbon black to be used is preferably 0.005 to 1 ⁇ m, particularly preferably 0.01 to 0.2 ⁇ m in terms of primary particle size.
  • the primary particle diameter here is an average of the particle diameters measured with an electron microscope or the like.
  • the dispersed particle size of the conductive carbon material (A) in the conductive composition is reduced to 0.03 ⁇ m or more and 5 ⁇ m or less. It may be difficult to produce a composition having a dispersed particle size of the carbon material as the conductive aid of less than 0.03 ⁇ m. Further, when a composition in which the dispersed particle diameter of the carbon material as the conductive auxiliary agent exceeds 5 ⁇ m is used, problems such as variations in the material distribution of the composite coating film and variations in the resistance distribution of the electrode may occur. .
  • the dispersed particle size referred to here is a particle size (D50) that is 50% when the volume ratio of the particles is integrated from the fine particle size distribution in the volume particle size distribution.
  • a particle size distribution meter such as a dynamic light scattering type particle size distribution meter ("Microtrack UPA" manufactured by Nikkiso Co., Ltd.).
  • Examples of commercially available carbon black include Toka Black # 4300, # 4400, # 4500, # 5500 (Tokai Carbon Co., Furnace Black), Printex L and the like (Degussa Co., Furnace Black), Raven 7000, 5750, 5250, 5000 ULTRA III, 5000 ULTRA, etc., Conductex SC ULTRA, Conductex 975 ULTRA, etc., PUER BLACK100, 115, 205 etc. (Furnace Black, manufactured by Colombian), # 2350, # 2400B, # 2600B, # 30050B, # 3030B, # 3030B, # 3030B # 3350B, # 3400B, # 5400B, etc.
  • conductive carbon fibers those obtained by firing from petroleum-derived raw materials are preferable, but those obtained by firing from plant-derived raw materials can also be used.
  • VGCF manufactured by Showa Denko Co., Ltd. manufactured with petroleum-derived raw materials can be mentioned.
  • Water-soluble resin binder (B)> The water-soluble resin binder (B) is 1 g of water-soluble resin binder (B) in 99 g of water at 25 ° C., stirred and left at 25 ° C. for 24 hours, and then the binder is completely separated in water without separation and precipitation. It can be dissolved in
  • the water-soluble resin binder (B) is not particularly limited as long as it is a water-soluble resin as described above.
  • the modified material, mixture, or copolymer of these resin may be sufficient.
  • These binders may be used alone or in combination.
  • Water-dispersible resin fine particle binder (C) is generally called an aqueous emulsion, and the binder resin is not dissolved in water but is dispersed in the form of fine particles.
  • the emulsion to be used is not particularly limited, and examples thereof include (meth) acrylic emulsions, nitrile emulsions, urethane emulsions, diene emulsions (SBR, etc.), fluorine emulsions (PVDF, PTFE, etc.) and the like. Unlike the water-soluble polymer, the emulsion preferably has excellent binding properties between particles and flexibility (film flexibility).
  • the particle structure of the water-dispersible resin fine particle binder (C) can be a multi-layer structure, so-called core-shell particles.
  • core-shell particles For example, it is possible to localize a resin in which a monomer having a functional group is mainly polymerized in the core part or the shell part, or to provide a difference in Tg or composition between the core and the shell, thereby improving the curability and drying.
  • Property, film formability, and mechanical strength of the binder can be improved.
  • the average particle size of the water-dispersible resin fine particle binder (C) is preferably 10 to 500 nm, more preferably 10 to 300 nm, from the viewpoints of binding properties and particle stability. Further, when a large amount of coarse particles exceeding 1 ⁇ m are contained, the stability of the particles is impaired, so that the coarse particles exceeding 1 ⁇ m are preferably at most 5% or less.
  • an average particle diameter represents a volume average particle diameter, and can be measured by the dynamic light scattering method.
  • the measurement of the average particle diameter by the dynamic light scattering method can be performed as follows.
  • the cross-linked resin fine particle dispersion is diluted with water 200 to 1000 times depending on the solid content.
  • About 5 ml of the diluted solution is injected into a cell of a measuring device [Microtrack manufactured by Nikkiso Co., Ltd.], and the measurement is performed after inputting the solvent (water in the present invention) and the refractive index conditions of the resin according to the sample.
  • the peak of the volume particle size distribution data (histogram) obtained at this time is defined as the average particle size.
  • the crosslinked resin fine particles are resin fine particles having an internal cross-linked structure (three-dimensional cross-linked structure), and it is important that the fine particles are cross-linked inside the particles.
  • the cross-linked resin fine particles have a cross-linked structure, the electrolytic solution elution resistance can be secured, and the effect can be enhanced by adjusting the cross-linking inside the particles.
  • the cross-linked resin fine particles contain a specific functional group, it is possible to contribute to adhesion with the current collector or the electrode.
  • the conductive composition excellent in durability of the electrical storage device can be obtained by adjusting the amount of the crosslinked structure and the functional group.
  • cross-linking of particles can be used together for cross-linking, but in this case, since a cross-linking agent is added later, leakage of the cross-linking agent component into the electrolyte or electrode preparation There may be variations. For this reason, it is necessary to use a crosslinking agent to such an extent that the electrolyte solution resistance is not impaired.
  • the cross-linked resin fine particles in the (meth) acrylic emulsion preferably used are resin fine particles obtained by emulsion polymerization of an ethylenically unsaturated monomer in water in the presence of a surfactant with a radical polymerization initiator. It is.
  • the (meth) acrylic emulsion preferably used is preferably obtained by emulsion polymerization of an ethylenically unsaturated monomer containing the following monomer groups (C1) and (C2) in the following proportions.
  • (C1) From the group consisting of an ethylenically unsaturated monomer (c1) having a monofunctional or polyfunctional alkoxysilyl group and a monomer (c2) having two or more ethylenically unsaturated groups in one molecule At least one monomer selected: 0.1 to 5% by weight (C2) Ethylenically unsaturated monomer (c3) other than the monomers (c1) to (c2): 95 to 99.9% by weight (However, the total of the above (c1) to (c3) is 100% by weight.)
  • (c1) and (c3) are one ethylene in one molecule unless otherwise specified. It shows the monomer which has an ionic unsaturated group.
  • the functional group (alkoxysilyl group, ethylenically unsaturated group) possessed by the monomer contained in the monomer group (C1) is a self-crosslinking reactive functional group, and is mainly used for particle internal crosslinking during particle synthesis. Has the effect of forming. Electrolytic solution resistance can be improved by sufficiently carrying out internal crosslinking of the particles. Therefore, it is possible to obtain crosslinked resin fine particles by using a monomer contained in the monomer group (C1). In addition, by sufficiently carrying out particle crosslinking, the resistance to electrolytic solution can be improved.
  • Examples of the monomer (c1) having one ethylenically unsaturated group and an alkoxysilyl group in one molecule include ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -methacryloxypropyltriethoxysilane, ⁇ - Methacryloxypropyl tributoxysilane, ⁇ -methacryloxypropylmethyldimethoxysilane, ⁇ -methacryloxypropylmethyldiethoxysilane, ⁇ -acryloxypropyltrimethoxysilane, ⁇ -acryloxypropyltriethoxysilane, ⁇ -acryloxypropylmethyl Dimethoxysilane, ⁇ -methacryloxymethyltrimethoxysilane, ⁇ -acryloxymethyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltributoxysilane, vinylmethyldimethoxysilane, etc. It is below.
  • Examples of the monomer (c2) having two or more ethylenically unsaturated groups in one molecule include allyl (meth) acrylate, 1-methylallyl (meth) acrylate, and 2-methylallyl (meth) acrylate.
  • the purpose of the alkoxysilyl group or ethylenically unsaturated group in the monomer (c1) or monomer (c2) is to introduce a cross-linked structure into the particle by self-condensation or polymerization mainly during the polymerization. However, a part of it may remain inside or on the surface after polymerization. The remaining alkoxysilyl group or ethylenically unsaturated group contributes to interparticle crosslinking of the binder composition. In particular, an alkoxysilyl group is preferable because it has an effect of improving adhesion to the current collector.
  • the monomer contained in the monomer group (C1) is used in an amount of 0.1 to 5% by weight in the whole ethylenically unsaturated monomer (100% in total) used for emulsion polymerization. To do. Preferably, it is 0.5 to 3% by weight.
  • the monomer contained in the monomer group (C1) is less than 0.1% by weight, the particles are not sufficiently cross-linked, and the resistance to electrolytic solution is deteriorated. On the other hand, if it exceeds 5% by weight, there will be a problem in the polymerization stability at the time of emulsion polymerization, or even if it can be polymerized, there will be a problem in the storage stability.
  • the cross-linked resin fine particles in the (meth) acrylic emulsion preferably used are the monomer (c1) having one ethylenically unsaturated group and an alkoxysilyl group in one molecule, and one molecule.
  • the monomer (c2) having two or more ethylenically unsaturated groups therein ethylenically unsaturated groups other than the monomers (c1) and (c2) Can be obtained by emulsion polymerization of the monomer (c3) having
  • the monomer (c3) is not particularly limited as long as it is a monomer other than the monomers (c1) and (c2) and has an ethylenically unsaturated group.
  • Monomer (c4) having one ethylenically unsaturated group and monofunctional or polyfunctional epoxy group in one molecule, one ethylenically unsaturated group and monofunctional or polyfunctional amide group in one molecule And at least one monomer selected from the group consisting of a monomer (c5) having one ethylenically unsaturated group and a monofunctional or polyfunctional hydroxyl group in one molecule (c6)
  • monomers (c7) having an ethylenically unsaturated group other than monomers (c1), (c2) and (c4) to (c6) can be used.
  • an epoxy group, an amide group, or a hydroxyl group can be left in or on the surface of the cross-linked resin fine particles.
  • the physical properties of can be improved.
  • the functional groups of the monomers (c4) to (c6) are likely to remain inside or on the surface even after the particle synthesis, and the adhesion effect to the current collector is large even in a small amount.
  • a part of them may be used for the crosslinking reaction, and by adjusting the degree of crosslinking of these functional groups, it is possible to balance the resistance to electrolytic solution and the adhesion.
  • Examples of the monomer (c4) having one ethylenically unsaturated group and a monofunctional or polyfunctional epoxy group in one molecule include glycidyl (meth) acrylate and 3,4-epoxycyclohexyl (meth) acrylate. Etc.
  • Examples of the monomer (c5) having one ethylenically unsaturated group and a monofunctional or polyfunctional amide group in one molecule include, for example, a primary amide group-containing ethylenically unsaturated monomer such as (meth) acrylamide.
  • Examples of the monomer (c6) having one ethylenically unsaturated group and a monofunctional or polyfunctional hydroxyl group in one molecule include 2-hydroxyethyl (meth) acrylate and 2-hydroxypropyl (meth) acrylate. 4-hydroxybutyl (meth) acrylate, 2- (meth) acryloyloxyethyl-2-hydroxyethylphthalic acid, glycerol mono (meth) acrylate, 4-hydroxyvinylbenzene, 1-ethynyl-1-cyclohexanol, allyl Examples include alcohol.
  • the monomer contained in the monomers (c4) to (c6) is used in an amount of 0.1 to 20% by weight in the whole ethylenically unsaturated monomer (100% by weight in total) used for the emulsion polymerization. It is characterized by. The amount is preferably 1 to 15% by weight, particularly preferably 2 to 10% by weight.
  • the amount of the monomers (c4) to (c6) in the whole ethylenically unsaturated monomers (100% by weight in total) used in the emulsion polymerization is less than 0.1% by weight, the inside of the particles after polymerization or on the surface The amount of remaining functional groups is reduced, and cannot sufficiently contribute to the improvement of the adhesion of the current collector.
  • it exceeds 20% by weight there will be a problem in the polymerization stability at the time of emulsion polymerization, or even if it can be polymerized, there will be a problem in the storage stability.
  • the monomer (c7) is not particularly limited as long as it is a monomer other than the monomers (c1), (c2), (c4) to (c6) and has an ethylenically unsaturated group,
  • the monomers (c8) and (c9) are all monomers having an ethylenically unsaturated group ((c1), (c2), (c4) to (c6) and (c7)).
  • a total of 30 to 95% by weight is preferably contained therein. It is preferable to use the monomer (c8) or the monomer (c9) because the particle stability during particle synthesis and the resistance to electrolytic solution are excellent. If it is less than 30% by weight, the electrolyte solution resistance may be adversely affected. If it exceeds 95% by weight, the stability during particle synthesis will be adversely affected, or even if synthesis is possible, the temporal stability of the particles will be impaired. There is a case.
  • Examples of the monomer (c8) having one ethylenically unsaturated group and an alkyl group having 8 to 18 carbon atoms in one molecule include 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, and myristyl. (Meth) acrylate, cetyl (meth) acrylate, stearyl (meth) acrylate and the like can be mentioned.
  • Examples of the monomer (c9) having one ethylenically unsaturated group and a cyclic structure in one molecule include alicyclic ethylenically unsaturated monomers and aromatic ethylenically unsaturated monomers. It is done.
  • Examples of the alicyclic ethylenically unsaturated monomer include cyclohexyl (meth) acrylate and isobornyl (meth) acrylate, and examples of the aromatic ethylenically unsaturated monomer include benzyl (meth) acrylate.
  • Phenoxyethyl (meth) acrylate styrene, ⁇ -methylstyrene, 2-methylstyrene, chlorostyrene, allylbenzene, ethynylbenzene and the like.
  • Examples of the monomer (c7) other than the monomer (c8) and monomer (c9) include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, and n-butyl (meth) ) Alkyl group-containing ethylenically unsaturated monomers such as acrylate, pentyl (meth) acrylate, heptyl (meth) acrylate; nitrile group-containing ethylenically unsaturated monomers such as (meth) acrylonitrile; perfluoromethylmethyl (meta ) Acrylate, perfluoroethylmethyl (meth) acrylate, 2-perfluorobutylethyl (meth) acrylate, 2-perfluorohexylethyl (meth) acrylate, 2-perfluorooctylethyl (meth) acrylate, 2-perfluoroiso Nonylethyl
  • Examples of the monomer (c7) other than the monomer (c8) and monomer (c9) include maleic acid, fumaric acid, itaconic acid, citraconic acid, and alkyl or alkenyl monoesters thereof.
  • Carboxyl group-containing ethylenically unsaturated monomers such as monoesters, acrylic acid, methacrylic acid, crotonic acid and cinnamic acid
  • Tertiary butyl group-containing ethylenically unsaturated monomers such as tertiary butyl (meth) acrylate
  • a polyfunctional hydrazide compound having two or more hydrazide groups capable of reacting with a keto group as a crosslinking agent is mixed with the binder composition.
  • a tough coating film can be obtained by crosslinking between a keto group and a hydrazide group. This has excellent electrolytic solution resistance and binding properties. Furthermore, since it is possible to achieve both durability and flexibility in a high-temperature environment due to repeated charge and discharge and heat generation, it is possible to obtain a long-life electricity storage device with reduced discharge capacity reduction in the charge and discharge cycle.
  • the resin fine particles obtained by copolymerization of the body have the effect of improving the physical properties such as the adhesion of the current collector, while the functional groups remain in the particles and on the surface even after polymerization, and at the same time agglomeration during synthesis Can be prevented, and the stability of the particles after synthesis may be maintained.
  • a part of the carboxyl group, tertiary butyl group, sulfonic acid group, and phosphoric acid group may react during polymerization and be used for intra-particle crosslinking.
  • the total amount of ethylenically unsaturated monomers used in the emulsion polymerization (100% by weight in total) is 0.
  • the content is preferably 1 to 10% by weight, and more preferably 1 to 5% by weight.
  • the stability of the particles may be deteriorated.
  • the content exceeds 10% by weight, the hydrophilicity of the binder composition becomes too strong, and the electrolytic solution resistance may deteriorate.
  • these functional groups may react during drying and be used for cross-linking within or between particles.
  • carboxyl groups can react with epoxy groups during polymerization and drying to introduce a crosslinked structure into resin fine particles.
  • a tertiary butyl group can react with an epoxy group in the same manner as described above since tertiary butyl alcohol is generated and a carboxyl group is formed when heat of a certain temperature or higher is applied.
  • These monomers (c7) are used in combination of two or more of the monomers listed above in order to adjust the polymerization stability and glass transition temperature of the particles, as well as the film formability and film properties. Can be used. Further, for example, by using (meth) acrylonitrile in combination, there is an effect that rubber elasticity is exhibited.
  • the cross-linked resin fine particles in the (meth) acrylic emulsion preferably used are synthesized by a conventionally known emulsion polymerization method.
  • emulsifier used in emulsion polymerization As the emulsifier, conventionally known ones such as a reactive emulsifier having an ethylenically unsaturated group and a non-reactive emulsifier having no ethylenically unsaturated group can be arbitrarily used.
  • the reactive emulsifier having an ethylenically unsaturated group can be further roughly classified into anionic and nonionic nonionic ones.
  • anionic reactive emulsifier or a nonionic reactive emulsifier having an ethylenically unsaturated group when used, the dispersed particle size of the copolymer becomes finer and the particle size distribution becomes narrower. Therefore, an electricity storage device (for example, a secondary battery) When used as an electrode binder, the resistance to electrolytic solution can be improved, which is preferable.
  • These anionic reactive emulsifiers or nonionic reactive emulsifiers having an ethylenically unsaturated group may be used singly or in combination.
  • anionic reactive emulsifier having an ethylenically unsaturated group are illustrated below, but the emulsifier is not limited to those described below.
  • an alkyl ether type (commercially available products include, for example, Aqualon KH-05, KH-10, KH-20, manufactured by Daiichi Kogyo Seiyaku Co., Ltd. Laterum PD-104 manufactured by Kao Corporation); sulfosuccinic acid ester system (for example, Latemul S-120, S-120A, S-180P, S-180A manufactured by Kao Corporation, Elemiol manufactured by Sanyo Chemical Co., Ltd.) JS-2 etc.); alkyl phenyl ether type or alkyl phenyl ester type (commercially available products include, for example, Aqualon H-2855A, H-3855B, H-3855C, H-3856, HS-05 manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.) , HS-10, HS-20, HS-30, ADEKA Corporation ADEKA Soap SDX-222, SDX-223, SDX
  • Nonionic reactive emulsifiers include, for example, alkyl ethers (for example, commercially available products such as Adeka Soap ER-10, ER-20, ER-30, ER-40 manufactured by ADEKA Corporation, LATEMUL PD- manufactured by Kao Corporation, etc.
  • alkylphenyl ethers or alkylphenyl esters commercially available products include, for example, Aqualon RN-10, RN-20, RN-30, RN manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.) -50, Adeka Soap NE-10, NE-20, NE-30, NE-40, etc., manufactured by ADEKA Corporation; (meth) acrylate sulfate ester (commercially available products include, for example, RMA- manufactured by Nippon Emulsifier Co., Ltd.) 564, RMA-568, RMA-1114, etc.).
  • a non-reactive emulsifier having no ethylenically unsaturated group is optionally used together with the above-described reactive emulsifier having an ethylenically unsaturated group.
  • Non-reactive emulsifiers can be broadly classified into non-reactive anionic emulsifiers and non-reactive nonionic emulsifiers.
  • non-reactive nonionic emulsifiers include polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether and polyoxyethylene stearyl ether; polyoxyethylene alkyl such as polyoxyethylene octyl phenyl ether and polyoxyethylene nonyl phenyl ether Sorbitan monolaurate, sorbitan monostearate, sorbitan higher fatty acid esters such as sorbitan trioleate; polyoxyethylene sorbitan higher fatty acid esters such as polyoxyethylene sorbitan monolaurate; polyoxyethylene monolaurate, Polyoxyethylene higher fatty acid esters such as polyoxyethylene monostearate; oleic acid monoglyceride, stearic acid monog Glycerine higher fatty acid esters such as celite, polyoxyethylene-polyoxypropylene block copolymers, and the like can be exemplified polyoxyethylene distyrenated phenyl ether.
  • non-reactive anionic emulsifiers include higher fatty acid salts such as sodium oleate; alkyl aryl sulfonates such as sodium dodecylbenzene sulfonate; alkyl sulfate esters such as sodium lauryl sulfate; polyoxyethylene lauryl ether Polyoxyethylene alkyl ether sulfates such as sodium sulfate; polyoxyethylene alkylaryl ether sulfates such as polyoxyethylene nonylphenyl ether sodium sulfate; sodium monooctyl sulfosuccinate, sodium dioctyl sulfosuccinate, polyoxyethylene lauryl sulfosuccinic acid Alkylsulfosuccinic acid ester salts such as sodium and their derivatives; polyoxyethylene distyrenated phenyl ether And the like can be exemplified Le sulfuric ester salts.
  • the amount of the emulsifier used is not necessarily limited, and can be appropriately selected according to the physical properties required when the crosslinked resin fine particles are used as a final binder.
  • the emulsifier is usually preferably 0.1 to 30 parts by weight, more preferably 0.3 to 20 parts by weight, based on 100 parts by weight of the total of ethylenically unsaturated monomers. More preferably, it is in the range of 5 to 10 parts by weight.
  • a water-soluble protective colloid can be used in combination.
  • water-soluble protective colloids include polyvinyl alcohols such as partially saponified polyvinyl alcohol, fully saponified polyvinyl alcohol, and modified polyvinyl alcohol; cellulose derivatives such as hydroxyethyl cellulose, hydroxypropyl cellulose, and carboxymethyl cellulose salt; Examples thereof include saccharides, and these can be used singly or in a combination of plural kinds.
  • the amount of the water-soluble protective colloid used is 0.1 to 5 parts by weight, more preferably 0.5 to 2 parts by weight per 100 parts by weight of the total amount of ethylenically unsaturated monomers.
  • aqueous medium used in emulsion polymerization examples include water, and a hydrophilic organic solvent can also be used as long as the object of the present invention is not impaired.
  • the polymerization initiator is not particularly limited as long as it has the ability to initiate radical polymerization, and known oil-soluble polymerization initiators and water-soluble polymerization initiators can be used.
  • the oil-soluble polymerization initiator is not particularly limited, and examples thereof include benzoyl peroxide, tert-butyl peroxybenzoate, tert-butyl hydroperoxide, tert-butyl peroxy (2-ethylhexanoate), and tert-butyl peroxide.
  • Organic peroxides such as oxy-3,5,5-trimethylhexanoate and di-tert-butyl peroxide; 2,2′-azobisisobutyronitrile, 2,2′-azobis-2,4- Examples thereof include azobis compounds such as dimethylvaleronitrile, 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), 1,1′-azobis-cyclohexane-1-carbonitrile. These can be used alone or in combination of two or more. These polymerization initiators are preferably used in an amount of 0.1 to 10.0 parts by weight with respect to 100 parts by weight of the ethylenically unsaturated monomer.
  • a water-soluble polymerization initiator for example, ammonium persulfate, potassium persulfate, hydrogen peroxide, 2,2′-azobis (2-methylpropionamidine) dihydrochloride and the like are conventionally known. A thing can be used conveniently.
  • a reducing agent can be used together with a polymerization initiator if desired. Thereby, it becomes easy to accelerate the emulsion polymerization rate or to perform the emulsion polymerization at a low temperature.
  • reducing agent examples include reducing organic compounds such as metal salts such as ascorbic acid, ersorbic acid, tartaric acid, citric acid, glucose, and formaldehyde sulfoxylate, sodium thiosulfate, sodium sulfite, sodium bisulfite, Examples include reducing inorganic compounds such as sodium bisulfite, ferrous chloride, Rongalite, thiourea dioxide, and the like. These reducing agents are preferably used in an amount of 0.05 to 5.0 parts by weight with respect to 100 parts by weight of the total ethylenically unsaturated monomer.
  • the polymerization temperature is not less than the polymerization start temperature of each polymerization initiator.
  • the polymerization time is not particularly limited, but is usually 2 to 24 hours.
  • ⁇ Other materials used for reaction> sodium acetate, sodium citrate, sodium bicarbonate, etc. as a buffering agent, and octyl mercaptan, 2-ethylhexyl thioglycolate, octyl thioglycolate, stearyl mercaptan, lauryl mercaptan as a chain transfer agent
  • a suitable amount of mercaptans such as t-dodecyl mercaptan can be used.
  • a monomer having an acidic functional group such as a carboxyl group-containing ethylenically unsaturated monomer
  • it can be neutralized with a basic compound before or after the polymerization.
  • a basic compound such as trimethylamine, triethylamine and butylamine
  • alcohol amines such as 2-dimethylaminoethanol, diethanolamine, triethanolamine and aminomethylpropanol
  • a base such as morpholine.
  • it is a highly volatile base that is highly effective in drying, and preferred bases are aminomethylpropanol and ammonia.
  • the glass transition temperature (hereinafter also referred to as Tg) of the crosslinked resin fine particles is preferably ⁇ 50 to 70 ° C., more preferably ⁇ 30 to 30 ° C.
  • Tg glass transition temperature
  • the glass transition temperature is a value obtained using a DSC (differential scanning calorimeter).
  • Measurement of the glass transition temperature by DSC can be performed as follows. About 2 mg of resin obtained by drying the cross-linked resin fine particles is weighed on an aluminum pan, the test container is set on a DSC measurement holder, and the endothermic peak of the chart obtained under a temperature rising condition of 10 ° C./min is read. The peak temperature at this time is defined as the glass transition temperature.
  • the particle structure of the crosslinked resin fine particles may be a multi-layer structure, so-called core-shell particles.
  • core-shell particles it is possible to localize a resin in which a monomer having a functional group is mainly polymerized in the core part or the shell part, or to provide a difference in Tg or composition between the core and the shell, thereby improving the curability and drying.
  • Property, film formability, and mechanical strength of the binder can be improved.
  • the average particle size of the crosslinked resin fine particles is preferably 10 to 500 nm, more preferably 30 to 300 nm, from the viewpoint of the binding property of the electrode active material and the stability of the particles. Further, when a large amount of coarse particles exceeding 1 ⁇ m are contained, the stability of the particles is impaired, so that the coarse particles exceeding 1 ⁇ m are preferably at most 5% by weight.
  • an average particle diameter represents a volume average particle diameter, and can be measured by the dynamic light scattering method.
  • the measurement of the average particle diameter by the dynamic light scattering method can be performed as follows.
  • the cross-linked resin fine particle dispersion is diluted with water 200 to 1000 times depending on the solid content.
  • About 5 ml of the diluted solution is injected into a cell of a measuring device [Microtrack manufactured by Nikkiso Co., Ltd.], and the measurement is performed after inputting the solvent (water in the present invention) and the refractive index conditions of the resin according to the sample.
  • the peak of the volume particle size distribution data (histogram) obtained at this time is defined as the average particle size.
  • the (meth) acrylic emulsion further includes an uncrosslinked epoxy group-containing compound, an uncrosslinked amide group-containing compound, an uncrosslinked hydroxyl group-containing compound, and an uncrosslinked oxazoline group-containing compound. It is preferable that it contains at least one uncrosslinked compound (E) selected from the group consisting of [hereinafter sometimes referred to as compound (E)].
  • the compound (E) is a compound that does not dissolve in the aqueous liquid medium and is dispersed.
  • the “uncrosslinked functional group-containing compound” which is the compound (E) is an internal cross-linked structure (three-dimensional cross-linked structure) of a (meth) acrylic emulsion like a monomer contained in the monomer group (C1). Unlike the compound that forms the resin, it is a compound that is added after the resin fine particles are subjected to emulsion polymerization (polymer formation) (does not participate in the internal cross-linking of the resin fine particles). That is, “uncrosslinked” means that it is not involved in the formation of the internal crosslinked structure (three-dimensional crosslinked structure) of the (meth) acrylic emulsion.
  • Electrolyte resistance is ensured by the (meth) acrylic emulsion having a crosslinked structure, and by using the compound (E), an epoxy group, an amide group, a hydroxyl group, and an oxazoline group in the compound (E) are used. At least one functional group selected from can contribute to adhesion with the current collector or the electrode. Furthermore, the conductive composition excellent in durability of the electrical storage device can be obtained by adjusting the amount of the crosslinked structure and the functional group.
  • the cross-linked resin fine particles in the (meth) acrylic emulsion need to be cross-linked inside the particles. Electrolytic solution resistance can be ensured by appropriately adjusting the crosslinking inside the particles.
  • the functional group-containing crosslinked resin fine particles are at least one selected from the group consisting of an uncrosslinked epoxy group-containing compound, an uncrosslinked amide group-containing compound, an uncrosslinked hydroxyl group-containing compound, and an uncrosslinked oxazoline group-containing compound.
  • the compound (E) may react with the functional group in the cross-linked resin fine particles for the purpose of adjusting the flexibility and the electrolytic solution resistance of the binder.
  • the functional group capable of interacting with the current collector or the electrode is decreased. For this reason, the reaction between the crosslinked resin fine particles in the (meth) acrylic emulsion and the compound (E) needs to be at a level that does not impair the adhesion to the current collector or the electrode.
  • uncrosslinked epoxy group-containing compound examples include epoxy group-containing ethylenically unsaturated monomers such as glycidyl (meth) acrylate and 3,4-epoxycyclohexyl (meth) acrylate; Radical polymerization resins obtained by polymerizing ethylenically unsaturated monomers containing monomers; ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, glycerin diglycidyl ether, glycerin triglycidyl ether, 1,6-hexanediol Diglycidyl ether, trimethylolpropane triglycidyl ether, diglycidyl aniline, N, N, N ′, N′-tetraglycidyl-m-xylylenediamine, 1,3-bis (N, N′-diglycidylaminomethyl) Cyclohexane Poly
  • epoxy resins such as bisphenol A-epichlorohydrin type epoxy resins and bisphenol F-epichlorohydrin type epoxy resins, and ethylenically unsaturated monomers containing epoxy group-containing ethylenically unsaturated monomers.
  • a radical polymerization resin obtained by polymerizing a saturated monomer is preferred.
  • the epoxy resin can be expected to have a synergistic effect of improving the electrolytic solution resistance by having a bisphenol skeleton and improving the adhesion of the current collector by a hydroxyl group contained in the skeleton.
  • the radical polymerization resin obtained by polymerizing an ethylenically unsaturated monomer containing an epoxy group-containing ethylenically unsaturated monomer has a higher adhesion to the current collector by having more epoxy groups in the resin skeleton.
  • it since it is a resin, an effect of improving the resistance to electrolytic solution can be expected as compared with the monomer.
  • Non-crosslinked amide group-containing compounds include, for example, primary amide group-containing compounds such as (meth) acrylamide; N-methylolacrylamide, N, N-di (methylol) acrylamide, N-methylol-N-methoxymethyl (meta) ) Alkyrol (meth) acrylamide compounds such as acrylamide; N-methoxymethyl- (meth) acrylamide, N-ethoxymethyl- (meth) acrylamide, N-propoxymethyl- (meth) acrylamide, N-butoxymethyl- (meta ) Monoalkoxy (meth) acrylamide compounds such as acrylamide and N-pentoxymethyl- (meth) acrylamide; N, N-di (methoxymethyl) acrylamide, N-ethoxymethyl-N-methoxymethylmethacrylamide, N, N -Di (Etoki Methyl) acrylamide, N-ethoxymethyl-N-propoxy
  • radical polymerization resins obtained by polymerizing ethylenically unsaturated monomers including amide group-containing ethylenically unsaturated monomers such as acrylamide are particularly preferable.
  • amide group-containing ethylenically unsaturated monomers such as acrylamide
  • uncrosslinked hydroxyl group-containing compound examples include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, glycerol mono (meth) acrylate 4-hydroxyvinylbenzene, Hydroxyl group-containing ethylenically unsaturated monomers such as 1-ethynyl-1-cyclohexanol and allyl alcohol; radical polymerization obtained by polymerizing ethylenically unsaturated monomers containing the hydroxyl group-containing ethylenically unsaturated monomers Resins: linear aliphatic diols such as ethylene glycol, diethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol; propylene glycol, neopenty
  • radical polymerization resins obtained by polymerizing ethylenically unsaturated monomers including a hydroxyl group-containing ethylenically unsaturated monomer or cyclic diols are particularly preferable.
  • the radical polymerization resin obtained by polymerizing ethylenically unsaturated monomers including hydroxyl group-containing ethylenically unsaturated monomers improves current collector adhesion by having more hydroxyl groups in the resin skeleton.
  • the resin can be expected to have an effect of improving the resistance to electrolytic solution compared to the monomer.
  • cyclic diols can be expected to have an effect of improving the resistance to electrolytic solution by having a cyclic structure in the skeleton.
  • Uncrosslinked oxazoline group-containing compound examples include 2′-methylenebis (2-oxazoline), 2,2′-ethylenebis (2-oxazoline), and 2,2′-ethylenebis (4-methyl-2-oxazoline).
  • oxazoline group-containing compounds in particular, phenylene bis-type oxazoline compounds such as 2′-p-phenylenebis (2-oxazoline), or ethylenically unsaturated monomers containing an oxazoline group-containing ethylenically unsaturated monomer A radical polymerization resin obtained by polymerizing is preferred.
  • the phenylenebis type oxazoline compound has an effect of improving the resistance to electrolytic solution by having a phenyl group in the skeleton.
  • a radical polymerization resin obtained by polymerizing an ethylenically unsaturated monomer containing an oxazoline group-containing ethylenically unsaturated monomer has a current collector adhesion by having more oxazoline groups in the resin skeleton.
  • the resistance to an electrolytic solution can be improved as compared with a monomer.
  • Compound (E) is preferably added in an amount of 0.1 to 50 parts by weight, more preferably 5 to 40 parts by weight, based on 100 parts by weight of the solid content of the crosslinked resin fine particles.
  • the addition amount of the compound (E) is less than 0.1 parts by weight, the amount of the functional group contributing to the adhesion of the current collector is decreased, and may not be able to sufficiently contribute to the improvement of the adhesion of the current collector.
  • the binder performance may be adversely affected such as leakage of the compound (E) into the electrolyte.
  • two or more types of compounds (E) can be used in combination.
  • the molecular weight of the compound (E) is not particularly limited, but the weight average molecular weight is preferably 1,000 to 1,000,000, more preferably 5,000 to 500,000. If the weight average molecular weight is less than 1,000, the adhesion effect to the current collector may not be sufficient, and if the weight average molecular weight exceeds 1,000,000, the viscosity of the compound may increase. There may be a case where handling properties at the time of electrode preparation are deteriorated.
  • the said weight average molecular weight is the value of polystyrene conversion measured by the gel permeation chromatography (GPC) method.
  • aqueous liquid medium (D) As the aqueous liquid medium (D), it is preferable to use water, but if necessary, for example, a liquid medium compatible with water may be used to improve the coating property to the current collector. good.
  • Liquid media compatible with water include alcohols, glycols, cellosolves, amino alcohols, amines, ketones, carboxylic acid amides, phosphoric acid amides, sulfoxides, carboxylic acid esters, and phosphoric acid esters , Ethers, nitriles and the like, and may be used as long as they are compatible with water.
  • a film-forming auxiliary, an antifoaming agent, a leveling agent, a preservative, a pH adjusting agent, a viscosity adjusting agent and the like can be blended with the conductive composition as necessary.
  • the conductive composition can also be used for forming a base layer of an electrode for an electricity storage device, an acid generated by a reaction between an impurity in the electrode and an electrolytic solution for the purpose of suppressing charge / discharge cycle deterioration of the electricity storage device.
  • a material that adsorbs or consumes may be added.
  • the material that adsorbs the acid generated by the reaction of the electrolytic solution is not particularly limited.
  • magnesium oxide (MgO) aluminum oxide (Al 2 O 3 ), boron oxide (B 2 O 3 ), gallium oxide ( Ga 2 O 3 ), indium oxide (In 2 O 3 ), and the like.
  • the material consuming the acid generated by the reaction of the electrolytic solution is not particularly limited as long as the current collector is not corroded.
  • metal carbonates such as magnesium carbonate and calcium carbonate, sodium carboxylate, potassium carboxylate,
  • Metal organic acid salts such as sodium sulfonate, potassium sulfonate, sodium benzoate, potassium benzoate, sodium silicate, potassium silicate, aluminum silicate, magnesium silicate, silicon dioxide and other silicates, magnesium hydroxide, etc.
  • Alkaline hydroxides can be mentioned.
  • the conductive composition when used for forming an underlayer of an electrode for an electricity storage device, a material that generates a gas when the temperature exceeds a predetermined temperature for the purpose of suppressing thermal runaway when the electricity storage device is overcharged or short-circuited, resistance A material having a positive temperature coefficient may be added.
  • Examples of materials that generate gas when the temperature exceeds a predetermined temperature include carbonates such as lithium carbonate, zinc carbonate, lead carbonate, and strontium carbonate, and expanded graphite.
  • Examples of materials having a positive temperature coefficient of resistance include PTC materials and polymer PTC materials.
  • the PTC material is a material whose resistance rapidly increases when the Curie temperature is exceeded.
  • BaTiMO 2 M is any of Cr, Pb, Ca, Sr, Ce, Mn, La, Mn, Y, Nb and Nd. Or one or more elements).
  • the polymer PTC material is a material that increases resistance by utilizing a change in the volume of the polymer due to heat. At low temperatures, a conductive path is formed by the conductive carbon material (A), but current flows. When the temperature becomes high, the polymer expands or contracts to block the conductive path, and the resistance can be increased.
  • Such polymer PTC materials include polyethylene, polypropylene, polyethylene terephthalate, polyether nitrile, polyimide, polyamide, polytetrafluoroethylene, styrene butadiene rubber, polyacrylonitrile, polymethyl acrylate, polymethyl methacrylate, polyvinyl chloride, polyfluoride. Examples thereof include vinylidene and epoxy resin, and examples thereof include a copolymer or a mixture thereof.
  • ⁇ Disperser / Mixer> As a device used for obtaining the conductive composition or the composite ink described later, a disperser or a mixer that is usually used for pigment dispersion or the like can be used.
  • mixers such as dispersers, homomixers, or planetary mixers; homogenizers such as “Clairemix” manufactured by M Technique, or “Fillmix” manufactured by PRIMIX; paint conditioner (manufactured by Red Devil), ball mill, sand mill (Shinmaru Enterprises "Dynomill”, etc.), Attritor, Pearl Mill (Eirich “DCP Mill”, etc.), or Coball Mill, etc .; Media type dispersers; Wet Jet Mill (Genus, “Genus PY”, Sugino Media-less dispersers such as “Starburst” manufactured by Machine, “Nanomizer” manufactured by Nanomizer, etc., “Claire SS-5” manufactured by M Technique, or “MICROS” manufactured by Nara Machinery; or other roll mills, etc. Can be mentioned But it is not limited thereto.
  • the disperser it is preferable to use a disperser that has been subjected to a metal contamination prevention treatment from the disperser.
  • a disperser in which the agitator and vessel are made of a ceramic or resin disperser, or the metal agitator and vessel surface are treated with tungsten carbide spraying or resin coating is preferably used.
  • the media it is preferable to use glass beads, ceramic beads such as zirconia beads or alumina beads.
  • a roll mill it is preferable to use a ceramic roll. Only one type of dispersion device may be used, or a plurality of types of devices may be used in combination.
  • a medialess disperser such as a roll mill or a homogenizer is preferable to a media type disperser.
  • the current collector with a base layer for an electricity storage device has a base layer formed of a conductive composition on the current collector.
  • the electrode for the electricity storage device was formed on a current collector from an underlayer formed from a conductive composition, and an electrode forming composition (mixture ink) containing an electrode active material and a binder. And a composite layer.
  • the material and shape of the current collector used for the electrode are not particularly limited, and those suitable for various power storage devices can be appropriately selected.
  • examples of the material for the current collector include metals and alloys such as aluminum, copper, nickel, titanium, and stainless steel.
  • aluminum is particularly preferable as the positive electrode material
  • copper is preferable as the negative electrode material.
  • a flat foil is used as the shape, but a roughened surface, a perforated foil, or a mesh current collector can also be used.
  • the method for coating the current collector with the conductive composition or the composite ink described later there is no particular limitation on the method for coating the current collector with the conductive composition or the composite ink described later, and a known method can be used. Specific examples include die coating method, dip coating method, roll coating method, doctor coating method, knife coating method, spray coating method, gravure coating method, screen printing method or electrostatic coating method, and the like. Examples of methods that can be used include standing drying, blower dryers, hot air dryers, infrared heaters, and far-infrared heaters, but are not particularly limited thereto.
  • the thickness of the underlayer is generally from 0.1 ⁇ m to 5 ⁇ m, preferably from 0.1 ⁇ m to 2 ⁇ m.
  • the thickness of the electrode mixture layer is generally 1 ⁇ m or more and 500 ⁇ m or less, preferably 10 ⁇ m or more and 300 ⁇ m or less.
  • a general ink mixture for a power storage device essentially includes an active material and a solvent, and contains a conductive additive and a binder as necessary.
  • the active material is contained as much as possible.
  • the ratio of the active material in the solid material solid content is preferably 80% by weight or more and 99% by weight or less.
  • the ratio of the conductive assistant to the solid ink solid content is preferably 0.1 to 15% by weight.
  • the ratio of the binder to the solid material ink solid content is preferably 0.1 to 15% by weight.
  • the viscosity of the composite ink is preferably 100 mPa ⁇ s or more and 30,000 mPa ⁇ s or less in the range of solid content of 30 to 90% by weight.
  • the positive electrode active material for the lithium ion secondary battery is not particularly limited, but metal oxides capable of doping or intercalating lithium ions, metal compounds such as metal sulfides, and conductive polymers are used. be able to.
  • transition metal oxides such as Fe, Co, Ni, and Mn
  • composite oxides with lithium and inorganic compounds such as transition metal sulfides.
  • transition metal oxide powders such as MnO, V 2 O 5 , V 6 O 13 , TiO 2 , layered structure lithium nickelate, lithium cobaltate, lithium manganate, spinel structure lithium manganate, etc.
  • composite oxide powders of lithium and transition metals lithium iron phosphate materials that are phosphate compounds having an olivine structure, transition metal sulfide powders such as TiS 2 and FeS, and the like.
  • conductive polymers such as polyaniline, polyacetylene, polypyrrole, and polythiophene can be used. Moreover, you may mix and use said inorganic compound and organic compound.
  • the negative electrode active material for the lithium ion secondary battery is not particularly limited as long as it can be doped or intercalated with lithium ions.
  • metal Li alloys thereof such as tin alloys, silicon alloys, lead alloys, etc., Li X Fe 2 O 3 , Li X Fe 3 O 4 , Li X WO 2 , lithium titanate, lithium vanadate, silicon
  • Metal oxides such as lithium oxide, conductive polymer such as polyacetylene and poly-p-phenylene, amorphous carbonaceous materials such as soft carbon and hard carbon, artificial graphite such as highly graphitized carbon materials, or natural Examples thereof include carbonaceous powders such as graphite, carbon black, mesophase carbon black, resin-fired carbon materials, air-growth carbon fibers, and carbon fibers.
  • These negative electrode active materials can be used alone or in combination.
  • the size of these electrode active materials is preferably in the range of 0.05 to 100 ⁇ m, more preferably in the range of 0.1 to 50 ⁇ m.
  • the dispersed particle diameter of the electrode active material (A) in the composite ink is preferably 0.5 to 20 ⁇ m.
  • the dispersed particle size referred to here is a particle size (D50) that is 50% when the volume ratio of the particles is integrated from the fine particle size distribution in the volume particle size distribution.
  • a particle size distribution meter such as a dynamic light scattering type particle size distribution meter ("Microtrack UPA" manufactured by Nikkiso Co., Ltd.).
  • Electrode active material for electric double layer capacitors
  • Activated carbon, polyacene, carbon whisker, graphite, etc. are mentioned, These powder or fiber etc. are mentioned.
  • the preferred electrode active material for the electric double layer capacitor is activated carbon, specifically activated carbon activated with phenolic, coconut husk, rayon, acrylic, coal / petroleum pitch coke, mesocarbon microbeads (MCMB), etc. Can be mentioned.
  • MCMB mesocarbon microbeads
  • the specific surface area is preferably 30 m 2 / g or more, preferably 500 to 5000 m 2 / g, more preferably 1000 to 3000 m 2 / g.
  • These electrode active materials can be used alone or in combination of two or more kinds, or two or more kinds of carbons having different average particle diameters or particle size distributions may be used in combination.
  • the positive electrode active material for the lithium ion capacitor is not particularly limited as long as it is a material capable of reversibly doping and dedoping lithium ions and anions, and examples thereof include activated carbon powder.
  • the dispersed particle diameter of the activated carbon is preferably 0.1 ⁇ m to 20 ⁇ m. The dispersed particle diameter here is as described above.
  • the negative electrode active material for the lithium ion capacitor is not particularly limited as long as it is a material capable of reversibly doping and dedoping lithium ions.
  • graphite-based materials such as artificial graphite and natural graphite can be used. Can be mentioned.
  • the dispersed particle diameter of the activated carbon is preferably 0.1 ⁇ m to 20 ⁇ m. The dispersed particle diameter here is as described above.
  • the conductive auxiliary agent in the composite ink is not particularly limited as long as it is a carbon material having conductivity, and the same conductive carbon material (A) as described above can be used.
  • the binder in the composite ink is used to bind particles such as an active material or a conductive carbon material, or a conductive carbon material and a current collector.
  • binders used in the composite ink include acrylic resin, polyurethane resin, polyester resin, phenol resin, epoxy resin, phenoxy resin, urea resin, melamine resin, alkyd resin, formaldehyde resin, silicon resin, fluorine resin, Cellulose resins such as carboxymethyl cellulose, synthetic rubbers such as styrene-butadiene rubber and fluorine rubber, conductive resins such as polyaniline and polyacetylene, etc., polymer compounds containing fluorine atoms such as polyvinylidene fluoride, polyvinyl fluoride, and tetrafluoroethylene Is mentioned. Further, a modified product, a mixture, or a copolymer of these resins may be used. These binders can be used alone or in combination.
  • the binder suitably used in the water-based composite ink is preferably an aqueous medium, and examples of the aqueous medium binder include water-soluble type, emulsion type, hydrosol type, and the like. be able to.
  • a film forming aid, an antifoaming agent, a leveling agent, a preservative, a pH adjusting agent, a viscosity adjusting agent and the like can be blended with the composite ink as necessary.
  • a current collector with a base layer for an electricity storage device can be obtained by coating and drying the conductive composition on the current collector to form a base layer.
  • an electrode for an electricity storage device can be obtained by coating and drying the conductive composition on a current collector to form a base layer, and providing a composite layer on the base layer.
  • the composite material layer provided on the base layer can be formed using the above-described composite ink.
  • an electricity storage device such as a secondary battery or a capacitor can be obtained.
  • Secondary batteries include lithium ion secondary batteries, sodium ion secondary batteries, magnesium ion secondary batteries, alkaline secondary batteries, lead storage batteries, sodium sulfur secondary batteries, lithium air secondary batteries, etc.
  • An electrolyte solution, a separator, and the like that are conventionally known for each secondary battery can be appropriately used.
  • Examples of the capacitor include an electric double layer capacitor, a lithium ion capacitor, and the like, and an electrolyte, a separator, and the like that are conventionally known for each capacitor can be appropriately used.
  • the electrolyte solution will be described taking the case of a lithium ion secondary battery as an example.
  • As the electrolytic solution an electrolyte containing lithium dissolved in a non-aqueous solvent is used.
  • the non-aqueous solvent is not particularly limited.
  • carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, ethyl methyl carbonate, and diethyl carbonate; ⁇ -butyrolactone, ⁇ -valerolactone, and ⁇ - Lactones such as octanoic lactone; tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, 1,2-methoxyethane, 1,2-ethoxyethane, and 1,2 Glymes such as dibutoxyethane; esters such as methyl formate, methyl acetate, and methyl propionate; sulfoxides such as dimethyl sulfoxide and sulfolane; Lil and the like can be mentioned.
  • These solvents may be used alone or in combination of two or more.
  • the electrolyte solution can be a polymer electrolyte that is held in a polymer matrix and made into a gel.
  • the polymer matrix include, but are not limited to, an acrylate resin having a polyalkylene oxide segment, a polyphosphazene resin having a polyalkylene oxide segment, and a polysiloxane having a polyalkylene oxide segment.
  • separator examples include, but are not limited to, a polyethylene nonwoven fabric, a polypropylene nonwoven fabric, a polyamide nonwoven fabric, and those subjected to hydrophilic treatment.
  • the structure of the lithium ion secondary battery, the electric double layer capacitor, and the lithium ion capacitor is not particularly limited, but is usually composed of a positive electrode and a negative electrode, and a separator provided as necessary. Paper type, cylindrical type, button type Various shapes can be formed according to the purpose of use, such as a laminated type.
  • the temperature was cooled to 30 ° C., and the amide having a solid content of 40% was obtained.
  • a group-containing compound (polyacrylamide) solution was obtained.
  • solid content was calculated
  • the dropping tanks 1 and 2 were dropped over 2 hours to carry out polymerization. After completion of the dropping, stirring was continued for 1 hour while maintaining the internal temperature at 80 ° C. After confirming that the conversion rate exceeded 98% by solid content measurement, the temperature was cooled to 30 ° C., and the hydroxyl group having a solid content of 40% A solution containing compound (methyl methacrylate / butyl acrylate / 2-hydroxyethyl methacrylate copolymer) was obtained. In addition, solid content was calculated
  • Synthesis Examples 2 to 21 The composition shown in Table 5, Table 6, and Table 11 was synthesized in the same manner as in Synthesis Example 1 to obtain aqueous resin fine particle dispersions of Synthesis Examples 2 to 21. However, in Synthesis Examples 20 and 21, the resin aggregated during emulsion polymerization, and the desired resin fine particles could not be obtained.
  • ⁇ Conductive composition> 10 parts of acetylene black (A-1: DENKA BLACK HS-100) as a conductive carbon material, 50 parts of a 20% aqueous solution of polyallylamine (B-1) as a water-soluble resin binder (10 parts as a solid content), water 16.7 parts (10 parts as a solid content) of 60% aqueous dispersion (C-1) polytetrafluoroethylene 30-J (manufactured by Mitsui DuPont Fluorochemical Co., Ltd.), a dispersible resin fine particle binder, and 223.3 water The parts were mixed in a mixer, and further dispersed in a sand mill to obtain a conductive composition (1).
  • A-1 DENKA BLACK HS-100
  • the degree of dispersion of the obtained dispersion was determined by determination with a grind gauge (in accordance with JISK5600-2-5). The evaluation results are shown in Table 1. The numbers in the table indicate the size of the coarse particles, and the smaller the value, the better the dispersibility, and the more uniform and good state.
  • this electrically conductive composition (1) on the 20-micrometer-thick aluminum foil used as a collector using a bar coater, it heat-drys and it is for electrical storage devices so that thickness may be set to 1.2 micrometers.
  • a current collector (1) with an underlayer was obtained.
  • the solvent resistance of the obtained collector with an underlayer was evaluated by the following method.
  • current collectors (2) to (28) with an underlayer for an electricity storage device were obtained in the same manner as the current collector (1) with an underlayer for an electricity storage device with the configuration described in Table 2, and the same evaluations were made. went.
  • ⁇ Composite ink for lithium ion secondary battery positive electrode As a positive electrode active material, 44 parts of LiFePO 4, 3 parts of a conductive additive (acetylene black), 3 parts of a binder (PVDF), and 50 parts of NMP (N-methylpyrrolidone) were mixed to prepare a positive electrode mixture ink.
  • a positive electrode active material 44 parts of LiFePO 4, 3 parts of a conductive additive (acetylene black), 3 parts of a binder (PVDF), and 50 parts of NMP (N-methylpyrrolidone) were mixed to prepare a positive electrode mixture ink.
  • ⁇ Composite ink for negative electrode for lithium ion secondary battery As a negative electrode active material, 46.5 parts of artificial graphite, 1 part of a conductive additive (acetylene black), 2.5 parts of binder (PVDF), and 50 parts of NMP were mixed to prepare a mixture ink for negative electrode.
  • a conductive additive acetylene black
  • PVDF binder
  • NMP binder
  • Example 11 ⁇ Positive electrode for lithium ion secondary battery with underlayer>
  • the above-mentioned ink mixture for lithium ion secondary battery positive electrode is applied on the current collector (1) with a base layer for secondary battery using a doctor blade, and then dried by heating under reduced pressure to give an electrode thickness of 100 ⁇ m. Adjusted as follows. Furthermore, the rolling process by roll press was performed and the positive electrode from which thickness becomes 85 micrometers was produced. The adhesion of the obtained electrode was evaluated by the following method. The evaluation results are shown in Table 3.
  • Examples 12 to 16, 25, 26, Comparative Examples 11 to 17 A positive electrode was obtained in the same manner as in Example 11 except that the base electrode for the electricity storage device shown in Table 2 was used, and the same evaluation as in Example 11 was performed. The evaluation results are shown in Table 3.
  • Example 17 After applying the above-mentioned ink mixture for lithium ion secondary battery negative electrode on the current collector (7) with a base layer for an electricity storage device using a doctor blade, drying under reduced pressure is performed so that the thickness of the electrode becomes 82 ⁇ m. It was adjusted. A rolling process using a roll press was performed to produce a negative electrode having a thickness of 70 ⁇ m. The adhesion of the obtained electrode was evaluated by the following method. The evaluation results are shown in Table 4.
  • Example 18-22, 27, 28, Comparative Examples 18-24 A negative electrode was obtained in the same manner as in Example 17 except that the current collector with a base layer for an electricity storage device shown in Table 4 was used. Evaluation similar to Example 17 was performed and the evaluation results are shown in Table 4.
  • Electrode adhesion Electrode adhesion
  • the knife the incision from the surface of the electrode to the depth reaching the current collector was cut into 6 grids in the vertical and horizontal directions at intervals of 2 mm. Adhesive tape was applied to the cut and immediately peeled off, and the degree of electrode dropping was determined by visual judgment. The evaluation criteria are shown below. ⁇ : “No peeling (practical problem-free level)” ⁇ ⁇ : “Slightly peeled (problem but usable level)” ⁇ : “About half peel” ⁇ : “Peeling at most parts”
  • the discharge end voltage is 2.0 V at a discharge current of 1.0 mA.
  • the constant current discharge was performed until it reached.
  • These charge / discharge cycles are defined as one cycle, and 5 cycles of charge / discharge are repeated, and the discharge capacity at the fifth cycle is defined as the initial discharge capacity. (The initial discharge capacity is assumed to be 100% maintenance rate).
  • “The rate of change is 90% or more. Particularly excellent.”
  • ⁇ ⁇ “Change rate is 85% or more and less than 90%. No problem at all”
  • “Change rate is 80% or more and less than 85%. There is a problem but it is usable level.”
  • X “Change rate is less than 80%.
  • ⁇ Positive electrode and negative electrode for electric double layer capacitor without base layer (comparative example and counter electrode for evaluation)> After applying the above-mentioned ink mixture for electric double layer capacitor on a 20 ⁇ m thick aluminum foil serving as a current collector using a doctor blade, it was dried by heating under reduced pressure, and then subjected to a rolling process by a roll press to obtain the thickness of the electrode. A positive electrode and a negative electrode having a thickness of 50 ⁇ m were prepared.
  • Example 29 After applying the above-mentioned ink mixture for electric double layer on the collector (1) with an underlayer for electricity storage device using a doctor blade, after drying by heating under reduced pressure, a rolling process is performed by a roll press, and the thickness is reduced. A positive electrode and a negative electrode with a thickness of 50 ⁇ m were prepared. The adhesion of the obtained electrode was evaluated by the method described above. Table 7 shows the evaluation results.
  • Examples 30 to 44, Comparative Examples 25 to 38 A positive electrode and a negative electrode were obtained in the same manner as in Example 29 except that the base electrode for the electricity storage device shown in Tables 7 and 8 was used. The evaluation results are shown in Tables 7 and 8.
  • Electrode and the negative electrode shown in Tables 7 and 8 are each punched out to a diameter of 16 mm, and a separator (porous polypropylene film) inserted between them and an electrolyte (TEMABF 4 (triethylmethylammonium tetrafluoride) in propylene carbonate solvent) are added to 1M.
  • An electric double layer capacitor was prepared. The electric double layer capacitor was used in a glove box substituted with argon gas, and after the electric double layer capacitor was fabricated, predetermined electric characteristics were evaluated. The evaluation results are shown in Tables 7 and 8.
  • “Change rate is 95% or more. ⁇ : “Change rate is 90% or more and less than 85%. No problem at all” ⁇ : “Change rate is 85% or more and less than 80%. There is a problem but it is usable level.” X: “Change rate is less than 85%.
  • ⁇ Composite ink for negative electrode for lithium ion capacitor> As a negative electrode active material, 90 parts of graphite, 5 parts of a conductive additive (acetylene black), 5 parts of a binder (PVDF), and 200 parts of NMP were mixed to prepare a mixture ink for negative electrode.
  • a conductive additive acetylene black
  • PVDF binder
  • NMP NMP
  • Example 45 After applying the above-mentioned ink mixture for positive electrode for lithium ion capacitor on the current collector (1) with an underlayer for electricity storage device using a doctor blade, after drying by heating under reduced pressure and rolling by roll press A positive electrode having a thickness of 60 ⁇ m was prepared. The adhesion of the obtained electrode was evaluated by the method described above. Table 9 shows the evaluation results.
  • Example 46 to 52 Comparative Examples 39 to 45
  • a positive electrode was obtained in the same manner as in Example 45 except that the current collector with a base layer for an electricity storage device shown in Table 9 was used. Table 9 shows the evaluation results.
  • Example 53 After applying the above-mentioned ink mixture for negative electrode for lithium ion capacitor on the current collector with an underlayer for power storage device (7) using a doctor blade, after drying by heating under reduced pressure and rolling by roll press A negative electrode having a thickness of 45 ⁇ m was prepared. The adhesion of the obtained electrode was evaluated by the method described above. Table 10 shows the evaluation results.
  • Example 54 to 60 Comparative Examples 46 to 52
  • a negative electrode was obtained in the same manner as in Example 53 except that the current collector with a base layer for an electricity storage device shown in Table 10 was used. Table 10 shows the evaluation results.
  • Lithium ion capacitor A positive electrode shown in Tables 9 and 10 and a negative electrode that has been previously half-doped with lithium ions were prepared in a size of 16 mm in diameter, and a separator (porous polypropylene film) inserted between them and an electrolytic solution (ethylene)
  • a lithium ion capacitor comprising a non-aqueous electrolyte solution in which LiPF 6 was dissolved at a concentration of 1 M in a mixed solvent in which carbonate, dimethyl carbonate, and diethyl carbonate were mixed at a ratio of 1: 1: 1 (volume ratio) was produced.
  • Lithium ion half dope was performed by sandwiching a separator between the negative electrode and lithium metal in a beaker cell, and doping the negative electrode with lithium ions so that the amount was about half of the negative electrode capacity.
  • the lithium ion capacitor was used in a glove box substituted with argon gas. After the lithium ion capacitor was fabricated, predetermined electrical characteristics were evaluated. The evaluation results are shown in Tables 9 and 10.
  • “Change rate is 95% or more. ⁇ ⁇ : “Change rate is 90% or more and less than 95%. No problem at all” ⁇ : “Change rate is 85% or more and less than 90%. X: “Change rate is less than 85%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Conductive Materials (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

A conductive composition containing a conductive carbon material (A), a water-soluble resin binder (B), a water-dispersible fine resin particle binder (C) and an aqueous liquid medium (D), which is characterized in that: the content of the conductive carbon material (A) in 100% by weight of the total solid contents of the conductive carbon material (A), the water-soluble resin binder (B) and the water-dispersible fine resin particle binder (C) is 20-70% by weight; and the content of the water-soluble resin binder (B) in 100% by weight of the total solid contents of the water-soluble resin binder (B) and the water-dispersible fine resin particle binder (C) is 40-95% by weight. This conductive composition provides a conductive composition having excellent conductivity and adhesion, said conductive composition is used for the purpose of forming an electricity storage device that exhibits excellent dispersibility of a conductive carbon material and excellent adhesion of an electrode and has excellent charge/discharge cycle characteristics.

Description

導電性組成物、蓄電デバイス用下地層付き集電体、蓄電デバイス用電極、および蓄電デバイスConductive composition, current collector with base layer for power storage device, electrode for power storage device, and power storage device
 本発明は、導電性組成物、およびその組成物を用いて得られる下地層を有する蓄電デバイス用下地層付き集電体、蓄電デバイス用電極、並びにその電極を用いて得られる蓄電デバイスに関する。 The present invention relates to a conductive composition, a current collector with an underlayer for an electricity storage device having an underlayer obtained by using the composition, an electrode for an electricity storage device, and an electricity storage device obtained using the electrode.
 近年、デジタルカメラや携帯電話のような小型携帯型電子機器が広く用いられるようになってきた。これらの電子機器には、容積を最小限にし、かつ重量を軽くすることが常に求められてきており、搭載される電池においても、小型、軽量かつ大容量の電池の実現が求められている。また、自動車搭載用等の大型二次電池においても、従来の鉛蓄電池に代えて、大型二次電池の実現が望まれており、電池が使用される様々な環境下でさらなる高寿命化が求められている。さらに、高出力かつ高エネルギー密度な蓄電デバイスとしては、電気二重層キャパシター、リチウムイオンキャパシターなどのキャパシターも注目されている。 In recent years, small portable electronic devices such as digital cameras and mobile phones have been widely used. These electronic devices have always been required to minimize the volume and reduce the weight, and the batteries to be mounted are also required to be small, light, and have a large capacity. Also, in large-sized secondary batteries for automobiles and the like, it is desired to realize a large-sized secondary battery instead of the conventional lead-acid battery, and there is a need for a longer life in various environments where the battery is used. It has been. In addition, capacitors such as electric double layer capacitors and lithium ion capacitors are also attracting attention as power storage devices with high output and high energy density.
 そのような要求に応えるため、リチウムイオン二次電池、アルカリ二次電池などの二次電池やキャパシターなどの蓄電デバイスの開発、例えば、これら蓄電デバイス用電極の形成に使用される合材インキや、合材層の下地層の形成に使用される下地層形成用組成物の開発にも関心が集まりつつある。 To meet such demands, development of power storage devices such as secondary batteries such as lithium ion secondary batteries and alkaline secondary batteries and capacitors, for example, mixed inks used in the formation of electrodes for these power storage devices, There is also an interest in developing a composition for forming a base layer used for forming a base layer of a composite material layer.
 電極の形成に使用される合材インキや下地層形成用組成物に求められる重要特性としては、活物質や導電性の炭素材料が適度に分散されてなる均一性と、合材インキや下地層形成用組成物の乾燥後に形成される電極の密着性が挙げられる。 The important properties required for the composite ink used for forming the electrode and the composition for forming the underlayer include the uniformity in which the active material and the conductive carbon material are appropriately dispersed, and the composite ink and the undercoat layer. The adhesiveness of the electrode formed after drying of the composition for formation is mentioned.
 合材インキ中の活物質や導電性の炭素材料の分散状態や下地層形成用組成物中の導電性の炭素材料の分散状態が、合材層中の活物質や導電性の炭素材料の分布状態や下地層中の導電性の炭素材料の分布状態に関連しており、電極物性に影響し、ひいては電池性能に影響する。 The distribution of the active material and conductive carbon material in the mixture layer depends on the dispersion state of the active material and conductive carbon material in the mixture ink and the dispersion state of the conductive carbon material in the composition for forming the underlayer. It is related to the state and the distribution state of the conductive carbon material in the underlayer, and affects the physical properties of the electrode and thus the battery performance.
 そのため、活物質や導電性の炭素材料の分散は重要な課題である。とりわけ導電性に優れた炭素材料は、ストラクチャーや比表面積が大きいため凝集力が強く、合材インキ中であれ、下地層形成用組成物中であれ、均一混合・分散することが困難である。 Therefore, dispersion of active materials and conductive carbon materials is an important issue. In particular, a carbon material excellent in electrical conductivity has a high structure and specific surface area, and therefore has a strong cohesive force, and it is difficult to uniformly mix and disperse it in a composite ink or an underlayer forming composition.
 そして、導電性の炭素材料の分散性や粒度の制御が不十分な場合、均一な導電ネットワークが形成されないために電極の内部抵抗の低減が図れず、その結果、電極材料の性能を十分に引き出せないという問題が生じている。 If the dispersibility and particle size of the conductive carbon material are insufficiently controlled, a uniform conductive network is not formed, so that the internal resistance of the electrode cannot be reduced, and as a result, the performance of the electrode material can be fully exploited. There is a problem of not.
 また、合材インキや下地層形成用組成物には、集電体として機能する金属箔表面に塗工可能とするための適度な流動性が求められる。さらに、表面ができるだけ平坦で厚みが均一な合材層や下地層を形成するために、合材インキや下地層形成用組成物には、適度な粘性も求められる。下地層を形成した後に合材インキを塗工する場合においては、合材層を形成するために下地層へ耐溶剤性も求められる。 In addition, the composite ink and the underlayer forming composition are required to have appropriate fluidity so as to be coated on the surface of the metal foil functioning as a current collector. Furthermore, in order to form a composite material layer or a base layer having a surface that is as flat as possible and having a uniform thickness, the composite ink or the base layer forming composition is required to have an appropriate viscosity. In the case of applying the mixture ink after forming the underlayer, solvent resistance is also required for the underlayer in order to form the mixture layer.
 一方、合材インキから形成された合材層や下地層形成用組成物から形成された下地層は、形成された後、基材たる金属箔ごと所望の大きさ・形状の切片に切り分けられたり、打ち抜かれたりする。そこで、切り分け加工や打ち抜き加工によって、傷つかない堅さと割れたり剥がれたりしない密着性が、合材層や下地層には要求される。 On the other hand, the composite layer formed from the composite ink and the base layer formed from the composition for forming the base layer, after being formed, can be cut into pieces of the desired size and shape together with the metal foil as the base material. Or punched. Therefore, the composite material layer and the base layer are required to have hardness that is not damaged and adhesion that does not crack or peel off by cutting or punching.
 また、電極の密着性は蓄電デバイス性能に大きく影響を与えるため重要である。リチウムイオン電池を例に挙げると、電極の密着性が悪いと、充放電時のリチウムイオンのインターカレーション・デインターカレーションに伴う活物質の膨張・収縮による電極構造の崩壊や集電体からの電極剥離を引き起こしてしまい、電池寿命劣化に繋がってしまう。 Also, electrode adhesion is important because it greatly affects the performance of the electricity storage device. Taking lithium-ion batteries as an example, if the electrode adhesion is poor, the electrode structure collapses due to expansion / contraction of the active material due to lithium ion intercalation / deintercalation during charge / discharge Electrode peeling occurs, leading to deterioration of battery life.
 電池は使用される環境が様々であり、特に寿命においては高温環境下で劣化しやすいため、高温環境下においても電極の密着性や導電性を維持しながら充放電サイクルにも耐えうる耐久性が重要となる。 Batteries are used in a variety of environments, and are particularly susceptible to deterioration in high-temperature environments, so that they can withstand charge / discharge cycles while maintaining electrode adhesion and conductivity even in high-temperature environments. It becomes important.
 特許文献1には、導電性の炭素粉とアクリル酸重合体などの水溶性結着材とを含む導電性組成物を電極の集電体上へコーティングした下地層が開示されている。また、特許文献2には、カーボンブラック粉末とブチルゴムとをトルエン中で混合して作製した下地形成用組成物が開示されている。しかしながら、これらの組成物は、下地層として用いた場合に集電体との密着性にさらなる改良が必要であり、さらに、炭素材料の分散状態不足が招く導電性や塗工性の改良、また、上層に合材インキを塗工するために必要な耐溶剤性の改良が必要であり、電池の高寿命化にはさらなる改良が望まれていた。 Patent Document 1 discloses an undercoat layer in which a conductive composition containing conductive carbon powder and a water-soluble binder such as an acrylic acid polymer is coated on a current collector of an electrode. Patent Document 2 discloses an undercoat forming composition prepared by mixing carbon black powder and butyl rubber in toluene. However, these compositions require further improvement in the adhesion to the current collector when used as an underlayer, and further improve the conductivity and coatability resulting from insufficient dispersion of the carbon material. Further, it is necessary to improve the solvent resistance necessary for applying the mixed ink to the upper layer, and further improvement has been desired for extending the life of the battery.
 そこで、これらの改良に向けて、特許文献3~7では、架橋成分の導入等による結着材の改良や、導電性の高い炭素繊維の利用や、分散剤を利用した下地形成用組成物を用いることで、導電性の高い電極を得ることが開示されている。しかしながら、電池が使用される環境も様々であり、高温などの環境下にも耐えうる電池においては、さらなる電極の密着性や充放電サイクル特性の改善が必要である。 Therefore, for these improvements, in Patent Documents 3 to 7, improvement of the binder by introducing a crosslinking component or the like, use of carbon fibers having high conductivity, and a composition for forming a base using a dispersant are disclosed. It is disclosed that an electrode having high conductivity can be obtained by using it. However, the environment in which the battery is used varies, and in a battery that can withstand an environment such as a high temperature, further improvement in electrode adhesion and charge / discharge cycle characteristics is required.
特開昭62-160656号公報Japanese Patent Laid-Open No. 62-160656 特開昭63-121265号公報Japanese Unexamined Patent Publication No. Sho 63-121265 特開平7-201362号公報JP-A-7-201362 特開2006-140142号公報JP 2006-140142 A 特開2007-226969号公報JP 2007-226969 A 特開2008-60060号公報Japanese Patent Laid-Open No. 2008-60060 国際公開第WO2012/173072号パンフレットInternational Publication No. WO2012 / 173072 Pamphlet
 本発明の目的は、導電性や密着性に優れる導電性組成物であり、充放電サイクル特性に優れる蓄電デバイスを形成するための導電性組成物であって、導電性の炭素材料の分散性や電極の密着性に優れる導電性組成物を提供することである。 An object of the present invention is a conductive composition excellent in conductivity and adhesion, and is a conductive composition for forming an electricity storage device excellent in charge / discharge cycle characteristics, including dispersibility of a conductive carbon material, It is to provide a conductive composition having excellent electrode adhesion.
 本発明は、導電性の炭素材料(A)と、水溶性樹脂バインダー(B)と、水分散性樹脂微粒子バインダー(C)を特定の範囲で含む導電性組成物であり、導電性の炭素材料(A)の分散性を損なうことなく、電極の密着性や耐溶剤性、さらには蓄電デバイスの充放電サイクル特性を向上できたものである。
 すなわち、導電性の炭素材料(A)と、水溶性樹脂バインダー(B)と、水分散性樹脂微粒子バインダー(C)と、水性液状媒体(D)とを含有する、導電性組成物であって、導電性の炭素材料(A)、水溶性樹脂バインダー(B)および水分散性樹脂微粒子バインダー(C)の固形分の合計100重量%中、導電性の炭素材料(A)の含有量が20~70重量%であり、
 水溶性樹脂バインダー(B)および水分散性樹脂微粒子バインダー(C)の固形分の合計100重量%中、水溶性樹脂バインダー(B)の含有量が40~95重量%であることを特徴とする導電性組成物に関する。
The present invention is a conductive composition containing a conductive carbon material (A), a water-soluble resin binder (B), and a water-dispersible resin fine particle binder (C) in a specific range, and the conductive carbon material. Without impairing the dispersibility of (A), the adhesion and solvent resistance of the electrodes, and further the charge / discharge cycle characteristics of the electricity storage device can be improved.
That is, a conductive composition comprising a conductive carbon material (A), a water-soluble resin binder (B), a water-dispersible resin fine particle binder (C), and an aqueous liquid medium (D). The total content of the conductive carbon material (A), the water-soluble resin binder (B) and the water-dispersible resin fine particle binder (C) is 100% by weight, and the content of the conductive carbon material (A) is 20%. Up to 70% by weight,
The content of the water-soluble resin binder (B) is 40 to 95% by weight in the total solid content of 100% by weight of the water-soluble resin binder (B) and the water-dispersible resin fine particle binder (C). The present invention relates to a conductive composition.
 また、本発明は、蓄電デバイス用電極の下地層形成用であることを特徴とする、上記導電性組成物に関する。 The present invention also relates to the above conductive composition, characterized in that it is used for forming a base layer of an electrode for an electricity storage device.
 また、本発明は、集電体と、上記導電性組成物から形成された下地層とを有する蓄電デバイス用下地層付き集電体に関する。 The present invention also relates to a current collector with a base layer for an electricity storage device, which includes a current collector and a base layer formed from the conductive composition.
 また、本発明は、集電体と、上記導電性組成物から形成された下地層と、電極活物質とバインダーとを含有する電極形成用組成物から形成された合材層とを有する蓄電デバイス用電極に関する。 The present invention also provides an electricity storage device comprising a current collector, a base layer formed from the conductive composition, and a composite layer formed from an electrode forming composition containing an electrode active material and a binder. The present invention relates to an electrode.
 また、本発明は、正極と負極と電解液とを具備する蓄電デバイスであって、前記正極もしくは前記負極の少なくとも一方が、上記蓄電デバイス用電極である、蓄電デバイスに関する。 The present invention also relates to an electricity storage device comprising a positive electrode, a negative electrode, and an electrolyte solution, wherein at least one of the positive electrode or the negative electrode is the electrode for the electricity storage device.
 さらに、本発明は、蓄電デバイスが二次電池またはキャパシターであることを特徴とする、上記導電性組成物、上記下地層付き集電体、上記電極または上記蓄電デバイスに関する。 Furthermore, the present invention relates to the conductive composition, the current collector with an underlayer, the electrode, or the power storage device, wherein the power storage device is a secondary battery or a capacitor.
 導電性の炭素材料(A)と、水溶性樹脂バインダー(B)と、水分散性樹脂微粒子バインダー(C)とを特定の比率で含むことにより、導電性組成物中の導電性の炭素材料の分散性を損ねることなく、集電体への密着性に優れる下地層を形成でき、蓄電デバイスが使用される高温などの過酷な環境下においても良好な充放電サイクル特性を有する蓄電デバイスを提供できる。 By containing the conductive carbon material (A), the water-soluble resin binder (B), and the water-dispersible resin fine particle binder (C) at a specific ratio, the conductive carbon material in the conductive composition A base layer having excellent adhesion to a current collector can be formed without impairing dispersibility, and an electricity storage device having good charge / discharge cycle characteristics can be provided even under harsh environments such as high temperatures where the electricity storage device is used. .
 蓄電デバイス用の電極は、種々の方法で得ることができる。例えば、金属箔等の集電体の表面に、
(1)活物質と溶媒とを含有するインキ状組成物(以下、合材インキという)や、
(2)活物質と導電助剤と溶媒とを含有する合材インキや、
(3)活物質とバインダーと溶媒とを含有する合材インキや、
(4)活物質と導電助剤とバインダーと溶媒とを含有する合材インキを、
 用いて合材層を形成し、電極を得ることができる。
An electrode for an electricity storage device can be obtained by various methods. For example, on the surface of a current collector such as a metal foil,
(1) an ink-like composition containing an active material and a solvent (hereinafter referred to as composite ink),
(2) a mixed ink containing an active material, a conductive additive and a solvent;
(3) a mixed ink containing an active material, a binder and a solvent;
(4) A mixed ink containing an active material, a conductive additive, a binder and a solvent,
It can be used to form a composite layer and obtain an electrode.
 あるいは、金属箔の集電体の表面に、導電性の炭素材料と液状媒体とを含有する下地層形成用組成物を用い、下地層を形成し、該下地層上に、上記の合材インキ(1)~(4)やその他の合材インキ用いて合材層を形成し、電極を得ることもできる。 Alternatively, an underlayer is formed on the surface of the current collector of the metal foil using a composition for forming an underlayer containing a conductive carbon material and a liquid medium, and the above-mentioned composite ink is formed on the underlayer An electrode can also be obtained by forming a composite layer using (1) to (4) or other composite ink.
 いずれの場合であっても、導電性の炭素材料の分散状態や、電極の密着性が蓄電デバイス性能を左右することは背景技術の項で詳述した。したがって、本発明の導電性組成物は、下地層を良好に形成するために使用することができる。 In either case, the state of dispersion of the conductive carbon material and the adhesion of the electrodes influence the performance of the electricity storage device as described in detail in the Background Art section. Therefore, the conductive composition of the present invention can be used to satisfactorily form an underlayer.
<導電性組成物>
 前記したように、本発明の導電性組成物は、蓄電デバイスの下地層形成用として使用できる。導電性組成物は、導電性の炭素材料(A)と水溶性樹脂バインダー(B)と、水分散性樹脂微粒子バインダー(C)と、水性液状媒体(D)とを含有する。
<Conductive composition>
As described above, the conductive composition of the present invention can be used for forming a base layer of an electricity storage device. The conductive composition contains a conductive carbon material (A), a water-soluble resin binder (B), a water-dispersible resin fine particle binder (C), and an aqueous liquid medium (D).
 導電性組成物の総固形分に占める導電性の炭素材料(A)の割合は、20重量%以上、70重量%以下であり、好ましくは25重量%以上、60重量%以下である。導電性の炭素材料(A)が少なすぎると、下地層の導電性が保てない場合があり、一方、導電性の炭素材料(A)が多すぎると、塗膜の密着性などの耐久性が低下する場合がある。
 また、水溶性樹脂バインダー(B)および水分散性樹脂微粒子バインダー(C)の固形分の合計に占める水溶性樹脂バインダー(B)の割合は、40重量%以上、95重量%以下である。水溶性樹脂バインダー(B)の割合が多すぎると、電極の密着性が不十分となる場合があり、一方、水溶性樹脂バインダー(B)の割合が少なすぎると、耐溶剤性が不足してしまい良好な下地層を形成することができない場合がある。上記特定の比率で、水溶性樹脂バインダー(B)と水分散性樹脂微粒子バインダー(C)とを併用することが良好な下地層を形成する上では大変重要である。
The proportion of the conductive carbon material (A) in the total solid content of the conductive composition is 20% by weight or more and 70% by weight or less, preferably 25% by weight or more and 60% by weight or less. If the amount of the conductive carbon material (A) is too small, the conductivity of the underlayer may not be maintained. On the other hand, if the amount of the conductive carbon material (A) is too large, the durability such as adhesion of the coating film may be obtained. May decrease.
The ratio of the water-soluble resin binder (B) to the total solid content of the water-soluble resin binder (B) and the water-dispersible resin fine particle binder (C) is 40% by weight or more and 95% by weight or less. If the proportion of the water-soluble resin binder (B) is too large, the adhesion of the electrode may be insufficient. On the other hand, if the proportion of the water-soluble resin binder (B) is too small, the solvent resistance is insufficient. In some cases, a good underlying layer cannot be formed. It is very important to use the water-soluble resin binder (B) and the water-dispersible resin fine particle binder (C) in the above specific ratio in order to form a good underlayer.
 また、導電性組成物の適正粘度は、導電性組成物の塗工方法によるが、一般には、10mPa・s以上、30,000mPa・s以下とするのが好ましい。 In addition, the proper viscosity of the conductive composition is preferably 10 mPa · s or more and 30,000 mPa · s or less, although it depends on the method of applying the conductive composition.
<導電性の炭素材料(A)>
 導電性の炭素材料(A)としては、導電性を有する炭素材料であれば特に限定されるものではないが、グラファイト、カーボンブラック、導電性炭素繊維(カーボンナノチューブ、カーボンナノファイバー、カーボンファイバー)、フラーレン等を単独で、もしくは2種類以上併せて使用することができる。導電性、入手の容易さ、およびコスト面から、カーボンブラックの使用が好ましい。
<Conductive carbon material (A)>
The conductive carbon material (A) is not particularly limited as long as it is a conductive carbon material, but graphite, carbon black, conductive carbon fiber (carbon nanotube, carbon nanofiber, carbon fiber), Fullerenes or the like can be used alone or in combination of two or more. From the viewpoint of conductivity, availability, and cost, it is preferable to use carbon black.
 カーボンブラックとしては、気体もしくは液体の原料を反応炉中で連続的に熱分解し製造するファーネスブラック、特にエチレン重油を原料としたケッチェンブラック、原料ガスを燃焼させて、その炎をチャンネル鋼底面にあて急冷し析出させたチャンネルブラック、ガスを原料とし燃焼と熱分解を周期的に繰り返すことにより得られるサーマルブラック、特にアセチレンガスを原料とするアセチレンブラックなどの各種のものを単独で、もしくは2種類以上併せて使用することができる。また、通常行われている酸化処理されたカーボンブラックや、中空カーボン等も使用できる。 Carbon black is a furnace black produced by continuously pyrolyzing a gas or liquid raw material in a reactor, especially ketjen black using ethylene heavy oil as a raw material. Channel black that has been rapidly cooled and precipitated, thermal black obtained by periodically repeating combustion and thermal decomposition using gas as a raw material, and particularly various types such as acetylene black using acetylene gas as a raw material, or 2 More than one type can be used in combination. Ordinarily oxidized carbon black, hollow carbon and the like can also be used.
 カーボンの酸化処理は、カーボンを空気中で高温処理したり、硝酸や二酸化窒素、オゾン等で二次的に処理したりすることより、例えばフェノール基、キノン基、カルボキシル基、カルボニル基の様な酸素含有極性官能基をカーボン表面に直接導入(共有結合)する処理であり、カーボンの分散性を向上させるために一般的に行われている。しかしながら、官能基の導入量が多くなる程カーボンの導電性が低下することが一般的であるため、酸化処理をしていないカーボンの使用が好ましい。 The oxidation treatment of carbon is performed by treating carbon at a high temperature in the air or by secondary treatment with nitric acid, nitrogen dioxide, ozone, etc., for example, such as phenol group, quinone group, carboxyl group, carbonyl group. This is a treatment for directly introducing (covalently bonding) an oxygen-containing polar functional group to the carbon surface, and is generally performed to improve the dispersibility of carbon. However, since it is common for the conductivity of carbon to fall, so that the introduction amount of a functional group increases, it is preferable to use the carbon which has not been oxidized.
 用いるカーボンブラックの比表面積は、値が大きいほど、カーボンブラック粒子どうしの接触点が増えるため、電極の内部抵抗を下げるのに有利となる。具体的には、窒素の吸着量から求められる比表面積(BET)で、20m/g以上、1500m/g以下、好ましくは50m/g以上、1500m/g以下、更に好ましくは100m/g以上、1500m/g以下のものを使用することが望ましい。比表面積が20m/gを下回るカーボンブラックを用いると、十分な導電性を得ることが難しくなる場合があり、1500m/gを超えるカーボンブラックは、市販材料での入手が困難となる場合がある。 As the specific surface area of the carbon black used increases, the number of contact points between the carbon black particles increases, which is advantageous in reducing the internal resistance of the electrode. Specifically, the specific surface area (BET) determined from the adsorption amount of nitrogen is 20 m 2 / g or more and 1500 m 2 / g or less, preferably 50 m 2 / g or more and 1500 m 2 / g or less, more preferably 100 m 2. / G or more and 1500 m 2 / g or less are desirable. When carbon black having a specific surface area of less than 20 m 2 / g is used, it may be difficult to obtain sufficient conductivity, and carbon black of more than 1500 m 2 / g may be difficult to obtain from commercially available materials. is there.
 また、用いるカーボンブラックの粒径は、一次粒子径で0.005~1μmが好ましく、特に、0.01~0.2μmが好ましい。ただし、ここでいう一次粒子径とは、電子顕微鏡などで測定された粒子径を平均したものである。 Further, the particle size of the carbon black to be used is preferably 0.005 to 1 μm, particularly preferably 0.01 to 0.2 μm in terms of primary particle size. However, the primary particle diameter here is an average of the particle diameters measured with an electron microscope or the like.
 導電性の炭素材料(A)の導電性組成物中の分散粒径は、0.03μm以上、5μm以下に微細化することが望ましい。導電助剤としての炭素材料の分散粒径が0.03μm未満の組成物は、その作製が難しい場合がある。また、導電助剤としての炭素材料の分散粒径が5μmを超える組成物を用いた場合には、合材塗膜の材料分布のバラつき、電極の抵抗分布のバラつき等の不具合が生じる場合がある。 Desirably, the dispersed particle size of the conductive carbon material (A) in the conductive composition is reduced to 0.03 μm or more and 5 μm or less. It may be difficult to produce a composition having a dispersed particle size of the carbon material as the conductive aid of less than 0.03 μm. Further, when a composition in which the dispersed particle diameter of the carbon material as the conductive auxiliary agent exceeds 5 μm is used, problems such as variations in the material distribution of the composite coating film and variations in the resistance distribution of the electrode may occur. .
 ここでいう分散粒径とは、体積粒度分布において、粒子径の細かいものからその粒子の体積割合を積算していったときに、50%となるところの粒子径(D50)であり、一般的な粒度分布計、例えば、動的光散乱方式の粒度分布計(日機装社製「マイクロトラックUPA」)等で測定される。 The dispersed particle size referred to here is a particle size (D50) that is 50% when the volume ratio of the particles is integrated from the fine particle size distribution in the volume particle size distribution. A particle size distribution meter such as a dynamic light scattering type particle size distribution meter ("Microtrack UPA" manufactured by Nikkiso Co., Ltd.).
 市販のカーボンブラックとしては、例えば、トーカブラック#4300、#4400、#4500、#5500等(東海カーボン社製、ファーネスブラック)、プリンテックスL等(デグサ社製、ファーネスブラック)、Raven7000、5750、5250、5000ULTRAIII、5000ULTRA等、Conductex SC ULTRA、Conductex 975 ULTRA等、PUER BLACK100、115、205等(コロンビヤン社製、ファーネスブラック)、#2350、#2400B、#2600B、#30050B、#3030B、#3230B、#3350B、#3400B、#5400B等(三菱化学社製、ファーネスブラック)、MONARCH1400、1300、900、VulcanXC-72R、BlackPearls2000等(キャボット社製、ファーネスブラック)、Ensaco250G、Ensaco260G、Ensaco350G、SuperP-Li(TIMCAL社製)、ケッチェンブラックEC-300J、EC-600JD(アクゾ社製)、デンカブラック、デンカブラックHS-100、FX-35(電気化学工業社製、アセチレンブラック)等、グラファイトとしては、例えば人造黒鉛や燐片状黒鉛、塊状黒鉛、土状黒鉛などの天然黒鉛が挙げられるが、これらに限定されるものではなく、2種以上を組み合わせて用いても良い。 Examples of commercially available carbon black include Toka Black # 4300, # 4400, # 4500, # 5500 (Tokai Carbon Co., Furnace Black), Printex L and the like (Degussa Co., Furnace Black), Raven 7000, 5750, 5250, 5000 ULTRA III, 5000 ULTRA, etc., Conductex SC ULTRA, Conductex 975 ULTRA, etc., PUER BLACK100, 115, 205 etc. (Furnace Black, manufactured by Colombian), # 2350, # 2400B, # 2600B, # 30050B, # 3030B, # 3030B, # 3030B # 3350B, # 3400B, # 5400B, etc. (Mitsubishi Chemical Co., Furnace Black), MONARCH1400, 1300, 900, VulcanX C-72R, BlackPearls 2000, etc. (Furnace Black) manufactured by Cabot, Ensaco 250G, Ensaco 260G, Ensaco 350G, SuperP-Li (manufactured by TIMCAL), Ketjen Black EC-300J, EC-600JD (manufactured by Akzo), Denka Black, Denka Examples of the graphite such as black HS-100, FX-35 (manufactured by Denki Kagaku Kogyo Co., Ltd., acetylene black) include natural graphite such as artificial graphite, flake graphite, lump graphite, and earth graphite. It is not limited, and two or more kinds may be used in combination.
 導電性炭素繊維としては石油由来の原料から焼成して得られるものが良いが、植物由来の原料からも焼成して得られるものも用いることができる。例えば石油由来の原料で製造される昭和電工社製のVGCFなどを挙げることができる。 As the conductive carbon fibers, those obtained by firing from petroleum-derived raw materials are preferable, but those obtained by firing from plant-derived raw materials can also be used. For example, VGCF manufactured by Showa Denko Co., Ltd. manufactured with petroleum-derived raw materials can be mentioned.
<水溶性樹脂バインダー(B)>
 水溶性樹脂バインダー(B)とは、25℃の水99g中に水溶性樹脂バインダー(B)1g入れて撹拌し、25℃で24時間放置した後、分離・析出せずに水中でバインダーが完全に溶解可能なものである。
<Water-soluble resin binder (B)>
The water-soluble resin binder (B) is 1 g of water-soluble resin binder (B) in 99 g of water at 25 ° C., stirred and left at 25 ° C. for 24 hours, and then the binder is completely separated in water without separation and precipitation. It can be dissolved in
 水溶性樹脂バインダー(B)としては、上述の通り水溶性を示す樹脂であれば特に限定されるものではないが、例えば、アクリル樹脂、ポリウレタン樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリアリルアミン樹脂、フェノール樹脂、エポキシ樹脂、フェノキシ樹脂、尿素樹脂、メラミン樹脂、アルキッド樹脂、ホルムアルデヒド樹脂、シリコン樹脂、フッ素樹脂、カルボキシメチルセルロース等の多糖類の樹脂を含む高分子化合物が挙げられる。また、水溶性であれば、これらの樹脂の変性物、混合物、または共重合体でも良い。これらバインダーは、1種または複数を組み合わせて使用することもる。 The water-soluble resin binder (B) is not particularly limited as long as it is a water-soluble resin as described above. For example, acrylic resin, polyurethane resin, polyester resin, polyamide resin, polyimide resin, polyallylamine resin , Polymer compounds including polysaccharide resins such as phenol resin, epoxy resin, phenoxy resin, urea resin, melamine resin, alkyd resin, formaldehyde resin, silicon resin, fluorine resin, carboxymethyl cellulose. Moreover, if it is water-soluble, the modified material, mixture, or copolymer of these resin may be sufficient. These binders may be used alone or in combination.
<水分散性樹脂微粒子バインダー(C)>
 水分散性樹脂微粒子バインダー(C)とは、一般的に水性エマルションとも呼ばれるものであり、バインダー樹脂が水中で溶解せずに、微粒子の形態で分散されているものである。
<Water-dispersible resin fine particle binder (C)>
The water-dispersible resin fine particle binder (C) is generally called an aqueous emulsion, and the binder resin is not dissolved in water but is dispersed in the form of fine particles.
 使用するエマルションは特に限定されないが、(メタ)アクリル系エマルション、ニトリル系エマルション、ウレタン系エマルション、ジエン系エマルション(SBRなど)、フッ素系エマルション(PVDFやPTFEなど)等が挙げられる。水溶性高分子と異なり、エマルションは粒子間の結着性と柔軟性(膜の可とう性)に優れるものが好ましい。 The emulsion to be used is not particularly limited, and examples thereof include (meth) acrylic emulsions, nitrile emulsions, urethane emulsions, diene emulsions (SBR, etc.), fluorine emulsions (PVDF, PTFE, etc.) and the like. Unlike the water-soluble polymer, the emulsion preferably has excellent binding properties between particles and flexibility (film flexibility).
(エマルションの粒子構造)
 また、水分散性樹脂微粒子バインダー(C)の粒子構造は、多層構造、いわゆるコアシェル粒子にすることもできる。例えば、コア部、またはシェル部に官能基を有する単量体を主に重合させた樹脂を局在化させたり、コアとシェルによってTgや組成に差を設けたりすることにより、硬化性、乾燥性、成膜性、バインダーの機械強度を向上させることができる。
(Particle structure of emulsion)
The particle structure of the water-dispersible resin fine particle binder (C) can be a multi-layer structure, so-called core-shell particles. For example, it is possible to localize a resin in which a monomer having a functional group is mainly polymerized in the core part or the shell part, or to provide a difference in Tg or composition between the core and the shell, thereby improving the curability and drying. Property, film formability, and mechanical strength of the binder can be improved.
(エマルションの粒子径)
 水分散性樹脂微粒子バインダー(C)の平均粒子径は、結着性や粒子の安定性の点から、10~500nmであることが好ましく、10~300nmであることがより好ましい。また、1μmを超えるような粗大粒子が多く含有されるようになると粒子の安定性が損なわれるので、1μmを超える粗大粒子は多くとも5%以下であることが好ましい。なお、平均粒子径とは、体積平均粒子径のことを表し、動的光散乱法により測定できる。
(Particle size of emulsion)
The average particle size of the water-dispersible resin fine particle binder (C) is preferably 10 to 500 nm, more preferably 10 to 300 nm, from the viewpoints of binding properties and particle stability. Further, when a large amount of coarse particles exceeding 1 μm are contained, the stability of the particles is impaired, so that the coarse particles exceeding 1 μm are preferably at most 5% or less. In addition, an average particle diameter represents a volume average particle diameter, and can be measured by the dynamic light scattering method.
 動的光散乱法による平均粒子径の測定は、以下のようにして行うことができる。架橋型樹脂微粒子分散液は固形分に応じて200~1000倍に水希釈しておく。該希釈液約5mlを測定装置[(株)日機装製 マイクロトラック]のセルに注入し、サンプルに応じた溶剤(本発明では水)および樹脂の屈折率条件を入力後、測定を行う。この時得られた体積粒子径分布データ(ヒストグラム)のピークを平均粒子径とする。 The measurement of the average particle diameter by the dynamic light scattering method can be performed as follows. The cross-linked resin fine particle dispersion is diluted with water 200 to 1000 times depending on the solid content. About 5 ml of the diluted solution is injected into a cell of a measuring device [Microtrack manufactured by Nikkiso Co., Ltd.], and the measurement is performed after inputting the solvent (water in the present invention) and the refractive index conditions of the resin according to the sample. The peak of the volume particle size distribution data (histogram) obtained at this time is defined as the average particle size.
<架橋型樹脂微粒子>
 (メタ)アクリル系エマルションを使用する場合、以下で説明する架橋型樹脂微粒子を含むことが好ましい。架橋型樹脂微粒子とは、内部架橋構造(三次元架橋構造)を有する樹脂微粒子を示し、粒子内部で架橋していることが重要である。架橋型樹脂微粒子が架橋構造をとることにより耐電解液溶出性を確保することができ、粒子内部の架橋を調整することでその効果を高めることができる。また、架橋型樹脂微粒子が特定の官能基を含有することにより、集電体、または電極との密着性に寄与することができる。さらには架橋構造や官能基の量を調整することで、蓄電デバイスの耐久性に優れた導電性組成物を得ることができる。
<Crosslinked resin fine particles>
When using a (meth) acrylic-type emulsion, it is preferable to contain the crosslinked resin fine particle demonstrated below. The crosslinked resin fine particles are resin fine particles having an internal cross-linked structure (three-dimensional cross-linked structure), and it is important that the fine particles are cross-linked inside the particles. When the cross-linked resin fine particles have a cross-linked structure, the electrolytic solution elution resistance can be secured, and the effect can be enhanced by adjusting the cross-linking inside the particles. Further, when the cross-linked resin fine particles contain a specific functional group, it is possible to contribute to adhesion with the current collector or the electrode. Furthermore, the conductive composition excellent in durability of the electrical storage device can be obtained by adjusting the amount of the crosslinked structure and the functional group.
 また、架橋には粒子同士の架橋(粒子間架橋)を併用することもできるが、この場合、多くは架橋剤をあとで添加するため、架橋剤成分の電解液への漏出や電極作製時のバラツキが生じる場合もある。このため、架橋剤は耐電解液性を損なわない程度に用いる必要がある。 In addition, cross-linking of particles (cross-particle cross-linking) can be used together for cross-linking, but in this case, since a cross-linking agent is added later, leakage of the cross-linking agent component into the electrolyte or electrode preparation There may be variations. For this reason, it is necessary to use a crosslinking agent to such an extent that the electrolyte solution resistance is not impaired.
 好適に使用される(メタ)アクリル系エマルション中の架橋型樹脂微粒子は、エチレン性不飽和単量体を水中にて界面活性剤の存在下、ラジカル重合開始剤によって乳化重合して得られる樹脂微粒子である。好適に使用される(メタ)アクリル系エマルションは、下記単量体群(C1)および(C2)を下記割合で含むエチレン性不飽和単量体を乳化重合することにより得ることが好ましい。
 (C1)単官能または多官能アルコキシシリル基を有するエチレン性不飽和単量体(c1)、および1分子中に2つ以上のエチレン性不飽和基を有する単量体(c2)からなる群より選ばれる少なくとも1つの単量体:0.1~5重量%
 (C2)前記単量体(c1)~(c2)以外のエチレン性不飽和単量体(c3):95~99.9重量%
(但し、前記(c1)~(c3)の合計を100重量%とする。)
The cross-linked resin fine particles in the (meth) acrylic emulsion preferably used are resin fine particles obtained by emulsion polymerization of an ethylenically unsaturated monomer in water in the presence of a surfactant with a radical polymerization initiator. It is. The (meth) acrylic emulsion preferably used is preferably obtained by emulsion polymerization of an ethylenically unsaturated monomer containing the following monomer groups (C1) and (C2) in the following proportions.
(C1) From the group consisting of an ethylenically unsaturated monomer (c1) having a monofunctional or polyfunctional alkoxysilyl group and a monomer (c2) having two or more ethylenically unsaturated groups in one molecule At least one monomer selected: 0.1 to 5% by weight
(C2) Ethylenically unsaturated monomer (c3) other than the monomers (c1) to (c2): 95 to 99.9% by weight
(However, the total of the above (c1) to (c3) is 100% by weight.)
 好適に使用される(メタ)アクリル系エマルション中の架橋型樹脂微粒子を構成するエチレン性不飽和単量体のうち(c1)、(c3)は、特に断らない限り、1分子中に1つのエチレン性不飽和基を有する単量体のことを示す。 Of the ethylenically unsaturated monomers constituting the crosslinked resin fine particles in the (meth) acrylic emulsion that is preferably used, (c1) and (c3) are one ethylene in one molecule unless otherwise specified. It shows the monomer which has an ionic unsaturated group.
<単量体群(C1)>
 単量体群(C1)に含まれる単量体の有する官能基(アルコキシシリル基、エチレン性不飽和基)は、自己架橋型反応性官能基であり、主に粒子合成中における粒子内部架橋を形成する効果がある。粒子の内部架橋を十分に行うことで、耐電解液性を向上させることができる。したがって、単量体群(C1)に含まれる単量体を使用することで架橋型樹脂微粒子とすることができる。また、粒子架橋を十分に行うことで、耐電解液性を向上させることができる。
<Monomer group (C1)>
The functional group (alkoxysilyl group, ethylenically unsaturated group) possessed by the monomer contained in the monomer group (C1) is a self-crosslinking reactive functional group, and is mainly used for particle internal crosslinking during particle synthesis. Has the effect of forming. Electrolytic solution resistance can be improved by sufficiently carrying out internal crosslinking of the particles. Therefore, it is possible to obtain crosslinked resin fine particles by using a monomer contained in the monomer group (C1). In addition, by sufficiently carrying out particle crosslinking, the resistance to electrolytic solution can be improved.
 1分子中に1つのエチレン性不飽和基と、アルコキシシリル基とを有する単量体(c1)としては、例えば、γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリエトキシシラン、γ-メタクリロキシプロピルトリブトキシシラン、γ-メタクリロキシプロピルメチルジメトキシシラン、γ-メタクリロキシプロピルメチルジエトキシシラン、γ-アクリロキシプロピルトリメトキシシラン、γ-アクリロキシプロピルトリエトキシシラン、γ-アクリロキシプロピルメチルジメトキシシラン、γ-メタクリロキシメチルトリメトキシシラン、γ-アクリロキシメチルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリブトキシシラン、ビニルメチルジメトキシシランなどが挙げられる。 Examples of the monomer (c1) having one ethylenically unsaturated group and an alkoxysilyl group in one molecule include γ-methacryloxypropyltrimethoxysilane, γ-methacryloxypropyltriethoxysilane, γ- Methacryloxypropyl tributoxysilane, γ-methacryloxypropylmethyldimethoxysilane, γ-methacryloxypropylmethyldiethoxysilane, γ-acryloxypropyltrimethoxysilane, γ-acryloxypropyltriethoxysilane, γ-acryloxypropylmethyl Dimethoxysilane, γ-methacryloxymethyltrimethoxysilane, γ-acryloxymethyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltributoxysilane, vinylmethyldimethoxysilane, etc. It is below.
 1分子中に2つ以上のエチレン性不飽和基を有する単量体(c2)としては、例えば、(メタ)アクリル酸アリル、(メタ)アクリル酸1-メチルアリル、(メタ)アクリル酸2-メチルアリル、(メタ)アクリル酸1-ブテニル、(メタ)アクリル酸2-ブテニル、(メタ)アクリル酸3-ブテニル、(メタ)アクリル酸1,3-メチル-3-ブテニル、(メタ)アクリル酸2-クロルアリル、(メタ)アクリル酸3-クロルアリル、(メタ)アクリル酸o-アリルフェニル、(メタ)アクリル酸2-(アリルオキシ)エチル、(メタ)アクリル酸アリルラクチル、(メタ)アクリル酸シトロネリル、(メタ)アクリル酸ゲラニル、(メタ)アクリル酸ロジニル、(メタ)アクリル酸シンナミル、ジアリルマレエート、ジアリルイタコン酸、(メタ)アクリル酸ビニル、クロトン酸ビニル、オレイン酸ビニル,リノレン酸ビニル、(メタ)アクリル酸2-(2’-ビニロキシエトキシ)エチルなどのエチレン性不飽和基含有(メタ)アクリル酸エステル類;ジ(メタ)アクリル酸エチレングリコール、ジ(メタ)アクリル酸トリエチレングリコール、ジ(メタ)アクリル酸テトラエチレングリコール、トリ(メタ)アクリル酸トリメチロールプロパン、トリ(メタ)アクリル酸ペンタエリスリトール、ジアクリル酸1,1,1-トリスヒドロキシメチルエタン、トリアクリル酸1,1,1-トリスヒドロキシメチルエタン、1,1,1-トリスヒドロキシメチルプロパントリアクリル酸などの多官能(メタ)アクリル酸エステル類;ジビニルベンゼン、アジピン酸ジビニルなどのジビニル類;イソフタル酸ジアリル、フタル酸ジアリル、マレイン酸ジアリルなどのジアリル類などが挙げられる。 Examples of the monomer (c2) having two or more ethylenically unsaturated groups in one molecule include allyl (meth) acrylate, 1-methylallyl (meth) acrylate, and 2-methylallyl (meth) acrylate. 1-butenyl (meth) acrylate, 2-butenyl (meth) acrylate, 3-butenyl (meth) acrylate, 1,3-methyl-3-butenyl (meth) acrylate, 2- (meth) acrylate 2- Chloroallyl, 3-chloroallyl (meth) acrylate, o-allylphenyl (meth) acrylate, 2- (allyloxy) ethyl (meth) acrylate, allyl lactyl (meth) acrylate, citronellyl (meth) acrylate, (meth) Geranyl acrylate, rosinyl (meth) acrylate, cinnamyl (meth) acrylate, diallyl maleate, diallyl itacon (Meth) acrylic acid esters containing ethylenically unsaturated groups such as vinyl (meth) acrylate, vinyl crotonate, vinyl oleate, vinyl linolenate, 2- (2'-vinyloxyethoxy) ethyl (meth) acrylate Class: ethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, Multifunctional (meth) acrylic acid esters such as 1,1,1-trishydroxymethylethane diacrylate, 1,1,1-trishydroxymethylethane triacrylate, 1,1,1-trishydroxymethylpropanetriacrylic acid Class: divinylbenzene, divinyl adipate, etc. Divinyl compounds; diallyl isophthalate, diallyl phthalate, and the like diallyl such as diallyl maleate.
 単量体(c1)または単量体(c2)中のアルコキシシリル基またはエチレン性不飽和基は、主に重合中にそれぞれが自己縮合、または重合して粒子に架橋構造を導入することを目的としているが、その一部が重合後にも粒子内部や表面に残存していてもよい。残存したアルコキシシリル基、またはエチレン性不飽和基は、バインダー組成物の粒子間架橋に寄与する。特にアルコキシシリル基は集電体への密着性向上に寄与する効果があるため好ましい。 The purpose of the alkoxysilyl group or ethylenically unsaturated group in the monomer (c1) or monomer (c2) is to introduce a cross-linked structure into the particle by self-condensation or polymerization mainly during the polymerization. However, a part of it may remain inside or on the surface after polymerization. The remaining alkoxysilyl group or ethylenically unsaturated group contributes to interparticle crosslinking of the binder composition. In particular, an alkoxysilyl group is preferable because it has an effect of improving adhesion to the current collector.
 単量体群(C1)に含まれる単量体は、乳化重合に使用するエチレン性不飽和単量体全体(合計100重量%)中に0.1~5重量%使用されることを特徴とする。好ましくは0.5~3重量%である。単量体群(C1)に含まれる単量体が、0.1重量%未満であると粒子の架橋が十分でなくなり、耐電解液性が悪くなる。また、5重量%を超えると、乳化重合する際の重合安定性に問題を生じるか、重合できたとしても保存安定性に問題を生じる。 The monomer contained in the monomer group (C1) is used in an amount of 0.1 to 5% by weight in the whole ethylenically unsaturated monomer (100% in total) used for emulsion polymerization. To do. Preferably, it is 0.5 to 3% by weight. When the monomer contained in the monomer group (C1) is less than 0.1% by weight, the particles are not sufficiently cross-linked, and the resistance to electrolytic solution is deteriorated. On the other hand, if it exceeds 5% by weight, there will be a problem in the polymerization stability at the time of emulsion polymerization, or even if it can be polymerized, there will be a problem in the storage stability.
<単量体群(C2)>
 好適に使用される(メタ)アクリル系エマルション中の架橋型樹脂微粒子は、上述した1分子中に1つのエチレン性不飽和基と、アルコキシシリル基とを有する単量体(c1)、および1分子中に2つ以上のエチレン性不飽和基を有する単量体(c2)に加えて、単量体群(C2)として、単量体(c1)、(c2)以外の、エチレン性不飽和基を有する単量体(c3)を同時に乳化重合することで得ることができる。
<Monomer group (C2)>
The cross-linked resin fine particles in the (meth) acrylic emulsion preferably used are the monomer (c1) having one ethylenically unsaturated group and an alkoxysilyl group in one molecule, and one molecule. In addition to the monomer (c2) having two or more ethylenically unsaturated groups therein, as the monomer group (C2), ethylenically unsaturated groups other than the monomers (c1) and (c2) Can be obtained by emulsion polymerization of the monomer (c3) having
 この単量体(c3)としては、単量体(c1)、(c2)以外であって、エチレン性不飽和基を有する単量体であれば特に限定されないが、例えば、
 1分子中に1つのエチレン性不飽和基と、単官能または多官能エポキシ基とを有する単量体(c4)、1分子中に1つのエチレン性不飽和基と、単官能または多官能アミド基とを有する単量体(c5)、および1分子中に1つのエチレン性不飽和基と、単官能または多官能水酸基とを有する単量体(c6)からなる群より選ばれる少なくとも1つの単量体、および、単量体(c1)、(c2)、(c4)~(c6)以外の、エチレン性不飽和基を有する単量体(c7)を使用することができる。
The monomer (c3) is not particularly limited as long as it is a monomer other than the monomers (c1) and (c2) and has an ethylenically unsaturated group.
Monomer (c4) having one ethylenically unsaturated group and monofunctional or polyfunctional epoxy group in one molecule, one ethylenically unsaturated group and monofunctional or polyfunctional amide group in one molecule And at least one monomer selected from the group consisting of a monomer (c5) having one ethylenically unsaturated group and a monofunctional or polyfunctional hydroxyl group in one molecule (c6) And monomers (c7) having an ethylenically unsaturated group other than monomers (c1), (c2) and (c4) to (c6) can be used.
 単量体(c4)~(c6)を使用することにより、エポキシ基、アミド基、または水酸基を架橋型樹脂微粒子の粒子内や表面に残存させることができ、これにより集電体の密着性などの物性を向上させることができる。単量体(c4)~(c6)は、粒子合成後でもその官能基が粒子内部や表面に残存しやすく、少量でも集電体への密着性効果が大きい。また、その一部が架橋反応に使用されてもよく、これらの官能基の架橋度合いを調整することで、耐電解液性と密着性のバランスをとることができる。 By using the monomers (c4) to (c6), an epoxy group, an amide group, or a hydroxyl group can be left in or on the surface of the cross-linked resin fine particles. The physical properties of can be improved. In the monomers (c4) to (c6), the functional groups of the monomers (c4) to (c6) are likely to remain inside or on the surface even after the particle synthesis, and the adhesion effect to the current collector is large even in a small amount. Moreover, a part of them may be used for the crosslinking reaction, and by adjusting the degree of crosslinking of these functional groups, it is possible to balance the resistance to electrolytic solution and the adhesion.
 1分子中に1つのエチレン性不飽和基と、単官能または多官能エポキシ基とを有する単量体(c4)としては、例えば、グリシジル(メタ)アクリレート、3,4-エポキシシクロヘキシル(メタ)アクリレートなどが挙げられる。 Examples of the monomer (c4) having one ethylenically unsaturated group and a monofunctional or polyfunctional epoxy group in one molecule include glycidyl (meth) acrylate and 3,4-epoxycyclohexyl (meth) acrylate. Etc.
 1分子中に1つのエチレン性不飽和基と、単官能または多官能アミド基とを有する単量体(c5)としては、例えば、(メタ)アクリルアミドなどの第一アミド基含有エチレン性不飽和単量体;N-メチロールアクリルアミド、N,N-ジ(メチロール)アクリルアミド、N-メチロール-N-メトキシメチル(メタ)アクリルアミドなどのアルキロール(メタ)アクリルアミド類;N-メトキシメチル-(メタ)アクリルアミド、N-エトキシメチル-(メタ)アクリルアミド、N-プロポキシメチル-(メタ)アクリルアミド、N-ブトキシメチル-(メタ)アクリルアミド、N-ペントキシメチル-(メタ)アクリルアミドなどのモノアルコキシ(メタ)アクリルアミド類;N,N-ジ(メトキシメチル)アクリルアミド、N-エトキシメチル-N-メトキシメチルメタアクリルアミド、N,N-ジ(エトキシメチル)アクリルアミド、N-エトキシメチル-N-プロポキシメチルメタアクリルアミド、N,N-ジ(プロポキシメチル)アクリルアミド、N-ブトキシメチル-N-(プロポキシメチル)メタアクリルアミド、N,N-ジ(ブトキシメチル)アクリルアミド、N-ブトキシメチル-N-(メトキシメチル)メタアクリルアミド、N,N-ジ(ペントキシメチル)アクリルアミド、N-メトキシメチル-N-(ペントキシメチル)メタアクリルアミドなどのジアルコキシ(メタ)アクリルアミド類;N,N-ジメチルアミノプロピルアクリルアミド、N,N-ジエチルアミノプロピルアクリルアミドなどのジアルキルアミノ(メタ)アクリルアミド類;N,N-ジメチルアクリルアミド、N,N-ジエチルアクリルアミドなどのジアルキル(メタ)アクリルアミド類;ダイアセトン(メタ)アクリルアミドなどのケト基含有(メタ)アクリルアミド類などが挙げられる。 Examples of the monomer (c5) having one ethylenically unsaturated group and a monofunctional or polyfunctional amide group in one molecule include, for example, a primary amide group-containing ethylenically unsaturated monomer such as (meth) acrylamide. N-methylol acrylamide, N, N-di (methylol) acrylamide, alkylol (meth) acrylamides such as N-methylol-N-methoxymethyl (meth) acrylamide; N-methoxymethyl- (meth) acrylamide, Monoalkoxy (meth) acrylamides such as N-ethoxymethyl- (meth) acrylamide, N-propoxymethyl- (meth) acrylamide, N-butoxymethyl- (meth) acrylamide, N-pentoxymethyl- (meth) acrylamide; N, N-di (methoxymethyl) acrylamide, N-eth Cymethyl-N-methoxymethylmethacrylamide, N, N-di (ethoxymethyl) acrylamide, N-ethoxymethyl-N-propoxymethylmethacrylamide, N, N-di (propoxymethyl) acrylamide, N-butoxymethyl-N- (Propoxymethyl) methacrylamide, N, N-di (butoxymethyl) acrylamide, N-butoxymethyl-N- (methoxymethyl) methacrylamide, N, N-di (pentoxymethyl) acrylamide, N-methoxymethyl-N Dialkoxy (meth) acrylamides such as-(pentoxymethyl) methacrylamide; dialkylamino (meth) acrylamides such as N, N-dimethylaminopropylacrylamide and N, N-diethylaminopropylacrylamide; N, N Dimethylacrylamide, N, N-dialkyl such as diethyl acrylamide (meth) acrylamides; containing keto groups such as diacetone (meth) acrylamide (meth) acrylamides, and the like.
 1分子中に1つのエチレン性不飽和基と、単官能または多官能水酸基とを有する単量体(c6)としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-(メタ)アクリロイロキシエチル-2-ヒドロキシエチルフタル酸、グリセロールモノ(メタ)アクリレート、4-ヒドロキシビニルベンゼン、1-エチニル-1-シクロヘキサノール、アリルアルコールなどが挙げられる。 Examples of the monomer (c6) having one ethylenically unsaturated group and a monofunctional or polyfunctional hydroxyl group in one molecule include 2-hydroxyethyl (meth) acrylate and 2-hydroxypropyl (meth) acrylate. 4-hydroxybutyl (meth) acrylate, 2- (meth) acryloyloxyethyl-2-hydroxyethylphthalic acid, glycerol mono (meth) acrylate, 4-hydroxyvinylbenzene, 1-ethynyl-1-cyclohexanol, allyl Examples include alcohol.
 単量体(c4)~(c6)に含まれる単量体の官能基は、その一部が粒子重合中に反応し、粒子内架橋に使われても構わない。単量体(c4)~(c6)に含まれる単量体は、乳化重合に使用するエチレン性不飽和単量体全体(合計100重量%)中に0.1~20重量%使用されることを特徴とする。好ましくは1~15重量%であり、特に好ましくは2~10重量%である。乳化重合に使用するエチレン性不飽和単量体全体(合計100重量%)中の単量体(c4)~(c6)が0.1重量%未満であると、重合後の粒子内部や表面に残存している官能基の量が少なくなり、集電体の密着性向上に十分寄与できない。また、20重量%を超えると、乳化重合する際の重合安定性に問題を生じるか、重合できたとしても保存安定性に問題を生じる。 Some of the functional groups of the monomers contained in the monomers (c4) to (c6) may react during particle polymerization and be used for intraparticle crosslinking. The monomer contained in the monomers (c4) to (c6) is used in an amount of 0.1 to 20% by weight in the whole ethylenically unsaturated monomer (100% by weight in total) used for the emulsion polymerization. It is characterized by. The amount is preferably 1 to 15% by weight, particularly preferably 2 to 10% by weight. When the amount of the monomers (c4) to (c6) in the whole ethylenically unsaturated monomers (100% by weight in total) used in the emulsion polymerization is less than 0.1% by weight, the inside of the particles after polymerization or on the surface The amount of remaining functional groups is reduced, and cannot sufficiently contribute to the improvement of the adhesion of the current collector. On the other hand, if it exceeds 20% by weight, there will be a problem in the polymerization stability at the time of emulsion polymerization, or even if it can be polymerized, there will be a problem in the storage stability.
 単量体(c7)としては、単量体(c1)、(c2)、(c4)~(c6)以外であって、エチレン性不飽和基を有する単量体であれば特に限定されないが、例えば、1分子中に1つのエチレン性不飽和基と、炭素数8~18のアルキル基とを有する単量体(c8)、1分子中に1つのエチレン性不飽和基と、環状構造とを有する単量体(c9)などが挙げられる。単量体(c7)として、該単量体(c8)および/または単量体(c9)を乳化重合に使用する場合には(単量体(c7)としてそれら以外の単量体を含んでいてもよい)、該単量体(c8)および(c9)が、エチレン性不飽和基を有する単量体全体((c1)、(c2)、(c4)~(c6)および(c7))中に合計で30~95重量%含まれることが好ましい。単量体(c8)や単量体(c9)を使用することで粒子合成時の粒子安定性や耐電解液性に優れるため好ましい。30重量%未満であると耐電解液性に悪影響をおよぼす場合があり、95重量%を超えると粒子合成時の安定性に悪影響をおよぼすか、合成できたとしても粒子の経時安定性が損なわれる場合がある。 The monomer (c7) is not particularly limited as long as it is a monomer other than the monomers (c1), (c2), (c4) to (c6) and has an ethylenically unsaturated group, For example, a monomer (c8) having one ethylenically unsaturated group and an alkyl group having 8 to 18 carbon atoms in one molecule, one ethylenically unsaturated group in one molecule, and a cyclic structure And monomer (c9). When the monomer (c8) and / or the monomer (c9) is used for the emulsion polymerization as the monomer (c7) (including other monomers as the monomer (c7)) The monomers (c8) and (c9) are all monomers having an ethylenically unsaturated group ((c1), (c2), (c4) to (c6) and (c7)). A total of 30 to 95% by weight is preferably contained therein. It is preferable to use the monomer (c8) or the monomer (c9) because the particle stability during particle synthesis and the resistance to electrolytic solution are excellent. If it is less than 30% by weight, the electrolyte solution resistance may be adversely affected. If it exceeds 95% by weight, the stability during particle synthesis will be adversely affected, or even if synthesis is possible, the temporal stability of the particles will be impaired. There is a case.
 1分子中に1つのエチレン性不飽和基と、炭素数8~18のアルキル基とを有する単量体(c8)としては、例えば、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ミリスチル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレートなどが挙げられる。 Examples of the monomer (c8) having one ethylenically unsaturated group and an alkyl group having 8 to 18 carbon atoms in one molecule include 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, and myristyl. (Meth) acrylate, cetyl (meth) acrylate, stearyl (meth) acrylate and the like can be mentioned.
 1分子中に1つのエチレン性不飽和基と、環状構造とを有する単量体(c9)としては、脂環式エチレン性不飽和単量体や芳香族エチレン性不飽和単量体などが挙げられる。脂環式エチレン性不飽和単量体としては、例えば、シクロヘキシル(メタ)アクリレート、イソボニル(メタ)アクリレートなどが挙げられ、芳香族エチレン性不飽和単量体としては、例えば、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、スチレン、α-メチルスチレン、2-メチルスチレン、クロロスチレン、アリルベンゼン、エチニルベンゼンなどが挙げられる。 Examples of the monomer (c9) having one ethylenically unsaturated group and a cyclic structure in one molecule include alicyclic ethylenically unsaturated monomers and aromatic ethylenically unsaturated monomers. It is done. Examples of the alicyclic ethylenically unsaturated monomer include cyclohexyl (meth) acrylate and isobornyl (meth) acrylate, and examples of the aromatic ethylenically unsaturated monomer include benzyl (meth) acrylate. Phenoxyethyl (meth) acrylate, styrene, α-methylstyrene, 2-methylstyrene, chlorostyrene, allylbenzene, ethynylbenzene and the like.
 上記単量体(c8)、単量体(c9)以外の単量体(c7)としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘプチル(メタ)アクリレートなどのアルキル基含有エチレン性不飽和単量体;(メタ)アクリロニトリルなどのニトリル基含有エチレン性不飽和単量体;パーフルオロメチルメチル(メタ)アクリレート、パーフルオロエチルメチル(メタ)アクリレート、2-パーフルオロブチルエチル(メタ)アクリレート、2-パーフルオロヘキシルエチル(メタ)アクリレート、2-パーフルオロオクチルエチル(メタ)アクリレート、2-パーフルオロイソノニルエチル(メタ)アクリレート、2-パーフルオロノニルエチル(メタ)アクリレート、2-パーフルオロデシルエチル(メタ)アクリレート、パーフルオロプロピルプロピル(メタ)アクリレート、パーフルオロオクチルプロピル(メタ)アクリレート、パーフルオロオクチルアミル(メタ)アクリレート、パーフルオロオクチルウンデシル(メタ)アクリレートなどの炭素数1~20のパーフルオロアルキル基を有するパーフルオロアルキル基含有エチレン性不飽和単量体;パーフルオロブチルエチレン、パーフルオロヘキシルエチレン、パーフルオロオクチルエチレン、パーフルオロデシルエチレンなどのパーフルオロアルキル、アルキレン類などのパーフルオロアルキル基含有エチレン性不飽和化合物;ポリエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、エトキシポリエチレングリコール(メタ)アクリレート、プロポキシポリエチレングリコール(メタ)アクリレート、n-ブトキシポリエチレングリコール(メタ)アクリレート、n-ペンタキシポリエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレート、メトキシポリプロピレングリコール(メタ)アクリレート、エトキシポリプロピレングリコール(メタ)アクリレート、プロポキシポリプロピレングリコール(メタ)アクリレート、n-ブトキシポリプロピレングリコール(メタ)アクリレート、n-ペンタキシポリプロピレングリコール(メタ)アクリレート、フェノキシポリプロピレングリコール(メタ)アクリレート、ポリテトラメチレングリコール(メタ)アクリレート、メトキシポリテトラメチレングリコール(メタ)アクリレート、フェノキシテトラエチレングリコール(メタ)アクリレート、ヘキサエチレングリコール(メタ)アクリレート、メトキシヘキサエチレングリコール(メタ)アクリレートなどのポリエーテル鎖を有するエチレン性不飽和化合物;ラクトン変性(メタ)アクリレートなどのポリエステル鎖を有するエチレン性不飽和化合物;(メタ)アクリル酸ジメチルアミノエチルメチルクロライド塩、トリメチル-3-(1-(メタ)アクリルアミド-1,1-ジメチルプロピル)アンモニウムクロライド、トリメチル-3-(1-(メタ)アクリルアミドプロピル)アンモニウムクロライド、およびトリメチル-3-(1-(メタ)アクリルアミド-1,1-ジメチルエチル)アンモニウムクロライドなどの四級アンモニウム塩基含有エチレン性不飽和化合物;酢酸ビニル、酪酸ビニル、プロピオン酸ビニル、ヘキサン酸ビニル、カプリル酸ビニル、ラウリル酸ビニル、パルミチン酸ビニル、ステアリン酸ビニルなどの脂肪酸ビニル系化合物;ブチルビニルエーテル、エチルビニルエーテルなどのビニルエーテル系エチレン性不飽和単量体;1-ヘキセン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセンなどのα-オレフィン系エチレン性不飽和単量体;酢酸アリル、シアン化アリルなどのアリル単量体;シアン化ビニル、ビニルシクロヘキサン、ビニルメチルケトンなどのビニル単量体;アセチレン、エチニルトルエンなどのエチニル単量体などが挙げられる。 Examples of the monomer (c7) other than the monomer (c8) and monomer (c9) include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, and n-butyl (meth) ) Alkyl group-containing ethylenically unsaturated monomers such as acrylate, pentyl (meth) acrylate, heptyl (meth) acrylate; nitrile group-containing ethylenically unsaturated monomers such as (meth) acrylonitrile; perfluoromethylmethyl (meta ) Acrylate, perfluoroethylmethyl (meth) acrylate, 2-perfluorobutylethyl (meth) acrylate, 2-perfluorohexylethyl (meth) acrylate, 2-perfluorooctylethyl (meth) acrylate, 2-perfluoroiso Nonylethyl (meth) acrylate, 2- -Fluorononylethyl (meth) acrylate, 2-perfluorodecylethyl (meth) acrylate, perfluoropropylpropyl (meth) acrylate, perfluorooctylpropyl (meth) acrylate, perfluorooctyl amyl (meth) acrylate, perfluorooctyl Perfluoroalkyl group-containing ethylenically unsaturated monomers having 1-20 carbon atoms such as undecyl (meth) acrylate; perfluorobutylethylene, perfluorohexylethylene, perfluorooctylethylene, perfluoro Perfluoroalkyl such as decylethylene, perfluoroalkyl group-containing ethylenically unsaturated compounds such as alkylenes; polyethylene glycol (meth) acrylate, methoxypolyethylene Glycol (meth) acrylate, ethoxy polyethylene glycol (meth) acrylate, propoxy polyethylene glycol (meth) acrylate, n-butoxy polyethylene glycol (meth) acrylate, n-pentoxy polyethylene glycol (meth) acrylate, phenoxy polyethylene glycol (meth) Acrylate, polypropylene glycol (meth) acrylate, methoxypolypropylene glycol (meth) acrylate, ethoxypolypropylene glycol (meth) acrylate, propoxypolypropylene glycol (meth) acrylate, n-butoxypolypropylene glycol (meth) acrylate, n-pentoxypolypropylene glycol ( (Meth) acrylate, phenoxypolypropyleneglyco (Meth) acrylate, polytetramethylene glycol (meth) acrylate, methoxypolytetramethylene glycol (meth) acrylate, phenoxytetraethylene glycol (meth) acrylate, hexaethylene glycol (meth) acrylate, methoxyhexaethylene glycol (meth) Ethylenically unsaturated compounds having a polyether chain such as acrylate; Ethylenically unsaturated compounds having a polyester chain such as lactone-modified (meth) acrylate; (Meth) acrylic acid dimethylaminoethylmethyl chloride salt, trimethyl-3- (1 -(Meth) acrylamide-1,1-dimethylpropyl) ammonium chloride, trimethyl-3- (1- (meth) acrylamidopropyl) ammonium chloride, and tri Quaternary ammonium base-containing ethylenically unsaturated compounds such as til-3- (1- (meth) acrylamide-1,1-dimethylethyl) ammonium chloride; vinyl acetate, vinyl butyrate, vinyl propionate, vinyl hexanoate, caprylic acid Fatty acid vinyl compounds such as vinyl, vinyl laurate, vinyl palmitate and vinyl stearate; vinyl ether ethylenically unsaturated monomers such as butyl vinyl ether and ethyl vinyl ether; 1-hexene, 1-octene, 1-decene, 1 Α-olefinic ethylenically unsaturated monomers such as dodecene, 1-tetradecene and 1-hexadecene; allyl monomers such as allyl acetate and allyl cyanide; vinyl such as vinyl cyanide, vinylcyclohexane and vinylmethylketone Monomer; Acetylene, Ethini And ethynyl monomers such as toluene.
 また、上記単量体(c8)、単量体(c9)以外の単量体(c7)としては、例えば、マレイン酸、フマル酸、イタコン酸、シトラコン酸、または、これらのアルキルもしくはアルケニルモノエステル、フタル酸β-(メタ)アクリロキシエチルモノエステル、イソフタル酸β-(メタ)アクリロキシエチルモノエステル、テレフタル酸β-(メタ)アクリロキシエチルモノエステル、コハク酸β-(メタ)アクリロキシエチルモノエステル、アクリル酸、メタクリル酸、クロトン酸、けい皮酸などのカルボキシル基含有エチレン性不飽和単量体;ターシャリーブチル(メタ)アクリレートなどのターシャリーブチル基含有エチレン性不飽和単量体;ビニルスルホン酸、スチレンスルホン酸などのスルホン酸基含有エチレン性不飽和単量体;(2-ヒドロキシエチル)メタクリレートアッシドホスフェートなどのリン酸基含有エチレン性不飽和単量体;ダイアセトン(メタ)アクリルアミド、アクロレイン、N-ビニルホルムアミド、ビニルメチルケトン、ビニルエチルケトン、アセトアセトキシエチル(メタ)アクリレート、アセトアセトキシプロピル(メタ)アクリレート、アセトアセトキシブチル(メタ)アクリレートなどのケト基含有エチレン性不飽和単量体(1分子中に1つのエチレン性不飽和基と、ケト基とを有する単量体)などが挙げられる。 Examples of the monomer (c7) other than the monomer (c8) and monomer (c9) include maleic acid, fumaric acid, itaconic acid, citraconic acid, and alkyl or alkenyl monoesters thereof. , Phthalic acid β- (meth) acryloxyethyl monoester, isophthalic acid β- (meth) acryloxyethyl monoester, terephthalic acid β- (meth) acryloxyethyl monoester, succinic acid β- (meth) acryloxyethyl Carboxyl group-containing ethylenically unsaturated monomers such as monoesters, acrylic acid, methacrylic acid, crotonic acid and cinnamic acid; Tertiary butyl group-containing ethylenically unsaturated monomers such as tertiary butyl (meth) acrylate; Sulfonic acid group-containing ethylenically unsaturated monomers such as vinyl sulfonic acid and styrene sulfonic acid; Phosphoric acid group-containing ethylenically unsaturated monomers such as 2-hydroxyethyl) methacrylate acid phosphate; diacetone (meth) acrylamide, acrolein, N-vinylformamide, vinyl methyl ketone, vinyl ethyl ketone, acetoacetoxyethyl (meta) ) Keto group-containing ethylenically unsaturated monomers such as acrylate, acetoacetoxypropyl (meth) acrylate, acetoacetoxybutyl (meth) acrylate (single ethylenically unsaturated group and keto group per molecule) And the like).
 単量体(c7)として、ケト基含有エチレン性不飽和単量体を使用する場合、架橋剤としてケト基と反応しうるヒドラジド基を2個以上有する多官能ヒドラジド化合物をバインダー組成物に混合すると、ケト基とヒドラジド基との架橋により強靱な塗膜を得ることができる。このことにより優れた耐電解液性、結着性を有する。さらに、充放電の繰り返しや、発熱による高温環境下における耐性と可とう性とを両立することができるため、充放電サイクルにおける放電容量低下の低減された長寿命の蓄電デバイスを得ることができる。 When a keto group-containing ethylenically unsaturated monomer is used as the monomer (c7), a polyfunctional hydrazide compound having two or more hydrazide groups capable of reacting with a keto group as a crosslinking agent is mixed with the binder composition. A tough coating film can be obtained by crosslinking between a keto group and a hydrazide group. This has excellent electrolytic solution resistance and binding properties. Furthermore, since it is possible to achieve both durability and flexibility in a high-temperature environment due to repeated charge and discharge and heat generation, it is possible to obtain a long-life electricity storage device with reduced discharge capacity reduction in the charge and discharge cycle.
 また、単量体(c7)の中でもカルボキシル基、ターシャリーブチル基(熱によりターシャリーブタノールが脱離してカルボキシル基になる。)、スルホン酸基、およびリン酸基を有するエチレン性不飽和単量体を共重合して得られた樹脂微粒子は、重合後にも粒子内や表面に前記官能基が残存し、集電体の密着性などの物性を向上させる効果があると同時に、合成時の凝集を防いだり、合成後の粒子安定性を保持したりする場合あるため好ましく使用することができる。 Among the monomers (c7), an ethylenically unsaturated monomer having a carboxyl group, a tertiary butyl group (tertiary butanol is removed by heat to form a carboxyl group), a sulfonic acid group, and a phosphoric acid group. The resin fine particles obtained by copolymerization of the body have the effect of improving the physical properties such as the adhesion of the current collector, while the functional groups remain in the particles and on the surface even after polymerization, and at the same time agglomeration during synthesis Can be prevented, and the stability of the particles after synthesis may be maintained.
 カルボキシル基、ターシャリーブチル基、スルホン酸基、およびリン酸基は、その一部が重合中に反応し、粒子内架橋に使われても構わない。カルボキシル基、ターシャリーブチル基、スルホン酸基、およびリン酸基を含む単量体を用いる場合には、乳化重合に使用するエチレン性不飽和単量体全体(合計100重量%)中に0.1~10重量%含まれることが好ましく、さらには1~5重量%含まれることがより好ましい。カルボキシル基、ターシャリーブチル基、スルホン酸基、およびリン酸基を含む単量体が0.1重量%未満であると、粒子の安定性が悪くなる場合がある。また10重量%を超えると、バインダー組成物の親水性が強くなりすぎて耐電解液性が悪くなる場合がある。さらにこれらの官能基は、乾燥時に反応して粒子内や粒子間の架橋に使われても構わない。 A part of the carboxyl group, tertiary butyl group, sulfonic acid group, and phosphoric acid group may react during polymerization and be used for intra-particle crosslinking. In the case of using a monomer containing a carboxyl group, a tertiary butyl group, a sulfonic acid group, and a phosphoric acid group, the total amount of ethylenically unsaturated monomers used in the emulsion polymerization (100% by weight in total) is 0. The content is preferably 1 to 10% by weight, and more preferably 1 to 5% by weight. When the monomer containing a carboxyl group, tertiary butyl group, sulfonic acid group, and phosphoric acid group is less than 0.1% by weight, the stability of the particles may be deteriorated. On the other hand, when the content exceeds 10% by weight, the hydrophilicity of the binder composition becomes too strong, and the electrolytic solution resistance may deteriorate. Furthermore, these functional groups may react during drying and be used for cross-linking within or between particles.
 例えばカルボキシル基は、重合中および乾燥時にエポキシ基と反応して樹脂微粒子に架橋構造を導入できる。同様に、ターシャリーブチル基も一定温度以上の熱が加わるとターシャリーブチルアルコールが生成するとともにカルボキシル基が形成されるため、前記同様エポキシ基と反応することができる。 For example, carboxyl groups can react with epoxy groups during polymerization and drying to introduce a crosslinked structure into resin fine particles. Similarly, a tertiary butyl group can react with an epoxy group in the same manner as described above since tertiary butyl alcohol is generated and a carboxyl group is formed when heat of a certain temperature or higher is applied.
 これらの単量体(c7)は、粒子の重合安定性やガラス転移温度、さらには成膜性や塗膜物性を調整するために、上記に挙げたような単量体を2種以上併用して用いることができる。また、例えば(メタ)アクリロニトリルなどを併用することでゴム弾性が発現する効果がある。 These monomers (c7) are used in combination of two or more of the monomers listed above in order to adjust the polymerization stability and glass transition temperature of the particles, as well as the film formability and film properties. Can be used. Further, for example, by using (meth) acrylonitrile in combination, there is an effect that rubber elasticity is exhibited.
<(メタ)アクリル系エマルション中の架橋型樹脂微粒子の製造方法>
 好適に使用される(メタ)アクリル系エマルション中の架橋型樹脂微粒子は、従来既知の乳化重合方法により合成される。
<Method for producing crosslinked resin fine particles in (meth) acrylic emulsion>
The cross-linked resin fine particles in the (meth) acrylic emulsion preferably used are synthesized by a conventionally known emulsion polymerization method.
<乳化重合で用いられる乳化剤>
 乳化剤としては、エチレン性不飽和基を有する反応性乳化剤やエチレン性不飽和基を有しない非反応性乳化剤など、従来公知のものを任意に使用することができる。
<Emulsifier used in emulsion polymerization>
As the emulsifier, conventionally known ones such as a reactive emulsifier having an ethylenically unsaturated group and a non-reactive emulsifier having no ethylenically unsaturated group can be arbitrarily used.
 エチレン性不飽和基を有する反応性乳化剤はさらに大別して、アニオン系、非イオン系のノニオン系のものが例示できる。特にエチレン性不飽和基を有するアニオン系反応性乳化剤若しくはノニオン性反応性乳化剤を用いると、共重合体の分散粒子径が微細となるとともに粒度分布が狭くなるため、蓄電デバイス(例えば二次電池)電極用バインダーとして使用した際に耐電解液性を向上することができ好ましい。このエチレン性不飽和基を有するアニオン系反応性乳化剤若しくはノニオン性反応性乳化剤は、1種を単独で使用しても、複数種を混合して用いてもよい。 The reactive emulsifier having an ethylenically unsaturated group can be further roughly classified into anionic and nonionic nonionic ones. In particular, when an anionic reactive emulsifier or a nonionic reactive emulsifier having an ethylenically unsaturated group is used, the dispersed particle size of the copolymer becomes finer and the particle size distribution becomes narrower. Therefore, an electricity storage device (for example, a secondary battery) When used as an electrode binder, the resistance to electrolytic solution can be improved, which is preferable. These anionic reactive emulsifiers or nonionic reactive emulsifiers having an ethylenically unsaturated group may be used singly or in combination.
 エチレン性不飽和基を有するアニオン系反応性乳化剤の一例として、以下にその具体例を例示するが、乳化剤は、以下に記載するもののみに限定されるものではない。 Specific examples of the anionic reactive emulsifier having an ethylenically unsaturated group are illustrated below, but the emulsifier is not limited to those described below.
 乳化剤としては、アルキルエーテル系(市販品としては、例えば、第一工業製薬株式会社製アクアロンKH-05、KH-10、KH-20、株式会社ADEKA製アデカリアソープSR-10N、SR-20N、花王株式会社製ラテムルPD-104など);スルフォコハク酸エステル系(市販品としては、例えば、花王株式会社製ラテムルS-120、S-120A、S-180P、S-180A、三洋化成株式会社製エレミノールJS-2など);アルキルフェニルエーテル系もしくはアルキルフェニルエステル系(市販品としては、例えば、第一工業製薬株式会社製アクアロンH-2855A、H-3855B、H-3855C、H-3856、HS-05、HS-10、HS-20、HS-30、株式会社ADEKA製アデカリアソープSDX-222、SDX-223、SDX-232、SDX-233、SDX-259、SE-10N、SE-20N、など);(メタ)アクリレート硫酸エステル系(市販品としては、例えば、日本乳化剤株式会社製アントックスMS-60、MS-2N、三洋化成工業株式会社製エレミノールRS-30など);リン酸エステル系(市販品としては、例えば、第一工業製薬株式会社製H-3330PL、株式会社ADEKA製アデカリアソープPP-70など)などが挙げられる。 As the emulsifier, an alkyl ether type (commercially available products include, for example, Aqualon KH-05, KH-10, KH-20, manufactured by Daiichi Kogyo Seiyaku Co., Ltd. Laterum PD-104 manufactured by Kao Corporation); sulfosuccinic acid ester system (for example, Latemul S-120, S-120A, S-180P, S-180A manufactured by Kao Corporation, Elemiol manufactured by Sanyo Chemical Co., Ltd.) JS-2 etc.); alkyl phenyl ether type or alkyl phenyl ester type (commercially available products include, for example, Aqualon H-2855A, H-3855B, H-3855C, H-3856, HS-05 manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.) , HS-10, HS-20, HS-30, ADEKA Corporation ADEKA Soap SDX-222, SDX-223, SDX-232, SDX-233, SDX-259, SE-10N, SE-20N, etc.) (meth) acrylate sulfate ester (commercially available products include, for example, Japan Emulsifier Stock Company Antox MS-60, MS-2N, Sanyo Kasei Kogyo Co., Ltd., Eleminol RS-30, etc.); Phosphate ester type (commercially available products include, for example, Daiichi Kogyo Seiyaku Co., Ltd. H-3330PL, Inc. And ADEKA Adeka Soap PP-70).
 ノニオン系反応性乳化剤としては、例えばアルキルエーテル系(市販品としては、例えば、株式会社ADEKA製アデカリアソープER-10、ER-20、ER-30、ER-40、花王株式会社製ラテムルPD-420、PD-430、PD-450など);アルキルフェニルエーテル系もしくはアルキルフェニルエステル系(市販品としては、例えば、第一工業製薬株式会社製アクアロンRN-10、RN-20、RN-30、RN-50、株式会社ADEKA製アデカリアソープNE-10、NE-20、NE-30、NE-40など);(メタ)アクリレート硫酸エステル系(市販品としては、例えば、日本乳化剤株式会社製RMA-564、RMA-568、RMA-1114など)などが挙げられる。 Nonionic reactive emulsifiers include, for example, alkyl ethers (for example, commercially available products such as Adeka Soap ER-10, ER-20, ER-30, ER-40 manufactured by ADEKA Corporation, LATEMUL PD- manufactured by Kao Corporation, etc. 420, PD-430, PD-450, etc.); alkylphenyl ethers or alkylphenyl esters (commercially available products include, for example, Aqualon RN-10, RN-20, RN-30, RN manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.) -50, Adeka Soap NE-10, NE-20, NE-30, NE-40, etc., manufactured by ADEKA Corporation; (meth) acrylate sulfate ester (commercially available products include, for example, RMA- manufactured by Nippon Emulsifier Co., Ltd.) 564, RMA-568, RMA-1114, etc.).
 (メタ)アクリル系エマルション中の架橋型樹脂微粒子を乳化重合により得るに際しては、前記したエチレン性不飽和基を有する反応性乳化剤とともに、必要に応じエチレン性不飽和基を有しない非反応性乳化剤を併用することができる。非反応性乳化剤は、非反応性アニオン系乳化剤と非反応性ノニオン系乳化剤とに大別することができる。 When obtaining cross-linked resin fine particles in a (meth) acrylic emulsion by emulsion polymerization, a non-reactive emulsifier having no ethylenically unsaturated group is optionally used together with the above-described reactive emulsifier having an ethylenically unsaturated group. Can be used together. Non-reactive emulsifiers can be broadly classified into non-reactive anionic emulsifiers and non-reactive nonionic emulsifiers.
 非反応性ノニオン系乳化剤の例としては、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテルなどのポリオキシエチレンアルキルエーテル類;ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテルなどのポリオキシエチレンアルキルフェニルエーテル類;ソルビタンモノラウレート、ソルビタンモノステアレート、ソルビタントリオレエートなどのソルビタン高級脂肪酸エステル類;ポリオキシエチレンソルビタンモノラウレートなどのポリオキシエチレンソルビタン高級脂肪酸エステル類;ポリオキシエチレンモノラウレート、ポリオキシエチレンモノステアレートなどのポリオキシエチレン高級脂肪酸エステル類;オレイン酸モノグリセライド、ステアリン酸モノグリセライドなどのグリセリン高級脂肪酸エステル類;ポリオキシエチレン・ポリオキシプロピレン・ブロックコポリマー、ポリオキシエチレンジスチレン化フェニルエーテルなどを例示することができる。 Examples of non-reactive nonionic emulsifiers include polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether and polyoxyethylene stearyl ether; polyoxyethylene alkyl such as polyoxyethylene octyl phenyl ether and polyoxyethylene nonyl phenyl ether Sorbitan monolaurate, sorbitan monostearate, sorbitan higher fatty acid esters such as sorbitan trioleate; polyoxyethylene sorbitan higher fatty acid esters such as polyoxyethylene sorbitan monolaurate; polyoxyethylene monolaurate, Polyoxyethylene higher fatty acid esters such as polyoxyethylene monostearate; oleic acid monoglyceride, stearic acid monog Glycerine higher fatty acid esters such as celite, polyoxyethylene-polyoxypropylene block copolymers, and the like can be exemplified polyoxyethylene distyrenated phenyl ether.
 また、非反応性アニオン系乳化剤の例としては、オレイン酸ナトリウムなどの高級脂肪酸塩類;ドデシルベンゼンスルホン酸ナトリウムなどのアルキルアリールスルホン酸塩類;ラウリル硫酸ナトリウムなどのアルキル硫酸エステル塩類;ポリエキシエチレンラウリルエーテル硫酸ナトリウムなどのポリオキシエチレンアルキルエーテル硫酸エステル塩類;ポリオキシエチレンノニルフェニルエーテル硫酸ナトリウムなどのポリオキシエチレンアルキルアリールエーテル硫酸エステル塩類;モノオクチルスルホコハク酸ナトリウム、ジオクチルスルホコハク酸ナトリウム、ポリオキシエチレンラウリルスルホコハク酸ナトリウムなどのアルキルスルホコハク酸エステル塩およびその誘導体類;ポリオキシエチレンジスチレン化フェニルエーテル硫酸エステル塩類などを例示することができる。 Examples of non-reactive anionic emulsifiers include higher fatty acid salts such as sodium oleate; alkyl aryl sulfonates such as sodium dodecylbenzene sulfonate; alkyl sulfate esters such as sodium lauryl sulfate; polyoxyethylene lauryl ether Polyoxyethylene alkyl ether sulfates such as sodium sulfate; polyoxyethylene alkylaryl ether sulfates such as polyoxyethylene nonylphenyl ether sodium sulfate; sodium monooctyl sulfosuccinate, sodium dioctyl sulfosuccinate, polyoxyethylene lauryl sulfosuccinic acid Alkylsulfosuccinic acid ester salts such as sodium and their derivatives; polyoxyethylene distyrenated phenyl ether And the like can be exemplified Le sulfuric ester salts.
 乳化剤の使用量は、必ずしも限定されるものではなく、架橋型樹脂微粒子が最終的なバインダーとして使用される際に求められる物性にしたがって適宜選択できる。例えば、エチレン性不飽和単量体の合計100重量部に対して、乳化剤は通常0.1~30重量部であることが好ましく、0.3~20重量部であることがより好ましく、0.5~10重量部の範囲内であることがさらに好ましい。 The amount of the emulsifier used is not necessarily limited, and can be appropriately selected according to the physical properties required when the crosslinked resin fine particles are used as a final binder. For example, the emulsifier is usually preferably 0.1 to 30 parts by weight, more preferably 0.3 to 20 parts by weight, based on 100 parts by weight of the total of ethylenically unsaturated monomers. More preferably, it is in the range of 5 to 10 parts by weight.
 乳化重合に際しては、水溶性保護コロイドを併用することもできる。水溶性保護コロイドとしては、例えば、部分ケン化ポリビニルアルコール、完全ケン化ポリビニルアルコール、変性ポリビニルアルコールなどのポリビニルアルコール類;ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、カルボキシメチルセルロース塩などのセルロース誘導体;グアガムなどの天然多糖類などが挙げられ、これらは、単独でも複数種併用の態様でも利用できる。水溶性保護コロイドの使用量としては、エチレン性不飽和単量体の合計100重量部当り0.1~5重量部であり、さらに好ましくは0.5~2重量部である。 In the case of emulsion polymerization, a water-soluble protective colloid can be used in combination. Examples of water-soluble protective colloids include polyvinyl alcohols such as partially saponified polyvinyl alcohol, fully saponified polyvinyl alcohol, and modified polyvinyl alcohol; cellulose derivatives such as hydroxyethyl cellulose, hydroxypropyl cellulose, and carboxymethyl cellulose salt; Examples thereof include saccharides, and these can be used singly or in a combination of plural kinds. The amount of the water-soluble protective colloid used is 0.1 to 5 parts by weight, more preferably 0.5 to 2 parts by weight per 100 parts by weight of the total amount of ethylenically unsaturated monomers.
<乳化重合で用いられる水性媒体>
 水性媒体としては、水が挙げられ、親水性の有機溶剤も本発明の目的を損なわない範囲で使用することができる。
<Aqueous medium used in emulsion polymerization>
Examples of the aqueous medium include water, and a hydrophilic organic solvent can also be used as long as the object of the present invention is not impaired.
<乳化重合で用いられる重合開始剤>
 重合開始剤としては、ラジカル重合を開始する能力を有するものであれば特に制限はなく、公知の油溶性重合開始剤や水溶性重合開始剤を使用することができる。
<Polymerization initiator used in emulsion polymerization>
The polymerization initiator is not particularly limited as long as it has the ability to initiate radical polymerization, and known oil-soluble polymerization initiators and water-soluble polymerization initiators can be used.
 油溶性重合開始剤としては特に限定されず、例えば、ベンゾイルパーオキサイド、tert-ブチルパーオキシベンゾエート、tert-ブチルハイドロパーオキサイド、tert-ブチルパーオキシ(2-エチルヘキサノエート)、tert-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、ジ-tert-ブチルパーオキサイドなどの有機過酸化物;2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス-2,4-ジメチルバレロニトリル、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、1,1’-アゾビス-シクロヘキサン-1-カルボニトリルなどのアゾビス化合物などを挙げることができる。これらは1種類または2種類以上を混合して使用することができる。これら重合開始剤は、エチレン性不飽和単量体100重量部に対して、0.1~10.0重量部の量を用いるのが好ましい。 The oil-soluble polymerization initiator is not particularly limited, and examples thereof include benzoyl peroxide, tert-butyl peroxybenzoate, tert-butyl hydroperoxide, tert-butyl peroxy (2-ethylhexanoate), and tert-butyl peroxide. Organic peroxides such as oxy-3,5,5-trimethylhexanoate and di-tert-butyl peroxide; 2,2′-azobisisobutyronitrile, 2,2′-azobis-2,4- Examples thereof include azobis compounds such as dimethylvaleronitrile, 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), 1,1′-azobis-cyclohexane-1-carbonitrile. These can be used alone or in combination of two or more. These polymerization initiators are preferably used in an amount of 0.1 to 10.0 parts by weight with respect to 100 parts by weight of the ethylenically unsaturated monomer.
 本発明においては水溶性重合開始剤を使用することが好ましく、例えば、過硫酸アンモニウム、過硫酸カリウム、過酸化水素、2,2’-アゾビス(2-メチルプロピオンアミジン)ジハイドロクロライドなど、従来既知のものを好適に使用することができる。また、乳化重合を行うに際して、所望により重合開始剤とともに還元剤を併用することができる。これにより、乳化重合速度を促進したり、低温において乳化重合を行ったりすることが容易になる。このような還元剤としては、例えば、アスコルビン酸、エルソルビン酸、酒石酸、クエン酸、ブドウ糖、ホルムアルデヒドスルホキシラートなどの金属塩などの還元性有機化合物、チオ硫酸ナトリウム、亜硫酸ナトリウム、重亜硫酸ナトリウム、メタ重亜硫酸ナトリウムなどの還元性無機化合物、塩化第一鉄、ロンガリット、二酸化チオ尿素などを例示できる。これら還元剤は、全エチレン性不飽和単量体100重量部に対して、0.05~5.0重量部の量を用いるのが好ましい。 In the present invention, it is preferable to use a water-soluble polymerization initiator. For example, ammonium persulfate, potassium persulfate, hydrogen peroxide, 2,2′-azobis (2-methylpropionamidine) dihydrochloride and the like are conventionally known. A thing can be used conveniently. Moreover, when performing emulsion polymerization, a reducing agent can be used together with a polymerization initiator if desired. Thereby, it becomes easy to accelerate the emulsion polymerization rate or to perform the emulsion polymerization at a low temperature. Examples of such a reducing agent include reducing organic compounds such as metal salts such as ascorbic acid, ersorbic acid, tartaric acid, citric acid, glucose, and formaldehyde sulfoxylate, sodium thiosulfate, sodium sulfite, sodium bisulfite, Examples include reducing inorganic compounds such as sodium bisulfite, ferrous chloride, Rongalite, thiourea dioxide, and the like. These reducing agents are preferably used in an amount of 0.05 to 5.0 parts by weight with respect to 100 parts by weight of the total ethylenically unsaturated monomer.
<乳化重合の条件>
 なお、前記した重合開始剤によらずとも、光化学反応や、放射線照射などによっても重合を行うことができる。重合温度は各重合開始剤の重合開始温度以上とする。例えば、過酸化物系重合開始剤では、通常70℃程度とすればよい。重合時間は特に制限されないが、通常2~24時間である。
<Conditions for emulsion polymerization>
In addition, it can superpose | polymerize by a photochemical reaction, radiation irradiation, etc. irrespective of an above described polymerization initiator. The polymerization temperature is not less than the polymerization start temperature of each polymerization initiator. For example, in the case of a peroxide-based polymerization initiator, it may be usually about 70 ° C. The polymerization time is not particularly limited, but is usually 2 to 24 hours.
<反応に用いられるその他の材料>
 さらに必要に応じて、緩衝剤として、酢酸ナトリウム、クエン酸ナトリウム、重炭酸ナトリウムなどが、また、連鎖移動剤としてのオクチルメルカプタン、チオグリコール酸2-エチルヘキシル、チオグリコール酸オクチル、ステアリルメルカプタン、ラウリルメルカプタン、t-ドデシルメルカプタンなどのメルカプタン類が適量使用できる。
<Other materials used for reaction>
Further, if necessary, sodium acetate, sodium citrate, sodium bicarbonate, etc. as a buffering agent, and octyl mercaptan, 2-ethylhexyl thioglycolate, octyl thioglycolate, stearyl mercaptan, lauryl mercaptan as a chain transfer agent A suitable amount of mercaptans such as t-dodecyl mercaptan can be used.
 架橋型樹脂微粒子の重合にカルボキシル基含有エチレン性不飽和単量体などの酸性官能基を有する単量体を使用した場合、重合前や重合後に塩基性化合物で中和することができる。中和する際、アンモニアもしくはトリメチルアミン、トリエチルアミン、ブチルアミンなどのアルキルアミン類;2-ジメチルアミノエタノール、ジエタノールアミン、トリエタノールアミン、アミノメチルプロパノールなどのアルコールアミン類;モルホリンなどの塩基で中和することができる。ただし、乾燥性に効果が高いのは揮発性の高い塩基であり、好ましい塩基はアミノメチルプロパノール、アンモニアである。 When a monomer having an acidic functional group such as a carboxyl group-containing ethylenically unsaturated monomer is used for the polymerization of the crosslinked resin fine particles, it can be neutralized with a basic compound before or after the polymerization. When neutralizing, it can be neutralized with ammonia or alkylamines such as trimethylamine, triethylamine and butylamine; alcohol amines such as 2-dimethylaminoethanol, diethanolamine, triethanolamine and aminomethylpropanol; and a base such as morpholine. . However, it is a highly volatile base that is highly effective in drying, and preferred bases are aminomethylpropanol and ammonia.
<架橋型樹脂微粒子の特性>
(ガラス転移温度)
 架橋型樹脂微粒子のガラス転移温度(以下、Tgともいう)は、-50~70℃が好ましく、-30~30℃がさらに好ましい。Tgが-50℃未満の場合、バインダーが過度に電極活物質を覆い、インピーダンスが高くなりやすい。また、Tgが70℃を超えると、バインダーの柔軟性、粘着性が乏しくなり、導電性の炭素材料の集電材への接着性、下地層の成形性が劣る場合がある。なお、ガラス転移温度は、DSC(示差走査熱量計)を用いて求めた値である。
<Characteristics of cross-linked resin fine particles>
(Glass-transition temperature)
The glass transition temperature (hereinafter also referred to as Tg) of the crosslinked resin fine particles is preferably −50 to 70 ° C., more preferably −30 to 30 ° C. When Tg is less than −50 ° C., the binder excessively covers the electrode active material, and the impedance tends to increase. Moreover, when Tg exceeds 70 degreeC, the softness | flexibility and adhesiveness of a binder will become scarce, and the adhesiveness to the electrical power collector of an electroconductive carbon material and the moldability of a base layer may be inferior. The glass transition temperature is a value obtained using a DSC (differential scanning calorimeter).
 DSC(示差走査熱量計)によるガラス転移温度の測定は以下のようにして行うことができる。架橋型樹脂微粒子を乾固した樹脂約2mgをアルミニウムパン上で秤量し、該試験容器をDSC測定ホルダーにセットし、10℃/分の昇温条件にて得られるチャートの吸熱ピークを読み取る。このときのピーク温度をガラス転移温度とする。 Measurement of the glass transition temperature by DSC (differential scanning calorimeter) can be performed as follows. About 2 mg of resin obtained by drying the cross-linked resin fine particles is weighed on an aluminum pan, the test container is set on a DSC measurement holder, and the endothermic peak of the chart obtained under a temperature rising condition of 10 ° C./min is read. The peak temperature at this time is defined as the glass transition temperature.
(粒子構造)
 また、架橋型樹脂微粒子の粒子構造を多層構造、いわゆるコアシェル粒子にすることもできる。例えば、コア部、またはシェル部に官能基を有する単量体を主に重合させた樹脂を局在化させたり、コアとシェルによってTgや組成に差を設けたりすることにより、硬化性、乾燥性、成膜性、バインダーの機械強度を向上させることができる。
(Particle structure)
Further, the particle structure of the crosslinked resin fine particles may be a multi-layer structure, so-called core-shell particles. For example, it is possible to localize a resin in which a monomer having a functional group is mainly polymerized in the core part or the shell part, or to provide a difference in Tg or composition between the core and the shell, thereby improving the curability and drying. Property, film formability, and mechanical strength of the binder can be improved.
(粒子径)
 架橋型樹脂微粒子の平均粒子径は、電極活物質の結着性や粒子の安定性の点から、10~500nmであることが好ましく、30~300nmであることがより好ましい。また、1μmを超えるような粗大粒子が多く含有されるようになると粒子の安定性が損なわれるので、1μmを超える粗大粒子は多くとも5重量%以下であることが好ましい。なお、平均粒子径とは、体積平均粒子径のことを表し、動的光散乱法により測定できる。
(Particle size)
The average particle size of the crosslinked resin fine particles is preferably 10 to 500 nm, more preferably 30 to 300 nm, from the viewpoint of the binding property of the electrode active material and the stability of the particles. Further, when a large amount of coarse particles exceeding 1 μm are contained, the stability of the particles is impaired, so that the coarse particles exceeding 1 μm are preferably at most 5% by weight. In addition, an average particle diameter represents a volume average particle diameter, and can be measured by the dynamic light scattering method.
 動的光散乱法による平均粒子径の測定は、以下のようにして行うことができる。架橋型樹脂微粒子分散液は固形分に応じて200~1000倍に水希釈しておく。該希釈液約5mlを測定装置[(株)日機装製 マイクロトラック]のセルに注入し、サンプルに応じた溶剤(本発明では水)および樹脂の屈折率条件を入力後、測定を行う。この時得られた体積粒子径分布データ(ヒストグラム)のピークを平均粒子径とする。 The measurement of the average particle diameter by the dynamic light scattering method can be performed as follows. The cross-linked resin fine particle dispersion is diluted with water 200 to 1000 times depending on the solid content. About 5 ml of the diluted solution is injected into a cell of a measuring device [Microtrack manufactured by Nikkiso Co., Ltd.], and the measurement is performed after inputting the solvent (water in the present invention) and the refractive index conditions of the resin according to the sample. The peak of the volume particle size distribution data (histogram) obtained at this time is defined as the average particle size.
<重合した樹脂微粒子に添加する未架橋の化合物(E)>
 上記(メタ)アクリル系エマルションは、架橋型樹脂微粒子に加えて、さらに、未架橋のエポキシ基含有化合物、未架橋のアミド基含有化合物、未架橋の水酸基含有化合物、および未架橋のオキサゾリン基含有化合物からなる群より選ばれる少なくとも1つの未架橋の化合物(E)[以下、化合物(E)と表記する場合がある]とを含むことが好ましい。化合物(E)は、水性液状媒体に溶解することがなく、分散する化合物である。
<Uncrosslinked compound (E) added to polymerized resin fine particles>
In addition to the crosslinked resin fine particles, the (meth) acrylic emulsion further includes an uncrosslinked epoxy group-containing compound, an uncrosslinked amide group-containing compound, an uncrosslinked hydroxyl group-containing compound, and an uncrosslinked oxazoline group-containing compound. It is preferable that it contains at least one uncrosslinked compound (E) selected from the group consisting of [hereinafter sometimes referred to as compound (E)]. The compound (E) is a compound that does not dissolve in the aqueous liquid medium and is dispersed.
 化合物(E)である「未架橋の官能基含有化合物」とは、単量体群(C1)に含まれる単量体のように(メタ)アクリル系エマルションの内部架橋構造(三次元架橋構造)を形成する化合物とは異なり、樹脂微粒子が乳化重合(ポリマー形成)された後に添加される(樹脂微粒子の内部架橋形成に関与しない)化合物のことのことをいう。すなわち、「未架橋」とは、(メタ)アクリル系エマルションの内部架橋構造(三次元架橋構造)の形成に関与していないことを意味する。 The “uncrosslinked functional group-containing compound” which is the compound (E) is an internal cross-linked structure (three-dimensional cross-linked structure) of a (meth) acrylic emulsion like a monomer contained in the monomer group (C1). Unlike the compound that forms the resin, it is a compound that is added after the resin fine particles are subjected to emulsion polymerization (polymer formation) (does not participate in the internal cross-linking of the resin fine particles). That is, “uncrosslinked” means that it is not involved in the formation of the internal crosslinked structure (three-dimensional crosslinked structure) of the (meth) acrylic emulsion.
 (メタ)アクリル系エマルションが架橋構造をとることにより耐電解液性が確保され、また、化合物(E)を使用することで、化合物(E)中のエポキシ基、アミド基、水酸基、およびオキサゾリン基から選ばれる少なくとも1つの官能基が、集電体、または電極との密着性に寄与することができる。さらには架橋構造や官能基の量を調整することで、蓄電デバイスの耐久性に優れた導電性組成物を得ることができる。 Electrolyte resistance is ensured by the (meth) acrylic emulsion having a crosslinked structure, and by using the compound (E), an epoxy group, an amide group, a hydroxyl group, and an oxazoline group in the compound (E) are used. At least one functional group selected from can contribute to adhesion with the current collector or the electrode. Furthermore, the conductive composition excellent in durability of the electrical storage device can be obtained by adjusting the amount of the crosslinked structure and the functional group.
 なお、(メタ)アクリル系エマルション中の架橋型樹脂微粒子は、粒子内部で架橋していることが必要である。粒子内部の架橋を適度に調整することによって、耐電解液性を確保することができる。さらに、官能基含有架橋型樹脂微粒子に未架橋のエポキシ基含有化合物、未架橋のアミド基含有化合物、未架橋の水酸基含有化合物、および未架橋のオキサゾリン基含有化合物からなる群より選ばれる少なくとも1つの未架橋の化合物(E)を添加することで、エポキシ基、アミド基、水酸基またはオキサゾリン基が集電体に作用し、集電体や電極への密着性を効果的に向上させることができる。化合物(E)に含まれる上記官能基は、長期保存時や電極作製時の熱によっても安定であるため、少量の使用でも集電体への密着性効果が大きい。さらには保存安定性にも優れている。化合物(E)は、バインダーの可とう性や耐電解液性を調整する目的で架橋型樹脂微粒子中の官能基と反応してもよいが、官能基含有架橋型樹脂微粒子中の官能基との反応のために化合物(E)中の官能基が使われすぎると、集電体または電極と相互作用し得る官能基が少なくなってしまう。このため、(メタ)アクリル系エマルション中の架橋型樹脂微粒子と化合物(E)との反応は、集電体または電極への密着性を損なわない程度である必要がある。また、化合物(E)に含まれる上記官能基の一部が架橋反応に用いられる場合[化合物(E)が多官能化合物の場合]には、これらの官能基の架橋度合いを調整することで、耐電解液性と密着性のバランスをとることができる。 Note that the cross-linked resin fine particles in the (meth) acrylic emulsion need to be cross-linked inside the particles. Electrolytic solution resistance can be ensured by appropriately adjusting the crosslinking inside the particles. Furthermore, the functional group-containing crosslinked resin fine particles are at least one selected from the group consisting of an uncrosslinked epoxy group-containing compound, an uncrosslinked amide group-containing compound, an uncrosslinked hydroxyl group-containing compound, and an uncrosslinked oxazoline group-containing compound. By adding the uncrosslinked compound (E), an epoxy group, an amide group, a hydroxyl group, or an oxazoline group acts on the current collector, and the adhesion to the current collector or the electrode can be effectively improved. Since the functional group contained in the compound (E) is stable by heat during long-term storage or electrode production, the effect of adhesion to the current collector is large even when used in a small amount. Furthermore, it is excellent in storage stability. The compound (E) may react with the functional group in the cross-linked resin fine particles for the purpose of adjusting the flexibility and the electrolytic solution resistance of the binder. When the functional group in the compound (E) is excessively used for the reaction, the functional group capable of interacting with the current collector or the electrode is decreased. For this reason, the reaction between the crosslinked resin fine particles in the (meth) acrylic emulsion and the compound (E) needs to be at a level that does not impair the adhesion to the current collector or the electrode. Further, when a part of the functional group contained in the compound (E) is used for the crosslinking reaction [when the compound (E) is a polyfunctional compound], by adjusting the degree of crosslinking of these functional groups, It is possible to balance the resistance to electrolytic solution and the adhesion.
<未架橋のエポキシ基含有化合物>
 未架橋のエポキシ基含有化合物としては、例えば、グリシジル(メタ)アクリレート、3,4-エポキシシクロヘキシル(メタ)アクリレートなどのエポキシ基含有エチレン性不飽和単量体;前記エポキシ基含有エチレン性不飽和単量体を含むエチレン性不飽和単量体を重合して得られるラジカル重合系樹脂;エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、グリセリンジグリシジルエーテル、グリセリントリグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ジグリシジルアニリン、N,N,N’,N’-テトラグリシジル-m-キシリレンジアミン、1,3-ビス(N,N’-ジグリシジルアミノメチル)シクロヘキサンなどの多官能エポキシ化合物;ビスフェノールA-エピクロロヒドリン型エポキシ樹脂、ビスフェノールF-エピクロロヒドリン型エポキシ樹脂などのエポキシ系樹脂などが挙げられる。
<Uncrosslinked epoxy group-containing compound>
Examples of the uncrosslinked epoxy group-containing compound include epoxy group-containing ethylenically unsaturated monomers such as glycidyl (meth) acrylate and 3,4-epoxycyclohexyl (meth) acrylate; Radical polymerization resins obtained by polymerizing ethylenically unsaturated monomers containing monomers; ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, glycerin diglycidyl ether, glycerin triglycidyl ether, 1,6-hexanediol Diglycidyl ether, trimethylolpropane triglycidyl ether, diglycidyl aniline, N, N, N ′, N′-tetraglycidyl-m-xylylenediamine, 1,3-bis (N, N′-diglycidylaminomethyl) Cyclohexane Polyfunctional epoxy compounds; bisphenol A- epichlorohydrin epoxy resins, and epoxy resins such as bisphenol F- epichlorohydrin type epoxy resin.
 エポキシ基含有化合物の中でも特にビスフェノールA-エピクロロヒドリン型エポキシ樹脂、ビスフェノールF-エピクロロヒドリン型エポキシ樹脂などのエポキシ系樹脂や、エポキシ基含有エチレン性不飽和単量体を含むエチレン性不飽和単量体を重合して得られるラジカル重合系樹脂が好ましい。エポキシ系樹脂は、ビスフェノール骨格を有することで耐電解液性を向上させ、また、骨格に含まれる水酸基により集電体密着性を向上させるという相乗効果が期待できる。また、エポキシ基含有エチレン性不飽和単量体を含むエチレン性不飽和単量体を重合して得られるラジカル重合系樹脂は、樹脂骨格内により多くのエポキシ基を有することにより集電体密着性を向上させ、また、樹脂であることにより、単量体に比べて耐電解液性を向上させる効果が期待できる。 Among epoxy group-containing compounds, in particular, epoxy resins such as bisphenol A-epichlorohydrin type epoxy resins and bisphenol F-epichlorohydrin type epoxy resins, and ethylenically unsaturated monomers containing epoxy group-containing ethylenically unsaturated monomers. A radical polymerization resin obtained by polymerizing a saturated monomer is preferred. The epoxy resin can be expected to have a synergistic effect of improving the electrolytic solution resistance by having a bisphenol skeleton and improving the adhesion of the current collector by a hydroxyl group contained in the skeleton. In addition, the radical polymerization resin obtained by polymerizing an ethylenically unsaturated monomer containing an epoxy group-containing ethylenically unsaturated monomer has a higher adhesion to the current collector by having more epoxy groups in the resin skeleton. In addition, since it is a resin, an effect of improving the resistance to electrolytic solution can be expected as compared with the monomer.
<未架橋のアミド基含有化合物>
 未架橋のアミド基含有化合物としては、例えば、(メタ)アクリルアミドなどの第一アミド基含有化合物;N-メチロールアクリルアミド、N,N-ジ(メチロール)アクリルアミド、N-メチロール-N-メトキシメチル(メタ)アクリルアミドなどのアルキロール(メタ)アクリルアミド系化合物;N-メトキシメチル-(メタ)アクリルアミド、N-エトキシメチル-(メタ)アクリルアミド、N-プロポキシメチル-(メタ)アクリルアミド、N-ブトキシメチル-(メタ)アクリルアミド、N-ペントキシメチル-(メタ)アクリルアミドなどのモノアルコキシ(メタ)アクリルアミド系化合物;N,N-ジ(メトキシメチル)アクリルアミド、N-エトキシメチル-N-メトキシメチルメタアクリルアミド、N,N-ジ(エトキシメチル)アクリルアミド、N-エトキシメチル-N-プロポキシメチルメタアクリルアミド、N,N-ジ(プロポキシメチル)アクリルアミド、N-ブトキシメチル-N-(プロポキシメチル)メタアクリルアミド、N,N-ジ(ブトキシメチル)アクリルアミド、N-ブトキシメチル-N-(メトキシメチル)メタアクリルアミド、N,N-ジ(ペントキシメチル)アクリルアミド、N-メトキシメチル-N-(ペントキシメチル)メタアクリルアミドなどのジアルコキシ(メタ)アクリルアミド系化合物;N,N-ジメチルアミノプロピルアクリルアミド、N,N-ジエチルアミノプロピルアクリルアミドなどのジアルキルアミノ(メタ)アクリルアミド系化合物;N,N-ジメチルアクリルアミド、N,N-ジエチルアクリルアミドなどのジアルキル(メタ)アクリルアミド系化合物;ダイアセトン(メタ)アクリルアミドなどのケト基含有(メタ)アクリルアミド系化合物など、以上のアミド基含有エチレン性不飽和単量体;前記アミド基含有エチレン性不飽和単量体を含むエチレン性不飽和単量体を重合して得られるラジカル重合系樹脂などが挙げられる。
<Uncrosslinked amide group-containing compound>
Non-crosslinked amide group-containing compounds include, for example, primary amide group-containing compounds such as (meth) acrylamide; N-methylolacrylamide, N, N-di (methylol) acrylamide, N-methylol-N-methoxymethyl (meta) ) Alkyrol (meth) acrylamide compounds such as acrylamide; N-methoxymethyl- (meth) acrylamide, N-ethoxymethyl- (meth) acrylamide, N-propoxymethyl- (meth) acrylamide, N-butoxymethyl- (meta ) Monoalkoxy (meth) acrylamide compounds such as acrylamide and N-pentoxymethyl- (meth) acrylamide; N, N-di (methoxymethyl) acrylamide, N-ethoxymethyl-N-methoxymethylmethacrylamide, N, N -Di (Etoki Methyl) acrylamide, N-ethoxymethyl-N-propoxymethylmethacrylamide, N, N-di (propoxymethyl) acrylamide, N-butoxymethyl-N- (propoxymethyl) methacrylamide, N, N-di (butoxymethyl) Dialkoxy (meth) acrylamides such as acrylamide, N-butoxymethyl-N- (methoxymethyl) methacrylamide, N, N-di (pentoxymethyl) acrylamide, N-methoxymethyl-N- (pentoxymethyl) methacrylamide Compounds; dialkylamino (meth) acrylamide compounds such as N, N-dimethylaminopropylacrylamide and N, N-diethylaminopropylacrylamide; N, N-dimethylacrylamide and N, N-diethylacrylamide Any dialkyl (meth) acrylamide compound; keto group-containing (meth) acrylamide compound such as diacetone (meth) acrylamide or the like, and the above amide group-containing ethylenically unsaturated monomers; Examples thereof include radical polymerization resins obtained by polymerizing ethylenically unsaturated monomers containing a monomer.
 アミド基含有化合物の中でも、特にアクリルアミドなどのアミド基含有エチレン性不飽和単量体を含むエチレン性不飽和単量体を重合して得られるラジカル重合系樹脂が好ましい。樹脂骨格内に、より多くのアミド基を有することにより集電体密着性を向上させ、また、樹脂であることにより、単量体に比べて耐電解液性を向上させる効果が期待できる。 Among the amide group-containing compounds, radical polymerization resins obtained by polymerizing ethylenically unsaturated monomers including amide group-containing ethylenically unsaturated monomers such as acrylamide are particularly preferable. By having more amide groups in the resin skeleton, it is possible to improve the current collector adhesion, and by using the resin, the effect of improving the resistance to electrolytic solution compared to the monomer can be expected.
<未架橋の水酸基含有化合物>
 未架橋の水酸基含有化合物としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、グリセロールモノ(メタ)アクリレート4-ヒドロキシビニルベンゼン、1-エチニル-1-シクロヘキサノール、アリルアルコールなどの水酸基含有エチレン性不飽和単量体;前記水酸基含有エチレン性不飽和単量体を含むエチレン性不飽和単量体を重合して得られるラジカル重合系樹脂;エチレングリコール、ジエチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオールなどの直鎖脂肪族ジオール類;プロピレングリコール、ネオペンチルグリコール、3-メチル-1,5-ペンタンジオール、2,2-ジエチル-1,3-プロパンジオールなどの分岐鎖脂肪族ジオール類;1,4-ビス(ヒドロキシメチル)シクロヘキサンなどの環状ジオール類などが挙げられる。
<Uncrosslinked hydroxyl group-containing compound>
Examples of the uncrosslinked hydroxyl group-containing compound include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, glycerol mono (meth) acrylate 4-hydroxyvinylbenzene, Hydroxyl group-containing ethylenically unsaturated monomers such as 1-ethynyl-1-cyclohexanol and allyl alcohol; radical polymerization obtained by polymerizing ethylenically unsaturated monomers containing the hydroxyl group-containing ethylenically unsaturated monomers Resins: linear aliphatic diols such as ethylene glycol, diethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol; propylene glycol, neopentyl glycol , 3-methyl-1,5 Pentanediol, 2,2-branched aliphatic diols such as diethyl-1,3-propanediol; 1,4-bis like cyclic diol such as (hydroxymethyl) cyclohexane.
 水酸基含有化合物の中でも、特に水酸基含有エチレン性不飽和単量体を含むエチレン性不飽和単量体を重合して得られるラジカル重合系樹脂、または環状ジオール類が好ましい。水酸基含有エチレン性不飽和単量体を含むエチレン性不飽和単量体を重合して得られるラジカル重合系樹脂は、樹脂骨格内に、より多くの水酸基を有することにより集電体密着性を向上させ、また、樹脂であることにより、単量体に比べて耐電解液性を向上させる効果が期待できる。また、環状ジオール類は、骨格に環状構造を有することにより、耐電解液性を向上させる効果が期待できる。 Among the hydroxyl group-containing compounds, radical polymerization resins obtained by polymerizing ethylenically unsaturated monomers including a hydroxyl group-containing ethylenically unsaturated monomer or cyclic diols are particularly preferable. The radical polymerization resin obtained by polymerizing ethylenically unsaturated monomers including hydroxyl group-containing ethylenically unsaturated monomers improves current collector adhesion by having more hydroxyl groups in the resin skeleton. In addition, the resin can be expected to have an effect of improving the resistance to electrolytic solution compared to the monomer. Moreover, cyclic diols can be expected to have an effect of improving the resistance to electrolytic solution by having a cyclic structure in the skeleton.
<未架橋のオキサゾリン基含有化合物>
 未架橋のオキサゾリン基含有化合物としては、例えば、2’-メチレンビス(2-オキサゾリン)、2,2’-エチレンビス(2-オキサゾリン)、2,2’-エチレンビス(4-メチル-2-オキサゾリン)、2,2’-プロピレンビス(2-オキサゾリン)、2,2’-テトラメチレンビス(2-オキサゾリン)、2,2’-ヘキサメチレンビス(2-オキサゾリン)、2,2’-オクタメチレンビス(2-オキサゾリン)、2,2’-p-フェニレンビス(2-オキサゾリン)、2,2’-p-フェニレンビス(4,4’-ジメチル-2-オキサゾリン)、2,2’-p-フェニレンビス(4-メチル-2-オキサゾリン)、2,2’-p-フェニレンビス(4-フェニル-2-オキサゾリン)、2,2’-m-フェニレンビス(2-オキサゾリン)、2,2’-m-フェニレンビス(4-メチル-2-オキサゾリン)、2,2’-m-フェニレンビス(4,4’-ジメチル-2-オキサゾリン)、2,2’-m-フェニレンビス(4-フェニレンビス-2-オキサゾリン)、2,2’-o-フェニレンビス(2-オキサゾリン)、2,2’-o-フェニレンビス(4-メチル-2-オキサゾリン)、2,2’-ビス(2-オキサゾリン)、2,2’-ビス(4-メチル-2-オキサゾリン)、2,2’-ビス(4-エチル-2-オキサゾリン)、2,2’-ビス(4-フェニル-2-オキサゾリン)、さらにはオキサゾリン基含有ラジカル重合系樹脂などが挙げられる。
<Uncrosslinked oxazoline group-containing compound>
Examples of the uncrosslinked oxazoline group-containing compound include 2′-methylenebis (2-oxazoline), 2,2′-ethylenebis (2-oxazoline), and 2,2′-ethylenebis (4-methyl-2-oxazoline). ), 2,2′-propylenebis (2-oxazoline), 2,2′-tetramethylenebis (2-oxazoline), 2,2′-hexamethylenebis (2-oxazoline), 2,2′-octamethylene Bis (2-oxazoline), 2,2'-p-phenylenebis (2-oxazoline), 2,2'-p-phenylenebis (4,4'-dimethyl-2-oxazoline), 2,2'-p -Phenylenebis (4-methyl-2-oxazoline), 2,2'-p-phenylenebis (4-phenyl-2-oxazoline), 2,2'-m-phenylenebis (2-oxazoline), 2 , 2'-m-phenylenebis (4-methyl-2-oxazoline), 2,2'-m-phenylenebis (4,4'-dimethyl-2-oxazoline), 2,2'-m-phenylenebis ( 4-phenylenebis-2-oxazoline), 2,2′-o-phenylenebis (2-oxazoline), 2,2′-o-phenylenebis (4-methyl-2-oxazoline), 2,2′-bis (2-oxazoline), 2,2′-bis (4-methyl-2-oxazoline), 2,2′-bis (4-ethyl-2-oxazoline), 2,2′-bis (4-phenyl-2) -Oxazoline), and oxazoline group-containing radical polymerization resins.
 オキサゾリン基含有化合物の中でも、特に、2’-p-フェニレンビス(2-オキサゾリン)などのフェニレンビス型オキサゾリン化合物、または、オキサゾリン基含有エチレン性不飽和単量体を含むエチレン性不飽和単量体を重合して得られるラジカル重合系樹脂が好ましい。フェニレンビス型オキサゾリン化合物は、骨格内にフェニル基を有することにより耐電解液性を向上させる効果がある。また、オキサゾリン基含有エチレン性不飽和単量体を含むエチレン性不飽和単量体を重合して得られるラジカル重合系樹脂は、樹脂骨格内により多くのオキサゾリン基を有することにより集電体密着性を向上させ、また、樹脂であることにより、単量体に比べて耐電解液性を向上させることができる。 Among oxazoline group-containing compounds, in particular, phenylene bis-type oxazoline compounds such as 2′-p-phenylenebis (2-oxazoline), or ethylenically unsaturated monomers containing an oxazoline group-containing ethylenically unsaturated monomer A radical polymerization resin obtained by polymerizing is preferred. The phenylenebis type oxazoline compound has an effect of improving the resistance to electrolytic solution by having a phenyl group in the skeleton. In addition, a radical polymerization resin obtained by polymerizing an ethylenically unsaturated monomer containing an oxazoline group-containing ethylenically unsaturated monomer has a current collector adhesion by having more oxazoline groups in the resin skeleton. In addition, by using a resin, the resistance to an electrolytic solution can be improved as compared with a monomer.
<化合物(E)の添加量、分子量>
 化合物(E)は、架橋型樹脂微粒子の固形分100重量部に対して0.1~50重量部添加するのが好ましく、5~40重量部添加するのがさらに好ましい。化合物(E)の添加量が0.1重量部未満であると、集電体の密着性に寄与する官能基の量が少なくなり、集電体の密着性向上に十分寄与できない場合がある。また、50重量部を超えると、化合物(E)の電解液への漏出など、バインダー性能への悪影響を起こす場合がある。さらに、化合物(E)は2種類以上併用することも可能である。
<Addition amount of compound (E), molecular weight>
Compound (E) is preferably added in an amount of 0.1 to 50 parts by weight, more preferably 5 to 40 parts by weight, based on 100 parts by weight of the solid content of the crosslinked resin fine particles. When the addition amount of the compound (E) is less than 0.1 parts by weight, the amount of the functional group contributing to the adhesion of the current collector is decreased, and may not be able to sufficiently contribute to the improvement of the adhesion of the current collector. On the other hand, if it exceeds 50 parts by weight, the binder performance may be adversely affected such as leakage of the compound (E) into the electrolyte. Furthermore, two or more types of compounds (E) can be used in combination.
 化合物(E)の分子量は特に限定されないが、重量平均分子量が1,000~1,000,000であるのが好ましく、さらには5,000~500,000がより好ましい。重量平均分子量が1,000未満であると集電体への密着性効果が十分でない場合があり、また、重量平均分子量が1,000,000を超えると化合物の粘度が高くなる場合があり、電極作製時のハンドリング性が悪くなる場合がある。なお、上記重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法により測定したポリスチレン換算の値である。 The molecular weight of the compound (E) is not particularly limited, but the weight average molecular weight is preferably 1,000 to 1,000,000, more preferably 5,000 to 500,000. If the weight average molecular weight is less than 1,000, the adhesion effect to the current collector may not be sufficient, and if the weight average molecular weight exceeds 1,000,000, the viscosity of the compound may increase. There may be a case where handling properties at the time of electrode preparation are deteriorated. In addition, the said weight average molecular weight is the value of polystyrene conversion measured by the gel permeation chromatography (GPC) method.
<水性液状媒体(D)>
 水性液状媒体(D)としては、水を使用することが好ましいが、必要に応じて、例えば、集電体への塗工性向上のために、水と相溶する液状媒体を使用しても良い。水と相溶する液状媒体としては、アルコール類、グリコール類、セロソルブ類、アミノアルコール類、アミン類、ケトン類、カルボン酸アミド類、リン酸アミド類、スルホキシド類、カルボン酸エステル類、リン酸エステル類、エーテル類、ニトリル類等が挙げられ、水と相溶する範囲で使用しても良い。
<Aqueous liquid medium (D)>
As the aqueous liquid medium (D), it is preferable to use water, but if necessary, for example, a liquid medium compatible with water may be used to improve the coating property to the current collector. good. Liquid media compatible with water include alcohols, glycols, cellosolves, amino alcohols, amines, ketones, carboxylic acid amides, phosphoric acid amides, sulfoxides, carboxylic acid esters, and phosphoric acid esters , Ethers, nitriles and the like, and may be used as long as they are compatible with water.
<その他の添加剤>
 さらに、導電性組成物には、成膜助剤、消泡剤、レベリング剤、防腐剤、pH調整剤、粘性調整剤などを必要に応じて配合できる。
<Other additives>
Furthermore, a film-forming auxiliary, an antifoaming agent, a leveling agent, a preservative, a pH adjusting agent, a viscosity adjusting agent and the like can be blended with the conductive composition as necessary.
 また、導電性組成物は、蓄電デバイス用電極の下地層形成用として用いることもできるため、蓄電デバイスの充放電サイクル劣化を抑制する目的で、電極中の不純物と電解液の反応によって生成する酸を吸着または消費する材料を加えても良い。 In addition, since the conductive composition can also be used for forming a base layer of an electrode for an electricity storage device, an acid generated by a reaction between an impurity in the electrode and an electrolytic solution for the purpose of suppressing charge / discharge cycle deterioration of the electricity storage device. A material that adsorbs or consumes may be added.
 電解液の反応によって生成する酸を吸着する材料としては、特に限定はされないが、例えば、酸化マグネシウム(MgO)、酸化アルミニウム(Al)、酸化ホウ素(B)、酸化ガリウム(Ga)、および酸化インジウム(In)などが挙げられる。 The material that adsorbs the acid generated by the reaction of the electrolytic solution is not particularly limited. For example, magnesium oxide (MgO), aluminum oxide (Al 2 O 3 ), boron oxide (B 2 O 3 ), gallium oxide ( Ga 2 O 3 ), indium oxide (In 2 O 3 ), and the like.
 電解液の反応によって生成する酸を消費する材料としては、集電体を腐食しなければ特に限定はされないが、例えば、炭酸マグネシウム、炭酸カルシウムなどの金属炭酸塩類、カルボン酸ナトリウム、カルボン酸カリウム、スルホン酸ナトリウム、スルホン酸カリウム、安息香酸ナトリウム、安息香酸カリウムなどの金属有機酸塩類、ケイ酸ナトリウム、ケイ酸カリウム、ケイ酸アルミニウム、ケイ酸マグネシウム、二酸化ケイ素などのケイ酸塩類、水酸化マグネシウムなどのアルカリ性水酸化物類を挙げることができる。 The material consuming the acid generated by the reaction of the electrolytic solution is not particularly limited as long as the current collector is not corroded. For example, metal carbonates such as magnesium carbonate and calcium carbonate, sodium carboxylate, potassium carboxylate, Metal organic acid salts such as sodium sulfonate, potassium sulfonate, sodium benzoate, potassium benzoate, sodium silicate, potassium silicate, aluminum silicate, magnesium silicate, silicon dioxide and other silicates, magnesium hydroxide, etc. Alkaline hydroxides can be mentioned.
 さらに、導電性組成物を蓄電デバイス用電極の下地層形成用として用いる場合、蓄電デバイスの過充電または短絡発生時における熱暴走を抑制する目的で、所定温度以上になるとガスを発生する材料、抵抗の温度係数が正である材料を加えてもよい。 Further, when the conductive composition is used for forming an underlayer of an electrode for an electricity storage device, a material that generates a gas when the temperature exceeds a predetermined temperature for the purpose of suppressing thermal runaway when the electricity storage device is overcharged or short-circuited, resistance A material having a positive temperature coefficient may be added.
 所定温度以上になるとガスを発生する材料としては、例えば、炭酸リチウム、炭酸亜鉛、炭酸鉛、炭酸ストロンチウムなどの炭酸塩類、膨張黒鉛などを挙げることができる。 Examples of materials that generate gas when the temperature exceeds a predetermined temperature include carbonates such as lithium carbonate, zinc carbonate, lead carbonate, and strontium carbonate, and expanded graphite.
 また、抵抗の温度係数が正である材料としては、PTC材料および高分子PTC材料が挙げられる。PTC材料とはそのキュリー温度を超えると抵抗が急激に増大する材料であり、例えば、BaTiMO(MはCr、Pb、Ca、Sr、Ce、Mn、La、Mn、Y、NbおよびNdのいずれか一種以上の元素)が挙げられる。 Examples of materials having a positive temperature coefficient of resistance include PTC materials and polymer PTC materials. The PTC material is a material whose resistance rapidly increases when the Curie temperature is exceeded. For example, BaTiMO 2 (M is any of Cr, Pb, Ca, Sr, Ce, Mn, La, Mn, Y, Nb and Nd. Or one or more elements).
 高分子PTC材料とは、熱による高分子の体積変化を利用して抵抗を増大させる材料であり、低温では、導電性の炭素材料(A)によって導電パスが形成されているため電流が流れるが、高温になると高分子が膨張または収縮して導電パスが遮断され、抵抗を増大させることができる。このような高分子PTC材料として、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリエーテルニトリル、ポリイミド、ポリアミド、ポリテトラフルオロエチレン、スチレンブタジエンゴム、ポリアクリロニトリル、ポリメチルアクリレート、ポリメチルメタクリレート、ポリ塩化ビニル、ポリフッ化ビニリデン、エポキシ樹脂などが挙げられ、これらの共重合体または混合物などが挙げられる。 The polymer PTC material is a material that increases resistance by utilizing a change in the volume of the polymer due to heat. At low temperatures, a conductive path is formed by the conductive carbon material (A), but current flows. When the temperature becomes high, the polymer expands or contracts to block the conductive path, and the resistance can be increased. Such polymer PTC materials include polyethylene, polypropylene, polyethylene terephthalate, polyether nitrile, polyimide, polyamide, polytetrafluoroethylene, styrene butadiene rubber, polyacrylonitrile, polymethyl acrylate, polymethyl methacrylate, polyvinyl chloride, polyfluoride. Examples thereof include vinylidene and epoxy resin, and examples thereof include a copolymer or a mixture thereof.
<分散機・混合機>
 導電性組成物や後述する合材インキを得る際に用いられる装置としては、顔料分散等に通常用いられている分散機、混合機が使用できる。
<Disperser / Mixer>
As a device used for obtaining the conductive composition or the composite ink described later, a disperser or a mixer that is usually used for pigment dispersion or the like can be used.
 例えば、ディスパー、ホモミキサー、若しくはプラネタリーミキサー等のミキサー類;エム・テクニック社製「クレアミックス」、若しくはPRIMIX社「フィルミックス」等のホモジナイザー類;ペイントコンディショナー(レッドデビル社製)、ボールミル、サンドミル(シンマルエンタープライゼス社製「ダイノミル」等)、アトライター、パールミル(アイリッヒ社製「DCPミル」等)、若しくはコボールミル等のメディア型分散機;湿式ジェットミル(ジーナス社製「ジーナスPY」、スギノマシン社製「スターバースト」、ナノマイザー社製「ナノマイザー」等)、エム・テクニック社製「クレアSS-5」、若しくは奈良機械社製「MICROS」等のメディアレス分散機;または、その他ロールミル等が挙げられるが、これらに限定されるものではない。また、分散機としては、分散機からの金属混入防止処理を施したものを用いることが好ましい。 For example, mixers such as dispersers, homomixers, or planetary mixers; homogenizers such as “Clairemix” manufactured by M Technique, or “Fillmix” manufactured by PRIMIX; paint conditioner (manufactured by Red Devil), ball mill, sand mill (Shinmaru Enterprises "Dynomill", etc.), Attritor, Pearl Mill (Eirich "DCP Mill", etc.), or Coball Mill, etc .; Media type dispersers; Wet Jet Mill (Genus, "Genus PY", Sugino Media-less dispersers such as “Starburst” manufactured by Machine, “Nanomizer” manufactured by Nanomizer, etc., “Claire SS-5” manufactured by M Technique, or “MICROS” manufactured by Nara Machinery; or other roll mills, etc. Can be mentioned But it is not limited thereto. Moreover, as the disperser, it is preferable to use a disperser that has been subjected to a metal contamination prevention treatment from the disperser.
 例えば、メディア型分散機を使用する場合は、アジテーターおよびベッセルがセラミック製または樹脂製の分散機を使用する方法や、金属製アジテーターおよびベッセル表面をタングステンカーバイド溶射や樹脂コーティング等の処理をした分散機を用いることが好ましい。そして、メディアとしては、ガラスビーズ、または、ジルコニアビーズ、若しくはアルミナビーズ等のセラミックビーズを用いることが好ましい。また、ロールミルを使用する場合についても、セラミック製ロールを用いることが好ましい。分散装置は、1種のみを使用しても良いし、複数種の装置を組み合わせて使用しても良い。また、強い衝撃で粒子が割れたり、潰れたりしやすい正または負極活物質の場合は、メディア型分散機よりは、ロールミルやホモジナイザー等のメディアレス分散機が好ましい。 For example, when using a media type disperser, a disperser in which the agitator and vessel are made of a ceramic or resin disperser, or the metal agitator and vessel surface are treated with tungsten carbide spraying or resin coating. Is preferably used. As the media, it is preferable to use glass beads, ceramic beads such as zirconia beads or alumina beads. Moreover, also when using a roll mill, it is preferable to use a ceramic roll. Only one type of dispersion device may be used, or a plurality of types of devices may be used in combination. Further, in the case of a positive or negative electrode active material in which particles are easily broken or crushed by a strong impact, a medialess disperser such as a roll mill or a homogenizer is preferable to a media type disperser.
<蓄電デバイス用下地層付き集電体、蓄電デバイス用電極>
 蓄電デバイス用下地層付き集電体とは、集電体上に、導電性組成物から形成された下地層を有するものである。また、蓄電デバイス用電極とは、集電体上に、導電性組成物から形成された下地層と、電極活物質とバインダーとを含有する電極形成用組成物(合材インキ)から形成された合材層とを有する。
<Current collector with base layer for power storage device, electrode for power storage device>
The current collector with a base layer for an electricity storage device has a base layer formed of a conductive composition on the current collector. In addition, the electrode for the electricity storage device was formed on a current collector from an underlayer formed from a conductive composition, and an electrode forming composition (mixture ink) containing an electrode active material and a binder. And a composite layer.
<集電体>
 電極に使用する集電体の材質や形状は特に限定されず、各種蓄電デバイス用にあったものを適宜選択することができる。例えば、集電体の材質としては、アルミニウム、銅、ニッケル、チタンまたはステンレス等の金属や合金が挙げられる。リチウムイオン電池の場合、特に正極材料としてはアルミニウムが、負極材料としては銅が、それぞれ好ましい。また、形状としては、一般的には平板上の箔が用いられるが、表面を粗面化したものや、穴あき箔状のもの、およびメッシュ状の集電体も使用できる。
<Current collector>
The material and shape of the current collector used for the electrode are not particularly limited, and those suitable for various power storage devices can be appropriately selected. For example, examples of the material for the current collector include metals and alloys such as aluminum, copper, nickel, titanium, and stainless steel. In the case of a lithium ion battery, aluminum is particularly preferable as the positive electrode material, and copper is preferable as the negative electrode material. In general, a flat foil is used as the shape, but a roughened surface, a perforated foil, or a mesh current collector can also be used.
 集電体上に導電性組成物や後述する合材インキを塗工する方法としては、特に制限はなく公知の方法を用いることができる。具体的には、ダイコーティング法、ディップコーティング法、ロールコーティング法、ドクターコーティング法、ナイフコーティング法、スプレーコティング法、グラビアコーティング法、スクリーン印刷法または静電塗装法等が挙げる事ができ、乾燥方法としては放置乾燥、送風乾燥機、温風乾燥機、赤外線加熱機、遠赤外線加熱機などが使用できるが、特にこれらに限定されるものではない。 There is no particular limitation on the method for coating the current collector with the conductive composition or the composite ink described later, and a known method can be used. Specific examples include die coating method, dip coating method, roll coating method, doctor coating method, knife coating method, spray coating method, gravure coating method, screen printing method or electrostatic coating method, and the like. Examples of methods that can be used include standing drying, blower dryers, hot air dryers, infrared heaters, and far-infrared heaters, but are not particularly limited thereto.
 また、塗布後に平版プレスやカレンダーロール等による圧延処理を行っても良い。下地層の厚みは、一般的には0.1μm以上、5μm以下であり、好ましくは0.1μm以上、2μm以下である。電極合材層の厚みは、一般的には1μm以上、500μm以下であり、好ましくは10μm以上、300μm以下である。 Further, after the application, a rolling process using a lithographic press or a calendar roll may be performed. The thickness of the underlayer is generally from 0.1 μm to 5 μm, preferably from 0.1 μm to 2 μm. The thickness of the electrode mixture layer is generally 1 μm or more and 500 μm or less, preferably 10 μm or more and 300 μm or less.
<合材インキ>
 前記したように、一般的な蓄電デバイス用の合材インキは、活物質と、溶媒を必須とし、必要に応じて導電助剤と、バインダーとを含有する。
<Composite ink>
As described above, a general ink mixture for a power storage device essentially includes an active material and a solvent, and contains a conductive additive and a binder as necessary.
 活物質はできるだけ多く含まれることが好ましく、例えば、合材インキ固形分に占める活物質の割合は、80重量%以上、99重量%以下が好ましい。導電助剤を含む場合、合材インキ固形分に占める導電助剤の割合は、0.1~15重量%であることが好ましい。バインダーを含む場合、合材インキ固形分に占めるバインダーの割合は、0.1~15重量%であることが好ましい。 It is preferable that the active material is contained as much as possible. For example, the ratio of the active material in the solid material solid content is preferably 80% by weight or more and 99% by weight or less. When the conductive assistant is included, the ratio of the conductive assistant to the solid ink solid content is preferably 0.1 to 15% by weight. When the binder is included, the ratio of the binder to the solid material ink solid content is preferably 0.1 to 15% by weight.
 塗工方法によるが、固形分30~90重量%の範囲で、合材インキの粘度は、100mPa・s以上、30,000mPa・s以下とするのが好ましい。 Depending on the coating method, the viscosity of the composite ink is preferably 100 mPa · s or more and 30,000 mPa · s or less in the range of solid content of 30 to 90% by weight.
<活物質>
 合材インキ中で使用される活物質について以下で説明する。
<Active material>
The active material used in the composite ink will be described below.
 リチウムイオン二次電池用の正極活物質としては、特に限定はされないが、リチウムイオンをドーピングまたはインターカレーション可能な金属酸化物、金属硫化物等の金属化合物、および導電性高分子等を使用することができる。 The positive electrode active material for the lithium ion secondary battery is not particularly limited, but metal oxides capable of doping or intercalating lithium ions, metal compounds such as metal sulfides, and conductive polymers are used. be able to.
 例えば、Fe、Co、Ni、Mn等の遷移金属の酸化物、リチウムとの複合酸化物、遷移金属硫化物等の無機化合物等が挙げられる。具体的には、MnO、V、V13、TiO等の遷移金属酸化物粉末、層状構造のニッケル酸リチウム、コバルト酸リチウム、マンガン酸リチウム、スピネル構造のマンガン酸リチウムなどのリチウムと遷移金属との複合酸化物粉末、オリビン構造のリン酸化合物であるリン酸鉄リチウム系材料、TiS、FeSなどの遷移金属硫化物粉末等が挙げられる。 Examples thereof include transition metal oxides such as Fe, Co, Ni, and Mn, composite oxides with lithium, and inorganic compounds such as transition metal sulfides. Specifically, transition metal oxide powders such as MnO, V 2 O 5 , V 6 O 13 , TiO 2 , layered structure lithium nickelate, lithium cobaltate, lithium manganate, spinel structure lithium manganate, etc. Examples thereof include composite oxide powders of lithium and transition metals, lithium iron phosphate materials that are phosphate compounds having an olivine structure, transition metal sulfide powders such as TiS 2 and FeS, and the like.
 また、ポリアニリン、ポリアセチレン、ポリピロール、ポリチオフェン等の導電性高分子を使用することもできる。また、上記の無機化合物や有機化合物を混合して用いてもよい。 Also, conductive polymers such as polyaniline, polyacetylene, polypyrrole, and polythiophene can be used. Moreover, you may mix and use said inorganic compound and organic compound.
 リチウムイオン二次電池用の負極活物質としては、リチウムイオンをドーピングまたはインターカレーション可能なものであれば特に限定されない。例えば、金属Li、その合金であるスズ合金、シリコン合金、鉛合金等の合金系、LiFe、LiFe、LiWO、チタン酸リチウム、バナジウム酸リチウム、ケイ素酸リチウム等の金属酸化物系、ポリアセチレン、ポリ-p-フェニレン等の導電性高分子系、ソフトカーボンやハードカーボンといった、アモルファス系炭素質材料や、高黒鉛化炭素材料等の人造黒鉛、あるいは天然黒鉛等の炭素質粉末、カーボンブラック、メソフェーズカーボンブラック、樹脂焼成炭素材料、気層成長炭素繊維、炭素繊維などの炭素系材料が挙げられる。これら負極活物質は、1種または複数を組み合わせて使用することもできる。 The negative electrode active material for the lithium ion secondary battery is not particularly limited as long as it can be doped or intercalated with lithium ions. For example, metal Li, alloys thereof such as tin alloys, silicon alloys, lead alloys, etc., Li X Fe 2 O 3 , Li X Fe 3 O 4 , Li X WO 2 , lithium titanate, lithium vanadate, silicon Metal oxides such as lithium oxide, conductive polymer such as polyacetylene and poly-p-phenylene, amorphous carbonaceous materials such as soft carbon and hard carbon, artificial graphite such as highly graphitized carbon materials, or natural Examples thereof include carbonaceous powders such as graphite, carbon black, mesophase carbon black, resin-fired carbon materials, air-growth carbon fibers, and carbon fibers. These negative electrode active materials can be used alone or in combination.
 これら電極活物質の大きさは、0.05~100μmの範囲内であることが好ましく、さらに好ましくは、0.1~50μmの範囲内である。そして、合材インキ中の電極活物質(A)の分散粒径は、0.5~20μmであることが好ましい。ここでいう分散粒径とは、体積粒度分布において、粒子径の細かいものからその粒子の体積割合を積算していったときに、50%となるところの粒子径(D50)であり、一般的な粒度分布計、例えば、動的光散乱方式の粒度分布計(日機装社製「マイクロトラックUPA」)等で測定される。 The size of these electrode active materials is preferably in the range of 0.05 to 100 μm, more preferably in the range of 0.1 to 50 μm. The dispersed particle diameter of the electrode active material (A) in the composite ink is preferably 0.5 to 20 μm. The dispersed particle size referred to here is a particle size (D50) that is 50% when the volume ratio of the particles is integrated from the fine particle size distribution in the volume particle size distribution. A particle size distribution meter such as a dynamic light scattering type particle size distribution meter ("Microtrack UPA" manufactured by Nikkiso Co., Ltd.).
 電気二重層キャパシター用の電極活物質としては、特に限定されないが、活性炭、ポリアセン、カーボンウィスカおよびグラファイト等が挙げられ、これらの粉末または繊維などが挙げられる。電気二重層キャパシター用の好ましい電極活物質は活性炭であり、具体的にはフェノール系、ヤシガラ系、レーヨン系、アクリル系、石炭/石油系ピッチコークス、メソカーボンマイクロビーズ(MCMB)等を賦活した活性炭を挙げることができる。同じ重量でもより広い面積の界面を形成することが可能な、比表面積の大きいものが好ましい。具体的には、比表面積が30m/g以上、好ましくは500~5000m/g、より好ましくは1000~3000m/gであることが好ましい。これらの電極活物質は、単独、または二種類以上を組み合わせて使用することができるし、平均粒径または粒度分布の異なる二種類以上の炭素を組み合わせて使用してもよい。 Although it does not specifically limit as an electrode active material for electric double layer capacitors, Activated carbon, polyacene, carbon whisker, graphite, etc. are mentioned, These powder or fiber etc. are mentioned. The preferred electrode active material for the electric double layer capacitor is activated carbon, specifically activated carbon activated with phenolic, coconut husk, rayon, acrylic, coal / petroleum pitch coke, mesocarbon microbeads (MCMB), etc. Can be mentioned. Those having a large specific surface area capable of forming an interface having a larger area even with the same weight are preferred. Specifically, the specific surface area is preferably 30 m 2 / g or more, preferably 500 to 5000 m 2 / g, more preferably 1000 to 3000 m 2 / g. These electrode active materials can be used alone or in combination of two or more kinds, or two or more kinds of carbons having different average particle diameters or particle size distributions may be used in combination.
 リチウムイオンキャパシター用の正極活物質としては、リチウムイオンおよびアニオンを可逆的にドープ・脱ドープすることが可能な材料であれば、特に限定されるものではないが、例えば活性炭粉末が挙げられる。活性炭の分散粒径は、0.1μm~20μmが好ましい。ここでいう分散粒径は、上述の通りである。 The positive electrode active material for the lithium ion capacitor is not particularly limited as long as it is a material capable of reversibly doping and dedoping lithium ions and anions, and examples thereof include activated carbon powder. The dispersed particle diameter of the activated carbon is preferably 0.1 μm to 20 μm. The dispersed particle diameter here is as described above.
 リチウムイオンキャパシター用の負極活物質としては、リチウムイオンを可逆的にドープ・脱ドープ可能である材料であれば、特に限定されるものではないが、例えば人造黒鉛、天然黒鉛などの黒鉛系材料が挙げられる。活性炭の分散粒径は、0.1μm~20μmが好ましい。ここでいう分散粒径は、上述の通りである。 The negative electrode active material for the lithium ion capacitor is not particularly limited as long as it is a material capable of reversibly doping and dedoping lithium ions. For example, graphite-based materials such as artificial graphite and natural graphite can be used. Can be mentioned. The dispersed particle diameter of the activated carbon is preferably 0.1 μm to 20 μm. The dispersed particle diameter here is as described above.
 合材インキ中の導電助剤とは、導電性を有する炭素材料であれば特に限定されるものではなく、上述の導電性の炭素材料(A)と同様のものも使用できる。 The conductive auxiliary agent in the composite ink is not particularly limited as long as it is a carbon material having conductivity, and the same conductive carbon material (A) as described above can be used.
 合材インキ中のバインダーとは、活物質や導電性の炭素材料などの粒子同士、あるいは導電性の炭素材料と集電体を結着させるために使用されるものである。 The binder in the composite ink is used to bind particles such as an active material or a conductive carbon material, or a conductive carbon material and a current collector.
 合材インキ中で使用されるバインダーとしては、例えば、アクリル樹脂、ポリウレタン樹脂、ポリエステル樹脂、フェノール樹脂、エポキシ樹脂、フェノキシ樹脂、尿素樹脂、メラミン樹脂、アルキッド樹脂、ホルムアルデヒド樹脂、シリコン樹脂、フッ素樹脂、カルボキシメチルセルロース等のセルロース樹脂、スチレン-ブタジエンゴムやフッ素ゴム等の合成ゴム、ポリアニリンやポリアセチレン等の導電性樹脂等、ポリフッ化ビニリデン、ポリフッ化ビニル、およびテトラフルオロエチレン等のフッ素原子を含む高分子化合物が挙げられる。また、これらの樹脂の変性物、混合物、または共重合体でも良い。これらバインダーは、1種または複数を組み合わせて使用することもできる。 Examples of binders used in the composite ink include acrylic resin, polyurethane resin, polyester resin, phenol resin, epoxy resin, phenoxy resin, urea resin, melamine resin, alkyd resin, formaldehyde resin, silicon resin, fluorine resin, Cellulose resins such as carboxymethyl cellulose, synthetic rubbers such as styrene-butadiene rubber and fluorine rubber, conductive resins such as polyaniline and polyacetylene, etc., polymer compounds containing fluorine atoms such as polyvinylidene fluoride, polyvinyl fluoride, and tetrafluoroethylene Is mentioned. Further, a modified product, a mixture, or a copolymer of these resins may be used. These binders can be used alone or in combination.
 また、水性の合材インキ中で好適に使用されるバインダーとしては水媒体のものが好ましく、水媒体のバインダーの形態としては、水溶性型、エマルション型、ハイドロゾル型等が挙げられ、適宜選択することができる。 The binder suitably used in the water-based composite ink is preferably an aqueous medium, and examples of the aqueous medium binder include water-soluble type, emulsion type, hydrosol type, and the like. be able to.
 さらに、合材インキには、成膜助剤、消泡剤、レベリング剤、防腐剤、pH調整剤、粘性調整剤などを必要に応じて配合できる。 Furthermore, a film forming aid, an antifoaming agent, a leveling agent, a preservative, a pH adjusting agent, a viscosity adjusting agent and the like can be blended with the composite ink as necessary.
<集電体および電極の製造方法>
 導電性組成物を集電体上に塗工・乾燥して、下地層を形成することにより、蓄電デバイス用下地層付き集電体を得ることができる。あるいは、導電性組成物を、集電体上に塗工・乾燥して、下地層を形成し、該下地層上に合材層を設けることにより、蓄電デバイス用電極を得ることもできる。下地層上に設ける合材層は、上記した合材インキを用いて形成することができる。
<Method for producing current collector and electrode>
A current collector with a base layer for an electricity storage device can be obtained by coating and drying the conductive composition on the current collector to form a base layer. Alternatively, an electrode for an electricity storage device can be obtained by coating and drying the conductive composition on a current collector to form a base layer, and providing a composite layer on the base layer. The composite material layer provided on the base layer can be formed using the above-described composite ink.
<蓄電デバイス>
 正極もしくは負極の少なくとも一方に上記の電極を用い、二次電池、キャパシターなどの蓄電デバイスを得ることができる。
<Power storage device>
By using the above electrode for at least one of the positive electrode and the negative electrode, an electricity storage device such as a secondary battery or a capacitor can be obtained.
 二次電池としては、リチウムイオン二次電池の他、ナトリウムイオン二次電池、マグネシウムイオン二次電池、アルカリ二次電池、鉛蓄電池、ナトリウム硫黄二次電池、リチウム空気二次電池等が挙げられ、それぞれの二次電池で従来から知られている、電解液やセパレーター等を適宜用いることができる。 Secondary batteries include lithium ion secondary batteries, sodium ion secondary batteries, magnesium ion secondary batteries, alkaline secondary batteries, lead storage batteries, sodium sulfur secondary batteries, lithium air secondary batteries, etc. An electrolyte solution, a separator, and the like that are conventionally known for each secondary battery can be appropriately used.
 キャパシターとしては、電気二重層キャパシター、リチウムイオンキャパシターなどが挙げられ、それぞれのキャパシターで従来から知られている、電解液やセパレーター等を適宜用いることができる。 Examples of the capacitor include an electric double layer capacitor, a lithium ion capacitor, and the like, and an electrolyte, a separator, and the like that are conventionally known for each capacitor can be appropriately used.
<電解液>
 リチウムイオン二次電池の場合を例にとって電解液を説明する。電解液としては、リチウムを含んだ電解質を非水系の溶剤に溶解したものを用いる。
<Electrolyte>
The electrolyte solution will be described taking the case of a lithium ion secondary battery as an example. As the electrolytic solution, an electrolyte containing lithium dissolved in a non-aqueous solvent is used.
 電解質としては、LiBF、LiClO、LiPF、LiAsF、LiSbF、LiCFSO、Li(CFSON、LiCSO、Li(CFSOC、LiI、LiBr、LiCl、LiAlCl、LiHF、LiSCN、またはLiBPh等が挙げられるがこれらに限定されない。 As the electrolyte, LiBF 4 , LiClO 4 , LiPF 6 , LiAsF 6 , LiSbF 6 , LiCF 3 SO 3 , Li (CF 3 SO 2 ) 2 N, LiC 4 F 9 SO 3 , Li (CF 3 SO 2 ) 3 C , LiI, LiBr, LiCl, LiAlCl, LiHF 2 , LiSCN, or LiBPh 4, but are not limited thereto.
 非水系の溶剤としては特に限定はされないが、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、およびジエチルカーボネート等のカーボネート類;γ-ブチロラクトン、γ-バレロラクトン、およびγ-オクタノイックラクトン等のラクトン類;テトラヒドロフラン、2-メチルテトラヒドロフラン、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、1,2-メトキシエタン、1,2-エトキシエタン、および1,2-ジブトキシエタン等のグライム類;メチルフォルメート、メチルアセテート、およびメチルプロピオネート等のエステル類;ジメチルスルホキシド、およびスルホラン等のスルホキシド類;並びに、アセトニトリル等のニトリル類等が挙げられる。また、これらの溶剤は、それぞれ単独で使用しても良いが、2種以上を混合して使用しても良い。 The non-aqueous solvent is not particularly limited. For example, carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, ethyl methyl carbonate, and diethyl carbonate; γ-butyrolactone, γ-valerolactone, and γ- Lactones such as octanoic lactone; tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, 1,2-methoxyethane, 1,2-ethoxyethane, and 1,2 Glymes such as dibutoxyethane; esters such as methyl formate, methyl acetate, and methyl propionate; sulfoxides such as dimethyl sulfoxide and sulfolane; Lil and the like can be mentioned. These solvents may be used alone or in combination of two or more.
 さらに上記電解液を、ポリマーマトリクスに保持しゲル状とした高分子電解質とすることもできる。ポリマーマトリクスとしては、ポリアルキレンオキシドセグメントを有するアクリレート系樹脂、ポリアルキレンオキシドセグメントを有するポリホスファゼン系樹脂、およびポリアルキレンオキシドセグメントを有するポリシロキサン等が挙げられるがこれらに限定されない。 Furthermore, the electrolyte solution can be a polymer electrolyte that is held in a polymer matrix and made into a gel. Examples of the polymer matrix include, but are not limited to, an acrylate resin having a polyalkylene oxide segment, a polyphosphazene resin having a polyalkylene oxide segment, and a polysiloxane having a polyalkylene oxide segment.
<セパレーター>
 セパレーターとしては、例えば、ポリエチレン不織布、ポリプロピレン不織布、ポリアミド不織布、およびそれらに親水性処理を施したものが挙げられるが、特にこれらに限定されるものではない。
<Separator>
Examples of the separator include, but are not limited to, a polyethylene nonwoven fabric, a polypropylene nonwoven fabric, a polyamide nonwoven fabric, and those subjected to hydrophilic treatment.
<電池構造・構成>
 リチウムイオン二次電池、電気二重層キャパシター、リチウムイオンキャパシターの構造については特に限定されないが、通常、正極および負極と、必要に応じて設けられるセパレーターとから構成され、ペーパー型、円筒型、ボタン型、積層型等、使用する目的に応じた種々の形状とすることができる。
<Battery structure and configuration>
The structure of the lithium ion secondary battery, the electric double layer capacitor, and the lithium ion capacitor is not particularly limited, but is usually composed of a positive electrode and a negative electrode, and a separator provided as necessary. Paper type, cylindrical type, button type Various shapes can be formed according to the purpose of use, such as a laminated type.
 以下に、実施例により本発明をさらに具体的に説明するが、以下の実施例は本発明の権利範囲を何ら制限するものではない。なお、実施例および比較例における「部」は「重量部」を表す。 Hereinafter, the present invention will be described in more detail by way of examples. However, the following examples do not limit the scope of rights of the present invention. In the examples and comparative examples, “parts” represents “parts by weight”.
<樹脂微粒子水分散体の調製>
[合成例1]
 攪拌器、温度計、滴下ロート、還流器を備えた反応容器に、イオン交換水40部と界面活性剤としてアデカリアソープSR-10(株式会社ADEKA製)0.2部とを仕込み、別途、メチルメタクリレート48.5部、ブチルアクリレート50部、アクリル酸1部、3-メタクリロキシプロピルトリメトキシシラン0.5部、イオン交換水53部および界面活性剤としてアデカリアソープSR-10(株式会社ADEKA製)1.8部をあらかじめ混合しておいたプレエマルジョンのうちの1%をさらに加えた。内温を70℃に昇温し十分に窒素置換した後、過硫酸カリウムの5%水溶液10部の10%を添加し重合を開始した。反応系内を70℃で5分間保持した後、内温を70℃に保ちながらプレエマルジョンの残りと過硫酸カリウムの5%水溶液の残りを3時間かけて滴下し、さらに2時間攪拌を継続した。固形分測定にて転化率が98%超えたことを確認後、温度を30℃まで冷却した。25%アンモニア水を添加して、pHを8.5とし、さらにイオン交換水で固形分を40%に調整して樹脂微粒子水分散体を得た。なお、固形分は、150℃20分焼き付け残分により求めた。
<Preparation of aqueous dispersion of resin fine particles>
[Synthesis Example 1]
A reaction vessel equipped with a stirrer, a thermometer, a dropping funnel, and a refluxing vessel was charged with 40 parts of ion-exchanged water and 0.2 part of Adeka Soap SR-10 (manufactured by ADEKA) as a surfactant. 48.5 parts of methyl methacrylate, 50 parts of butyl acrylate, 1 part of acrylic acid, 0.5 part of 3-methacryloxypropyltrimethoxysilane, 53 parts of ion-exchanged water, and ADEKA rear soap SR-10 (ADEKA Corporation as a surfactant) 1% of the pre-emulsion that had previously been mixed with 1.8 parts was added. After raising the internal temperature to 70 ° C. and sufficiently substituting with nitrogen, 10% of 10 parts of a 5% aqueous solution of potassium persulfate was added to initiate polymerization. After maintaining the inside of the reaction system at 70 ° C. for 5 minutes, the remaining pre-emulsion and the remaining 5% aqueous solution of potassium persulfate were dropped over 3 hours while maintaining the internal temperature at 70 ° C., and stirring was further continued for 2 hours. . After confirming that the conversion rate exceeded 98% by solid content measurement, the temperature was cooled to 30 ° C. 25% aqueous ammonia was added to adjust the pH to 8.5, and the solid content was adjusted to 40% with ion exchange water to obtain a resin fine particle water dispersion. In addition, solid content was calculated | required by 150 degreeC 20 minute baking residue.
<化合物(E)の製造[エポキシ基含有化合物の製造]>
[製造例1]
 攪拌器、温度計、滴下ロート、還流器を備えた反応容器にイソプロピルアルコール20部、水20部を仕込み、別途、メチルメタクリレート40部、メチルアクリレート40部、グリシジルメタクリレート20部を滴下槽1に、また、過硫酸カリウム2部をイソプロピルアルコール30部および水30部に溶解させて滴下槽2に仕込んだ。内温を80℃に昇温し十分に窒素置換した後、滴下槽1、2を2時間かけて滴下し、重合を行った。滴下終了後、内温を80℃に保ったまま1時間攪拌を続け、固形分測定にて転化率が98%超えたことを確認後、温度を30℃まで冷却し、固形分40%のエポキシ基含有化合物(メチルメタクリレート/メチルアクリレート/グリシジルメタクリレート共重合体)溶液を得た。なお、固形分は、150℃20分焼き付け残分により求めた。
<Production of Compound (E) [Production of Epoxy Group-Containing Compound]>
[Production Example 1]
Into a reaction vessel equipped with a stirrer, thermometer, dropping funnel and refluxing vessel, 20 parts of isopropyl alcohol and 20 parts of water were charged, and 40 parts of methyl methacrylate, 40 parts of methyl acrylate and 20 parts of glycidyl methacrylate were separately added to the dropping tank 1, Moreover, 2 parts of potassium persulfate was dissolved in 30 parts of isopropyl alcohol and 30 parts of water, and charged into the dropping tank 2. After the internal temperature was raised to 80 ° C. and sufficiently substituted with nitrogen, the dropping tanks 1 and 2 were dropped over 2 hours to carry out polymerization. After completion of the dropwise addition, stirring was continued for 1 hour while maintaining the internal temperature at 80 ° C. After confirming that the conversion rate exceeded 98% by solid content measurement, the temperature was cooled to 30 ° C. and an epoxy having a solid content of 40%. A group-containing compound (methyl methacrylate / methyl acrylate / glycidyl methacrylate copolymer) solution was obtained. In addition, solid content was calculated | required by 150 degreeC 20 minute baking residue.
<化合物(E)の製造[アミド基含有化合物の製造]>
[製造例2]
 攪拌器、温度計、滴下ロート、還流器を備えた反応容器に、水90部を仕込み、別途、アクリルアミド20部を滴下槽1に、また、過硫酸カリウム2部を水90部に溶解させて滴下槽2に仕込んだ。内温を80℃に昇温し十分に窒素置換した後、滴下槽1、2を2時間かけて滴下し、重合を行った。滴下終了後、内温を80℃に保ったまま1時間攪拌を続け、固形分測定にて転化率が98%超えたことを確認後、温度を30℃まで冷却し、固形分40%のアミド基含有化合物(ポリアクリルアミド)溶液を得た。なお、固形分は、150℃20分焼き付け残分により求めた。
<Production of Compound (E) [Production of Amide Group-Containing Compound]>
[Production Example 2]
A reaction vessel equipped with a stirrer, a thermometer, a dropping funnel and a refluxing vessel was charged with 90 parts of water. Separately, 20 parts of acrylamide was dissolved in the dropping tank 1 and 2 parts of potassium persulfate was dissolved in 90 parts of water. The dropping tank 2 was charged. After the internal temperature was raised to 80 ° C. and sufficiently substituted with nitrogen, the dropping tanks 1 and 2 were dropped over 2 hours to carry out polymerization. After completion of the dropping, stirring was continued for 1 hour while maintaining the internal temperature at 80 ° C. After confirming that the conversion rate exceeded 98% by solid content measurement, the temperature was cooled to 30 ° C., and the amide having a solid content of 40% was obtained. A group-containing compound (polyacrylamide) solution was obtained. In addition, solid content was calculated | required by 150 degreeC 20 minute baking residue.
[製造例3]
 攪拌器、温度計、滴下ロート、還流器を備えた反応容器に、水40部を仕込み、別途、2-エチルヘキシルアクリレート40部、スチレン40部、ジメチルアクリルアミド20部を滴下槽1に、また、過硫酸カリウム2部を水60部に溶解させて滴下槽2に仕込んだ。内温を80℃に昇温し十分に窒素置換した後、滴下槽1、2を2時間かけて滴下し、重合を行った。滴下終了後、内温を80℃に保ったまま1時間攪拌を続け、固形分測定にて転化率が98%超えたことを確認後、温度を30℃まで冷却し、固形分40%のアミド基含有化合物(2-エチルヘキシルアクリレート/スチレン/ジメチルアクリルアミド共重合体)溶液を得た。なお、固形分は、150℃20分焼き付け残分により求めた。
[Production Example 3]
A reaction vessel equipped with a stirrer, a thermometer, a dropping funnel and a refluxing vessel was charged with 40 parts of water. Separately, 40 parts of 2-ethylhexyl acrylate, 40 parts of styrene and 20 parts of dimethylacrylamide were added to the dropping tank 1, and 2 parts of potassium sulfate was dissolved in 60 parts of water and charged into the dropping tank 2. After the internal temperature was raised to 80 ° C. and sufficiently substituted with nitrogen, the dropping tanks 1 and 2 were dropped over 2 hours to carry out polymerization. After completion of the dropping, stirring was continued for 1 hour while maintaining the internal temperature at 80 ° C. After confirming that the conversion rate exceeded 98% by solid content measurement, the temperature was cooled to 30 ° C., and the amide having a solid content of 40% was obtained. A group-containing compound (2-ethylhexyl acrylate / styrene / dimethylacrylamide copolymer) solution was obtained. In addition, solid content was calculated | required by 150 degreeC 20 minute baking residue.
<化合物(E)の製造[水酸基含有化合物の製造]>
[製造例4]
 攪拌器、温度計、滴下ロート、還流器を備えた反応容器に、イソプロピルアルコール20部、水20部を仕込み、別途、メチルメタクリレート40部、ブチルアクリレート40部、2-ヒドロキシエチルメタクリレート20部を滴下槽1に、また、過硫酸カリウム2部をイソプロピルアルコール30部および水30部に溶解させて滴下槽2に仕込んだ。内温を80℃に昇温し十分に窒素置換した後、滴下槽1、2を2時間かけて滴下し、重合を行った。滴下終了後、内温を80℃に保ったまま1時間攪拌を続け、固形分測定にて転化率が98%超えたことを確認後、温度を30℃まで冷却し、固形分40%の水酸基含有化合物(メチルメタクリレート/ブチルアクリレート/2-ヒドロキシエチルメタクリレート共重合体)溶液を得た。なお、固形分は、150℃20分焼き付け残分により求めた。
<Production of Compound (E) [Production of Hydroxyl-Containing Compound]>
[Production Example 4]
Into a reaction vessel equipped with a stirrer, thermometer, dropping funnel, and reflux condenser, 20 parts of isopropyl alcohol and 20 parts of water are charged, and 40 parts of methyl methacrylate, 40 parts of butyl acrylate, and 20 parts of 2-hydroxyethyl methacrylate are separately added dropwise. In the tank 1, 2 parts of potassium persulfate was dissolved in 30 parts of isopropyl alcohol and 30 parts of water and charged into the dropping tank 2. After the internal temperature was raised to 80 ° C. and sufficiently substituted with nitrogen, the dropping tanks 1 and 2 were dropped over 2 hours to carry out polymerization. After completion of the dropping, stirring was continued for 1 hour while maintaining the internal temperature at 80 ° C. After confirming that the conversion rate exceeded 98% by solid content measurement, the temperature was cooled to 30 ° C., and the hydroxyl group having a solid content of 40% A solution containing compound (methyl methacrylate / butyl acrylate / 2-hydroxyethyl methacrylate copolymer) was obtained. In addition, solid content was calculated | required by 150 degreeC 20 minute baking residue.
[合成例2~21]
 表5、表6、表11に示す配合組成で、合成例1と同様の方法で合成し、合成例2~21の樹脂微粒子水分散体を得た。ただし、合成例20、21は乳化重合時に樹脂が凝集し、目的の樹脂微粒子を得ることができなかった。
[Synthesis Examples 2 to 21]
The composition shown in Table 5, Table 6, and Table 11 was synthesized in the same manner as in Synthesis Example 1 to obtain aqueous resin fine particle dispersions of Synthesis Examples 2 to 21. However, in Synthesis Examples 20 and 21, the resin aggregated during emulsion polymerization, and the desired resin fine particles could not be obtained.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000003
 
<導電性組成物>
(実施例1)
 導電性の炭素材料としてアセチレンブラック(A-1:デンカブラックHS-100)10部、水溶性樹脂バインダーであるポリアリルアミン20%水溶液(B-1)を50部(固形分として10部)、水分散性樹脂微粒子バインダーであるポリテトラフルオロエチレン30-J(三井・デュポンフロロケミカル社製)60%水系分散液(C-1)を16.7部(固形分として10部)、水223.3部をミキサーに入れて混合し、更にサンドミルに入れて分散を行い、導電性組成物(1)を得た。得られた分散体の分散度をグラインドゲージによる判定(JISK5600-2-5に準ず)より求めた。評価結果を表1に示す。表中の数字は粗大粒子の大きさを示し、数値が小さいほど分散性に優れ、均一で良好な状態であることを示している。
<Conductive composition>
(Example 1)
10 parts of acetylene black (A-1: DENKA BLACK HS-100) as a conductive carbon material, 50 parts of a 20% aqueous solution of polyallylamine (B-1) as a water-soluble resin binder (10 parts as a solid content), water 16.7 parts (10 parts as a solid content) of 60% aqueous dispersion (C-1) polytetrafluoroethylene 30-J (manufactured by Mitsui DuPont Fluorochemical Co., Ltd.), a dispersible resin fine particle binder, and 223.3 water The parts were mixed in a mixer, and further dispersed in a sand mill to obtain a conductive composition (1). The degree of dispersion of the obtained dispersion was determined by determination with a grind gauge (in accordance with JISK5600-2-5). The evaluation results are shown in Table 1. The numbers in the table indicate the size of the coarse particles, and the smaller the value, the better the dispersibility, and the more uniform and good state.
(実施例2~実施例6、実施例23、実施例24、比較例1~比較例6)
 表1に示す組成比で、導電性組成物(1)と同様の方法により実施例および比較例の導電性組成物(2)~(14)を得た。
(Example 2 to Example 6, Example 23, Example 24, Comparative Example 1 to Comparative Example 6)
Conductive compositions (2) to (14) of Examples and Comparative Examples were obtained in the same manner as the conductive composition (1) at the composition ratio shown in Table 1.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 そして、この導電性組成物(1)を、集電体となる厚さ20μmのアルミ箔上にバーコーターを用いて塗布した後、加熱乾燥し、厚みが1.2μmとなるように蓄電デバイス用下地層付き集電体(1)を得た。得られた下地層付き集電体の耐溶剤性を以下の方法にて評価した。また、表2に記載の構成で蓄電デバイス用下地層付き集電体(1)と同様の方法により蓄電デバイス用下地層付き集電体(2)~(28)を得、それぞれ同様の評価を行った。 And after apply | coating this electrically conductive composition (1) on the 20-micrometer-thick aluminum foil used as a collector using a bar coater, it heat-drys and it is for electrical storage devices so that thickness may be set to 1.2 micrometers. A current collector (1) with an underlayer was obtained. The solvent resistance of the obtained collector with an underlayer was evaluated by the following method. In addition, current collectors (2) to (28) with an underlayer for an electricity storage device were obtained in the same manner as the current collector (1) with an underlayer for an electricity storage device with the configuration described in Table 2, and the same evaluations were made. went.
(下地層付き集電体の耐溶剤性)
 上記で作製した下地層付き集電体の表面を、NMP(N-メチルピロリドン)が含まれた綿布で擦り耐溶剤性を評価した。下地層の上へ合材インキを塗工する際に、下地層が崩壊しないためには耐溶剤性が重要となる。評価基準を下記に示し、評価結果を表2に示す。
(Solvent resistance of current collector with base layer)
The surface of the current collector with the underlayer produced above was rubbed with a cotton cloth containing NMP (N-methylpyrrolidone) to evaluate the solvent resistance. When the composite ink is applied onto the underlayer, solvent resistance is important so that the underlayer does not collapse. The evaluation criteria are shown below, and the evaluation results are shown in Table 2.
 ○ :「削れは見られない(実用上問題のないレベル)」
 ○△:「下地層がわずかに削れて綿布への付着が見られるが、集電体表面は剥き出しにはなっていない(問題はあるが使用可能レベル)」
 △ :「下地層が削れて、集電体表面が部分的に剥き出しになっている」
 × :「下地層が完全に削れ落ちている」
○: “No shaving is seen (a level where there is no practical problem)”
○ △: “The foundation layer is slightly scraped and attached to the cotton cloth, but the surface of the current collector is not exposed (although there is a problem, it can be used)”
△: “Underlayer is shaved and the current collector surface is partially exposed”
×: “Underly layer is completely scraped off”
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
<リチウムイオン二次電池正極用合材インキ>
 正極活物質としてLiFePO 44部、導電助剤(アセチレンブラック)3部、バインダー(PVDF)3部、NMP(N-メチルピロリドン)50部を混合して、正極用合材インキを作製した。
<Composite ink for lithium ion secondary battery positive electrode>
As a positive electrode active material, 44 parts of LiFePO 4, 3 parts of a conductive additive (acetylene black), 3 parts of a binder (PVDF), and 50 parts of NMP (N-methylpyrrolidone) were mixed to prepare a positive electrode mixture ink.
<リチウムイオン二次電池用負極用合材インキ>
 負極活物質として人造黒鉛46.5部、導電助剤(アセチレンブラック)1部、バインダー(PVDF)2.5部、NMP50部を混合して、負極用合材インキを作製した。
<Composite ink for negative electrode for lithium ion secondary battery>
As a negative electrode active material, 46.5 parts of artificial graphite, 1 part of a conductive additive (acetylene black), 2.5 parts of binder (PVDF), and 50 parts of NMP were mixed to prepare a mixture ink for negative electrode.
<下地層なしリチウムイオン二次電池用正極(比較例、および評価用対極)>
 上述のリチウムイオン二次電池正極用合材インキを、集電体となる厚さ20μmのアルミ箔上にドクターブレードを用いて塗布した後、減圧加熱乾燥して電極の厚みが100μmとなるよう調整した。さらに、ロールプレスによる圧延処理を行い、厚みが85μmとなる正極を作製した。
<Positive electrode for lithium ion secondary battery without base layer (comparative example and counter electrode for evaluation)>
After applying the above-mentioned ink mixture for a lithium ion secondary battery positive electrode onto a 20 μm thick aluminum foil serving as a current collector using a doctor blade, drying under reduced pressure is performed to adjust the electrode thickness to 100 μm. did. Furthermore, the rolling process by roll press was performed and the positive electrode from which thickness becomes 85 micrometers was produced.
<下地層付きリチウムイオン二次電池用正極>
[実施例11]
 上述のリチウムイオン二次電池正極用合材インキを、二次電池用下地層付き集電体(1)上にドクターブレードを用いて塗布した後、減圧加熱乾燥して電極の厚みが100μmとなるよう調整した。さらに、ロールプレスによる圧延処理を行い、厚みが85μmとなる正極を作製した。得られた電極の密着性を下記の方法にて評価した。評価結果を表3に示す。
<Positive electrode for lithium ion secondary battery with underlayer>
[Example 11]
The above-mentioned ink mixture for lithium ion secondary battery positive electrode is applied on the current collector (1) with a base layer for secondary battery using a doctor blade, and then dried by heating under reduced pressure to give an electrode thickness of 100 μm. Adjusted as follows. Furthermore, the rolling process by roll press was performed and the positive electrode from which thickness becomes 85 micrometers was produced. The adhesion of the obtained electrode was evaluated by the following method. The evaluation results are shown in Table 3.
[実施例12~16、25、26、比較例11~17]
 表2に示す蓄電デバイス用下地層電極を用いた以外は実施例11と同様にして、正極を得、実施例11と同様の評価を行い、評価結果を表3に示す。
[Examples 12 to 16, 25, 26, Comparative Examples 11 to 17]
A positive electrode was obtained in the same manner as in Example 11 except that the base electrode for the electricity storage device shown in Table 2 was used, and the same evaluation as in Example 11 was performed. The evaluation results are shown in Table 3.
<下地層なしリチウムイオン二次電池用負極(比較例、および評価用対極)>
 上述のリチウムイオン二次電池負極用合材インキを、集電体となる厚さ20μmの銅箔上にドクターブレードを用いて塗布した後、減圧加熱乾燥して電極の厚みが82μmとなるよう調整した。さらに、ロールプレスによる圧延処理を行い、厚みが70μmとなる負極を作製した。
<Negative Electrode for Lithium Ion Secondary Batteries (Comparative Example and Evaluation Counter Electrode)>
After applying the above-mentioned ink mixture for lithium ion secondary battery negative electrode on a 20 μm thick copper foil as a current collector using a doctor blade, drying under reduced pressure is performed to adjust the electrode thickness to 82 μm. did. Furthermore, the rolling process by a roll press was performed and the negative electrode from which thickness becomes 70 micrometers was produced.
<下地層付きリチウムイオン二次電池用負極>
[実施例17]
 上述のリチウムイオン二次電池負極用合材インキを、蓄電デバイス用下地層付き集電体(7)上にドクターブレードを用いて塗布した後、減圧加熱乾燥して電極の厚みが82μmとなるよう調整した。ロールプレスによる圧延処理を行い、厚みが70μmとなる負極を作製した。得られた電極の密着性を下記の方法にて評価した。評価結果を表4に示す。
<Anode for lithium ion secondary battery with underlayer>
[Example 17]
After applying the above-mentioned ink mixture for lithium ion secondary battery negative electrode on the current collector (7) with a base layer for an electricity storage device using a doctor blade, drying under reduced pressure is performed so that the thickness of the electrode becomes 82 μm. It was adjusted. A rolling process using a roll press was performed to produce a negative electrode having a thickness of 70 μm. The adhesion of the obtained electrode was evaluated by the following method. The evaluation results are shown in Table 4.
[実施例18~22、27、28、比較例18~24]
 表4に示す蓄電デバイス用下地層付き集電体を用いた以外は実施例17と同様にして、負極を得た。実施例17と同様の評価を行い、評価結果を表4に示す。
[Examples 18-22, 27, 28, Comparative Examples 18-24]
A negative electrode was obtained in the same manner as in Example 17 except that the current collector with a base layer for an electricity storage device shown in Table 4 was used. Evaluation similar to Example 17 was performed and the evaluation results are shown in Table 4.
(電極の密着性)
 上記で作製した電極に、ナイフを用いて電極表面から集電体に達する深さまでの切込みを2mm間隔で縦横それぞれ6本の碁盤目の切込みを入れた。この切り込みに粘着テープを貼り付けて直ちに引き剥がし、電極の脱落の程度を目視判定で判定した。評価基準を下記に示す。
 ○ :「剥離なし(実用上問題のないレベル)」
 ○△:「わずかに剥離(問題はあるが使用可能レベル)」
 △ :「半分程度剥離」
 × :「ほとんどの部分で剥離」
(Electrode adhesion)
Using the knife, the incision from the surface of the electrode to the depth reaching the current collector was cut into 6 grids in the vertical and horizontal directions at intervals of 2 mm. Adhesive tape was applied to the cut and immediately peeled off, and the degree of electrode dropping was determined by visual judgment. The evaluation criteria are shown below.
○: “No peeling (practical problem-free level)”
○ △: “Slightly peeled (problem but usable level)”
△: “About half peel”
×: “Peeling at most parts”
<コイン型リチウムイオン二次電池>
 表3、表4に示す正極と負極をそれぞれ直径16mmに打ち抜き、その間に挿入されるセパレーター(多孔質ポリプロピレンフィルム)と、電解液(エチレンカーボネートとジエチルカーボネートを1:1(体積比)の割合で混合した混合溶媒にLiPFを1Mの濃度で溶解させた非水系電解液)とからなるコイン型電池を作製した。コイン型電池はアルゴンガス置換したグロ-ブボックス内で行い、コイン型電池作製後、所定の電池特性評価を行った。評価結果を表3、表4に示す。
<Coin-type lithium ion secondary battery>
The positive electrode and negative electrode shown in Tables 3 and 4 were each punched out to a diameter of 16 mm, and a separator (porous polypropylene film) inserted between them and an electrolytic solution (ethylene carbonate and diethyl carbonate at a ratio of 1: 1 (volume ratio)) A coin-type battery comprising a non-aqueous electrolyte solution in which LiPF 6 was dissolved in a mixed solvent at a concentration of 1M was prepared. The coin-type battery was used in a glove box substituted with argon gas, and after the coin-type battery was produced, predetermined battery characteristics were evaluated. The evaluation results are shown in Tables 3 and 4.
(充放電サイクル特性)
 得られたコイン型電池について、充放電装置(北斗電工社製SM-8)を用い、充放電測定を行った。
(Charge / discharge cycle characteristics)
The obtained coin-type battery was subjected to charge / discharge measurement using a charge / discharge device (SM-8 manufactured by Hokuto Denko).
 充電電流1.0mA(0.2C)にて充電終止電圧4.0Vで定電流定電圧充電(カットオフ電流0.1mA)を行った後、放電電流1.0mAで放電終止電圧2.0Vに達するまで定電流放電を行った。これらの充電・放電サイクルを1サイクルとして5サイクルの充電・放電を繰り返し、5サイクル目の放電容量を初回放電容量とした。(初回放電容量を維持率100%とする)。 After performing a constant current and constant voltage charge (cutoff current 0.1 mA) at a charge end voltage of 4.0 V at a charge current of 1.0 mA (0.2 C), the discharge end voltage is 2.0 V at a discharge current of 1.0 mA. The constant current discharge was performed until it reached. These charge / discharge cycles are defined as one cycle, and 5 cycles of charge / discharge are repeated, and the discharge capacity at the fifth cycle is defined as the initial discharge capacity. (The initial discharge capacity is assumed to be 100% maintenance rate).
 次に、50℃恒温槽にて充電電流5.0mAにて充電終止電圧4.0Vで定電流定電圧充電(カットオフ電流0.5mA)を行った後、放電電流5.0mAで放電終止電圧2.0Vに達するまで定電流放電を行った。この充放電サイクルを200回行い、放電容量維持率の変化率(初回放電容量に対する200回目の放電容量の百分率)を算出した(100%に近いほど良好)。 Next, after performing constant current and constant voltage charging (cutoff current 0.5 mA) at a charging current 5.0 mA at a charging current 5.0 mA in a 50 ° C. constant temperature bath, a discharge final voltage is discharged at a discharge current 5.0 mA. Constant current discharge was performed until 2.0V was reached. This charge / discharge cycle was performed 200 times, and the change rate of the discharge capacity maintenance rate (percentage of the 200th discharge capacity with respect to the initial discharge capacity) was calculated (the closer to 100%, the better).
 ○ :「変化率が90%以上。特に優れている。」
 ○△:「変化率が85%以上、90%未満。全く問題なし。」
 △ :「変化率が80%以上、85%未満。問題はあるが使用可能なレベル。」
 × :「変化率が80%未満。実用上問題あり、使用不可。」
○: “The rate of change is 90% or more. Particularly excellent.”
○ △: “Change rate is 85% or more and less than 90%. No problem at all”
Δ: “Change rate is 80% or more and less than 85%. There is a problem but it is usable level.”
X: “Change rate is less than 80%.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
<電気二重層キャパシター用正極、負極用合材インキ>
 活物質として活性炭(比表面積1800m/g)88部、導電助剤(アセチレンブラック)5部、バインダー(PVDF)7部、NMP(N-メチルピロリドン)230部を混合して、正極、負極用合材インキを作製した。
<Positive electrode for electric double layer capacitor, mixed ink for negative electrode>
Active material (specific surface area 1800m 2 / g) 88 parts, conductive auxiliary agent (acetylene black) 5 parts, binder (PVDF) 7 parts, NMP (N-methylpyrrolidone) 230 parts are mixed as active materials, for positive and negative electrodes A composite ink was prepared.
<下地層なし電気二重層キャパシター用正極、負極(比較例、および評価用対極)>
 上述の電気二重層キャパシター用合材インキを、集電体となる厚さ20μmのアルミ箔上にドクターブレードを用いて塗布した後、減圧加熱乾燥した後にロールプレスによる圧延処理を行い、電極の厚みが50μmとなる正極および負極を作製した。
<Positive electrode and negative electrode for electric double layer capacitor without base layer (comparative example and counter electrode for evaluation)>
After applying the above-mentioned ink mixture for electric double layer capacitor on a 20 μm thick aluminum foil serving as a current collector using a doctor blade, it was dried by heating under reduced pressure, and then subjected to a rolling process by a roll press to obtain the thickness of the electrode. A positive electrode and a negative electrode having a thickness of 50 μm were prepared.
<下地層付き電気二重層キャパシター用正極、負極>
[実施例29]
 上述の電気二重層用合材インキを、蓄電デバイス用下地層付き集電体(1)上にドクターブレードを用いて塗布した後、減圧加熱乾燥した後に、ロールプレスによる圧延処理を行い、厚みが50μmとなる正極および負極を作製した。得られた電極の密着性を上述の方法にて評価した。評価結果を表7に示す。
<Positive electrode and negative electrode for electric double layer capacitor with underlying layer>
[Example 29]
After applying the above-mentioned ink mixture for electric double layer on the collector (1) with an underlayer for electricity storage device using a doctor blade, after drying by heating under reduced pressure, a rolling process is performed by a roll press, and the thickness is reduced. A positive electrode and a negative electrode with a thickness of 50 μm were prepared. The adhesion of the obtained electrode was evaluated by the method described above. Table 7 shows the evaluation results.
[実施例30~44、比較例25~38]
 表7、表8に示す蓄電デバイス用下地層電極を用いた以外は実施例29と同様にして、正極および負極を得た。評価結果を表7、8に示す。
[Examples 30 to 44, Comparative Examples 25 to 38]
A positive electrode and a negative electrode were obtained in the same manner as in Example 29 except that the base electrode for the electricity storage device shown in Tables 7 and 8 was used. The evaluation results are shown in Tables 7 and 8.
<電気二重層キャパシター>
 表7、8に示す正極と負極をそれぞれ直径16mmに打ち抜き、その間に挿入されるセパレーター(多孔質ポリプロピレンフィルム)と、電解液(プロピレンカーボネート溶媒にTEMABF(四フッ化ホウ素トリエチルメチルアンモニウム)を1Mの濃度で溶解させた非水系電解液)とからなる電気二重層キャパシターを作製した。電気二重層キャパシターはアルゴンガス置換したグロ-ブボックス内で行い、電気二重層キャパシター作製後、所定の電気特性評価を行った。評価結果を表7、8に示す。
<Electric double layer capacitor>
The positive electrode and the negative electrode shown in Tables 7 and 8 are each punched out to a diameter of 16 mm, and a separator (porous polypropylene film) inserted between them and an electrolyte (TEMABF 4 (triethylmethylammonium tetrafluoride) in propylene carbonate solvent) are added to 1M. An electric double layer capacitor was prepared. The electric double layer capacitor was used in a glove box substituted with argon gas, and after the electric double layer capacitor was fabricated, predetermined electric characteristics were evaluated. The evaluation results are shown in Tables 7 and 8.
(充放電サイクル特性)
 得られた電気二重層キャパシターについて、充放電装置を用い、充放電測定を行った。
 充電電流10Cレートにて充電終止電圧2.0Vまで充電を行った後、放電電流10Cレートで放電終止電圧0Vに達するまで定電流放電を行った。これらの充電・放電サイクルを1サイクルとして5サイクルの充電・放電を繰り返し、5サイクル目の放電容量を初回放電容量とした。(初回放電容量を維持率100%とする)。また、充放電電流レートは、セル容量を1時間で放電できる電流の大きさを1Cとした。
 次に、50℃恒温槽にて充電電流10Cレートにて充電終止電圧2.0Vで充電を行った後、放電電流10Cレートで放電終止電圧0Vに達するまで定電流放電を行った。この充放電サイクルを500回行い、放電容量維持率の変化率(初回放電容量に対する500回目の放電容量の百分率)を算出した(100%に近いほど良好)。
(Charge / discharge cycle characteristics)
About the obtained electric double layer capacitor, charging / discharging measurement was performed using the charging / discharging apparatus.
After charging to a charge end voltage of 2.0 V at a charge current of 10 C, constant current discharge was performed until the discharge end voltage of 0 V was reached at a discharge current of 10 C. These charge / discharge cycles are defined as one cycle, and 5 cycles of charge / discharge are repeated. (The initial discharge capacity is assumed to be 100% maintenance rate). In addition, the charge / discharge current rate was 1 C, which is the magnitude of current that can discharge the cell capacity in one hour.
Next, charging was performed at a charging current 10C rate in a 50 ° C. constant temperature bath at a charging end voltage of 2.0 V, and then constant current discharging was performed at a discharging current of 10 C rate until reaching a discharging end voltage of 0 V. This charge / discharge cycle was performed 500 times, and the change rate of the discharge capacity maintenance rate (percentage of the 500th discharge capacity with respect to the initial discharge capacity) was calculated (the closer to 100%, the better).
 ○ :「変化率が95%以上。特に優れている。」
 ○△:「変化率が90%以上、85%未満。全く問題なし。」
 △ :「変化率が85%以上、80%未満。問題はあるが使用可能なレベル。」
 × :「変化率が85%未満。実用上問題あり、使用不可。」
○: “Change rate is 95% or more.
○: “Change rate is 90% or more and less than 85%. No problem at all”
Δ: “Change rate is 85% or more and less than 80%. There is a problem but it is usable level.”
X: “Change rate is less than 85%.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
<リチウムイオンキャパシター用正極用合材インキ>
 活物質として活性炭(比表面積1800m/g)88部、導電助剤(アセチレンブラック)5部、バインダー(PVDF)7部、NMP(N-メチルピロリドン)230部を混合して、正極用合材インキを作製した。
<Composite ink for positive electrode for lithium ion capacitor>
Mixing 88 parts of activated carbon (specific surface area 1800 m 2 / g), 5 parts of conductive additive (acetylene black), 7 parts of binder (PVDF), 230 parts of NMP (N-methylpyrrolidone) as an active material An ink was prepared.
<リチウムイオンキャパシター用負極用合材インキ>
 負極活物質として黒鉛90部、導電助剤(アセチレンブラック)5部、バインダー(PVDF)5部、NMP200部を混合して、負極用合材インキを作製した。
<Composite ink for negative electrode for lithium ion capacitor>
As a negative electrode active material, 90 parts of graphite, 5 parts of a conductive additive (acetylene black), 5 parts of a binder (PVDF), and 200 parts of NMP were mixed to prepare a mixture ink for negative electrode.
<下地層なしリチウムイオンキャパシター用正極(比較例、および評価用対極)>
 上述のリチウムイオンキャパシター用正極用合材インキを、集電体となる厚さ20μmのアルミ箔上にドクターブレードを用いて塗布した後、減圧加熱乾燥してロールプレスによる圧延処理を行った後、厚みが60μmとなる正極を作製した。
<Positive electrode for lithium ion capacitor without base layer (comparative example and counter electrode for evaluation)>
After applying the above-mentioned ink mixture for the positive electrode for lithium ion capacitors onto a 20 μm thick aluminum foil serving as a current collector using a doctor blade, after heating and drying under reduced pressure and performing a rolling process by a roll press, A positive electrode having a thickness of 60 μm was produced.
<下地層付きリチウムイオンキャパシター用正極>
[実施例45]
 上述のリチウムイオンキャパシター用正極用合材インキを、蓄電デバイス用下地層付き集電体(1)上にドクターブレードを用いて塗布した後、減圧加熱乾燥してロールプレスによる圧延処理を行った後、厚みが60μmとなる正極を作製した。得られた電極の密着性を上述の方法にて評価した。評価結果を表9に示す。
<Positive electrode for lithium ion capacitor with underlayer>
[Example 45]
After applying the above-mentioned ink mixture for positive electrode for lithium ion capacitor on the current collector (1) with an underlayer for electricity storage device using a doctor blade, after drying by heating under reduced pressure and rolling by roll press A positive electrode having a thickness of 60 μm was prepared. The adhesion of the obtained electrode was evaluated by the method described above. Table 9 shows the evaluation results.
[実施例46~52、比較例39~45]
 表9に示す蓄電デバイス用下地層付き集電体を用いた以外は実施例45と同様にして、正極を得た。評価結果を表9に示す。
[Examples 46 to 52, Comparative Examples 39 to 45]
A positive electrode was obtained in the same manner as in Example 45 except that the current collector with a base layer for an electricity storage device shown in Table 9 was used. Table 9 shows the evaluation results.
<下地層なしリチウムイオンキャパシター用負極(比較例、および評価用対極)>
 上述のリチウムイオンキャパシター用負極用合材インキを、集電体となる厚さ20μmの銅箔上にドクターブレードを用いて塗布した後、減圧加熱乾燥してロールプレスによる圧延処理を行った後、厚みが45μmとなる負極を作製した。
<Negative Electrode for Lithium Ion Capacitor (Comparative Example and Counter Electrode for Evaluation)>
After applying the above-mentioned ink mixture for the negative electrode for lithium ion capacitors on a copper foil having a thickness of 20 μm to be a current collector, using a doctor blade, drying under reduced pressure and performing a rolling process by a roll press, A negative electrode having a thickness of 45 μm was produced.
<下地層付きリチウムイオンキャパシター用負極>
[実施例53]
 上述のリチウムイオンキャパシター用負極用合材インキを、蓄電デバイス用下地層付き集電体(7)上にドクターブレードを用いて塗布した後、減圧加熱乾燥してロールプレスによる圧延処理を行った後、厚みが45μmとなる負極を作製した。得られた電極の密着性を上述の方法にて評価した。評価結果を表10に示す。
<Anode for Lithium Ion Capacitor with Underlayer>
[Example 53]
After applying the above-mentioned ink mixture for negative electrode for lithium ion capacitor on the current collector with an underlayer for power storage device (7) using a doctor blade, after drying by heating under reduced pressure and rolling by roll press A negative electrode having a thickness of 45 μm was prepared. The adhesion of the obtained electrode was evaluated by the method described above. Table 10 shows the evaluation results.
[実施例54~60、比較例46~52]
 表10に示す蓄電デバイス用下地層付き集電体を用いた以外は実施例53と同様にして、負極を得た。評価結果を表10に示す。
[Examples 54 to 60, Comparative Examples 46 to 52]
A negative electrode was obtained in the same manner as in Example 53 except that the current collector with a base layer for an electricity storage device shown in Table 10 was used. Table 10 shows the evaluation results.
<リチウムイオンキャパシター>
 表9、10に示す正極と、あらかじめリチウムイオンでハーフドープ処理を施した負極を、それぞれ直径16mmの大きさで用意し、その間に挿入されるセパレーター(多孔質ポリプロピレンフィルム)と、電解液(エチレンカーボネートとジメチルカーボネートとジエチルカーボネートを1:1:1(体積比)の割合で混合した混合溶媒にLiPFを1Mの濃度で溶解させた非水系電解液)とからなるリチウムイオンキャパシターを作製した。リチウムイオンのハーフドープは、ビーカーセル中で負極とリチウム金属の間にセパレーターを挟み、負極容量の約半分の量となるようリチウムイオンを負極にドープして行った。また、リチウムイオンキャパシターはアルゴンガス置換したグロ-ブボックス内で行い、リチウムイオンキャパシター作製後、所定の電気特性評価を行った。評価結果を表9、10に示す。
<Lithium ion capacitor>
A positive electrode shown in Tables 9 and 10 and a negative electrode that has been previously half-doped with lithium ions were prepared in a size of 16 mm in diameter, and a separator (porous polypropylene film) inserted between them and an electrolytic solution (ethylene) A lithium ion capacitor comprising a non-aqueous electrolyte solution in which LiPF 6 was dissolved at a concentration of 1 M in a mixed solvent in which carbonate, dimethyl carbonate, and diethyl carbonate were mixed at a ratio of 1: 1: 1 (volume ratio) was produced. Lithium ion half dope was performed by sandwiching a separator between the negative electrode and lithium metal in a beaker cell, and doping the negative electrode with lithium ions so that the amount was about half of the negative electrode capacity. The lithium ion capacitor was used in a glove box substituted with argon gas. After the lithium ion capacitor was fabricated, predetermined electrical characteristics were evaluated. The evaluation results are shown in Tables 9 and 10.
(充放電サイクル特性)
 得られたリチウムイオンキャパシターについて、充放電装置を用い、充放電測定を行った。
 充電電流10Cレートにて充電終止電圧4.0Vまで充電を行った後、放電電流10Cレートで放電終止電圧2.0Vに達するまで定電流放電を行った。これらの充電・放電サイクルを1サイクルとして5サイクルの充電・放電を繰り返し、5サイクル目の放電容量を初回放電容量とした。(初回放電容量を維持率100%とする)。
 次に、50℃恒温槽にて充電電流10Cレートにて充電終止電圧4.0Vで充電を行った後、放電電流10Cレートで放電終止電圧2.0Vに達するまで定電流放電を行った。この充放電サイクルを500回行い、放電容量維持率の変化率(初回放電容量に対する500回目の放電容量の百分率)を算出した(100%に近いほど良好)。
(Charge / discharge cycle characteristics)
About the obtained lithium ion capacitor, charging / discharging measurement was performed using the charging / discharging apparatus.
After charging to a charge end voltage of 4.0 V at a charge current of 10 C, constant current discharge was performed until the discharge end voltage of 2.0 V was reached at a discharge current of 10 C. These charge / discharge cycles are defined as one cycle, and 5 cycles of charge / discharge are repeated, and the discharge capacity at the fifth cycle is defined as the initial discharge capacity. (The initial discharge capacity is assumed to be 100% maintenance rate).
Next, after charging at a charging end voltage of 4.0 V at a charging current of 10 C in a constant temperature bath at 50 ° C., constant current discharging was performed until the discharging end voltage of 2.0 V was reached at a discharge current of 10 C. This charge / discharge cycle was performed 500 times, and the change rate of the discharge capacity maintenance rate (percentage of the 500th discharge capacity with respect to the initial discharge capacity) was calculated (the closer to 100%, the better).
 ○ :「変化率が95%以上。特に優れている。」
 ○△:「変化率が90%以上、95%未満。全く問題なし。」
 △ :「変化率が85%以上、90%未満。問題はあるが使用可能なレベル。」
 × :「変化率が85%未満。実用上問題あり、使用不可。」
○: “Change rate is 95% or more.
○ △: “Change rate is 90% or more and less than 95%. No problem at all”
Δ: “Change rate is 85% or more and less than 90%.
X: “Change rate is less than 85%.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 表3、4、7~10に示すように、本発明の導電性組成物から形成された下地層を用いた場合、下地層上へ合材インキを塗工して正極、あるいは負極を作製した場合に不具合を生じることなく、電極の密着性を大幅に改善することができた。さらに、本発明の導電性組成物は、導電性の炭素材料の分散性が良好なため、電極物性のバランスが良好となり、電池、キャパシター特性においても充放電サイクル特性が向上したものと考えられる。特に、水溶性樹脂バインダー(B)と水分散性樹脂微粒子バインダー(C)との合計質量との比が本発明の特定の範囲である場合に、材料の分散状態、密着性、導電性などの良好な電極物性のバランスを示し、さらには良好な電池、キャパシター特性が得られることが分かった。電池やキャパシターは厳しい高温環境で使用されることもあり、耐久性が重要なため、電極物性のバランスが大変重要だと考えられる。 As shown in Tables 3, 4, and 7 to 10, when the underlayer formed from the conductive composition of the present invention was used, a mixture ink was applied onto the underlayer to produce a positive electrode or a negative electrode. In this case, the adhesion of the electrodes could be greatly improved without causing any problems. Furthermore, since the conductive composition of the present invention has good dispersibility of the conductive carbon material, the balance of electrode physical properties is improved, and it is considered that the charge / discharge cycle characteristics are improved in battery and capacitor characteristics. In particular, when the ratio of the total mass of the water-soluble resin binder (B) and the water-dispersible resin fine particle binder (C) is within a specific range of the present invention, the dispersion state of the material, adhesion, conductivity, etc. It was found that a good balance of electrode physical properties was exhibited, and further good battery and capacitor characteristics could be obtained. Batteries and capacitors are sometimes used in harsh high-temperature environments, and durability is important, so the balance of electrode properties is considered to be very important.
 電極の密着性が不十分な場合、電池やキャパシターの長期耐久性を維持することが困難であるために劣化を引き起こしてしまう。比較例1のように導電性の炭素材料の分散制御が不十分な場合、電極の密着性が不十分な傾向が見られており、劣化が顕著に見られている。導電性の炭素材料の分散制御が不十分な場合、電極とした時の均一な導電ネットワークが形成されないために、電極中での部分的凝集に起因する抵抗分布が生じてしまい、電池やキャパシターとして使用した際の電流集中が起こるために劣化促進を引き起こしているのではないかと考察している。 When the electrode adhesion is insufficient, it is difficult to maintain the long-term durability of the battery or capacitor, which causes deterioration. When the dispersion control of the conductive carbon material is insufficient as in Comparative Example 1, there is a tendency that the adhesion of the electrode is insufficient, and the deterioration is noticeable. When the dispersion control of the conductive carbon material is insufficient, a uniform conductive network as an electrode is not formed, resulting in a resistance distribution due to partial aggregation in the electrode, and as a battery or capacitor. It is considered that deterioration of current may be caused by current concentration when used.
 また、表3、4に示すように、本発明の導電性組成物から形成された下地層を使用した場合、下地層を使用しない比較例11の評価結果と比較して、良好となっていることが分かる。また、比較例12では、比較例の導電性組成物を下地層へ用いた場合は良好な物性が得られないことが分かる。このことは、集電体と合材層との密着状態がかえって不十分な状態となってしまったため、下地層を使用しない場合よりも電極として不均一な状態になってしまったためと考えられ、電極物性のバランスが重要であることを裏付ける結果だと考えられる。 Moreover, as shown in Tables 3 and 4, when the underlayer formed from the conductive composition of the present invention is used, it is better than the evaluation result of Comparative Example 11 in which the underlayer is not used. I understand that. Moreover, in the comparative example 12, when the conductive composition of a comparative example is used for a base layer, it turns out that a favorable physical property is not acquired. This is considered because the contact state between the current collector and the composite layer was in an insufficient state, and thus became a non-uniform state as an electrode than when not using the underlayer, This is thought to be a result that supports the balance of electrode physical properties.

Claims (6)

  1.  導電性の炭素材料(A)と、水溶性樹脂バインダー(B)と、水分散性樹脂微粒子バインダー(C)と、水性液状媒体(D)とを含有する、導電性組成物であって、
     導電性の炭素材料(A)、水溶性樹脂バインダー(B)および水分散性樹脂微粒子バインダー(C)の固形分の合計100重量%中、導電性の炭素材料(A)の含有量が20~70重量%であり、
     水溶性樹脂バインダー(B)および水分散性樹脂微粒子バインダー(C)の固形分の合計100重量%中、水溶性樹脂バインダー(B)の含有量が40~95重量%であることを特徴とする導電性組成物。
    A conductive composition containing a conductive carbon material (A), a water-soluble resin binder (B), a water-dispersible resin fine particle binder (C), and an aqueous liquid medium (D),
    The total content of the conductive carbon material (A), the water-soluble resin binder (B) and the water-dispersible resin fine particle binder (C) is 100% by weight, and the content of the conductive carbon material (A) is 20 to 20%. 70% by weight,
    The content of the water-soluble resin binder (B) is 40 to 95% by weight in the total solid content of 100% by weight of the water-soluble resin binder (B) and the water-dispersible resin fine particle binder (C). Conductive composition.
  2.  蓄電デバイス用電極の下地層形成用であることを特徴とする、請求項1記載の導電性組成物。 The conductive composition according to claim 1, wherein the conductive composition is used for forming a base layer of an electrode for an electricity storage device.
  3.  集電体と、請求項1または2記載の導電性組成物から形成された下地層とを有する蓄電デバイス用下地層付き集電体。 A current collector with an underlayer for an electricity storage device, comprising: a current collector; and an underlayer formed from the conductive composition according to claim 1.
  4.  集電体と、請求項1または2記載の導電性組成物から形成された下地層と、電極活物質とバインダーとを含有する電極形成用組成物から形成された合材層とを有する蓄電デバイス用電極。 An electricity storage device comprising: a current collector; an underlayer formed from the conductive composition according to claim 1; and a composite material layer formed from an electrode-forming composition containing an electrode active material and a binder. Electrode.
  5.  正極と負極と電解液とを具備する蓄電デバイスであって、前記正極もしくは前記負極の少なくとも一方が、請求項4記載の蓄電デバイス用電極である、蓄電デバイス。 An electricity storage device comprising a positive electrode, a negative electrode, and an electrolyte solution, wherein at least one of the positive electrode or the negative electrode is an electrode for an electricity storage device according to claim 4.
  6.  前記蓄電デバイスが二次電池またはキャパシターであることを特徴とする、請求項2に記載の導電性組成物、請求項3に記載の下地層付き集電体、請求項4に記載の電極または請求項5に記載の蓄電デバイス。 The conductive composition according to claim 2, the current collector with an underlayer according to claim 3, the electrode according to claim 4, or the claim, wherein the electricity storage device is a secondary battery or a capacitor. Item 6. The electricity storage device according to Item 5.
PCT/JP2014/052780 2013-02-21 2014-02-06 Conductive composition, collector with base layer for electricity storage devices, electrode for electricity storage devices, and electricity storage device WO2014129313A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480009437.XA CN105074978B (en) 2013-02-21 2014-02-06 Conductive composition, electrical storage device collector, electrode for power storage device and electrical storage device with basalis
KR1020157024141A KR102155177B1 (en) 2013-02-21 2014-02-06 Conductive composition, collector with base layer for electricity storage devices, electrode for electricity storage devices, and electricity storage device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2013-031984 2013-02-21
JP2013031984 2013-02-21
JP2013049379 2013-03-12
JP2013-049379 2013-03-12
JP2014011148A JP5707605B2 (en) 2013-02-21 2014-01-24 Conductive composition, current collector with base layer for power storage device, electrode for power storage device, and power storage device
JP2014-011148 2014-01-24

Publications (1)

Publication Number Publication Date
WO2014129313A1 true WO2014129313A1 (en) 2014-08-28

Family

ID=51391109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/052780 WO2014129313A1 (en) 2013-02-21 2014-02-06 Conductive composition, collector with base layer for electricity storage devices, electrode for electricity storage devices, and electricity storage device

Country Status (4)

Country Link
JP (1) JP5707605B2 (en)
KR (1) KR102155177B1 (en)
CN (1) CN105074978B (en)
WO (1) WO2014129313A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016081704A (en) * 2014-10-16 2016-05-16 東洋インキScホールディングス株式会社 Conductive composition, electrode for power storage device, and power storage device
WO2016158480A1 (en) * 2015-03-30 2016-10-06 東洋インキScホールディングス株式会社 Electrically conductive composition, under layer-attached current collector for electric storage devices, electrode for electric storage devices, and electric storage device
CN107004516A (en) * 2014-11-03 2017-08-01 哈金森公司 Conductive electrode and its manufacture method
CN107068267A (en) * 2016-05-05 2017-08-18 葛云龙 A kind of preparation method of electric wire protective boot and high pressure superconduction electric wire

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5935820B2 (en) * 2013-04-19 2016-06-15 東洋インキScホールディングス株式会社 Conductive composition, current collector with base layer for power storage device, electrode for power storage device, and power storage device
JP5773097B1 (en) 2013-08-27 2015-09-02 日産化学工業株式会社 Composition for conductive binder layer
JP2017188284A (en) * 2016-04-05 2017-10-12 東洋インキScホールディングス株式会社 Composition for power storage device electrode formation, power storage device electrode, and power storage device
JP2017188283A (en) * 2016-04-05 2017-10-12 東洋インキScホールディングス株式会社 Composition for power storage device electrode formation, power storage device electrode, and power storage device
CN106025290A (en) * 2016-05-29 2016-10-12 合肥国轩高科动力能源有限公司 Carbon-ceramic coated aluminum foil current collector and preparation method thereof
JP7009048B2 (en) * 2016-06-15 2022-01-25 東洋インキScホールディングス株式会社 Conductive composition, current collector with base layer for power storage device, electrode for power storage device, and power storage device
CN109913142B (en) * 2019-03-01 2021-12-10 苏州格睿光电科技有限公司 Antistatic organic silicon pressure-sensitive adhesive product
TWI711210B (en) * 2019-08-05 2020-11-21 國立清華大學 Carbon conductive coating

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007012596A (en) * 2005-05-31 2007-01-18 Shin Kobe Electric Mach Co Ltd Electrode for lead-acid battery, lead-acid battery and manufacturing method of lead-acid battery
JP2008077993A (en) * 2006-09-21 2008-04-03 Mitsubishi Chemicals Corp Electrode and non-aqueous secondary battery
JP2010171213A (en) * 2009-01-23 2010-08-05 Nippon Zeon Co Ltd Electrode for electric double layer capacitor
JP2012015297A (en) * 2010-06-30 2012-01-19 Dynic Corp Electrode for electrochemical element, and manufacturing method thereof
JP2013110098A (en) * 2011-10-25 2013-06-06 Kobe Steel Ltd Collector, method for manufacturing collector, electrode and secondary battery

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62160656A (en) 1986-01-08 1987-07-16 Nippon Telegr & Teleph Corp <Ntt> Manufacture of positive electrode for nonaqueous electrolyte battery
JPH0770328B2 (en) 1986-11-08 1995-07-31 旭化成工業株式会社 Secondary battery
JP3229740B2 (en) 1993-12-29 2001-11-19 ティーディーケイ株式会社 Lithium secondary battery
US6440331B1 (en) * 1999-06-03 2002-08-27 Electrochemicals Inc. Aqueous carbon composition and method for coating a non conductive substrate
CN100337350C (en) * 2004-06-07 2007-09-12 松下电器产业株式会社 Electrode plate for non-water series secondary cell and method for producing said electrode plate
JP4803715B2 (en) 2004-10-15 2011-10-26 昭和電工株式会社 Conductive paste, its production method and use
JP4593488B2 (en) 2005-02-10 2010-12-08 昭和電工株式会社 Secondary battery current collector, secondary battery positive electrode, secondary battery negative electrode, secondary battery, and production method thereof
JP5038751B2 (en) 2006-08-04 2012-10-03 協立化学産業株式会社 Coating liquid for electrode plate production, undercoat agent and use thereof
CN102439769B (en) * 2009-04-03 2014-10-08 东洋油墨Sc控股株式会社 Binder composition for non-aqueous secondary battery electrode
WO2012036288A1 (en) * 2010-09-17 2012-03-22 ダイキン工業株式会社 Paste for forming conductive protection layer on collector laminate in non-aqueous rechargeable electricity-storage device
ES2579328T3 (en) 2011-06-15 2016-08-10 Toyo Ink Sc Holdings Co., Ltd. Composition for the formation of a secondary battery electrode, secondary battery electrode, and secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007012596A (en) * 2005-05-31 2007-01-18 Shin Kobe Electric Mach Co Ltd Electrode for lead-acid battery, lead-acid battery and manufacturing method of lead-acid battery
JP2008077993A (en) * 2006-09-21 2008-04-03 Mitsubishi Chemicals Corp Electrode and non-aqueous secondary battery
JP2010171213A (en) * 2009-01-23 2010-08-05 Nippon Zeon Co Ltd Electrode for electric double layer capacitor
JP2012015297A (en) * 2010-06-30 2012-01-19 Dynic Corp Electrode for electrochemical element, and manufacturing method thereof
JP2013110098A (en) * 2011-10-25 2013-06-06 Kobe Steel Ltd Collector, method for manufacturing collector, electrode and secondary battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016081704A (en) * 2014-10-16 2016-05-16 東洋インキScホールディングス株式会社 Conductive composition, electrode for power storage device, and power storage device
CN107004516A (en) * 2014-11-03 2017-08-01 哈金森公司 Conductive electrode and its manufacture method
CN111785528A (en) * 2014-11-03 2020-10-16 哈金森公司 Conductive electrode and method for manufacturing the same
CN111785528B (en) * 2014-11-03 2022-02-15 哈金森公司 Conductive electrode and method for manufacturing the same
WO2016158480A1 (en) * 2015-03-30 2016-10-06 東洋インキScホールディングス株式会社 Electrically conductive composition, under layer-attached current collector for electric storage devices, electrode for electric storage devices, and electric storage device
CN107429009A (en) * 2015-03-30 2017-12-01 东洋油墨Sc控股株式会社 Conductive composition, collector of the electrical storage device with substrate, electrode for power storage device and electrical storage device
US10626264B2 (en) 2015-03-30 2020-04-21 Toyo Ink Sc Holdings Co., Ltd. Conductive composition, current collector with base layer for electric storage device, electrode for electric storage device, and electric storage device
CN107429009B (en) * 2015-03-30 2021-03-30 东洋油墨Sc控股株式会社 Conductive composition and method for producing same, collector with base layer for electricity storage device, electrode for electricity storage device, and electricity storage device
CN107068267A (en) * 2016-05-05 2017-08-18 葛云龙 A kind of preparation method of electric wire protective boot and high pressure superconduction electric wire
CN107068267B (en) * 2016-05-05 2019-02-15 上海纪岩电力科技有限公司 A kind of production method of wire and cable protective boot and high pressure superconduction wire and cable

Also Published As

Publication number Publication date
JP5707605B2 (en) 2015-04-30
KR102155177B1 (en) 2020-09-11
CN105074978A (en) 2015-11-18
CN105074978B (en) 2017-09-22
KR20150121030A (en) 2015-10-28
JP2014199804A (en) 2014-10-23

Similar Documents

Publication Publication Date Title
JP5935820B2 (en) Conductive composition, current collector with base layer for power storage device, electrode for power storage device, and power storage device
JP5707605B2 (en) Conductive composition, current collector with base layer for power storage device, electrode for power storage device, and power storage device
JP5252134B2 (en) Aqueous composition for secondary battery electrode formation, secondary battery electrode, and secondary battery
JP6539978B2 (en) CONDUCTIVE COMPOSITION, ELECTRODE FOR STORAGE DEVICE, AND STORAGE DEVICE
JP5880544B2 (en) Aqueous composition for secondary battery electrode formation, secondary battery electrode, and secondary battery
JP6476882B2 (en) Conductive composition, current collector with base layer for power storage device, electrode for power storage device, and power storage device
JP5760945B2 (en) Secondary battery electrode forming composition, secondary battery electrode, and secondary battery
JP6079386B2 (en) Secondary battery electrode forming composition, method for producing the same, secondary battery electrode, and secondary battery
JP2013206759A (en) Aqueous composition for forming secondary battery electrode, electrode for secondary battery, and secondary battery
JP5891974B2 (en) Secondary battery electrode forming composition, secondary battery electrode, and secondary battery
JP5954322B2 (en) Secondary battery electrode forming composition, secondary battery electrode, and secondary battery
JP5900111B2 (en) Secondary battery electrode forming composition, secondary battery electrode, and secondary battery
JP6269013B2 (en) Power storage device electrode forming composition, power storage device electrode, and power storage device
JP6036261B2 (en) Secondary battery electrode forming composition, secondary battery electrode, and secondary battery
JP6167723B2 (en) Compound ink for secondary battery electrode formation
JP6036260B2 (en) Secondary battery electrode forming composition, secondary battery electrode, and secondary battery
JP6044300B2 (en) Non-aqueous secondary battery electrode forming conductive primer composition, non-aqueous secondary battery electrode using the same, and non-aqueous secondary battery
JP6244783B2 (en) Capacitor electrode forming composition, capacitor electrode, and capacitor
JP2014216432A (en) Composition for forming capacitor electrode, capacitor electrode, and capacitor
JP2016177910A (en) Composition for forming electricity storage device electrode, electricity storage device electrode, and electricity storage device
JP2017224469A (en) Conductive composition for forming backing layer of electrode for nonaqueous electrolyte secondary battery, and use thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480009437.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14753721

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157024141

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14753721

Country of ref document: EP

Kind code of ref document: A1