[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014129245A1 - 窒化物半導体装置 - Google Patents

窒化物半導体装置 Download PDF

Info

Publication number
WO2014129245A1
WO2014129245A1 PCT/JP2014/050992 JP2014050992W WO2014129245A1 WO 2014129245 A1 WO2014129245 A1 WO 2014129245A1 JP 2014050992 W JP2014050992 W JP 2014050992W WO 2014129245 A1 WO2014129245 A1 WO 2014129245A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating film
nitride semiconductor
gate electrode
gate
electrode
Prior art date
Application number
PCT/JP2014/050992
Other languages
English (en)
French (fr)
Inventor
敬久 藤井
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2014129245A1 publication Critical patent/WO2014129245A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/404Multiple field plate structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET

Definitions

  • the present invention relates to a nitride semiconductor device, and more particularly to a nitride semiconductor device in which a source electrode, a drain electrode, and a gate electrode are formed on a nitride semiconductor layer.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-200248 (Patent Document 1). )reference).
  • a gate electrode terminal is formed by forming a high dielectric constant film having a dielectric constant higher than that of the passivation film on the passivation film between the gate electrode and the drain electrode.
  • Patent Document 2 Japanese Unexamined Patent Application Publication No. 2011-204780
  • the first conventional nitride semiconductor device has a problem that the desired off breakdown voltage cannot be maintained due to the electric field concentration at the end of the field plate portion of the gate electrode.
  • the off-breakdown voltage is 0 V applied to the source electrode and what voltage is applied to the drain electrode in the off state where -10 V is continuously applied to the gate electrode. Represents the dielectric breakdown.
  • an object of the present invention is to provide a nitride semiconductor device capable of effectively suppressing electric field concentration at the end of the gate field plate portion and improving the off breakdown voltage.
  • a nitride semiconductor device of the present invention is A nitride semiconductor layer; A source electrode and a drain electrode which are formed on the nitride semiconductor layer or in the nitride semiconductor layer and spaced apart from each other; A gate electrode formed between the source electrode and the drain electrode and on the nitride semiconductor layer; A first insulating film formed on the nitride semiconductor layer between the source electrode and the gate electrode and between the drain electrode and the gate electrode; A second insulating film formed on at least the first insulating film and the gate electrode; An interlayer insulating film formed on the second insulating film and made of a material containing at least SiO 2 ;
  • the gate electrode has a base portion formed on the nitride semiconductor layer, and a gate field plate portion extending on the first insulating film from the upper portion of the base portion toward the drain electrode side, The dielectric constant of the second insulating film is higher than the dielectric constant of the interlayer insulating film.
  • the source electrode has a source field plate portion extending on the interlayer insulating film toward the drain electrode so as to cover the gate electrode.
  • the base portion of the gate electrode is in Schottky junction with the uppermost layer of the nitride semiconductor layer.
  • At least a gate insulating film formed between the base of the gate electrode and the nitride semiconductor layer is provided.
  • the dielectric constant of the second insulating film is 5 or more.
  • the film thickness of the second insulating film is 30 nm or more.
  • the first insulating film is formed on the nitride semiconductor layer between the source electrode and the gate electrode and between the drain electrode and the gate electrode.
  • FIG. 1 is a cross-sectional view of a GaN-based HFET as an example of a nitride semiconductor device according to the first embodiment of the present invention.
  • FIG. 2 is an enlarged cross-sectional view of the main part of the GaN-based HFET.
  • FIG. 3 is an enlarged cross-sectional view of a main part of the GaN-based HFET of the first comparative example.
  • FIG. 4 is an enlarged cross-sectional view of a main part of the GaN-based HFET of the second comparative example.
  • FIG. 5 is a cross-sectional view for explaining the electric field strength at the gate electrode end of the GaN-based HFET.
  • FIG. 6 is a diagram showing a simulation result of the electric field strength at the gate electrode end with respect to the dielectric constant of the gate electrode cover insulating film.
  • FIG. 7 is a diagram showing conditions for the simulation of the electric field strength.
  • FIG. 8 is a diagram showing a simulation result of the relaxation rate of the electric field strength at the end of the gate field plate portion with respect to the dielectric constant of the gate electrode cover insulating film.
  • FIG. 9 is a diagram showing a simulation result of the electric field strength at the end of the gate field plate portion with respect to the film thickness of the gate electrode cover insulating film (dielectric constant 4).
  • FIG. 10 is a diagram showing a simulation result of the electric field strength at the end of the gate field plate portion with respect to the film thickness of the gate electrode cover insulating film (dielectric constant 20).
  • FIG. 11 is a cross-sectional view of a GaN-based HFET as an example of a nitride semiconductor device according to the second embodiment of the present invention.
  • FIG. 1 shows a sectional view of a normally-on type GaN-based HFET as an example of the nitride semiconductor device according to the first embodiment of the present invention
  • FIG. 2 shows an enlarged sectional view of the main part of the GaN-based HFET. Yes.
  • the GaN-based HFET of the first embodiment is formed on a nitride semiconductor layer 10 formed on a Si substrate (not shown), and on the nitride semiconductor layer 10.
  • Ti / Al source electrode 11, drain electrode 12, and WN / W or TiN formed between the source electrode 11 and the drain electrode 12 and on the nitride semiconductor layer 10 are spaced apart from each other.
  • a gate electrode 13 is
  • the nitride semiconductor layer 10 is composed of an undoped GaN layer 1 and an undoped AlGaN layer 2 formed in order on a Si substrate (not shown). 2DEG (two-dimensional electron gas) is generated at the interface between the undoped GaN layer 1 and the undoped AlGaN layer 2.
  • the substrate is not limited to the Si substrate, and a sapphire substrate or SiC substrate may be used.
  • a nitride semiconductor layer may be grown on the sapphire substrate or SiC substrate, or an AlGaN layer is grown on the GaN substrate.
  • a nitride semiconductor layer may be grown on a substrate made of a nitride semiconductor.
  • a buffer layer may be appropriately formed between the substrate and each layer.
  • an AlN layer having a thickness of about 1 nm may be formed as a hetero improvement layer between the undoped GaN layer 1 and the undoped AlGaN layer 2.
  • a GaN cap layer may be formed on the AlGaN layer 2.
  • ohmic contact is made possible by annealing the source electrode 11 and the drain electrode 12 with the thickness of the undoped AlGaN layer 2 of the nitride semiconductor layer 10 being, for example, 10 nm.
  • the thickness of the undoped AlGaN layer may be set to 30 nm, for example, and the ohmic contact portion of the undoped AlGaN layer may be preliminarily Si-doped so as to be n-type to enable ohmic contact of the electrode.
  • a recess is formed in advance in a region of the undoped AlGaN layer where the source electrode is formed and a region where the drain electrode is formed, and the source electrode and the drain electrode are deposited and annealed in this recess, thereby enabling ohmic contact. Also good.
  • the gate electrode 13 is in Schottky junction with the undoped AlGaN layer 2 of the nitride semiconductor layer 10.
  • a collapse suppression film 14 as an example of a first insulating film for suppressing current collapse is formed between the source electrode 11 and the gate electrode 13 and between the drain electrode 12 and the gate electrode 13. 10 is formed.
  • the collapse suppression film 14 is made of a Si-rich silicon nitride film.
  • the gate electrode 13 includes a base portion 13a that is in Schottky junction with the undoped AlGaN layer 2 of the nitride semiconductor layer 10, and a gate field plate that extends on the collapse suppression film 14 from the upper portion of the base portion 13a toward the drain electrode 12 side. Part 13b.
  • the gate electrode cover insulating film 15 made of stoichiometric SiN film is formed on part of the source electrode 11, on part of the drain electrode 12, on the gate electrode 13, and on the collapse suppression film 14. is doing.
  • the gate electrode cover insulating film 15 as the second insulating film is made of a SiN film.
  • the second insulating film is not limited to this, and the dielectric constant of the interlayer insulating film is used. Any insulating material having a higher dielectric constant than the above may be used.
  • an undoped GaN layer 1 and an undoped AlGaN layer 2 are sequentially formed on a Si substrate (not shown) by using MOCVD (metal organic chemical vapor deposition).
  • MOCVD metal organic chemical vapor deposition
  • a silicon nitride film to be the collapse suppression film 14 is formed on the undoped AlGaN layer 2 by using a plasma CVD method.
  • This current collapse is particularly prominent in a GaN-based semiconductor element, and is a phenomenon in which the on-resistance of a transistor in a high voltage operation is significantly higher than the on-resistance of the transistor in a low voltage operation. .
  • the photoresist is removed, and the collapse suppression film 14 is heat-treated (for example, at 500 ° C. for 30 minutes).
  • WN / W (or TiN) is sputtered over the entire surface, an etching mask (not shown) is formed in the gate electrode formation region where the gate electrode 13 is to be formed by photolithography, and dry etching or wet is performed using this etching mask. Etching is performed to remove the WN / W film (or TiN film) other than the gate electrode formation region, thereby forming the gate electrode 13 having the base portion 13a and the gate field plate portion 13b.
  • the base 13 a of the gate electrode 13 is Schottky joined to the AlGaN layer 2.
  • a SiN film to be the gate electrode cover insulating film 15 is formed on the gate electrode 13 and the collapse suppression film 14 by a plasma CVD (chemical vapor deposition) method.
  • a resist pattern (not shown) is formed in a region where the source electrode 11 and the drain electrode 12 are to be formed by photolithography, and Ti / Al (or Hf / Ai) is sequentially deposited on the resist pattern. Then, the source electrode 11 and the drain electrode 12 made of Ti / Al (or Hf / Ai) are formed by lift-off.
  • the source electrode 11 and the drain electrode 12 are heat-treated (ohmic annealing) to form ohmic electrodes (for example, at 500 ° C. for 30 minutes).
  • an interlayer insulating film 16 is formed on the gate electrode cover insulating film 15 and on the source electrode 11, the drain electrode 12, and the gate electrode 13 with a silicon oxide film such as LTO (Low Temperature Oxide).
  • contact holes are formed on the source electrode 11 and the drain electrode 12 by dry etching or wet etching using an etching mask.
  • a wiring layer made of Al or Cu or the like is formed in the contact hole, and a source field plate portion 21 extending from the wiring layer on the source electrode 11 side to the drain electrode 12 side so as to cover the gate electrode 13 is formed. ing. On the other hand, a drain field plate portion 22 extending from the wiring layer on the drain electrode 12 side toward the source electrode 11 side is formed. The source field plate portion 21 and the drain field plate portion 22 may be omitted.
  • FIG. 3 shows an enlarged cross-sectional view of the main part of the GaN-based HFET of the first comparative example.
  • the GaN-based HFET of the first comparative example is shown in FIGS. 1 and 2 except that the gate electrode cover insulating film 115 as the second insulating film is formed of the same silicon oxide film as the interlayer insulating film 16. It has the same configuration as the GaN-based HFET shown. Note that the GaN-based HFET of the first comparative example is not the nitride semiconductor device of the present invention.
  • FIG. 4 shows an enlarged cross-sectional view of the main part of the GaN-based HFET of the second comparative example.
  • the GaN-based HFET of the second comparative example has the same configuration as the GaN-based HFET shown in FIGS. 1 and 2 except that the gate electrode 113 does not have a gate field plate portion. Note that the GaN-based HFET of the second comparative example is not the nitride semiconductor device of the present invention.
  • FIG. 5 shows a cross-sectional view for explaining the electric field strength at the gate electrode end of the GaN-based HFET.
  • A is a region at the end of the gate field plate portion 13b of the gate electrode 13 (edge portion on the drain electrode 12 side)
  • B is a region immediately below the gate electrode 13 (the end of the base portion 13a on the drain electrode 12 side). Just below the edge).
  • FIG. 6 shows a simulation result of the electric field strength at the end of the gate electrode 13 with respect to the dielectric constant of the gate electrode cover insulating film 15.
  • the horizontal axis represents the dielectric constant ⁇ of the gate electrode cover insulating film 15, and the vertical axis represents the electric field strength [MV / cm] in the region B immediately below the gate electrode 13.
  • reference numeral 100 denotes an Si substrate.
  • (circle) shown in FIG. 6 indicates that the dielectric constant ⁇ of the gate electrode cover insulating film 15 is 4 and 20 in the GaN-based HFET having the gate electrode 113 without the gate field plate portion of the second comparative example. Data of the electric field intensity directly under the gate electrode 113. Further, “ ⁇ ” (square marks) shown in FIG. 6 indicate that the dielectric constant ⁇ of the gate electrode cover insulating film 15 is 2, 3, 4, 7, 10, 15, 20 in the GaN-based HFET of the first embodiment. It is the data of the electric field strength of the area
  • Dielectric constant ⁇ 2 to 3: SiOC, polyimide, etc.
  • Dielectric constant ⁇ 4: SiO 2
  • Dielectric constant ⁇ 6: SiN
  • Dielectric constant ⁇ 7: SiNx (N-rich)
  • Dielectric constant ⁇ 10: Al 2 O 3
  • Dielectric constant ⁇ 20 ( ⁇ 25): Ta 2 O 5 There is.
  • FIG. 8 shows a simulation result of the relaxation rate of the electric field strength at the end of the gate field plate portion with respect to the dielectric constant of the gate electrode cover insulating film.
  • the horizontal axis represents the dielectric constant ⁇ of the gate electrode cover insulating film 15, and the vertical axis represents the relaxation rate of the electric field strength.
  • This “relaxation rate of electric field strength” means that the gate electrode cover insulating film 15 has a gate electrode with respect to the electric field strength of the region A (end of the gate field plate portion 13b) of the GaN-based HFET when the dielectric constant ⁇ is 2.
  • the ratio of the electric field strength of the region A (the end of the gate field plate portion 13b) of the GaN-based HFET when the dielectric constant ⁇ of the cover insulating film 15 is 3, 4, 6, 10, 20 is expressed as a percentage.
  • a dielectric constant ⁇ of 4 corresponds to a GaN-based HFET having a gate electrode cover insulating film 115 made of SiO 2 in the first comparative example.
  • the simulation conditions are the same as the simulation conditions shown in FIGS.
  • the dielectric constant ⁇ of the gate electrode cover insulating film 15 increases, the relaxation rate of the electric field strength in the region A at the end of the gate field plate portion 13b increases.
  • the dielectric constant ⁇ is greater than 5.
  • Insulating materials SiN, SiNx (N-rich), Al 2 O 3 etc.
  • the reliability (lifetime) in a high voltage application state is improved as the electric field strength in the region A at the end of the gate field plate portion 13b is lowered.
  • FIG. 9 shows a simulation result of the electric field strength (region A in FIG. 5) at the end of the gate field plate portion 13b with respect to the film thickness of the gate electrode cover insulating film 15 (dielectric constant 4), and FIG. 10 shows the gate electrode cover.
  • the simulation result of the electric field strength of the edge (area A in FIG. 5) of the gate field plate portion 13b with respect to the film thickness of the insulating film 15 (dielectric constant 20) is shown.
  • the simulation conditions are the same as the simulation conditions shown in FIGS. 6 and 7 except that the film thickness of the gate electrode cover insulating film 15 (dielectric constant 4) is used as a parameter.
  • the horizontal axis represents the film thickness [ ⁇ ] of the gate electrode cover insulating film 15, and the vertical axis represents the electric field strength [MV / cm].
  • diamonds shown in FIGS. 9 and 10 is the electric field strength on the gate field plate portion 13b side in the region A
  • squares shown in FIGS. A is the electric field strength on the gate electrode cover insulating film 15 side in A.
  • the collapse suppression film 14 (the first insulating film) is formed on the nitride semiconductor layer 10 between the source electrode 11 and the gate electrode 13 and between the drain electrode 12 and the gate electrode 13.
  • a gate electrode cover insulating film 15 (second insulating film) having a dielectric constant higher than that of the interlayer insulating film 16 on at least the collapse suppression film 14 and the gate electrode 13. Electric field concentration at the end of the plate portion 13b can be effectively suppressed, and the off breakdown voltage can be improved.
  • the source field plate portion 21 of the source electrode 11 extends on the interlayer insulating film 16 toward the drain electrode 12 so as to cover the gate electrode 13, so that the electric field concentration at the end of the gate field plate portion 13 b. Can be more effectively suppressed.
  • the base portion 13a of the gate electrode 13 is Schottky joined to the uppermost layer of the nitride semiconductor layer 10, a barrier is formed between the nitride semiconductor layer 10 and the gate electrode 13 without forming a gate insulating film. Can be formed.
  • the gate field plate portion 13b By covering the collapse suppression film 14 (first insulating film) and the gate electrode 13 with a gate electrode cover insulating film 15 (second insulating film) having a dielectric constant of 5 or more, the gate field plate portion 13b The electric field strength at the edge can be effectively reduced.
  • SiO 2 is used as the material of the interlayer insulating film 16, but polyimide, SOG (Spin On Glass) or BPSG (Boron Phosphorus Silicon Glass) is used. An insulating material such as) may be used. Further, the interlayer insulating film may have a multilayer film structure made of, for example, SiO 2 and SOG.
  • FIG. 11 shows a sectional view of a normally-on type GaN-based HFET as an example of a nitride semiconductor device according to the second embodiment of the present invention.
  • the GaN-based HFET of the second embodiment is different from the GaN-based HFET of the first embodiment in that the collapse suppression film 114 shown in FIG. 11 has a multilayer insulating film structure and a gate insulating film 20.
  • the same reference numerals are assigned to the same components as those of the GaN-based HFET of the first embodiment.
  • the manufacturing process of the GaN-based HFET is to form an undoped GaN layer 1 and an undoped AlGaN layer 2 in this order, and then stack SiO 2 or SiN on the undoped AlGaN layer 2 using a plasma CVD method to form a multilayer insulating film structure.
  • a collapse suppression film 114 is formed.
  • a region of the collapse suppression film 114 where the base portion 13a of the gate electrode 13 is to be formed is removed by wet etching, and the undoped AlGaN layer 2 is exposed in this region.
  • the gate insulating film 20 is formed on the exposed undoped AlGaN layer 2 and the collapse suppression film 114 by using a plasma CVD method.
  • WN / W (or TiN) is sputtered over the entire surface, and an etching mask (not shown) is formed in the gate electrode formation region where the gate electrode 13 is to be formed by photolithography.
  • an etching mask (not shown) is formed in the gate electrode formation region where the gate electrode 13 is to be formed by photolithography.
  • dry etching or Wet etching is performed to remove the WN / W film (or TiN film) and the gate insulating film 20 other than the gate electrode formation region, and the gate electrode 13 made of WN / W (or TiN) is formed.
  • the GaN-based HFET of the second embodiment has the same effect as the GaN-based HFET of the first embodiment.
  • the nitride semiconductor layer 10 and the gate electrode 13 can be reliably insulated by forming the gate insulating film 20 between the base portion 13 a of the gate electrode 13 and the nitride semiconductor layer 10.
  • the gate insulating film 20 is formed between the base portion 13a of the gate electrode 13 and the nitride semiconductor layer 10 and between the collapse suppression film 114 and the gate field plate portion 13b. Any gate insulating film may be formed between the base of the electrode and the nitride semiconductor layer.
  • the nitride semiconductor layer is composed of a GaN layer or an AlGaN layer.
  • Al x In y Ga 1-xy N (x ⁇ 0, y ⁇ 0, 0 ⁇ x + y ⁇ It may include a GaN-based semiconductor layer represented by 1). That is, the nitride semiconductor layer may contain AlGaN, GaN, InGaN, or the like.
  • the normally-on type HFET has been described. However, the normally-off type can achieve the same effect.
  • the nitride semiconductor device of the present invention is A nitride semiconductor layer 10; A source electrode 11 and a drain electrode 12 which are formed at least partially on the nitride semiconductor layer 10 or in the nitride semiconductor layer 10 and are spaced apart from each other; A gate electrode 13 formed between the source electrode 11 and the drain electrode 12 and on the nitride semiconductor layer 10; First insulating films 14 and 114 formed on the nitride semiconductor layer 10 between the source electrode 11 and the gate electrode 13 and between the drain electrode 12 and the gate electrode 13; A second insulating film 15 formed on at least the first insulating films 14 and 114 and the gate electrode 13; An interlayer insulating film 16 formed on the second insulating film 15 and made of a material containing at least SiO 2 ;
  • the gate electrode 13 includes a base formed on the nitride semiconductor layer 10 and a gate field plate extending on the first insulating films 14 and 114 from the top of the base toward the drain electrode 12 side. Part 13b,
  • the first insulating films 14 and 114 are formed on the nitride semiconductor layer 10 between the source electrode 11 and the gate electrode 13 and between the drain electrode 12 and the gate electrode 13, and at least the first
  • a second insulating film 15 having a dielectric constant higher than that of the interlayer insulating film 16 made of a material containing at least SiO 2 on the insulating films 14 and 114 and the gate electrode 13, the gate field plate portion
  • the electric field concentration at the end of 13b can be effectively suppressed, and the off breakdown voltage can be improved.
  • the source electrode 11 and the drain electrode 12 may be formed on the nitride semiconductor layer 10 so as to be spaced from each other, or at least partially embedded in the nitride semiconductor layer 10 and spaced from each other. You may open and form.
  • the source electrode 11 has a source field plate portion 21 extending on the interlayer insulating film 16 toward the drain electrode 12 so as to cover the gate electrode 13.
  • the source field plate portion 21 of the source electrode 11 extends on the interlayer insulating film 16 toward the drain electrode 12 so as to cover the gate electrode 13, so that the gate field plate portion 13 b Electric field concentration at the edge can be more effectively suppressed.
  • the base portion 13 a of the gate electrode 13 is in Schottky junction with the uppermost layer of the nitride semiconductor layer 10.
  • the base portion 13a of the gate electrode 13 is Schottky joined to the uppermost layer of the nitride semiconductor layer 10, the nitride semiconductor layer 10, the gate electrode 13, and the like can be formed without forming a gate insulating film. A barrier can be formed between them.
  • At least a gate insulating film 20 formed between the base portion 13a of the gate electrode 13 and the nitride semiconductor layer 10 is provided.
  • the gate insulating film 20 at least between the base portion 13a of the gate electrode 13 and the nitride semiconductor layer 10, the nitride semiconductor layer 10 and the gate electrode 13 can be reliably insulated.
  • the dielectric constant of the second insulating film 15 is 5 or more.
  • the electric field strength at the end of the gate field plate portion 13b is obtained by covering the first insulating films 14 and 114 and the gate electrode 13 with the second insulating film 15 having a dielectric constant of 5 or more. Can be effectively mitigated.
  • the film thickness of the second insulating film 15 is 30 nm or more.
  • the electric field strength at the end of the gate field plate portion 13b is obtained by covering the first insulating films 14 and 114 and the gate electrode 13 with the second insulating film 15 having a thickness of 30 nm or more. Can be reliably mitigated.
  • the nitride semiconductor device of the present invention is A nitride semiconductor layer 10; A source electrode 11 and a drain electrode 12 which are formed at least partially on the nitride semiconductor layer 10 or in the nitride semiconductor layer 10 and are spaced apart from each other; A gate electrode 13 formed between the source electrode 11 and the drain electrode 12 and on the nitride semiconductor layer 10; A first insulating film 14 formed on the nitride semiconductor layer 10 between the source electrode 11 and the gate electrode 13 and between the drain electrode 12 and the gate electrode 13; A second insulating film 15 formed on at least the first insulating film 14 and the gate electrode 13; An interlayer insulating film 16 formed on the second insulating film 15 and made of a material containing at least SiO 2 ;
  • the gate electrode 13 includes a base that is Schottky-bonded to the uppermost layer of the nitride semiconductor layer 10, and a gate that extends on the first insulating film 14 from the upper portion of the base toward the drain electrode 12 side.
  • the source electrode 11 has a source field plate portion 21 extending on the interlayer insulating film 16 toward the drain electrode 12 so as to cover the gate electrode 13,
  • the dielectric constant of the second insulating film 15 is higher than the dielectric constant of the interlayer insulating film 16.
  • a first insulating film is formed on the nitride semiconductor layer between the gate electrode and between the drain electrode and the gate electrode, and at least on the first insulating film and the gate electrode.
  • the dielectric constant of the second insulating film 15 is 5 or more.
  • the electric field strength at the end of the gate field plate portion 13b is effectively obtained by covering the first insulating film 14 and the gate electrode 13 with the second insulating film 15 having a dielectric constant of 5 or more. Can be relaxed.
  • the film thickness of the second insulating film 15 is 30 nm or more.
  • the electric field strength at the end of the gate field plate portion 13b is ensured by covering the first insulating film 14 and the gate electrode 13 with the second insulating film 15 having a thickness of 30 nm or more. Can be relaxed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

 ゲート電極13は、窒化物半導体層10上に形成された基部13aと、その基部13aの上部からドレイン電極12側に向かって第1の絶縁膜14上に延在するゲートフィールドプレート部13bとを有する。上記第1の絶縁膜14上およびゲート電極13上に第2の絶縁膜15を形成する。上記第2の絶縁膜15上にSiOを含む材料からなる層間絶縁膜16を形成する。上記第2の絶縁膜15の誘電率を層間絶縁膜16の誘電率よりも高くする。これにより、ゲートフィールドプレート部の端での電界集中を効果的に抑制でき、オフ耐圧を向上できる。

Description

窒化物半導体装置
 この発明は、窒化物半導体装置に関し、詳しくは、窒化物半導体層上にソース電極とドレイン電極およびゲート電極が形成された窒化物半導体装置に関する。
 従来の第1の窒化物半導体装置としては、ゲート電極にフィールドプレート部を形成することにより、ゲート電極端の電界強度を緩和するものがある(例えば、特開2004-200248号公報(特許文献1)参照)。
 また、従来の第2の窒化物半導体装置としては、ゲート電極とドレイン電極との間のパッシベーション膜の上に、パッシベーション膜よりも誘電率の高い高誘電率膜を形成することで、ゲート電極端への電界集中を緩和するものがある(例えば、特開2011-204780号公報(特許文献2)参照)。
特開2004-200248号公報 特開2011-204780号公報
 ところで、上記従来の第1の窒化物半導体装置では、ゲート電極のフィールドプレート部の端での電界集中により、所望のオフ耐圧まで保たないという問題がある。ここで、オフ耐圧は、例えばノーマリオンのGaN系HFETにおいて、ゲート電極に-10Vを印加し続けているオフ状態において、ソース電極に0Vを印加すると共にドレイン電極に印加する電圧が何ボルトのときに絶縁破壊に至るのかを表す。
 また、上記従来の第2の窒化物半導体装置では、ゲート電極のフィールドプレート部が無いため、ゲート電極端に電界が集中して、ゲートリーク電流が増大すると共に、オフ耐圧が所望の電圧まで保たないという問題がある。
 そこで、この発明の課題は、ゲートフィールドプレート部の端での電界集中を効果的に抑制でき、オフ耐圧を向上できる窒化物半導体装置を提供することにある。
 上記課題を解決するため、この発明の窒化物半導体装置は、
 窒化物半導体層と、
 上記窒化物半導体層上に、または、上記窒化物半導体層内に少なくとも一部が形成されると共に、互いに間隔をあけて配置されたソース電極およびドレイン電極と、
 上記ソース電極と上記ドレイン電極との間かつ上記窒化物半導体層上に形成されたゲート電極と、
 上記ソース電極と上記ゲート電極との間および上記ドレイン電極と上記ゲート電極との間で上記窒化物半導体層上に形成された第1の絶縁膜と、
 少なくとも上記第1の絶縁膜上および上記ゲート電極上に形成された第2の絶縁膜と、
 上記第2の絶縁膜上に形成され、少なくともSiOを含む材料からなる層間絶縁膜と
を備え、
 上記ゲート電極は、上記窒化物半導体層上に形成された基部と、その基部の上部から上記ドレイン電極側に向かって上記第1の絶縁膜上に延在するゲートフィールドプレート部とを有すると共に、
 上記第2の絶縁膜の誘電率は、上記層間絶縁膜の誘電率よりも高いことを特徴とする。
 また、一実施形態の窒化物半導体装置では、
 上記ソース電極は、上記ゲート電極を覆うように上記ドレイン電極側に向かって上記層間絶縁膜上に延在するソースフィールドプレート部を有する。
 また、一実施形態の窒化物半導体装置では、
 上記ゲート電極の上記基部は、上記窒化物半導体層の最上層とショットキー接合されている。
 また、一実施形態の窒化物半導体装置では、
 少なくとも上記ゲート電極の上記基部と上記窒化物半導体層との間に形成されたゲート絶縁膜を備えた。
 また、一実施形態の窒化物半導体装置では、
 上記第2の絶縁膜の誘電率が5以上である。
 また、一実施形態の窒化物半導体装置では、
 上記第2の絶縁膜の膜厚が30nm以上である。
 以上より明らかなように、この発明によれば、ソース電極とゲート電極との間およびドレイン電極とゲート電極との間で窒化物半導体層上に第1の絶縁膜を形成し、その第1の絶縁膜およびゲート電極上に層間絶縁膜の誘電率よりも誘電率が高い第2の絶縁膜を形成することによって、ゲートフィールドプレート部の端での電界集中を効果的に抑制でき、オフ耐圧を向上できる窒化物半導体装置を実現することができる。
図1はこの発明の第1実施形態の窒化物半導体装置の一例としてのGaN系HFETの断面図である。 図2は上記GaN系HFETの要部の拡大断面図である。 図3は第1比較例のGaN系HFETの要部の拡大断面図である。 図4は第2比較例のGaN系HFETの要部の拡大断面図である。 図5は上記GaN系HFETのゲート電極端の電界強度を説明するための断面図である。 図6はゲート電極カバー絶縁膜の誘電率に対するゲート電極端の電界強度のシミュレーション結果を示す図である。 図7は上記電界強度のシミュレーションの条件を示す図である。 図8はゲート電極カバー絶縁膜の誘電率に対するゲートフィールドプレート部の端の電界強度の緩和率のシミュレーション結果を示す図である。 図9はゲート電極カバー絶縁膜(誘電率4)の膜厚に対するゲートフィールドプレート部の端の電界強度のシミュレーション結果を示す図である。 図10はゲート電極カバー絶縁膜(誘電率20)の膜厚に対するゲートフィールドプレート部の端の電界強度のシミュレーション結果を示す図である。 図11はこの発明の第2実施形態の窒化物半導体装置の一例としてのGaN系HFETの断面図である。
 以下、この発明の窒化物半導体装置を図示の実施の形態により詳細に説明する。
 〔第1実施形態〕
 図1はこの発明の第1実施形態の窒化物半導体装置の一例としてのノーマリーオンタイプのGaN系HFETの断面図を示し、図2は上記GaN系HFETの要部の拡大断面図を示している。
 この第1実施形態のGaN系HFETは、図1,図2に示すように、Si基板(図示せず)上に形成された窒化物半導体層10と、窒化物半導体層10上に形成され、互いに間隔をあけて配置されたTi/Alからなるソース電極11,ドレイン電極12と、ソース電極11とドレイン電極12との間かつ窒化物半導体層10上に形成されたWN/WまたはTiNからなるゲート電極13とを備えている。
 上記窒化物半導体層10は、Si基板(図示せず)上に順に形成されたアンドープGaN層1とアンドープAlGaN層2で構成されている。このアンドープGaN層1とアンドープAlGaN層2との界面に2DEG(2次元電子ガス)が発生する。
 なお、上記基板は、Si基板に限らず、サファイヤ基板やSiC基板を用いてもよく、サファイヤ基板やSiC基板上に窒化物半導体層を成長させてもよいし、GaN基板にAlGaN層を成長させる等のように、窒化物半導体からなる基板上に窒化物半導体層を成長させてもよい。また、適宜、バッファ層を基板と各層間に形成してもよい。また、上記アンドープGaN層1とアンドープAlGaN層2との間に層厚1nm程度のAlN層をヘテロ改善層として形成してもよい。また、上記AlGaN層2上にGaNキャップ層を形成してもよい。
 ここでは、上記窒化物半導体層10のアンドープAlGaN層2の厚さを例えば10nmとしてソース電極11とドレイン電極12をアニールすることでオーミックコンタクト可能にしている。なお、上記アンドープAlGaN層の厚さを例えば30nmとしてアンドープAlGaN層のオーミックコンタクト部分に予めSiドープをしてn型化させることで電極のオーミックコンタクトを可能としてもよい。また、アンドープAlGaN層のうちのソース電極が形成される領域およびドレイン電極が形成される領域に予めリセスを形成し、このリセスにソース電極およびドレイン電極を蒸着,アニールすることでオーミックコンタクトを可能としてもよい。
 一方、上記ゲート電極13は、窒化物半導体層10のアンドープAlGaN層2にショットキー接合している。
 また、電流コラプスを抑制するための第1の絶縁膜の一例としてのコラプス抑制膜14が、ソース電極11とゲート電極13との間およびドレイン電極12とゲート電極13との間で窒化物半導体層10上に形成されている。
 上記コラプス抑制膜14は、一例として、Siリッチなシリコン窒化膜で作製されている。このSiリッチなシリコン窒化膜とは、Si:N=0.75:1のストイキオメトリなシリコン窒化膜よりもシリコンSiの比率の大きいSiN膜であり、例えば、SiとNとの組成比はSi:N=1.1~1.9:1である。また、好ましい一例では、SiとNとの組成比はSi:N=1.3~1.5:1である。
 上記ゲート電極13は、窒化物半導体層10のアンドープAlGaN層2にショットキー接合する基部13aと、その基部13aの上部からドレイン電極12側に向かってコラプス抑制膜14上に延在するゲートフィールドプレート部13bとを有する。
 また、ストイキオメトリなSiN膜で作製されたゲート電極カバー絶縁膜15を、ソース電極11の一部の上、ドレイン電極12の一部の上、ゲート電極13上およびコラプス抑制膜14上に形成している。
 なお、この第1実施形態では、一例として、第2の絶縁膜であるゲート電極カバー絶縁膜15をSiN膜で作製したが、第2の絶縁膜はこれに限らず、層間絶縁膜の誘電率よりも誘電率が高い絶縁材料であればよい。
 次に、上記GaN系HFETの製造工程を説明する。
 まず、図示しないSi基板上に、MOCVD(有機金属気相成長)法を用いて、アンドープGaN層1とアンドープAlGaN層2を順に形成する。
 次に、上記アンドープAlGaN層2上に、プラズマCVD法を用いて、コラプス抑制膜14となるシリコン窒化膜を形成する。
 この電流コラプスとは、特に、GaN系半導体素子において顕著に表れるもので、低電圧動作でのトランジスタのオン抵抗と比べて、高電圧動作でのトランジスタのオン抵抗が著しく高くなってしまう現象である。
 次に、フォトレジストをマスクとしてウェットエッチングを行うことにより、コラプス抑制膜14となるシリコン窒化膜のうちのゲート電極13の基部13aを形成すべき領域を除去して、この領域にアンドープAlGaN層2を露出させる。
 次に、上記フォトレジストを除去し、コラプス抑制膜14を熱処理する(例えば500℃で30分間)。
 その後、WN/W(またはTiN)を全面スパッタし、フォトリソグラフィでゲート電極13を形成すべきゲート電極形成領域にエッチングマスク(図示せず)を形成し、このエッチングマスクを用いてドライエッチングまたはウェットエッチングを行なって、ゲート電極形成領域以外のWN/W膜(またはTiN膜)を除去して、基部13aとゲートフィールドプレート部13bを有するゲート電極13を形成する。このゲート電極13の基部13aは、AlGaN層2にショットキー接合している。
 その後、上記ゲート電極13上およびコラプス抑制膜14上に、プラズマCVD(化学的気相成長)法により、ゲート電極カバー絶縁膜15となるSiN膜を形成する。
 次に、フォトリソグラフィにより、ソース電極11,ドレイン電極12を形成すべき領域にレジストパターン(図示せず)を形成して、このレジストパターン上にTi/Al(またはHf/Ai)を順に蒸着し、リフトオフによりTi/Al(またはHf/Ai)からなるソース電極11,ドレイン電極12を形成する。
 次に、上記ソース電極11,ドレイン電極12を、熱処理(オーミックアニール)してオーミック電極にする(例えば500℃で30分)。
 次に、ゲート電極カバー絶縁膜15上およびソース電極11,ドレイン電極12,ゲート電極13上に、LTO(Low Temperature Oxide:低温酸化膜)などのシリコン酸化膜で層間絶縁膜16を形成する。
 次に、エッチングマスクを用いたドライエッチングまたはウェットエッチングにより、ソース電極11上およびドレイン電極12上にコンタクトホールを形成する。
 そして、上記コンタクトホール内にAlまたはCuなどからなる配線層を形成し、ソース電極11側の配線層からゲート電極13を覆うようにドレイン電極12側に向かって延びるソースフィールドプレート部21を形成している。一方、ドレイン電極12側の配線層からソース電極11側に向かって延びるドレインフィールドプレート部22を形成している。なお、ソースフィールドプレート部21やドレインフィールドプレート部22は無くてもよい。
 図3は第1比較例のGaN系HFETの要部の拡大断面図を示している。この第1比較例のGaN系HFETは、第2の絶縁膜であるゲート電極カバー絶縁膜115が層間絶縁膜16と同じシリコン酸化膜で形成されている点を除いて、図1,図2に示すGaN系HFETと同一の構成をしている。なお、この第1比較例のGaN系HFETは、この発明の窒化物半導体装置ではない。
 また、図4は第2比較例のGaN系HFETの要部の拡大断面図を示している。この第2比較例のGaN系HFETは、ゲート電極113にゲートフィールドプレート部がない点を除いて、図1,図2に示すGaN系HFETと同一の構成をしている。なお、この第2比較例のGaN系HFETは、この発明の窒化物半導体装置ではない。
 図5は上記GaN系HFETのゲート電極端の電界強度を説明するための断面図を示している。図5において、図1,図2に示す構成と同一の構成部には同一参照番号を付している。また、Aはゲート電極13のゲートフィールドプレート部13bの端(ドレイン電極12側の端縁部)の領域であり、Bはゲート電極13直下の領域である(基部13aのドレイン電極12側の端縁部の直下)。
 また、図6はゲート電極カバー絶縁膜15の誘電率に対するゲート電極13端の電界強度のシミュレーション結果を示している。図6において、横軸はゲート電極カバー絶縁膜15の誘電率εを表し、縦軸はゲート電極13直下の領域Bの電界強度[MV/cm]を表している。
 上記シミュレーションの条件を図7に示しており、詳しくは、次のとおりである。なお、図7において、100はSi基板である。
   ゲート電極・ドレイン電極間の距離(Lgd) : 10μm
   ゲート長(Lg) : 2.2μm
   シートキャリア濃度Ns : 5.5×1012/cm
   ゲート電極カバー絶縁膜の誘電率(ε) : 2~20(パラメータ)
   層間絶縁膜の膜厚(1層目) : 8200Å(820nm)
   層間絶縁膜の膜厚(2層目) : 30000Å(3000nm)
   ゲートフィールドプレート長(Lgfp) : 1μmまたはなし(パラメータ)
   ソースフィールドプレート長(Lsfp) : 7.5μm
   ソースフィールドプレート部の厚さ : 15000Å(1500nm)
   ドレインフィールドプレート長(Ldfp) : 3μm
   ソース電極 印加電圧(Vs) : 0V
   ドレイン電極 印加電圧(Vd) : 600V
   ゲート電極 印加電圧(Vg) : -10V
   基板電位 : 0V(基板グラウンド)
 また、図6に示す「○」(丸印)は第2比較例のゲートフィールドプレート部がないゲート電極113を備えたGaN系HFETにおいて、ゲート電極カバー絶縁膜15の誘電率εを4および20としたときのゲート電極113直下の電界強度のデータである。また、図6に示す「□」(四角印)はこの第1実施形態のGaN系HFETにおいて、ゲート電極カバー絶縁膜15の誘電率εを2,3,4,7,10,15,20としたときのゲート電極13直下の領域Bの電界強度のデータである。なお、層間絶縁膜16が誘電率4のSiOからなるとき、ゲート電極カバー絶縁膜15の誘電率εが2,3,4については、この発明に含まれない。
 ここで、各誘電率εの具体的な絶縁材料の一例として、
   誘電率ε=2~3: SiOC、ポリイミド等
   誘電率ε=4  : SiO
   誘電率ε=6  : SiN
   誘電率ε=7  : SiNx(N-rich)
   誘電率ε=10 : Al
   誘電率ε=20(~25): Ta
がある。
 図6に示すように、ゲート電極113(図6に示す)にゲートフィールドプレート部がない構造では、ゲート電極13のゲートフィールドプレート部13bがある場合に比べて、ゲート電極13直下の領域Bの電界強度が著しく増大する(1.5~1.8倍)。ゲート電極13直下の領域Bでは、2DEGとゲート電極とが近接しており、比較的低い電界強度でも絶縁破壊となる。
 図8はゲート電極カバー絶縁膜の誘電率に対するゲートフィールドプレート部の端の電界強度の緩和率のシミュレーション結果を示している。図8において、横軸はゲート電極カバー絶縁膜15の誘電率εを表し、縦軸は電界強度の緩和率を表している。この「電界強度の緩和率」とは、ゲート電極カバー絶縁膜15の誘電率εが2のときのGaN系HFETの領域A(ゲートフィールドプレート部13bの端)の電界強度に対して、ゲート電極カバー絶縁膜15の誘電率εが3,4,6,10,20のときのGaN系HFETの領域A(ゲートフィールドプレート部13bの端)の電界強度の比率を百分率で表したものである。
 なお、図8において誘電率εが4の場合は、第1比較例のSiOからなるゲート電極カバー絶縁膜115を備えたGaN系HFETに相当する。
 このシミュレーションの条件は、図6,図7に示すシミュレーションの条件と同じである。
 図8に示すように、ゲート電極カバー絶縁膜15の誘電率εが大きくなるほど、ゲートフィールドプレート部13bの端の領域Aの電界強度の緩和率が大きくなり、特に誘電率εが5よりも大きい絶縁材料(SiN,SiNx(N-rich),Alなど)で電界強度の緩和効果が高い。上記構成のGaN系HFETでは、ゲートフィールドプレート部13bの端の領域Aの電界強度を下げるほど、高電圧印加状態での信頼性(寿命)が向上する。
 次に、図9はゲート電極カバー絶縁膜15(誘電率4)の膜厚に対するゲートフィールドプレート部13bの端の電界強度(図5の領域A)のシミュレーション結果を示し、図10はゲート電極カバー絶縁膜15(誘電率20)の膜厚に対するゲートフィールドプレート部13bの端(図5の領域A)の電界強度のシミュレーション結果を示している。
 このシミュレーションの条件は、ゲート電極カバー絶縁膜15(誘電率4)の膜厚をパラメータとした点を除いて図6,図7に示すシミュレーションの条件と同じである。
 図9,図10において、横軸はゲート電極カバー絶縁膜15の膜厚[Å]を表し、縦軸は電界強度[MV/cm]を表している。
 また、図9,図10に示す「◆」(菱形印)は、領域Aにおけるゲートフィールドプレート部13b側の電界強度であり、図9,図10に示す「■」(四角印)は、領域Aにおけるゲート電極カバー絶縁膜15側の電界強度である。
 図9,図10に示すように、ゲート電極カバー絶縁膜15の膜厚が薄くなると、領域Aの電界強度が緩和されにくくなる。
 したがって、上記GaN系HFETでは、ゲート電極カバー絶縁膜15の膜厚は300Å(=30nm)以上であることが好ましい。これにより、ゲートフィールドプレート部13b端での電界強度を確実に緩和することができる。
 上記構成の窒化物半導体装置によれば、ソース電極11とゲート電極13との間およびドレイン電極12とゲート電極13との間で窒化物半導体層10上にコラプス抑制膜14(第1の絶縁膜)を形成し、少なくともコラプス抑制膜14およびゲート電極13上に層間絶縁膜16の誘電率よりも誘電率が高いゲート電極カバー絶縁膜15(第2の絶縁膜)を形成することによって、ゲートフィールドプレート部13bの端での電界集中を効果的に抑制でき、オフ耐圧を向上できる。
 また、ソース電極11のソースフィールドプレート部21が、ゲート電極13を覆うようにドレイン電極12側に向かって層間絶縁膜16上に延在することによって、ゲートフィールドプレート部13bの端での電界集中をさらに効果的に抑制できる。
 また、ゲート電極13の基部13aを窒化物半導体層10の最上層とショットキー接合されているので、ゲート絶縁膜を形成することなく、窒化物半導体層10とゲート電極13との間に障壁を形成できる。
 また、誘電率が5以上のゲート電極カバー絶縁膜15(第2の絶縁膜)によりコラプス抑制膜14(第1の絶縁膜)上およびゲート電極13上を覆うことによって、ゲートフィールドプレート部13bの端での電界強度を効果的に緩和することができる。
 上記第1実施形態では、層間絶縁膜16の材料としてSiOを用いたが、ポリイミドやSOG(Spin On Glass;スピン・オン・グラス)またはBPSG(Boron Phosphorus Silicon Glass;ホウ素・リン・シリケート・ガラス)などの絶縁材料を用いてもよい。また、層間絶縁膜として、例えばSiOとSOGからなる多層膜構造としてもよい。
 〔第2実施形態〕
 図11はこの発明の第2実施形態の窒化物半導体装置の一例としてのノーマリーオンタイプのGaN系HFETの断面図を示している。
 この第2実施形態のGaN系HFETは、図11に示すコラプス抑制膜114が多層絶縁膜構造である点とゲート絶縁膜20を有する点が第1実施形態のGaN系HFETと異なる。図11では、第1実施形態のGaN系HFETと同一の構成部に同一参照番号を付している。
 上記GaN系HFETの製造工程は、アンドープGaN層1とアンドープAlGaN層2を順に形成した後、アンドープAlGaN層2上にプラズマCVD法を用いてSiOやSiNを積層して、多層絶縁膜構造のコラプス抑制膜114を形成する。
 次に、上記コラプス抑制膜114のうち、ゲート電極13の基部13aを形成すべき領域をウェットエッチングにより除去して、この領域にアンドープAlGaN層2を露出させる。
 次に、露出したアンドープAlGaN層2上およびコラプス抑制膜114にプラズマCVD法を用いてゲート絶縁膜20を形成する。
 次に、WN/W(またはTiN)を全面スパッタし、フォトリソグラフィでゲート電極13を形成すべきゲート電極形成領域にエッチングマスク(図示せず)を形成し、このエッチングマスクを用いてドライエッチングまたはウェットエッチングを行なって、ゲート電極形成領域以外のWN/W膜(またはTiN膜)およびゲート絶縁膜20を除去して、WN/W(またはTiN)からなるゲート電極13を形成する。
 上記第2実施形態のGaN系HFETは、第1実施形態のGaN系HFETと同様の効果を有する。
 また、上記第2実施形態では、ゲート電極13の基部13aと窒化物半導体層10との間にゲート絶縁膜20を形成することによって、窒化物半導体層10とゲート電極13を確実に絶縁できる。
 なお、上記第2実施形態では、ゲート電極13の基部13aと窒化物半導体層10との間およびコラプス抑制膜114とゲートフィールドプレート部13bとの間にゲート絶縁膜20を形成したが、少なくともゲート電極の基部と窒化物半導体層との間にゲート絶縁膜を形成したものであればよい。
 また、上記第1,第2実施形態では、窒化物半導体層を、GaN層やAlGaN層で構成したが、AlxInyGa1-x-yN(x≧0、y≧0、0≦x+y<1)で表されるGaN系半導体層を含むものでもよい。すなわち、上記窒化物半導体層は、AlGaN、GaN、InGaN等を含むものとしてもよい。また、上記第1,第2実施形態では、ノーマリーオンタイプのHFETについて説明したが、ノーマリオフタイプでも同様の効果が得られる。
 この発明の具体的な実施の形態について説明したが、この発明は上記第1,第2実施形態に限定されるものではなく、この発明の範囲内で種々変更して実施することができる。
 すなわち、この発明および実施形態をまとめると、次のようになる。
 この発明の窒化物半導体装置は、
 窒化物半導体層10と、
 上記窒化物半導体層10上に、または、上記窒化物半導体層10内に少なくとも一部が形成されると共に、互いに間隔をあけて配置されたソース電極11およびドレイン電極12と、
 上記ソース電極11と上記ドレイン電極12との間かつ上記窒化物半導体層10上に形成されたゲート電極13と、
 上記ソース電極11と上記ゲート電極13との間および上記ドレイン電極12と上記ゲート電極13との間で上記窒化物半導体層10上に形成された第1の絶縁膜14,114と、
 少なくとも上記第1の絶縁膜14,114上および上記ゲート電極13上に形成された第2の絶縁膜15と、
 上記第2の絶縁膜15上に形成され、少なくともSiOを含む材料からなる層間絶縁膜16と
を備え、
 上記ゲート電極13は、上記窒化物半導体層10上に形成された基部と、その基部の上部から上記ドレイン電極12側に向かって上記第1の絶縁膜14,114上に延在するゲートフィールドプレート部13bとを有すると共に、
 上記第2の絶縁膜15の誘電率は、上記層間絶縁膜16の誘電率よりも高いことを特徴とする。
 上記構成によれば、ソース電極11とゲート電極13との間およびドレイン電極12とゲート電極13との間で窒化物半導体層10上に第1の絶縁膜14,114を形成し、少なくとも第1の絶縁膜14,114およびゲート電極13上に、少なくともSiOを含む材料からなる層間絶縁膜16の誘電率よりも誘電率が高い第2の絶縁膜15を形成することによって、ゲートフィールドプレート部13bの端での電界集中を効果的に抑制でき、オフ耐圧を向上できる。なお、上記ソース電極11およびドレイン電極12は、窒化物半導体層10上に互いに間隔をあけて形成してもよいし、窒化物半導体層10内に少なくとも一部が埋め込まれるようにかつ互いに間隔をあけて形成してもよい。
 また、一実施形態の窒化物半導体装置では、
 上記ソース電極11は、上記ゲート電極13を覆うように上記ドレイン電極12側に向かって上記層間絶縁膜16上に延在するソースフィールドプレート部21を有する。
 上記実施形態によれば、ソース電極11のソースフィールドプレート部21が、ゲート電極13を覆うようにドレイン電極12側に向かって層間絶縁膜16上に延在することによって、ゲートフィールドプレート部13bの端での電界集中をさらに効果的に抑制できる。
 また、一実施形態の窒化物半導体装置では、
 上記ゲート電極13の上記基部13aは、上記窒化物半導体層10の最上層とショットキー接合されている。
 上記実施形態によれば、ゲート電極13の基部13aを窒化物半導体層10の最上層とショットキー接合されているので、ゲート絶縁膜を形成することなく、窒化物半導体層10とゲート電極13との間に障壁を形成できる。
 また、一実施形態の窒化物半導体装置では、
 少なくとも上記ゲート電極13の上記基部13aと上記窒化物半導体層10との間に形成されたゲート絶縁膜20を備えた。
 上記実施形態によれば、少なくともゲート電極13の基部13aと窒化物半導体層10との間にゲート絶縁膜20を形成することによって、窒化物半導体層10とゲート電極13を確実に絶縁できる。
 また、一実施形態の窒化物半導体装置では、
 上記第2の絶縁膜15の誘電率が5以上である。
 上記実施形態によれば、誘電率が5以上の第2の絶縁膜15により第1の絶縁膜14,114上およびゲート電極13上を覆うことによって、ゲートフィールドプレート部13bの端での電界強度を効果的に緩和することができる。
 また、一実施形態の窒化物半導体装置では、
 上記第2の絶縁膜15の膜厚が30nm以上である。
 上記実施形態によれば、膜厚が30nm以上の第2の絶縁膜15により第1の絶縁膜14,114上およびゲート電極13上を覆うことによって、ゲートフィールドプレート部13bの端での電界強度を確実に緩和することができる。
 また、この発明の窒化物半導体装置は、
 窒化物半導体層10と、
 上記窒化物半導体層10上に、または、上記窒化物半導体層10内に少なくとも一部が形成されると共に、互いに間隔をあけて配置されたソース電極11およびドレイン電極12と、
 上記ソース電極11と上記ドレイン電極12との間かつ上記窒化物半導体層10上に形成されたゲート電極13と、
 上記ソース電極11と上記ゲート電極13との間および上記ドレイン電極12と上記ゲート電極13との間で上記窒化物半導体層10上に形成された第1の絶縁膜14と、
 少なくとも上記第1の絶縁膜14上および上記ゲート電極13上に形成された第2の絶縁膜15と、
 上記第2の絶縁膜15上に形成され、少なくともSiOを含む材料からなる層間絶縁膜16と
を備え、
 上記ゲート電極13は、上記窒化物半導体層10の最上層とショットキー接合された基部と、その基部の上部から上記ドレイン電極12側に向かって上記第1の絶縁膜14上に延在するゲートフィールドプレート部13bとを有すると共に、
 上記ソース電極11は、上記ゲート電極13を覆うように上記ドレイン電極12側に向かって上記層間絶縁膜16上に延在するソースフィールドプレート部21を有し、
 上記第2の絶縁膜15の誘電率は、上記層間絶縁膜16の誘電率よりも高いことを特徴とする。
 上記構成によれば、ソース電極11のソースフィールドプレート部21が、ゲート電極13を覆うようにドレイン電極12側に向かって層間絶縁膜16上に延在する窒化物半導体装置において、ソース電極11とゲート電極13との間およびドレイン電極12とゲート電極13との間で窒化物半導体層10上に第1の絶縁膜14を形成し、少なくとも第1の絶縁膜14およびゲート電極13上に、少なくともSiOを含む材料からなる層間絶縁膜16の誘電率よりも誘電率が高い第2の絶縁膜15を形成することによって、ゲートフィールドプレート部13bの端での電界集中を効果的に抑制でき、オフ耐圧を向上できる。なお、上記ソース電極11およびドレイン電極12は、窒化物半導体層10上に互いに間隔をあけて形成してもよいし、窒化物半導体層10内に少なくとも一部が埋め込まれるようにかつ互いに間隔をあけて形成してもよい。
 また、一実施形態の窒化物半導体装置では、
 上記第2の絶縁膜15の誘電率が5以上である。
 上記実施形態によれば、誘電率が5以上の第2の絶縁膜15により第1の絶縁膜14上およびゲート電極13上を覆うことによって、ゲートフィールドプレート部13bの端での電界強度を効果的に緩和することができる。
 また、一実施形態の窒化物半導体装置では、
 上記第2の絶縁膜15の膜厚が30nm以上である。
 上記実施形態によれば、膜厚が30nm以上の第2の絶縁膜15により第1の絶縁膜14上およびゲート電極13上を覆うことによって、ゲートフィールドプレート部13bの端での電界強度を確実に緩和することができる。
 1…アンドープGaN層
 2…アンドープAlGaN層
 10…窒化物半導体層
 11…ソース電極
 12…ドレイン電極
 13…ゲート電極
 13a…基部
 13b…ゲートフィールドプレート部
 14…コラプス抑制膜
 15…ゲート電極カバー絶縁膜
 16…層間絶縁膜
 20…ゲート絶縁膜
 21…ソースフィールドプレート部
 22…ドレインフィールドプレート部
 100…Si基板

Claims (6)

  1.  窒化物半導体層(10)と、
     上記窒化物半導体層(10)上に、または、上記窒化物半導体層(10)内に少なくとも一部が形成されると共に、互いに間隔をあけて配置されたソース電極(11)およびドレイン電極(12)と、
     上記ソース電極(11)と上記ドレイン電極(12)との間かつ上記窒化物半導体層(10)上に形成されたゲート電極(13)と、
     上記ソース電極(11)と上記ゲート電極(13)との間および上記ドレイン電極(12)と上記ゲート電極(13)との間で上記窒化物半導体層(10)上に形成された第1の絶縁膜(14,114)と、
     少なくとも上記第1の絶縁膜(14,114)上および上記ゲート電極(13)上に形成された第2の絶縁膜(15)と、
     上記第2の絶縁膜(15)上に形成され、少なくともSiOを含む材料からなる層間絶縁膜(16)と
    を備え、
     上記ゲート電極(13)は、上記窒化物半導体層(10)上に形成された基部(13a)と、その基部(13a)の上部から上記ドレイン電極(12)側に向かって上記第1の絶縁膜(14,114)上に延在するゲートフィールドプレート部(13b)とを有すると共に、
     上記第2の絶縁膜(15)の誘電率は、上記層間絶縁膜(16)の誘電率よりも高いことを特徴とする窒化物半導体装置。
  2.  請求項1に記載の窒化物半導体装置において、
     上記ソース電極(11)は、上記ゲート電極(13)を覆うように上記ドレイン電極(12)側に向かって上記層間絶縁膜(16)上に延在するソースフィールドプレート部(21)を有することを特徴とする窒化物半導体装置。
  3.  請求項1または2に記載の窒化物半導体装置において、
     上記ゲート電極(13)の上記基部(13a)は、上記窒化物半導体層(10)の最上層とショットキー接合されていることを特徴とする窒化物半導体装置。
  4.  請求項1または2に記載の窒化物半導体装置において、
     少なくとも上記ゲート電極(13)の上記基部(13a)と上記窒化物半導体層(10)との間に形成されたゲート絶縁膜(20)を備えたことを特徴とする窒化物半導体装置。
  5.  請求項1から4までのいずれか1つに記載の窒化物半導体装置において、
     上記第2の絶縁膜(15)の誘電率が5以上であることを特徴とする窒化物半導体装置。
  6.  請求項1から5までのいずれか1つに記載の窒化物半導体装置において、
     上記第2の絶縁膜(15)の膜厚が30nm以上であることを特徴とする窒化物半導体装置。
PCT/JP2014/050992 2013-02-21 2014-01-20 窒化物半導体装置 WO2014129245A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-031975 2013-02-21
JP2013031975A JP2016085999A (ja) 2013-02-21 2013-02-21 窒化物半導体装置

Publications (1)

Publication Number Publication Date
WO2014129245A1 true WO2014129245A1 (ja) 2014-08-28

Family

ID=51391042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/050992 WO2014129245A1 (ja) 2013-02-21 2014-01-20 窒化物半導体装置

Country Status (2)

Country Link
JP (1) JP2016085999A (ja)
WO (1) WO2014129245A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104393048A (zh) * 2014-11-18 2015-03-04 西安电子科技大学 介质调制复合交叠栅功率器件
CN107768439A (zh) * 2016-08-23 2018-03-06 万国半导体(开曼)股份有限公司 非对称闭锁双向氮化镓开关

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018078894A1 (ja) * 2016-10-24 2018-05-03 三菱電機株式会社 化合物半導体デバイス

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006086398A (ja) * 2004-09-17 2006-03-30 Matsushita Electric Ind Co Ltd 半導体装置及びその製造方法
WO2007091301A1 (ja) * 2006-02-07 2007-08-16 Fujitsu Limited 半導体装置とその製造方法
JP2009016780A (ja) * 2007-06-07 2009-01-22 Panasonic Corp 半導体装置
JP2010010489A (ja) * 2008-06-27 2010-01-14 Fujitsu Ltd 半導体装置及びその製造方法
JP2011204780A (ja) * 2010-03-24 2011-10-13 Toshiba Corp 半導体装置
JP2012109366A (ja) * 2010-11-17 2012-06-07 Sharp Corp 窒化物半導体装置
WO2012111363A1 (ja) * 2011-02-15 2012-08-23 シャープ株式会社 横型半導体装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006086398A (ja) * 2004-09-17 2006-03-30 Matsushita Electric Ind Co Ltd 半導体装置及びその製造方法
WO2007091301A1 (ja) * 2006-02-07 2007-08-16 Fujitsu Limited 半導体装置とその製造方法
JP2009016780A (ja) * 2007-06-07 2009-01-22 Panasonic Corp 半導体装置
JP2010010489A (ja) * 2008-06-27 2010-01-14 Fujitsu Ltd 半導体装置及びその製造方法
JP2011204780A (ja) * 2010-03-24 2011-10-13 Toshiba Corp 半導体装置
JP2012109366A (ja) * 2010-11-17 2012-06-07 Sharp Corp 窒化物半導体装置
WO2012111363A1 (ja) * 2011-02-15 2012-08-23 シャープ株式会社 横型半導体装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104393048A (zh) * 2014-11-18 2015-03-04 西安电子科技大学 介质调制复合交叠栅功率器件
CN107768439A (zh) * 2016-08-23 2018-03-06 万国半导体(开曼)股份有限公司 非对称闭锁双向氮化镓开关
CN107768439B (zh) * 2016-08-23 2021-06-15 万国半导体(开曼)股份有限公司 非对称闭锁双向氮化镓开关

Also Published As

Publication number Publication date
JP2016085999A (ja) 2016-05-19

Similar Documents

Publication Publication Date Title
JP6522521B2 (ja) 半導体デバイスの電極及びその製造方法
US10256100B2 (en) Manufacturing method of semiconductor device and semiconductor device
US9337332B2 (en) III-Nitride insulating-gate transistors with passivation
TWI431770B (zh) 半導體裝置及製造其之方法
US10784361B2 (en) Semiconductor device and method for manufacturing the same
JP5166576B2 (ja) GaN系半導体素子の製造方法
CN103545362B (zh) 化合物半导体器件及其制造方法
WO2013108844A1 (ja) 窒化物半導体装置
TW201419546A (zh) 電晶體與其形成方法與半導體元件
US20150021671A1 (en) Field-effect transistor and method of manufacturing thereof
JP2014045174A (ja) 窒化物半導体装置
CN103715243A (zh) 化合物半导体器件及其制造方法
WO2014148255A1 (ja) 窒化物半導体装置および窒化物半導体装置の製造方法
US20150179823A1 (en) Electrode structure for nitride semiconductor device, production method therefor, and nitride semiconductor field-effect transistor
KR101078143B1 (ko) 복합 패시베이션 유전막을 갖는 이종접합 전계효과 트랜지스터 및 그 제조방법
US9281370B2 (en) Semiconductor device and method of manufacturing semiconductor device
US20150349108A1 (en) Electrode structure for nitride semiconductor device, and nitride semiconductor field effect transistor
WO2014129245A1 (ja) 窒化物半導体装置
US9171947B2 (en) Nitride semiconductor device
US10373833B2 (en) Semiconductor device and method for manufacturing the same
JP7308593B2 (ja) 窒化物半導体装置
JP2013115323A (ja) 電界効果トランジスタ
JP5917990B2 (ja) 窒化物半導体装置
WO2014181556A1 (ja) 電界効果トランジスタ
JP6018809B2 (ja) 窒化物半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14754328

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14754328

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP