[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014129210A1 - Distance measuring device and calibration method - Google Patents

Distance measuring device and calibration method Download PDF

Info

Publication number
WO2014129210A1
WO2014129210A1 PCT/JP2014/000993 JP2014000993W WO2014129210A1 WO 2014129210 A1 WO2014129210 A1 WO 2014129210A1 JP 2014000993 W JP2014000993 W JP 2014000993W WO 2014129210 A1 WO2014129210 A1 WO 2014129210A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
unit
distance measuring
correction
measuring device
Prior art date
Application number
PCT/JP2014/000993
Other languages
French (fr)
Japanese (ja)
Inventor
仁 大室
孝雄 滝澤
陽介 宮▲崎▼
Original Assignee
株式会社ニコンビジョン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013034328A external-priority patent/JP2016095136A/en
Priority claimed from JP2013034223A external-priority patent/JP2016095135A/en
Application filed by 株式会社ニコンビジョン filed Critical 株式会社ニコンビジョン
Priority to DE112014000971.7T priority Critical patent/DE112014000971T5/en
Publication of WO2014129210A1 publication Critical patent/WO2014129210A1/en
Priority to US14/834,955 priority patent/US10101442B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4816Constructional features, e.g. arrangements of optical elements of receivers alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating

Definitions

  • the present invention relates to a distance measuring device and a calibration method.
  • Patent Document 1 International Publication No. 2009/31550
  • Sighting the target object with the distance measuring device may be difficult due to image blur.
  • a light transmission unit that transmits signal light from a light source toward an object and a light receiving element, and the signal light from the object is on an optical axis different from that of the light transmission unit.
  • a light receiving unit for receiving light a distance measuring unit for measuring a distance to an object based on a propagation time of signal light from light transmission to light reception, an optical path to the light transmission unit and the light receiving unit, and a light receiving element from the object
  • a distance measuring device is provided that includes a correction unit that corrects the optical path of the signal light by displacing the optical path in the other of the light transmitting unit and the light receiving unit in a state in which one of the optical paths up to is fixed.
  • a light transmitting unit that transmits the signal light from the light source toward the object and a light receiving element, the signal light from the object is on an optical axis different from that of the light transmitting unit.
  • the distance measuring unit for measuring the distance to the object based on the propagation time from the transmission of the signal light to the reception of light, and the one optical axis of the light transmission unit and the light receiving unit are fixed.
  • a calibration method for calibrating a distance measuring device including a correction unit that corrects an optical path of signal light by displacing an optical path at the other of a light transmission unit and a light reception unit, and reflects the light to a known standard object while displacing the optical path
  • a calibration method comprising the steps of measuring the received light intensity of the received signal light at the light receiving portion and determining the initial position of the optical path by displacing the optical path.
  • FIG. 1 is a schematic cross-sectional view of a distance measuring device 10.
  • FIG. 3 is a schematic diagram for optically explaining a distance measuring operation of the distance measuring device 10.
  • FIG. 4 is a flowchart showing a procedure of a distance measuring operation of the distance measuring device 10.
  • FIG. 10 is a schematic diagram illustrating a correction operation of the correction unit 300.
  • FIG. 10 is a schematic diagram illustrating a correction operation of the correction unit 300.
  • 4 is a diagram showing a spot image formed on a light receiving element 430.
  • FIG. It is a schematic diagram explaining the displacement conditions of signal light.
  • FIG. 10 is a schematic diagram illustrating a correction operation of the correction unit 300.
  • 5 is a flowchart for explaining the operation of the correction unit 300.
  • FIG. 5 is a diagram illustrating an example of a control method of a correction unit 300.
  • FIG. 6 is a schematic diagram illustrating another correction operation of the correction unit 300.
  • FIG. 3 is a schematic diagram illustrating parallax correction in the distance measuring device 10.
  • FIG. It is a schematic diagram explaining parallax correction when a correction unit is arranged in the light transmission unit.
  • 3 is a schematic diagram illustrating parallax correction in the distance measuring device 10.
  • 2 is a schematic cross-sectional view of a distance measuring device 11.
  • FIG. 3 is a schematic cross-sectional view of a distance measuring device 12.
  • FIG. It is a schematic diagram explaining the correction
  • FIG. 3 is a schematic cross-sectional view of a distance measuring device 13.
  • FIG. 4 is a diagram showing a spot image formed on a light receiving element 430.
  • FIG. It is a schematic diagram explaining the effect
  • 6 is a schematic diagram illustrating scanning of signal light by a calibration unit 600.
  • FIG. It is a graph which shows the received light intensity of the signal light which the light receiving element 430 detects.
  • FIG. 6 is a schematic diagram illustrating scanning of signal light by a calibration unit 600.
  • FIG. 5 is a graph showing the intensity of received light of the light receiving element 430.
  • 6 is a schematic diagram of an auxiliary member 700.
  • FIG. 2 is a schematic diagram of a reticle plate 120.
  • FIG. 1 is a schematic cross-sectional view of the distance measuring device 10.
  • the distance measuring device 10 includes a collimating unit 100, a light transmitting unit 200, a correcting unit 300, a light receiving unit 400, and a distance measuring unit 500.
  • the side on which the collimation unit 100 is arranged in the distance measuring device 10 is the rear side.
  • the side facing the object of distance measurement is the front side.
  • the collimation unit 100 includes an eyepiece optical system 110, a reticle plate 120, and an erecting prism 130.
  • the collimation unit 100 also serves as the objective optical system 220 and the light transmission unit 200, and the correction member 310 serves as the correction unit 300.
  • the rear end of the eyepiece optical system 110 is exposed on the rear end surface of the distance measuring device 10.
  • the front end of the eyepiece optical system 110 faces the rear end of the erecting prism 130 inside the distance measuring device 10.
  • the user of the distance measuring device 10 collimates the distance measuring device 10 by visually recognizing the image of the object through the eyepiece optical system 110.
  • the reticle plate 120 has a reticle formed by printing, etching or the like on a plate transparent to visible light.
  • the reticle has collimation indicators such as a crosshair, a rectangular frame, and a circular frame.
  • the user of the distance measuring device 10 collimates the distance measuring device 10 on the object by superimposing a reticle collimation index on an image observed through the eyepiece optical system 110.
  • a display image of a transmissive liquid crystal display panel can be used as the reticle.
  • the erecting prism 130 includes a dichroic reflecting surface 132 that reflects the visible light band and transmits the infrared band, and total reflection surfaces 134 and 136 that have a high reflectance in the infrared band in addition to the visible light band. Have.
  • the erecting prism 130 also has another reflecting surface that is not assigned a reference number, and reverses the inverted mirror image formed by the incident light beam to an erecting erect image.
  • the erecting prism 130 can be formed using a roof prism, a porro prism, or the like.
  • the light transmitting unit 200 includes a light emitting unit 210 and an objective optical system 220. Further, the light transmitting unit 200 also serves as a collimating unit 100 using a part of the erecting prism 130 including the dichroic reflecting surface 132 and the total reflecting surface 134. Further, the light transmission unit 200 also uses the correction member 310 as the correction unit 300.
  • the light emitting unit 210 includes a light emitting element such as a semiconductor laser as a light source, and emits pulsed signal light when the distance measuring device 10 performs a distance measuring operation.
  • the signal light is, for example, infrared light.
  • the objective optical system 220 is disposed at the front end of the distance measuring device 10, and the front end surface faces the object to be distance-measured.
  • the rear end face of the objective optical system 220 faces the front end face of the erecting prism 130 with the correction member 310 interposed therebetween.
  • the correction member 310 is also an optical member, and forms a light transmission optical system together with the objective optical system 220.
  • the wavelength of the signal light may be other than the visible band, for example, ultraviolet light.
  • the dichroic reflecting surface 132 of the erecting prism 130 reflects the visible light band and transmits the ultraviolet light band.
  • the total reflection surface 134 reflects the visible light band and the ultraviolet band.
  • the correction unit 300 includes a correction member 310 and a drive unit 320.
  • the correction member 310 includes a lens that forms part of the eyepiece optical system 110 and the objective optical system 220.
  • the drive unit 320 displaces the correction member 310 in a direction that intersects the optical axis of the correction member 310. Further, the drive unit 320 may swing the correction member 310 in the direction in which the main surface swings.
  • a oscillating prism can be used in addition to the displacing lens.
  • a variable apex angle prism that can change the apex angle formed by the incident surface and the exit surface by swinging a member that forms the entrance surface or the exit surface can also be used as the correction member 310.
  • a driving unit 320 a voice coil motor, a piezoelectric motor, or the like can be used.
  • a light ray A 1 propagating within the range of the expected angle of the objective optical system 220 is reflected by the objective optical system 220. Incident through.
  • the light ray A 1 is transmitted through the correction member 310 and propagates backward as the light ray A 2 through the distance measuring apparatus 10, and passes through the erecting prism 130, the reticle plate 120, and the eyepiece optical system 110. It is emitted as light a 3 rearward. Thereby, the user can observe an erect image of the object through the eyepiece optical system 110.
  • the reticle arranged on the reticle plate 120 is superimposed on the image of the object observed by the user through the eyepiece optical system 110. Therefore, the user can collimate the distance measuring device 10 by displacing the distance measuring device 10 to make the reticle coincide with the object.
  • an optical member that changes the focal length of the eyepiece optical system 110 may be provided as a part of the eyepiece optical system 110 or in addition to the eyepiece optical system 110. Thereby, it is possible to make the user observe a clear image regardless of the distance to the object. Moreover, diopter correction according to the user's visual acuity can be performed.
  • the user instructs the distance measuring device 10 to start a distance measuring operation by operating a switch such as a button provided on the distance measuring device 10.
  • the light emitting unit 210 emits pulsed signal light as a light beam B 1 toward the upper surface of the erecting prism 130 in the drawing.
  • the signal light passes through the dichroic reflecting surface 132, is reflected by the total reflecting surface 134, and propagates forward in the distance measuring device 10 as the light beam B 2 .
  • the signal light is projected outside through the correction member 310 and the objective optical system 220 toward the front of the distance measuring device 10 as the light beam B 3 .
  • Signal light projected as rays B 3 is projected to the object of distance measurement that is collimated by the user.
  • the spread of the projected signal light may be set to about ⁇ 0.05 °, for example.
  • An optical member that changes the focal length of the objective optical system 220 may be provided as a part of the objective optical system 220 or in addition to the objective optical system 220. As a result, a clearer image can be observed in the collimation unit 100, and an object to be measured can be selected with high accuracy by reducing the beam diameter of the signal light.
  • the correction member 310 transmits the light beam A 2 incident on the inside of the distance measuring device 10 and the light beam B 2 emitted from the distance measuring device 10 in the vicinity of the objective optical system 220.
  • the optical axis of the correction member 310 is displaced by being driven by the driving unit 320, the optical paths of the light beams A 2 and B 2 are displaced, and the propagation directions thereof are changed.
  • the image for the user to observe through the collimating section 100 is displaced.
  • the distance measuring device 10 is displaced, the blurring of the image observed by the user can be stopped by appropriately displacing the correction member 310.
  • the parallax between the optical system of the light transmitting unit 200 and the optical diameter of the light receiving unit 400 is corrected by appropriately displacing the correction member 310 according to the distance from the distance measuring device 10 to the object to be measured. it can.
  • the direction of propagation of the light beam B 2 is displaced when the optical axis of the correcting member 310 is displaced, the direction of propagation of the light beam B 3 external to the projected signal light is displaced. Therefore, when the distance measuring device 10 is displaced, the signal light irradiation target can be maintained by appropriately displacing the correction member 310.
  • the light receiving unit 400 includes an objective optical system 410, a band transmission filter 420, and a light receiving element 430 to form a light receiving optical system.
  • the objective optical system 410 of the light receiving unit 400 has an optical axis different from that of the objective optical system 220 of the light transmitting unit 200.
  • a band transmission filter 420 and a light receiving element 430 are sequentially arranged behind the objective optical system 410.
  • the band transmission filter 420 has a characteristic of transmitting light in a narrow band including signal light and blocking or attenuating light in other bands.
  • the light receiving element 430 includes a photoelectric conversion element such as a photodiode or a phototransistor having sensitivity to a band of signal light. Thereby, the light receiving element 430 detects the incident signal light and generates an electrical signal corresponding to the detected signal light.
  • the light beam B 1 reflected or scattered from the object located in front of the distance measuring device 10 enters the objective optical system of the light receiving unit 400.
  • the light beam B 1 propagates backward as the light beam B 2 through the distance measuring device 10, passes through the band-pass filter 420, and is received by the light receiving element 430.
  • the light receiving element 430 detects the signal light included in the incident light beams B 1 and B 2 with a high S / N ratio and generates an electrical signal.
  • the electric signal generated by the light receiving element 430 is input to the distance measuring unit 500.
  • the light receiving area of the light receiving element 430 is smaller from the viewpoint of eliminating the influence of background light in detecting signal light.
  • An optical member that changes the focal length of the optical system may be provided as a part of the objective optical system 410 or in addition to the objective optical system 410. Thereby, a small spot light can be received by the light receiving element 430 by reducing the beam diameter of the received signal light.
  • the distance measuring unit 500 includes a clock unit 510, a distance measuring control unit 520, and a display unit 530.
  • the clock unit 510 measures the time taken from when the light transmitting unit 200 transmits the signal light to when the signal light reflected by the object is received.
  • the ranging control unit 520 comprehensively controls the ranging operation in the ranging device 10.
  • the objects to be controlled by the distance measurement control unit 520 include the light emitting unit 210 of the light transmission unit 200 and the like.
  • the distance measurement control unit 520 calculates the distance between the distance measurement device 10 and the object based on the time measured by the clock unit 510.
  • the clock unit 510 may correct the calculation result based on environmental changes such as temperature.
  • the display unit 530 places the display image at the reticle position by a transmissive liquid crystal display panel, an organic LED display panel, or an optical system (not shown) disposed at the focal position (reticle position) of the objective optical system 220 of the light transmission unit 200.
  • a reflection type liquid crystal display panel having a guiding structure is provided, and the calculation result of the distance measurement control unit 520 such as the distance to the object is shown to the user by characters, images, and the like.
  • the display unit 530 may display the remaining battery amount, an error message, a clock, and the like in addition to the distance measurement result. The user can obtain a distance measurement result and other information while observing the object through the eyepiece optical system 110 of the collimation unit 100.
  • the display unit 530 may display a message for urging the user to hold the distance measuring device 10 when the blur amplitude or frequency detected by the blur detection unit 340 exceeds a predetermined threshold. Good. Thereby, the burden of the correction
  • FIG. 2 is a schematic diagram for optically explaining the distance measuring operation of the distance measuring device 10.
  • FIG. 2 shows a case where the object 20 located at a position sufficiently away from the distance measuring device 10 is measured by the distance measuring device 10 in the horizontal state.
  • the propagation direction of the signal light emitted from the light transmitting unit 200 toward the object 20 is described as the Y direction.
  • the direction perpendicular to the Y direction on the paper surface, the direction from the bottom to the top on the paper surface is the Z direction, and the direction from the front to the back of the paper surface among the directions orthogonal to the paper surface is the X direction.
  • the directions opposite to the X direction, the Y direction, and the Z direction are referred to as the ( ⁇ X) direction, the ( ⁇ Y) direction, and the ( ⁇ Z) direction.
  • a user who uses the distance measuring device 10 first collimates the object 20.
  • the light ray A 1 propagating in the ( ⁇ Y) direction within the range of the expected angle of the objective optical system is a distance measuring device through the objective optical system 220 and the correction member 310.
  • 10 is incident.
  • the incident light ray A 1 propagates in the distance measuring device 10 as a light ray A 2 , and passes through the erecting prism 130, reticle plate 120, and eyepiece optical system 110 from the rear end of the distance measuring device 10 in the ( ⁇ Y) direction in the figure. Is injected into.
  • a user using the distance measuring device 10 collimates the object 20 by aligning the reticle with the image of the object 20 observed through the eyepiece optical system 110. Thereby, the signal light projected as the light beam B 3 propagating in the Y direction from the light transmitting unit 200 to the front of the distance measuring device 10 is in a state of being irradiated onto the object 20. If the signal light is projected onto the object 20, the signal light reflected on the object 20 as ray C 1, (- Y) propagating in a direction.
  • the distance measuring device 10 a part of the light beam C 1 propagating within the expected angle of the light receiving unit 400 enters the distance measuring device 10 from the objective optical system 410.
  • the prospective angle of the objective optical system 410 can be set to about ⁇ 0.35 °, for example.
  • the band including the signal light is transmitted through the band transmission filter 420 and is incident on the light receiving element 430.
  • the light beam A 2 is detected by forming a spot image at the approximate center of the light receiving surface of the light receiving element 430.
  • the distance measuring unit 500 of the distance measuring device 10 was calculated based on the propagation time of the signal light, to display the distance D L from the distance measuring device 10 to the object 20 towards the user.
  • FIG. 3 is a flowchart showing an example of the procedure of the distance measuring operation in the distance measuring device 10.
  • the ranging control unit 520 first instructs the light emitting unit 210 to emit light (step S101). Thereby, the signal light is projected onto the object through the light transmitting unit 200.
  • the light transmitting unit 200 may repeatedly project pulsed signal light with a period longer than the propagation time until the light receiving unit 400 receives the reflected light. Thereby, even if the reflected light from the object cannot be received for some reason, it can be retried immediately.
  • the distance measurement control unit 520 determines whether or not the light receiving unit 400 has received the signal light (step S102).
  • step S102 the time taken from the light emitting unit 210 emitting the signal light to the clock unit 510 until the light receiving element 430 detects the signal light. Is measured (step S103), and then the propagation distance of the signal light is calculated (step S104).
  • the distance measurement control unit 520 displays the distance calculated by the clock unit 510 on the display unit 530 (step S105).
  • the clock unit 510 may detect the inclination of the distance measuring device 10 and convert a calculation result based on the measurement into a horizontal distance, a height difference, or the like.
  • step S102 when the light receiving unit 400 cannot receive the signal light in step S102 (step S102: NO), the distance measurement control unit 520 increments the number of times of instructing the light emitting unit 210 to emit light (step S106). Then, it is determined whether or not the number of times has reached a predetermined number (step S107).
  • step S107: YES If it is determined that the number of distance measurement trials has reached the predetermined number (step S107: YES), the distance measurement control unit 520 stops the distance measurement operation and the display unit 530 indicates that the distance measurement cannot be performed. Display. On the other hand, when it is determined that the number of distance measurement trials has not reached the predetermined number (step S107: NO), the distance measurement control unit 520 repeats the series of distance measurement operations from step S101 again. Thus, the distance measuring device 10 can complete the distance measuring operation with high probability.
  • the correction unit 300 includes a shake detection unit 340 and a correction control unit 330 in addition to the correction member 310 and the drive unit 320.
  • the blur detection unit 340 includes a plurality of angular velocity sensors whose detection directions intersect each other.
  • the plurality of angular velocity sensors are arranged in a direction in which pitching and yawing of the distance measuring device 10 are detected.
  • Each angular velocity sensor outputs a signal corresponding to the direction and amount of displacement when the distance measuring device 10 is displaced.
  • the correction control unit 330 periodically refers to the output of the blur detection unit 340 to determine the displacement direction and the displacement amount of the correction member 310 that cancels the image blur generated in the collimation unit 100 due to the displacement of the distance measuring device 10. calculate. In addition, the correction control unit 330 transmits the calculated displacement direction and displacement amount to the drive unit 320 to drive the correction member 310.
  • the driving unit 320 displaces the correction member 310 in a direction intersecting the optical axis based on a command received from the correction control unit 330. Thereby, image blurring in the collimation unit 100 is suppressed and signal light is prevented from deviating from the object.
  • the correction control unit 330 acquires the displacement amount from the correction member 310 and feedback-controls the drive amount of the correction member 310. As a result, the position of the correction member 310 can be accurately controlled even when a disturbance such as impact or vibration is applied.
  • amendment part 300 may always perform correction
  • FIG. The fact that the user is using the distance measuring device 10 may detect, for example, the eyes of the user looking through the eyepiece optical system 110 and turn the correction unit 300 on / off. Further, the correction unit 300 may start the operation when the user operates a switch or the like. Further, the operation of the correction unit 300 may be stopped when there is no user operation beyond a predetermined time.
  • FIG. 4 is a schematic diagram for optically explaining the correction operation of the correction unit 300 in the distance measuring device 10.
  • the distance measuring device 10 rotates clockwise from the state shown in FIG. 2 to produce an inclination that forms an angle (+ ⁇ 0 ) with respect to the horizontal plane H.
  • the front end of the distance measuring device 10 is displaced in the Z direction, and the optical axis of the objective optical system 220 points upward in the drawing of the object 20.
  • the blur detection unit 340 detects the rotation of the distance measuring device 10, and the driving unit 320 displaces the correction member 310 in the Z direction.
  • the light beam A 1 that has propagated horizontally in the ( ⁇ Y) direction from the object 20 toward the distance measuring device 10 is converted into a light beam A 2 having the same inclination as the inclination of the distance measuring device 10.
  • the image of the object 20 formed on the eyepiece optical system 110 is not displaced.
  • the optical path of the signal light beam B 2 tilted together with the distance measuring device 10 inside the distance measuring device 10 is corrected horizontally by the correction member 310.
  • the light beam B 3 of the signal light emitted from the distance measuring device 10 and propagating in the Y direction is still projected onto the object 20.
  • the signal light projected on the object 20 is reflected by the object 20.
  • the light beam C 1 included in the expected angle of the light receiving unit 400 is incident on the distance measuring device 10 from the light receiving unit 400 and propagates in the ( ⁇ Y) direction as a light beam C 2 .
  • Light C 2 is eventually detected in the light receiving element 430, the distance measurement unit 500 displays toward the distance D L calculated based on the propagation time of the signal light to a user.
  • FIG. 5 is a schematic diagram for optically explaining another correction operation of the correction unit 300 in the distance measuring device 10.
  • the distance measuring device 10 rotates counterclockwise in the drawing from the state shown in FIG. 2, and has an inclination that forms an angle ( ⁇ 0 ) with respect to the horizontal plane H.
  • the front end of the distance measuring device 10 is displaced in the ( ⁇ Z) direction, and the optical axis of the objective optical system 220 indicates the lower side of the object 20 in the drawing.
  • the blur detection unit 340 detects the rotation of the distance measuring device 10, and the drive unit 320 displaces the correction member 310 in the ( ⁇ Z) direction.
  • the light beam A 1 that has propagated horizontally in the ( ⁇ Y) direction from the object 20 toward the distance measuring device 10 is converted into a light beam A 2 having the same inclination as the inclination of the distance measuring device 10.
  • the image of the object 20 formed on the eyepiece optical system 110 is not displaced.
  • the optical path of the signal light beam B 2 tilted together with the distance measuring device 10 inside the distance measuring device 10 is corrected horizontally by the correction member 310.
  • the light beam B 3 of the signal light emitted from the distance measuring device 10 and propagating in the Y direction is still projected onto the object 20.
  • the signal light projected on the object 20 is reflected by the object 20.
  • the light beam C 1 included in the expected angle of the light receiving unit 400 is incident on the distance measuring device 10 from the light receiving unit 400 and propagates in the ( ⁇ Y) direction as a light beam C 2 .
  • Light C 2 is eventually detected in the light receiving element 430, the distance measurement unit 500 displays toward the distance D L calculated based on the propagation time of the signal light to a user.
  • the optical path of the light beam A 2 propagating through the distance measuring device 10 is corrected by the correction unit 300.
  • the image of the object 20 observed by the user from the collimation unit 100 is not displaced.
  • the optical path of the light beam B 3 of the signal light projected by the light transmitting unit 200 toward the object 20 is also corrected horizontally and continuously projected onto the object 20. Therefore, even if a displacement due to a user's hand shake or the like occurs, the object 20 can be easily collimated to perform distance measurement.
  • the correction unit 300 can similarly correct the image shake.
  • the driving unit 320 displaces the correction member 310 in the X / ⁇ X direction perpendicular to the paper surface, the correction unit 300 can also correct the blur in the X / ⁇ X direction of the distance measuring device 13.
  • FIG. 6 is a diagram schematically showing a spot image of signal light formed on the light receiving element 430. As described with reference to FIG. 2, when the distance measuring device 10 is in a horizontal state, the spot image 432 formed in the light receiving region 431 of the light receiving element 430 by the signal light reflected by the object 20 is Located in the approximate center.
  • the distance measuring device 10 when the upward displacement as shown in FIG. 4, the optical path of the light beam B 3 of the signal light is projected onto the object 20 are still horizontally maintained. Therefore, the light beam C 2 incident on the light receiving element 430 also propagates in the distance measuring apparatus 10 substantially horizontally, reflecting the horizontal optical path of the light beam B 3 .
  • the light receiving element 430 that receives the light beam C 2 is displaced downward with the inclination of the distance measuring device 10. For this reason, the light ray C 2 forms a spot image 434 at an offset position on the upper end side in the light receiving region 431 of the light receiving element 430.
  • the light ray C 2 incident on the light receiving element 430 propagates in the distance measuring device 10 substantially horizontally.
  • the light receiving element 430 that receives the light beam C 2 is displaced upward with the inclination of the distance measuring device 10. For this reason, the light beam C 2 forms a spot image 436 at a biased position on the lower end side in the light receiving region 431 of the light receiving element 430.
  • the correction unit 300 performs the correction operation, the position where the signal light forms a spot image in the light receiving element 430 changes.
  • the correction range by the correction unit 300 is limited to a range in which the light receiving element 430 can detect the signal light. Thereby, even when the correction unit 300 is operated, the state in which the distance measuring device 10 can execute the distance measuring operation is continued.
  • FIG. 7 is a schematic diagram for explaining conditions regarding the range in which the signal light used for ranging is displaced.
  • FIG. 7 is a diagram showing a relative relationship between the light receiving range, the irradiation range, and the like, and does not show the sizes of the light receiving range and the irradiation range.
  • the image stabilization angle indicating the range in which the signal light is displaced by the correction operation is represented by ⁇ v
  • the light receiving angle indicating the light receiving range of the light receiving element 430 is represented by ⁇ R
  • the irradiation range of the signal light is represented by ⁇ L. Show the relationship.
  • the correction unit 300 performs the correction operation so that the optical path of the signal light is displaced within a range that satisfies at least the above-described Expression 2.
  • the correction unit 300 displaces the optical path of the signal light within a range that satisfies the above formula 1, since the high signal intensity is detected from the light receiving element 430, the ranging operation is reliably performed.
  • the optical path of the signal light may be displaced between the condition of the above expression 2 and the condition of the above expression 1, for example, a range in which the light receiving element 430 detects half of the total signal light intensity.
  • the range in which the correction unit 300 displaces the signal light may be determined based on the signal intensity of the signal light detected by the light receiving element 430.
  • the center of the image stabilization angle ⁇ v indicating the range in which the signal light is displaced by the correction operation, and the light reception It is preferable to perform the image stabilization operation so that the center of the light receiving angle ⁇ R indicating the light receiving range of the element 430 coincides.
  • the correction range can be limited by restricting the amount of displacement of the correction member 310, for example.
  • the displacement amount of the correction member 310 may regulate the range of the command of the drive unit 320 generated by the correction control unit 330.
  • the driving unit 320 or the correction member 310 may be provided with mechanical or electrical restrictions.
  • the correction control unit 330 may execute a process of limiting the detection result detected by the shake detection unit 340. For example, when high detection accuracy is required according to the application of the distance measuring device 10, the size of the shake detected by the shake detection unit 340 is limited, and the resources of the shake detection unit 340 are allocated to the detection resolution. Good. In this case, the blur detection unit 340 does not detect a blur amount exceeding a predetermined range.
  • the correction control unit 330 may lower the resolution of the shake detection unit 340 when detecting a shake. Further, the correction control unit 330 restricts the resolution of the blur detection unit 340 to be high in the range where the blur amount to be detected is small and to decrease the resolution of the blur detection unit 340 as the blur amount to be detected increases. Also good.
  • the correction unit 300 when the correction unit 300 performs the correction operation, the spot image of the signal light is shifted in the light receiving region 431 of the light receiving element 430. Therefore, in the distance measuring apparatus 10 including the correction unit 300, it is preferable to leave a margin that allows a transition when the correction operation is performed around the spot image when the correction operation is not performed. From such a viewpoint, when the calibration unit 600 calibrates the distance measurement range, it is preferable to calibrate in consideration of a margin due to the correction operation.
  • the distance measuring device 10 has a reflecting surface orthogonal to the optical axis of the signal light as a collimation target, and the spot image of the signal light when the correction member 310 is positioned at the center of the moving range. Is preferably adjusted so as to be positioned at the center of the light receiving region 431 of the light receiving element 430. Thereby, the correction range by the correction unit 300 can be expanded isotropically.
  • the correction control unit 330 may stop driving the correction member 310 by the driving unit 320 and interrupt the correction operation until the shake detected by the shake detection unit 340 is settled.
  • the blur detection unit 340 detects that the blur exceeding the limit that can be corrected is settled, the correction for the blur may be resumed.
  • the drive unit 320 is not driving the correction member 310, the displacement of the correction member 310 may be locked electrically or mechanically. Further, when the correction member 310 is locked, the position of the correction member 310 may be forcibly returned to the center of the movement range.
  • the correction control unit 330 may start the correction operation with the position of the correction member 310 when the signal light spot image 434 is formed at the center of the light receiving region 431 as the initial position of the correction member 310.
  • the initial position of the correction member 310 may be adjusted when the distance measuring device 10 is shipped, or may be adjusted immediately before starting the distance measurement.
  • amendment part 300 can perform correction
  • the drive unit 320 also includes an actuator that displaces the correction member 310 in the X / ⁇ X direction perpendicular to the paper surface.
  • the correction unit 300 can also correct the blur in the X / ⁇ X direction of the distance measuring device 10.
  • the displacement of the distance measuring device 10 in any direction can be corrected by combining the correction in the Z / ⁇ Z direction and the correction in the X / ⁇ X direction.
  • the correction unit 300 may perform another correction by providing another drive unit that swings the correction member 310 and swinging the correction member 310.
  • the shape of the light receiving region 431 of the light receiving element 430 is not limited to a rectangle. Rather, considering that the correction range by the correction unit 300 is defined as the shape of the light receiving region 431, the shape of the light receiving region 431 may be a circle having a uniform interval from the center to the edge. Thereby, the correction
  • FIG. 8 is a schematic diagram for explaining another correction operation of the correction unit 300 in the distance measuring device 10.
  • the distance measuring device 10 further rotates counterclockwise in the drawing from the state shown in FIG. 6 to produce an inclination that forms a larger angle ( ⁇ 1 ) with respect to the horizontal plane H.
  • ⁇ 1 the angle that forms a larger angle
  • the front end of the distance measuring device 10 is displaced in the ( ⁇ Z) direction, and the optical axis of the objective optical system 220 points downward in the drawing of the object 20.
  • the blur detection unit 340 detects the rotation of the distance measuring device 10, and the drive unit 320 displaces the correction member 310 in the ( ⁇ Z) direction.
  • the light ray A 1 that propagates horizontally in the ( ⁇ Y) direction from the object 20 toward the distance measuring device 10 is inclined to the same side as the inclination of the distance measuring device 10.
  • the position of the spot image formed by the signal light in the light receiving element 430 reaches the end of the light receiving region 431.
  • the correction unit 300 in the distance measuring device 10 performs a correction operation in a range where the light receiving element 430 receives the signal light. Therefore, when the spot image of the signal light reaches the end of the light receiving region 431, the displacement of the correction member 310 is stopped. Therefore, the image of the object 20 formed on the eyepiece optical system 110 is displaced upward. Along with this, the projection position of the signal light projected as the light beam B 3 is also displaced downward with respect to the object 20.
  • the light receiving element 430 continues to receive a signal light reflected by a different position of the target object 20 or by the different target object 20 and continue the distance measurement possible state.
  • the distance measuring device 10 includes the correction unit 300, the distance measuring function is maintained even when a large displacement occurs.
  • the distance measurement control unit 520 may notify the outside through the display unit 530 when the correction amount calculated by the clock unit 510 exceeds the movement range of the correction member 310. Thereby, the user is encouraged to hold the distance measuring device 10 stably, and the burden on the correction unit 300 can be reduced.
  • FIG. 9 is a flowchart showing a control procedure of the correction control unit 330 that controls the operation of the correction unit 300 as described above.
  • the correction control unit 330 determines whether or not the blur detection unit 340 has detected the blur of the distance measuring device 10 (step S201).
  • the correction control unit 330 monitors whether or not the shake detection unit 340 has detected a shake (step S201) and waits (step S201: NO).
  • the correction control unit 330 calculates a driving amount of the correction member 310 that can cancel the detected shake, that is, a correction amount. (Step S202).
  • the correction control unit 330 determines whether the correction member 310 is not displaced beyond the correction limit (step S203).
  • the correction limit means a limit where the spot light 432, 434, 436 formed by the signal light in the light receiving unit 400 is deviated from the light receiving region of the light receiving element 430 when the spot image 432, 434, 436 is moved by the movement of the correction member 310.
  • the anti-vibration angle indicating the range in which the signal light is displaced is represented by ⁇ v
  • the light receiving angle indicating the light receiving range of the light receiving element 430 is represented by ⁇ R
  • the irradiation range of the signal light is represented by ⁇ L.
  • the correction limit is not a limit at which the spot images 432, 434, and 436 completely go out of the light receiving region of the light receiving element 430, but as shown in Equation 2, You may determine in the position where a part of spot image remains in a light reception area
  • a predetermined value may be held in the correction control unit 330.
  • the correction limit value may be stored in a storage unit that can be referred to by the correction control unit 330.
  • step S203 If it is found in step S203 that the correction member 310 remains within the correction limit even if the correction member 310 is moved by the calculated correction amount (step S203: YES), the correction control unit 330 will correct the correction member 310 according to the calculated correction amount. Is transmitted to the drive unit 320 (step S204). Thereby, the blur detected by the blur detection unit 340 is corrected by the correction member 310, and image blur is prevented in the image of the object 20 observed through the eyepiece optical system 110.
  • the signal light emitted from the light transmitting unit 200 does not deviate from the target 20 that is initially collimated. Furthermore, since the signal light reflected by the object 20 is maintained in the light receiving element 430, the distance measuring unit 500 can measure the distance from the distance measuring device 10 to the object 20. Will continue.
  • step S203 NO
  • the correction control unit 330 stops the blur correction by the correction member 310.
  • the correction member 310 is returned to the initial position (step S205).
  • image blurring of the object 20 occurs in the collimation unit 100 and signal light may be projected onto something other than the object 20.
  • the state in which the distance measuring device 10 can perform distance measurement is maintained.
  • the correction control unit 330 adjusts the time interval when the shake detection unit 340 periodically detects the shake of the distance measuring device 10 (step S206). That is, when the correction unit 300 can correct the shake of the distance measuring device 10 by a series of correction operations from step S201 to step S204, for example, the detection interval of shake is made longer and the process from step S202 to step S204 is performed. The number of correction operations may be reduced. Thereby, the power consumption by the correction unit 300 can be suppressed.
  • the correction operation per unit time from step S202 to step S203 is shortened by reducing the blur detection interval.
  • the number of times may be increased.
  • the adjustment of the interval in step S206 includes the case where the correction interval is not changed.
  • the correction control unit 330 determines whether or not the instruction for causing the correction unit 300 to perform the correction operation is still valid (step S207). As a result, when the instruction for the correction operation is still valid (step S207: YES), the correction control unit 330 returns to step S201 again and monitors whether or not the blur detection unit 340 has detected the blur. If it is determined in step S207 that the correction operation instruction is invalid (step S207: NO), the correction control unit 330 ends the operation of the correction unit 300.
  • the correction unit 300 in step S203 determines the correction limit with reference to a value prepared in advance.
  • an image sensor may be used as the light receiving element 430, and the operation of the driving unit 320 may be limited when the position of the spot image of the signal light approaches the edge of the light receiving region 431. Thereby, the correction limit can be automatically detected without lowering the received light intensity of the signal light by the light receiving element 430.
  • FIG. 10 is a diagram illustrating an example of a control method of the correction unit 300, and is a schematic diagram illustrating a locus of a spot of the signal light B 3 irradiated on the object 20 while being displaced by the correction unit 300.
  • FIG. 11 is a schematic diagram for explaining another correction operation by the correction unit 300.
  • the distance measuring device 10 is in a horizontal state as in the state shown in FIG.
  • the distance measuring device 10 is close to the short-distance D S with respect to the object 20, a parallax occurs that can not be ignored between the light transmission unit 200 and the light receiving portion 400 of the distance measuring device 10. Therefore, the incident angle of the light ray C 1 is increased with respect to the light receiving portion 400, the incident position of the light beam C 2 is displaced with respect to the light receiving element 430.
  • the correction unit 300 can displace the correction member 310 within a range that does not exceed the correction limit. Therefore, by displacing the correcting member 310, changing the direction of the optical path in the beam B 3 of the signal light to be projected in the Y direction toward the target 20, due to the disparity between the light transmitting unit 200 and the light receiving portion 400 It is possible to compensate for a decrease in received light intensity of signal light.
  • the optical path of the light beam B 3 in (-Z) direction Displace when the distance D S from the distance measuring device 10 to the object 20 is short, for example, by an instruction to switch the user ranging scope by the switch operation or the like, the optical path of the light beam B 3 in (-Z) direction Displace. Thereby, the parallax between the light transmission part 200 and the light-receiving part 400 can be relieved, and the light reception efficiency of the signal light in the light receiving element 430 can be improved.
  • the correction control unit 330 may increase the amount of displacement of the correction member 310 when the object 20 approaches the distance measuring device 10 exceeding a predetermined threshold.
  • the correction unit 300 by changing the optical path of the light beam B 3 of the signal light by the correction unit 300, the signal light is reliably received by the light receiving element 430, so that the area of the light receiving region 431 of the light receiving element 430 can be reduced. As a result, the signal-to-noise ratio of the signal light can be increased and the component cost of the light receiving element 430 can be reduced.
  • the correction member 310 it is preferable to move the correction member 310 to a position where the signal light spot image 434 is formed at the center of the light receiving region 431 before starting correction according to the distance to the object 20. Thereby, the correction operation can be executed in a wide correction range by using the entire light receiving region 431 of the light receiving element 430.
  • FIG. 12 is a schematic diagram for explaining parallax correction in the distance measuring device 10.
  • the objective optical system 220 of the light transmitting unit 200 and the objective optical system 410 of the light receiving unit 400 are vertically arranged in front of the distance measuring device 10. .
  • FIG. 13 is a schematic diagram for explaining the parallax correction effect when the correction unit 300 is arranged in the light transmission unit 200 (corresponding to the configurations of FIGS. 1, 2, 4, 5, 8, and 11).
  • the signal light is a parallel beam and does not spread.
  • “d” indicates an inter-axis distance between the optical axis of the optical system of the light transmitting unit 200 and the optical axis of the optical system of the light receiving unit 400.
  • “Ds” indicates the distance between the distance measuring device 10 and the object 20.
  • the optical path of the signal light in the light transmitting section 200 and the optical path of the signal light in the light receiving section 400 are parallel to each other.
  • the optical path of the signal light is displaced in the light transmission unit 200, and the optical path of the signal light is tilted to the correction angle ⁇ a.
  • the shortest distance Ds at which the signal light can be received by the light receiving unit 400 can be expressed by the following Expression 4.
  • Ds d / (tan ⁇ R + tan ⁇ a) (Formula 4)
  • the inter-axis distance d between the optical axis of the light transmitting unit 200 and the optical axis of the light receiving unit 400 is 35 mm
  • the spread angle ⁇ L of the light source light is 0.05 °
  • the light receiving angle ⁇ R of the light receiving element is 0.5 °.
  • the inclination ⁇ a of the optical path by the correction member 310 is about 0.46 °. Therefore, the parallax can be corrected by shifting the correction member 310 so that ⁇ a is inclined by 0.46 °.
  • a lens position that tilts the optical path by ⁇ a is set as a reference position, and the lens driving range may be limited so as to be symmetric with respect to the reference position.
  • FIG. 14 is a schematic diagram for explaining the parallax correction effect when the correction unit 300 is arranged in the light receiving unit 400 (corresponding to the configurations of FIGS. 18 and 19). As shown in the figure, even when the correction unit 300 is arranged in the light receiving unit, the expression is similar to the case shown in FIG. 15 except that the direction in which the correction member 310 moves when performing parallax correction is reversed. 7 is established.
  • FIG. 15 is a schematic diagram for explaining parallax correction in the distance measuring device 10, and shows a case where the light transmitting unit 200 and the light receiving unit 400 are arranged horizontally. Also in the illustrated case, except that the moving direction of the correction member 310 when correcting the parallax is horizontal, Expression 7 is established as in the case shown in FIGS. 13 and 14, and the light transmitting unit 200 In addition, the parallax can be corrected between the light receiving units 400.
  • a prism or a variable apex angle prism that can change the angle formed by the incident surface and the exit surface can be used. Furthermore, the position of the light emitting unit 210 or the position of the light receiving element 430 may be shifted according to the amount of parallax, that is, the measurement distance.
  • the user may instruct to switch the distance measurement range by a switch operation or the like.
  • the correction member 310 is in a direction in which reflected light from the object 20 at a closer distance can be received.
  • a distance measurement operation may be performed while scanning, and distance measurement may be performed at a position where the received light intensity increases.
  • the drive center of the correction member 310 by the correction control unit 330 of the correction unit 300 matches the center of the light receiving unit 400. It is preferable to set so as to.
  • At least the correction control unit 330 of the correction unit 300 uses the correction member 310 as the light of the light transmission unit 200 and the light reception unit 400. It is preferable to displace symmetrically with respect to a vertical line connecting the axes.
  • a light emitting surface of a light emitting element such as a light emitting diode forming the light emitting unit 210 has a finite area. For this reason, even when parallel light is transmitted through the light transmission optical system, it has a certain spread angle, that is, a field angle determined by the size of the light emitting surface and the focal length of the light transmission optical system. Therefore, if the parallax is within the range of the spread angle of the signal light beam, the shift between the collimation position and the signal light irradiation position does not cause a problem in practice.
  • the light emitting surface of the light emitting element generally has a linear shape or a rectangular shape, so that the beam spread angle is not rotationally symmetric even if it is parallel light by the optical system, and the light spreads greatly within one surface.
  • the angle is a small spread angle in a plane perpendicular to the angle. Therefore, the allowable parallax is considered in the plane on the side where the spread is small.
  • the signal light is input to the light receiving element 430.
  • the incident condition can be expressed as in Equation 8 below.
  • “kd” is a vibration isolation coefficient for the d line of the correction member 310
  • “kL” is a vibration isolation coefficient for the signal light of the correction member 310
  • “a” is the length of the minor axis of the light emitting surface of the light emitting unit 210
  • “S” represents the maximum amount of eccentricity of the correction member 310.
  • the image stabilization coefficient can be expressed as Equation 9 below by using the magnification ⁇ v of the correction member 310 and the overall magnification of the lens group on the image side of the correction member 310 as ⁇ r.
  • Anti-vibration coefficient
  • the image plane movement amount of the collimation system is kd ⁇ s, where kd is the anti-vibration coefficient of the correction member 310 with respect to the d line, and s is the eccentricity amount of the correction member 310.
  • the image stabilization coefficient for the transmission wavelength of the signal light is kL
  • the image plane movement amount is kL ⁇ s.
  • ⁇ v is the image stabilization coefficient kd for the d line of the correction member 310 and the maximum camera shake correction angle of the correction member 310.
  • the vibration-proof coefficient kd in the said Formula 11 exceeds said upper limit, the sensitivity of the correction
  • FIG. 16 is a schematic cross-sectional view of the distance measuring device 11 including another correction unit 301.
  • the distance measuring device 11 has the same structure as the distance measuring device 10 shown in FIG. 1 except for the structure of the correction unit 301 described below. Therefore, common elements are denoted by the same reference numerals, and redundant description is omitted.
  • the correction unit 301 of the distance measuring apparatus 11 includes a correction member 312 and a drive unit 322 arranged in the light receiving unit 400 in addition to the correction member 310 and the drive unit 320 arranged in the light transmission unit 200.
  • the correction member 312 of the light receiving unit 400 includes a lens that forms part of the optical system of the light receiving unit 400.
  • the drive unit 322 displaces the correction member 312 in a direction that intersects the optical axis of the correction member 312. Thereby, the optical path of the light beam C 2 propagating in the ( ⁇ Y) direction through the distance measuring device 10 can be changed, and the position where the spot image of the signal light is formed in the light receiving element 430 can be changed.
  • the drive unit 322 may be controlled in common by a correction control unit 330 that controls the drive unit 320.
  • the correction member 312 can be displaced in synchronization with the correction member 310.
  • “displaced synchronously” means that the pair of correction members 310 and 312 are moved simultaneously, and that the change in the optical path caused by the movement of the correction members 310 and 312 is also supported. To do.
  • a lens or a prism can be used as the auxiliary correction member 312.
  • a variable apex angle prism that can change the angle formed by the entrance surface and the exit surface can be used.
  • FIG. 17 is a schematic diagram for explaining the correction operation of the correction unit 301.
  • the distance measuring device 10 rotates clockwise from the state shown in FIG. 2 to produce an inclination that forms an angle (+ ⁇ 0 ) with respect to the horizontal plane H. Thereby, the front end of the distance measuring device 10 is displaced in the Z direction, and the optical axis of the objective optical system 220 points upward in the drawing of the object 20.
  • the blur detection unit 340 detects the rotation of the distance measuring device 10, and the driving unit 320 displaces the correction member 310 in the Z direction.
  • the light beam A 1 that has propagated horizontally in the ( ⁇ Y) direction from the object 20 toward the distance measuring device 10 is converted into a light beam A 2 having the same inclination as the inclination of the distance measuring device 10. Propagate inside. Therefore, the image blur in the collimation unit 100 is corrected. Further, the projection direction of the signal light projected from the objective optical system 220 is also corrected and does not change.
  • the optical path of the signal light beam B 2 tilted together with the distance measuring device 10 inside the distance measuring device 10 is corrected horizontally by the correction member 310.
  • the light beam B 3 of the signal light emitted from the distance measuring device 10 and propagating in the Y direction is still projected onto the object 20.
  • Signal light projected onto the object 20 is reflected by the object 20, enters the light receiving portion 400 in part as ray C 1, after being corrected propagation path by correcting member 312, measured as ray C 2 It propagates in the distance device 10.
  • the corrected optical path of the light beam C 2 is parallel to the light beam A 2 in the collimation unit 100 and the light beam B 2 in the light transmission unit 200, and the light beam B 2 is a spot image at the approximate center of the light receiving region 431 of the light receiving element 430.
  • the distance measuring unit 500 displays the distance calculated based on the propagation time of the signal light toward the user.
  • the propagation optical path of the light beam C 2 in the light receiving unit 400 is parallel to the light beam A 2 in the collimation unit 100 and the light beam B 2 in the light transmission unit 200 by correction by the correction unit 301. It is corrected. Therefore, in the same manner that the displacement of the image of the collimation unit 100 is corrected by the correction member 310, and in the same way as the projection direction of the signal light in the light transmitting unit 200 is corrected, in the light receiving unit 400, The position of the spot image of the signal light in the light receiving element 430 is corrected. Therefore, the correction range of the correction unit 301 is not limited by the light receiving range of the signal light by the light receiving element 430.
  • the correction member 310 of the light transmitting unit 200 and the correction member 312 of the light receiving unit 400 are displaced in synchronization.
  • the correction members 310 and 312 may be controlled individually without fixing the correction members 310 and 312 in a period in which one of the correction members 310 and 312 is displaced.
  • the correction member 312 on the light receiving unit 400 side is driven when the correction operation is initially performed by the correction member 310 on the light transmitting unit 200 side. May be.
  • the same correction range as in the above example can be achieved, and power can be saved as much as the displacement of one correction member 312 is reduced.
  • the parallax correction is performed using the correction member 312 and the driving unit 322 on the light receiving unit 400 side.
  • the correction member 312 on the light receiving unit 400 side is not displaced with respect to camera shake correction
  • the correction member 310 on the light transmission unit 200 side is not displaced with respect to parallax correction.
  • the shake correction is performed using the correction member 310 and the drive unit 320 on the light transmission unit 200 side in the stage of collimating the object 20, and the user performs
  • the camera shake correction may be stopped, and the parallax correction may be performed using the correction member 312 and the driving unit 322 on the light receiving unit 400 side.
  • FIG. 18 is a schematic cross-sectional view of the distance measuring device 12 including another correction unit 302.
  • the distance measuring device 12 has the same structure as the distance measuring device 10 shown in FIG. 1 and the distance measuring device 11 shown in FIG. 16 except for the structure of the correction unit 302 described below. Therefore, common elements are denoted by the same reference numerals, and redundant description is omitted.
  • the correction unit 302 of the distance measuring device 12 does not include the correction member 310 in the collimation unit 100 and the light transmission unit 200, but includes a correction member 312 and a driving unit 322 arranged in the light receiving unit 400.
  • the correction member 312 includes a lens that forms part of an afocal optical system included in the light receiving unit 400.
  • the drive unit 322 displaces the correction member 312 in a direction that intersects the optical axis of the correction member 312. Thereby, the optical path of the light beam C 2 propagating in the ( ⁇ Y) direction through the distance measuring device 10 can be changed, and the position where the spot image of the signal light is formed in the light receiving element 430 can be changed.
  • the drive unit 322 is controlled by a correction control unit 330 that refers to the output of the shake detection unit 340.
  • FIG. 19 is a schematic diagram for explaining the correction operation of the correction unit 302.
  • the distance measuring device 12 is in a horizontal state as in the state shown in FIG.
  • the object 20 is approaching the distance measuring device 10, and a disparity that cannot be ignored occurs between the light transmitting unit 200 and the light receiving unit 400 of the distance measuring device 10. Therefore, the parallax correction described in the description of FIG. 14 is performed.
  • the correcting member 312, so that the signal light is received by the light receiving element 430 it is possible to change the optical path of the light beam C 2, it is possible to reduce the area of the light receiving region 431 of the light receiving element 430 to implement. As a result, the signal-to-noise ratio of the signal light can be increased and the component cost of the light receiving element 430 can be reduced.
  • the light receiving element 430 can receive signal light over a wide range of incident angles. Therefore, it is preferable to radiate the signal light emitted from the light transmitting unit 200 at a wide angle and irradiate the signal light over a wide range including the object 20.
  • the correction unit 300 can be used for parallax correction when the distance to the object 20 is short. Furthermore, both the correction of the displacement of the distance measuring device 10 due to camera shake and the correction of the parallax due to the position of the object 20 may be executed together.
  • the correction operation by the correction units 300, 301, and 302 may be changed according to the state of the distance measuring device 10. That is, for example, during a period in which the user collimates the object 20, the correction range may be increased to make it easier to supplement the object 20.
  • the correction operation may be temporarily suppressed or stopped for the purpose of suppressing a difference in optical conditions between the light transmitting unit 200 and the light receiving unit 400. Since the time required for one distance measurement operation is short, even if the correction operation is interrupted according to the execution of the distance measurement operation, the collimating unit 100 has little influence on the image observed by the user.
  • One of the causes of the displacement of the distance measuring device 10 is a user's hand shake.
  • a single correction algorithm is not always effective. Therefore, a plurality of correction algorithms executed by the correction control unit 330 may be prepared, and the correction algorithm may be switched according to the blur pattern detected by the blur detection unit 340.
  • the correction algorithm executed by the correction control unit 330 may be switched when at least one of the amplitude and frequency of blur detected by the blur detection unit 340 exceeds a predetermined threshold. More specifically, an operation mode in which the correction range by the correction unit 300 is narrowed may be provided with emphasis on suppression of distance measurement time and power consumption.
  • the operation mode is to widen the correction range as much as possible and to display a message indicating a careful operation of the user when the correction limit is reached. May be provided.
  • the operation mode may be switched according to the user's selection, or may be switched automatically as determined by the correction control unit 330, the distance measurement control unit 520, or the like.
  • step S201 when the period during which no blur is detected continues beyond a predetermined time, the correction unit 300 or the entire distance measuring device 10 may be shifted to a state in which power consumption is suppressed.
  • the correction members 310 and 312 are provided in the objective optical systems 220 and 410.
  • a part or all of the erecting prism 130 can be used as the correction member 310.
  • a part of the eyepiece optical system 110 can also be used as the correction member 310.
  • an electronic correction member can also be used.
  • the correction units 300, 301, and 302 as described above may be provided with a switch for switching on / off so that the distance measurement device 10 can perform distance measurement without a correction operation. Thereby, when the target object 20 is located nearby and is easy to collimate, the operation of the correction units 300, 301, and 302 can be stopped at the user's will to save the power of the distance measuring device 10.
  • FIG. 20 is a schematic cross-sectional view of the distance measuring device 13.
  • the distance measuring device 13 includes a collimation unit 100, a light transmitting unit 200, a calibration unit 600, a light receiving unit 400, a distance measuring unit 500, and a correction unit 300.
  • the side on which the collimation unit 100 is disposed is the rear side of the distance measuring device 13. Further, the side facing the object of distance measurement is the front side of the distance measuring device 13.
  • the collimation unit 100 includes an eyepiece optical system 110, a reticle plate 120, and an erecting prism 130.
  • the collimation unit 100 shares the objective optical system 220 with the light transmission unit 200.
  • the collimation unit 100 shares the correction member 310 with the calibration unit 600 and the correction unit 300.
  • the rear end of the eyepiece optical system 110 is exposed on the rear end surface of the distance measuring device 13.
  • the front end of the eyepiece optical system 110 faces the rear end of the erecting prism 130 inside the distance measuring device 13.
  • the user of the distance measuring device 13 collimates the object by visually recognizing the image of the object through the eyepiece optical system 110.
  • an optical member that changes the imaging position of the eyepiece optical system 110 in the optical axis direction may be provided as a part of the eyepiece optical system 110 or in addition to the eyepiece optical system 110. Thereby, it is possible to make the user observe a clear image regardless of the distance to the object. Moreover, diopter correction can be performed according to the user's visual acuity.
  • the reticle plate 120 has a reticle formed by printing, etching or the like on a plate transparent to visible light.
  • the reticle has a collimation index having a shape such as a crosshair, a rectangular frame, or a circular frame, and is arranged in a field of view formed by the eyepiece optical system 110.
  • a transmissive liquid crystal display panel that displays a reticle as an image may be used.
  • the erecting prism 130 includes a dichroic reflecting surface 132 that reflects the visible light band and transmits the infrared band, and total reflection surfaces 134 and 136 that have a high reflectance in the infrared band in addition to the visible light band. Have.
  • the erecting prism 130 also has another reflecting surface that is not assigned a reference number, and reverses the inverted mirror image formed by the incident light beam to an erecting erect image.
  • the erecting prism 130 can be formed using a roof prism, a porro prism, or the like.
  • the light transmitting unit 200 includes a light emitting unit 210 and an objective optical system 220. Further, the light transmission unit 200 shares a part of the erecting prism 130 including the dichroic reflection surface 132 and the total reflection surface 134 with the collimation unit 100. Furthermore, as already described, the correction member 310 is shared with the calibration unit 600 and the correction unit 300.
  • the light emitting unit 210 includes a light emitting element such as a semiconductor laser as a light source, and generates pulsed signal light when the distance measuring device 13 performs a distance measuring operation.
  • the signal light is, for example, infrared light.
  • the wavelength of the signal light may be other than the visible light band, for example, ultraviolet rays.
  • the dichroic reflecting surface 132 of the erecting prism 130 reflects the visible light band and transmits the ultraviolet light band.
  • the total reflection surface 134 reflects the visible light band and the ultraviolet band.
  • the objective optical system 220 is arranged at the front end of the distance measuring device 13, and the front end face is opposed to the object to be measured.
  • the rear end face of the objective optical system 220 faces the front end face of the erecting prism 130 with the correction member 310 interposed therebetween.
  • the objective optical system 220 and the correction member 310 cooperate to form a light transmission optical system.
  • An optical member that changes the imaging position of the objective optical system 220 in the optical axis direction may be provided as a part of the objective optical system 220 or in addition to the objective optical system 220. As a result, a clearer image can be observed in the collimation unit 100, and an object to be measured can be selected with high accuracy by reducing the beam diameter of the signal light.
  • the calibration unit 600 and the correction unit 300 share the correction member 310 and the drive unit 320 with each other.
  • the correction member 310 forms an optical system together with the eyepiece optical system 110 and the objective optical system 220.
  • the drive unit 320 displaces the correction member 310 in a direction that intersects the optical axis of the correction member 310. Further, the drive unit 320 may swing the correction member 310 in the direction in which the main surface swings.
  • the correction member 310 a displacing lens or a oscillating prism can be used.
  • a variable apex angle prism that can change the apex angle formed by the incident surface and the exit surface by swinging a member that forms the entrance surface or the exit surface can also be used as the correction member 310.
  • the drive unit 320 includes an actuator such as a voice coil motor or a piezoelectric motor that can electrically control the drive amount.
  • the light receiving unit 400 includes an objective optical system 410, a band transmission filter 420, and a light receiving element 430.
  • the objective optical system 410 has an optical axis different from that of the objective optical system 220 of the light transmitting unit 200 to form a light receiving optical system.
  • a band transmission filter 420 and a light receiving element 430 are sequentially arranged behind the objective optical system 410.
  • the band transmission filter 420 has a characteristic of transmitting light in a narrow band including signal light and blocking or attenuating light in other bands.
  • the light receiving element 430 includes a photoelectric conversion element such as a photodiode or a phototransistor having sensitivity to a band of signal light. Thereby, the light receiving element 430 detects the incident signal light and generates an electrical signal corresponding to the detected signal light.
  • the light receiving area of the light receiving element 430 is smaller from the viewpoint of eliminating the influence of background light in detecting signal light.
  • an optical member that changes the imaging position of the optical system in the optical axis direction may be provided as part of the objective optical system 410 or in addition to the objective optical system 410. Thereby, a small spot light can be received by the light receiving element 430 by reducing the beam diameter of the received signal light.
  • the light ray A 1 propagating within the range of the prospective angle of the objective optical system 220. Is incident through the objective optical system 220.
  • the light ray A 1 passes through the correction member 310, propagates backward as the light ray A 2 through the distance measuring device 13, and passes through the erecting prism 130, the reticle plate 120, and the eyepiece optical system 110, and passes through the distance measuring device 13. It is emitted as light a 3 rearward. Thereby, the user can observe an erect image of the object through the eyepiece optical system 110.
  • the reticle arranged on the reticle plate 120 is superimposed on the image of the object observed by the user through the eyepiece optical system 110. Therefore, the user can collimate the object with the distance measuring device 13 by displacing the distance measuring device 13 to make the reticle coincide with the object.
  • the user of the distance measuring device 13 instructs the distance measuring device 13 to start a distance measuring operation by operating a switch such as a button provided on the distance measuring device 13, for example.
  • the light emitting unit 210 emits pulsed signal light as the light beam B 1 toward the upper surface of the erecting prism 130 in the drawing.
  • the signal light passes through the dichroic reflecting surface 132, is reflected by the total reflecting surface 134, and propagates forward in the distance measuring device 13 as the light beam B 2 .
  • the signal light is projected outside through the correction member 310 and the objective optical system 220 toward the front of the distance measuring device 13 as the light beam B 3 .
  • Signal light projected as rays B 3 is projected to the object of distance measurement that is collimated. Assuming that the distance to the object to be measured is several hundred meters, the spread of the projected signal light is, for example, about ⁇ 0.05 °.
  • the correction member 310 transmits the light beam A 2 incident on the inside of the distance measuring device 13 and the light beam B 2 emitted from the distance measuring device 13 in the vicinity of the objective optical system 220.
  • the optical axis of the correction member 310 is displaced by being driven by the driving unit 320, the optical paths of the light beams A 2 and B 2 are displaced, and the propagation directions thereof are changed.
  • the optical axis of the correcting member 310 When the optical axis of the correcting member 310 is displaced, the propagation direction of the light beam B 2 is displaced. Thus, the propagation direction of the light beam B 3 of the signal light projected to the outside is displaced. Therefore, when the distance measuring device 13 is displaced, the signal light irradiation target can be maintained by appropriately displacing the correction member 310.
  • a light beam C 1 reflected or scattered from an object positioned in front of the distance measuring device 13 is incident on the objective optical system of the light receiving unit 400.
  • the light beam C 1 propagates backward as the light beam C 2 through the distance measuring device 13, passes through the band-pass filter 420, and is received by the light receiving element 430.
  • the light receiving element 430 detects the signal light included in the incident light beams C 1 and C 2 with a high S / N ratio and generates an electrical signal.
  • the electric signal generated by the light receiving element 430 is input to the distance measuring unit 500.
  • the single drive part 320 is described in the figure, the other drive part 320 which changes the correction member 310 in the direction which cross
  • the correcting member 310 in a plane intersecting the propagation optical axis of the light beam C 2 can be displaced in two dimensions.
  • the ranging unit 500 includes a clock unit 510, a ranging control unit 520, and a display unit 530.
  • the clock unit 510 measures the time taken from when the light transmitting unit 200 transmits the signal light to when the signal light reflected by the object is received.
  • the ranging control unit 520 comprehensively controls the ranging operation in the ranging device 13.
  • the objects to be controlled by the distance measurement control unit 520 include the light emitting unit 210 of the light transmission unit 200 and the like. Further, the distance measurement control unit 520 calculates the distance between the distance measurement device 13 and the object based on the time measured by the clock unit 510.
  • the distance measuring control unit 520 may calculate a horizontal distance to the object, a height difference, and the like. Further, the clock unit 510 may correct the calculation result based on environmental changes such as temperature.
  • the display unit 530 has a liquid crystal display panel and the like, and shows the calculation results of the distance measurement control unit 520 such as the distance to the object, etc., by characters, images, and the like.
  • the display unit 530 may display the remaining battery amount, an error message, a clock, and the like in addition to the distance measurement result.
  • the display unit 530 displays a message for urging the user to hold the distance measuring device 13 when the amplitude or frequency of blur detected by the blur detection unit 340 described later exceeds a predetermined threshold. May be. Thereby, the burden of the calibration part 600 can be reduced and the power consumed by the distance measuring device 13 can be reduced.
  • the calibration unit 600 includes a calibration control unit 630, an intensity measurement unit 640, and a storage unit 650. Further, the calibration unit 600 shares the drive unit 320 with the correction unit 300.
  • the intensity measurement unit 640 refers to the output signal of the light receiving element 430 and measures the light intensity of the signal light received by the light receiving element 430. Note that the clock unit 510 of the distance measuring unit 500 detects temporal timing when the light receiving element 430 receives the signal light. On the other hand, the intensity measurement unit 640 measures whether or not a light intensity higher than a predetermined threshold value is detected, for example.
  • the calibration control unit 630 sends a command to the drive unit 320 to shift the correction member 310.
  • the calibration control unit 630 specifies the drive amount of the correction member 310 by the drive unit 320 when the light intensity measured by the intensity measurement unit 640 exceeds the threshold value. Further, the calibration control unit 630 stores the specified driving amount of the correction member 310 in the storage unit 650 and saves it.
  • the correction unit 300 that corrects the image blur generated in the collimation unit 100 and the light transmission unit 200 can be formed by using the correction member 310 and the drive unit 320 that form part of the calibration unit 600. Since the calibration operation and the distance measuring operation are not executed simultaneously, the use efficiency of parts in the distance measuring device 10 can be improved by the structure as described above.
  • FIG. 21 is a diagram schematically showing a spot image of signal light formed on the light receiving element 430.
  • the signal light reflected by the object 20 forms a spot image 432 formed on the light receiving region 431 of the light receiving element 430.
  • the position of 434 changes.
  • the spot image 432 of the signal light is formed in the drawing the upper end side of the light-receiving region 431.
  • the spot image 434 of the signal light is formed in the figure the lower end of the light-receiving region 431.
  • the signal light spot image 434 moves below the light receiving region 431 and is no longer received by the light receiving element 430. Therefore, the position at which the spot image 434 reaches the lower end of the light receiving region 431 in the figure is the distance measuring limit of the distance measuring device 13.
  • the optical system when calibrating the optical system of the distance measuring device 13, for example, when the object 20 is at the lower limit of the distance measuring range set in the distance measuring device 13, The optical system is adjusted so that the spot image 434 is positioned inside the light receiving region 431 from the lower end of the light receiving region 431 and the light receiving element 430 detects the light intensity of the signal light.
  • the light beam C 2 incident on the light receiving element 430 in the distance measuring device 13 due to diffusion on the propagation path is a spot image formed by the straight light beam C 2 as indicated by the diffusion lines 433 and 435 in the drawing. It has a larger diameter than 432,434.
  • the optical system may be adjusted in anticipation of a wider range than the range in which the spot images 432 and 434 are formed in the light receiving region 431.
  • the shape of the light receiving region 431 of the light receiving element 430 is not limited to a rectangle. Rather, considering that the correction range by the calibration unit 600 is defined as the shape of the light receiving region 431, the shape of the light receiving region 431 may be a circle having a uniform interval from the center to the edge. Thereby, the correction range by the calibration part 600 can be made equal in all directions. Further, an optical member having a positive refractive index may be provided in front of the light receiving element 430 so that the signal light ray C 2 is condensed on the light receiving element 430.
  • the manufactured distance measuring device 13 calibrates the optical system so that the signal light reflected by the object to be measured is received by the light receiving element 430 before shipment. Thereby, the distance measuring device 13 ensures the distance measurement accuracy and the distance measurement range as specified. However, even with the calibrated distance measuring device 13, the distance measuring accuracy and the distance measuring range may change due to a cause such as a change in diameter and a shock received from the outside.
  • the distance measuring accuracy of the distance measuring device 13 can be calibrated by measuring the object set at a known distance and comparing the obtained distance value with the known distance.
  • the calibration unit 600 provided in the distance measuring device 13 is used.
  • FIG. 22 is a schematic diagram for explaining the operation of the correction member 310 driven by the drive unit 320 in the distance measuring device 13.
  • the correction member 310 shifts in a direction substantially orthogonal to the propagation direction of the light beam B 2 of the signal light generated by the light emitting unit 210. Thereby, the propagation direction of the light rays A 2 and B 2 transmitted through the correction member 310 changes.
  • the correction member 310 has a negative refractive power. Therefore, as shown by the solid line in the figure, the correction member 310 may have shifted downward in the figure, the propagation optical path of the light beam B 2 is then shifted upward in the drawing, are projected to the outside as light B 3 shown by a solid line .
  • the correction member 310 after the light beam A 1 incident on the objective optical system 220 from above in the drawing passes through the correction member 310, it becomes a light beam A 2 that propagates horizontally in the distance measuring device 13 in the drawing.
  • the correction member 310 has a positive refractive index, the deviation direction of the light propagation path with respect to the lens movement direction is opposite to that when the lens is negative.
  • the correction member 310 may have shifted upward in the drawing, the propagation optical path of the light beam B 2 is then displaced downward in the figure is projected to the outside as light B 3 shown by a dotted line .
  • the correction member 310 after the light ray A 1 incident on the objective optical system 220 from below in the figure passes through the correction member 310, it becomes a light ray A 2 that propagates horizontally in the distance measuring device 13 in the figure.
  • FIG. 23 is a schematic diagram showing a state in which a calibration operation for matching the distance measurement range of the distance measurement device 13 with a preset range is executed.
  • the signal light reflected by the standard object 22 arranged at a known relative position with respect to the distance measurement device 13 is received by the light receiving element 430 over the entire range of the distance measurement range. Adjust the optical system.
  • the relative positions of the distance measuring device 13 and the standard object 22, in addition to the standard distance D R in which predetermined the height is aligned with the distance measuring device 13 and the standard object 22, the distance measuring device 13 This includes conditions such that the orientation is perpendicular to the standard object 22.
  • it is desirable that the distance measuring device 13 that performs the calibration operation is fixed horizontally and the standard object 22 is fixed vertically.
  • the standard object 22 that has contrast in reflectance with respect to the signal light of the distance measuring device 13. That is, the standard object 22 having a surface having a remarkably high reflectance or a remarkably low reflectance as compared with the surrounding environment can be used.
  • the standard object 22 having both a region with a high reflectance and a region with a low reflectance may be used. Further, when the standard object 22 is used, since the distance measuring device 13 is collimated with respect to the standard object 22, it is preferable that the standard object has a high contrast even in the visible light band.
  • FIG. 24 is a schematic diagram for explaining a scanning pattern related to the distance measuring range of the distance measuring device 13.
  • the reticle of the collimation unit 100 is visually aligned with the standard object 22.
  • the calibration control unit 630 continuously operates the drive unit 320 to shift the correction member 310.
  • the entire visual field of the collimation unit 100 in the distance measuring device 13 is scanned with the signal light. Therefore, the signal light is projected onto both the area where the standard object 22 exists and the area where the standard object 22 does not exist.
  • a high reflectivity region 24 having a high reflectivity for signal light is provided at the center of the standard object 22 used for the calibration operation.
  • FIG. 25 is a graph showing the received light intensity of the signal light detected by the light receiving element 430 in the calibration operation.
  • the visual field of the collimation unit 100 is scanned by the signal light reciprocating 3.5 times.
  • the signal light is not detected by the light receiving element 430 during a period when the signal light is not projected onto the standard object 22.
  • the received light intensity at the light receiving element 430 of the signal light reflected by the standard object is measured.
  • the intensity measuring unit 640 measures the signal intensity exceeding the predetermined threshold value P th .
  • the intensity measurement unit 640 reflects the received light intensity when the signal light is reflected in the high reflectance region 24 of the standard object 22 and the signal light in a region other than the high reflectance region 24 of the standard object 22.
  • the threshold value P th is set between the received light intensity and the received light intensity.
  • FIG. 26 is a flowchart showing the procedure of the distance measurement range calibration operation by the calibration unit 600 as described above.
  • the calibration control unit 630 first issues a command to the driving unit 320 to scan the visual field of the collimation unit 100 with the signal light (step S201).
  • the calibration control unit 630 causes the intensity measurement unit 640 to continuously measure the received light intensity of the signal light by the light receiving element 430 (step S202). Furthermore, the calibration control unit 630 monitors whether or not the light intensity of the signal light measured by the intensity measurement unit 640 exceeds a predetermined threshold value P th (step S203).
  • step S203 when the light reception intensity of the light receiving element 430 does not exceed the threshold value Pth (step S203: NO), the calibration control unit 630 continues to monitor the measurement value by the intensity measurement unit 640. On the other hand, when the received light intensity of the light receiving element 430 exceeds the threshold value Pth (step S203: YES), the calibration control unit 630 calculates the position of the correction member 310 at that time (step S204).
  • the calibration control unit 630 calculates the position of the correction member 310 from the drive amount of the drive unit 320 based on the command generated by the calibration control unit 630 itself.
  • the calibration control unit 630 stores the position of the correction member 310 thus calculated in the storage unit 650 as the calibrated initial position of the correction member 310 (step S205).
  • the calibrated initial position is held in the storage unit 650 by a series of operations as described above. Therefore, when the distance measuring device 13 starts the distance measuring operation, first, the driving unit 320 is operated to move the correction member 310 to the initial position. Thereby, the distance measuring device 13 can execute the distance measuring operation in a calibrated state.
  • the calibration control unit 630 When the calibration value is acquired as described above, the calibration control unit 630 further continues scanning with the signal light, and changes to a state where the light intensity measured by the intensity measurement unit 640 does not exceed the threshold value P th again. You may confirm that you did. Furthermore, the calibration control unit 630 may repeat the scanning of the signal light and the calculation of the calibration position until receiving a stop instruction from the outside. On the other hand, the calibration control unit 630 may voluntarily end the calibration operation when the calibration value is acquired.
  • the distance measuring device 13 includes the calibration unit 600 that performs the calibration operation by moving the correction member 310, so that not only calibration before shipment is facilitated, but also calibration is easily performed after shipment. it can. Therefore, for example, when the power of the distance measuring device 11 is turned on, a calibration operation may be executed or recommended as a part of initialization. The timing for executing the calibration operation may depend on an external instruction from the user or the like. Further, the calibration control unit 630 may notify the user at predetermined time intervals.
  • FIG. 27 is a schematic diagram illustrating scanning of signal light by the calibration unit 600.
  • the position of the correction member 310 when the signal light is projected onto the high reflectance region 24 of the standard object 22 by reciprocating scanning of the signal light within the field of view of the collimation unit 100 is determined. Detected.
  • the scanning pattern of the signal light in the calibration operation is not limited to the reciprocating movement.
  • the high reflectance region 24 may be searched by scanning with a spiral scanning pattern.
  • scanning with the spiral scanning pattern may be started from the calibration position specified by the last calibration operation.
  • FIG. 28 is a graph showing a change in received light intensity in the light receiving element 430 detected when the signal light is scanned by the above scanning pattern. As shown in the drawing, the high reflectance region 24 is detected early by scanning in a spiral shape from the already specified calibration position, and the time required for the calibration operation can be shortened.
  • FIG. 29 is a schematic diagram of an auxiliary member 700 that can be used when causing the distance measuring device 13 to perform distance measurement accuracy and a distance measurement range calibration operation.
  • the auxiliary member 700 has an auxiliary optical system 710 and a standard object 22.
  • the auxiliary optical system 710 can make the standard object 22 observed through the objective optical system 220 appear to be located farther than the actual position. Therefore, by using the auxiliary member 700, the calibration operation can be executed without installing the standard object 22 in the distance measuring range of the distance measuring device 13 ranging from several hundred meters to 1 kilometer or more.
  • FIG. 30 is a schematic diagram of the reticle plate 120.
  • the illustrated reticle plate 120 is formed of a transmissive liquid crystal display panel having a plurality of pixels.
  • the reticle plate 120 can selectively display any one of the plurality of reticles 122 and 124 (122) having different positions by displaying a part of the plurality of pixels.
  • the reticle 122 can be moved to compensate. It should be noted that the light emitting unit 210 may also be moved to further expand the optical adjustment range of the distance measuring device 13.
  • the projection position of the signal light and the reticle 122 can be matched without adjusting the optical system of the distance measuring device 13. Therefore, it is possible to provide a method for easily calibrating the position of the reticle 122 before and after shipment of the distance measuring device 13.
  • the position of the reticle 122 can be adjusted using a calibration facility including a light receiving element. That is, the signal light emitted from the light transmitting unit 200 is received by the light receiving element through the collimating optical system, and the reticle 122 is made to coincide with the position of the light receiving unit within the field of view of the collimating unit 100. Thereby, the reticle 122 can be matched with the projection position of the signal light.
  • the shape of the reticle 122 formed on the reticle plate 120 is not limited to that shown in the figure, and the shape of the reticle 122 can be various shapes such as a cross, a rectangle, and a scale.
  • the shape, size, etc. may be changed in addition to the position of the reticle 122.
  • the calibration unit 600 can also be formed in the distance measuring device 11 in which the correction members 310 and 312 and the driving units 320 and 322 are provided in both the light transmitting unit 200 and the light receiving unit 400.
  • the calibration operation may be executed on both the light transmitting unit 200 side and the light receiving unit 400 side, or the calibration operation may be executed on either side.
  • the calibration unit 600 can be formed also in the distance measuring device 12 provided with the correction member 312 and the drive unit 322 only in the light receiving unit 400.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Measurement Of Optical Distance (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

A distance measuring device comprises a light transmitting unit that transmits a signal light from a light source toward an object, a light receiving unit that has a light receiving component and receives the signal light from the object on a different light axis than the light transmitting unit, a distance measuring unit that measures the distance to the object on the basis of the propagation time, from transmission to reception, of the signal light, and a correcting unit that corrects, when one of either the light path from the light transmitting unit to the light receiving unit and the light path from the object to the light receiving component is fixed, the light path of the signal light by displacing the light path of the other of the light transmitting unit or the light receiving unit.

Description

測距装置および較正方法Ranging device and calibration method
 本発明は、測距装置および較正方法に関する。 The present invention relates to a distance measuring device and a calibration method.
 対象物に反射された信号光の伝搬時間に基づいて対象物までの距離を測定する測距装置がある(例えば、特許文献1参照)。
 [特許文献1] 国際公開第2009/31550号
There is a distance measuring device that measures the distance to an object based on the propagation time of signal light reflected by the object (see, for example, Patent Document 1).
[Patent Document 1] International Publication No. 2009/31550
 測距装置で意図した対象物を視準して測距することが、像ブレにより困難になる場合がある。 Sighting the target object with the distance measuring device may be difficult due to image blur.
 本発明の第1態様においては、光源からの信号光を対象物に向かって送光する送光部と、受光素子を有し、対象物からの信号光を送光部と異なる光軸上で受光する受光部と、送光から受光までの信号光の伝播時間に基づいて対象物までの距離を測定する測距部と、送光部および受光部までの光路、および、対象物から受光素子までの光路のどちらか一方の光路を固定した状態で、送光部および受光部の他方において光路を変位させて信号光の光路を補正する補正部とを備える測距装置が提供される。 In the first aspect of the present invention, a light transmission unit that transmits signal light from a light source toward an object and a light receiving element, and the signal light from the object is on an optical axis different from that of the light transmission unit. A light receiving unit for receiving light, a distance measuring unit for measuring a distance to an object based on a propagation time of signal light from light transmission to light reception, an optical path to the light transmission unit and the light receiving unit, and a light receiving element from the object A distance measuring device is provided that includes a correction unit that corrects the optical path of the signal light by displacing the optical path in the other of the light transmitting unit and the light receiving unit in a state in which one of the optical paths up to is fixed.
 本発明の第2態様においては、光源からの信号光を対象物に向かって送光する送光部と、受光素子を有し、対象物からの信号光を送光部と異なる光軸上で受光する受光部と、信号光の送光から受光までの伝播時間に基づいて対象物までの距離を測定する測距部と、送光部および受光部の一方の光軸を固定した状態で、送光部および受光部の他方において光路を変位させて信号光の光路を補正する補正部とを備える測距装置を較正する較正方法であって、光路を変位させつつ既知の標準対象物に反射された信号光の受光部における受光強度を測定する段階と、光路を変位させることにより光路の初期位置を決定する段階とを備える較正方法が提供される。 In the second aspect of the present invention, a light transmitting unit that transmits the signal light from the light source toward the object and a light receiving element, the signal light from the object is on an optical axis different from that of the light transmitting unit. In a state where the optical axis of the light receiving unit, the distance measuring unit for measuring the distance to the object based on the propagation time from the transmission of the signal light to the reception of light, and the one optical axis of the light transmission unit and the light receiving unit are fixed, A calibration method for calibrating a distance measuring device including a correction unit that corrects an optical path of signal light by displacing an optical path at the other of a light transmission unit and a light reception unit, and reflects the light to a known standard object while displacing the optical path There is provided a calibration method comprising the steps of measuring the received light intensity of the received signal light at the light receiving portion and determining the initial position of the optical path by displacing the optical path.
 上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではない。これらの特徴群のサブコンビネーションもまた発明となり得る。 The above summary of the invention does not enumerate all the necessary features of the present invention. Sub-combinations of these feature groups can also be an invention.
測距装置10の模式的断面図である。1 is a schematic cross-sectional view of a distance measuring device 10. FIG. 測距装置10の測距動作を光学的に説明する模式図である。3 is a schematic diagram for optically explaining a distance measuring operation of the distance measuring device 10. FIG. 測距装置10の測距動作の手順を示す流れ図である。4 is a flowchart showing a procedure of a distance measuring operation of the distance measuring device 10. 補正部300の補正動作を説明する模式図である。FIG. 10 is a schematic diagram illustrating a correction operation of the correction unit 300. 補正部300の補正動作を説明する模式図である。FIG. 10 is a schematic diagram illustrating a correction operation of the correction unit 300. 受光素子430に形成されるスポット像を示す図である。4 is a diagram showing a spot image formed on a light receiving element 430. FIG. 信号光の変位条件を説明する模式図である。It is a schematic diagram explaining the displacement conditions of signal light. 補正部300の補正動作を説明する模式図である。FIG. 10 is a schematic diagram illustrating a correction operation of the correction unit 300. 補正部300の動作を説明する流れ図である。5 is a flowchart for explaining the operation of the correction unit 300. 補正部300の制御方法の一例を示す図である。5 is a diagram illustrating an example of a control method of a correction unit 300. FIG. 補正部300の他の補正動作を説明する模式図である。6 is a schematic diagram illustrating another correction operation of the correction unit 300. FIG. 測距装置10における視差補正を説明する模式図である。3 is a schematic diagram illustrating parallax correction in the distance measuring device 10. FIG. 送光部200に補正部を配した場合の視差補正を説明する模式図である。It is a schematic diagram explaining parallax correction when a correction unit is arranged in the light transmission unit. 測距装置10における視差補正を説明する模式図である。3 is a schematic diagram illustrating parallax correction in the distance measuring device 10. FIG. 受光部400に補正部を配した場合の視差補正を説明する模式図である。It is a schematic diagram explaining parallax correction when a correction unit is arranged in the light receiving unit. 測距装置11の模式的断面図である。2 is a schematic cross-sectional view of a distance measuring device 11. FIG. 補正部301の補正動作を説明する模式図である。It is a schematic diagram explaining the correction | amendment operation | movement of the correction | amendment part 301. FIG. 測距装置12の模式的断面図である。3 is a schematic cross-sectional view of a distance measuring device 12. FIG. 補正部302の補正動作を説明する模式図である。It is a schematic diagram explaining the correction | amendment operation | movement of the correction | amendment part 302. FIG. 測距装置13の模式的断面図である。3 is a schematic cross-sectional view of a distance measuring device 13. FIG. 受光素子430に形成されるスポット像を示す図である。4 is a diagram showing a spot image formed on a light receiving element 430. FIG. 補正部材310の作用を説明する模式図である。It is a schematic diagram explaining the effect | action of the correction member. 較正動作をする測距装置13の状態を示す模式図である。It is a schematic diagram which shows the state of the distance measuring device 13 which performs a calibration operation. 較正部600による信号光の走査を説明する模式図である。6 is a schematic diagram illustrating scanning of signal light by a calibration unit 600. FIG. 受光素子430が検出する信号光の受光光強度を示すグラフである。It is a graph which shows the received light intensity of the signal light which the light receiving element 430 detects. 較正部600の較正動作の手順を示す流れ図である。It is a flowchart which shows the procedure of the calibration operation | movement of the calibration part 600. FIG. 較正部600による信号光の走査を説明する模式図である。6 is a schematic diagram illustrating scanning of signal light by a calibration unit 600. FIG. 受光素子430の受光光強度を示すグラフである。5 is a graph showing the intensity of received light of the light receiving element 430. 補助部材700の模式図である。6 is a schematic diagram of an auxiliary member 700. FIG. レチクルプレート120の模式図である。2 is a schematic diagram of a reticle plate 120. FIG.
 続いて、発明の実施の形態を通じて本発明を説明する。下記の実施形態は請求の範囲にかかる発明を限定するものではない。実施形態の中で説明されている特徴の組み合わせ全てが発明の解決手段に必須であるとは限らない。 Subsequently, the present invention will be described through embodiments of the invention. The following embodiments do not limit the invention according to the claims. Not all combinations of features described in the embodiments are essential for the solution of the invention.
 図1は、測距装置10の模式的断面図である。測距装置10は、視準部100、送光部200、補正部300、受光部400および測距部500を備える。なお、以降の説明においては、測距装置10において視準部100が配置されている側を後側とする。また、測距装置10において、測距の対象に対面する側を前側とする。 FIG. 1 is a schematic cross-sectional view of the distance measuring device 10. The distance measuring device 10 includes a collimating unit 100, a light transmitting unit 200, a correcting unit 300, a light receiving unit 400, and a distance measuring unit 500. In the following description, the side on which the collimation unit 100 is arranged in the distance measuring device 10 is the rear side. In the distance measuring device 10, the side facing the object of distance measurement is the front side.
 視準部100は、接眼光学系110、レチクルプレート120および正立プリズム130を含む。また、視準部100は、対物光学系220を送光部200と、補正部材310を補正部300と、それぞれ兼用する。 The collimation unit 100 includes an eyepiece optical system 110, a reticle plate 120, and an erecting prism 130. The collimation unit 100 also serves as the objective optical system 220 and the light transmission unit 200, and the correction member 310 serves as the correction unit 300.
 接眼光学系110の後端は、測距装置10の後端面に露出する。接眼光学系110の前端は、測距装置10の内部において正立プリズム130の後端に対向する。測距装置10のユーザは、接眼光学系110を通じて対象物の像を視認することにより測距装置10を視準する。 The rear end of the eyepiece optical system 110 is exposed on the rear end surface of the distance measuring device 10. The front end of the eyepiece optical system 110 faces the rear end of the erecting prism 130 inside the distance measuring device 10. The user of the distance measuring device 10 collimates the distance measuring device 10 by visually recognizing the image of the object through the eyepiece optical system 110.
 レチクルプレート120は、可視光に対して透明な板に印刷、食刻等により形成したレチクルを有する。レチクルは、十字線、矩形枠、円形枠等の視準指標を有する。測距装置10のユーザは、接眼光学系110を通じて観察する像にレチクルの視準指標を重畳させることにより、測距装置10を対象物に視準する。レチクルとしては、透過型液晶表示板の表示画像を用いることもできる。 The reticle plate 120 has a reticle formed by printing, etching or the like on a plate transparent to visible light. The reticle has collimation indicators such as a crosshair, a rectangular frame, and a circular frame. The user of the distance measuring device 10 collimates the distance measuring device 10 on the object by superimposing a reticle collimation index on an image observed through the eyepiece optical system 110. As the reticle, a display image of a transmissive liquid crystal display panel can be used.
 正立プリズム130は、可視光帯域を反射して、赤外帯域を透過するダイクロイック反射面132と、可視光帯域に加えて赤外帯域についても高い反射率を有する全反射面134、136とを有する。正立プリズム130は、参照番号を付していない他の反射面も有して、入射光線により形成される倒立鏡像を正立正像に反転させる。正立プリズム130は、ダハプリズム、ポロプリズム等を用いて形成できる。 The erecting prism 130 includes a dichroic reflecting surface 132 that reflects the visible light band and transmits the infrared band, and total reflection surfaces 134 and 136 that have a high reflectance in the infrared band in addition to the visible light band. Have. The erecting prism 130 also has another reflecting surface that is not assigned a reference number, and reverses the inverted mirror image formed by the incident light beam to an erecting erect image. The erecting prism 130 can be formed using a roof prism, a porro prism, or the like.
 送光部200は、発光部210および対物光学系220を有する。また、送光部200は、ダイクロイック反射面132および全反射面134を含む正立プリズム130の一部を視準部100と兼用する。また、送光部200は、補正部材310を補正部300と兼用する。 The light transmitting unit 200 includes a light emitting unit 210 and an objective optical system 220. Further, the light transmitting unit 200 also serves as a collimating unit 100 using a part of the erecting prism 130 including the dichroic reflecting surface 132 and the total reflecting surface 134. Further, the light transmission unit 200 also uses the correction member 310 as the correction unit 300.
 発光部210は、半導体レーザ等の発光素子を光源として含み、測距装置10が測距動作をする場合にパルス状の信号光を射出する。本実施形態において、信号光は例えば赤外光である。対物光学系220は、測距装置10の前端に配され、前側の端面が測距の対象となる対象物に対向する。対物光学系220の後側端面は、補正部材310を挟んで、正立プリズム130の前側端面に対向する。なお、補正部材310も光学部材であり、対物光学系220と共に送光光学系を形成する。 The light emitting unit 210 includes a light emitting element such as a semiconductor laser as a light source, and emits pulsed signal light when the distance measuring device 10 performs a distance measuring operation. In the present embodiment, the signal light is, for example, infrared light. The objective optical system 220 is disposed at the front end of the distance measuring device 10, and the front end surface faces the object to be distance-measured. The rear end face of the objective optical system 220 faces the front end face of the erecting prism 130 with the correction member 310 interposed therebetween. The correction member 310 is also an optical member, and forms a light transmission optical system together with the objective optical system 220.
 なお、信号光の波長は、可視項帯域以外の他の波長、例えば紫外線であってもよい。信号光が紫外線である場合、正立プリズム130のダイクロイック反射面132は、可視光帯域を反射して、紫外帯域を透過する。また、全反射面134は、可視光帯域と紫外帯域とを反射する。 Note that the wavelength of the signal light may be other than the visible band, for example, ultraviolet light. When the signal light is ultraviolet light, the dichroic reflecting surface 132 of the erecting prism 130 reflects the visible light band and transmits the ultraviolet light band. The total reflection surface 134 reflects the visible light band and the ultraviolet band.
 補正部300は、補正部材310および駆動部320を含む。補正部材310は、接眼光学系110および対物光学系220の一部をなすレンズを含む。駆動部320は、補正部材310を、補正部材310の光軸と交差する方向に変位させる。更に、駆動部320は、主面が揺動する方向に補正部材310を揺動させてもよい。 The correction unit 300 includes a correction member 310 and a drive unit 320. The correction member 310 includes a lens that forms part of the eyepiece optical system 110 and the objective optical system 220. The drive unit 320 displaces the correction member 310 in a direction that intersects the optical axis of the correction member 310. Further, the drive unit 320 may swing the correction member 310 in the direction in which the main surface swings.
 なお、補正部材310としては、変位するレンズの他に、揺動するプリズムを用いることもできる。また、入射面または射出面を形成する部材を揺動させることにより入射面と射出面とがなす頂角を変化させることができる可変頂角プリズムを補正部材310として用いることもできる。駆動部320としては、ボイスコイルモータ、圧電モータ等を使用できる。 As the correction member 310, a oscillating prism can be used in addition to the displacing lens. In addition, a variable apex angle prism that can change the apex angle formed by the incident surface and the exit surface by swinging a member that forms the entrance surface or the exit surface can also be used as the correction member 310. As the driving unit 320, a voice coil motor, a piezoelectric motor, or the like can be used.
 測距装置10には、測距装置10の前方に位置する対象物から反射または散乱された光のうち、対物光学系220の見込み角の範囲内を伝播する光線Aが、対物光学系220を通じて入射する。光線Aは、補正部材310を透過して、光線Aとして測距装置10内部を後方に向かって伝播し、正立プリズム130、レチクルプレート120および接眼光学系110を通じて、測距装置10の後方に光線Aとして射出される。これにより、ユーザは、接眼光学系110を通じて、対象物の正立正像を観察できる。 In the distance measuring device 10, among the light reflected or scattered from the object located in front of the distance measuring device 10, a light ray A 1 propagating within the range of the expected angle of the objective optical system 220 is reflected by the objective optical system 220. Incident through. The light ray A 1 is transmitted through the correction member 310 and propagates backward as the light ray A 2 through the distance measuring apparatus 10, and passes through the erecting prism 130, the reticle plate 120, and the eyepiece optical system 110. It is emitted as light a 3 rearward. Thereby, the user can observe an erect image of the object through the eyepiece optical system 110.
 ユーザが接眼光学系110を通じて観察する対象物の像には、レチクルプレート120に配されたレチクルが重畳される。よって、ユーザは、測距装置10を変位させてレチクルを対象物に一致させることにより、測距装置10を視準できる。 The reticle arranged on the reticle plate 120 is superimposed on the image of the object observed by the user through the eyepiece optical system 110. Therefore, the user can collimate the distance measuring device 10 by displacing the distance measuring device 10 to make the reticle coincide with the object.
 なお、接眼光学系110の一部として、または、接眼光学系110に加えて、接眼光学系110の焦点距離を変化させる光学部材を設けてもよい。これにより、対象物までの距離に依らず、鮮明な画像をユーザに観察させることができる。また、ユーザの視力に応じた視度補正ができる。 Note that an optical member that changes the focal length of the eyepiece optical system 110 may be provided as a part of the eyepiece optical system 110 or in addition to the eyepiece optical system 110. Thereby, it is possible to make the user observe a clear image regardless of the distance to the object. Moreover, diopter correction according to the user's visual acuity can be performed.
 ユーザは、例えば、測距装置10に設けられたボタン等のスイッチ操作により、測距装置10に測距動作の開始を指示する。測距装置10に対してユーザが測距を指示した場合、発光部210は、パルス状の信号光を光線Bとして正立プリズム130の図中上面に向かって射出する。正立プリズム130において、信号光はダイクロイック反射面132を透過し、全反射面134において反射され、光線Bとして測距装置10内を前方に向かって伝播する。 For example, the user instructs the distance measuring device 10 to start a distance measuring operation by operating a switch such as a button provided on the distance measuring device 10. When the user instructs the distance measuring device 10 to perform distance measurement, the light emitting unit 210 emits pulsed signal light as a light beam B 1 toward the upper surface of the erecting prism 130 in the drawing. In the erecting prism 130, the signal light passes through the dichroic reflecting surface 132, is reflected by the total reflecting surface 134, and propagates forward in the distance measuring device 10 as the light beam B 2 .
 更に、信号光は、補正部材310および対物光学系220を通じて、光線Bとして測距装置10の前方に向かって外部に投射される。光線Bとして投射された信号光は、ユーザにより視準された測距の対象物に投射される。測距の対象物までの距離を数百メートルと想定した場合、投射される信号光の拡がりは、例えば、±0.05°程度に設定してもよい。 Further, the signal light is projected outside through the correction member 310 and the objective optical system 220 toward the front of the distance measuring device 10 as the light beam B 3 . Signal light projected as rays B 3 is projected to the object of distance measurement that is collimated by the user. When the distance to the object to be measured is assumed to be several hundred meters, the spread of the projected signal light may be set to about ± 0.05 °, for example.
 なお、対物光学系220の一部として、または、対物光学系220に加えて、対物光学系220の焦点距離を変化させる光学部材を設けてもよい。これにより、視準部100においてより鮮明な像が観察できると共に、信号光のビーム径を絞って、測距の対象となる対象物を精度よく選択できる。 An optical member that changes the focal length of the objective optical system 220 may be provided as a part of the objective optical system 220 or in addition to the objective optical system 220. As a result, a clearer image can be observed in the collimation unit 100, and an object to be measured can be selected with high accuracy by reducing the beam diameter of the signal light.
 補正部材310は、対物光学系220の近傍において、測距装置10の内部に入射した光線Aと、測距装置10から射出される光線Bとを透過させる。駆動部320により駆動されて補正部材310の光軸が変位した場合、光線A、B各々の光路が変位し、その伝播方向が変化する。 The correction member 310 transmits the light beam A 2 incident on the inside of the distance measuring device 10 and the light beam B 2 emitted from the distance measuring device 10 in the vicinity of the objective optical system 220. When the optical axis of the correction member 310 is displaced by being driven by the driving unit 320, the optical paths of the light beams A 2 and B 2 are displaced, and the propagation directions thereof are changed.
 光線Aの伝播方向が変位することにより、視準部100を通じてユーザが観察する像は変位する。換言すれば、測距装置10が変位した場合に補正部材310を適切に変位させることにより、ユーザが観察する像のブレを止めることができる。また、測距装置10から測距の対象物までの距離に応じて補正部材310を適切に変位させることにより、送光部200の光学系と受光部400の光学径との間の視差を補正できる。 By propagation direction of the light ray A 2 is displaced, the image for the user to observe through the collimating section 100 is displaced. In other words, when the distance measuring device 10 is displaced, the blurring of the image observed by the user can be stopped by appropriately displacing the correction member 310. Further, the parallax between the optical system of the light transmitting unit 200 and the optical diameter of the light receiving unit 400 is corrected by appropriately displacing the correction member 310 according to the distance from the distance measuring device 10 to the object to be measured. it can.
 更に、補正部材310の光軸が変位した場合に光線Bの伝播方向が変位することにより、外部に投射された信号光の光線Bの伝播方向が変位する。よって、測距装置10が変位した場合に補正部材310を適切に変位させることにより、信号光の照射対象を維持できる。 Furthermore, by the direction of propagation of the light beam B 2 is displaced when the optical axis of the correcting member 310 is displaced, the direction of propagation of the light beam B 3 external to the projected signal light is displaced. Therefore, when the distance measuring device 10 is displaced, the signal light irradiation target can be maintained by appropriately displacing the correction member 310.
 受光部400は、対物光学系410、帯域透過フィルタ420および受光素子430を有して受光光学系を形成する。受光部400の対物光学系410は、送光部200の対物光学系220とは異なる光軸を有する。 The light receiving unit 400 includes an objective optical system 410, a band transmission filter 420, and a light receiving element 430 to form a light receiving optical system. The objective optical system 410 of the light receiving unit 400 has an optical axis different from that of the objective optical system 220 of the light transmitting unit 200.
 対物光学系410の後方には、帯域透過フィルタ420および受光素子430が順次配される。帯域透過フィルタ420は、信号光を含む狭い帯域の光を透過させ、他の帯域の光を遮断または減衰させる特性を有する。受光素子430は、信号光の帯域に対して感度を有するフォトダイオード、フォトトランジスタ等の光電気変換素子を含む。これにより、受光素子430は、入射した信号光を検出して、検出した信号光に対応した電気信号を発生する。 A band transmission filter 420 and a light receiving element 430 are sequentially arranged behind the objective optical system 410. The band transmission filter 420 has a characteristic of transmitting light in a narrow band including signal light and blocking or attenuating light in other bands. The light receiving element 430 includes a photoelectric conversion element such as a photodiode or a phototransistor having sensitivity to a band of signal light. Thereby, the light receiving element 430 detects the incident signal light and generates an electrical signal corresponding to the detected signal light.
 受光部400の対物光学系には、測距装置10の前方に位置する対象物から反射または散乱された光線Bが入射する。光線Bは、測距装置10の内部を光線Bとして後方に向かって伝播し、帯域透過フィルタ420を通過した後、受光素子430に受光される。 The light beam B 1 reflected or scattered from the object located in front of the distance measuring device 10 enters the objective optical system of the light receiving unit 400. The light beam B 1 propagates backward as the light beam B 2 through the distance measuring device 10, passes through the band-pass filter 420, and is received by the light receiving element 430.
 よって、受光素子430は、入射した光線B、Bに含まれる信号光を、高いSN比で検出して電気信号を発生する。受光素子430が発生した電気信号は、測距部500に入力される。 Therefore, the light receiving element 430 detects the signal light included in the incident light beams B 1 and B 2 with a high S / N ratio and generates an electrical signal. The electric signal generated by the light receiving element 430 is input to the distance measuring unit 500.
 なお、信号光の検出にあたって背景光の影響を排除するという観点から、受光素子430の受光面積はより小さいことが好ましい。対物光学系410の一部として、または、対物光学系410に加えて、光学系の焦点距離を変化させる光学部材を設けてもよい。これにより、受光した信号光のビーム径を絞って受光素子430により小さなスポット光を受光させることができる。 In addition, it is preferable that the light receiving area of the light receiving element 430 is smaller from the viewpoint of eliminating the influence of background light in detecting signal light. An optical member that changes the focal length of the optical system may be provided as a part of the objective optical system 410 or in addition to the objective optical system 410. Thereby, a small spot light can be received by the light receiving element 430 by reducing the beam diameter of the received signal light.
 測距装置10において、測距部500は、時計部510、測距制御部520および表示部530を有する。時計部510は、送光部200が信号光を送光してから、対象物で反射された信号光を受光するまでにかかった時間を測定する。 In the distance measuring apparatus 10, the distance measuring unit 500 includes a clock unit 510, a distance measuring control unit 520, and a display unit 530. The clock unit 510 measures the time taken from when the light transmitting unit 200 transmits the signal light to when the signal light reflected by the object is received.
 測距制御部520は、測距装置10における測距動作を総合的に制御する。測距制御部520の制御対象には、送光部200の発光部210等も含まれる。測距制御部520は、時計部510が計測した時間に基づいて、測距装置10と対象物との距離を算出する。測距装置10に傾き等を検出する機能がある場合は、対象物までの水平距離、高低差等を算出してもよい。更に、時計部510は、気温等の環境変化により演算結果を補正してもよい。 The ranging control unit 520 comprehensively controls the ranging operation in the ranging device 10. The objects to be controlled by the distance measurement control unit 520 include the light emitting unit 210 of the light transmission unit 200 and the like. The distance measurement control unit 520 calculates the distance between the distance measurement device 10 and the object based on the time measured by the clock unit 510. When the distance measuring device 10 has a function of detecting inclination or the like, the horizontal distance to the object, the height difference, or the like may be calculated. Further, the clock unit 510 may correct the calculation result based on environmental changes such as temperature.
 表示部530は、送光部200の対物光学系220の焦点位置(レチクル位置)に配置された透過型の液晶表示板や有機LED表示板、または不図示の光学系によって表示像をレチクル位置に導く構成を有する反射型の液晶表示板を有し、対象物までの距離等の測距制御部520の算出結果を、文字、画像等によりユーザに示す。表示部530は、測距結果の他、電池の残量、エラーメッセージ、時計等を併せて表示してもよい。ユーザは視準部100の接眼光学系110を通じて対象物を観察しながら測距結果やその他の情報を得ることができる。 The display unit 530 places the display image at the reticle position by a transmissive liquid crystal display panel, an organic LED display panel, or an optical system (not shown) disposed at the focal position (reticle position) of the objective optical system 220 of the light transmission unit 200. A reflection type liquid crystal display panel having a guiding structure is provided, and the calculation result of the distance measurement control unit 520 such as the distance to the object is shown to the user by characters, images, and the like. The display unit 530 may display the remaining battery amount, an error message, a clock, and the like in addition to the distance measurement result. The user can obtain a distance measurement result and other information while observing the object through the eyepiece optical system 110 of the collimation unit 100.
 更に、表示部530は、ブレ検出部340が検出したブレの振幅または周波数が予め定めた閾値を超えた場合に、ユーザに向かって測距装置10の保持に注意を促すメッセージを表示してもよい。これにより、補正部300の負担を軽減して、測距装置10の電力を節約できる。 Further, the display unit 530 may display a message for urging the user to hold the distance measuring device 10 when the blur amplitude or frequency detected by the blur detection unit 340 exceeds a predetermined threshold. Good. Thereby, the burden of the correction | amendment part 300 can be eased and the electric power of the ranging device 10 can be saved.
 図2は、測距装置10の測距動作を光学的に説明する模式図である。図2は、測距装置10から十分に離れた位置にある対象物20を、水平状態の測距装置10により測距する場合を示す。 FIG. 2 is a schematic diagram for optically explaining the distance measuring operation of the distance measuring device 10. FIG. 2 shows a case where the object 20 located at a position sufficiently away from the distance measuring device 10 is measured by the distance measuring device 10 in the horizontal state.
 なお、以降の図面においては、送光部200から対象物20に向かって射出される信号光の伝播方向をY方向と記載する。また、紙面上でY方向に直交する方向であって、紙面上で下から上に向かう方向をZ方向、紙面に直交する方向のうち、紙面に対して手前から奥に向かう方向をX方向と記載する。また、これらX方向、Y方向およびZ方向と反対の方向を(-X)方向、(-Y)方向および(-Z)方向と記載する。 In the following drawings, the propagation direction of the signal light emitted from the light transmitting unit 200 toward the object 20 is described as the Y direction. Also, the direction perpendicular to the Y direction on the paper surface, the direction from the bottom to the top on the paper surface is the Z direction, and the direction from the front to the back of the paper surface among the directions orthogonal to the paper surface is the X direction. Describe. The directions opposite to the X direction, the Y direction, and the Z direction are referred to as the (−X) direction, the (−Y) direction, and the (−Z) direction.
 測距装置10を使用するユーザは、まず、対象物20を視準する。対象物20から反射または散乱される光のうち、対物光学系の見込み角の範囲内を図中(-Y)方向に伝播する光線Aは、対物光学系220および補正部材310を通じて測距装置10に入射する。入射した光線Aは、測距装置10内を光線Aとして伝播し、正立プリズム130、レチクルプレート120および接眼光学系110を通じて、測距装置10の後端から図中(-Y)方向に射出される。 A user who uses the distance measuring device 10 first collimates the object 20. Among the light reflected or scattered from the object 20, the light ray A 1 propagating in the (−Y) direction within the range of the expected angle of the objective optical system is a distance measuring device through the objective optical system 220 and the correction member 310. 10 is incident. The incident light ray A 1 propagates in the distance measuring device 10 as a light ray A 2 , and passes through the erecting prism 130, reticle plate 120, and eyepiece optical system 110 from the rear end of the distance measuring device 10 in the (−Y) direction in the figure. Is injected into.
 測距装置10を使用するユーザは、接眼光学系110を通じて観察する対象物20の像にレチクルを一致させて、対象物20を視準する。これにより、送光部200から測距装置10の前方に、Y方向に伝播する光線Bとして投射された信号光が、対象物20に照射される状態になる。対象物20に信号光が投射された場合、対象物20に反射された信号光は光線Cとして、(-Y)方向に伝播する。 A user using the distance measuring device 10 collimates the object 20 by aligning the reticle with the image of the object 20 observed through the eyepiece optical system 110. Thereby, the signal light projected as the light beam B 3 propagating in the Y direction from the light transmitting unit 200 to the front of the distance measuring device 10 is in a state of being irradiated onto the object 20. If the signal light is projected onto the object 20, the signal light reflected on the object 20 as ray C 1, (- Y) propagating in a direction.
 測距装置10において、受光部400の見込み角内を伝播した光線Cの一部は対物光学系410から測距装置10の内部に入射する。測距装置10から対象物20までの距離を数百メートルと想定した場合、対物光学系410の見込み角は、例えば、±0.35°程度にすることができる。 In the distance measuring device 10, a part of the light beam C 1 propagating within the expected angle of the light receiving unit 400 enters the distance measuring device 10 from the objective optical system 410. When the distance from the distance measuring device 10 to the object 20 is assumed to be several hundred meters, the prospective angle of the objective optical system 410 can be set to about ± 0.35 °, for example.
 測距装置10内を(-Y)方向に伝播した光線Cのうち、信号光を含む帯域は、帯域透過フィルタ420を透過して受光素子430に入射する。光線Aは、受光素子430受光面の略中央にスポット像を形成して検出される。これにより、測距装置10の測距部500は、信号光の伝播時間に基づいて算出した、測距装置10から対象物20までの距離Dをユーザに向かって表示する。 Of the light beam C 2 propagated in the (−Y) direction through the distance measuring device 10, the band including the signal light is transmitted through the band transmission filter 420 and is incident on the light receiving element 430. The light beam A 2 is detected by forming a spot image at the approximate center of the light receiving surface of the light receiving element 430. Thus, the distance measuring unit 500 of the distance measuring device 10 was calculated based on the propagation time of the signal light, to display the distance D L from the distance measuring device 10 to the object 20 towards the user.
 図3は、測距装置10における測距動作の手順の一例を示す流れ図である。スイッチの投入等、ユーザの操作による測距の指示を受けて測距が開始された場合、測距制御部520は、まず、発光部210に発光を指示する(ステップS101)。これにより、送光部200を通じて信号光が対象物に投射される。 FIG. 3 is a flowchart showing an example of the procedure of the distance measuring operation in the distance measuring device 10. When ranging starts in response to an instruction for ranging by a user operation such as turning on a switch, the ranging control unit 520 first instructs the light emitting unit 210 to emit light (step S101). Thereby, the signal light is projected onto the object through the light transmitting unit 200.
 なお、送光部200には、受光部400が反射光を受光するまでの伝播時間よりも長い周期でパルス状の信号光を繰り返し投射させてもよい。これにより、何らかの理由で対象物からの反射光を受光できなかった場合があっても、即座に再試行できる。 The light transmitting unit 200 may repeatedly project pulsed signal light with a period longer than the propagation time until the light receiving unit 400 receives the reflected light. Thereby, even if the reflected light from the object cannot be received for some reason, it can be retried immediately.
 次に、測距制御部520は、受光部400が信号光を受光したか否かを判定する(ステップS102)。受光部400が信号光を受光していた場合は(ステップS102:YES)、時計部510に、発光部210が信号光を射出してから受光素子430が信号光を検出するまでにかかった時間を計測させ(ステップS103)、続いて、信号光の伝播距離を算出させる(ステップS104)。 Next, the distance measurement control unit 520 determines whether or not the light receiving unit 400 has received the signal light (step S102). When the light receiving unit 400 has received the signal light (step S102: YES), the time taken from the light emitting unit 210 emitting the signal light to the clock unit 510 until the light receiving element 430 detects the signal light. Is measured (step S103), and then the propagation distance of the signal light is calculated (step S104).
 更に、測距制御部520は、時計部510が算出した距離を、表示部530に表示させる(ステップS105)。なお、時計部510は、ステップS104において、測距装置10の傾き等を検出して、計測に基づく算出結果を水平距離、高低差等に換算する場合もある。 Further, the distance measurement control unit 520 displays the distance calculated by the clock unit 510 on the display unit 530 (step S105). In step S104, the clock unit 510 may detect the inclination of the distance measuring device 10 and convert a calculation result based on the measurement into a horizontal distance, a height difference, or the like.
 一方、ステップS102において、受光部400が信号光を受光できなかった場合(ステップS102:NO)、測距制御部520は、発光部210に発光を指示した回数をインクリメントし(ステップS106)、続いて、当該回数が予め定められた回数に達しているか否かを判定する(ステップS107)。 On the other hand, when the light receiving unit 400 cannot receive the signal light in step S102 (step S102: NO), the distance measurement control unit 520 increments the number of times of instructing the light emitting unit 210 to emit light (step S106). Then, it is determined whether or not the number of times has reached a predetermined number (step S107).
 ここで、測距の試行回数が既定の回数に達したことが判った場合(ステップS107:YES)、測距制御部520は、測距動作を中止させ、表示部530に測距できない旨を表示させる。一方、測距の試行回数が既定の回数に達していないことが判った場合(ステップS107:NO)、測距制御部520は、再び、ステップS101からの一連の測距動作を繰り返す。こうして、測距装置10は、高い確率で測距動作を完遂できる。 If it is determined that the number of distance measurement trials has reached the predetermined number (step S107: YES), the distance measurement control unit 520 stops the distance measurement operation and the display unit 530 indicates that the distance measurement cannot be performed. Display. On the other hand, when it is determined that the number of distance measurement trials has not reached the predetermined number (step S107: NO), the distance measurement control unit 520 repeats the series of distance measurement operations from step S101 again. Thus, the distance measuring device 10 can complete the distance measuring operation with high probability.
 再び図1を参照すると、補正部300は、補正部材310および駆動部320に加えて、ブレ検出部340および補正制御部330を有する。 Referring again to FIG. 1, the correction unit 300 includes a shake detection unit 340 and a correction control unit 330 in addition to the correction member 310 and the drive unit 320.
 ブレ検出部340は、検出方向が互いに交差する複数の角速度センサ等を備える。複数の角速度センサは、例えば、測距装置10のピッチングおよびヨーイングを検出する方向に配される。角速度センサの各々は、測距装置10が変位した場合に、変位の方向と変位量とに対応した信号を出力する。 The blur detection unit 340 includes a plurality of angular velocity sensors whose detection directions intersect each other. For example, the plurality of angular velocity sensors are arranged in a direction in which pitching and yawing of the distance measuring device 10 are detected. Each angular velocity sensor outputs a signal corresponding to the direction and amount of displacement when the distance measuring device 10 is displaced.
 補正制御部330は、ブレ検出部340の出力を周期的に参照して、測距装置10の変位に起因して視準部100で生じる像ブレを打ち消す補正部材310の変位方向および変位量を算出する。また、補正制御部330は、算出した変位方向および変位量を駆動部320に伝えて、補正部材310を駆動させる。 The correction control unit 330 periodically refers to the output of the blur detection unit 340 to determine the displacement direction and the displacement amount of the correction member 310 that cancels the image blur generated in the collimation unit 100 due to the displacement of the distance measuring device 10. calculate. In addition, the correction control unit 330 transmits the calculated displacement direction and displacement amount to the drive unit 320 to drive the correction member 310.
 駆動部320は、補正制御部330から受けた指令に基づいて、補正部材310を光軸と交差する方向に変位させる。これにより、視準部100における像ブレが抑制されると共に、信号光が対象物から逸れることが防止される。 The driving unit 320 displaces the correction member 310 in a direction intersecting the optical axis based on a command received from the correction control unit 330. Thereby, image blurring in the collimation unit 100 is suppressed and signal light is prevented from deviating from the object.
 更に、補正制御部330は、補正部材310から変位量を取得して、補正部材310の駆動量を帰還制御する。これにより、衝撃、振動等の外乱が加わった場合であっても、補正部材310の位置を精度よく制御できる。 Further, the correction control unit 330 acquires the displacement amount from the correction member 310 and feedback-controls the drive amount of the correction member 310. As a result, the position of the correction member 310 can be accurately controlled even when a disturbance such as impact or vibration is applied.
 なお、補正部300は、常時補正動作をしてもよいが、ユーザが測距装置10を使用している期間に限って補正動作を実行してもよい。ユーザが測距装置10を使用していることは、例えば、接眼光学系110を覗くユーザの目を検出して、補正部300をオン/オフしてもよい。また、ユーザがスイッチ等を操作することにより補正部300が動作を開始するようにしてもよい。更に、予め定められた時間を超えてユーザの操作が無い場合に補正部300の動作を停止させてもよい。 In addition, although the correction | amendment part 300 may always perform correction | amendment operation | movement, you may perform correction | amendment operation | movement only in the period when the user is using the distance measuring device 10. FIG. The fact that the user is using the distance measuring device 10 may detect, for example, the eyes of the user looking through the eyepiece optical system 110 and turn the correction unit 300 on / off. Further, the correction unit 300 may start the operation when the user operates a switch or the like. Further, the operation of the correction unit 300 may be stopped when there is no user operation beyond a predetermined time.
 図4は、測距装置10における補正部300の補正動作を光学的に説明する模式図である。測距装置10は、図2に示した状態から、図中時計回りに回転して、水平面Hに対して角度(+θ)をなす傾きを生じている。これにより、測距装置10の前端はZ方向に変位し、対物光学系220の光軸は、対象物20の図中上方を指す。 FIG. 4 is a schematic diagram for optically explaining the correction operation of the correction unit 300 in the distance measuring device 10. The distance measuring device 10 rotates clockwise from the state shown in FIG. 2 to produce an inclination that forms an angle (+ θ 0 ) with respect to the horizontal plane H. Thereby, the front end of the distance measuring device 10 is displaced in the Z direction, and the optical axis of the objective optical system 220 points upward in the drawing of the object 20.
 補正部300においては、ブレ検出部340が測距装置10の回転を検出して、駆動部320により補正部材310をZ方向に変位させる。これにより、対象物20から測距装置10に向かって、(-Y)方向に水平に伝播した光線Aは、測距装置10の傾きと同じ傾きを有する光線Aとして、測距装置10の内部を伝播する。よって、接眼光学系110に形成される対象物20の像は変位しない。 In the correction unit 300, the blur detection unit 340 detects the rotation of the distance measuring device 10, and the driving unit 320 displaces the correction member 310 in the Z direction. As a result, the light beam A 1 that has propagated horizontally in the (−Y) direction from the object 20 toward the distance measuring device 10 is converted into a light beam A 2 having the same inclination as the inclination of the distance measuring device 10. Propagate inside. Therefore, the image of the object 20 formed on the eyepiece optical system 110 is not displaced.
 また、測距装置10の内部において測距装置10と共に傾斜した信号光の光線Bの光路は、補正部材310により水平に補正される。これにより、測距装置10から射出されてY方向に伝播する信号光の光線Bは、依然として対象物20に投射される。 Further, the optical path of the signal light beam B 2 tilted together with the distance measuring device 10 inside the distance measuring device 10 is corrected horizontally by the correction member 310. Thereby, the light beam B 3 of the signal light emitted from the distance measuring device 10 and propagating in the Y direction is still projected onto the object 20.
 対象物20に投射された信号光は、対象物20により反射される。反射された信号光のうち、受光部400の見込み角に含まれる光線Cは、受光部400から測距装置10に入射し、光線Cして(-Y)方向に伝播する。光線Cは、やがて受光素子430に検出され、測距部500は、信号光の伝播時間に基づいて算出した距離Dをユーザに向かって表示する。 The signal light projected on the object 20 is reflected by the object 20. Of the reflected signal light, the light beam C 1 included in the expected angle of the light receiving unit 400 is incident on the distance measuring device 10 from the light receiving unit 400 and propagates in the (−Y) direction as a light beam C 2 . Light C 2 is eventually detected in the light receiving element 430, the distance measurement unit 500 displays toward the distance D L calculated based on the propagation time of the signal light to a user.
 図5は、測距装置10における補正部300の他の補正動作を光学的に説明する模式図である。測距装置10は、図2に示した状態から、図中反時計回りに回転して、水平面Hに対して角度(-θ)をなす傾きを生じている。これにより、測距装置10の前端は(-Z)方向に変位し、対物光学系220の光軸は、対象物20の図中下方を指す。 FIG. 5 is a schematic diagram for optically explaining another correction operation of the correction unit 300 in the distance measuring device 10. The distance measuring device 10 rotates counterclockwise in the drawing from the state shown in FIG. 2, and has an inclination that forms an angle (−θ 0 ) with respect to the horizontal plane H. As a result, the front end of the distance measuring device 10 is displaced in the (−Z) direction, and the optical axis of the objective optical system 220 indicates the lower side of the object 20 in the drawing.
 補正部300においては、ブレ検出部340が測距装置10の回転を検出して、駆動部320により補正部材310を(-Z)方向に変位させる。これにより、対象物20から測距装置10に向かって、(-Y)方向に水平に伝播した光線Aは、測距装置10の傾きと同じ傾きを有する光線Aとして、測距装置10の内部を伝播する。よって、接眼光学系110に形成される対象物20の像は変位しない。 In the correction unit 300, the blur detection unit 340 detects the rotation of the distance measuring device 10, and the drive unit 320 displaces the correction member 310 in the (−Z) direction. As a result, the light beam A 1 that has propagated horizontally in the (−Y) direction from the object 20 toward the distance measuring device 10 is converted into a light beam A 2 having the same inclination as the inclination of the distance measuring device 10. Propagate inside. Therefore, the image of the object 20 formed on the eyepiece optical system 110 is not displaced.
 また、測距装置10の内部において測距装置10と共に傾斜した信号光の光線Bの光路は、補正部材310により水平に補正される。これにより、測距装置10から射出されてY方向に伝播する信号光の光線Bは、依然として対象物20に投射される。 Further, the optical path of the signal light beam B 2 tilted together with the distance measuring device 10 inside the distance measuring device 10 is corrected horizontally by the correction member 310. Thereby, the light beam B 3 of the signal light emitted from the distance measuring device 10 and propagating in the Y direction is still projected onto the object 20.
 対象物20に投射された信号光は、対象物20により反射される。反射された信号光のうち、受光部400の見込み角に含まれる光線Cは、受光部400から測距装置10に入射し、光線Cして(-Y)方向に伝播する。光線Cは、やがて受光素子430に検出され、測距部500は、信号光の伝播時間に基づいて算出した距離Dをユーザに向かって表示する。 The signal light projected on the object 20 is reflected by the object 20. Of the reflected signal light, the light beam C 1 included in the expected angle of the light receiving unit 400 is incident on the distance measuring device 10 from the light receiving unit 400 and propagates in the (−Y) direction as a light beam C 2 . Light C 2 is eventually detected in the light receiving element 430, the distance measurement unit 500 displays toward the distance D L calculated based on the propagation time of the signal light to a user.
 このように、測距装置10においては、測距装置10が水平面Hに対して上向きまたは下向きに変位した場合も、測距装置10内部を伝播する光線Aの光路が補正部300により補正され、視準部100からユーザが観察する対象物20の像が変位しない。また、送光部200が対象物20に向かって投射する信号光の光線Bの光路も水平に補正されて対象物20に投射され続ける。よって、ユーザの手振れ等による変位が生じても、対象物20を容易に視準して測距を実行できる。 As described above, in the distance measuring device 10, even when the distance measuring device 10 is displaced upward or downward with respect to the horizontal plane H, the optical path of the light beam A 2 propagating through the distance measuring device 10 is corrected by the correction unit 300. The image of the object 20 observed by the user from the collimation unit 100 is not displaced. Further, the optical path of the light beam B 3 of the signal light projected by the light transmitting unit 200 toward the object 20 is also corrected horizontally and continuously projected onto the object 20. Therefore, even if a displacement due to a user's hand shake or the like occurs, the object 20 can be easily collimated to perform distance measurement.
 なお、上記の例では、測距装置13がZ方向に振れた場合について説明したが、測距装置13が(-Z)方向に振れた場合も、補正部300が同様に像振れを補正できることはもちろんである。また、駆動部320は、補正部材310を紙面に対して垂直なX/-X方向にも変位させるので、補正部300は、測距装置13のX/-X方向のブレも補正できる。 In the above example, the case where the distance measuring device 13 is shaken in the Z direction has been described. However, when the distance measuring device 13 is shaken in the (−Z) direction, the correction unit 300 can similarly correct the image shake. Of course. Further, since the driving unit 320 displaces the correction member 310 in the X / −X direction perpendicular to the paper surface, the correction unit 300 can also correct the blur in the X / −X direction of the distance measuring device 13.
 図6は、受光素子430に形成される信号光のスポット像を模式的に示す図である。図2を参照して説明したように、測距装置10が水平状態の場合、対象物20により反射された信号光が受光素子430の受光領域431に形成するスポット像432は、受光領域431の略中央に位置する。 FIG. 6 is a diagram schematically showing a spot image of signal light formed on the light receiving element 430. As described with reference to FIG. 2, when the distance measuring device 10 is in a horizontal state, the spot image 432 formed in the light receiving region 431 of the light receiving element 430 by the signal light reflected by the object 20 is Located in the approximate center.
 ここで、測距装置10が、図4に示したように上向きに変位した場合、対象物20に投射される信号光の光線Bの光路は依然として水平に保たれる。よって、受光素子430に入射する光線Cも、光線Bの水平な光路を反映して、測距装置10内を略水平に伝播する。 Here, the distance measuring device 10, when the upward displacement as shown in FIG. 4, the optical path of the light beam B 3 of the signal light is projected onto the object 20 are still horizontally maintained. Therefore, the light beam C 2 incident on the light receiving element 430 also propagates in the distance measuring apparatus 10 substantially horizontally, reflecting the horizontal optical path of the light beam B 3 .
 しかしながら、光線Cを受光する受光素子430は、測距装置10の傾きに伴って下方に変位している。このため、光線Cは、受光素子430の受光領域431において上端側の偏った位置にスポット像434を形成する。 However, the light receiving element 430 that receives the light beam C 2 is displaced downward with the inclination of the distance measuring device 10. For this reason, the light ray C 2 forms a spot image 434 at an offset position on the upper end side in the light receiving region 431 of the light receiving element 430.
 また、測距装置10が、図5に示したように下向きに変位した場合も、受光素子430に入射する光線Cは、測距装置10内を略水平に伝播する。しかしながら、光線Cを受光する受光素子430は、測距装置10の傾きに伴って上方に変位している。このため、光線Cは、受光素子430の受光領域431において下端側の偏った位置にスポット像436を形成する。 Even when the distance measuring device 10 is displaced downward as shown in FIG. 5, the light ray C 2 incident on the light receiving element 430 propagates in the distance measuring device 10 substantially horizontally. However, the light receiving element 430 that receives the light beam C 2 is displaced upward with the inclination of the distance measuring device 10. For this reason, the light beam C 2 forms a spot image 436 at a biased position on the lower end side in the light receiving region 431 of the light receiving element 430.
 このように、補正部300が補正動作をした場合は、受光素子430において信号光がスポット像を形成する位置が変化する。測距装置10においては、補正部300による補正の範囲が、受光素子430が信号光を検出できる範囲に制限される。これにより、補正部300が動作した場合も、測距装置10は測距動作を実行できる状態が継続される。 Thus, when the correction unit 300 performs the correction operation, the position where the signal light forms a spot image in the light receiving element 430 changes. In the distance measuring device 10, the correction range by the correction unit 300 is limited to a range in which the light receiving element 430 can detect the signal light. Thereby, even when the correction unit 300 is operated, the state in which the distance measuring device 10 can execute the distance measuring operation is continued.
 図7は、測距に用いる信号光が変位する範囲に関する条件を説明する模式図である。なお、図7は、受光範囲、照射範囲等の相対関係を示す図であり、受光範囲および照射範囲の大きさを示すものではない。同図においては、補正動作により信号光が変位する範囲を示す防振角をθv、受光素子430の受光範囲を示す受光角をθR、信号光の照射範囲をθLと表した場合の、相互の関係を示す。 FIG. 7 is a schematic diagram for explaining conditions regarding the range in which the signal light used for ranging is displaced. FIG. 7 is a diagram showing a relative relationship between the light receiving range, the irradiation range, and the like, and does not show the sizes of the light receiving range and the irradiation range. In the same figure, when the image stabilization angle indicating the range in which the signal light is displaced by the correction operation is represented by θv, the light receiving angle indicating the light receiving range of the light receiving element 430 is represented by θR, and the irradiation range of the signal light is represented by θL. Show the relationship.
 図中中段に示すように、受光素子430が信号光を全て受光できる場合の条件は、下記の式1に示す通りとなる。
 θv+θL≦θR
 θv≦|θR-θL|  ・・・(式1)
As shown in the middle part of the figure, the conditions when the light receiving element 430 can receive all the signal light are as shown in the following formula 1.
θv + θL ≦ θR
θv ≦ | θR−θL | (Formula 1)
 また、図中下段に示すように、受光素子430が信号光を、一部でも受光できる場合の条件は、下記の式2に示す通りとなる。
 θv-θL<θR
 θv<θR+θL    ・・・(式2)
Further, as shown in the lower part of the figure, the conditions when the light receiving element 430 can receive even part of the signal light are as shown in the following Expression 2.
θv-θL <θR
θv <θR + θL (Formula 2)
 よって、測距装置10においては、少なくとも上記式2を満たす範囲で、信号光の光路が変位するように補正部300が補正動作を実行する。また、補正部300が、上記式1を満たす範囲で信号光の光路を変位させる場合は、受光素子430から高い信号強度が検出されるので、測距動作が確実に実行される。 Therefore, in the distance measuring device 10, the correction unit 300 performs the correction operation so that the optical path of the signal light is displaced within a range that satisfies at least the above-described Expression 2. In addition, when the correction unit 300 displaces the optical path of the signal light within a range that satisfies the above formula 1, since the high signal intensity is detected from the light receiving element 430, the ranging operation is reliably performed.
 更に、上記式2の条件と上記式1の条件の中間、例えば、受光素子430が全信号光強度の半分を検出する範囲に信号光の光路を変位させてもよい。このように、補正部300が信号光を変位させる範囲は、受光素子430が検出する信号光の信号強度にも基づいて決定してもよい。 Furthermore, the optical path of the signal light may be displaced between the condition of the above expression 2 and the condition of the above expression 1, for example, a range in which the light receiving element 430 detects half of the total signal light intensity. Thus, the range in which the correction unit 300 displaces the signal light may be determined based on the signal intensity of the signal light detected by the light receiving element 430.
 なお、補正部材310の補正範囲を最大限に活用するため、図7に示すように、上述のどの構成においても、補正動作により信号光が変位する範囲を示す防振角θvの中心と、受光素子430の受光範囲を示す受光角θRの中心を一致させるように防振動作をさせるのが好ましい。 In order to make full use of the correction range of the correction member 310, as shown in FIG. 7, in any of the above-described configurations, the center of the image stabilization angle θv indicating the range in which the signal light is displaced by the correction operation, and the light reception It is preferable to perform the image stabilization operation so that the center of the light receiving angle θR indicating the light receiving range of the element 430 coincides.
 補正範囲は、例えば、補正部材310の変位量を規制することにより制限できる。補正部材310の変位量は、補正制御部330が発生する駆動部320の指令の範囲を規制してもよい。また、駆動部320または補正部材310に、機械的または電気的な制限を設けてもよい。 The correction range can be limited by restricting the amount of displacement of the correction member 310, for example. The displacement amount of the correction member 310 may regulate the range of the command of the drive unit 320 generated by the correction control unit 330. In addition, the driving unit 320 or the correction member 310 may be provided with mechanical or electrical restrictions.
 なお、補正部300において、補正制御部330は、ブレ検出部340が検出する検出結果に制限を加える処理を実行してもよい。例えば、測距装置10の用途に応じて高い検出精度が求められる場合は、ブレ検出部340が検出するブレの大きさを制限して、ブレ検出部340のリソースを検出の分解能に振り向けてもよい。この場合、ブレ検出部340は、予め定められた範囲を越えるブレ量を検出しない。 In the correction unit 300, the correction control unit 330 may execute a process of limiting the detection result detected by the shake detection unit 340. For example, when high detection accuracy is required according to the application of the distance measuring device 10, the size of the shake detected by the shake detection unit 340 is limited, and the resources of the shake detection unit 340 are allocated to the detection resolution. Good. In this case, the blur detection unit 340 does not detect a blur amount exceeding a predetermined range.
 あるいは、より大きなブレを検出する目的で、補正制御部330は、ブレを検出する場合のブレ検出部340の分解能を低くしてもよい。更に、補正制御部330は、検出するブレ量が小さい範囲ではブレ検出部340の分解能を高くし、検出するブレ量が大きくなるに連れてブレ検出部340の分解能を低くするように制限してもよい。 Alternatively, for the purpose of detecting a larger shake, the correction control unit 330 may lower the resolution of the shake detection unit 340 when detecting a shake. Further, the correction control unit 330 restricts the resolution of the blur detection unit 340 to be high in the range where the blur amount to be detected is small and to decrease the resolution of the blur detection unit 340 as the blur amount to be detected increases. Also good.
 上記のように、補正部300が補正動作を実行した場合、信号光のスポット像は受光素子430の受光領域431において変移する。よって、補正部300を備えた測距装置10においては、補正動作をしていない場合のスポット像の周囲に、補正動作をした場合の変移を許容するマージンを残しておくことが好ましい。このような観点から、較正部600が測距範囲を較正する場合も、補正動作によるマージンを見込んで較正することが好ましい。 As described above, when the correction unit 300 performs the correction operation, the spot image of the signal light is shifted in the light receiving region 431 of the light receiving element 430. Therefore, in the distance measuring apparatus 10 including the correction unit 300, it is preferable to leave a margin that allows a transition when the correction operation is performed around the spot image when the correction operation is not performed. From such a viewpoint, when the calibration unit 600 calibrates the distance measurement range, it is preferable to calibrate in consideration of a margin due to the correction operation.
 また、測距装置10は、少なくとも工場出荷段階においては、信号光の光軸に直交する反射面を視準対象として、補正部材310が移動範囲の中央に位置する場合に、信号光のスポット像が受光素子430の受光領域431の中央に位置するように調整することが好ましい。これにより、補正部300による補正範囲を等方的に拡げることができる。 Further, at least at the time of factory shipment, the distance measuring device 10 has a reflecting surface orthogonal to the optical axis of the signal light as a collimation target, and the spot image of the signal light when the correction member 310 is positioned at the center of the moving range. Is preferably adjusted so as to be positioned at the center of the light receiving region 431 of the light receiving element 430. Thereby, the correction range by the correction unit 300 can be expanded isotropically.
 更に、測距装置10が補正部300が補正できる範囲を大きく超えた場合は、補正ができない状態になったこと、あるいは、信号光が測距の対象物20からはずれている可能性があることをユーザに警告する警告部を測距装置10に設けてもよい。また、そのような場合、補正制御部330は、駆動部320による補正部材310の駆動を停止し、ブレ検出部340により検出されたぶれが納まるまで補正動作を中断させてもよい。 Further, when the distance measuring device 10 greatly exceeds the range that can be corrected by the correction unit 300, the correction cannot be performed, or the signal light may be deviated from the object 20 for distance measurement. A warning unit that warns the user may be provided in the distance measuring device 10. In such a case, the correction control unit 330 may stop driving the correction member 310 by the driving unit 320 and interrupt the correction operation until the shake detected by the shake detection unit 340 is settled.
 なお、ブレ検出部340が、補正できる限界を超えるブレが納まったことを検出した場合は、再びブレに対する補正を再開させてもよい。また、駆動部320が補正部材310を駆動していない場合は、補正部材310の変位を電気的または機械的に係止してもよい。また、補正部材310を係止する場合は、補正部材310の位置を、その移動範囲の中央に強制的に戻してもよい。 In addition, when the blur detection unit 340 detects that the blur exceeding the limit that can be corrected is settled, the correction for the blur may be resumed. Further, when the drive unit 320 is not driving the correction member 310, the displacement of the correction member 310 may be locked electrically or mechanically. Further, when the correction member 310 is locked, the position of the correction member 310 may be forcibly returned to the center of the movement range.
 また、補正制御部330は、信号光のスポット像434が受光領域431の中央に形成される場合の補正部材310の位置を、補正部材310の初期位置として補正動作を開始してもよい。補正部材310の初期位置は、測距装置10を出荷する段階で調整してもよいし、測距を開始する直前に調整してもよい。これにより、受光領域431の全面を利用して、補正部300が広い補正範囲で補正動作を実行できる。 Further, the correction control unit 330 may start the correction operation with the position of the correction member 310 when the signal light spot image 434 is formed at the center of the light receiving region 431 as the initial position of the correction member 310. The initial position of the correction member 310 may be adjusted when the distance measuring device 10 is shipped, or may be adjusted immediately before starting the distance measurement. Thereby, the correction | amendment part 300 can perform correction | amendment operation | movement in a wide correction | amendment range using the whole surface of the light-receiving area | region 431. FIG.
 更に、上記の例では、測距装置10がZ/-Z方向に振れた場合について説明した。しかしながら、駆動部320は、補正部材310を紙面に対して垂直なX/-X方向に変位させるアクチュエータも備えている。これにより、補正部300は、測距装置10のX/-X方向のブレも補正できる。 Furthermore, in the above example, the case where the distance measuring device 10 swings in the Z / −Z direction has been described. However, the drive unit 320 also includes an actuator that displaces the correction member 310 in the X / −X direction perpendicular to the paper surface. Thereby, the correction unit 300 can also correct the blur in the X / −X direction of the distance measuring device 10.
 また更に、Z/-Z方向の補正とX/-X方向の補正とを組み合わせることにより、測距装置10のあらゆる方向への変位を補正できる。また更に、補正部300は、補正部材310を揺動させる他の駆動部を設けて、補正部材310を揺動させることにより補正を実行してもよい。 Furthermore, the displacement of the distance measuring device 10 in any direction can be corrected by combining the correction in the Z / −Z direction and the correction in the X / −X direction. Further, the correction unit 300 may perform another correction by providing another drive unit that swings the correction member 310 and swinging the correction member 310.
 受光素子430の受光領域431の形状が矩形に限られないことはもちろんである。むしろ、補正部300による補正範囲が受光領域431の形状に既定されることを考慮すると、受光領域431の形状は、中心から縁部までの間隔が均一な円形であってもよい。これにより、補正部300による補正範囲を、全包囲について等しくできる。また、受光素子430の前に正の屈折率を有する光学部材を設けて、信号光の光線Cを受光素子430に集光してもよい。 Of course, the shape of the light receiving region 431 of the light receiving element 430 is not limited to a rectangle. Rather, considering that the correction range by the correction unit 300 is defined as the shape of the light receiving region 431, the shape of the light receiving region 431 may be a circle having a uniform interval from the center to the edge. Thereby, the correction | amendment range by the correction | amendment part 300 can be made equal about all the surroundings. Further, an optical member having a positive refractive index may be provided in front of the light receiving element 430 so that the signal light ray C 2 is condensed on the light receiving element 430.
 図8は、測距装置10における補正部300の他の補正動作を説明する模式図である。測距装置10は、図6に示した状態から更に図中反時計回りに回転して、水平面Hに対してより大きな角度(-θ)をなす傾きを生じている。これにより、測距装置10の前端は(-Z)方向に変位し、対物光学系220の光軸は対象物20の図中下方を指す。 FIG. 8 is a schematic diagram for explaining another correction operation of the correction unit 300 in the distance measuring device 10. The distance measuring device 10 further rotates counterclockwise in the drawing from the state shown in FIG. 6 to produce an inclination that forms a larger angle (−θ 1 ) with respect to the horizontal plane H. As a result, the front end of the distance measuring device 10 is displaced in the (−Z) direction, and the optical axis of the objective optical system 220 points downward in the drawing of the object 20.
 補正部300においては、ブレ検出部340が測距装置10の回転を検出して、駆動部320により補正部材310を(-Z)方向に変位させる。これにより、対象物20から測距装置10に向かって、(-Y)方向に水平に伝播する光線Aは、測距装置10の傾きと同じ側に傾けられる。しかしながら、測距装置10の傾きが大きくなると、受光素子430において信号光が形成するスポット像の位置が受光領域431の端に到達する。 In the correction unit 300, the blur detection unit 340 detects the rotation of the distance measuring device 10, and the drive unit 320 displaces the correction member 310 in the (−Z) direction. As a result, the light ray A 1 that propagates horizontally in the (−Y) direction from the object 20 toward the distance measuring device 10 is inclined to the same side as the inclination of the distance measuring device 10. However, when the inclination of the distance measuring device 10 increases, the position of the spot image formed by the signal light in the light receiving element 430 reaches the end of the light receiving region 431.
 測距装置10における補正部300は、受光素子430が信号光を受光する範囲において補正動作を実行する。よって、信号光のスポット像が受光領域431の端部に達した段階で、補正部材310の変位を停止する。よって、接眼光学系110に形成される対象物20の像が上方に変位する。また、これに伴って、光線Bとして投射される信号光の投射位置も、対象物20に対して下方に変位する。 The correction unit 300 in the distance measuring device 10 performs a correction operation in a range where the light receiving element 430 receives the signal light. Therefore, when the spot image of the signal light reaches the end of the light receiving region 431, the displacement of the correction member 310 is stopped. Therefore, the image of the object 20 formed on the eyepiece optical system 110 is displaced upward. Along with this, the projection position of the signal light projected as the light beam B 3 is also displaced downward with respect to the object 20.
 これにより、受光素子430は、対象物20の異なる位置、または、異なる対象物20により反射された信号光を受光し続けて測距可能な状態を継続する。このように、測距装置10は、補正部300を備えるが故に、大きな変位が生じた場合も測距機能を維持し続ける。 Thereby, the light receiving element 430 continues to receive a signal light reflected by a different position of the target object 20 or by the different target object 20 and continue the distance measurement possible state. As described above, since the distance measuring device 10 includes the correction unit 300, the distance measuring function is maintained even when a large displacement occurs.
 なお、測距制御部520は、時計部510が算出した補正量が補正部材310の移動範囲を超えた場合に、表示部530を通じてその旨を外部に通知してもよい。これにより、測距装置10の安定な保持をユーザに促して、補正部300の負担を軽減できる。 The distance measurement control unit 520 may notify the outside through the display unit 530 when the correction amount calculated by the clock unit 510 exceeds the movement range of the correction member 310. Thereby, the user is encouraged to hold the distance measuring device 10 stably, and the burden on the correction unit 300 can be reduced.
 図9は、上記のような補正部300の動作を制御する補正制御部330の制御手順を示す流れ図である。補正部300が補正動作を開始すると、補正制御部330は、ブレ検出部340が測距装置10のブレを検出したか否かを判定する(ステップS201)。 FIG. 9 is a flowchart showing a control procedure of the correction control unit 330 that controls the operation of the correction unit 300 as described above. When the correction unit 300 starts the correction operation, the correction control unit 330 determines whether or not the blur detection unit 340 has detected the blur of the distance measuring device 10 (step S201).
 補正部300が動作を開始すると、補正制御部330は、ブレ検出部340がブレを検出したか否かを監視して(ステップS201)待機する(ステップS201:NO)。ブレ検出部340により測距装置10のブレが検出されると(ステップS201:YES)、補正制御部330は、検出されたブレを打ち消すことができる補正部材310の駆動量、即ち補正量を算出する(ステップS202)。 When the correction unit 300 starts operating, the correction control unit 330 monitors whether or not the shake detection unit 340 has detected a shake (step S201) and waits (step S201: NO). When the shake detection unit 340 detects a shake of the distance measuring device 10 (step S201: YES), the correction control unit 330 calculates a driving amount of the correction member 310 that can cancel the detected shake, that is, a correction amount. (Step S202).
 次に、補正制御部330は、算出された補正量に基づいて補正部材310を変位させた場合に、補正部材310が補正限界を越えて変位しないかを判定する(ステップS203)。補正限界は、信号光が受光部400において形成するスポット像432、434、436が補正部材310の移動により移動した場合に、受光素子430の受光領域からはずれてしまう限界を意味する。 Next, when the correction member 310 is displaced based on the calculated correction amount, the correction control unit 330 determines whether the correction member 310 is not displaced beyond the correction limit (step S203). The correction limit means a limit where the spot light 432, 434, 436 formed by the signal light in the light receiving unit 400 is deviated from the light receiving region of the light receiving element 430 when the spot image 432, 434, 436 is moved by the movement of the correction member 310.
 よって、図7を参照して既に説明した通り、信号光が変位する範囲を示す防振角をθv、受光素子430の受光範囲を示す受光角をθR、信号光の照射範囲をθLと表した場合に、例えば、式1に示す条件を満たすことが補正限界を決定する。また、やはり図7を参照して既に説明した通り、補正限界は、スポット像432、434、436が受光素子430の受光領域から完全に外に出る限界ではなく、式2に示したように、スポット像の一部が受光領域内に残っている位置に定めてもよい。これにより、補正部材310が補正限界に達した段階では、受光素子430が依然として信号光を受光しており、測距可能な状態が継続される。 Therefore, as already described with reference to FIG. 7, the anti-vibration angle indicating the range in which the signal light is displaced is represented by θv, the light receiving angle indicating the light receiving range of the light receiving element 430 is represented by θR, and the irradiation range of the signal light is represented by θL. In this case, for example, satisfying the condition shown in Equation 1 determines the correction limit. As already described with reference to FIG. 7, the correction limit is not a limit at which the spot images 432, 434, and 436 completely go out of the light receiving region of the light receiving element 430, but as shown in Equation 2, You may determine in the position where a part of spot image remains in a light reception area | region. Thereby, when the correction member 310 reaches the correction limit, the light receiving element 430 still receives the signal light, and the state in which the distance can be measured is continued.
 また、補正制御部330が参照する補正限界は、予め定められた値を補正制御部330に保持させておいてもよい。また、補正制御部330が参照できる格納部に補正限界の値を格納しておいてもよい。 Further, as the correction limit referred to by the correction control unit 330, a predetermined value may be held in the correction control unit 330. The correction limit value may be stored in a storage unit that can be referred to by the correction control unit 330.
 ステップS203において、算出された補正量により補正部材310を移動させても補正限界内にとどまることが判った場合、(ステップS203:YES)、補正制御部330は、算出され補正量に従って補正部材310を変位させる指令を駆動部320に発信する(ステップS204)。これにより、ブレ検出部340により検出されたブレは補正部材310により補正され、接眼光学系110を通じて観察される対象物20の像に像ブレが防止される。 If it is found in step S203 that the correction member 310 remains within the correction limit even if the correction member 310 is moved by the calculated correction amount (step S203: YES), the correction control unit 330 will correct the correction member 310 according to the calculated correction amount. Is transmitted to the drive unit 320 (step S204). Thereby, the blur detected by the blur detection unit 340 is corrected by the correction member 310, and image blur is prevented in the image of the object 20 observed through the eyepiece optical system 110.
 また、送光部200から射出された信号光も、当初視準した対象物20から逸れない。更に、対象物20において反射された信号光が受光素子430に受光される状態が維持されているので、測距部500は、測距装置10から対象物20までの距離を測距できる状態が継続される。 Also, the signal light emitted from the light transmitting unit 200 does not deviate from the target 20 that is initially collimated. Furthermore, since the signal light reflected by the object 20 is maintained in the light receiving element 430, the distance measuring unit 500 can measure the distance from the distance measuring device 10 to the object 20. Will continue.
 一方、ステップS203において、算出された補正量が、補正限界を越えて補正部材310を移動させるものであった場合(ステップS203:NO)、補正制御部330は、補正部材310によるブレ補正を中止して、補正部材310を初期位置に復帰させる(ステップS205)。これにより、視準部100において対象物20の像ブレが生じると共に、信号光が対象物20以外のものに投射される場合がある。しかしながら、測距装置10が測距を実行できる状態は維持される。 On the other hand, when the calculated correction amount is to move the correction member 310 beyond the correction limit in step S203 (step S203: NO), the correction control unit 330 stops the blur correction by the correction member 310. Then, the correction member 310 is returned to the initial position (step S205). As a result, image blurring of the object 20 occurs in the collimation unit 100 and signal light may be projected onto something other than the object 20. However, the state in which the distance measuring device 10 can perform distance measurement is maintained.
 次に、補正制御部330は、測距装置10のブレをブレ検出部340が周期的に検出する場合の時間間隔を調整する(ステップS206)。即ち、ステップS201からステップS204までの一連の補正動作により補正部300が測距装置10のブレを補正できている場合は、例えば、ブレの検出間隔をより長くしてステップS202からステップS204までの補正動作の回数を削減してもよい。これにより、補正部300による電力消費を抑制できる。 Next, the correction control unit 330 adjusts the time interval when the shake detection unit 340 periodically detects the shake of the distance measuring device 10 (step S206). That is, when the correction unit 300 can correct the shake of the distance measuring device 10 by a series of correction operations from step S201 to step S204, for example, the detection interval of shake is made longer and the process from step S202 to step S204 is performed. The number of correction operations may be reduced. Thereby, the power consumption by the correction unit 300 can be suppressed.
 また、ステップS201からステップS205までの動作により補正部300の継続的な補正動作が中断した場合、例えば、ブレの検出間隔をより短くしてステップS202からステップS203までの単位時間当たりの補正動作の回数を増加してもよい。これにより、補正量が補正限界に達する前に、有効な補正動作を完遂できる可能性を高くすることができる。なお、ステップS206における間隔の調整が、補正間隔を変更しない場合も含むことはもちろんである。 Further, when the continuous correction operation of the correction unit 300 is interrupted by the operation from step S201 to step S205, for example, the correction operation per unit time from step S202 to step S203 is shortened by reducing the blur detection interval. The number of times may be increased. Thereby, it is possible to increase the possibility that an effective correction operation can be completed before the correction amount reaches the correction limit. Needless to say, the adjustment of the interval in step S206 includes the case where the correction interval is not changed.
 次に、補正制御部330は、補正部300に補正動作を実行させる指示が依然として有効か否かを判定する(ステップS207)。その結果、補正動作の指示が依然として有効な場合(ステップS207:YES)、補正制御部330は、再びステップS201に戻って、ブレ検出部340がブレを検出したか否かを監視する。ステップS207において、補正動作の指示が無効になっていることが判った場合は(ステップS207:NO)、補正制御部330は補正部300の動作を終了させる。 Next, the correction control unit 330 determines whether or not the instruction for causing the correction unit 300 to perform the correction operation is still valid (step S207). As a result, when the instruction for the correction operation is still valid (step S207: YES), the correction control unit 330 returns to step S201 again and monitors whether or not the blur detection unit 340 has detected the blur. If it is determined in step S207 that the correction operation instruction is invalid (step S207: NO), the correction control unit 330 ends the operation of the correction unit 300.
 なお、上記の例において、ステップS203の補正部300は、予め用意された値を参照して補正限界を判断している。しかしながら、例えば、受光素子430としてイメージセンサを用い、信号光のスポット像の位置が受光領域431の縁に近づいた場合に駆動部320の動作を制限してもよい。これにより、受光素子430による信号光の受光強度を低下させることなく補正限界を自動検出できる。 In the above example, the correction unit 300 in step S203 determines the correction limit with reference to a value prepared in advance. However, for example, an image sensor may be used as the light receiving element 430, and the operation of the driving unit 320 may be limited when the position of the spot image of the signal light approaches the edge of the light receiving region 431. Thereby, the correction limit can be automatically detected without lowering the received light intensity of the signal light by the light receiving element 430.
 図10は、補正部300の制御方法の一例を示す図であり、補正部300により変位しつつ対象物20に対して照射された信号光Bのスポットの軌跡を示す模式図である。受光素子430において検出される受光強度が高い方向に、図示のように補正部材310を制御することにより、信号光Bが照射される範囲を対象物20が存在する領域に集中させることができる。よって、測距動作を確実且つ効率よく実行することができる。 FIG. 10 is a diagram illustrating an example of a control method of the correction unit 300, and is a schematic diagram illustrating a locus of a spot of the signal light B 3 irradiated on the object 20 while being displaced by the correction unit 300. By controlling the correction member 310 as shown in the figure in the direction in which the light receiving intensity detected by the light receiving element 430 is high, the range irradiated with the signal light B 3 can be concentrated on the region where the object 20 exists. . Therefore, the distance measuring operation can be executed reliably and efficiently.
 図11は、補正部300による他の補正動作を説明する模式図である。図11において、測距装置10は、図2に示した状態と同様に水平状態にある。ただし、測距装置10は、対象物20に対して近距離Dまで接近しており、測距装置10の送光部200と受光部400との間には無視できない視差が生じている。このため、受光部400に対する光線Cの入射角が大きくなり、受光素子430に対する光線Cの入射位置が変移する。 FIG. 11 is a schematic diagram for explaining another correction operation by the correction unit 300. In FIG. 11, the distance measuring device 10 is in a horizontal state as in the state shown in FIG. However, the distance measuring device 10 is close to the short-distance D S with respect to the object 20, a parallax occurs that can not be ignored between the light transmission unit 200 and the light receiving portion 400 of the distance measuring device 10. Therefore, the incident angle of the light ray C 1 is increased with respect to the light receiving portion 400, the incident position of the light beam C 2 is displaced with respect to the light receiving element 430.
 一方、上記のように、補正部300は、補正限界を越えない範囲で補正部材310を変位させることができる。そこで、補正部材310を変位させることにより、対象物20に向かってY方向に投射する信号光の光線Bにおける光路の向きを変化させ、送光部200と受光部400との視差に起因する信号光の受光強度の低下を補うことができる。 On the other hand, as described above, the correction unit 300 can displace the correction member 310 within a range that does not exceed the correction limit. Therefore, by displacing the correcting member 310, changing the direction of the optical path in the beam B 3 of the signal light to be projected in the Y direction toward the target 20, due to the disparity between the light transmitting unit 200 and the light receiving portion 400 It is possible to compensate for a decrease in received light intensity of signal light.
 即ち、測距装置10から対象物20までの距離Dが短い場合に、例えば、スイッチ操作等によりユーザが測距範囲を切り換える指示をして、光線Bの光路を(-Z)方向に変位させる。これにより、送光部200と受光部400との間の視差を緩和して受光素子430における信号光の受光効率を向上させることができる。 That is, when the distance D S from the distance measuring device 10 to the object 20 is short, for example, by an instruction to switch the user ranging scope by the switch operation or the like, the optical path of the light beam B 3 in (-Z) direction Displace. Thereby, the parallax between the light transmission part 200 and the light-receiving part 400 can be relieved, and the light reception efficiency of the signal light in the light receiving element 430 can be improved.
 このように距離に応じて補正部材310を変位させる場合、測定対象が測距装置10に近づくほど、補正部材310の変位量が大きくなる。よって、補正制御部330は、予め定められた閾値を超えて対象物20が測距装置10に接近した場合に、補正制御部330は、補正部材310の変位量を大きくしてもよい。 When the correction member 310 is displaced according to the distance as described above, the amount of displacement of the correction member 310 increases as the measurement object approaches the distance measuring device 10. Therefore, the correction control unit 330 may increase the amount of displacement of the correction member 310 when the object 20 approaches the distance measuring device 10 exceeding a predetermined threshold.
 また、信号光の光線Bの光路を補正部300で変更することにより、信号光が受光素子430に確実に受光されるので、受光素子430の受光領域431の面積を小さくすることができる。これにより、信号光のSN比を大きくすると共に、受光素子430の部品コストを低減できる。 Further, by changing the optical path of the light beam B 3 of the signal light by the correction unit 300, the signal light is reliably received by the light receiving element 430, so that the area of the light receiving region 431 of the light receiving element 430 can be reduced. As a result, the signal-to-noise ratio of the signal light can be increased and the component cost of the light receiving element 430 can be reduced.
 なお、対象物20までの距離に応じた補正を開始する前に、信号光のスポット像434が受光領域431の中央に形成される位置に補正部材310を移動させておくことが好ましい。これにより、受光素子430の受光領域431全面を利用して、広い補正範囲で補正動作を実行できる。 It should be noted that it is preferable to move the correction member 310 to a position where the signal light spot image 434 is formed at the center of the light receiving region 431 before starting correction according to the distance to the object 20. Thereby, the correction operation can be executed in a wide correction range by using the entire light receiving region 431 of the light receiving element 430.
 図12は、測距装置10における視差補正を説明する模式図である。測距装置10を、対象物20側から見た場合、測距装置10の正面には、送光部200の対物光学系220と、受光部400の対物光学系410とが図中垂直に並ぶ。 FIG. 12 is a schematic diagram for explaining parallax correction in the distance measuring device 10. When the distance measuring device 10 is viewed from the object 20 side, the objective optical system 220 of the light transmitting unit 200 and the objective optical system 410 of the light receiving unit 400 are vertically arranged in front of the distance measuring device 10. .
 図13は、補正部300を送光部200に配置した場合の視差補正効果を説明する模式図である(図1、2、4、5、8、11の構成に対応)。ここでは、信号光は平行ビームであり、拡がりを生じないものとする。図中において、「d」は、送光部200の光学系の光軸と、受光部400の光学系の光軸との軸間距離を示す。また、「Ds」は、測距装置10と対象物20との間隔を示す。 FIG. 13 is a schematic diagram for explaining the parallax correction effect when the correction unit 300 is arranged in the light transmission unit 200 (corresponding to the configurations of FIGS. 1, 2, 4, 5, 8, and 11). Here, it is assumed that the signal light is a parallel beam and does not spread. In the drawing, “d” indicates an inter-axis distance between the optical axis of the optical system of the light transmitting unit 200 and the optical axis of the optical system of the light receiving unit 400. “Ds” indicates the distance between the distance measuring device 10 and the object 20.
 図示のように、補正部材310が変位していない状態では、送光部200における信号光の光路と受光部400における信号光の光路とは互いに平行になる。一方、補正部300が動作して補正部材310が変位した場合は、送光部200において信号光の光路が変位し、信号光の光路が補正角度θaまで傾く。 As shown in the drawing, when the correction member 310 is not displaced, the optical path of the signal light in the light transmitting section 200 and the optical path of the signal light in the light receiving section 400 are parallel to each other. On the other hand, when the correction unit 300 is operated and the correction member 310 is displaced, the optical path of the signal light is displaced in the light transmission unit 200, and the optical path of the signal light is tilted to the correction angle θa.
 送光部200側において信号光の光路が傾いた場合、受光部400における受光角をθRとすると、下記の式3を満たさなくなった時点で、受光部400は信号光を受光できなくなる。
 Ds<d/(tanθR+tanθa) ・・・(式3)
When the optical path of the signal light is inclined on the light transmitting unit 200 side, if the light receiving angle in the light receiving unit 400 is θR, the light receiving unit 400 cannot receive the signal light when the following Expression 3 is not satisfied.
Ds <d / (tan θR + tan θa) (Formula 3)
 よって、測距装置10において、視差補正のために信号光を補正角度θaまで傾けた場合、受光部400において信号光を受光できる最短距離Dsは、下記の式4のように表すことができる。
 Ds=d/(tanθR+tanθa) ・・・(式4)
Therefore, in the distance measuring device 10, when the signal light is tilted to the correction angle θa for parallax correction, the shortest distance Ds at which the signal light can be received by the light receiving unit 400 can be expressed by the following Expression 4.
Ds = d / (tan θR + tan θa) (Formula 4)
 近距離において送光部200の光学系のレンズ径に対して信号光の広がりが小さいので、信号光の広がり角θLは無視した。しかしながら、信号光の広がり角θLを考慮する場合は、上記の式5に従って、下記の式6のように表すことができる。
 tanθR→tanθR+tanθL ・・・(式5)
Since the spread of the signal light is small relative to the lens diameter of the optical system of the light transmitting unit 200 at a short distance, the spread angle θL of the signal light is ignored. However, when considering the spread angle θL of the signal light, it can be expressed as the following Expression 6 according to the above Expression 5.
tan θR → tan θR + tan θL (Formula 5)
 この場合、上記の式4は、下記の式7のように表すことができる。
 Ds=d/(tanθR+tanθL+tanθa) ・・・(式6)
In this case, the above equation 4 can be expressed as the following equation 7.
Ds = d / (tan θR + tan θL + tan θa) (Expression 6)
 なお、上記の式5および式6においては、補正角度θaを微小角度と見なして、下記の式7が成立するものとしている。
 tan(α+β)=tanα+tanβ ・・・(式7)
In the above formulas 5 and 6, assuming that the correction angle θa is a minute angle, the following formula 7 is established.
tan (α + β) = tan α + tan β (Expression 7)
 いま、送光部200の光軸と受光部400の光軸との軸間距離dが35mm、光源光の広がり角θLが0.05°、受光素子の受光角θRが0.5°である場合に、測距装置からターゲットまでの距離2mを測距するには、補正部材310による光路の傾きθaは約0.46°となる。したがって、θaが0.46°傾くように補正部材310をシフトさせることにより視差を補正できる。尚、視差の補正とブレ補正とを同時に行う場合には、光路をθaだけ傾かせるレンズ位置を基準位置とし、この基準位置に対して対称となるようにレンズの駆動範囲を制限すればよい。 Now, the inter-axis distance d between the optical axis of the light transmitting unit 200 and the optical axis of the light receiving unit 400 is 35 mm, the spread angle θL of the light source light is 0.05 °, and the light receiving angle θR of the light receiving element is 0.5 °. In this case, in order to measure the distance of 2 m from the distance measuring device to the target, the inclination θa of the optical path by the correction member 310 is about 0.46 °. Therefore, the parallax can be corrected by shifting the correction member 310 so that θa is inclined by 0.46 °. When performing parallax correction and blur correction simultaneously, a lens position that tilts the optical path by θa is set as a reference position, and the lens driving range may be limited so as to be symmetric with respect to the reference position.
 図14は、補正部300を受光部400に配置した場合の視差補正効果を説明する模式図である(図18、19の構成に対応)。図示のように、補正部300を受光部に配置した場合も、視差補正をする場合に補正部材310が移動する方向が反転することを除くと、上記図15に示した場合と同様に、式7が成立する。 FIG. 14 is a schematic diagram for explaining the parallax correction effect when the correction unit 300 is arranged in the light receiving unit 400 (corresponding to the configurations of FIGS. 18 and 19). As shown in the figure, even when the correction unit 300 is arranged in the light receiving unit, the expression is similar to the case shown in FIG. 15 except that the direction in which the correction member 310 moves when performing parallax correction is reversed. 7 is established.
 図15は、測距装置10における視差補正を説明する模式図であり、送光部200および受光部400が水平に並んだ場合を示す。図示の場合においても、視差を補正する場合の補正部材310の移動方向が水平になることを除くと、上記図13および図14に示した場合と同様に式7が成立し、送光部200および受光部400の間に視差を補正できる。 FIG. 15 is a schematic diagram for explaining parallax correction in the distance measuring device 10, and shows a case where the light transmitting unit 200 and the light receiving unit 400 are arranged horizontally. Also in the illustrated case, except that the moving direction of the correction member 310 when correcting the parallax is horizontal, Expression 7 is established as in the case shown in FIGS. 13 and 14, and the light transmitting unit 200 In addition, the parallax can be corrected between the light receiving units 400.
 視差を補正するための補正部材312としては、上述のレンズのほか、プリズムや、入射面と射出面とがなす角度を変化させることができる可変頂角プリズムを用いることができる。さらに、視差量すなわち測定距離に応じて発光部210の位置または受光素子430の位置をシフトさせてもよい。 As the correction member 312 for correcting the parallax, in addition to the lens described above, a prism or a variable apex angle prism that can change the angle formed by the incident surface and the exit surface can be used. Furthermore, the position of the light emitting unit 210 or the position of the light receiving element 430 may be shifted according to the amount of parallax, that is, the measurement distance.
 なお、視差量すなわち測定距離に応じた補正を行うためには、スイッチ操作等によりユーザが測距範囲を切り換える指示をしてもよい。または、測距動作が前述の試行回数に達しても測距ができない場合は視差が生じていると判断し、補正部材310をより近距離にある対象物20からの反射光を受光できる方向に走査させながら測距動作を行い、受光強度が高くなる位置で測距を行ってもよい。このように較正することにより、ユーザの切り換え動作なしに視差の補正を行うことができる。 In addition, in order to perform correction according to the amount of parallax, that is, the measurement distance, the user may instruct to switch the distance measurement range by a switch operation or the like. Alternatively, if distance measurement cannot be performed even when the number of trials reaches the number of trials described above, it is determined that parallax has occurred, and the correction member 310 is in a direction in which reflected light from the object 20 at a closer distance can be received. A distance measurement operation may be performed while scanning, and distance measurement may be performed at a position where the received light intensity increases. By calibrating in this way, parallax can be corrected without a user switching operation.
 なお、測距装置10から対象物20までの距離が十分長く、視差補正を必要としないときには、補正部300の補正制御部330による補正部材310の駆動中心と、受光部400の中心とが一致するように設定するのが好ましい。 When the distance from the distance measuring device 10 to the object 20 is sufficiently long and parallax correction is not required, the drive center of the correction member 310 by the correction control unit 330 of the correction unit 300 matches the center of the light receiving unit 400. It is preferable to set so as to.
 また、視差を補正するために光路の傾きを調整した状態で防振を行う場合には、少なくとも、補正部300の補正制御部330は、補正部材310を送光部200および受光部400の光軸を結ぶ垂直線に対して対称に変位させるのが好ましい。 In addition, when image stabilization is performed in a state where the inclination of the optical path is adjusted to correct parallax, at least the correction control unit 330 of the correction unit 300 uses the correction member 310 as the light of the light transmission unit 200 and the light reception unit 400. It is preferable to displace symmetrically with respect to a vertical line connecting the axes.
 なお、信号光として赤外線帯域または紫外線帯域の光を使用した場合に、色収差によって視準光学系と送光光学系とでは防振係数に差が生じ、防振時に光軸に角度差すなわち視差が生じる。この視差は視準光学系で狙った位置に対して信号光が照射される位置にずれを生じさせることになるので、小さい物体の測距をする場合には不利になる。 In addition, when light in the infrared band or ultraviolet band is used as the signal light, there is a difference in the image stabilization coefficient between the collimation optical system and the light transmission optical system due to chromatic aberration, and there is an angular difference or parallax in the optical axis during image stabilization. Arise. This parallax causes a shift in the position where the signal light is irradiated with respect to the position aimed by the collimating optical system, which is disadvantageous when measuring a small object.
 一方、発光部210を形成する発光ダイオード等の発光素子の発光面は有限の広さを有する。このため、送光光学系を介して平行光とした場合においても、ある程度の広がり角、即ち、発光面の大きさと送光光学系の焦点距離によって決まる画角を持つ。よって、視差が信号光光束の広がり角の範囲内に収まっていれば、前記の視準位置と信号光照射位置とのずれは実用上問題とならない。 On the other hand, a light emitting surface of a light emitting element such as a light emitting diode forming the light emitting unit 210 has a finite area. For this reason, even when parallel light is transmitted through the light transmission optical system, it has a certain spread angle, that is, a field angle determined by the size of the light emitting surface and the focal length of the light transmission optical system. Therefore, if the parallax is within the range of the spread angle of the signal light beam, the shift between the collimation position and the signal light irradiation position does not cause a problem in practice.
 なお、発光素子の発光面は、一般的に線状または長方形に近い形状を有するので、光学系により平行光にしてもビームの広がり角は回転対称にはならず、ひとつの面内では大きな広がり角で、それと直交する面内では小さな広がり角となる。よって許容される視差は広がりが小さい側の面内で考える。 Note that the light emitting surface of the light emitting element generally has a linear shape or a rectangular shape, so that the beam spread angle is not rotationally symmetric even if it is parallel light by the optical system, and the light spreads greatly within one surface. The angle is a small spread angle in a plane perpendicular to the angle. Therefore, the allowable parallax is considered in the plane on the side where the spread is small.
 補正部300による光路の変化において、DOE、液晶レンズ等を含む移動レンズ群の移動量に対する結像面での像移動量の比を防振係数kとした場合に、信号光が受光素子430に入射する条件は、下記の式8のように表すことができる。ただし、「kd」は補正部材310のd線に対する防振係数を、「kL」は補正部材310の信号光に対する防振係数を、「a」は発光部210の発光面短軸の長さ、「s」は補正部材310の最大偏芯量を、それぞれ表す。
 |kd-kL|s<a・・・(式8)
 このように、補正部300により光路を変化させた場合に、可視光帯域においてする視準と、信号光における光路の変位とに相違もが生じる場合がある。よって、補正部300を形成する場合には、視準光学系と送光光学系との視差が許容される範囲を考慮にいれてもよい。
In the change of the optical path by the correction unit 300, when the ratio of the image movement amount on the imaging surface to the movement amount of the moving lens group including the DOE and the liquid crystal lens is set as the image stabilization coefficient k, the signal light is input to the light receiving element 430. The incident condition can be expressed as in Equation 8 below. However, “kd” is a vibration isolation coefficient for the d line of the correction member 310, “kL” is a vibration isolation coefficient for the signal light of the correction member 310, “a” is the length of the minor axis of the light emitting surface of the light emitting unit 210, “S” represents the maximum amount of eccentricity of the correction member 310.
| Kd−kL | s <a (Expression 8)
As described above, when the optical path is changed by the correction unit 300, there may be a difference between the collimation performed in the visible light band and the displacement of the optical path in the signal light. Therefore, when the correction unit 300 is formed, a range in which parallax between the collimation optical system and the light transmission optical system is allowed may be taken into consideration.
 また、防振係数は、補正部材310の倍率βvと、補正部材310よりも像側のレンズ群全体の倍率をβrとにより、下記の式9のように表することができる。
 防振係数=|(1-βv)×βr|・・・(式9)
Further, the image stabilization coefficient can be expressed as Equation 9 below by using the magnification βv of the correction member 310 and the overall magnification of the lens group on the image side of the correction member 310 as βr.
Anti-vibration coefficient = | (1−βv) × βr | (Expression 9)
 この場合、d線に対する補正部材310の防振係数をkd、補正部材310の偏芯量をsとしたときに、視準系の像面移動量はkd・sとなる。同様に信号光の発信波長に対する防振係数をkLとすると、像面移動量はkL・sとなる。下記の式10に示すように、これら像面移動量の差が常に発光部210の発光素子発光面の長さの半分よりも小さければ、補正部材310が変位した場合であっても、視準系の光軸は信号光の光束から外れることはない。
 |kd-kL|smax<a/2・・・(式10)
 ただし、「smax」は、補正部材310の偏芯量の最大値を示す。
In this case, the image plane movement amount of the collimation system is kd · s, where kd is the anti-vibration coefficient of the correction member 310 with respect to the d line, and s is the eccentricity amount of the correction member 310. Similarly, if the image stabilization coefficient for the transmission wavelength of the signal light is kL, the image plane movement amount is kL · s. As shown in Expression 10 below, if the difference in the image plane movement amount is always smaller than half the length of the light emitting element light emitting surface of the light emitting unit 210, the collimation is performed even when the correction member 310 is displaced. The optical axis of the system does not deviate from the light flux of the signal light.
| Kd−kL | s max <a / 2 (Expression 10)
However, “s max ” indicates the maximum eccentricity of the correction member 310.
 また、補正部300においては、補正部材310のd線に対する防振係数kd、補正部材310の最大の手振れ補正角度をθvとした場合に、下記の式11、12を満たすことが好ましい。
 1.2<kd<2.2・・・(式11)
 0.3<θv<0.7・・・(式12)
Further, in the correction unit 300, it is preferable that the following expressions 11 and 12 are satisfied, where θv is the image stabilization coefficient kd for the d line of the correction member 310 and the maximum camera shake correction angle of the correction member 310.
1.2 <kd <2.2 (Formula 11)
0.3 <θv <0.7 (Expression 12)
 レンズを垂直方向に偏心させるための手段としては、現在は光学要素外周を取り囲むように配置される機構が多く用いられており、下限を下回ると実用的に十分な手振れ補償角度得るために必要な光学要素の偏心量が大きくなるため、偏心機構の直径を大きくせねばならず、結果的にレーザ距離計の筐体が大型化することになる。例えば、防振係数kdを1.2とし、対物焦点距離が100mmの場合に、0.3°の補正角度θvを達成するには、0.44mmの偏心量sを設定することになる。よって、上記式11を満たすことにより、補正部300の寸法の大型化を抑制できる。 As a means for decentering the lens in the vertical direction, many mechanisms are currently used so as to surround the outer periphery of the optical element, and if it falls below the lower limit, it is necessary to obtain a practically sufficient camera shake compensation angle. Since the amount of eccentricity of the optical element increases, the diameter of the eccentric mechanism must be increased, resulting in an increase in the size of the laser rangefinder housing. For example, when the image stabilization coefficient kd is 1.2 and the objective focal length is 100 mm, an eccentricity s of 0.44 mm is set to achieve a correction angle θv of 0.3 °. Therefore, by satisfying the above equation 11, the size of the correction unit 300 can be prevented from increasing.
 なお、上記式11において防振係数kdが上記の上限を上回ると、補正部300の感度が高くなり過ぎて、製造が困難になる。即ち、遠方の対象物20までの距離を無限遠と見なして、視準部100および送光部200と受光部400とが相互に独立させた場合、対象物20で反射した信号光を受光するには、送光部200の光軸と受光部400の光軸とを平行にすることが求められる。 In addition, if the vibration-proof coefficient kd in the said Formula 11 exceeds said upper limit, the sensitivity of the correction | amendment part 300 will become high too much and manufacture will become difficult. That is, when the distance to the distant object 20 is regarded as infinity and the collimation unit 100, the light transmitting unit 200, and the light receiving unit 400 are mutually independent, the signal light reflected by the object 20 is received. Is required to make the optical axis of the light transmitting unit 200 and the optical axis of the light receiving unit 400 parallel to each other.
 しかしながら、補正部300の感度が高すぎると、製造時の中心位置のずれによって送光部200の光軸が偏向して、信号光を受光できなくなる可能性がある。このため、製造時に補正部300の光学要素を位置調整する場合に、感度が高すぎることによって調整に時間がかかる。 However, when the sensitivity of the correction unit 300 is too high, there is a possibility that the optical axis of the light transmission unit 200 is deflected due to the deviation of the center position during manufacturing and the signal light cannot be received. For this reason, when the position of the optical element of the correction unit 300 is adjusted at the time of manufacture, the adjustment takes time due to the sensitivity being too high.
 また、上記式12において、補正角度θvが上記範囲を逸脱した場合は、十分な補正角度が得られないか、補正部300が大型化する。例えば、防振係数kdを2.2とし、対物焦点距離が100mmの場合に、0.7°の補正角度θvを達成するには、0.56mmの偏心量sを設定することになる。よって、上記式12を満たすことにより、補正部300の寸法の大型化を抑制できる。 Further, in the above equation 12, when the correction angle θv deviates from the above range, a sufficient correction angle cannot be obtained or the correction unit 300 is enlarged. For example, when the image stabilization coefficient kd is 2.2 and the objective focal length is 100 mm, an eccentricity s of 0.56 mm is set to achieve a correction angle θv of 0.7 °. Therefore, by satisfying the above equation 12, the size of the correction unit 300 can be prevented from increasing.
 図16は、他の補正部301を備えた測距装置11の模式的断面図である。測距装置11は、次に説明する補正部301の構造を除くと、図1に示した測距装置10と同じ構造を有する。そこで、共通の要素には同じ参照番号を付して重複する説明を省く。 FIG. 16 is a schematic cross-sectional view of the distance measuring device 11 including another correction unit 301. The distance measuring device 11 has the same structure as the distance measuring device 10 shown in FIG. 1 except for the structure of the correction unit 301 described below. Therefore, common elements are denoted by the same reference numerals, and redundant description is omitted.
 測距装置11の補正部301は、送光部200に配された補正部材310および駆動部320に加えて、受光部400に配された補正部材312および駆動部322を有する。受光部400の補正部材312は、受光部400の光学系の一部をなすレンズを含む。 The correction unit 301 of the distance measuring apparatus 11 includes a correction member 312 and a drive unit 322 arranged in the light receiving unit 400 in addition to the correction member 310 and the drive unit 320 arranged in the light transmission unit 200. The correction member 312 of the light receiving unit 400 includes a lens that forms part of the optical system of the light receiving unit 400.
 補正制御部330の制御の下に、駆動部322は、補正部材312を、補正部材312の光軸と交差する方向に変位させる。これにより、測距装置10内を(-Y)方向に伝播する光線Cの光路を変化させ、受光素子430において信号光のスポット像が形成される位置を変化させることができる。 Under the control of the correction control unit 330, the drive unit 322 displaces the correction member 312 in a direction that intersects the optical axis of the correction member 312. Thereby, the optical path of the light beam C 2 propagating in the (−Y) direction through the distance measuring device 10 can be changed, and the position where the spot image of the signal light is formed in the light receiving element 430 can be changed.
 補正部301において、駆動部322は、駆動部320を制御する補正制御部330により共通に制御されてもよい。これにより、補正部材312を補正部材310と同期して変位させることができる。ここで、「同期して変位させる」とは、一対の補正部材310、312を同時に移動させることを意味すると共に、補正部材310、312の移動により生じる光路の変化も対応していることを意味する。 In the correction unit 301, the drive unit 322 may be controlled in common by a correction control unit 330 that controls the drive unit 320. Thereby, the correction member 312 can be displaced in synchronization with the correction member 310. Here, “displaced synchronously” means that the pair of correction members 310 and 312 are moved simultaneously, and that the change in the optical path caused by the movement of the correction members 310 and 312 is also supported. To do.
 なお、補補正部材312としては、レンズまたはプリズムを用いることができる。また、入射面と射出面とがなす角度を変化させることができる可変頂角プリズムを用いることもできる。 A lens or a prism can be used as the auxiliary correction member 312. In addition, a variable apex angle prism that can change the angle formed by the entrance surface and the exit surface can be used.
 図17は、補正部301の補正動作を説明する模式図である。測距装置10は、図2に示した状態から、図中時計回りに回転して、水平面Hに対して角度(+θ)をなす傾きを生じている。これにより、測距装置10の前端はZ方向に変位し、対物光学系220の光軸は、対象物20の図中上方を指す。 FIG. 17 is a schematic diagram for explaining the correction operation of the correction unit 301. The distance measuring device 10 rotates clockwise from the state shown in FIG. 2 to produce an inclination that forms an angle (+ θ 0 ) with respect to the horizontal plane H. Thereby, the front end of the distance measuring device 10 is displaced in the Z direction, and the optical axis of the objective optical system 220 points upward in the drawing of the object 20.
 補正部301においては、ブレ検出部340が測距装置10の回転を検出して、駆動部320により補正部材310をZ方向に変位させる。これにより、対象物20から測距装置10に向かって、(-Y)方向に水平に伝播した光線Aは、測距装置10の傾きと同じ傾きを有する光線Aとして、測距装置10の内部を伝播する。よって、視準部100における像ブレが補正される。また、対物光学系220から投射される信号光の投射方向も補正されて変移しない。 In the correction unit 301, the blur detection unit 340 detects the rotation of the distance measuring device 10, and the driving unit 320 displaces the correction member 310 in the Z direction. As a result, the light beam A 1 that has propagated horizontally in the (−Y) direction from the object 20 toward the distance measuring device 10 is converted into a light beam A 2 having the same inclination as the inclination of the distance measuring device 10. Propagate inside. Therefore, the image blur in the collimation unit 100 is corrected. Further, the projection direction of the signal light projected from the objective optical system 220 is also corrected and does not change.
 また、測距装置10の内部において測距装置10と共に傾斜した信号光の光線Bの光路は、補正部材310により水平に補正される。これにより、測距装置10から射出されてY方向に伝播する信号光の光線Bは、依然として対象物20に投射される。 Further, the optical path of the signal light beam B 2 tilted together with the distance measuring device 10 inside the distance measuring device 10 is corrected horizontally by the correction member 310. Thereby, the light beam B 3 of the signal light emitted from the distance measuring device 10 and propagating in the Y direction is still projected onto the object 20.
 対象物20に投射された信号光は、対象物20により反射され、その一部が光線Cとして受光部400に入射し、補正部材312により伝播光路を補正された後、光線Cとして測距装置10内を伝播する。補正された光線Cの光路は、視準部100における光線Aおよび送光部200における光線Bと平行であり、光線Bは、受光素子430の受光領域431の略中心にスポット像を形成する。これにより、測距部500は、信号光の伝播時間に基づいて算出した距離をユーザに向かって表示する。 Signal light projected onto the object 20 is reflected by the object 20, enters the light receiving portion 400 in part as ray C 1, after being corrected propagation path by correcting member 312, measured as ray C 2 It propagates in the distance device 10. The corrected optical path of the light beam C 2 is parallel to the light beam A 2 in the collimation unit 100 and the light beam B 2 in the light transmission unit 200, and the light beam B 2 is a spot image at the approximate center of the light receiving region 431 of the light receiving element 430. Form. Thereby, the distance measuring unit 500 displays the distance calculated based on the propagation time of the signal light toward the user.
 このように、測距装置11においては、受光部400における光線Cの伝播光路が、補正部301による補正で、視準部100における光線Aおよび送光部200における光線Bと平行に補正される。よって、補正部材310により視準部100の像の変位が補正されるのと同様に、また、送光部200における信号光の投射方向が補正されるのと同様に、受光部400においては、受光素子430における信号光のスポット像の位置が補正される。よって、受光素子430による信号光の受光範囲により補正部301の補正範囲が制限を受けることがない。 As described above, in the distance measuring device 11, the propagation optical path of the light beam C 2 in the light receiving unit 400 is parallel to the light beam A 2 in the collimation unit 100 and the light beam B 2 in the light transmission unit 200 by correction by the correction unit 301. It is corrected. Therefore, in the same manner that the displacement of the image of the collimation unit 100 is corrected by the correction member 310, and in the same way as the projection direction of the signal light in the light transmitting unit 200 is corrected, in the light receiving unit 400, The position of the spot image of the signal light in the light receiving element 430 is corrected. Therefore, the correction range of the correction unit 301 is not limited by the light receiving range of the signal light by the light receiving element 430.
 なお、上記の例では、送光部200の補正部材310と受光部400の補正部材312とを同期して変位させた例を示した。しかしながら、補正部材310、312を同期させずに、一方が変位している期間に他方を固定して個別に制御してもよい。例えば、当初は送光部200側の補正部材310により補正動作をして、信号光のスポット像が受光素子430の受光範囲の端まで到達した場合に、受光部400側の補正部材312を駆動してもよい。これにより、実効的には、上記の例と同じ補正範囲が達成できると共に、一方の補正部材312の変位を削減した分、電力を節約することができる。 In the above example, the correction member 310 of the light transmitting unit 200 and the correction member 312 of the light receiving unit 400 are displaced in synchronization. However, the correction members 310 and 312 may be controlled individually without fixing the correction members 310 and 312 in a period in which one of the correction members 310 and 312 is displaced. For example, when the signal light spot image reaches the end of the light receiving range of the light receiving element 430, the correction member 312 on the light receiving unit 400 side is driven when the correction operation is initially performed by the correction member 310 on the light transmitting unit 200 side. May be. Thus, in effect, the same correction range as in the above example can be achieved, and power can be saved as much as the displacement of one correction member 312 is reduced.
 また、例えば、送光部200側の補正部材310および駆動部320を用いて手振れ補正を実行する一方で、受光部400側の補正部材312および駆動部322を用いて視差補正を実行してもよい。この場合、手振れ補正に関しては、受光部400側の補正部材312は変位しておらず、視差補正に関しては、送光部200側の補正部材310が変位しない。これにより、像振れを防止しつつ、特に近距離の対象物20に対して高い測距精度を維持できる。 Further, for example, while the camera shake correction is performed using the correction member 310 and the driving unit 320 on the light transmitting unit 200 side, the parallax correction is performed using the correction member 312 and the driving unit 322 on the light receiving unit 400 side. Good. In this case, the correction member 312 on the light receiving unit 400 side is not displaced with respect to camera shake correction, and the correction member 310 on the light transmission unit 200 side is not displaced with respect to parallax correction. Thereby, it is possible to maintain high ranging accuracy particularly for the object 20 at a short distance while preventing image blur.
 更に、手振れ補正と視差補正とを合わせて実行する場合に、対象物20を視準する段階においては送光部200側の補正部材310および駆動部320を用いて手振れ補正を実行し、ユーザにより測距開始が指示された段階においては、手振れ補正を停止して、受光部400側の補正部材312および駆動部322を用いて視差補正を実行してもよい。これにより、消費電力のピーク値を抑制しつつ、像振れの防止と測距精度の向上とを両立できる。 Further, when the shake correction and the parallax correction are performed together, the shake correction is performed using the correction member 310 and the drive unit 320 on the light transmission unit 200 side in the stage of collimating the object 20, and the user performs When the start of distance measurement is instructed, the camera shake correction may be stopped, and the parallax correction may be performed using the correction member 312 and the driving unit 322 on the light receiving unit 400 side. As a result, it is possible to achieve both prevention of image blur and improvement of distance measurement accuracy while suppressing the peak value of power consumption.
 図18は、他の補正部302を備えた測距装置12の模式的断面図である。測距装置12は、次に説明する補正部302の構造を除くと、図1に示した測距装置10および図16に示した測距装置11と同じ構造を有する。そこで、共通の要素には同じ参照番号を付して重複する説明を省く。 FIG. 18 is a schematic cross-sectional view of the distance measuring device 12 including another correction unit 302. The distance measuring device 12 has the same structure as the distance measuring device 10 shown in FIG. 1 and the distance measuring device 11 shown in FIG. 16 except for the structure of the correction unit 302 described below. Therefore, common elements are denoted by the same reference numerals, and redundant description is omitted.
 測距装置12の補正部302は、視準部100および送光部200に補正部材310を備えておらず、受光部400に配された補正部材312と駆動部322とを有する。補正部材312は、受光部400に含まれるアフォーカル光学系の一部をなすレンズを含む。 The correction unit 302 of the distance measuring device 12 does not include the correction member 310 in the collimation unit 100 and the light transmission unit 200, but includes a correction member 312 and a driving unit 322 arranged in the light receiving unit 400. The correction member 312 includes a lens that forms part of an afocal optical system included in the light receiving unit 400.
 駆動部322は、補正部材312を、補正部材312の光軸と交差する方向に変位させる。これにより、測距装置10内を(-Y)方向に伝播する光線Cの光路を変化させ、受光素子430において信号光のスポット像が形成される位置を変化させることができる。駆動部322は、ブレ検出部340の出力を参照する補正制御部330により制御される。 The drive unit 322 displaces the correction member 312 in a direction that intersects the optical axis of the correction member 312. Thereby, the optical path of the light beam C 2 propagating in the (−Y) direction through the distance measuring device 10 can be changed, and the position where the spot image of the signal light is formed in the light receiving element 430 can be changed. The drive unit 322 is controlled by a correction control unit 330 that refers to the output of the shake detection unit 340.
 図19は、補正部302の補正動作を説明する模式図である。測距装置12は、図2に示した状態と同様に水平状態にある。一方、対象物20が測距装置10に接近しており、測距装置10の送光部200と受光部400との間には無視できない視差が生じている。そこで、図14の説明で述べた、視差の補正を行う。 FIG. 19 is a schematic diagram for explaining the correction operation of the correction unit 302. The distance measuring device 12 is in a horizontal state as in the state shown in FIG. On the other hand, the object 20 is approaching the distance measuring device 10, and a disparity that cannot be ignored occurs between the light transmitting unit 200 and the light receiving unit 400 of the distance measuring device 10. Therefore, the parallax correction described in the description of FIG. 14 is performed.
 さらに、補正部材312により、信号光が受光素子430に受光されるように、光線Cの光路を変更できるので、実装する受光素子430の受光領域431の面積を小さくすることができる。これにより、信号光のSN比を大きくすると共に、受光素子430の部品コストを低減できる。なお、上記の構造により、受光素子430は、入射角の広い範囲について信号光を受光できる。よって、送光部200から照射する信号光を広角度に放射させて、対象物20を含む広い範囲に信号光を照射することが好ましい。 Further, the correcting member 312, so that the signal light is received by the light receiving element 430, it is possible to change the optical path of the light beam C 2, it is possible to reduce the area of the light receiving region 431 of the light receiving element 430 to implement. As a result, the signal-to-noise ratio of the signal light can be increased and the component cost of the light receiving element 430 can be reduced. Note that with the above structure, the light receiving element 430 can receive signal light over a wide range of incident angles. Therefore, it is preferable to radiate the signal light emitted from the light transmitting unit 200 at a wide angle and irradiate the signal light over a wide range including the object 20.
 上記のように、補正部300は、対象物20までの距離が短い場合に視差補正する用途にも利用できる。更に、手振れ等による測距装置10の変位の補正と、対象物20の位置による視差の補正とを両方併せて実行してもよい。 As described above, the correction unit 300 can be used for parallax correction when the distance to the object 20 is short. Furthermore, both the correction of the displacement of the distance measuring device 10 due to camera shake and the correction of the parallax due to the position of the object 20 may be executed together.
 なお、上記の一連の測距装置10、11、12において、補正部300、301、302による補正動作を、測距装置10の状態に応じて変更してもよい。即ち、例えば、ユーザが対象物20を視準している期間は、補正の範囲を大きくして対象物20を補足しやすくしてもよい。 In the series of distance measuring devices 10, 11, and 12 described above, the correction operation by the correction units 300, 301, and 302 may be changed according to the state of the distance measuring device 10. That is, for example, during a period in which the user collimates the object 20, the correction range may be increased to make it easier to supplement the object 20.
 一方、測距部500が測距動作を開始した場合、送光部200と受光部400との光学条件の相違を抑制する目的で、補正動作を一時的に抑制または停止してもよい。1回の測距動作に要する時間は短いので、測距動作の実行に応じて補正動作を中断しても、視準部100においてユーザが観察する像に及ぼす影響は小さい。 On the other hand, when the distance measuring unit 500 starts a distance measuring operation, the correction operation may be temporarily suppressed or stopped for the purpose of suppressing a difference in optical conditions between the light transmitting unit 200 and the light receiving unit 400. Since the time required for one distance measurement operation is short, even if the correction operation is interrupted according to the execution of the distance measurement operation, the collimating unit 100 has little influence on the image observed by the user.
 また、測距装置10の変位が生じる原因のひとつにユーザの手振れがある。しかしながら、手振れには様々なパターンがあり、単一の補正アルゴリズムが常に有効であるとは限らない。そこで、補正制御部330が実行する補正アルゴリズムを複数用意して、ブレ検出部340が検出したブレのパターンに応じて補正アルゴリズムを切り換えてもよい。 One of the causes of the displacement of the distance measuring device 10 is a user's hand shake. However, there are various patterns of camera shake, and a single correction algorithm is not always effective. Therefore, a plurality of correction algorithms executed by the correction control unit 330 may be prepared, and the correction algorithm may be switched according to the blur pattern detected by the blur detection unit 340.
 より具体的には、ブレ検出部340が検出したブレの振幅および周波数の少なくとも一方が予め定められた閾値を超えた場合に、補正制御部330が実行する補正アルゴリズムを切り換えてもよい。より具体的には、測距時間および消費電力等の抑制等を重視して、補正部300による補正範囲を狭くした動作モードを設けてもよい。 More specifically, the correction algorithm executed by the correction control unit 330 may be switched when at least one of the amplitude and frequency of blur detected by the blur detection unit 340 exceeds a predetermined threshold. More specifically, an operation mode in which the correction range by the correction unit 300 is narrowed may be provided with emphasis on suppression of distance measurement time and power consumption.
 逆に、測距装置10の操作に習熟していないユーザを想定して、補正範囲をできるだけ広くすると共に、補正限界に達した場合に、ユーザの慎重な操作を示唆するメッセージを表示する動作モードを設けてもよい。動作モードは、ユーザの選択に応じて切り換えてもよいし、補正制御部330、測距制御部520等が判断して自動で切り換えてもよい。 On the other hand, assuming a user who is not familiar with the operation of the distance measuring device 10, the operation mode is to widen the correction range as much as possible and to display a message indicating a careful operation of the user when the correction limit is reached. May be provided. The operation mode may be switched according to the user's selection, or may be switched automatically as determined by the correction control unit 330, the distance measurement control unit 520, or the like.
 更に、ステップS201において、ブレが検出されない期間が予め定めた時間を越えて継続した場合に、補正部300または測距装置10全体を、電力消費を抑制する状態に移行させてもよい。 Further, in step S201, when the period during which no blur is detected continues beyond a predetermined time, the correction unit 300 or the entire distance measuring device 10 may be shifted to a state in which power consumption is suppressed.
 更に、上記の例では、補正部材310、312を、対物光学系220、410に設けた。しかしながら、例えば、正立プリズム130の一部または全部を、補正部材310として用いることもできる。また、接眼光学系110の一部を補正部材310として利用することもできる。更に、視準部100に、液晶表示板等を用いた場合には、電子的な補正部材も用い得る。 Furthermore, in the above example, the correction members 310 and 312 are provided in the objective optical systems 220 and 410. However, for example, a part or all of the erecting prism 130 can be used as the correction member 310. A part of the eyepiece optical system 110 can also be used as the correction member 310. Furthermore, when a liquid crystal display panel or the like is used for the collimation unit 100, an electronic correction member can also be used.
 上記のような補正部300、301、302は、オン/オフを切り替えるスイッチを設けて、補正動作なしに測距装置10で測距できるようにしてもよい。これにより、対象物20が近くに位置していて視準し易いような場合に、ユーザの意志で補正部300、301、302の動作を停止して測距装置10の電力を節約できる。 The correction units 300, 301, and 302 as described above may be provided with a switch for switching on / off so that the distance measurement device 10 can perform distance measurement without a correction operation. Thereby, when the target object 20 is located nearby and is easy to collimate, the operation of the correction units 300, 301, and 302 can be stopped at the user's will to save the power of the distance measuring device 10.
 図20は、測距装置13の模式的断面図である。測距装置13は、視準部100、送光部200、較正部600、受光部400、測距部500および補正部300を備える。尚、以降の説明においては、視準部100が配置されている側を測距装置13の後側とする。また、測距の対象に対面する側を測距装置13の前側とする。 FIG. 20 is a schematic cross-sectional view of the distance measuring device 13. The distance measuring device 13 includes a collimation unit 100, a light transmitting unit 200, a calibration unit 600, a light receiving unit 400, a distance measuring unit 500, and a correction unit 300. In the following description, the side on which the collimation unit 100 is disposed is the rear side of the distance measuring device 13. Further, the side facing the object of distance measurement is the front side of the distance measuring device 13.
 視準部100は、接眼光学系110、レチクルプレート120および正立プリズム130を含む。視準部100は、対物光学系220を送光部200と共用する。また、視準部100は、補正部材310を較正部600および補正部300と共用する。 The collimation unit 100 includes an eyepiece optical system 110, a reticle plate 120, and an erecting prism 130. The collimation unit 100 shares the objective optical system 220 with the light transmission unit 200. The collimation unit 100 shares the correction member 310 with the calibration unit 600 and the correction unit 300.
 接眼光学系110の後端は、測距装置13の後端面に露出する。接眼光学系110の前端は、測距装置13の内部において正立プリズム130の後端に対向する。測距装置13のユーザは、接眼光学系110を通じて対象物の像を視認することにより対象物を視準する。 The rear end of the eyepiece optical system 110 is exposed on the rear end surface of the distance measuring device 13. The front end of the eyepiece optical system 110 faces the rear end of the erecting prism 130 inside the distance measuring device 13. The user of the distance measuring device 13 collimates the object by visually recognizing the image of the object through the eyepiece optical system 110.
 なお、接眼光学系110の一部として、または、接眼光学系110に加えて、接眼光学系110の結像位置を光軸方向に変化させる光学部材を設けてもよい。これにより、対象物までの距離に因らず、鮮明な画像をユーザに観察させることができる。また、ユーザの視力に応じて視度補正できる。 Note that an optical member that changes the imaging position of the eyepiece optical system 110 in the optical axis direction may be provided as a part of the eyepiece optical system 110 or in addition to the eyepiece optical system 110. Thereby, it is possible to make the user observe a clear image regardless of the distance to the object. Moreover, diopter correction can be performed according to the user's visual acuity.
 レチクルプレート120は、可視光に対して透明な板に印刷、食刻等により形成したレチクルを有する。レチクルは、レチクルは、十字線、矩形枠、円形枠等の形状を有する視準指標をなし、接眼光学系110により形成される視野内に配される。レチクルプレート120としては、レチクルを画像として表示する透過型液晶表示板を用いてもよい。 The reticle plate 120 has a reticle formed by printing, etching or the like on a plate transparent to visible light. The reticle has a collimation index having a shape such as a crosshair, a rectangular frame, or a circular frame, and is arranged in a field of view formed by the eyepiece optical system 110. As the reticle plate 120, a transmissive liquid crystal display panel that displays a reticle as an image may be used.
 正立プリズム130は、可視光帯域を反射して、赤外帯域を透過するダイクロイック反射面132と、可視光帯域に加えて赤外帯域についても高い反射率を有する全反射面134、136とを有する。正立プリズム130は、参照番号を付していない他の反射面も有して、入射光線により形成される倒立鏡像を正立正像に反転させる。正立プリズム130は、ダハプリズム、ポロプリズム等を用いて形成できる。 The erecting prism 130 includes a dichroic reflecting surface 132 that reflects the visible light band and transmits the infrared band, and total reflection surfaces 134 and 136 that have a high reflectance in the infrared band in addition to the visible light band. Have. The erecting prism 130 also has another reflecting surface that is not assigned a reference number, and reverses the inverted mirror image formed by the incident light beam to an erecting erect image. The erecting prism 130 can be formed using a roof prism, a porro prism, or the like.
 送光部200は、発光部210および対物光学系220を有する。また、送光部200は、ダイクロイック反射面132および全反射面134を含む正立プリズム130の一部を視準部100と共用する。更に、既に説明した通り、補正部材310を、較正部600および補正部300と共用する。 The light transmitting unit 200 includes a light emitting unit 210 and an objective optical system 220. Further, the light transmission unit 200 shares a part of the erecting prism 130 including the dichroic reflection surface 132 and the total reflection surface 134 with the collimation unit 100. Furthermore, as already described, the correction member 310 is shared with the calibration unit 600 and the correction unit 300.
 発光部210は、半導体レーザ等の発光素子を光源として含み、測距装置13が測距動作をする場合にパルス状の信号光を発生する。本実施形態において、信号光は例えば赤外光である。 The light emitting unit 210 includes a light emitting element such as a semiconductor laser as a light source, and generates pulsed signal light when the distance measuring device 13 performs a distance measuring operation. In the present embodiment, the signal light is, for example, infrared light.
 なお、信号光の波長は、可視光帯域以外の他の波長、例えば紫外線であってもよい。信号光が紫外線である場合、正立プリズム130のダイクロイック反射面132は、可視光帯域を反射して、紫外帯域を透過する。また、全反射面134は、可視光帯域と紫外帯域とを反射する。 Note that the wavelength of the signal light may be other than the visible light band, for example, ultraviolet rays. When the signal light is ultraviolet light, the dichroic reflecting surface 132 of the erecting prism 130 reflects the visible light band and transmits the ultraviolet light band. The total reflection surface 134 reflects the visible light band and the ultraviolet band.
 対物光学系220は、測距装置13の前端に配され、前側の端面が測距の対象となる対象物に対向する。対物光学系220の後側端面は、補正部材310を挟んで、正立プリズム130の前側端面に対向する。対物光学系220および補正部材310は、協働して送光光学系を形成する。 The objective optical system 220 is arranged at the front end of the distance measuring device 13, and the front end face is opposed to the object to be measured. The rear end face of the objective optical system 220 faces the front end face of the erecting prism 130 with the correction member 310 interposed therebetween. The objective optical system 220 and the correction member 310 cooperate to form a light transmission optical system.
 なお、対物光学系220の一部として、または、対物光学系220に加えて、対物光学系220の結像位置を光軸方向に変化させる光学部材を設けてもよい。これにより、視準部100においてより鮮明な像が観察できると共に、信号光のビーム径を絞って、測距の対象となる対象物を精度よく選択できる。 An optical member that changes the imaging position of the objective optical system 220 in the optical axis direction may be provided as a part of the objective optical system 220 or in addition to the objective optical system 220. As a result, a clearer image can be observed in the collimation unit 100, and an object to be measured can be selected with high accuracy by reducing the beam diameter of the signal light.
 較正部600および補正部300は、補正部材310および駆動部320を互いに共用する。補正部材310は、接眼光学系110および対物光学系220と共に光学系を形成する。駆動部320は、補正部材310を、補正部材310の光軸と交差する方向に変位させる。更に、駆動部320は、主面が揺動する方向に補正部材310を揺動させてもよい。 The calibration unit 600 and the correction unit 300 share the correction member 310 and the drive unit 320 with each other. The correction member 310 forms an optical system together with the eyepiece optical system 110 and the objective optical system 220. The drive unit 320 displaces the correction member 310 in a direction that intersects the optical axis of the correction member 310. Further, the drive unit 320 may swing the correction member 310 in the direction in which the main surface swings.
 なお、補正部材310としては、変位するレンズ、または、揺動するプリズムを用いることもできる。また、入射面または射出面を形成する部材を揺動させることにより入射面と射出面とがなす頂角を変化させることができる可変頂角プリズムを補正部材310として用いることもできる。駆動部320は、駆動量を電気的に制御できるボイスコイルモータ、圧電モータ等のアクチュエータを備える。 As the correction member 310, a displacing lens or a oscillating prism can be used. In addition, a variable apex angle prism that can change the apex angle formed by the incident surface and the exit surface by swinging a member that forms the entrance surface or the exit surface can also be used as the correction member 310. The drive unit 320 includes an actuator such as a voice coil motor or a piezoelectric motor that can electrically control the drive amount.
 受光部400は、対物光学系410、帯域透過フィルタ420および受光素子430を有する。対物光学系410は、送光部200の対物光学系220と異なる光軸を有して受光光学系を形成する。 The light receiving unit 400 includes an objective optical system 410, a band transmission filter 420, and a light receiving element 430. The objective optical system 410 has an optical axis different from that of the objective optical system 220 of the light transmitting unit 200 to form a light receiving optical system.
 受光部400において、対物光学系410の後方には、帯域透過フィルタ420および受光素子430が順次配される。帯域透過フィルタ420は、信号光を含む狭い帯域の光を透過させ、他の帯域の光を遮断または減衰させる特性を有する。受光素子430は、信号光の帯域に対して感度を有するフォトダイオード、フォトトランジスタ等の光電気変換素子を含む。これにより、受光素子430は、入射した信号光を検出して、検出した信号光に対応した電気信号を発生する。 In the light receiving unit 400, a band transmission filter 420 and a light receiving element 430 are sequentially arranged behind the objective optical system 410. The band transmission filter 420 has a characteristic of transmitting light in a narrow band including signal light and blocking or attenuating light in other bands. The light receiving element 430 includes a photoelectric conversion element such as a photodiode or a phototransistor having sensitivity to a band of signal light. Thereby, the light receiving element 430 detects the incident signal light and generates an electrical signal corresponding to the detected signal light.
 なお、信号光の検出にあたって背景光の影響を排除するという観点から、受光素子430の受光面積はより小さいことが好ましい。また、対物光学系410の一部として、または、対物光学系410に加えて、光学系の結像位置を光軸方向に変化させる光学部材を設けてもよい。これにより、受光した信号光のビーム径を絞って受光素子430により小さなスポット光を受光させることができる。 In addition, it is preferable that the light receiving area of the light receiving element 430 is smaller from the viewpoint of eliminating the influence of background light in detecting signal light. Further, an optical member that changes the imaging position of the optical system in the optical axis direction may be provided as part of the objective optical system 410 or in addition to the objective optical system 410. Thereby, a small spot light can be received by the light receiving element 430 by reducing the beam diameter of the received signal light.
 上記のような構造を有する測距装置13において、測距装置13の前方に位置する対象物から反射または散乱された光のうち、対物光学系220の見込み角の範囲内を伝播する光線Aが、対物光学系220を通じて入射する。光線Aは、補正部材310を透過して、光線Aとして測距装置13内部を後方に向かって伝播し、正立プリズム130、レチクルプレート120および接眼光学系110を通じて、測距装置13の後方に光線Aとして射出される。これにより、ユーザは、接眼光学系110を通じて、対象物の正立正像を観察できる。 In the distance measuring device 13 having the structure as described above, among the light reflected or scattered from the object positioned in front of the distance measuring device 13, the light ray A 1 propagating within the range of the prospective angle of the objective optical system 220. Is incident through the objective optical system 220. The light ray A 1 passes through the correction member 310, propagates backward as the light ray A 2 through the distance measuring device 13, and passes through the erecting prism 130, the reticle plate 120, and the eyepiece optical system 110, and passes through the distance measuring device 13. It is emitted as light a 3 rearward. Thereby, the user can observe an erect image of the object through the eyepiece optical system 110.
 ユーザが接眼光学系110を通じて観察する対象物の像には、レチクルプレート120に配されたレチクルが重畳される。よって、ユーザは、測距装置13を変位させてレチクルを対象物に一致させることにより、測距装置13で対象物を視準できる。 The reticle arranged on the reticle plate 120 is superimposed on the image of the object observed by the user through the eyepiece optical system 110. Therefore, the user can collimate the object with the distance measuring device 13 by displacing the distance measuring device 13 to make the reticle coincide with the object.
 測距装置13のユーザは、例えば、測距装置13に設けられたボタン等のスイッチを操作することにより、測距装置13に測距動作の開始を指示する。測距装置13に対してユーザが測距を指示した場合、発光部210は、パルス状の信号光を光線Bとして正立プリズム130の図中上面に向かって射出する。正立プリズム130において、信号光はダイクロイック反射面132を透過し、全反射面134において反射され、光線Bとして測距装置13内を前方に向かって伝播する。 The user of the distance measuring device 13 instructs the distance measuring device 13 to start a distance measuring operation by operating a switch such as a button provided on the distance measuring device 13, for example. When the user instructs the distance measuring device 13 to perform distance measurement, the light emitting unit 210 emits pulsed signal light as the light beam B 1 toward the upper surface of the erecting prism 130 in the drawing. In the erecting prism 130, the signal light passes through the dichroic reflecting surface 132, is reflected by the total reflecting surface 134, and propagates forward in the distance measuring device 13 as the light beam B 2 .
 更に、信号光は、補正部材310および対物光学系220を通じて、光線Bとして測距装置13の前方に向かって外部に投射される。光線Bとして投射された信号光は、視準した測距の対象物に投射される。測距の対象物までの距離を数百メートルと想定した場合、投射される信号光の拡がりは、例えば、±0.05°程度にする。 Further, the signal light is projected outside through the correction member 310 and the objective optical system 220 toward the front of the distance measuring device 13 as the light beam B 3 . Signal light projected as rays B 3 is projected to the object of distance measurement that is collimated. Assuming that the distance to the object to be measured is several hundred meters, the spread of the projected signal light is, for example, about ± 0.05 °.
 補正部材310は、対物光学系220の近傍において、測距装置13の内部に入射した光線Aと、測距装置13から射出される光線Bとを透過させる。駆動部320により駆動されて補正部材310の光軸が変位した場合、光線A、B各々の光路が変位し、その伝播方向が変化する。 The correction member 310 transmits the light beam A 2 incident on the inside of the distance measuring device 13 and the light beam B 2 emitted from the distance measuring device 13 in the vicinity of the objective optical system 220. When the optical axis of the correction member 310 is displaced by being driven by the driving unit 320, the optical paths of the light beams A 2 and B 2 are displaced, and the propagation directions thereof are changed.
 光線Aの伝播方向が変位することにより、視準部100を通じてユーザが観察する像は変位する。換言すれば、測距装置13が変位した場合に補正部材310を適切に変位させることにより、ユーザが観察する像の変位を止めることができる。 By propagation direction of the light ray A 2 is displaced, the image for the user to observe through the collimating section 100 is displaced. In other words, the displacement of the image observed by the user can be stopped by appropriately displacing the correction member 310 when the distance measuring device 13 is displaced.
 補正部材310の光軸が変位した場合には、光線Bの伝播方向が変位する。これにより、外部に投射された信号光の光線Bの伝播方向が変位する。よって、測距装置13が変位した場合に補正部材310を適切に変位させることにより、信号光の照射対象を維持できる。 When the optical axis of the correcting member 310 is displaced, the propagation direction of the light beam B 2 is displaced. Thus, the propagation direction of the light beam B 3 of the signal light projected to the outside is displaced. Therefore, when the distance measuring device 13 is displaced, the signal light irradiation target can be maintained by appropriately displacing the correction member 310.
 受光部400の対物光学系には、測距装置13の前方に位置する対象物から反射または散乱された光線Cが入射する。光線Cは、測距装置13の内部を光線Cとして後方に向かって伝播し、帯域透過フィルタ420を通過した後、受光素子430に受光される。 A light beam C 1 reflected or scattered from an object positioned in front of the distance measuring device 13 is incident on the objective optical system of the light receiving unit 400. The light beam C 1 propagates backward as the light beam C 2 through the distance measuring device 13, passes through the band-pass filter 420, and is received by the light receiving element 430.
 よって、受光素子430は、入射した光線C、Cに含まれる信号光を、高いSN比で検出して電気信号を発生する。受光素子430が発生した電気信号は、測距部500に入力される。 Therefore, the light receiving element 430 detects the signal light included in the incident light beams C 1 and C 2 with a high S / N ratio and generates an electrical signal. The electric signal generated by the light receiving element 430 is input to the distance measuring unit 500.
 なお、図中には単一の駆動部320が記載されているが、更に、補正部材310を紙面に対して交差する方向に変移させる他の駆動部320も併せて設けられる。これにより、補正部材310を、光線Cの伝播光軸に交差する面内で二次元的に変移させることができる。 In addition, although the single drive part 320 is described in the figure, the other drive part 320 which changes the correction member 310 in the direction which cross | intersects with respect to a paper surface is also provided together. Thus, the correcting member 310, in a plane intersecting the propagation optical axis of the light beam C 2 can be displaced in two dimensions.
 測距部500は、時計部510、測距制御部520および表示部530を有する。時計部510は、送光部200が信号光を送光してから、対象物で反射された信号光を受光するまでにかかった時間を測定する。 The ranging unit 500 includes a clock unit 510, a ranging control unit 520, and a display unit 530. The clock unit 510 measures the time taken from when the light transmitting unit 200 transmits the signal light to when the signal light reflected by the object is received.
 測距制御部520は、測距装置13における測距動作を総合的に制御する。測距制御部520の制御対象には、送光部200の発光部210等も含まれる。また、測距制御部520は、時計部510が計測した時間に基づいて、測距装置13と対象物との距離を算出する。 The ranging control unit 520 comprehensively controls the ranging operation in the ranging device 13. The objects to be controlled by the distance measurement control unit 520 include the light emitting unit 210 of the light transmission unit 200 and the like. Further, the distance measurement control unit 520 calculates the distance between the distance measurement device 13 and the object based on the time measured by the clock unit 510.
 なお、測距装置13に傾き等を検出する機能がある場合、測距制御部520は、対象物までの水平距離、高低差等を算出してもよい。更に、時計部510は、気温等の環境変化により演算結果を補正してもよい。 When the distance measuring device 13 has a function of detecting an inclination or the like, the distance measuring control unit 520 may calculate a horizontal distance to the object, a height difference, and the like. Further, the clock unit 510 may correct the calculation result based on environmental changes such as temperature.
 表示部530は、液晶表示板等を有し、対象物までの距離等、測距制御部520の算出結果を、文字、画像等によりユーザに示す。表示部530は、測距結果の他、電池の残量、エラーメッセージ、時計等を併せて表示してもよい。 The display unit 530 has a liquid crystal display panel and the like, and shows the calculation results of the distance measurement control unit 520 such as the distance to the object, etc., by characters, images, and the like. The display unit 530 may display the remaining battery amount, an error message, a clock, and the like in addition to the distance measurement result.
 更に、表示部530は、後述するブレ検出部340が検出したブレの振幅または周波数が予め定めた閾値を超えた場合に、ユーザに向かって測距装置13の保持に注意を促すメッセージを表示してもよい。これにより、較正部600の負担を軽減して、測距装置13が消費する電力を節減できる。 Further, the display unit 530 displays a message for urging the user to hold the distance measuring device 13 when the amplitude or frequency of blur detected by the blur detection unit 340 described later exceeds a predetermined threshold. May be. Thereby, the burden of the calibration part 600 can be reduced and the power consumed by the distance measuring device 13 can be reduced.
 較正部600は、較正制御部630、強度測定部640および格納部650を有する。また、較正部600は、駆動部320を補正部300と共用する。 The calibration unit 600 includes a calibration control unit 630, an intensity measurement unit 640, and a storage unit 650. Further, the calibration unit 600 shares the drive unit 320 with the correction unit 300.
 強度測定部640は、受光素子430の出力信号を参照して、受光素子430が受光した信号光の光強度を測定する。なお、測距部500の時計部510は、受光素子430が信号光を受光した時間的なタイミングを検出する。これに対して、強度測定部640は、例えば、予め定められた閾値よりも高い光強度が検出されたか否かを測定する。 The intensity measurement unit 640 refers to the output signal of the light receiving element 430 and measures the light intensity of the signal light received by the light receiving element 430. Note that the clock unit 510 of the distance measuring unit 500 detects temporal timing when the light receiving element 430 receives the signal light. On the other hand, the intensity measurement unit 640 measures whether or not a light intensity higher than a predetermined threshold value is detected, for example.
 較正制御部630は、駆動部320に指令を送って補正部材310を変移させる。また、較正制御部630は、強度測定部640が測定した光強度が上記の閾値を超えた場合に、駆動部320により補正部材310の駆動量を特定する。更に、較正制御部630は、特定された補正部材310の駆動量を、格納部650に格納して保存する。 The calibration control unit 630 sends a command to the drive unit 320 to shift the correction member 310. In addition, the calibration control unit 630 specifies the drive amount of the correction member 310 by the drive unit 320 when the light intensity measured by the intensity measurement unit 640 exceeds the threshold value. Further, the calibration control unit 630 stores the specified driving amount of the correction member 310 in the storage unit 650 and saves it.
 上記のように、較正部600の一部をなす補正部材310および駆動部320を利用して、視準部100および送光部200において生じる像ブレを補正する補正部300を形成できる。較正動作と測距動作とが同時に実行されることはないので、上記のような構造により、測距装置10における部品の利用効率を向上することができる。 As described above, the correction unit 300 that corrects the image blur generated in the collimation unit 100 and the light transmission unit 200 can be formed by using the correction member 310 and the drive unit 320 that form part of the calibration unit 600. Since the calibration operation and the distance measuring operation are not executed simultaneously, the use efficiency of parts in the distance measuring device 10 can be improved by the structure as described above.
 図21は、受光素子430に形成される信号光のスポット像を模式的に示す図である。上記のように、測距の対象物20から測距装置13までの距離が変化した場合、対象物20により反射された信号光が、受光素子430の受光領域431上に形成するスポット像432、434の位置が変化する。 FIG. 21 is a diagram schematically showing a spot image of signal light formed on the light receiving element 430. As described above, when the distance from the distance measuring object 20 to the distance measuring device 13 changes, the signal light reflected by the object 20 forms a spot image 432 formed on the light receiving region 431 of the light receiving element 430. The position of 434 changes.
 例えば、図2に示したように、対象物20が測距装置13から遠い距離Dにある場合に、信号光のスポット像432は、受光領域431の図中上端側に形成される。また、図11に示したように、対象物20が測距装置13から近い距離Dにある場合、信号光のスポット像434は、受光領域431の図中下端側に形成される。 For example, as shown in FIG. 2, when the object 20 is in the furthest distance D L from the distance measuring device 13, the spot image 432 of the signal light is formed in the drawing the upper end side of the light-receiving region 431. Further, as shown in FIG. 11, when the object 20 is in a close distance D S from the distance measuring device 13, the spot image 434 of the signal light is formed in the figure the lower end of the light-receiving region 431.
 更に、対象物20が、図示の状態よりも更に測距装置13に接近した場合、信号光のスポット像434は受光領域431よりも下方に移動して、もはや受光素子430に受光されなくなる。よって、スポット像434が受光領域431の図中下端に達する位置が、測距装置13の測距限界となる。 Further, when the object 20 is closer to the distance measuring device 13 than in the state shown in the drawing, the signal light spot image 434 moves below the light receiving region 431 and is no longer received by the light receiving element 430. Therefore, the position at which the spot image 434 reaches the lower end of the light receiving region 431 in the figure is the distance measuring limit of the distance measuring device 13.
 このような測距装置13の構造に鑑みて、測距装置13の光学系を較正する場合は、例えば、測距装置13に設定された測距範囲の下限に対象物20がある場合に、スポット像434が受光領域431の下端よりも受光領域431の内側に位置して、受光素子430が信号光の光強度を検出するように光学系が調整される。 In view of such a structure of the distance measuring device 13, when calibrating the optical system of the distance measuring device 13, for example, when the object 20 is at the lower limit of the distance measuring range set in the distance measuring device 13, The optical system is adjusted so that the spot image 434 is positioned inside the light receiving region 431 from the lower end of the light receiving region 431 and the light receiving element 430 detects the light intensity of the signal light.
 なお、伝搬経路上の拡散により、測距装置13において受光素子430に入射する光線Cは、図中に点線で拡散領域433、435を示すように、直進した光線Cが形成するスポット像432、434よりも大きな径を有する。このため、受光部400に入射する主光線が受光領域431からはずれても、信号光に由来する光線Cの一部が受光部400の見込み角の範囲内に入っていれば測距ができる状態が維持される。よって、測距装置13を較正する場合は、上記スポット像432、434が受光領域431に形成される範囲よりも広い範囲を見込んで光学系を調整してもよい。 Note that the light beam C 2 incident on the light receiving element 430 in the distance measuring device 13 due to diffusion on the propagation path is a spot image formed by the straight light beam C 2 as indicated by the diffusion lines 433 and 435 in the drawing. It has a larger diameter than 432,434. Thus, even chief ray incident on the light receiving portion 400 is deviated from the light receiving region 431, a portion of light ray C 1 derived from the signal light can range finding if within the range of viewing angle of the light receiving portion 400 State is maintained. Therefore, when the distance measuring device 13 is calibrated, the optical system may be adjusted in anticipation of a wider range than the range in which the spot images 432 and 434 are formed in the light receiving region 431.
 また、受光素子430の受光領域431の形状が矩形に限られないことはもちろんである。むしろ、較正部600による補正範囲が受光領域431の形状に既定されることを考慮すると、受光領域431の形状は、中心から縁部までの間隔が均一な円形であってもよい。これにより、較正部600による補正範囲を、全方位について等しくできる。また、受光素子430の前に正の屈折率を有する光学部材を設けて、信号光の光線Cを受光素子430に集光してもよい。 Needless to say, the shape of the light receiving region 431 of the light receiving element 430 is not limited to a rectangle. Rather, considering that the correction range by the calibration unit 600 is defined as the shape of the light receiving region 431, the shape of the light receiving region 431 may be a circle having a uniform interval from the center to the edge. Thereby, the correction range by the calibration part 600 can be made equal in all directions. Further, an optical member having a positive refractive index may be provided in front of the light receiving element 430 so that the signal light ray C 2 is condensed on the light receiving element 430.
 製造された測距装置13は、出荷前に、測距の対象物により反射された信号光が受光素子430に受光されるように光学系を較正される。これにより、測距装置13は、仕様通りの測距精度および測距範囲が担保される。しかしながら、較正された測距装置13であっても、使用に伴う径年変化、外部から受けた衝撃等の原因により、測距精度および測距範囲が変化する場合がある。 The manufactured distance measuring device 13 calibrates the optical system so that the signal light reflected by the object to be measured is received by the light receiving element 430 before shipment. Thereby, the distance measuring device 13 ensures the distance measurement accuracy and the distance measurement range as specified. However, even with the calibrated distance measuring device 13, the distance measuring accuracy and the distance measuring range may change due to a cause such as a change in diameter and a shock received from the outside.
 測距装置13の測距精度は、既知の距離に設営された対象物を測距して、得られた測距値と既知の距離とを比較することにより較正できる。測距装置13の測距範囲を較正する場合には、測距装置13に備えられた較正部600を使用する。 The distance measuring accuracy of the distance measuring device 13 can be calibrated by measuring the object set at a known distance and comparing the obtained distance value with the known distance. When the distance measuring range of the distance measuring device 13 is calibrated, the calibration unit 600 provided in the distance measuring device 13 is used.
 図22は、測距装置13における駆動部320により駆動された補正部材310の作用を説明する模式図である。駆動部320により駆動された場合、補正部材310は、発光部210が発生した信号光の光線Bの伝播方向に対して略直交する方向に変移する。これにより、補正部材310が透過する光線A、Bの伝播方向が変化する。 FIG. 22 is a schematic diagram for explaining the operation of the correction member 310 driven by the drive unit 320 in the distance measuring device 13. When driven by the drive unit 320, the correction member 310 shifts in a direction substantially orthogonal to the propagation direction of the light beam B 2 of the signal light generated by the light emitting unit 210. Thereby, the propagation direction of the light rays A 2 and B 2 transmitted through the correction member 310 changes.
 図示の例では、補正部材310は負の屈折力を有する。よって、図中に実線で示すように、補正部材310が図中下方に変移した場合、光線Bの伝播光路は図中上方に変移して、実線で示す光線Bとして外部に投射される。また、図中上方から対物光学系220に入射した光線Aが、補正部材310を透過した後は、測距装置13内を図中水平に伝播する光線Aとなる。なお、補正部材310が正の屈折率を有する場合には、レンズの動き方向に対する光線の伝搬光路の偏移方向はレンズが負の場合と逆方向になる。 In the illustrated example, the correction member 310 has a negative refractive power. Therefore, as shown by the solid line in the figure, the correction member 310 may have shifted downward in the figure, the propagation optical path of the light beam B 2 is then shifted upward in the drawing, are projected to the outside as light B 3 shown by a solid line . In addition, after the light beam A 1 incident on the objective optical system 220 from above in the drawing passes through the correction member 310, it becomes a light beam A 2 that propagates horizontally in the distance measuring device 13 in the drawing. When the correction member 310 has a positive refractive index, the deviation direction of the light propagation path with respect to the lens movement direction is opposite to that when the lens is negative.
 また、図中に点線で示すように、補正部材310が図中上方に変移した場合、光線Bの伝播光路は図中下方に変移して、点線で示す光線Bとして外部に投射される。また、図中下方から対物光学系220に入射した光線Aが、補正部材310を透過した後は、測距装置13内を図中水平に伝播する光線Aとなる。 Further, as shown by a dotted line in the figure, the correction member 310 may have shifted upward in the drawing, the propagation optical path of the light beam B 2 is then displaced downward in the figure is projected to the outside as light B 3 shown by a dotted line . In addition, after the light ray A 1 incident on the objective optical system 220 from below in the figure passes through the correction member 310, it becomes a light ray A 2 that propagates horizontally in the distance measuring device 13 in the figure.
 図23は、測距装置13の測距範囲を、予め設定された範囲に合致させる較正動作を実行する状態を示す模式図である。測距範囲の較正においては、測距装置13に対して既知の相対位置に配された標準対象物22に反射された信号光が、測距範囲の全域にわたって受光素子430に受光されるように光学系を調整する。 FIG. 23 is a schematic diagram showing a state in which a calibration operation for matching the distance measurement range of the distance measurement device 13 with a preset range is executed. In the calibration of the distance measurement range, the signal light reflected by the standard object 22 arranged at a known relative position with respect to the distance measurement device 13 is received by the light receiving element 430 over the entire range of the distance measurement range. Adjust the optical system.
 測距装置13と標準対象物22との相対位置は、予め定めた標準距離Dの他に、測距装置13と標準対象物22との高さが揃っていること、測距装置13の向きが標準対象物22に直角に対向すること等の条件を含む。また、較正動作をする測距装置13は水平に固定され、標準対象物22は垂直に固定されていることが望ましい。 The relative positions of the distance measuring device 13 and the standard object 22, in addition to the standard distance D R in which predetermined the height is aligned with the distance measuring device 13 and the standard object 22, the distance measuring device 13 This includes conditions such that the orientation is perpendicular to the standard object 22. In addition, it is desirable that the distance measuring device 13 that performs the calibration operation is fixed horizontally and the standard object 22 is fixed vertically.
 なお、標準対象物22としては、測距装置13の信号光に対して、反射率にコントラストを有するものを用いることが望ましい。即ち、周囲環境に比較して、著しく高い反射率か、著しく低い反射率を有する面を有する標準対象物22を用いることができる。 It should be noted that it is desirable to use a standard object 22 that has contrast in reflectance with respect to the signal light of the distance measuring device 13. That is, the standard object 22 having a surface having a remarkably high reflectance or a remarkably low reflectance as compared with the surrounding environment can be used.
 また、反射率が高い領域と反射率が低い領域とを併せて備える標準対象物22を用いてもよい。更に、標準対象物22を用いる場合は、測距装置13を標準対象物22に対して視準するので、標準対象物は、可視光帯域においても高いコントラストを有することが好ましい。 Alternatively, the standard object 22 having both a region with a high reflectance and a region with a low reflectance may be used. Further, when the standard object 22 is used, since the distance measuring device 13 is collimated with respect to the standard object 22, it is preferable that the standard object has a high contrast even in the visible light band.
 図24は、測距装置13の測距範囲に関する走査パターンを説明する模式図である。上記のように設置された測距装置13の測距範囲を較正する場合は、まず、視準部100のレチクルを、標準対象物22に目視で合わせる。次に、較正制御部630により駆動部320を連続的に動作させて補正部材310を変移させる。 FIG. 24 is a schematic diagram for explaining a scanning pattern related to the distance measuring range of the distance measuring device 13. When calibrating the distance measurement range of the distance measuring device 13 installed as described above, first, the reticle of the collimation unit 100 is visually aligned with the standard object 22. Next, the calibration control unit 630 continuously operates the drive unit 320 to shift the correction member 310.
 これにより、図示のように、測距装置13における視準部100の視野内全体が信号光により走査される。よって、信号光は、標準対象物22が存在する領域と、存在しない領域との両方に対して投射される。なお、この較正動作に用いられる標準対象物22の中央には、信号光に対する反射率の高い高反射率領域24が設けられている。 Thereby, as shown in the drawing, the entire visual field of the collimation unit 100 in the distance measuring device 13 is scanned with the signal light. Therefore, the signal light is projected onto both the area where the standard object 22 exists and the area where the standard object 22 does not exist. A high reflectivity region 24 having a high reflectivity for signal light is provided at the center of the standard object 22 used for the calibration operation.
 図25は、上記較正動作において受光素子430が検出する信号光の受光光強度を示すグラフである。図24に示した例では、信号光が3.5往復することにより視準部100の視野内を走査する。 FIG. 25 is a graph showing the received light intensity of the signal light detected by the light receiving element 430 in the calibration operation. In the example shown in FIG. 24, the visual field of the collimation unit 100 is scanned by the signal light reciprocating 3.5 times.
 較正動作において、信号光が標準対象物22に投射されていない期間は、受光素子430において信号光は検出されない。また、走査された信号光が標準対象物22に投射された場合は、標準対象物に反射された信号光の、受光素子430における受光強度を測定する。 In the calibration operation, the signal light is not detected by the light receiving element 430 during a period when the signal light is not projected onto the standard object 22. In addition, when the scanned signal light is projected onto the standard object 22, the received light intensity at the light receiving element 430 of the signal light reflected by the standard object is measured.
 更に、走査された信号光が、標準対象物22の高反射率領域24に投射された場合は、より強い光強度が受光素子430に測定される。これにより、強度測定部640は、予め定められた閾値Pthを超える信号強度を測定する。 Further, when the scanned signal light is projected onto the high reflectance region 24 of the standard object 22, a stronger light intensity is measured by the light receiving element 430. Thereby, the intensity measuring unit 640 measures the signal intensity exceeding the predetermined threshold value P th .
 すなわち、強度測定部640には、標準対象物22の高反射率領域24において信号光が反射された場合の受光強度と、標準対象物22における高反射率領域24以外の領域に信号光が反射された場合の受光強度との間に閾値Pthが設定される。これにより、較正制御部630は、標準対象物22の中央に信号光が照射されたことを検知する。 In other words, the intensity measurement unit 640 reflects the received light intensity when the signal light is reflected in the high reflectance region 24 of the standard object 22 and the signal light in a region other than the high reflectance region 24 of the standard object 22. The threshold value P th is set between the received light intensity and the received light intensity. Thereby, the calibration control unit 630 detects that the signal light has been applied to the center of the standard object 22.
 図26は、上記のような、較正部600による測距範囲の較正動作の手順を示す流れ図である。図示のように、較正動作が開始されると、較正制御部630は、まず、駆動部320に指令を発生して、信号光により視準部100の視野内を走査させる(ステップS201)。 FIG. 26 is a flowchart showing the procedure of the distance measurement range calibration operation by the calibration unit 600 as described above. As shown in the figure, when the calibration operation is started, the calibration control unit 630 first issues a command to the driving unit 320 to scan the visual field of the collimation unit 100 with the signal light (step S201).
 次に、較正制御部630は、受光素子430による信号光の受光強度を強度測定部640に連続的に測定させる(ステップS202)。更に、較正制御部630は、強度測定部640が測定した信号光の光強度が、予め定めた閾値Pthを超えるか否かを監視する(ステップS203)。 Next, the calibration control unit 630 causes the intensity measurement unit 640 to continuously measure the received light intensity of the signal light by the light receiving element 430 (step S202). Furthermore, the calibration control unit 630 monitors whether or not the light intensity of the signal light measured by the intensity measurement unit 640 exceeds a predetermined threshold value P th (step S203).
 ここで、受光素子430の受光強度が上記閾値Pthを超えない場合(ステップS203:NO)は、較正制御部630は強度測定部640による測定値の監視を継続する。一方、受光素子430の受光強度が上記閾値Pthを超えた場合(ステップS203:YES)、較正制御部630は、その時点における補正部材310の位置を算出する(ステップS204)。 Here, when the light reception intensity of the light receiving element 430 does not exceed the threshold value Pth (step S203: NO), the calibration control unit 630 continues to monitor the measurement value by the intensity measurement unit 640. On the other hand, when the received light intensity of the light receiving element 430 exceeds the threshold value Pth (step S203: YES), the calibration control unit 630 calculates the position of the correction member 310 at that time (step S204).
 較正制御部630は、較正制御部630自身が発生した指令に基づく駆動部320の駆動量から、補正部材310の位置を算出する。較正制御部630は、こうして算出した補正部材310の位置を、較正された補正部材310の初期位置として格納部650に格納する(ステップS205)。 The calibration control unit 630 calculates the position of the correction member 310 from the drive amount of the drive unit 320 based on the command generated by the calibration control unit 630 itself. The calibration control unit 630 stores the position of the correction member 310 thus calculated in the storage unit 650 as the calibrated initial position of the correction member 310 (step S205).
 上記のような一連の動作により、格納部650に、較正された初期位置が保持される。よって、測距装置13が測距動作を開始する場合には、まず、駆動部320を動作させて、補正部材310を当該初期位置に移動させる。これにより、測距装置13は、較正された状態で測距動作を実行できる。 The calibrated initial position is held in the storage unit 650 by a series of operations as described above. Therefore, when the distance measuring device 13 starts the distance measuring operation, first, the driving unit 320 is operated to move the correction member 310 to the initial position. Thereby, the distance measuring device 13 can execute the distance measuring operation in a calibrated state.
 なお、上記のようにして較正値を獲得した場合、較正制御部630は、信号光の走査を更に継続して、強度測定部640が測定した光強度が再び閾値Pthを超えない状態に変化したことを確認してもよい。更に、較正制御部630は、外部から停止の指示を受けるまで、信号光の走査と較正位置の算出を繰り返してもよい。一方、較正制御部630は、較正値が獲得された時点で、較正動作を自主的に終了してもよい。 When the calibration value is acquired as described above, the calibration control unit 630 further continues scanning with the signal light, and changes to a state where the light intensity measured by the intensity measurement unit 640 does not exceed the threshold value P th again. You may confirm that you did. Furthermore, the calibration control unit 630 may repeat the scanning of the signal light and the calculation of the calibration position until receiving a stop instruction from the outside. On the other hand, the calibration control unit 630 may voluntarily end the calibration operation when the calibration value is acquired.
 このように、測距装置13は、補正部材310を変移させて較正動作を実行する較正部600を備えるので、出荷前の較正が容易になるばかりではなく、出荷後も、較正を容易に実行できる。よって、例えば、更に、測距装置11の電源が投入された場合に、初期化の一貫として較正動作を実行あるいは推奨してもよい。また、較正動作を実行するタイミングは、ユーザ等による外部からの指示に依存してもよい。更に、予め定められた時間間隔毎に較正制御部630がユーザに通知してもよい。 As described above, the distance measuring device 13 includes the calibration unit 600 that performs the calibration operation by moving the correction member 310, so that not only calibration before shipment is facilitated, but also calibration is easily performed after shipment. it can. Therefore, for example, when the power of the distance measuring device 11 is turned on, a calibration operation may be executed or recommended as a part of initialization. The timing for executing the calibration operation may depend on an external instruction from the user or the like. Further, the calibration control unit 630 may notify the user at predetermined time intervals.
 図27は、較正部600による信号光の走査を説明する模式図である。図24に示した例では、視準部100の視野内で信号光を往復走査させることにより、標準対象物22の高反射率領域24に信号光が投射される場合の補正部材310の位置を検出した。 FIG. 27 is a schematic diagram illustrating scanning of signal light by the calibration unit 600. In the example illustrated in FIG. 24, the position of the correction member 310 when the signal light is projected onto the high reflectance region 24 of the standard object 22 by reciprocating scanning of the signal light within the field of view of the collimation unit 100 is determined. Detected.
 しかしながら、較正動作における信号光の走査パターンは往復移動に限られない。例えば、図27に示すように、渦巻き状の走査パターンで走査することにより高反射率領域24を検索してもよい。更に、測距装置13が既に較正されたことがある場合は、最後の較正動作により特定された較正位置を始点として、上記渦巻き状の走査パターンによる走査を開始してもよい。 However, the scanning pattern of the signal light in the calibration operation is not limited to the reciprocating movement. For example, as shown in FIG. 27, the high reflectance region 24 may be searched by scanning with a spiral scanning pattern. Furthermore, when the distance measuring device 13 has already been calibrated, scanning with the spiral scanning pattern may be started from the calibration position specified by the last calibration operation.
 図28は、上記のような走査パターンにより信号光を走査させた場合に検出される受光素子430における受光光強度の変化を示すグラフである。図示のように、既に特定された較正位置から渦巻き状に走査することにより高反射率領域24を早期に検出して、較正動作に要する時間を短縮することができる。 FIG. 28 is a graph showing a change in received light intensity in the light receiving element 430 detected when the signal light is scanned by the above scanning pattern. As shown in the drawing, the high reflectance region 24 is detected early by scanning in a spiral shape from the already specified calibration position, and the time required for the calibration operation can be shortened.
 図29は、測距装置13に測距精度および測距範囲の較正動作を実行させる場合に用いることができる補助部材700の模式図である。補助部材700は、補助光学系710および標準対象物22を有する。 FIG. 29 is a schematic diagram of an auxiliary member 700 that can be used when causing the distance measuring device 13 to perform distance measurement accuracy and a distance measurement range calibration operation. The auxiliary member 700 has an auxiliary optical system 710 and a standard object 22.
 補助光学系710は、対物光学系220を通じて観察される標準対象物22が、実際の位置よりも遠方に位置するように見せることができる。よって、補助部材700を用いることにより、数百メートルから1キロメートル以上にも及ぶ測距装置13の測距範囲に標準対象物22を設置することなく、較正動作を実行させることができる。 The auxiliary optical system 710 can make the standard object 22 observed through the objective optical system 220 appear to be located farther than the actual position. Therefore, by using the auxiliary member 700, the calibration operation can be executed without installing the standard object 22 in the distance measuring range of the distance measuring device 13 ranging from several hundred meters to 1 kilometer or more.
 図30は、レチクルプレート120の模式図である。図示のレチクルプレート120は、複数の画素を有する透過型液晶表示板等により形成される。このレチクルプレート120は、複数の画素の一部を表示させることにより、互いに位置が異なる複数のレチクル122、124のうちのいずれか(122)を選択的に表示させることができる。 FIG. 30 is a schematic diagram of the reticle plate 120. The illustrated reticle plate 120 is formed of a transmissive liquid crystal display panel having a plurality of pixels. The reticle plate 120 can selectively display any one of the plurality of reticles 122 and 124 (122) having different positions by displaying a part of the plurality of pixels.
 これにより、送光部200による信号光の投射位置と、視準部100の視野におけるレチクル122の位置とのずれを補正できる。また、較正部600および補正部300のいずれかが、補正部材310の移動範囲では光学系を較正または補正し切れない場合に、レチクル122を移動させて補うことができる。なお、更に発光部210も移動可能にして、測距装置13の光学的な調整範囲を更に拡大してもよい。 Thereby, it is possible to correct a deviation between the projection position of the signal light by the light transmission unit 200 and the position of the reticle 122 in the field of view of the collimation unit 100. In addition, when either the calibration unit 600 or the correction unit 300 cannot calibrate or correct the optical system within the movement range of the correction member 310, the reticle 122 can be moved to compensate. It should be noted that the light emitting unit 210 may also be moved to further expand the optical adjustment range of the distance measuring device 13.
 上記のように、レチクルプレート120が移動させることができるレチクル122を有する場合、測距装置13の光学系を調整することなく、信号光の投射位置とレチクル122とを一致させることができる。よって、測距装置13の出荷前および出荷後に、レチクル122の位置を容易に較正する方法を提供できる。 As described above, when the reticle plate 120 has the movable reticle 122, the projection position of the signal light and the reticle 122 can be matched without adjusting the optical system of the distance measuring device 13. Therefore, it is possible to provide a method for easily calibrating the position of the reticle 122 before and after shipment of the distance measuring device 13.
 例えば、測距装置13が工場出荷前である場合は、受光素子を備えた較正設備を用いてレチクル122の位置を調整できる。即ち、送光部200から射出される信号光を、コリメート光学系を通じて受光素子に受光させた上で、視準部100の視野内で当該受光部の位置にレチクル122を一致させる。これにより、信号光の投射位置にレチクル122を一致させることができる。 For example, when the distance measuring device 13 is not shipped from the factory, the position of the reticle 122 can be adjusted using a calibration facility including a light receiving element. That is, the signal light emitted from the light transmitting unit 200 is received by the light receiving element through the collimating optical system, and the reticle 122 is made to coincide with the position of the light receiving unit within the field of view of the collimating unit 100. Thereby, the reticle 122 can be matched with the projection position of the signal light.
 また、測距装置13外部の較正設備を利用できない場合は、まず、送光部200において補正部材310を変位させつつ、信号光を投射する。次いで、受光素子430における受光領域431の中央で信号光を受光する場合の補正部材310の位置を特定する。こうして得られた補正部材310の変位量に基づいて、信号光の投射位置とレチクル122とのずれ量を算出できる。よって、補正部材310の変位量を打ち消すように、レチクル122の位置を移動させることにより、信号光の投射位置にレチクル122を一致させることができる。 If calibration equipment outside the distance measuring device 13 cannot be used, first, signal light is projected while the correction member 310 is displaced in the light transmitting unit 200. Next, the position of the correction member 310 when the signal light is received at the center of the light receiving region 431 in the light receiving element 430 is specified. Based on the displacement amount of the correction member 310 thus obtained, the deviation amount between the signal light projection position and the reticle 122 can be calculated. Therefore, by moving the position of the reticle 122 so as to cancel out the displacement amount of the correction member 310, the reticle 122 can be made to coincide with the projection position of the signal light.
 なお、レチクルプレート120に形成されるレチクル122の形状が図示のものに限られないことはもちろんであり、レチクル122の形状を、十字形、矩形、スケール形等のさまざまな形状にできる。また、レチクルプレート120として液晶表示板等のドットマトリックス表示機能を有する部材を用いた場合は、レチクル122の位置に加えて、形状、大きさ等を変更してもよい。 Of course, the shape of the reticle 122 formed on the reticle plate 120 is not limited to that shown in the figure, and the shape of the reticle 122 can be various shapes such as a cross, a rectangle, and a scale. When a member having a dot matrix display function such as a liquid crystal display plate is used as the reticle plate 120, the shape, size, etc. may be changed in addition to the position of the reticle 122.
 また、測距装置13においては、送光部200側に設けられた補正部材310および駆動部320を用いて較正部600が形成された場合を例にあげて説明した。しかしながら、図16に示したように、送光部200および受光部400の両方に補正部材310、312および駆動部320、322が設けられた測距装置11においても、較正部600を形成できる。この場合、送光部200側と受光部400側の両方で較正動作を実行してもよいし、いずれか一方で較正動作を実行してもよい。更に、図18に示したように、受光部400に限って補正部材312および駆動部322が設けられた測距装置12においても、較正部600を形成できる。 In the distance measuring device 13, the case where the calibration unit 600 is formed using the correction member 310 and the drive unit 320 provided on the light transmission unit 200 side has been described as an example. However, as shown in FIG. 16, the calibration unit 600 can also be formed in the distance measuring device 11 in which the correction members 310 and 312 and the driving units 320 and 322 are provided in both the light transmitting unit 200 and the light receiving unit 400. In this case, the calibration operation may be executed on both the light transmitting unit 200 side and the light receiving unit 400 side, or the calibration operation may be executed on either side. Further, as shown in FIG. 18, the calibration unit 600 can be formed also in the distance measuring device 12 provided with the correction member 312 and the drive unit 322 only in the light receiving unit 400.
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。 As mentioned above, although this invention was demonstrated using embodiment, the technical scope of this invention is not limited to the range as described in the said embodiment. It will be apparent to those skilled in the art that various modifications or improvements can be added to the above-described embodiment. It is apparent from the scope of the claims that the embodiments added with such changes or improvements can be included in the technical scope of the present invention.
 請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。 The execution order of each process such as operations, procedures, steps, and stages in the apparatus, system, program, and method shown in the claims, the description, and the drawings is particularly “before” or “prior”. It should be noted that they can be implemented in any order unless the output of the previous process is used in the subsequent process. Regarding the operation flow in the claims, the description, and the drawings, even if it is described using “first”, “next”, etc. for the sake of convenience, it means that it is essential to carry out in this order. is not.
10、11、12、13 測距装置、20 対象物、22 標準対象物、24 高反射率領域、100 視準部、110 接眼光学系、120 レチクルプレート、122、124 レチクル、130 正立プリズム、132 ダイクロイック反射面、134、136 全反射面、200 送光部、210 発光部、220、410 対物光学系、300、301、302 補正部、310、312 補正部材、320、322 駆動部、330 補正制御部、340 ブレ検出部、400 受光部、420 帯域透過フィルタ、430 受光素子、431 受光領域、432、434、436 スポット像、433、435 拡散領域、500 測距部、510 時計部、520 測距制御部、530 表示部、600 較正部、630 較正制御部、640 強度測定部、650 格納部、700 補助部材、710 補助光学系 10, 11, 12, 13 Distance measuring device, 20 object, 22 standard object, 24 high reflectivity region, 100 collimation part, 110 eyepiece optical system, 120 reticle plate, 122, 124 reticle, 130 erecting prism, 132, dichroic reflection surface, 134, 136 total reflection surface, 200 light transmission unit, 210 light emission unit, 220, 410 objective optical system, 300, 301, 302 correction unit, 310, 312 correction member, 320, 322 drive unit, 330 correction Control unit, 340 shake detection unit, 400 light receiving unit, 420 band transmission filter, 430 light receiving element, 431 light receiving region, 432, 434, 436 spot image, 433, 435 diffusion region, 500 distance measuring unit, 510 clock unit, 520 measurement Distance control unit, 530 display unit, 600 calibration unit, 630 Positive control unit, 640 intensity measuring unit, 650 storage unit, 700 an auxiliary member, 710 an auxiliary optical system

Claims (19)

  1.  光源からの信号光を対象物に向かって送光する送光部と、
     受光素子を有し、前記対象物からの前記信号光を前記送光部と異なる光軸上で受光する受光部と、
     送光から受光までの前記信号光の伝播時間に基づいて前記対象物までの距離を測定する測距部と、
     前記送光部および前記受光部までの光路、および、前記対象物から前記受光素子までの光路のどちらか一方の光路を固定した状態で、前記送光部および前記受光部の他方において前記光路を変位させて前記信号光の光路を補正する補正部と
    を備える測距装置。
    A light transmitting section for transmitting signal light from the light source toward the object;
    A light receiving unit that has a light receiving element and receives the signal light from the object on an optical axis different from that of the light transmitting unit;
    A distance measuring unit for measuring a distance to the object based on a propagation time of the signal light from light transmission to light reception;
    In the state where either one of the optical path from the light transmitting unit and the light receiving unit and the optical path from the object to the light receiving element is fixed, the optical path is set in the other of the light transmitting unit and the light receiving unit. A distance measuring device comprising: a correction unit that is displaced to correct the optical path of the signal light.
  2.  前記補正部は、前記信号光を前記受光素子の受光範囲で受光するように前記光路を変位する請求項1に記載の測距装置。 2. The distance measuring device according to claim 1, wherein the correction unit displaces the optical path so as to receive the signal light within a light receiving range of the light receiving element.
  3.  前記受光素子は、前記光路が変位する範囲のうちで中央に位置する場合に前記信号光を受光範囲のうち前記送光部の光軸と前記受光部の光軸とを含む面との交点またはその近傍で受光する請求項1または2に記載の測距装置。 When the light receiving element is located in the center of the range in which the optical path is displaced, the signal light is intersected with a plane including the optical axis of the light transmitting unit and the optical axis of the light receiving unit in the light receiving range, or The distance measuring device according to claim 1, wherein light is received in the vicinity thereof.
  4.  前記光路を限界まで変位させても前記光路を補正できない場合に、その旨を通知する通知部を備える請求項1から3のいずれか一項に記載の測距装置。 The distance measuring device according to any one of claims 1 to 3, further comprising a notification unit that notifies the fact that the optical path cannot be corrected even if the optical path is displaced to a limit.
  5.  前記通知部は、変位した前記光路が変位範囲の限界に接近したことを通知する請求項4に記載の測距装置。 The distance measuring device according to claim 4, wherein the notifying unit notifies that the displaced optical path has approached a limit of a displacement range.
  6.  前記送光部および前記受光部の少なくとも一方における光路の変位の振幅が、前記光路の変位により補正できる範囲を超えた期間は、前記光路の変位による補正を停止する請求項1から請求項5までのいずれか一項に記載の測距装置。 The correction by the displacement of the optical path is stopped during a period in which the amplitude of the displacement of the optical path in at least one of the light transmitting unit and the light receiving unit exceeds a range that can be corrected by the displacement of the optical path. The distance measuring device according to any one of the above.
  7.  前記補正部は、前記光路が変位する範囲を機械的に規制する規制部を有する請求項1から請求項6までのいずれか一項に記載の測距装置。 The distance measuring device according to any one of claims 1 to 6, wherein the correction unit includes a regulation unit that mechanically regulates a range in which the optical path is displaced.
  8.  前記補正部は、前記光路を変位させることにより前記送光部および前記受光部の間の視差を補正する請求項1から請求項7までのいずれか一項に記載の測距装置。 The distance measuring device according to any one of claims 1 to 7, wherein the correction unit corrects a parallax between the light transmission unit and the light reception unit by displacing the optical path.
  9.  前記補正部は、前記送光部および前記受光部の少なくとも一方における像のブレを補正する請求項1から請求項8までのいずれか一項に記載の測距装置。 The distance measuring device according to any one of claims 1 to 8, wherein the correction unit corrects image blurring in at least one of the light transmission unit and the light reception unit.
  10.  前記補正部は、前記送光部および前記受光部の少なくとも一方におけるブレの振幅が予め定められた閾値を超えた場合に、前記光路をより大きく変位させる請求項8または請求項9に記載の測距装置。 The measurement unit according to claim 8 or 9, wherein the correction unit displaces the optical path more greatly when a blur amplitude in at least one of the light transmission unit and the light reception unit exceeds a predetermined threshold. Distance device.
  11.  前記補正部は、前記対象物までの距離が予め定められた閾値よりも近い場合に、前記光路をより大きく変位させる請求項8から請求項10までのいずれか一項に記載の測距装置。 The distance measuring device according to any one of claims 8 to 10, wherein the correction unit displaces the optical path more greatly when a distance to the object is closer than a predetermined threshold value.
  12.  前記補正部は、前記対象物に反射された前記信号光の前記受光部における受光強度に基づいて、前記光路を変位させる請求項1から請求項11までのいずれか一項に記載の測距装置。 The distance measuring device according to any one of claims 1 to 11, wherein the correction unit displaces the optical path based on a received light intensity of the signal light reflected by the object in the light receiving unit. .
  13.  前記補正部は、補正部材を変位して、前記受光素子が受光する前記信号光の強度がより高くなる方向に前記光路を変位させる請求項12に記載の測距装置。 13. The distance measuring device according to claim 12, wherein the correction unit displaces a correction member to displace the optical path in a direction in which the intensity of the signal light received by the light receiving element is higher.
  14.  前記補正部は、既知の標準対象物に反射された前記信号光の前記受光部における受光強度に基づいて、前記光軸の初期位置を較正し、較正された前記初期位置から変移することにより前記光路を補正する請求項12または請求項13に記載の測距装置。 The correction unit calibrates the initial position of the optical axis based on the received light intensity of the signal light reflected by a known standard object in the light receiving unit, and shifts from the calibrated initial position to change the initial position. The distance measuring device according to claim 12 or 13, wherein the optical path is corrected.
  15.  前記補正部は、最後に較正された初期位置を始点として前記信号光を走査させる請求項14に記載の測距装置。 15. The distance measuring device according to claim 14, wherein the correction unit scans the signal light starting from an initial position calibrated last.
  16.  前記補正部は、外部から指示を受けた場合に前記光軸の初期位置を較正して更新する請求項14または15に記載の測距装置。 16. The distance measuring device according to claim 14, wherein the correction unit calibrates and updates the initial position of the optical axis when receiving an instruction from the outside.
  17.  前記対象物を目視させて前記送光部を視準する視準部を備え、
     前記補正部は、前記視準部において前記対象物に合わせるレチクルに対する光路の位置を較正する請求項12から請求項16までのいずれか一項に記載の測距装置。
    Comprising a collimation unit for visualizing the object and collimating the light transmission unit;
    The distance measuring device according to any one of claims 12 to 16, wherein the correction unit calibrates a position of an optical path with respect to a reticle to be matched with the object in the collimation unit.
  18.  前記レチクルは、複数の画像から選択して表示部に表示された表示画像により形成される請求項17に記載の測距装置。 18. The distance measuring device according to claim 17, wherein the reticle is formed by a display image selected from a plurality of images and displayed on a display unit.
  19.  光源からの信号光を対象物に向かって送光する送光部と、受光素子を有し、前記対象物からの前記信号光を前記送光部と異なる光軸上で受光する受光部と、前記信号光の送光から受光までの伝播時間に基づいて前記対象物までの距離を測定する測距部と、前記送光部および前記受光部の一方の光軸を固定した状態で、前記送光部および前記受光部の他方において光路を変位させて前記信号光の光路を補正する補正部とを備える測距装置を較正する較正方法であって、
     前記光路を変位させつつ既知の標準対象物に反射された前記信号光の前記受光部における受光強度を測定する段階と、
     前記光路を変位させることにより前記光路の初期位置を決定する段階と
    を備える較正方法。
    A light transmitting unit that transmits signal light from the light source toward the object; a light receiving unit that includes a light receiving element; and that receives the signal light from the object on a different optical axis from the light transmitting unit; A distance measuring unit that measures a distance to the object based on a propagation time from light transmission to light reception of the signal light, and one optical axis of the light transmission unit and the light reception unit is fixed. A calibration method for calibrating a distance measuring device including a correction unit that corrects an optical path of the signal light by displacing an optical path in the other of the optical unit and the light receiving unit,
    Measuring the received light intensity at the light receiving portion of the signal light reflected by a known standard object while displacing the optical path;
    Determining the initial position of the optical path by displacing the optical path.
PCT/JP2014/000993 2013-02-25 2014-02-25 Distance measuring device and calibration method WO2014129210A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112014000971.7T DE112014000971T5 (en) 2013-02-25 2014-02-25 Distance measuring device and calibration method
US14/834,955 US10101442B2 (en) 2013-02-25 2015-08-25 Distance measuring apparatus and method for calibration

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013034328A JP2016095136A (en) 2013-02-25 2013-02-25 Range finding device and calibration method
JP2013-034328 2013-02-25
JP2013-034223 2013-02-25
JP2013034223A JP2016095135A (en) 2013-02-25 2013-02-25 Range finding device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/834,955 Continuation US10101442B2 (en) 2013-02-25 2015-08-25 Distance measuring apparatus and method for calibration

Publications (1)

Publication Number Publication Date
WO2014129210A1 true WO2014129210A1 (en) 2014-08-28

Family

ID=51391006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/000993 WO2014129210A1 (en) 2013-02-25 2014-02-25 Distance measuring device and calibration method

Country Status (2)

Country Link
DE (1) DE112014000971T5 (en)
WO (1) WO2014129210A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016151930A1 (en) * 2015-03-20 2016-09-29 富士フイルム株式会社 Distance measurement device, distance-measurement control method, and distance-measurement control program
WO2016151926A1 (en) * 2015-03-20 2016-09-29 富士フイルム株式会社 Distance measurement device, distance-measurement control method, and distance-measurement control program
WO2016151927A1 (en) * 2015-03-20 2016-09-29 富士フイルム株式会社 Distance measurement device, distance-measurement control method, and distance-measurement control program
WO2016151929A1 (en) * 2015-03-20 2016-09-29 富士フイルム株式会社 Distance measurement device, distance-measurement control method, and distance-measurement control program
WO2016151928A1 (en) * 2015-03-20 2016-09-29 富士フイルム株式会社 Distance measurement device, distance-measurement control method, and distance-measurement control program
KR20170100599A (en) * 2014-12-24 2017-09-04 호도가야 가가쿠 고교 가부시키가이샤 Organic electroluminescence element
JP2021085822A (en) * 2019-11-29 2021-06-03 ソニーセミコンダクタソリューションズ株式会社 Ranging sensor, ranging system, and electronic device
RU2774270C2 (en) * 2017-11-24 2022-06-16 САФРАН ЭЛЕКСТОНИКС Энд ДИФЕНЗ Protection of monostatic or quasi-monostatic laser rangefinder
US11553169B2 (en) * 2019-07-19 2023-01-10 Swarovski-Optik Kg. Long-range optical device and focusing unit

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6855316B2 (en) 2017-05-10 2021-04-07 株式会社トプコン Surveying system
JP6963909B2 (en) * 2017-05-10 2021-11-10 株式会社トプコン Surveying system

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02210287A (en) * 1989-02-10 1990-08-21 Opt:Kk Distance measuring instrument
JPH08510324A (en) * 1993-05-15 1996-10-29 ライカ アクチエンゲゼルシャフト Distance measuring device
JP2000066113A (en) * 1998-08-20 2000-03-03 Canon Inc Binoculars
JP2000075031A (en) * 1998-08-27 2000-03-14 Omron Corp Two-dimensional axis adjustment method of range-finder
JP2000187151A (en) * 1998-12-24 2000-07-04 Canon Inc Distance measuring device used with image blur correcting device
JP2001059724A (en) * 1999-08-23 2001-03-06 Nissan Motor Co Ltd Optical axis detecting device
JP2001100108A (en) * 1999-09-30 2001-04-13 Fuji Photo Optical Co Ltd Image stabilizer
JP2004101342A (en) * 2002-09-09 2004-04-02 Fuji Photo Optical Co Ltd Laser range finder
JP2004519697A (en) * 2001-05-18 2004-07-02 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Optical ranging device
JP2004521355A (en) * 2001-06-26 2004-07-15 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Optical distance measuring device
WO2009031550A1 (en) * 2007-09-05 2009-03-12 Nikon Vision Co., Ltd. Distance measuring apparatus
JP2009270856A (en) * 2008-05-01 2009-11-19 Nikon Corp Ranging device

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02210287A (en) * 1989-02-10 1990-08-21 Opt:Kk Distance measuring instrument
JPH08510324A (en) * 1993-05-15 1996-10-29 ライカ アクチエンゲゼルシャフト Distance measuring device
JP2000066113A (en) * 1998-08-20 2000-03-03 Canon Inc Binoculars
JP2000075031A (en) * 1998-08-27 2000-03-14 Omron Corp Two-dimensional axis adjustment method of range-finder
JP2000187151A (en) * 1998-12-24 2000-07-04 Canon Inc Distance measuring device used with image blur correcting device
JP2001059724A (en) * 1999-08-23 2001-03-06 Nissan Motor Co Ltd Optical axis detecting device
JP2001100108A (en) * 1999-09-30 2001-04-13 Fuji Photo Optical Co Ltd Image stabilizer
JP2004519697A (en) * 2001-05-18 2004-07-02 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Optical ranging device
JP2004521355A (en) * 2001-06-26 2004-07-15 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Optical distance measuring device
JP2004101342A (en) * 2002-09-09 2004-04-02 Fuji Photo Optical Co Ltd Laser range finder
WO2009031550A1 (en) * 2007-09-05 2009-03-12 Nikon Vision Co., Ltd. Distance measuring apparatus
JP2009270856A (en) * 2008-05-01 2009-11-19 Nikon Corp Ranging device

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170100599A (en) * 2014-12-24 2017-09-04 호도가야 가가쿠 고교 가부시키가이샤 Organic electroluminescence element
KR102430330B1 (en) * 2014-12-24 2022-08-05 호도가야 가가쿠 고교 가부시키가이샤 organic electroluminescent device
US20180007270A1 (en) * 2015-03-20 2018-01-04 Fujifilm Corporation Distance measurement device, distance measurement control method, and distance measurement control program
US10051186B2 (en) 2015-03-20 2018-08-14 Fujifilm Corporation Distance measurement device, distance measurement control method, and distance measurement control program
WO2016151930A1 (en) * 2015-03-20 2016-09-29 富士フイルム株式会社 Distance measurement device, distance-measurement control method, and distance-measurement control program
JPWO2016151929A1 (en) * 2015-03-20 2017-06-29 富士フイルム株式会社 Ranging device, ranging control method, and ranging control program
JPWO2016151928A1 (en) * 2015-03-20 2017-06-29 富士フイルム株式会社 Ranging device, ranging control method, and ranging control program
JPWO2016151930A1 (en) * 2015-03-20 2017-08-03 富士フイルム株式会社 Ranging device, ranging control method, and ranging control program
JPWO2016151926A1 (en) * 2015-03-20 2017-08-03 富士フイルム株式会社 Ranging device, ranging control method, and ranging control program
JPWO2016151927A1 (en) * 2015-03-20 2017-08-17 富士フイルム株式会社 Ranging device, ranging control method, and ranging control program
WO2016151927A1 (en) * 2015-03-20 2016-09-29 富士フイルム株式会社 Distance measurement device, distance-measurement control method, and distance-measurement control program
US20180007275A1 (en) * 2015-03-20 2018-01-04 Fujifilm Corporation Distance measurement device, distance measurement control method, and distance measurement control program
WO2016151928A1 (en) * 2015-03-20 2016-09-29 富士フイルム株式会社 Distance measurement device, distance-measurement control method, and distance-measurement control program
US20180007272A1 (en) * 2015-03-20 2018-01-04 Fujifilm Corporation Distance measurement device, distance measurement control method, and distance measurement control program
US20180007273A1 (en) * 2015-03-20 2018-01-04 Fujifilm Corporation Distance measurement device, distance measurement control method, and distance measurement control program
US20180007271A1 (en) * 2015-03-20 2018-01-04 Fujifilm Corporation Distance measurement device, distance measurement control method, and distance measurement control program
US10027891B2 (en) 2015-03-20 2018-07-17 Fujifilm Corporation Distance measurement device, distance measurement control method, and distance measurement control program
US10027892B2 (en) 2015-03-20 2018-07-17 Fujifilm Corporation Distance measurement device, distance measurement control method, and distance measurement control program
WO2016151929A1 (en) * 2015-03-20 2016-09-29 富士フイルム株式会社 Distance measurement device, distance-measurement control method, and distance-measurement control program
US10051185B2 (en) 2015-03-20 2018-08-14 Fujifilm Corporation Distance measurement device, distance measurement control method, and distance measurement control program
US10057494B2 (en) 2015-03-20 2018-08-21 Fujifilm Corporation Distance measurement device, distance measurement control method, and distance measurement control program
WO2016151926A1 (en) * 2015-03-20 2016-09-29 富士フイルム株式会社 Distance measurement device, distance-measurement control method, and distance-measurement control program
RU2774270C2 (en) * 2017-11-24 2022-06-16 САФРАН ЭЛЕКСТОНИКС Энд ДИФЕНЗ Protection of monostatic or quasi-monostatic laser rangefinder
US11553169B2 (en) * 2019-07-19 2023-01-10 Swarovski-Optik Kg. Long-range optical device and focusing unit
JP2021085822A (en) * 2019-11-29 2021-06-03 ソニーセミコンダクタソリューションズ株式会社 Ranging sensor, ranging system, and electronic device

Also Published As

Publication number Publication date
DE112014000971T5 (en) 2015-11-26

Similar Documents

Publication Publication Date Title
WO2014129210A1 (en) Distance measuring device and calibration method
US10101442B2 (en) Distance measuring apparatus and method for calibration
JP5433976B2 (en) Ranging device
US7576315B2 (en) Scanning type image display apparatus having a synchronization control circuit and a light transmitting area on the last surface of a scanning optical system
US7999924B2 (en) Range binoculars
US10792931B2 (en) Optical deflection apparatus, head-up display apparatus, optical writing unit, image forming apparatus, and object recognition apparatus
KR102519000B1 (en) image display device
JP6672746B2 (en) Image display device and vehicle
US10557708B2 (en) Range finder
JPWO2009031550A1 (en) Ranging device
JP6724663B2 (en) Scanner mirror
EP3945283B1 (en) Surveying instrument
JP2016095136A (en) Range finding device and calibration method
US9182595B2 (en) Image display devices
WO2019116443A1 (en) Binocular telescope and method for manufacturing same
WO2017122551A1 (en) Lens module and projector
JP6972311B2 (en) Posture detection method for distance detectors, optical instruments, and distance detectors
JP2014066724A (en) Distance measuring device
WO2019239849A1 (en) Eyeball detection device and image display device
JP2021143949A (en) Surveying device
WO2024014174A1 (en) Light source device and image display device
EP3957951B1 (en) Surveying instrument
JP2010286716A (en) Optical transmission device
JP2021050991A (en) Surveying device and surveying device system
JP2002340554A (en) Distance-measuring optical system for surveying instrument

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14754580

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112014000971

Country of ref document: DE

Ref document number: 1120140009717

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14754580

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP