WO2014129214A1 - Simulation device for drying coating and device for drying coating - Google Patents
Simulation device for drying coating and device for drying coating Download PDFInfo
- Publication number
- WO2014129214A1 WO2014129214A1 PCT/JP2014/050059 JP2014050059W WO2014129214A1 WO 2014129214 A1 WO2014129214 A1 WO 2014129214A1 JP 2014050059 W JP2014050059 W JP 2014050059W WO 2014129214 A1 WO2014129214 A1 WO 2014129214A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- drying
- coating film
- coating
- data
- operating condition
- Prior art date
Links
- 238000001035 drying Methods 0.000 title claims abstract description 182
- 238000000576 coating method Methods 0.000 title claims abstract description 130
- 239000011248 coating agent Substances 0.000 title claims abstract description 128
- 238000004088 simulation Methods 0.000 title claims abstract description 34
- 238000009826 distribution Methods 0.000 claims abstract description 52
- 239000002904 solvent Substances 0.000 claims abstract description 45
- 239000000463 material Substances 0.000 claims abstract description 43
- 238000004458 analytical method Methods 0.000 claims abstract description 17
- 239000011230 binding agent Substances 0.000 claims description 45
- 238000000034 method Methods 0.000 claims description 25
- 239000013557 residual solvent Substances 0.000 claims description 13
- 239000000758 substrate Substances 0.000 claims description 13
- 238000005457 optimization Methods 0.000 claims description 9
- 230000000704 physical effect Effects 0.000 claims description 8
- 239000007787 solid Substances 0.000 claims description 2
- 238000012360 testing method Methods 0.000 abstract description 13
- 239000000853 adhesive Substances 0.000 abstract 1
- 230000001070 adhesive effect Effects 0.000 abstract 1
- 238000003860 storage Methods 0.000 description 16
- 238000004364 calculation method Methods 0.000 description 13
- 238000007664 blowing Methods 0.000 description 12
- 239000011149 active material Substances 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 9
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 229910001416 lithium ion Inorganic materials 0.000 description 6
- 238000009792 diffusion process Methods 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F26—DRYING
- F26B—DRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
- F26B21/00—Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
- F26B21/06—Controlling, e.g. regulating, parameters of gas supply
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F26—DRYING
- F26B—DRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
- F26B13/00—Machines and apparatus for drying fabrics, fibres, yarns, or other materials in long lengths, with progressive movement
- F26B13/10—Arrangements for feeding, heating or supporting materials; Controlling movement, tension or position of materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0404—Methods of deposition of the material by coating on electrode collectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0471—Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a coating / drying apparatus used when manufacturing an electrode plate having a base material sheet for forming a current collector and an active material layer thereon, and is applied to the base material using numerical simulation.
- the present invention relates to a coating / drying simulation apparatus and a coating / drying apparatus that can dry a processed coating film in a desired state of progress.
- Lithium ion batteries have been widely used for mobile applications such as mobile phones and personal computers because they can be made smaller and lighter than conventional alkaline storage batteries.
- the demand for lithium-ion batteries for hybrid vehicles and electric vehicles which have become widespread due to soaring fuel and carbon dioxide emission regulations, has increased rapidly.
- FIG. 2 shows a schematic diagram of the basic structure of the electrode plate constituting the positive or negative electrode of the lithium ion battery.
- reference numeral 1 denotes an electrode plate forming material.
- the electrode plate forming material 1 is a base for forming a current collector made of aluminum foil, copper foil or the like having flexibility and relatively unstable dimensions. It consists of a material sheet 2 and a coating film 3 for forming an active material layer coated on one side of the base material sheet 2.
- the coating film 3 contains at least a granular active material 4, a granular binder 5 having a smaller size than that, and a solvent 6 that keeps them in a slurry state at the time of coating.
- the electrode plate forming material 1 is manufactured.
- the sheet-like electrode plate forming material 1 is cut according to the dimensions of the electrode plate that is actually used, and is used for manufacturing lithium ion batteries, fuel cells, and the like.
- FIG. 3 shows an example of the configuration of a manufacturing apparatus for forming the electrode plate.
- the base sheet 2 is unwound by a rewinding machine 12 from the roll-up and is applied to the surface of the base sheet 2 by the coater 13 in FIG. 2.
- the coating film 3 as shown is applied through the application nozzle 14.
- the base material sheet 2 coated with the coating film 3 is sent to a hot air oven type drying device 15, and the coating film 3 is heated by hot air at a predetermined temperature blown from the upper and lower air blowing nozzles 16 and 17 in the drying device 15. Drying is performed.
- the coating film 3 applied intermittently in the base material sheet traveling direction is illustrated in FIG. 3, it can be applied as a continuous coating film.
- the electrode plate forming material 1 after the drying of the coating film 3 by the drying device 15 is measured by a winder after measuring the thickness of the coating film after drying, if necessary (not shown).
- the wound roll is mounted on the rewinding machine 12 again and set so that the upper and lower surfaces of the substrate sheet 2 to be rewound are reversed. The same process may be repeated.
- the drying process is divided into an initial drying stage, a middle drying stage, and a late drying stage, and the remaining amount of solvent in the coating film is set to an appropriate range for each of them.
- the wind speed is set to an appropriate range.
- FIG. 4 schematically shows the relationship between the drying time and the coating film surface temperature. In the initial stage of drying, the temperature rises relatively rapidly, in the middle drying period, the temperature range is almost constant or rises slowly, and in the late drying period, the temperature rises relatively quickly again, reaching the predetermined maximum temperature. It becomes.
- Patent Document 1 The method described in Patent Document 1 is basically a method in which each target range of the remaining amount of solvent in the initial stage of drying, the middle stage of drying, and the latter stage of drying is determined in advance, and each operating condition is set to fall within each range. This is a method that is limited to setting operating conditions. Therefore, in order to determine the target range of desirable operating conditions, it is necessary to find out the range of desirable operating conditions in advance by testing or the like. Also, if the desired operating condition range does not vary at all, once it is actually found by a test or the like, the operating condition may be set every time based on it. However, in reality, the range of desirable operating conditions often varies depending on the season, the type of production, and the like.
- a desired drying state cannot be obtained even though operating conditions that are considered to be optimal are set for each zone of the drying apparatus.
- the drying state of the coating film is visually determined from the viewing window of each zone of the drying device (in reality, the color of the surface of the coating film is visually determined), and the desired drying state is obtained. If it is determined, the operation is continued under the set conditions as they are, and if it is determined that they are out of the desired dry state, the set conditions are changed based on the experience of the operator to obtain the desired dry state. The fact is that we are driving with trial and error. For this reason, the quality of the manufactured product becomes unstable and fluctuates, and if the timing for changing the conditions is lost, a large amount of loss may occur. Further, the method described in Patent Document 1 is based on limited test results, and the operating condition setting method proposed in Patent Document 1 has a limitation in shortening the drying time, and production. It is difficult to improve the sex dramatically.
- Patent Document 2 discloses that the actual state of the coating film is obtained by installing a plurality of surface state detection means that can detect the surface state of the coating film in a non-contact manner in the traveling direction of the base sheet.
- a method has been proposed in which the drying state of the drying apparatus can be grasped in real time, and the operation condition is set or controlled based on the drying state so that the drying state can be constantly maintained throughout the entire drying apparatus.
- it is necessary to find out in advance a desired desired drying progress characteristic by a test or the like.
- the surface state detection means it is not possible to grasp the state of segregation of the binder inside the coating film, particularly in the vicinity of the base sheet, and therefore the operating condition range is particularly varied. If it is large, the peel strength from the base material of the coated film after drying may not be noticed, and a large amount of loss may occur.
- the object of the present invention is to make it possible to grasp the dry state of the coating film substantially in real time, and to constantly optimize the entire area of the drying apparatus without obtaining the optimum operating condition by a test or the like in advance.
- Another object of the present invention is to provide a coating / drying simulation apparatus and a coating / drying apparatus that can maintain a proper drying progress state.
- the present invention adopts the following configuration. That is, according to the present invention, it is a coating drying simulation apparatus for proceeding with drying of a coating film containing at least a solid content, a binder, and a solvent, and the structure information data input for inputting the structure information data of the drying apparatus Means, material physical property data input means for inputting material physical property data of the coating film and substrate, operating condition data acquiring means for acquiring operating condition data of the drying device, and a plurality of drying units installed in the drying device Sensor output data acquisition means for acquiring output data of a sensor for detecting a state in the apparatus, and the residual solvent ratio in the coating film using the structure information data, the material property data, the operation information data, and the sensor output data Or a drying simulation means for predicting the solvent concentration distribution or the binder concentration distribution by numerical analysis. Configuration device is provided.
- the solvent concentration gradient calculated from the solvent concentration distribution, the binder concentration gradient calculated from the binder concentration distribution, or both are set to a predetermined value or less.
- the operating condition for minimizing the drying time of the coating film is obtained by using an optimization method under the constraint of the coating drying simulation apparatus according to claim 1.
- the drying apparatus is provided with a plurality of operating condition control means in the drying apparatus capable of individually controlling the operating conditions for advancing the drying of the coating film. Coating that is configured to control the operating conditions for drying the coating film with reference to the difference between the operating conditions for minimizing the drying time of the coating film obtained in Item 2 and the current operating conditions A drying device is provided.
- the drying state of the coating film can be grasped substantially in real time, and the drying apparatus can be obtained without obtaining the optimum operating condition by a test or the like in advance. It is possible to always maintain the optimum drying state over the entire area. As a result, a product of desirable quality can be stably produced with high productivity without causing product loss.
- FIG. 1 shows the configuration of the coating and drying apparatus of the present invention.
- the base material sheet 2 is rewound by a rewinding machine 12 from what is wound up in a roll shape, and is applied to the surface of the base material sheet 2 by a coater 13 in FIG. 2.
- the coating film 3 as shown is applied through the application nozzle 14.
- the base material sheet 2 coated with the coating film 3 is sent to a hot air oven type drying device 15, and the coating film 3 is heated by hot air at a predetermined temperature blown from the upper and lower air blowing nozzles 16 and 17 in the drying device 15. Drying is performed.
- the coating film 3 applied intermittently in the base sheet traveling direction is illustrated in FIG. 1, it can be applied as a continuous coating film.
- the electrode plate forming material 1 after the drying of the coating film 3 by the drying device 15 is measured by a winder after measuring the thickness of the coating film after drying, if necessary (not shown).
- the wound roll is mounted on the rewinding machine 12 again and set so that the upper and lower surfaces of the substrate sheet 2 to be rewound are reversed.
- the same processing as described above may be repeated.
- the drying device 15 is supplied with the coating liquid flow rate of the coating nozzle 14 of the coater, the conveying speed of the base sheet 2, the wind speed of hot air blown from the upper and lower air blowing nozzles 16, 17, the set temperature,
- An operating condition data acquisition means 20 for acquiring a set temperature, and a sensor 21 for detecting the surface temperature of the coating film 3, the film thickness, the temperature of each part in the drying device, and the gas concentration in the drying device are provided.
- the drying device 15 is divided into an initial drying zone 22, a middle drying zone 23, and a late drying zone 24 from the entrance side.
- Each of the zones for the initial stage of drying, the middle stage of drying, and the late stage of drying may be further divided into a plurality of small zones.
- a sensor 21 for detecting the state in the drying apparatus is arranged at the end side of each zone in the initial stage of drying, the middle stage of drying, and the latter stage of drying, so that the state in the drying apparatus can be grasped.
- the sensor 21 for detecting the state in the drying apparatus is not limited to the arrangement in FIG. 1 in order to obtain more detailed information in the drying apparatus, and more sensors 21 are arranged in the traveling direction and the width direction of the base sheet 2. It is desirable to do.
- the data acquired by the operating condition data acquisition means 20 and the sensor 21 that detects the state in the drying apparatus are sent to the coating drying simulation apparatus 50.
- each time of the coating film is obtained by numerical simulation from the obtained operating condition data and sensor output data, the material property data of the coating film and the structure information data of the drying apparatus previously input by the operator.
- the residual solvent ratio or solvent concentration distribution or binder concentration distribution in the coating film at each position is predicted.
- the drying progress state of the coating film can be grasped substantially in real time including the state inside the coating film.
- the calculated residual solvent ratio, solvent concentration distribution or binder concentration distribution in the predicted coating film is used as an initial value, and is calculated from the solvent concentration gradient or binder concentration distribution calculated from the solvent concentration distribution.
- the operating condition that minimizes the drying time of the coating film is automatically determined by using an optimization method under the constraint that the binder concentration gradient or both of them are not more than a predetermined value.
- the drying time can be greatly shortened, and the productivity can be greatly improved.
- the optimum operating condition obtained by the coating / drying simulation apparatus and the operating condition data acquired from the operating condition data acquiring means 20 are sent to the operating condition control means 25, and the operation is performed with reference to the difference between the optimum operating condition and the operating condition data.
- FIG. 5 shows a schematic diagram of the configuration of the coating and drying simulation apparatus in the present embodiment.
- 55 is a computer such as a computer or workstation
- 52 is a keyboard
- 53 is a mouse
- 51 is a display
- 54 is an auxiliary storage device.
- the auxiliary storage device 54 includes a hard disk device, a tape, an FD (flexible disk), an MO (magneto-optical disk), a PD (phase change optical disk), a CD (compact disk), a DVD (digital versatile disk), and the like.
- Removable media such as disk memory, USB (Universal Serial Bus) memory, and memory card can also be used.
- the auxiliary storage device 54 includes a program 71 for analyzing the temperature and concentration distribution of the coating film and the base sheet, and the structure information of the drying device such as the width and interval of the air blowing nozzle and the height from the base sheet.
- Data 72, material physical property data 73 of the material constituting the coating film such as active material density, specific heat, thermal conductivity, substrate sheet thickness, density, thermal conductivity, specific heat, solvent molecular weight, heat of evaporation, specific gravity, etc.
- a computer 55 such as a computer or a workstation includes a structure information data input means 61 for inputting structure information data of a drying device such as the width and interval of the air blowing nozzle, the height from the base sheet, and the density and specific heat of the active material.
- Material physical property data input means 62 for inputting material physical property data of a coating film such as thermal conductivity, substrate sheet thickness, density, thermal conductivity, specific heat, solvent molecular weight, heat of evaporation, specific gravity, etc., and substrate sheet
- Operating condition data acquisition means 63 for acquiring operating condition data from the coating and drying device such as the conveying speed, air blowing nozzle set air volume, and setting temperature, and sensor output data such as the temperature and gas concentration of each part in the drying device
- Drying simulation means 65 for calculating the temperature distribution of the coating film, the residual solvent ratio in the coating film, the solvent concentration distribution, and the binder concentration distribution according to the equation, the structure information data 72, the material property data 73, the operation in the auxiliary storage device 54
- Data writing means 66 for writing condition data 74, sensor output data 75, analysis result data 76, and the like; program 71
- the analysis result output means 68 for outputting to the solvent concentration gradient, the solvent concentration gradient calculated from the solvent concentration distribution, Operation such as the conveyance speed of the base sheet, the set air volume of the air blowing nozzle, the set temperature, etc. under the constraint condition that the binder concentration gradient calculated from the binder concentration distribution or both of them are not more than a predetermined value
- the operation condition optimizing means 69 solves an optimization problem for minimizing the drying time using the conditions as design variables.
- Each of these means is implemented as a module such as a subroutine of a program stored in a storage means such as a main storage device of the computer 55.
- data handled by these means is volatile or nonvolatile in the storage means.
- FIG. 6 is a flowchart showing a procedure for carrying out the calculation of the residual solvent ratio, solvent concentration distribution, or binder concentration distribution in the coating film by the coating / drying simulation apparatus according to this embodiment.
- the structure information data of the drying device such as the width, interval, and height from the base sheet, and the density of the active material, specific heat, thermal conductivity, base sheet thickness, density, thermal conductivity
- Material physical property data of the coating film such as rate, specific heat, solvent molecular weight, heat of evaporation, specific gravity, etc. is input in advance (ST001, ST002).
- operating condition data such as the conveyance speed of the base sheet, the set air volume of the air blowing nozzle, the set temperature, the temperature of each part in the drying device, the gas concentration, etc.
- Sensor output data is acquired from the coating and drying apparatus (ST003, ST004), and the initial conditions of the simulation are set using these data (ST005).
- the initial condition is stored in a storage means such as a main storage device of the computer (ST006).
- the temperature distribution after a predetermined calculation step ⁇ t seconds (time t1) is calculated by unsteady heat conduction analysis (ST009).
- the solvent concentration distribution, binder concentration distribution, coating film thickness, and residual solvent ratio at the same time t1 are calculated by unsteady diffusion analysis (ST010).
- Analysis results such as the calculated temperature distribution, solvent concentration distribution, and binder concentration distribution are stored in a storage unit such as a main storage device of the computer as an analysis result at time t1 (ST006).
- the solvent concentration distribution, binder concentration distribution, coating film thickness, and residual solvent ratio are calculated by diffusion analysis (ST010). Such calculation is repeated, and the calculation is terminated when the predetermined time tn is reached.
- the time until the residual solvent ratio calculated by the above-described procedure falls below a predetermined value is the drying time.
- the binder concentration gradient in the vicinity of the boundary between the base sheet and the coating film can be calculated. Since the concentration gradient of the binder near the boundary is considered to be correlated with the peel strength of the coating film from the base sheet, an offline test is performed on the relationship between the binder concentration gradient near the boundary and the peel strength. If it is obtained in advance by, for example, it is possible to estimate the peel strength from the binder concentration gradient.
- the calculation step ⁇ t is too large, the calculation accuracy deteriorates, and if ⁇ t is too small, the calculation time increases. Compare the surface temperature profile measured by a radiation thermometer with the surface temperature profile calculated by the simulation for the coating film that is the object of numerical simulation, or the coating film whose drying time is considered to be equivalent to that of the coating film. It is desirable to know in advance the range.
- the simulation is practically performed with a one-dimensional model in which a plurality of calculation points are provided in the film thickness direction of the base sheet and the coating film.
- a two-dimensional model in which a plurality of calculation points are provided in the film thickness direction, and a three-dimensional model in which calculation points are also provided in the traveling direction of the base sheet can be used.
- the progress of drying of the coating film including the state inside the coating film can be grasped substantially in real time.
- FIG. 7 shows a specific example of the solvent concentration gradient calculated from the solvent concentration distribution, the binder concentration gradient calculated from the binder concentration distribution, or both using the coating / drying simulation apparatus according to the present embodiment. It is a flowchart which shows the procedure of the implementation at the time of calculating
- operating condition data such as the conveyance speed of the base sheet, the set air volume of the air blowing nozzle, and the set temperature are acquired from the coating and drying device as the initial operating conditions ( (ST101), the data is stored in a computer storage medium (ST102).
- ST101 initial operating conditions
- ST102 computer storage medium
- ST106 the time change of the residual solvent ratio is calculated, and the drying time is predicted (ST106).
- ST106 the solvent concentration gradient and the binder concentration gradient are calculated according to the flowchart of FIG. 6 (ST106), and the drying time, the solvent concentration gradient and the binder concentration gradient are stored in the storage medium of the computer (ST102).
- part of the operating conditions is changed (ST104), and the calculation of the drying time, the solvent concentration gradient, and the binder concentration gradient (ST105, ST106) is repeated.
- the change of the operating conditions (ST104) and the determination of the end of the calculation (ST103) are automatically performed using an optimization method such as a genetic algorithm, and the solvent concentration gradient calculated from the solvent concentration distribution or the binding is performed. Under the constraint that the binder concentration gradient calculated from the agent concentration distribution or both of them are equal to or less than a predetermined value, an optimum operating condition that minimizes the drying time of the coating film is calculated.
- the desired operating condition is automatically obtained by the optimization method, it is not necessary to obtain the desired operating condition range in advance.
- many parameters included in the operating condition data can be automatically optimized using the optimization method, the drying time can be greatly shortened, and the productivity can be dramatically improved.
- the above-mentioned optimum operating condition and the operating condition data acquired from the operating condition data acquiring means are sent to the operating condition control means, and the operating conditions are individually controlled with reference to the difference between the optimum operating condition and the operating condition data (ST107).
- ST107 the operating condition control means
- the present invention is applicable not only to the roll-to-roll method but also to a single-wafer type or batch type drying apparatus.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Textile Engineering (AREA)
- Coating Apparatus (AREA)
- Drying Of Solid Materials (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Provided are a simulation device for drying a coating and a device for drying a coating, which are able to substantially assess the dryness of a coating film in real time, and able to always maintain an optimum drying progression state over all regions of the drying device without calculating optimum operating conditions by preliminary tests, etc. Specifically provided are a simulation device for drying a coating and a device for drying a coating, said simulation device including: a structural information data input means that inputs structural information data for the drying device; a material property data input means that inputs material property data for the coating film and a base material; an operating condition data acquisition means that acquires operating condition data for the drying device; a sensor output data acquisition means that acquires output data for a plurality of sensors that are arranged inside the drying device and detect the state inside the drying device; and a drying simulation means that uses the structural information data, the material property data, the operating information data, and the sensor output data to predict, by numerical analysis, the ratio of the solvent remaining in the coating film, the solvent concentration distribution, and the adhesive concentration distribution.
Description
本発明は、集電体形成用の基材シートとその上に活物質層とを有する電極板を製造する際に使用される塗工乾燥装置に関し、数値シミュレーションを用いて、基材上に塗工された塗膜を望ましい進行状態で乾燥できるようにした塗工乾燥シミュレーション装置および塗工乾燥装置に関する。
The present invention relates to a coating / drying apparatus used when manufacturing an electrode plate having a base material sheet for forming a current collector and an active material layer thereon, and is applied to the base material using numerical simulation. The present invention relates to a coating / drying simulation apparatus and a coating / drying apparatus that can dry a processed coating film in a desired state of progress.
リチウムイオン電池は、従来のアルカリ蓄電池に比べて小型化、軽量化が可能なことから、携帯電話やパソコンなどのモバイル用途に多く使用されてきた。近年では、燃料の高騰や二酸化炭素の排出規制などにより普及したハイブリッド車や電気自動車等へのリチウムイオン電池の需要が急速に伸びている。
Lithium ion batteries have been widely used for mobile applications such as mobile phones and personal computers because they can be made smaller and lighter than conventional alkaline storage batteries. In recent years, the demand for lithium-ion batteries for hybrid vehicles and electric vehicles, which have become widespread due to soaring fuel and carbon dioxide emission regulations, has increased rapidly.
図2にリチウムイオン電池の正極または負極を構成する電極板の基本構造の概略図を示す。図2において、1は電極板形成材を示しており、電極板形成材1は、可撓性を有し比較的寸法が不安定なアルミ箔や銅箔等からなる集電体形成用の基材シート2と、基材シート2の片面に塗工された活物質層形成用の塗膜3からなる。塗膜3は、少なくとも、粒状の活物質4と、それよりは小サイズの粒状の結着剤5と、塗工時にこれらをスラリー状に保つ溶剤6を含有しており、乾燥により溶剤6の大部分が蒸発されて、活物質4の周りに存在する結着剤5により、活物質4同士が固定されて活物質層を形成するとともに前記活物質層が基材シート2に固着され、シート状の電極板形成材1が製造される。このシート状の電極板形成材1は、実際に使用される電極板の寸法に応じて裁断され、リチウムイオン電池や燃料電池等の製造に供される。
FIG. 2 shows a schematic diagram of the basic structure of the electrode plate constituting the positive or negative electrode of the lithium ion battery. In FIG. 2, reference numeral 1 denotes an electrode plate forming material. The electrode plate forming material 1 is a base for forming a current collector made of aluminum foil, copper foil or the like having flexibility and relatively unstable dimensions. It consists of a material sheet 2 and a coating film 3 for forming an active material layer coated on one side of the base material sheet 2. The coating film 3 contains at least a granular active material 4, a granular binder 5 having a smaller size than that, and a solvent 6 that keeps them in a slurry state at the time of coating. Most of the material is evaporated and the active material 4 is fixed to the base material sheet 2 by fixing the active materials 4 to each other by the binder 5 existing around the active material 4. The electrode plate forming material 1 is manufactured. The sheet-like electrode plate forming material 1 is cut according to the dimensions of the electrode plate that is actually used, and is used for manufacturing lithium ion batteries, fuel cells, and the like.
図3に前記電極板を形成する製造装置の構成の一例を示す。図3に示す電極板製造装置11においては、基材シート2は、ロール状に巻き上げられたものから巻戻し機12で巻き戻され、コーター13にて、基材シート2の表面に図2に示したような塗膜3が塗布ノズル14を介して塗工される。塗膜3が塗工された基材シート2は、熱風オーブンタイプの乾燥装置15に送られ、乾燥装置15内で上下エア吹き出しノズル16、17から吹き出される所定温度の熱風により塗膜3の乾燥が行われる。図3には、基材シート走行方向に断続的に塗工された塗膜3を図示しているが、連続的な塗膜として塗工することも可能である。乾燥装置15で塗膜3の乾燥が終了した電極板形成材1は、必要に応じて乾燥後の塗膜の厚さ等を測定した後、巻取り機で巻き取られる(図示略)。片面ずつ塗膜3の塗工、乾燥を行う場合には、巻き取ったロール状物を再び巻戻し機12に装着し、巻き戻される基材シート2の上下面が逆になるようにセットされて同様の処理が繰り返されればよい。
FIG. 3 shows an example of the configuration of a manufacturing apparatus for forming the electrode plate. In the electrode plate manufacturing apparatus 11 shown in FIG. 3, the base sheet 2 is unwound by a rewinding machine 12 from the roll-up and is applied to the surface of the base sheet 2 by the coater 13 in FIG. 2. The coating film 3 as shown is applied through the application nozzle 14. The base material sheet 2 coated with the coating film 3 is sent to a hot air oven type drying device 15, and the coating film 3 is heated by hot air at a predetermined temperature blown from the upper and lower air blowing nozzles 16 and 17 in the drying device 15. Drying is performed. Although the coating film 3 applied intermittently in the base material sheet traveling direction is illustrated in FIG. 3, it can be applied as a continuous coating film. The electrode plate forming material 1 after the drying of the coating film 3 by the drying device 15 is measured by a winder after measuring the thickness of the coating film after drying, if necessary (not shown). When coating and drying the coating film 3 one side at a time, the wound roll is mounted on the rewinding machine 12 again and set so that the upper and lower surfaces of the substrate sheet 2 to be rewound are reversed. The same process may be repeated.
この塗膜の乾燥においては、一般に望ましい乾燥進行特性が存在することが知られている(たとえば、特許文献1)。実際の乾燥進行特性が、この望ましい乾燥進行特性から大きく外れると、乾燥後の塗膜の基材からの剥離強度が低下したり、乾燥後の塗膜中で結着剤が塗膜の外表面側に析出したりすることがあるため、目標とする電極特性、ひいては、目標とする電池特性が得られにくくなる、という問題を生じることがある。
In the drying of this coating film, it is known that generally desirable drying progress characteristics exist (for example, Patent Document 1). If the actual drying progress characteristics deviate significantly from the desired drying progress characteristics, the peel strength of the dried coating film from the base material will be reduced, or the binder will adhere to the outer surface of the coating film after drying. May cause a problem that it becomes difficult to obtain target electrode characteristics, and thus target battery characteristics.
特許文献1では、乾燥工程を乾燥初期、乾燥中期、乾燥後期に分け、それぞれに対して塗膜中の溶剤残量を適切な範囲に設定するとともに、とくに乾燥中期における雰囲気温度とノズルからの吹き出し風速とを適切な範囲に設定するようにしている。図4に、乾燥時間と塗膜表面温度の関係を模式的に示す。乾燥初期では温度が比較的急速に立ち上がる領域となり、乾燥中期ではほぼ一定の温度または緩やかに上昇する温度領域となり、乾燥後期では再び比較的急速に立ち上がる領域となって所定の最高温度へと達する領域となる。
前述のような、乾燥後の塗膜の基材からの剥離強度の低下や、乾燥後の塗膜で結着剤が塗膜の外表面へ析出することを回避するためには、特に、図4に示す乾燥中期におけるほぼ一定の温度または緩やかに上昇する温度領域を所定時間以上与えることが必要であることが知られている。 In Patent Document 1, the drying process is divided into an initial drying stage, a middle drying stage, and a late drying stage, and the remaining amount of solvent in the coating film is set to an appropriate range for each of them. The wind speed is set to an appropriate range. FIG. 4 schematically shows the relationship between the drying time and the coating film surface temperature. In the initial stage of drying, the temperature rises relatively rapidly, in the middle drying period, the temperature range is almost constant or rises slowly, and in the late drying period, the temperature rises relatively quickly again, reaching the predetermined maximum temperature. It becomes.
In order to avoid the decrease in the peel strength from the base material of the coating film after drying as described above and the precipitation of the binder on the outer surface of the coating film in the coating film after drying, It is known that it is necessary to give a substantially constant temperature or a slowly rising temperature region in the middle drying period shown in FIG.
前述のような、乾燥後の塗膜の基材からの剥離強度の低下や、乾燥後の塗膜で結着剤が塗膜の外表面へ析出することを回避するためには、特に、図4に示す乾燥中期におけるほぼ一定の温度または緩やかに上昇する温度領域を所定時間以上与えることが必要であることが知られている。 In Patent Document 1, the drying process is divided into an initial drying stage, a middle drying stage, and a late drying stage, and the remaining amount of solvent in the coating film is set to an appropriate range for each of them. The wind speed is set to an appropriate range. FIG. 4 schematically shows the relationship between the drying time and the coating film surface temperature. In the initial stage of drying, the temperature rises relatively rapidly, in the middle drying period, the temperature range is almost constant or rises slowly, and in the late drying period, the temperature rises relatively quickly again, reaching the predetermined maximum temperature. It becomes.
In order to avoid the decrease in the peel strength from the base material of the coating film after drying as described above and the precipitation of the binder on the outer surface of the coating film in the coating film after drying, It is known that it is necessary to give a substantially constant temperature or a slowly rising temperature region in the middle drying period shown in FIG.
特許文献1に記載されている方法は、基本的に、乾燥初期、乾燥中期、乾燥後期における溶剤残量の各目標範囲を予め決定し、各範囲内に入るように各運転条件を設定する方法であり、あくまで運転条件を設定することにとどまっている方法である。したがって、目標とする望ましい運転条件の範囲を決定するには、予め試験等によって望ましい運転条件の範囲を見出しておく必要がある。また、望ましい運転条件の範囲が全く変動しないものであれば、一旦試験等によって実際に見つけ出しておけば、それに基づいて毎回、運転条件を設定すればよいことになる。しかし、現実には、季節や、製造品種の違い等により、望ましい運転条件の範囲は変動することが多い。したがって、そのような場合には、乾燥装置の各ゾーンに対し最適と思われる運転条件を設定したにもかかわらず、所望の乾燥状態が得られないことになる。実際には、乾燥装置の各ゾーンの覗き窓から塗膜の乾燥状態を目視で判定し(現実には、塗膜の表面の色等を目視で判定し)、所望の乾燥状態になっていると判断された場合には、そのままの設定条件で運転を続行し、所望の乾燥状態から外れたと判断された場合には、作業者の経験に基づいて設定条件を変更して所望の乾燥状態になるようにトライアンドエラーで運転しているのが実情である。そのため、製造される製品の品質が不安定になって変動したり、仮に条件を変更すべきタイミングを失ってしまうと大量のロスを発生したりするおそれがある。また、特許文献1に記載されている方法は、限定された試験結果に基づいたものであり、特許文献1で提案された運転条件の設定方法では、乾燥時間の短縮には限界があり、生産性を飛躍的に向上させにくい。
The method described in Patent Document 1 is basically a method in which each target range of the remaining amount of solvent in the initial stage of drying, the middle stage of drying, and the latter stage of drying is determined in advance, and each operating condition is set to fall within each range. This is a method that is limited to setting operating conditions. Therefore, in order to determine the target range of desirable operating conditions, it is necessary to find out the range of desirable operating conditions in advance by testing or the like. Also, if the desired operating condition range does not vary at all, once it is actually found by a test or the like, the operating condition may be set every time based on it. However, in reality, the range of desirable operating conditions often varies depending on the season, the type of production, and the like. Therefore, in such a case, a desired drying state cannot be obtained even though operating conditions that are considered to be optimal are set for each zone of the drying apparatus. Actually, the drying state of the coating film is visually determined from the viewing window of each zone of the drying device (in reality, the color of the surface of the coating film is visually determined), and the desired drying state is obtained. If it is determined, the operation is continued under the set conditions as they are, and if it is determined that they are out of the desired dry state, the set conditions are changed based on the experience of the operator to obtain the desired dry state. The fact is that we are driving with trial and error. For this reason, the quality of the manufactured product becomes unstable and fluctuates, and if the timing for changing the conditions is lost, a large amount of loss may occur. Further, the method described in Patent Document 1 is based on limited test results, and the operating condition setting method proposed in Patent Document 1 has a limitation in shortening the drying time, and production. It is difficult to improve the sex dramatically.
望ましい運転条件範囲の変動に対して、特許文献2では、塗膜の表面状態を非接触に検知可能な表面状態検知手段を、基材シートの走行方向に複数設置することにより、塗膜の実際の乾燥状態をリアルタイムで把握できるようにし、それに基づいて運転条件を設定あるいは制御することにより、乾燥装置の全域にわたって常時望ましい乾燥進行状態に維持できるようにする方法が提案されている。しかし、この方法においても、目標とする望ましい乾燥進行特性を試験等によって予め見つけ出しておく必要がある。特に、乾燥時間を大幅に短縮させるためには、各運転条件をパラメータとした膨大な回数の試験を行う必要があり、試験期間や費用がかさんでしまう。また、表面状態検知手段によって乾燥進行状態を把握することはできるが、塗膜内部、とくに基材シート近傍における結着剤の偏析の状態を把握することはできないため、特に運転条件範囲の変動が大きいような場合には、乾燥後の塗膜の基材からの剥離強度が予想外に低下していることに気づかず、大量のロスを発生するおそれがある。
With respect to fluctuations in the desirable operating condition range, Patent Document 2 discloses that the actual state of the coating film is obtained by installing a plurality of surface state detection means that can detect the surface state of the coating film in a non-contact manner in the traveling direction of the base sheet. A method has been proposed in which the drying state of the drying apparatus can be grasped in real time, and the operation condition is set or controlled based on the drying state so that the drying state can be constantly maintained throughout the entire drying apparatus. However, also in this method, it is necessary to find out in advance a desired desired drying progress characteristic by a test or the like. In particular, in order to significantly reduce the drying time, it is necessary to perform a huge number of tests with each operating condition as a parameter, which increases the test period and cost. In addition, although it is possible to grasp the drying progress state by the surface state detection means, it is not possible to grasp the state of segregation of the binder inside the coating film, particularly in the vicinity of the base sheet, and therefore the operating condition range is particularly varied. If it is large, the peel strength from the base material of the coated film after drying may not be noticed, and a large amount of loss may occur.
そこで本発明の課題は、前記のような実状に鑑み、塗膜の乾燥状態を実質的にリアルタイムで把握できるようにし、予め試験等によって最適運転条件を求めることなく、乾燥装置の全域にわたって常時最適な乾燥進行状態に維持できるようにする塗工乾燥シミュレーション装置および塗工乾燥装置を提供することにある。
Therefore, in view of the actual situation as described above, the object of the present invention is to make it possible to grasp the dry state of the coating film substantially in real time, and to constantly optimize the entire area of the drying apparatus without obtaining the optimum operating condition by a test or the like in advance. Another object of the present invention is to provide a coating / drying simulation apparatus and a coating / drying apparatus that can maintain a proper drying progress state.
前記課題を解決するために、本発明は以下の構成を採用する。すなわち、本発明によれば、少なくとも固形分と結着剤と溶剤を含む塗膜の乾燥を進行させる場合の塗工乾燥シミュレーション装置であって、乾燥装置の構造情報データを入力する構造情報データ入力手段と、前記塗膜および基材の材料物性データを入力する材料物性データ入力手段と、前記乾燥装置の運転条件データを取得する運転条件データ取得手段と前記乾燥装置内に複数設置されている乾燥装置内の状態を検知するセンサの出力データを取得するセンサ出力データ取得手段と、前記構造情報データ、前記材料物性データ、前記運転情報データ、前記センサ出力データを用いて塗膜中の残溶剤率または溶剤濃度分布または結着剤濃度分布を数値解析により予測する乾燥シミュレーション手段と、を有することを特徴とする塗工乾燥シミュレーション装置が提供される。
In order to solve the above problems, the present invention adopts the following configuration. That is, according to the present invention, it is a coating drying simulation apparatus for proceeding with drying of a coating film containing at least a solid content, a binder, and a solvent, and the structure information data input for inputting the structure information data of the drying apparatus Means, material physical property data input means for inputting material physical property data of the coating film and substrate, operating condition data acquiring means for acquiring operating condition data of the drying device, and a plurality of drying units installed in the drying device Sensor output data acquisition means for acquiring output data of a sensor for detecting a state in the apparatus, and the residual solvent ratio in the coating film using the structure information data, the material property data, the operation information data, and the sensor output data Or a drying simulation means for predicting the solvent concentration distribution or the binder concentration distribution by numerical analysis. Configuration device is provided.
また、本発明の好ましい形態によれば、前記溶剤濃度分布から算出される溶剤濃度勾配、または前記結着剤濃度分布から算出される結着剤濃度勾配、またはそれらの両方を所定の値以下とする制約下で、塗膜の乾燥時間を最小化する運転条件を最適化手法を用いて求めることを特徴とする、請求項1に記載の塗工乾燥シミュレーション装置が提供される。
Further, according to a preferred embodiment of the present invention, the solvent concentration gradient calculated from the solvent concentration distribution, the binder concentration gradient calculated from the binder concentration distribution, or both are set to a predetermined value or less. The operating condition for minimizing the drying time of the coating film is obtained by using an optimization method under the constraint of the coating drying simulation apparatus according to claim 1.
また、本発明の好ましい形態によれば、前記乾燥装置には前記塗膜の乾燥を進行させるための運転条件を個別に制御可能な運転条件制御手段が乾燥装置内に複数設けられており、請求項2で求めた前記塗膜の乾燥時間を最小化する運転条件と、現在の運転条件との差を参照して前記塗膜を乾燥させるための運転条件を制御可能に構成されている塗工乾燥装置が提供される。
Further, according to a preferred embodiment of the present invention, the drying apparatus is provided with a plurality of operating condition control means in the drying apparatus capable of individually controlling the operating conditions for advancing the drying of the coating film. Coating that is configured to control the operating conditions for drying the coating film with reference to the difference between the operating conditions for minimizing the drying time of the coating film obtained in Item 2 and the current operating conditions A drying device is provided.
このように、本発明に係る塗工乾燥シミュレーション装置および塗工乾燥装置によれば、塗膜の乾燥状態を実質的にリアルタイムで把握でき、予め試験等によって最適運転条件を求めることなく、乾燥装置の全域にわたって常時最適な乾燥進行状態に維持することができる。その結果、製品ロスを発生させることなく、望ましい品質の製品を安定して、高い生産性で製造することができる。
Thus, according to the coating drying simulation apparatus and the coating drying apparatus according to the present invention, the drying state of the coating film can be grasped substantially in real time, and the drying apparatus can be obtained without obtaining the optimum operating condition by a test or the like in advance. It is possible to always maintain the optimum drying state over the entire area. As a result, a product of desirable quality can be stably produced with high productivity without causing product loss.
以下に本発明の実施の形態について、図面を参照しながら説明する。
Embodiments of the present invention will be described below with reference to the drawings.
図1に本発明の塗工乾燥装置の構成を示す。図1に示す電極板製造装置11においては、基材シート2は、ロール状に巻き上げられたものから巻戻し機12で巻き戻され、コーター13にて、基材シート2の表面に図2に示したような塗膜3が塗布ノズル14を介して塗工される。塗膜3が塗工された基材シート2は、熱風オーブンタイプの乾燥装置15に送られ、乾燥装置15内で上下エア吹き出しノズル16、17から吹き出される所定温度の熱風により塗膜3の乾燥が行われる。図1には、基材シート走行方向に断続的に塗工された塗膜3を図示しているが、連続的な塗膜として塗工することも可能である。乾燥装置15で塗膜3の乾燥が終了した電極板形成材1は、必要に応じて乾燥後の塗膜の厚さ等を測定した後、巻取り機で巻き取られる(図示略)。片面ずつ塗膜3の塗工、乾燥を行う場合には、巻き取ったロール状物を再び巻戻し機12に装着し、巻き戻される基材シート2の上下面が逆になるようにセットされて前記同様の処理が繰り返されればよい。
FIG. 1 shows the configuration of the coating and drying apparatus of the present invention. In the electrode plate manufacturing apparatus 11 shown in FIG. 1, the base material sheet 2 is rewound by a rewinding machine 12 from what is wound up in a roll shape, and is applied to the surface of the base material sheet 2 by a coater 13 in FIG. 2. The coating film 3 as shown is applied through the application nozzle 14. The base material sheet 2 coated with the coating film 3 is sent to a hot air oven type drying device 15, and the coating film 3 is heated by hot air at a predetermined temperature blown from the upper and lower air blowing nozzles 16 and 17 in the drying device 15. Drying is performed. Although the coating film 3 applied intermittently in the base sheet traveling direction is illustrated in FIG. 1, it can be applied as a continuous coating film. The electrode plate forming material 1 after the drying of the coating film 3 by the drying device 15 is measured by a winder after measuring the thickness of the coating film after drying, if necessary (not shown). When coating and drying the coating film 3 one side at a time, the wound roll is mounted on the rewinding machine 12 again and set so that the upper and lower surfaces of the substrate sheet 2 to be rewound are reversed. Thus, the same processing as described above may be repeated.
本発明においては、前記乾燥装置15に、コーターの塗布ノズル14の塗液流量、基材シート2の搬送速度、上下エア吹き出しノズル16、17から吹き出される熱風の風速、設定温度、補助ヒータの設定温度を取得する運転条件データ取得手段20と、塗膜3の表面温度、膜厚、乾燥装置内各部の温度、乾燥装置内ガス濃度を検知するセンサ21が設けられる。
In the present invention, the drying device 15 is supplied with the coating liquid flow rate of the coating nozzle 14 of the coater, the conveying speed of the base sheet 2, the wind speed of hot air blown from the upper and lower air blowing nozzles 16, 17, the set temperature, An operating condition data acquisition means 20 for acquiring a set temperature, and a sensor 21 for detecting the surface temperature of the coating film 3, the film thickness, the temperature of each part in the drying device, and the gas concentration in the drying device are provided.
図1に示す乾燥装置15の概略構成においては、乾燥装置15は、その入り口側から、乾燥初期ゾーン22、乾燥中期ゾーン23、乾燥後期ゾーン24に区画されている。これら乾燥初期、乾燥中期、乾燥後期用の各ゾーンは、各々、さらに複数の小ゾーンに区画されていてもよい。図1では、乾燥初期、乾燥中期、乾燥後期の各ゾーンの終端側に乾燥装置内の状態を検知するセンサ21が配置され、乾燥装置内の状態を把握できるようになっている。乾燥装置内状態を検知するセンサ21は、より詳細な乾燥装置内の情報を得るため、図1の配置に限定されず、より数多くのセンサ21を基材シート2の走行方向および幅方向に配置することが望ましい。
In the schematic configuration of the drying device 15 shown in FIG. 1, the drying device 15 is divided into an initial drying zone 22, a middle drying zone 23, and a late drying zone 24 from the entrance side. Each of the zones for the initial stage of drying, the middle stage of drying, and the late stage of drying may be further divided into a plurality of small zones. In FIG. 1, a sensor 21 for detecting the state in the drying apparatus is arranged at the end side of each zone in the initial stage of drying, the middle stage of drying, and the latter stage of drying, so that the state in the drying apparatus can be grasped. The sensor 21 for detecting the state in the drying apparatus is not limited to the arrangement in FIG. 1 in order to obtain more detailed information in the drying apparatus, and more sensors 21 are arranged in the traveling direction and the width direction of the base sheet 2. It is desirable to do.
運転条件データ取得手段20および乾燥装置内の状態を検知するセンサ21により取得されたデータは、塗工乾燥シミュレーション装置50に送られる。塗工乾燥シミュレーション装置50では、取得した運転条件データおよびセンサ出力データと、作業者により予め入力された塗膜の材料物性データおよび乾燥装置の構造情報データから、数値シミュレーションにより、塗膜の各時刻または各位置における塗膜中の残溶剤率または溶剤濃度分布または結着剤濃度分布等を予測する。この方法により、塗膜の乾燥進行状態を塗膜内部の状態も含めて実質的にリアルタイムで把握することができる。また、溶剤濃度分布から算出される溶剤濃度勾配、または結着剤濃度分布から算出される結着剤濃度勾配、またはそれらの両方と、乾燥後の塗膜の基材からの剥離強度等との関係を予め簡易的なオフライン試験等によって求めておけば、乾燥後の塗膜の基材からの剥離強度等も実質的にリアルタイムで把握することができる。
The data acquired by the operating condition data acquisition means 20 and the sensor 21 that detects the state in the drying apparatus are sent to the coating drying simulation apparatus 50. In the coating / drying simulation apparatus 50, each time of the coating film is obtained by numerical simulation from the obtained operating condition data and sensor output data, the material property data of the coating film and the structure information data of the drying apparatus previously input by the operator. Alternatively, the residual solvent ratio or solvent concentration distribution or binder concentration distribution in the coating film at each position is predicted. By this method, the drying progress state of the coating film can be grasped substantially in real time including the state inside the coating film. In addition, the solvent concentration gradient calculated from the solvent concentration distribution, the binder concentration gradient calculated from the binder concentration distribution, or both of them, and the peel strength from the substrate of the coated film after drying, etc. If the relationship is obtained in advance by a simple off-line test or the like, the peel strength from the substrate of the coated film after drying can be grasped substantially in real time.
次いで、予測した塗膜中の残溶剤率または溶剤濃度分布または結着剤濃度分布等の計算結果を初期値として、溶剤濃度分布から算出される溶剤濃度勾配、または結着剤濃度分布から算出される結着剤濃度勾配、またはそれらの両方を所定の値以下とする制約下で、塗膜の乾燥時間を最小化する運転条件を最適化手法を用いて自動的に求める。溶剤濃度分布から算出される溶剤濃度勾配、または結着剤濃度分布から算出される結着剤濃度勾配、またはそれらの両方と、乾燥後の塗膜の基材からの剥離強度等との関係を予め簡易的なオフライン試験等によって求めておけば、乾燥後の塗膜の基材からの剥離強度等も実質的にリアルタイムで把握することができ、望ましい運転条件の範囲を予め求めておく必要がない。また、最適化手法を用いて運転条件データの含まれる数多くのパラメータを自動的に最適化できるため、乾燥時間を大幅に短縮できることができ、生産性を飛躍的に向上させることができる。
Next, the calculated residual solvent ratio, solvent concentration distribution or binder concentration distribution in the predicted coating film is used as an initial value, and is calculated from the solvent concentration gradient or binder concentration distribution calculated from the solvent concentration distribution. The operating condition that minimizes the drying time of the coating film is automatically determined by using an optimization method under the constraint that the binder concentration gradient or both of them are not more than a predetermined value. The relationship between the solvent concentration gradient calculated from the solvent concentration distribution, the binder concentration gradient calculated from the binder concentration distribution, or both, and the peel strength of the coated film after drying, etc. If it is determined in advance by a simple offline test, etc., the peel strength from the substrate of the coated film after drying can be grasped substantially in real time, and the range of desirable operating conditions must be determined in advance. Absent. In addition, since many parameters included in the operating condition data can be automatically optimized using the optimization method, the drying time can be greatly shortened, and the productivity can be greatly improved.
塗工乾燥シミュレーション装置により求めた最適運転条件と、運転条件データ取得手段20から取得した運転条件データを運転条件制御手段25に送り、前記最適運転条件と前記運転条件データの差を参照して運転条件を個別に制御することにより、乾燥装置の全域にわたって常時最適な乾燥進行状態に維持することができる。その結果、製品ロスを発生させることなく、望ましい品質の製品を安定して、高い生産性で製造することができる。
The optimum operating condition obtained by the coating / drying simulation apparatus and the operating condition data acquired from the operating condition data acquiring means 20 are sent to the operating condition control means 25, and the operation is performed with reference to the difference between the optimum operating condition and the operating condition data. By controlling the conditions individually, it is possible to always maintain the optimal drying progress state over the entire area of the drying apparatus. As a result, a product of desirable quality can be stably produced with high productivity without causing product loss.
図5に、本実施形態における塗工乾燥シミュレーション装置の構成の概略図を示す。55はコンピュータやワークステーションなどの計算機、52はキーボード、53はマウス、51はディスプレイ、54は補助記憶装置である。54の補助記憶装置には、ハードディスク装置の他、テープ、FD(フレキシブルディスク)、MO(光磁気ディスク)、PD(相変化光ディスク)、CD(コンパクトディスク)、DVD(デジタル・バーサタイル・ディスク)などのディスクメモリー、USB(ユニバーサル・シリアル・バス)メモリー、メモリーカードなどのリムーバブルメディアも利用可能である。
FIG. 5 shows a schematic diagram of the configuration of the coating and drying simulation apparatus in the present embodiment. 55 is a computer such as a computer or workstation, 52 is a keyboard, 53 is a mouse, 51 is a display, and 54 is an auxiliary storage device. The auxiliary storage device 54 includes a hard disk device, a tape, an FD (flexible disk), an MO (magneto-optical disk), a PD (phase change optical disk), a CD (compact disk), a DVD (digital versatile disk), and the like. Removable media such as disk memory, USB (Universal Serial Bus) memory, and memory card can also be used.
補助記憶装置54には、塗膜や基材シートの温度、濃度分布等を解析するためのプログラム71や、エア吹き出しノズルの幅、間隔、基材シートからの高さなどの乾燥装置の構造情報データ72、活物質の密度、比熱、熱伝導率、基材シートの厚さ、密度、熱伝導率、比熱、溶媒の分子量、蒸発熱、比重などの塗膜を構成する材料の材料物性データ73、基材シートの搬送速度、エア吹き出しノズルの設定風量、設定温度などの運転条件データ74、乾燥装置内各部の温度、ガス濃度などのセンサ出力データ75、塗膜中の残溶剤率、溶剤濃度分布、結着剤濃度分布などの解析結果データ76が保存されている。
The auxiliary storage device 54 includes a program 71 for analyzing the temperature and concentration distribution of the coating film and the base sheet, and the structure information of the drying device such as the width and interval of the air blowing nozzle and the height from the base sheet. Data 72, material physical property data 73 of the material constituting the coating film, such as active material density, specific heat, thermal conductivity, substrate sheet thickness, density, thermal conductivity, specific heat, solvent molecular weight, heat of evaporation, specific gravity, etc. , Substrate sheet conveying speed, air blowing nozzle setting air flow, operating temperature data 74 such as setting temperature, temperature in each part of the drying apparatus, sensor output data 75 such as gas concentration, residual solvent ratio in the coating film, solvent concentration Analysis result data 76 such as distribution and binder concentration distribution is stored.
コンピュータやワークステーションなどの計算機55は、エア吹き出しノズルの幅、間隔、基材シートからの高さなどの乾燥装置の構造情報データを入力する構造情報データ入力手段61と、活物質の密度、比熱、熱伝導率、基材シートの厚さ、密度、熱伝導率、比熱、溶媒の分子量、蒸発熱、比重などの塗膜の材料物性データを入力する材料物性データ入力手段62と、基材シートの搬送速度、エア吹き出しノズルの設定風量、設定温度などの運転条件データを塗工乾燥装置から取得する運転条件データ取得手段63と、乾燥装置内各部の温度、ガス濃度などのセンサ出力データを取得するセンサ出力データ取得手段64と、構造情報データ、材料物性データ、運転条件データ、センサ出力データから非定常熱伝導方程式、非定常拡散方程式により塗膜の温度分布、塗膜中の残溶剤率、溶剤濃度分布、結着剤濃度分布を算出する乾燥シミュレーション手段65と、補助記憶装置54に構造情報データ72、材料物性データ73、運転条件データ74、センサ出力データ75、解析結果データ76などを書き込むデータ書き込み手段66と、補助記憶装置54からプログラム71、構造情報データ72、材料物性データ73、運転条件データ74、センサ出力データ75、解析結果データ76などを読み出すデータ読み出し手段67と、乾燥シミュレーション手段65により算出した塗膜の温度分布、塗膜中の残溶剤率、溶剤濃度分布、結着剤濃度分布などの解析結果をディスプレイ51などに出力する解析結果出力手段68と、溶剤濃度分布から算出される溶剤濃度勾配、または結着剤濃度分布から算出される結着剤濃度勾配、またはそれらの両方を所定の値以下とする制約条件下で、基材シートの搬送速度、エア吹き出しノズルの設定風量、設定温度などの運転条件を設計変数として乾燥時間を最小化する最適化問題を解く運転条件最適化手段69で構成されている。
A computer 55 such as a computer or a workstation includes a structure information data input means 61 for inputting structure information data of a drying device such as the width and interval of the air blowing nozzle, the height from the base sheet, and the density and specific heat of the active material. Material physical property data input means 62 for inputting material physical property data of a coating film such as thermal conductivity, substrate sheet thickness, density, thermal conductivity, specific heat, solvent molecular weight, heat of evaporation, specific gravity, etc., and substrate sheet Operating condition data acquisition means 63 for acquiring operating condition data from the coating and drying device such as the conveying speed, air blowing nozzle set air volume, and setting temperature, and sensor output data such as the temperature and gas concentration of each part in the drying device Sensor output data acquisition means 64, structure information data, material property data, operating condition data, sensor output data, unsteady heat conduction equation, unsteady diffusion method Drying simulation means 65 for calculating the temperature distribution of the coating film, the residual solvent ratio in the coating film, the solvent concentration distribution, and the binder concentration distribution according to the equation, the structure information data 72, the material property data 73, the operation in the auxiliary storage device 54 Data writing means 66 for writing condition data 74, sensor output data 75, analysis result data 76, and the like; program 71, structure information data 72, material property data 73, operating condition data 74, sensor output data 75 from auxiliary storage device 54; The display 51 displays analysis results such as the temperature distribution of the coating film, the residual solvent ratio in the coating film, the solvent concentration distribution, and the binder concentration distribution calculated by the data reading means 67 for reading the analysis result data 76 and the like and the drying simulation means 65. The analysis result output means 68 for outputting to the solvent concentration gradient, the solvent concentration gradient calculated from the solvent concentration distribution, Operation such as the conveyance speed of the base sheet, the set air volume of the air blowing nozzle, the set temperature, etc. under the constraint condition that the binder concentration gradient calculated from the binder concentration distribution or both of them are not more than a predetermined value The operation condition optimizing means 69 solves an optimization problem for minimizing the drying time using the conditions as design variables.
これら各手段は、計算機55の主記憶装置などの記憶手段に記憶されたプログラムのサブルーチンなどのモジュールとして実施されており、同様にこれらの手段が取り扱うデータは、記憶手段に揮発的または不揮発的に記憶される。
Each of these means is implemented as a module such as a subroutine of a program stored in a storage means such as a main storage device of the computer 55. Similarly, data handled by these means is volatile or nonvolatile in the storage means. Remembered.
図6は本実施形態における塗工乾燥シミュレーション装置によって塗膜中の残溶剤率または溶剤濃度分布または結着剤濃度分布を算出する際の実施の手順を示すフローチャートである。
FIG. 6 is a flowchart showing a procedure for carrying out the calculation of the residual solvent ratio, solvent concentration distribution, or binder concentration distribution in the coating film by the coating / drying simulation apparatus according to this embodiment.
まずはじめに、エア吹き出しノズルの幅、間隔、基材シートからの高さなどの乾燥装置の構造情報データと、活物質の密度、比熱、熱伝導率、基材シートの厚さ、密度、熱伝導率、比熱、溶媒の分子量、蒸発熱、比重などの塗膜の材料物性データを予め入力する(ST001、ST002)。その後、塗工乾燥装置が定常的に稼働している状態で、基材シートの搬送速度、エア吹き出しノズルの設定風量、設定温度などの運転条件データと、乾燥装置内各部の温度、ガス濃度などのセンサ出力データを塗工乾燥装置から取得し(ST003、ST004)、これらのデータを用いてシミュレーションの初期条件を設定する(ST005)。次いで、前記初期条件を計算機の主記憶装置などの記憶手段に保存する(ST006)。次に、非定常熱伝導解析により、予め定めた計算ステップΔt秒後(時刻t1)の温度分布を算出する(ST009)。そして、この温度分布を用いて、非定常拡散解析により同時刻t1の溶剤濃度分布や結着剤濃度分布、塗膜の厚さ、残溶剤率を算出する(ST010)。算出された温度分布や溶剤濃度分布、結着剤濃度分布などの解析結果は時刻t1の解析結果として計算機の主記憶装置などの記憶手段に保存する(ST006)。続いて、時刻t1の解析結果を初期条件として(ST008)、さらにΔt秒後(時刻t2=t1+Δt)の温度分布を非定常熱伝導解析により算出し(ST009)、その結果を用いて、非定常拡散解析により溶剤濃度分布や結着剤濃度分布、塗膜の厚さ、残溶剤率を算出する(ST010)。このような計算を繰り返し、所定の時刻tnになった段階で計算を終了する。
First, the structure information data of the drying device such as the width, interval, and height from the base sheet, and the density of the active material, specific heat, thermal conductivity, base sheet thickness, density, thermal conductivity Material physical property data of the coating film such as rate, specific heat, solvent molecular weight, heat of evaporation, specific gravity, etc. is input in advance (ST001, ST002). After that, with the coating and drying device operating constantly, operating condition data such as the conveyance speed of the base sheet, the set air volume of the air blowing nozzle, the set temperature, the temperature of each part in the drying device, the gas concentration, etc. Sensor output data is acquired from the coating and drying apparatus (ST003, ST004), and the initial conditions of the simulation are set using these data (ST005). Next, the initial condition is stored in a storage means such as a main storage device of the computer (ST006). Next, the temperature distribution after a predetermined calculation step Δt seconds (time t1) is calculated by unsteady heat conduction analysis (ST009). Then, using this temperature distribution, the solvent concentration distribution, binder concentration distribution, coating film thickness, and residual solvent ratio at the same time t1 are calculated by unsteady diffusion analysis (ST010). Analysis results such as the calculated temperature distribution, solvent concentration distribution, and binder concentration distribution are stored in a storage unit such as a main storage device of the computer as an analysis result at time t1 (ST006). Subsequently, the analysis result at time t1 is used as an initial condition (ST008), and the temperature distribution after Δt seconds (time t2 = t1 + Δt) is calculated by unsteady heat conduction analysis (ST009). The solvent concentration distribution, binder concentration distribution, coating film thickness, and residual solvent ratio are calculated by diffusion analysis (ST010). Such calculation is repeated, and the calculation is terminated when the predetermined time tn is reached.
前記実施の手順により算出した残溶剤率が所定の値以下になるまでの時間が乾燥時間である。また、前記実施の手順により算出した結着剤濃度分布から、たとえば、基材シートと塗膜の境界近傍における結着剤の濃度勾配を算出することができる。前記境界近傍の結着剤の濃度勾配は、基材シートからの塗膜の剥離強度と相関があると考えられるので、前記境界近傍の結着剤濃度勾配と前記剥離強度との関係をオフライン試験等によって予め求めておけば、結着剤濃度勾配から前記剥離強度を推定することが可能である。
The time until the residual solvent ratio calculated by the above-described procedure falls below a predetermined value is the drying time. Further, from the binder concentration distribution calculated by the above procedure, for example, the binder concentration gradient in the vicinity of the boundary between the base sheet and the coating film can be calculated. Since the concentration gradient of the binder near the boundary is considered to be correlated with the peel strength of the coating film from the base sheet, an offline test is performed on the relationship between the binder concentration gradient near the boundary and the peel strength. If it is obtained in advance by, for example, it is possible to estimate the peel strength from the binder concentration gradient.
一般に、計算ステップΔtが大き過ぎると計算精度が悪化し、Δtが小さ過ぎると計算時間が大きくなる。数値シミュレーションの対象である塗膜もしくは、その塗膜と乾燥時間が同等と見なせる塗膜について、たとえば放射温度計で測定した表面温度プロファイルとシミュレーションで算出した表面温度プロファイルの比較を行い、適切なΔtの範囲を予め把握しておくことが望ましい。
Generally, if the calculation step Δt is too large, the calculation accuracy deteriorates, and if Δt is too small, the calculation time increases. Compare the surface temperature profile measured by a radiation thermometer with the surface temperature profile calculated by the simulation for the coating film that is the object of numerical simulation, or the coating film whose drying time is considered to be equivalent to that of the coating film. It is desirable to know in advance the range.
前記シミュレーションは、計算時間の観点から、基材シートおよび塗膜の膜厚方向に複数の計算点を設けた1次元モデルで行うのが現実的であるが、基材シートおよび塗膜の幅方向および膜厚方向に複数の計算点を設けた2次元モデル、さらに基材シートの走行方向にも計算点を設けた3次元モデルとすることも可能である。
From the viewpoint of calculation time, the simulation is practically performed with a one-dimensional model in which a plurality of calculation points are provided in the film thickness direction of the base sheet and the coating film. In addition, a two-dimensional model in which a plurality of calculation points are provided in the film thickness direction, and a three-dimensional model in which calculation points are also provided in the traveling direction of the base sheet can be used.
前述した方法により、塗膜の乾燥進行状態を塗膜内部の状態も含めて実質的にリアルタイムで把握することができる。また、溶剤濃度分布から算出される溶剤濃度勾配、または結着剤濃度分布から算出される結着剤濃度勾配、またはそれらの両方と、乾燥後の塗膜の基材からの剥離強度等との関係を予め簡易的なオフライン試験等によって求めておけば、乾燥後の塗膜の基材からの剥離強度等も実質的にリアルタイムで把握することができる。
By the method described above, the progress of drying of the coating film including the state inside the coating film can be grasped substantially in real time. In addition, the solvent concentration gradient calculated from the solvent concentration distribution, the binder concentration gradient calculated from the binder concentration distribution, or both of them, and the peel strength from the substrate of the coated film after drying, etc. If the relationship is obtained in advance by a simple off-line test or the like, the peel strength from the substrate of the coated film after drying can be grasped substantially in real time. *
図7は本実施形態における塗工乾燥シミュレーション装置を用いて、溶剤濃度分布から算出される溶剤濃度勾配、または結着剤濃度分布から算出される結着剤濃度勾配、またはそれらの両方を所定の値以下とする制約下で、塗膜の乾燥時間を最小化する運転条件を最適化手法を用いて自動的に求める際の実施の手順を示すフローチャートである。
FIG. 7 shows a specific example of the solvent concentration gradient calculated from the solvent concentration distribution, the binder concentration gradient calculated from the binder concentration distribution, or both using the coating / drying simulation apparatus according to the present embodiment. It is a flowchart which shows the procedure of the implementation at the time of calculating | requiring automatically the operating condition which minimizes the drying time of a coating film using the optimization method under restrictions set to below a value.
塗工乾燥装置が定常的に稼働している状態で、基材シートの搬送速度、エア吹き出しノズルの設定風量、設定温度などの運転条件データを塗工乾燥装置から取得して初期運転条件とし(ST101)、計算機の記憶媒体に保存する(ST102)。次いで、図6のフローチャートに従い、残溶剤率の時間変化を算出し、乾燥時間を予測する(ST106)。次いで、同様に図6のフローチャートに従い、溶剤濃度勾配および結着剤濃度勾配を算出し(ST106)、前記乾燥時間および前記溶剤濃度勾配および結着剤濃度勾配を計算機の記憶媒体に保存する(ST102)。続いて、運転条件の一部を変更し(ST104)、乾燥時間、溶剤濃度勾配および結着剤濃度勾配の算出(ST105、ST106)を繰り返す。この運転条件の変更(ST104)および計算終了の判定(ST103)は、遺伝的アルゴリズムなどの最適化手法を用いて自動的に行い、前記溶剤濃度分布から算出される溶剤濃度勾配、または前記結着剤濃度分布から算出される結着剤濃度勾配、またはそれらの両方を所定の値以下とする制約下で、塗膜の乾燥時間を最小化する最適運転条件を算出する。
While the coating and drying device is operating steadily, operating condition data such as the conveyance speed of the base sheet, the set air volume of the air blowing nozzle, and the set temperature are acquired from the coating and drying device as the initial operating conditions ( (ST101), the data is stored in a computer storage medium (ST102). Next, according to the flowchart of FIG. 6, the time change of the residual solvent ratio is calculated, and the drying time is predicted (ST106). Next, similarly, the solvent concentration gradient and the binder concentration gradient are calculated according to the flowchart of FIG. 6 (ST106), and the drying time, the solvent concentration gradient and the binder concentration gradient are stored in the storage medium of the computer (ST102). ). Subsequently, part of the operating conditions is changed (ST104), and the calculation of the drying time, the solvent concentration gradient, and the binder concentration gradient (ST105, ST106) is repeated. The change of the operating conditions (ST104) and the determination of the end of the calculation (ST103) are automatically performed using an optimization method such as a genetic algorithm, and the solvent concentration gradient calculated from the solvent concentration distribution or the binding is performed. Under the constraint that the binder concentration gradient calculated from the agent concentration distribution or both of them are equal to or less than a predetermined value, an optimum operating condition that minimizes the drying time of the coating film is calculated.
前述した方法によれば、最適化手法により望ましい運転条件を自動的に求めるため、望ましい運転条件の範囲を予め求めておく必要がない。また、最適化手法を用いて運転条件データに含まれる数多くのパラメータを自動的に最適化できるため、乾燥時間を大幅に短縮できることができ、生産性を飛躍的に向上させることができる。
According to the method described above, since the desired operating condition is automatically obtained by the optimization method, it is not necessary to obtain the desired operating condition range in advance. In addition, since many parameters included in the operating condition data can be automatically optimized using the optimization method, the drying time can be greatly shortened, and the productivity can be dramatically improved.
上記最適運転条件と、運転条件データ取得手段から取得した運転条件データを運転条件制御手段に送り、前記最適運転条件と前記運転条件データの差を参照して運転条件を個別に制御する(ST107)ことにより、乾燥装置の全域にわたって常時最適な乾燥進行状態に維持することができる。その結果、製品ロスを発生させることなく、望ましい品質の製品を安定して、高い生産性で製造することができる。
The above-mentioned optimum operating condition and the operating condition data acquired from the operating condition data acquiring means are sent to the operating condition control means, and the operating conditions are individually controlled with reference to the difference between the optimum operating condition and the operating condition data (ST107). As a result, it is possible to always maintain the optimum drying state over the entire area of the drying apparatus. As a result, a product of desirable quality can be stably produced with high productivity without causing product loss.
本実施形態では支持・搬送ローラによる片面塗工方式について記載しているが、本発明はエアーフローティング搬送による両面塗工方式等にも適用可能である。
In this embodiment, a single-side coating method using a support / conveyance roller is described, but the present invention can also be applied to a double-side coating method using air floating conveyance.
本発明は、ロール・ツー・ロール方式以外にも、枚葉式やバッチ式等の乾燥装置にも適用可能である。
The present invention is applicable not only to the roll-to-roll method but also to a single-wafer type or batch type drying apparatus.
1 電極板形成材
2 基材シート
3 塗膜
4 活物質
5 結着剤
6 溶剤
11 電極板製造装置
12 巻戻し機
13 コーター
14 塗布ノズル
15 乾燥装置
16 エア吹き出しノズル
17 エア吹き出しノズル
20 運転条件データ取得手段
21 乾燥装置内状態を検知するセンサ
22 乾燥初期用ゾーン
23 乾燥中期用ゾーン
24 乾燥後期用ゾーン
25 運転条件制御手段
31 支持・搬送用ローラ
50 塗工乾燥シミュレーション手段
51 ディスプレイ
52 キーボード
53 マウス
54 補助記憶装置
55 計算機
61 構造情報データ入力手段
62 材料物性データ入力手段
63 運転条件データ取得手段
64 センサ出力データ取得手段
65 乾燥シミュレーション手段
66 データ書き込み手段
67 データ読み出し手段
68 解析結果出力手段
69 運転条件最適化手段
71 プログラム
72 構造情報データ
73 材料物性データ
74 運転条件データ
75 センサ出力データ
76 解析結果データ DESCRIPTION OF SYMBOLS 1 Electrodeplate forming material 2 Base material sheet 3 Coating film 4 Active material 5 Binder 6 Solvent 11 Electrode plate manufacturing apparatus 12 Rewinder 13 Coater 14 Coating nozzle 15 Drying apparatus 16 Air blowing nozzle 17 Air blowing nozzle 20 Operating condition data Acquiring means 21 Sensor for detecting the state in the drying apparatus 22 Initial drying zone 23 Intermediate drying zone 24 Late drying zone 25 Operating condition control means 31 Supporting / transporting roller 50 Coating drying simulation means 51 Display 52 Keyboard 53 Mouse 54 Auxiliary storage device 55 Computer 61 Structure information data input means 62 Material property data input means 63 Operating condition data acquisition means 64 Sensor output data acquisition means 65 Drying simulation means 66 Data writing means 67 Data reading Stage 68 the analysis result output unit 69 operating condition optimizing means 71 program 72 structure information data 73 material property data 74 operating condition data 75 sensor output data 76 the analysis result data
2 基材シート
3 塗膜
4 活物質
5 結着剤
6 溶剤
11 電極板製造装置
12 巻戻し機
13 コーター
14 塗布ノズル
15 乾燥装置
16 エア吹き出しノズル
17 エア吹き出しノズル
20 運転条件データ取得手段
21 乾燥装置内状態を検知するセンサ
22 乾燥初期用ゾーン
23 乾燥中期用ゾーン
24 乾燥後期用ゾーン
25 運転条件制御手段
31 支持・搬送用ローラ
50 塗工乾燥シミュレーション手段
51 ディスプレイ
52 キーボード
53 マウス
54 補助記憶装置
55 計算機
61 構造情報データ入力手段
62 材料物性データ入力手段
63 運転条件データ取得手段
64 センサ出力データ取得手段
65 乾燥シミュレーション手段
66 データ書き込み手段
67 データ読み出し手段
68 解析結果出力手段
69 運転条件最適化手段
71 プログラム
72 構造情報データ
73 材料物性データ
74 運転条件データ
75 センサ出力データ
76 解析結果データ DESCRIPTION OF SYMBOLS 1 Electrode
Claims (3)
- 少なくとも固形分と結着剤と溶剤を含む塗膜の乾燥を進行させる場合の塗工乾燥シミュレーション装置であって、
乾燥装置の構造情報データを入力する構造情報データ入力手段と、
前記塗膜および基材の材料物性データを入力する材料物性データ入力手段と、
前記乾燥装置の運転条件データを取得する運転条件データ取得手段と
前記乾燥装置内に複数設置されている乾燥装置内の状態を検知するセンサの出力データを取得するセンサ出力データ取得手段と、
前記構造情報データ、前記材料物性データ、前記運転情報データ、前記センサ出力データを用いて塗膜中の残溶剤率または溶剤濃度分布または結着剤濃度分布を数値解析により予測する乾燥シミュレーション手段と、
を有することを特徴とする塗工乾燥シミュレーション装置。 A coating drying simulation apparatus for proceeding with drying of a coating film containing at least a solid content, a binder and a solvent,
Structure information data input means for inputting the structure information data of the drying device;
Material physical property data input means for inputting material physical property data of the coating film and the substrate,
Operating condition data acquiring means for acquiring operating condition data of the drying apparatus, and sensor output data acquiring means for acquiring output data of a sensor for detecting a state in the drying apparatus installed in the drying apparatus.
Drying simulation means for predicting the residual solvent ratio or solvent concentration distribution or binder concentration distribution in the coating film by numerical analysis using the structure information data, the material property data, the operation information data, and the sensor output data;
A coating / drying simulation apparatus characterized by comprising: - 前記溶剤濃度分布から算出される溶剤濃度勾配、または前記結着剤濃度分布から算出される結着剤濃度勾配、またはそれらの両方を所定の値以下とする制約下で、塗膜の乾燥時間を最小化する運転条件を最適化手法を用いて求めることを特徴とする、請求項1に記載の塗工乾燥シミュレーション装置。 Under the constraint that the solvent concentration gradient calculated from the solvent concentration distribution, the binder concentration gradient calculated from the binder concentration distribution, or both of them are not more than a predetermined value, the drying time of the coating film is The coating / drying simulation apparatus according to claim 1, wherein an operation condition to be minimized is obtained using an optimization method.
- 前記乾燥装置には前記塗膜の乾燥を進行させるための運転条件を個別に制御可能な運転条件制御手段が乾燥装置内に複数設けられており、
請求項2で求めた前記塗膜の乾燥時間を最小化する運転条件と、現在の運転条件との差を参照して前記塗膜を乾燥させるための運転条件を制御可能に構成されている塗工乾燥装置。 The drying apparatus is provided with a plurality of operating condition control means in the drying apparatus capable of individually controlling the operating conditions for advancing the drying of the coating film,
A coating configured to control the operating conditions for drying the coating film with reference to the difference between the operating conditions for minimizing the drying time of the coating film obtained in claim 2 and the current operating conditions. Engineering drying equipment.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013034141A JP6080297B2 (en) | 2013-02-25 | 2013-02-25 | Coating drying simulation device and coating drying device |
JP2013-034141 | 2013-02-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014129214A1 true WO2014129214A1 (en) | 2014-08-28 |
Family
ID=51391010
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/050059 WO2014129214A1 (en) | 2013-02-25 | 2014-01-07 | Simulation device for drying coating and device for drying coating |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6080297B2 (en) |
WO (1) | WO2014129214A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022069572A1 (en) | 2020-09-29 | 2022-04-07 | Basf Se | Method and system for adjusting a drying process designated for producing a coating |
CN115136342A (en) * | 2020-02-28 | 2022-09-30 | 大众汽车股份公司 | Method for producing at least one electrode of a battery cell |
WO2023190232A1 (en) * | 2022-03-31 | 2023-10-05 | 東レエンジニアリング株式会社 | Drying system |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104307693A (en) * | 2014-10-21 | 2015-01-28 | 江苏西欧电子有限公司 | Intelligent coating machine |
JP6931307B2 (en) * | 2017-09-21 | 2021-09-01 | トヨタホーム株式会社 | Exterior wall material drying furnace |
JP2019171639A (en) * | 2018-03-28 | 2019-10-10 | 株式会社リコー | Drying device, drying method, image formation method and image formation device |
JP7291531B2 (en) * | 2019-04-26 | 2023-06-15 | Fdk株式会社 | Particle design program, design support program, inspection method, and electrode plate manufacturing method |
JP2023019481A (en) * | 2021-07-29 | 2023-02-09 | 東レエンジニアリング株式会社 | Base material heating device, base material heating method, coating device, and coating method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004188382A (en) * | 2002-12-13 | 2004-07-08 | Fuji Heavy Ind Ltd | Method for estimating drying of coating, system therefor and recording medium |
JP2009233663A (en) * | 2008-03-06 | 2009-10-15 | Hitachi Chem Co Ltd | Simulation method for coating/drying |
-
2013
- 2013-02-25 JP JP2013034141A patent/JP6080297B2/en active Active
-
2014
- 2014-01-07 WO PCT/JP2014/050059 patent/WO2014129214A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004188382A (en) * | 2002-12-13 | 2004-07-08 | Fuji Heavy Ind Ltd | Method for estimating drying of coating, system therefor and recording medium |
JP2009233663A (en) * | 2008-03-06 | 2009-10-15 | Hitachi Chem Co Ltd | Simulation method for coating/drying |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115136342A (en) * | 2020-02-28 | 2022-09-30 | 大众汽车股份公司 | Method for producing at least one electrode of a battery cell |
WO2022069572A1 (en) | 2020-09-29 | 2022-04-07 | Basf Se | Method and system for adjusting a drying process designated for producing a coating |
WO2023190232A1 (en) * | 2022-03-31 | 2023-10-05 | 東レエンジニアリング株式会社 | Drying system |
Also Published As
Publication number | Publication date |
---|---|
JP6080297B2 (en) | 2017-02-15 |
JP2014161783A (en) | 2014-09-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6080297B2 (en) | Coating drying simulation device and coating drying device | |
KR102642709B1 (en) | Web coating and calendaring systems and methods | |
JP5929190B2 (en) | Electrode drying method and electrode drying apparatus | |
KR102206057B1 (en) | An electrode rolling apparatus having a heating unit for heating a non-coated portion and Manufacturing system for an electrode comprising the same | |
JP2012209074A (en) | Apparatus for manufacturing electrode plate | |
JP5909986B2 (en) | Electrode drying method and electrode drying apparatus | |
CN102271825A (en) | Method of detecting the width of a coated film and detection device used in said detection method | |
JP6093244B2 (en) | Double-side coating system | |
CN103168379A (en) | Coating apparatus and coating-film forming system | |
KR20180125721A (en) | An automated system for controlling a dry oven of secondary battery electrodes | |
JP2012212873A (en) | Electrode manufacturing device, electrode manufacturing method, program and computer storage medium | |
JP2016120473A (en) | Horizontal type double-sided coating apparatus | |
JP6011478B2 (en) | Battery electrode plate manufacturing apparatus and battery electrode plate manufacturing method | |
JP5522025B2 (en) | Coating device, coating method, battery manufacturing method | |
JP6417810B2 (en) | Drying apparatus and electrode manufacturing method | |
JP2014173803A (en) | Dryer | |
CN116261927A (en) | Method and system for adjusting a drying process designated for producing a coating | |
JP5233248B2 (en) | Electrode manufacturing equipment | |
KR102481359B1 (en) | Secondary battery electrode manufacturing system and method | |
CN115699347A (en) | Automated system for drying condition of electrode of secondary battery | |
JP5320934B2 (en) | Vacuum deposition system | |
Fu et al. | Analysis of wrinkles and corrugations in the electrode calendering process | |
KR102559371B1 (en) | Secondary battery electrode manufacturing system and method | |
JP2024075913A (en) | Electrode sheet drying device | |
CN118719492A (en) | Pole piece drying method, controller and pole piece drying device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14754163 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14754163 Country of ref document: EP Kind code of ref document: A1 |