WO2014128841A1 - Assembled battery and battery used in same - Google Patents
Assembled battery and battery used in same Download PDFInfo
- Publication number
- WO2014128841A1 WO2014128841A1 PCT/JP2013/054071 JP2013054071W WO2014128841A1 WO 2014128841 A1 WO2014128841 A1 WO 2014128841A1 JP 2013054071 W JP2013054071 W JP 2013054071W WO 2014128841 A1 WO2014128841 A1 WO 2014128841A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- battery
- housing
- heat
- assembled battery
- heat radiating
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/62—Heating or cooling; Temperature control specially adapted for specific applications
- H01M10/625—Vehicles
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/262—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks
- H01M50/264—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks for cells or batteries, e.g. straps, tie rods or peripheral frames
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/61—Types of temperature control
- H01M10/613—Cooling or keeping cold
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/64—Heating or cooling; Temperature control characterised by the shape of the cells
- H01M10/647—Prismatic or flat cells, e.g. pouch cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/655—Solid structures for heat exchange or heat conduction
- H01M10/6554—Rods or plates
- H01M10/6555—Rods or plates arranged between the cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/233—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
- H01M50/24—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/04—Construction or manufacture in general
- H01M10/0481—Compression means other than compression means for stacks of electrodes and separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/20—Batteries in motive systems, e.g. vehicle, ship, plane
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/296—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by terminals of battery packs
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a plurality of secondary batteries and an assembled battery in which they are integrated.
- a secondary battery for driving a vehicle a sheet for both positive and negative electrodes (positive and negative electrode plates) as a power generation element group, a separator that separates the positive and negative electrode plates, and an electrolyte solution in a sealed battery container made of metal or resin
- Secondary batteries having external terminals that are housed in the battery container and are connected to both electrodes constituting the power generation element group fixed to the battery container are widely known.
- a lithium ion secondary battery is a typical secondary battery of this type.
- many lithium ion secondary batteries have a cylindrical appearance (cylindrical batteries).
- the lithium ion secondary batteries have a rectangular (rectangular) shape ( Square batteries) and power generation elements laminated and sealed have been studied.
- each unit cell in the assembled battery is housed and integrated in a casing in a compressed state in the stacking direction in order to ensure vibration resistance and increase heat transfer.
- the voltage of each single cell is monitored and controlled with high accuracy.
- the assembled battery disclosed in Patent Document 1 aims to provide a battery pack in which temperature variations between internal cells are reduced.
- the secondary battery module disclosed in Patent Document 2 aims to provide a secondary battery and a battery module with improved output per unit weight and heat release characteristics, and the secondary battery has at least one terminal.
- a case with an electrode group a groove for accommodating the electrode group, an opening that opens one side so that the electrode group passes, a film lid that extends over the opening and fixes the electrode group in the groove, and a case And a heat radiating member extending from the case toward the outside.
- each unit cell In order to make the temperature of each unit cell uniform, it is desirable that the heat of each unit cell is transmitted to the casing of the assembled cell through the same path and heat flow. In addition, it is desirable that the heat of each single cell is exchanged.
- heat transfer from each battery to the casing of the assembled battery is preferably performed in a direction orthogonal to the battery stacking direction.
- the following measures (1) to (4) should be taken.
- a heat sink is interposed between the batteries stacked in the thickness direction to reduce the thermal resistance of the heat sink and the side of the housing.
- each tray (heat radiating plate) and the casing are in contact with each other only by the plate spring force of the tray made of a thin metal plate that is bent, and thus a large contact surface pressure can be obtained. Since the contact heat resistance with the heat sink is large, the above (1) is not satisfied.
- Patent Document 2 since a large amount of contact surface passage is required for heat transfer between the enclosures, the contact thermal resistance in the enclosure is large, and the above (4) is not satisfied.
- an object of the present invention is to provide an assembled battery in which the temperature of each unit cell is uniform and the volume capacity density is high.
- the assembled battery of the present invention includes a plurality of batteries, a plurality of heat sinks provided with a single metal or a layer made of a different material on a metal surface, and a plurality of mutually facing butting portions, And a housing having a flexible portion that straddles the butted portions, and a fixing member that fixes the housing.
- the housing includes the plurality of batteries and the plurality of heat dissipation plates, and the heat dissipation plate. Is interposed between the abutting portions, the distance between the facing abutting portions is reduced with deformation of the flexible portion, and the heat sink and the abutting abutting portion are in contact with each other. The distance between the parts is fixed.
- the portion of the heat radiating plate that comes into contact with the butted portion has flexibility.
- a flexible material may be interposed between the heat radiating plate and the butt portion.
- a flexible material may be interposed in the flexible portion of the heat radiating plate.
- the heat radiating plate and the housing may include a through hole, and the fixing member may be passed through the through hole.
- a plurality of the heat radiating plates may be interposed between one butted portion.
- At least one surface of the electrode body composed of a laminate of the positive electrode sheet, the negative electrode sheet, and the separator is provided with a resin layer on both surfaces of the heat radiating plate made of a metal plate having a thickness of 0.2 mm or more.
- a battery that is sealed with an exterior body and is used with the heat radiating plate interposed between the butted portions may be used.
- the thermal resistance between the radiator plate and the housing is small, the contact thermal resistance between the battery and the radiator plate is small, the thermal resistance between the main surfaces of both stacked batteries and the opposing housing is large, The thermal resistance in the housing is reduced. Therefore, the above problem is solved.
- the assembled battery 100 includes an integrally formed casing 101, a plurality of stacked batteries 30, a heat insulating plate 40, a fixing member 201, caps 206 and 207, and the like.
- a laminated battery is used for the battery 30, and each battery 30 is formed with a positive electrode terminal 31 and a negative electrode terminal 32.
- each battery 30 is accommodated while being inverted 180 ° so that it can be easily connected in series with another battery 30 adjacent in the stacking direction (so that the opposite electrode terminal of the adjacent battery 30 comes close).
- the children 31 and 32 are electrically connected in series (electrical connection means are not shown).
- the positive electrode terminal 31 of the battery 30 positioned at the bottom and the negative electrode terminal 32 of the battery 30 positioned at the top are respectively connected to the positive electrode external terminal 203 and the negative electrode external terminal 204.
- the casing 101 is fixed in a state of being pressed in the stacking direction of the battery 30 by a plurality of fixing members 201 arranged on the side surface portion.
- the opposing two surfaces of the casing 101 where the battery 30 and the heat insulating plate 40 are exposed are sealed with caps 206 and 207, respectively.
- Insulating polybutylene terephthalate (PBT) is used as a material for the caps 206 and 207.
- the casing 101 has a substantially rectangular parallelepiped shape, and an upper surface 105 and a lower surface 106 are formed. A plurality of flexible portions w ⁇ b> 1 are formed between the upper surface 105 and the lower surface 106. ing. Each flexible portion w1 is configured to have a smaller thickness than the periphery thereof and can be deformed relatively easily by an external force.
- the upper surface 105, the heat radiating plate portion 104 (not shown in FIG. 2) immediately below the upper surface 105, and the side surface portion on which the flexible portion w1 is formed are a single material, that is, one piece, and have a uniform shape in the depth direction. ing.
- the dimensions in the width direction, height direction, and depth direction of the casing 101 are determined in consideration of the dimensions of the heat insulating plate (not shown) and the battery to be accommodated.
- the casing 101 is formed by an extrusion process to be described later, and an A6000 series (magnesium-silicon series) aluminum alloy is used as a material.
- FIG. 4 is a view of the casing 101 as seen from the battery insertion direction.
- the two abutting surfaces 205 that will be abutted in the future are formed in a portion adjacent to each flexible portion w1.
- a gap h1 is provided between the butted surfaces 205.
- a heat sink 41 is disposed between the batteries 30, and a gap 43 in which each heat sink 41 is accommodated is formed in the housing 101.
- the battery 30 As shown in FIG. 3 inserted into the casing 101, the battery 30 is sealed in a substantially rectangular outer package 33 in plan view, and the positive electrode terminal 31 and the negative electrode terminal 32 are drawn from one side of the outer package 33. I am doing.
- a battery is generally called a laminated battery.
- Each of the positive electrode terminal 31 and the negative electrode terminal 32 has a flat plate shape, and is connected to a plurality of sheet-like positive electrodes and sheet-like negative electrodes inside the outer package 33.
- the exterior body 33 is composed of a laminate film having a heat-sealing resin layer 34 on the inner surface of the battery 30.
- the exterior body 33 (laminate film) is configured by laminating an exterior resin layer 36, a metal layer 35, and a heat-sealing resin layer 34 in order from the outside of the battery.
- the outer package 33 is bent into two upper and lower sides on the side opposite to the side where the positive electrode terminal 31 and the negative electrode terminal 32 of the battery are formed, and the upper and lower heat-sealing resin layers 34 are heat-sealed around the electrode part 37.
- the exterior resin layer 36 is made of polyester (PE) and has a thickness of 50 ⁇ m.
- the metal layer 35 is made of an aluminum alloy and has a thickness of 100 ⁇ m.
- a modified polyolefin film is used for the heat sealing resin layer 34, and the thickness thereof is 50 ⁇ m.
- a vent portion (not shown) is formed in a part of the heat-sealed portion so as to have a lower strength than the other portions. In the vent part, when the internal pressure of the battery rises abnormally, it is destroyed before the other parts and the internal pressure is released.
- a laminated electrode body in which a plurality of sheet-like positive electrodes and a plurality of sheet-like negative electrodes are laminated via separators is built in and infiltrated with an electrolytic solution.
- An electrode body 37 is formed of a laminate composed of a plurality of sheet-like positive electrodes, sheet-like negative electrodes, and separators.
- a layer (positive electrode mixture layer) made of a positive electrode mixture containing a positive electrode active material, a conductive additive mainly composed of a carbon material, and a binder is formed on the surface of the positive electrode current collector.
- An aluminum alloy foil having a thickness of 0.015 mm is used for the positive electrode current collector.
- the positive electrode mixture layer is a mixture of LiCoO 2 as a positive electrode active material, acetylene black as a conductive auxiliary agent, PVDF as a binder, and the like, and has a thickness per side of 30 to 100 ⁇ m.
- An aluminum alloy with a thickness of 0.2 mm is used for the positive electrode terminal.
- a layer (negative electrode mixture layer) made of a negative electrode mixture containing a negative electrode active material, a conductive additive, a binder and the like is formed on the surface of the negative electrode current collector.
- a copper alloy having a thickness of 0.01 mm is used for the negative electrode current collector.
- the negative electrode mixture layer is made of a composition such as graphite as a negative electrode active material and styrene butadiene rubber (SBR) or carboxymethyl cellulose (CMC) as a binder, and has a thickness per side of 30 to 100 ⁇ m. .
- SBR styrene butadiene rubber
- CMC carboxymethyl cellulose
- the negative electrode terminal a surface of a 0.15 mm thick copper alloy with nickel plating is used.
- a polyolefin microporous film having a thickness of 25 ⁇ m and a porosity of 30 to 70% is used.
- a solution nonaqueous electrolytic solution in which a solute such as LiPF6 is dissolved in an organic solvent mainly composed of ethylene carbonate (EC) is used.
- EC ethylene carbonate
- the heat insulating plate 40 has a substantially rectangular shape.
- a foamable resin is used as the material.
- the heat sink 41 has a flat plate shape, and an aluminum alloy having a thickness of 0.5 mm is used as the material.
- Each flat portion is configured to be slightly larger than the main surface of the battery 30 or the heat insulating plate 40 (the surface facing the heat radiating plate).
- the end portion of the heat radiating plate 41 is bent into a substantially triangular shape in cross-sectional shape to form a flexible portion w2, which is bent according to an external force from the vertical direction in the drawing.
- the manufacturing process of the assembled battery 100 of the present embodiment includes (1) a battery manufacturing step for manufacturing the battery 30, (2) a housing manufacturing step for manufacturing the housing 101, and (3) a heat sink 41 and a heat insulating plate 40 on the housing 101.
- a terminal connection / sealing step of electrically connecting the positive and negative terminals 31, 32 of each battery 30 in a predetermined combination and sealing with caps 206, 207 is included.
- NMP N-methyl-2-pyrrolidone
- the obtained positive electrode mixture-containing paste is applied to both surfaces of the positive electrode current collector, dried, and then subjected to press treatment to form a positive electrode mixture layer, thereby obtaining a sheet-like positive electrode.
- the obtained sheet-like positive electrode is cut into a shape including a rectangular positive electrode mixture layer forming portion and an exposed portion of the rectangular positive electrode current collector.
- a binder composed of 1.5% by mass of SBR and 0.5% by mass of CMC is added to 98% by mass of graphite and mixed, and water is further added to prepare a negative electrode mixture-containing paste.
- the obtained negative electrode mixture-containing paste is applied to both surfaces of the negative electrode current collector, dried, and then subjected to a press treatment to form a negative electrode mixture layer, whereby a sheet-like negative electrode is obtained.
- the obtained sheet-like negative electrode is cut into a shape including a rectangular negative electrode mixture layer forming portion and an exposed portion of the rectangular negative electrode current collector.
- each sheet-like positive electrode is ultrasonically welded to the positive electrode terminal made of aluminum alloy
- the current collector exposed portion of each sheet-like negative electrode is ultrasonically welded to the negative electrode terminal made of copper alloy.
- the positive electrode terminal and the negative electrode terminal have an adhesive layer made of the same modified polyolefin as the resin constituting the heat-sealing resin layer of the outer package on both sides of the portion that is supposed to be located in the heat seal portion of the outer package. Arrange.
- a laminate film is prepared, and the laminated electrode body is placed on the heat-fusing resin layer 34 of the laminate film so that a part of the positive electrode terminal 31 and the negative electrode terminal 32 protrudes, and the laminate film is wrapped so as to wrap the laminated electrode body. Fold it in half.
- each side where the laminate film is stacked is heat-sealed except for a part to form an outer package 33, which is vacuum-dried at 70 ° C. for a certain time.
- an electrolytic solution is injected from a part of the side that is not heat-sealed, and the part is heat-sealed and sealed in a reduced pressure state.
- the laminated electrode body and the sealed outer body containing the non-aqueous electrolyte are aged for a certain period of time, and then subjected to a chemical conversion treatment by charging with a predetermined current and voltage profile. Get a battery.
- ⁇ Housing body production step> A billet made of aluminum alloy raw material formed by casting is cut into an appropriate length in advance.
- the billet is heated to around 500 ° C, which is close to the melting point of the material, and at the same time, the die that is the mold is preheated.
- the billet is pushed out along the shape of the die with a pressing force of 1000 tons or more by the piston of the press machine.
- the billet that has been extruded and has a predetermined cross-section is slightly twisted or distorted during the cooling process, and is stretched and straightened from both ends.
- the extrusion direction is cut to the required length and post-processing is performed.
- heat treatment for obtaining necessary strength and hardness is performed to obtain a housing 101.
- Parts accommodation step> As shown in FIG. 5, first, a total of seven heat radiating plates 41 are respectively inserted into predetermined positions from the opening surface of the prepared casing 101. Thereby, a fixed space is formed between the heat radiating plates 41. For each formed space, the heat insulating plate 40 is inserted into the space adjacent to the upper surface 105 and the lower surface 106 of the housing, and the battery 30 is inserted into the other space. Since each space is formed in advance with a size larger than these parts to be inserted, these parts can be inserted without difficulty.
- each battery 30 In order to facilitate connecting the adjacent batteries 30 in series in the terminal connection / sealing step (that is, the terminals of the positive and negative opposite poles are positioned closest to each other), the direction of each battery is alternately reversed. Further, a part of the outer shape of each battery 30 (the outer peripheral edge portion 134 in FIG. 5) abuts on the inner wall of the casing 101, and the relative position in the paper surface horizontal direction between the battery 30 and the casing 101 is determined. The insertion amount of each battery 30 and the heat insulating plate 40 in the depth direction of the drawing is managed by a jig.
- the flexible portions w1 and w2 are bent and deformed so that the gap h1 approaches 0.
- the distance between the heat radiating plates 41 approaches the thickness of the battery 30 and the heat insulating plate 40, and then the upper and lower heat radiating plate portions. 104 compresses the battery 30 and the heat insulating plate 40.
- the gap h1 becomes 0 (that is, the butted surfaces 205 of the casings 101 constituting the gap h1 come into contact with each other). No longer deforms.
- the flexible portion w2 of the heat radiating plate 41 has as its internal force a force to return to the initial shape as shown in FIG.
- a rigid fixing member 201 is applied from the upper surface 105 to the lower surface 106 of the housing 101, and is hooked on the hook 42 formed on the housing 101 to prevent return and fix. This prevents the housing 101 from returning to its original shape due to the springback after the applied pressure is removed.
- the flexible portions w1 and w2 may be fixed in an elastically deformed state, or may be fixed in a deformed state accompanied by plastic deformation.
- the caps 206 and 207 are placed on the terminal connection portion and the opposite surfaces (that is, the front and rear end surfaces in the pushing direction of the casing) and sealed to obtain an assembled battery.
- each battery and the heat radiating plate are always pressed with a predetermined load, so that the contact thermal resistance between the battery and the heat radiating plate can be reduced.
- the heat sink and the housing can ensure sufficient contact between the heat sink and the housing by the internal force (spring restoring force) remaining in the flexible portion w2 of the heat sink, the contact thermal resistance is reduced. it can. Moreover, since the housing is integral, the thermal resistance in the housing can be reduced.
- the thermal resistance between the main surface of the battery at both ends of the stack and the casing can be increased by the heat insulating material, and the main path of the heat dissipation path of each battery 30 constituting the assembled battery 100 is used as a path to the side surface portion of the casing 101. Therefore, the temperature unevenness of each battery 30 can be suppressed.
- the dimensions of the battery housing portion and the heat insulating plate housing portion are larger than the thickness of the battery and heat insulating plate to be housed, these can be inserted and housed easily.
- the amount of crushing of the battery housing part and the heat insulating plate housing part is automatically managed to a constant value by the abutting surfaces 205 of the housings coming into contact with each other.
- the surface pressure of the parts is controlled to be constant, and the characteristics of the battery and the heat insulating plate can be stabilized.
- the positive and negative terminals of adjacent batteries are clamped and fixed in series by sandwiching a 0.2 mm thick copper alloy plate into two folded bus bars, and the terminal positive and negative terminals are connected to positive and negative external connection terminals.
- a battery pack was constructed by connecting to each.
- a thermocouple was attached to the surface of the central part of the main surface of each battery accommodated so that the temperature of each battery could be measured.
- the positive and negative external connection terminals were respectively connected to the battery charge / discharge equipment via the harness, and were fully charged in advance by the charge / discharge equipment.
- Fig. 8 shows the measurement results with thin ink triangles.
- the horizontal axis in FIG. 8 is the stacking order of the batteries, # 01 indicates the bottom of the stack, and # 07 indicates the battery at the top of the stack.
- # 04 that is, the temperature of the battery at the center of the stack became the highest, and decreased as it approached the upper and lower ends of the stack. In the battery having the highest temperature, the temperature was about 43 ° C. from the initial stage (25 ° C.), and increased by about 18 ° C. There was a temperature difference of 2 to 3 ° C. between the battery with the highest temperature and the battery with the lowest temperature.
- the thermal conductivity is 236 W / m ⁇ K, 0.1 (same), 236 (same) in order, and the specific heat is 900 J / kg ⁇ K, 2000 (same), 900 (same as above) and density of 2700 kg / m ⁇ 3, 85 (same as above) and 2700 (same as above) were used for the analysis.
- the equivalent material constant as the battery obtained by considering the material constant and the usage amount of each material was used.
- the thermal conductivity was 1 W / m ⁇ K in the thickness direction (stacking direction), 40 in the width direction (same), the specific heat was 954 J / kg ⁇ K, and the density was 2000 kg / m ⁇ 3.
- the interface between each heat sink and the housing was assumed to have insufficient thermal contact, and infinite thermal resistance was given.
- Fig. 8 shows the analysis results with white triangles. Since the analysis result almost overlaps the actual measurement result, it is determined that this analysis condition is appropriate. Under this analysis condition, in order for the heat of each battery to be transferred to the housing and cooled by the cooling air, all heat must be transferred via the adjacent battery and the heat insulating plate having a large thermal resistance. A temperature difference is required between them. The fact that the actual measurement results were well reproduced under these analysis conditions suggests that the heat transfer of the actual machine was performed through an unfavorable route through the heat insulating plate, hardly passing through the route from the heat sink to the housing. Yes. That is, it became clear that thermal contact with the housing by the spring force of the thin and small heat sink cannot be expected.
- Fig. 9 shows the analysis results with open circles. For comparison, the analysis results shown in FIG. 8 are also shown. It can be seen that the battery temperatures of the present embodiment are generally lower than the analysis results of FIG. 8, and the temperature variations of the batteries are small. This suggests that the heat of each battery was transferred to the housing through the end of the heat sink close to each battery.
- the heat radiating plate 51 is configured in a flat plate shape including the end portions.
- a flexible material 116 is provided at the interface between the heat sink 51 and the casing 111. Foamed resin is used for the flexible material 116.
- the flexible material 116 is fixed in a compressed state in the thickness direction (that is, with a thickness dimension smaller than the original thickness).
- the illustrated lower surface of the heat radiating plate 51 and the housing 111 are brought into contact with each other by an internal force (force to return to the original shape) due to the flexible material 116 being fixed in a compressed state.
- a large surface pressure can be applied to the surface. Therefore, since the abutting surface 205 of the housing 101 and the heat radiating plate 51 can be brought into close contact with each other, the contact thermal resistance can be effectively reduced.
- the flexible material 116 may be disposed as a separate component between the heat sink 51 and the casing 111 at the stage of the component housing step, or temporarily placed in a predetermined position on the heat sink 51 or the casing 111. It may be stopped.
- a foam metal may be used as the material of the flexible material 116.
- the thermal conductivity thereof is higher than that in the case of using the foam resin, and therefore the heat sink 116 and the casing 111 through the flexible material 116 are used. This heat transfer can also be performed effectively. (The point that the second embodiment is superior to the first embodiment will be described.)
- the end of the heat radiating plate 61 is bent into a U shape to form a flexible portion w3.
- a flexible material 126 is provided on the inner periphery of the U-shaped bending portion. Foamed resin is used for the flexible material 126.
- the flexible material 126 is fixed in a compressed state in the thickness direction.
- the flexible portion w3 is fixed in a deformed state compared to the original shape.
- a large surface pressure can be applied to the contact surface between the heat sink 61 and the housing by the resultant force of the internal force of the flexible material 126 and the internal force of the flexible portion w3 of the heat sink 61. Therefore, the contact thermal resistance can be effectively reduced. Moreover, since the heat sink 61 and the housing 121 can be brought into contact with each other on two surfaces (that is, the upper surface and the lower surface of the U-shaped bent portion), the heat transfer area can be increased compared to the second embodiment. The contact thermal resistance can be effectively reduced.
- the assembled battery of the present embodiment has improved cooling performance from the assembled battery surface, that is, the housing surface.
- the assembled battery 130 of this embodiment includes a duct 208 that covers a side surface including the flexible portion w ⁇ b> 1 group of the housing 131.
- a fixing member 221 is provided on the outer side of the duct 208.
- the duct 208 is formed by injection molded PBT.
- a connection interface unit 230 (see FIG. 13) with an external duct is further formed at both ends of the duct 208 in the assembled battery depth direction.
- One of the two connection interfaces introduces cooling refrigerant and the other exhausts.
- the space defined by the duct 208 and the casing 131 constitutes a cooling refrigerant flow path 209.
- the fixing member 221 functions to prevent the casing 131 from returning to its original shape, and at the same time, prevent the duct 208 from being deformed or dropped. Air introduced from outside by a fan is used as the cooling refrigerant.
- the heat transmitted from each battery 30 to the housing 131 through each heat sink 41 is immediately released to the outside through the cooling refrigerant on the surface of the housing 131, and thus the upper surface of the housing 131. 105, the diffusion to the lower surface 106 can be reduced, and it is not necessary to directly apply the cooling refrigerant to the upper surface 105 and the lower surface 106.
- a plurality of assembled batteries 130 are arranged closer to each other to configure a large-scale power storage system. In this case, it is not necessary to prepare a gap through which the cooling refrigerant flows on the upper surface 105 or the lower surface 106. Therefore, it becomes possible to arrange a plurality of assembled batteries 130 with higher density.
- each heat radiating plate 71 is configured in a flat plate shape including an end portion.
- a through-hole 231 in the thickness direction is formed at the end of each heat radiating plate 71, that is, at the portion that contacts the housing 141.
- a through hole 232 is also formed in a portion of the housing 141 that coincides with the through hole 231.
- the through holes 231 of the heat radiating plates 71 are formed at the same position, and the through holes 232 of the housing 141 penetrate the housing 141.
- the shaft 233 passes through the through holes 231 and 232, and both ends are fixed by caulking 234 in a state where the interfaces between the heat radiating plates 71 and the housing 141 are in contact with each other.
- each heat sink 71 and the casing 141 are fixed by the caulking 234 in a state of being in good thermal contact with a sufficient surface pressure, so that the contact thermal resistance is effectively reduced. Can be made.
- a plurality of shafts 233 may be provided in the illustrated depth direction. Further, the mechanical functions of the shaft 233 and the caulking 234 may be achieved by bolts and nuts (how to raise the claim of this embodiment, what to deal with the problem of unity? The point of the present invention is the possibility of the housing) And the heat sink has a flexible part).
- the assembled battery of the present embodiment is a battery provided with the function of a heat sink.
- the battery 35 has a peripheral heat-sealed portion in contact with the housing 141 and is sandwiched between the housing 141 from above and below.
- the batteries 35 at the upper and lower ends of the stack are each sandwiched between the casings 141, and the other batteries 35 located near the center of the stack are sandwiched two by two.
- the lower packaging body 39 in the figure includes a heat dissipation plate 81 in which a heat fusion layer 43 is formed inside the battery 35 and an exterior resin layer 38 is formed outside. It is comprised by the exterior body 39 containing.
- the heat sink 81 is made of an aluminum alloy and has a thickness of 0.5 mm.
- a modified polyolefin film is used for the heat-sealing layer 43, and the thickness is 50 ⁇ m.
- the exterior resin layer 38 is made of polyester (PE) and has a thickness of 50 ⁇ m.
- PE polyester
- the exterior body 39 (and 33) including the heat radiation plate 81 integrated in advance with the battery 35 is in direct contact with the housing 141, and sufficient contact pressure acts on the contact portion. Therefore, the contact thermal resistance between the heat sink 81 and the housing 141 can be reduced. Further, since the battery 35 and the heat radiating plate 81 are mechanically integrated in advance by heat fusion, it is possible to reduce the number of housed parts (the number of parts constituting the assembled battery) in the part housing step. In addition, since the number of members interposed between the electrode portion 37 and the heat radiating plate 81 is reduced (the metal layer on the lower side of the battery shown in FIG. 16 is eliminated), the thermal resistance from the electrode portion 37 to the heat radiating plate 81 is reduced. As a result, the heat of the battery 35 can be more effectively transferred to the heat sink.
- another heat radiating plate may be provided between the batteries 35, and may be sandwiched between the two batteries 35 and the housing 141.
- the thickness of the heat radiating plate 81 is 0.5 mm.
- the thickness be 0.2 mm or more.
- the heat radiating plate 81 is provided only on the lower exterior body 39 in the figure, but it may be provided on the upper exterior body 33 in the figure.
- the lithium ion secondary battery is exemplified, but the present invention is not limited to this, and can be applied to secondary batteries in general.
- the casing is not limited to the A6000 series aluminum alloy exemplified in the above embodiment, but may be made of an A1000 series aluminum alloy having excellent extrudability and higher thermal conductivity.
- the casing is not limited to the aluminum alloy exemplified in the above embodiment, but may be made of polybutylene terephthalate (PBT), polyphenylene sulfide (PPS), and other resins.
- PBT polybutylene terephthalate
- PPS polyphenylene sulfide
- each heat radiating plate in one assembled battery is illustrated equally, but the thickness may be changed according to the part. Thereby, the heat flow of each battery can be equalized more finely.
- the heat insulating plates are in the shape of a rectangular parallelepiped, and one heat dissipating plate is provided at each of the upper end and the lower end in the battery stacking direction.
- each may be a variant other than a rectangular parallelepiped.
- the casing may be anodized as necessary for improving insulation or protecting the surface.
- the housing shape after the battery or the like is accommodated is fixed by a separately provided fixing member, but the present invention is not limited to this, and the housing is pressurized in the pressure fixing step.
- ultrasonic welding may be performed from the upper and lower surfaces of the housing, and a plurality of butted portions may be welded and fixed.
- a heat sink made of a single metal has been disclosed.
- the present invention is not limited to this, and a multi-material laminate in which an insulating material made of resin is applied to the surface of the heat sink. It is good. A sheet of insulating material made of resin may be interposed between the battery and the heat sink.
- lithium cobaltate was exemplified as the positive electrode active material
- graphite was exemplified as the negative electrode active material.
- the positive electrode active material is a material capable of inserting and removing lithium ions, and a lithium transition metal composite oxide in which a sufficient amount of lithium ions has been inserted in advance may be used.
- a material in which a part of lithium or a transition metal is substituted or doped with an element other than those may be used.
- the crystal structure of lithium transition metal complex oxide You may have any crystal structure of a spinel system, a layer system, and an olivine system.
- the negative electrode active material other than graphite for example, carbon materials such as coke and amorphous carbon can be mentioned, and the particle shape is also particularly limited such as scaly, spherical, fibrous, and massive. It is not a thing.
- the conductive material and the binder exemplified in the above embodiment are not particularly limited, and any of those normally used in lithium ion secondary batteries can be used.
- binders that can be used in other embodiments include polytetrafluoroethylene, polyethylene, polystyrene, polybutadiene, butyl rubber, nitrile rubber, styrene / butadiene rubber, polysulfide rubber, nitrocellulose, cyanoethyl cellulose, various latexes, acrylonitrile, fluorine.
- examples thereof include polymers such as vinyl fluoride, vinylidene fluoride, propylene fluoride, and chloroprene fluoride, and mixtures thereof.
- the nonaqueous electrolytic solution in which LiPF6 is dissolved in an ethylene carbonate-based organic solvent such as ethylene carbonate is exemplified.
- a liquid may be used, and the present invention is not particularly limited to the lithium salt or organic solvent used.
- the electrolyte LiClO4, LiAsF6, LiBF4, LiB (C6H5) 4, CH3SO3Li, CF3SO3Li, or a mixture thereof can be used.
- organic solvent diethyl carbonate, propylene carbonate, 1,2-diethoxyethane, ⁇ -butyrolactone, sulfolane, propionitrile, or a mixed solvent in which two or more of these are mixed can be used.
- ultrasonic welding was performed by bringing a metal bus bar into contact between the terminals to be connected. May be directly contacted with each other, and an insulating material may be interposed so as not to contact with other terminals, and the bolts made of an insulating material may be collectively screwed and connected in the stacking direction.
- a stainless steel film may be used for the metal layer of the laminate film.
- the battery and the heat insulating plate are shown as the components to be accommodated in the housing, but other structures such as an assembled battery control circuit and a voltage detection circuit for each battery may be accommodated.
- the present invention provides a secondary battery capable of minimizing deterioration due to temperature, it contributes to the manufacture and sale of secondary batteries, and thus has industrial applicability.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Secondary Cells (AREA)
- Battery Mounting, Suspending (AREA)
Abstract
Provided is an assembled battery having a high volume capacity density and including unit batteries, the temperatures of which are uniform.
A plurality of batteries and a plurality of heat dissipation plates are housed in a tubular type of chassis formed by an extrusion. The heat dissipation plates are interposed between butting portions and between flexible portions, the butting portions and the flexible portions being formed on the chassis. The butting portions are made closer to each other in association with the deformation of the flexible portions. The heat dissipation plates are then fixed while being made contact with the butting portions.
Description
本発明は、複数の二次電池およびそれらを一体化した組電池に関する。
The present invention relates to a plurality of secondary batteries and an assembled battery in which they are integrated.
例えば、車両駆動用二次電池として、発電要素群たる正極、負極双方のシート(正負極板)と、正負極板間を隔離するセパレータと、電解液とを金属や樹脂製の密閉電池容器内に収容し、電池容器に固定され発電要素群を構成する両極と導通した外部端子を有する二次電池が広く知られている。リチウムイオン二次電池はこの種の代表的二次電池である。従来、リチウムイオン二次電池は、円柱状の外観を呈するもの(円筒形電池)が多かったが、大出力、大容量の要求から、実装密度を向上させるため、角形(直方体)状のもの(角形電池)や発電要素群をラミネート封止されたものなどが検討されるに至っている。
For example, as a secondary battery for driving a vehicle, a sheet for both positive and negative electrodes (positive and negative electrode plates) as a power generation element group, a separator that separates the positive and negative electrode plates, and an electrolyte solution in a sealed battery container made of metal or resin Secondary batteries having external terminals that are housed in the battery container and are connected to both electrodes constituting the power generation element group fixed to the battery container are widely known. A lithium ion secondary battery is a typical secondary battery of this type. Conventionally, many lithium ion secondary batteries have a cylindrical appearance (cylindrical batteries). However, in order to improve mounting density due to the demand for high output and large capacity, the lithium ion secondary batteries have a rectangular (rectangular) shape ( Square batteries) and power generation elements laminated and sealed have been studied.
所望の出力あるいは容量を得るため、これらの単電池は複数が機械的に一体化されると共に、電気的に直列あるいは並列に接続された組電池もしくは電池モジュールの状態で実用に供される。組電池内の各単電池は耐振動性を確保し伝熱性を高めるため、積層方向に圧縮された状態で筺体に収められ一体化されている。また各単電池の電圧は高精度に監視、制御されている。
In order to obtain a desired output or capacity, a plurality of these single cells are mechanically integrated and are put into practical use in the state of an assembled battery or battery module electrically connected in series or in parallel. Each unit cell in the assembled battery is housed and integrated in a casing in a compressed state in the stacking direction in order to ensure vibration resistance and increase heat transfer. The voltage of each single cell is monitored and controlled with high accuracy.
限られた車両空間内に大きな充放電容量を備えるため、車両に搭載される組電池には高い体積容量密度が求められる。
Since a large charge / discharge capacity is provided in a limited vehicle space, a high volume capacity density is required for the assembled battery mounted on the vehicle.
しかし、使用する単電池は充放電時の内部のジュール熱および化学反応熱によって温度変化が生じ、過放電電位や過充電電位が変わることが知られている。そのため組電池内の各単電池が異なった温度状態にあると、夫々が異なった過放電電位及び過充電電位を有することになる。その結果、充電時には過充電電位が低い単電池によって充電量が制限され、これよりも高い単電池には十分な容量の電力を蓄えることができなくなる。また、放電時には過放電電位が高い単電池によって放電量が制限され、これよりも過放電電位が低い単電池には出力されない電力が残存してしまう。
However, it is known that the cell used changes in temperature due to internal Joule heat and chemical reaction heat during charge and discharge, and the overdischarge potential and overcharge potential change. For this reason, when each unit cell in the assembled battery is in a different temperature state, each has a different overdischarge potential and overcharge potential. As a result, at the time of charging, the amount of charge is limited by the single battery having a low overcharge potential, and it is impossible to store a sufficient amount of power in a single battery higher than this. Further, at the time of discharging, the discharge amount is limited by the single cell having a high overdischarge potential, and power that is not output remains in the single cell having a lower overdischarge potential.
すなわち、組電池内の各単電池の温度が異なると、電力備蓄の絶対量が低下すると共に、取り出せる電力量が低下する。したがって、組電池の体積容量密度を高めるには、内蔵された各単電池の温度を均一に維持することが重要である。
That is, if the temperature of each unit cell in the assembled battery is different, the absolute amount of power reserve decreases and the amount of power that can be extracted decreases. Therefore, in order to increase the volume capacity density of the assembled battery, it is important to keep the temperature of each built-in cell uniform.
各単電池の温度差を小さくするために、例えば特許文献1に開示された組電池では、内部の単電池相互間の温度ばらつきが軽減された電池パックを提供することを目的とし、複数の単電池を鉛直方向に積層した組電池と、組電池を収納するケースおよび蓋部材、底部材と、各単電池の間に設けられるトレイと、単電池を並列もしくは直列に接続し、ケースの外部と接続する組電池の正極端子および負極端子と、組電池を押圧し予め設定される圧力位置で蓋部材をケースに固定する固定する固定手段とを備えている。
In order to reduce the temperature difference between the individual cells, for example, the assembled battery disclosed in Patent Document 1 aims to provide a battery pack in which temperature variations between internal cells are reduced. An assembled battery in which the batteries are stacked in a vertical direction, a case and lid member for storing the assembled battery, a bottom member, a tray provided between the individual cells, and the single cells connected in parallel or in series, A positive terminal and a negative terminal of the assembled battery to be connected, and a fixing means for pressing the assembled battery and fixing the lid member to the case at a preset pressure position.
あるいは例えば、特許文献2に開示された二次電池モジュールでは、単位重量当り出力および熱放出特性が向上した2次電池及び電池モジュールの提供を目的とし、二次電池は、少なくとも一つの端子を有する電極群、電極群を収容する溝、電極群が通過するように一側を開放する開口とを備えたケース、開口の上に延長され電極群を溝内に固定するフィルム蓋、およびケースに形成され、ケースから外部に向かって延長される放熱部材を備えている。
Alternatively, for example, the secondary battery module disclosed in Patent Document 2 aims to provide a secondary battery and a battery module with improved output per unit weight and heat release characteristics, and the secondary battery has at least one terminal. Formed in a case with an electrode group, a groove for accommodating the electrode group, an opening that opens one side so that the electrode group passes, a film lid that extends over the opening and fixes the electrode group in the groove, and a case And a heat radiating member extending from the case toward the outside.
各単電池の温度を均一化するためには、各単電池の熱がそれぞれ同様の経路、熱流で組電池の筺体に伝えられることが望ましい。また、各単電池同士の熱が互いに授受されることが望ましい。
In order to make the temperature of each unit cell uniform, it is desirable that the heat of each unit cell is transmitted to the casing of the assembled cell through the same path and heat flow. In addition, it is desirable that the heat of each single cell is exchanged.
そのためには、各電池から組電池の筺体にかけての伝熱は、電池積層方向と直交する方向に行われるのがよい。これを実現するには次の(1)から(4)の策を講じるのがよい。
For this purpose, heat transfer from each battery to the casing of the assembled battery is preferably performed in a direction orthogonal to the battery stacking direction. In order to realize this, the following measures (1) to (4) should be taken.
(1)厚さ方向に積層された電池の間に放熱板を介在させ、放熱板と筺体側面の熱抵抗を小さくする。
(1) A heat sink is interposed between the batteries stacked in the thickness direction to reduce the thermal resistance of the heat sink and the side of the housing.
(2)放熱板と各電池の間の熱抵抗を小さくする。
(2) Reduce the thermal resistance between the heat sink and each battery.
(3)積層端の電池の主面と、対向する筺体との間の熱抵抗を大きくする。
(3) Increase the thermal resistance between the main surface of the battery at the end of the stack and the opposing housing.
(4)筺体内の熱抵抗を小さくする。
(4) Reduce the thermal resistance in the housing.
これらに対して、特許文献1では、各トレイ(放熱板)と筺体とは曲げ加工された薄い金属板からなるトレイの板ばね力のみで接触しているため、大きな接触面圧を得ることができず、放熱板と接触熱抵抗が大きいため、上記(1)が満足されない。
On the other hand, in Patent Document 1, each tray (heat radiating plate) and the casing are in contact with each other only by the plate spring force of the tray made of a thin metal plate that is bent, and thus a large contact surface pressure can be obtained. Since the contact heat resistance with the heat sink is large, the above (1) is not satisfied.
また特許文献2では、筺体間の熱移動には多くの接触面通過を要するため筺体内の接触熱抵抗が大きく、上記(4)が満足されない。
Further, in Patent Document 2, since a large amount of contact surface passage is required for heat transfer between the enclosures, the contact thermal resistance in the enclosure is large, and the above (4) is not satisfied.
本発明は上記事案に鑑み、各単電池の温度が均一で、体積容量密度が高い組電池提供することを課題とする。
In view of the above-described case, an object of the present invention is to provide an assembled battery in which the temperature of each unit cell is uniform and the volume capacity density is high.
上記課題を解決するために、本発明の組電池は、複数の電池と、金属単体もしくは金属の表面に別材からなる層を備えた複数の放熱板と、複数の相互に対向する突き合わせ部、および前記突き合わせ部同士をそれぞれまたぐ可撓部を備えた筺体と、前記筺体を固定する固定部材と、を備え、前記筺体に前記複数の電池、および前記複数の放熱板を収容し、前記放熱板を前記突き合わせ部の間に介在させ、前記可撓部の変形を伴って前記対向する突き合わせ部間の距離を近づけ、前記放熱板と前記対向する突き合わせ部とが接触した状態で、前記対向する突き合わせ部同士の距離を固定したことを特徴とする。
In order to solve the above-described problems, the assembled battery of the present invention includes a plurality of batteries, a plurality of heat sinks provided with a single metal or a layer made of a different material on a metal surface, and a plurality of mutually facing butting portions, And a housing having a flexible portion that straddles the butted portions, and a fixing member that fixes the housing. The housing includes the plurality of batteries and the plurality of heat dissipation plates, and the heat dissipation plate. Is interposed between the abutting portions, the distance between the facing abutting portions is reduced with deformation of the flexible portion, and the heat sink and the abutting abutting portion are in contact with each other. The distance between the parts is fixed.
本発明において、前記放熱板の前記突き合わせ部に接触する部分が可撓性を有することが望ましい。
In the present invention, it is desirable that the portion of the heat radiating plate that comes into contact with the butted portion has flexibility.
また、本発明において、前記放熱板と前記突き合わせ部の間に可撓材を介在させてもよい。
In the present invention, a flexible material may be interposed between the heat radiating plate and the butt portion.
また、本発明において、前記放熱板の前記可撓性を有する部分に可撓材を介在させてもよい。
In the present invention, a flexible material may be interposed in the flexible portion of the heat radiating plate.
また、本発明において、前記放熱板および前記筺体は貫通孔を備え、前記貫通孔に前記固定部材を貫通させてもよい。
In the present invention, the heat radiating plate and the housing may include a through hole, and the fixing member may be passed through the through hole.
また、本発明において、前記放熱板の複数をひとつの前記突き合わせ部の間に介在させてもよい。
Further, in the present invention, a plurality of the heat radiating plates may be interposed between one butted portion.
また、本発明において、前記筺体の可撓部表面に選択的に冷却冷媒を当節させる手段を備えることが望ましい。
Further, in the present invention, it is desirable to provide means for selectively allowing a cooling refrigerant to contact the surface of the flexible part of the casing.
また、本発明において、正極シート、負極シートならびにセパレータの積層体からなる電極体の少なくともひとつの面が、厚さ0.2mm以上の金属板からなる前記放熱板の両面に樹脂層を備えてなる外装体により封止され、前記放熱板を前記突き合わせ部の間に介在させて用いられることを特徴とする電池を用いてもよい。
In the present invention, at least one surface of the electrode body composed of a laminate of the positive electrode sheet, the negative electrode sheet, and the separator is provided with a resin layer on both surfaces of the heat radiating plate made of a metal plate having a thickness of 0.2 mm or more. A battery that is sealed with an exterior body and is used with the heat radiating plate interposed between the butted portions may be used.
本発明によれば、放熱板と筺体の間の熱抵抗が小さく、電池と放熱板の間の接触熱抵抗が小さく、積層両の電池の主面と、対向する筺体との間の熱抵抗が大きく、筺体内の熱抵抗が小さくなる。したがって上記課題が解決される。
According to the present invention, the thermal resistance between the radiator plate and the housing is small, the contact thermal resistance between the battery and the radiator plate is small, the thermal resistance between the main surfaces of both stacked batteries and the opposing housing is large, The thermal resistance in the housing is reduced. Therefore, the above problem is solved.
(第1実施形態)
以下、図面を参照して、本発明を車両駆動用二次電池の組電池に適用した実施の形態について説明する。 (First embodiment)
Hereinafter, an embodiment in which the present invention is applied to an assembled battery of a secondary battery for driving a vehicle will be described with reference to the drawings.
以下、図面を参照して、本発明を車両駆動用二次電池の組電池に適用した実施の形態について説明する。 (First embodiment)
Hereinafter, an embodiment in which the present invention is applied to an assembled battery of a secondary battery for driving a vehicle will be described with reference to the drawings.
(構成)
<全体構造>
図1に示すように、本実施形態の組電池100は、一体形成された筺体101、積層された複数の電池30、断熱板40、固定部材201、キャップ206、207などから構成されている。 (Constitution)
<Overall structure>
As shown in FIG. 1, the assembledbattery 100 according to the present embodiment includes an integrally formed casing 101, a plurality of stacked batteries 30, a heat insulating plate 40, a fixing member 201, caps 206 and 207, and the like.
<全体構造>
図1に示すように、本実施形態の組電池100は、一体形成された筺体101、積層された複数の電池30、断熱板40、固定部材201、キャップ206、207などから構成されている。 (Constitution)
<Overall structure>
As shown in FIG. 1, the assembled
電池30にはラミネート形電池が用いられており、各電池30は、正極端子31と負極端子32が形成されている。また、各電池30は、積層方向に隣接する他の電池30と直列に接続しやすいよう(隣接する電池30の反対極端子が近くに来るよう)向きを180°反転しながら収容され、正負極端子31、32同士が電気的に直列に接続されている(電気的な接続手段は図示せず)。
A laminated battery is used for the battery 30, and each battery 30 is formed with a positive electrode terminal 31 and a negative electrode terminal 32. In addition, each battery 30 is accommodated while being inverted 180 ° so that it can be easily connected in series with another battery 30 adjacent in the stacking direction (so that the opposite electrode terminal of the adjacent battery 30 comes close). The children 31 and 32 are electrically connected in series (electrical connection means are not shown).
また最も下に位置する電池30の正極端子31と、最も上に位置する電池30の負極端子32が正極外部端子203、負極外部端子204にそれぞれ接続されている。
Further, the positive electrode terminal 31 of the battery 30 positioned at the bottom and the negative electrode terminal 32 of the battery 30 positioned at the top are respectively connected to the positive electrode external terminal 203 and the negative electrode external terminal 204.
筺体101は、側面部に配置された複数の固定部材201によって電池30積層方向に加圧された状態で固定されている。
The casing 101 is fixed in a state of being pressed in the stacking direction of the battery 30 by a plurality of fixing members 201 arranged on the side surface portion.
筺体101の電池30や断熱板40が露出する対向二面は、それぞれキャップ206、207で封止されている。キャップ206、207の材料には絶縁性のポリブチレンテレフタレート(PBT)が用いられている。
The opposing two surfaces of the casing 101 where the battery 30 and the heat insulating plate 40 are exposed are sealed with caps 206 and 207, respectively. Insulating polybutylene terephthalate (PBT) is used as a material for the caps 206 and 207.
<筺体>
図2に示すように、筺体101は、外形が略直方体状を呈しており、上面105、下面106が形成されており、上面105と下面106の間には複数の可撓部w1が形成されている。各可撓部w1は、その周辺に比べ肉厚が小さく構成され、外力によって比較的容易に変形することができる。上面105とその直下の放熱板部104(図2には不図示)、および可撓部w1の形成された側面部分は単一材料すなわち一体であって、またその奥行き方向に一様形状をなしている。筺体101の幅方向、高さ方向および奥行き方向の各寸法は、収容する図示しない断熱板および電池の寸法を勘案されて定められている。 <Housing>
As shown in FIG. 2, thecasing 101 has a substantially rectangular parallelepiped shape, and an upper surface 105 and a lower surface 106 are formed. A plurality of flexible portions w <b> 1 are formed between the upper surface 105 and the lower surface 106. ing. Each flexible portion w1 is configured to have a smaller thickness than the periphery thereof and can be deformed relatively easily by an external force. The upper surface 105, the heat radiating plate portion 104 (not shown in FIG. 2) immediately below the upper surface 105, and the side surface portion on which the flexible portion w1 is formed are a single material, that is, one piece, and have a uniform shape in the depth direction. ing. The dimensions in the width direction, height direction, and depth direction of the casing 101 are determined in consideration of the dimensions of the heat insulating plate (not shown) and the battery to be accommodated.
図2に示すように、筺体101は、外形が略直方体状を呈しており、上面105、下面106が形成されており、上面105と下面106の間には複数の可撓部w1が形成されている。各可撓部w1は、その周辺に比べ肉厚が小さく構成され、外力によって比較的容易に変形することができる。上面105とその直下の放熱板部104(図2には不図示)、および可撓部w1の形成された側面部分は単一材料すなわち一体であって、またその奥行き方向に一様形状をなしている。筺体101の幅方向、高さ方向および奥行き方向の各寸法は、収容する図示しない断熱板および電池の寸法を勘案されて定められている。 <Housing>
As shown in FIG. 2, the
筺体101は後述する押出し加工により形成されており、材料にはA6000系(マグネシウム-シリコン系)アルミニウム合金が用いられている。
The casing 101 is formed by an extrusion process to be described later, and an A6000 series (magnesium-silicon series) aluminum alloy is used as a material.
図4は筺体101を電池挿入方向から見た図である。、各可撓部w1に近接する部分には将来突き合わせとなるふたつの突き合わせ面205が形成されている。突き合わせ面205同士の間には隙間h1が設けられている。またそれぞれの電池30間には、放熱板41が配置され、筺体101には各放熱板41が収まる隙間43が形成されている。
FIG. 4 is a view of the casing 101 as seen from the battery insertion direction. The two abutting surfaces 205 that will be abutted in the future are formed in a portion adjacent to each flexible portion w1. A gap h1 is provided between the butted surfaces 205. A heat sink 41 is disposed between the batteries 30, and a gap 43 in which each heat sink 41 is accommodated is formed in the housing 101.
<電池>
図3は、筺体101に挿入されて示すように、電池30は、平面視において略矩形の外装体33に封止され、外装体33の一辺から正極端子31および負極端子32が引き出された形状をなしている。このような形態の電池は一般にラミネート形電池と呼ばれる。 <Battery>
As shown in FIG. 3 inserted into thecasing 101, the battery 30 is sealed in a substantially rectangular outer package 33 in plan view, and the positive electrode terminal 31 and the negative electrode terminal 32 are drawn from one side of the outer package 33. I am doing. Such a battery is generally called a laminated battery.
図3は、筺体101に挿入されて示すように、電池30は、平面視において略矩形の外装体33に封止され、外装体33の一辺から正極端子31および負極端子32が引き出された形状をなしている。このような形態の電池は一般にラミネート形電池と呼ばれる。 <Battery>
As shown in FIG. 3 inserted into the
正極端子31および負極端子32はいずれも平板状をなし、外装体33の内部でそれぞれ複数のシート状正極、シート状負極と接続されている。
Each of the positive electrode terminal 31 and the negative electrode terminal 32 has a flat plate shape, and is connected to a plurality of sheet-like positive electrodes and sheet-like negative electrodes inside the outer package 33.
続いて、図16を用いて電池30のより詳細な構造について説明する。図16に示すように、外装体33は、電池30の内側となる面に熱融着樹脂層34を有するラミネートフィルムから構成されている。
Subsequently, a more detailed structure of the battery 30 will be described with reference to FIG. As shown in FIG. 16, the exterior body 33 is composed of a laminate film having a heat-sealing resin layer 34 on the inner surface of the battery 30.
外装体33(ラミネートフィルム)は、電池外側から順に、外装樹脂層36、金属層35および熱融着樹脂層34が積層されて構成されている。外装体33は電池の正極端子31、負極端子32が構成された辺の対向側の辺で上下ふたつに折り曲げられ、上側下側の熱融着樹脂層34同士が電極部37の周囲で熱シールされて一体化され、これにより外装体33内が密閉されている。外装樹脂層36はポリエステル(PE)製であり、厚さが50μmとされている。金属層35はアルミニウム合金製であり、厚さが100μmとされている。熱融着樹脂層34には変性ポリオレフィンフィルムが用いられており、厚さが50μmとされている。
The exterior body 33 (laminate film) is configured by laminating an exterior resin layer 36, a metal layer 35, and a heat-sealing resin layer 34 in order from the outside of the battery. The outer package 33 is bent into two upper and lower sides on the side opposite to the side where the positive electrode terminal 31 and the negative electrode terminal 32 of the battery are formed, and the upper and lower heat-sealing resin layers 34 are heat-sealed around the electrode part 37. Thus, the exterior body 33 is hermetically sealed. The exterior resin layer 36 is made of polyester (PE) and has a thickness of 50 μm. The metal layer 35 is made of an aluminum alloy and has a thickness of 100 μm. A modified polyolefin film is used for the heat sealing resin layer 34, and the thickness thereof is 50 μm.
熱シールされた部分の一部には、他の部分よりも強度が小さくなるよう加工された図示しないベント部が形成されている。ベント部では、電池の内圧が異常に上昇した際に他の部分よりも先に破壊して内圧が開放される。
A vent portion (not shown) is formed in a part of the heat-sealed portion so as to have a lower strength than the other portions. In the vent part, when the internal pressure of the battery rises abnormally, it is destroyed before the other parts and the internal pressure is released.
外装体33内部には、複数のシート状正極と複数のシート状負極とがセパレータを介して積層された積層電極体が内蔵され、電解液により浸潤されている。複数のシート状正極、シート状負極およびセパレータからなる積層体により電極体37が形成されている。
In the exterior body 33, a laminated electrode body in which a plurality of sheet-like positive electrodes and a plurality of sheet-like negative electrodes are laminated via separators is built in and infiltrated with an electrolytic solution. An electrode body 37 is formed of a laminate composed of a plurality of sheet-like positive electrodes, sheet-like negative electrodes, and separators.
シート状正極には、正極活物質、炭素材料を主体とする導電助剤およびバインダなどを含有する正極合剤からなる層(正極合剤層)が、正極集電体の表面に形成されている。
In the sheet-like positive electrode, a layer (positive electrode mixture layer) made of a positive electrode mixture containing a positive electrode active material, a conductive additive mainly composed of a carbon material, and a binder is formed on the surface of the positive electrode current collector. .
正極集電体には、厚さ0.015mmのアルミニウム合金箔が用いられている。
An aluminum alloy foil having a thickness of 0.015 mm is used for the positive electrode current collector.
正極合剤層は、正極活物質であるLiCoO2、導電助剤であるアセチレンブラック、バインダであるPVDFなどの混合物であり、片面当たりの厚さが30ないし100μmの範囲に作製されている。
The positive electrode mixture layer is a mixture of LiCoO 2 as a positive electrode active material, acetylene black as a conductive auxiliary agent, PVDF as a binder, and the like, and has a thickness per side of 30 to 100 μm.
正極端子には、厚さ0.2mmのアルミニウム合金が用いられている。
An aluminum alloy with a thickness of 0.2 mm is used for the positive electrode terminal.
シート状負極には、負極活物質、導電助剤およびバインダなどを含有する負極合剤からなる層(負極合剤層)が、負極集電体の表面に形成されている。
In the sheet-like negative electrode, a layer (negative electrode mixture layer) made of a negative electrode mixture containing a negative electrode active material, a conductive additive, a binder and the like is formed on the surface of the negative electrode current collector.
負極集電体には、厚さ0.01mmの銅合金が用いられている。
A copper alloy having a thickness of 0.01 mm is used for the negative electrode current collector.
負極合剤層は、負極活物質である黒鉛、バインダであるスチレンブタジエンゴム(SBR)やカルボキシメチルセルロース(CMC)などの組成からなり、片面当たりの厚さが30ないし100μmの範囲に作製されている。
The negative electrode mixture layer is made of a composition such as graphite as a negative electrode active material and styrene butadiene rubber (SBR) or carboxymethyl cellulose (CMC) as a binder, and has a thickness per side of 30 to 100 μm. .
負極端子には、厚さ0.15mmの銅合金の表面にニッケルめっきを施したものが用いられている。
As the negative electrode terminal, a surface of a 0.15 mm thick copper alloy with nickel plating is used.
セパレータには、厚さが25μmで空孔率が30ないし70%に設定されたポリオレフィン微孔性フィルムが用いられている。
As the separator, a polyolefin microporous film having a thickness of 25 μm and a porosity of 30 to 70% is used.
電解液には、エチレンカーボネート(EC)を主体とする有機溶媒に、LiPF6などの溶質を溶解した溶液(非水電解液)が用いられている。
As the electrolytic solution, a solution (nonaqueous electrolytic solution) in which a solute such as LiPF6 is dissolved in an organic solvent mainly composed of ethylene carbonate (EC) is used.
<断熱板>
図1に示すように、断熱板40は略矩形状をなしている。材料には発泡性樹脂が用いられている。 <Heat insulation plate>
As shown in FIG. 1, theheat insulating plate 40 has a substantially rectangular shape. A foamable resin is used as the material.
図1に示すように、断熱板40は略矩形状をなしている。材料には発泡性樹脂が用いられている。 <Heat insulation plate>
As shown in FIG. 1, the
<放熱板>
図5に示すように、放熱板41は平板状をなしており、材料には厚さ0.5mmのアルミニウム合金が用いられている。それぞれの平面部は、電池30あるいは断熱板40の主面(放熱板に対向する面)よりもわずかに大きく構成されている。放熱板41の端部は断面形状において略三角形状に曲げ加工されて可撓部w2が構成され、(図示において上下方向からの外力に応じて撓むようになっている。 <Heat sink>
As shown in FIG. 5, theheat sink 41 has a flat plate shape, and an aluminum alloy having a thickness of 0.5 mm is used as the material. Each flat portion is configured to be slightly larger than the main surface of the battery 30 or the heat insulating plate 40 (the surface facing the heat radiating plate). The end portion of the heat radiating plate 41 is bent into a substantially triangular shape in cross-sectional shape to form a flexible portion w2, which is bent according to an external force from the vertical direction in the drawing.
図5に示すように、放熱板41は平板状をなしており、材料には厚さ0.5mmのアルミニウム合金が用いられている。それぞれの平面部は、電池30あるいは断熱板40の主面(放熱板に対向する面)よりもわずかに大きく構成されている。放熱板41の端部は断面形状において略三角形状に曲げ加工されて可撓部w2が構成され、(図示において上下方向からの外力に応じて撓むようになっている。 <Heat sink>
As shown in FIG. 5, the
(製造方法)
次に、図5、図6および図7を参照して、本実施形態の組電池の製造方法について説明する。なお本発明は、以下に例示する製造方法に制限されないことは論を待たない。 (Production method)
Next, with reference to FIG. 5, FIG. 6, and FIG. 7, the manufacturing method of the assembled battery of this embodiment is demonstrated. It should be noted that the present invention is not limited to the manufacturing method exemplified below.
次に、図5、図6および図7を参照して、本実施形態の組電池の製造方法について説明する。なお本発明は、以下に例示する製造方法に制限されないことは論を待たない。 (Production method)
Next, with reference to FIG. 5, FIG. 6, and FIG. 7, the manufacturing method of the assembled battery of this embodiment is demonstrated. It should be noted that the present invention is not limited to the manufacturing method exemplified below.
<概要>
本実施形態の組電池100の製造工程は、(1)電池30を作製する電池作製ステップ、(2)筺体101を作製するする筺体作製ステップ、(3)筺体101に放熱板41、断熱板40、電池30などの部品を収容する部品収容ステップ、(4)筺体101を外部から加圧して収容部品に面圧を付与すると共に筺体101の外形寸法を整える加圧固定ステップ、(5)収容した各電池30の正負極端子31、32同士を定められた組み合わせで電気的に接続し、キャップ206、207で封止する端子接続・封止ステップ、を含む。以下、上記工程順に述べる。 <Overview>
The manufacturing process of the assembledbattery 100 of the present embodiment includes (1) a battery manufacturing step for manufacturing the battery 30, (2) a housing manufacturing step for manufacturing the housing 101, and (3) a heat sink 41 and a heat insulating plate 40 on the housing 101. A component housing step for housing a component such as the battery 30; (4) a pressure fixing step for applying a surface pressure to the housing component by pressurizing the housing 101 from the outside and adjusting an outer dimension of the housing 101; A terminal connection / sealing step of electrically connecting the positive and negative terminals 31, 32 of each battery 30 in a predetermined combination and sealing with caps 206, 207 is included. Hereinafter, the steps will be described in the order described above.
本実施形態の組電池100の製造工程は、(1)電池30を作製する電池作製ステップ、(2)筺体101を作製するする筺体作製ステップ、(3)筺体101に放熱板41、断熱板40、電池30などの部品を収容する部品収容ステップ、(4)筺体101を外部から加圧して収容部品に面圧を付与すると共に筺体101の外形寸法を整える加圧固定ステップ、(5)収容した各電池30の正負極端子31、32同士を定められた組み合わせで電気的に接続し、キャップ206、207で封止する端子接続・封止ステップ、を含む。以下、上記工程順に述べる。 <Overview>
The manufacturing process of the assembled
<電池作製ステップ>
96質量%のLiCoO2、2質量%のアセチレンブラック、および2質量%のPVDFを混合し、更にN-メチル-2-ピロリドン(NMP)を加えて正極合剤含有ペーストを調製する。 <Battery fabrication steps>
96% by mass of LiCoO2, 2% by mass of acetylene black, and 2% by mass of PVDF are mixed, and N-methyl-2-pyrrolidone (NMP) is further added to prepare a positive electrode mixture-containing paste.
96質量%のLiCoO2、2質量%のアセチレンブラック、および2質量%のPVDFを混合し、更にN-メチル-2-ピロリドン(NMP)を加えて正極合剤含有ペーストを調製する。 <Battery fabrication steps>
96% by mass of LiCoO2, 2% by mass of acetylene black, and 2% by mass of PVDF are mixed, and N-methyl-2-pyrrolidone (NMP) is further added to prepare a positive electrode mixture-containing paste.
得られた正極合剤含有ペーストを、正極集電体の両面に塗布し、乾燥後、プレス処理を施して正極合剤層を形成し、シート状正極を得る。
The obtained positive electrode mixture-containing paste is applied to both surfaces of the positive electrode current collector, dried, and then subjected to press treatment to form a positive electrode mixture layer, thereby obtaining a sheet-like positive electrode.
得られたシート状正極を、矩形状の正極合剤層形成部分と、矩形状の正極集電体の露出部を含む形状に裁断する。
The obtained sheet-like positive electrode is cut into a shape including a rectangular positive electrode mixture layer forming portion and an exposed portion of the rectangular positive electrode current collector.
他方、98質量%の黒鉛に、1.5質量%のSBRおよび0.5質量%のCMCなどからなるバインダを加えて混合し、更に水を加えて負極合剤含有ペーストを調製する。
On the other hand, a binder composed of 1.5% by mass of SBR and 0.5% by mass of CMC is added to 98% by mass of graphite and mixed, and water is further added to prepare a negative electrode mixture-containing paste.
得られた負極合剤含有ペーストを、負極集電体の両面に塗布し、乾燥後、プレス処理を施して負極合剤層を形成し、シート状負極を得る。
The obtained negative electrode mixture-containing paste is applied to both surfaces of the negative electrode current collector, dried, and then subjected to a press treatment to form a negative electrode mixture layer, whereby a sheet-like negative electrode is obtained.
得られたシート状負極を、矩形状の負極合剤層形成部分と、矩形状の負極集電体の露出部を含む形状に裁断する。
The obtained sheet-like negative electrode is cut into a shape including a rectangular negative electrode mixture layer forming portion and an exposed portion of the rectangular negative electrode current collector.
次に、シート状正極10枚と、シート状負極11枚とを、セパレータを介して積層し、積層電極体とする。このとき、積層電極体の両端はいずれも負極となるように積層する。
Next, 10 sheet-like positive electrodes and 11 sheet-like negative electrodes are laminated via a separator to obtain a laminated electrode body. At this time, lamination is performed so that both ends of the laminated electrode body become negative electrodes.
次に、各シート状正極の集電体露出部をアルミニウム合金製の正極端子に超音波溶着し、更に各シート状負極の集電体露出部を銅合金製の負極端子に超音波溶着する。なお、正極端子および負極端子には、外装体の熱シール部に位置することが予定される箇所の両面に外装体の熱融着樹脂層を構成する樹脂と同じ変性ポリオレフィンにより構成された接着層を配する。
Next, the current collector exposed portion of each sheet-like positive electrode is ultrasonically welded to the positive electrode terminal made of aluminum alloy, and the current collector exposed portion of each sheet-like negative electrode is ultrasonically welded to the negative electrode terminal made of copper alloy. In addition, the positive electrode terminal and the negative electrode terminal have an adhesive layer made of the same modified polyolefin as the resin constituting the heat-sealing resin layer of the outer package on both sides of the portion that is supposed to be located in the heat seal portion of the outer package. Arrange.
次に、ラミネートフィルムを用意し、ラミネートフィルムの熱融着樹脂層34上に、積層電極体を正極端子31および負極端子32の一部が突出するように置き、積層電極体を包むようにラミネートフィルムを二つ折りにする。
Next, a laminate film is prepared, and the laminated electrode body is placed on the heat-fusing resin layer 34 of the laminate film so that a part of the positive electrode terminal 31 and the negative electrode terminal 32 protrudes, and the laminate film is wrapped so as to wrap the laminated electrode body. Fold it in half.
その後、ラミネートフィルムの重ねられた各辺を、一部を残して熱シールして外装体33とし、70℃で一定時間真空乾燥する。
Then, each side where the laminate film is stacked is heat-sealed except for a part to form an outer package 33, which is vacuum-dried at 70 ° C. for a certain time.
続いて、熱シールしなかった一部の辺から電解液を注入し、減圧状態で同部を熱シールして封止する。
Subsequently, an electrolytic solution is injected from a part of the side that is not heat-sealed, and the part is heat-sealed and sealed in a reduced pressure state.
積層電極体および非水電解液を収容した封止後の外装体を一定時間エージングし、その後所定の電流、電圧プロファイルでの充電を実施することで化成処理を行って、ラミネート形リチウムイオン二次電池を得る。
The laminated electrode body and the sealed outer body containing the non-aqueous electrolyte are aged for a certain period of time, and then subjected to a chemical conversion treatment by charging with a predetermined current and voltage profile. Get a battery.
<筺体作製ステップ>
鋳造により形成された、アルミニウム合金原材料からなるビレットを、予め適切な長さに切断する。 <Housing body production step>
A billet made of aluminum alloy raw material formed by casting is cut into an appropriate length in advance.
鋳造により形成された、アルミニウム合金原材料からなるビレットを、予め適切な長さに切断する。 <Housing body production step>
A billet made of aluminum alloy raw material formed by casting is cut into an appropriate length in advance.
ビレットを材料の融点に近い500℃前後に加熱し、同時に金型であるダイスも予熱する。
¡The billet is heated to around 500 ° C, which is close to the melting point of the material, and at the same time, the die that is the mold is preheated.
プレス機のピストンにより1000トンないしはそれ以上の加圧力により、ビレットをダイスの形状に沿って押し出す。押し出されて所定の断面となったビレットは、冷却過程で僅かにねじれやひずみを生じるので、両端より引張りストレッチ矯正する。
The billet is pushed out along the shape of the die with a pressing force of 1000 tons or more by the piston of the press machine. The billet that has been extruded and has a predetermined cross-section is slightly twisted or distorted during the cooling process, and is stretched and straightened from both ends.
次に表面処理を施し、表面の電気絶縁性、耐蝕性を調整する。
Next, surface treatment is performed to adjust the electrical insulation and corrosion resistance of the surface.
その後押出し方向が必要長さに切断され、後加工を施す。筺体形状となった後、必要強度および硬度を得るための熱処理を行い、筺体101を得る。
After that, the extrusion direction is cut to the required length and post-processing is performed. After becoming a housing shape, heat treatment for obtaining necessary strength and hardness is performed to obtain a housing 101.
<部品収容ステップ>
図5に示すように、用意された筺体101の開口面より、まず、計7枚の放熱板41をそれぞれ所定位置に挿入する。これにより、各放熱板41の間には一定の空間が形成される。形成された各空間に対し、筺体の上面105および下面106と隣接する空間に断熱板40を挿入し、その他の空間に電池30を挿入する。各空間は予め、挿入されるこれら部品よりも大きな寸法で形成されているため、これら部品を無理なく挿入することができる。 <Parts accommodation step>
As shown in FIG. 5, first, a total of sevenheat radiating plates 41 are respectively inserted into predetermined positions from the opening surface of the prepared casing 101. Thereby, a fixed space is formed between the heat radiating plates 41. For each formed space, the heat insulating plate 40 is inserted into the space adjacent to the upper surface 105 and the lower surface 106 of the housing, and the battery 30 is inserted into the other space. Since each space is formed in advance with a size larger than these parts to be inserted, these parts can be inserted without difficulty.
図5に示すように、用意された筺体101の開口面より、まず、計7枚の放熱板41をそれぞれ所定位置に挿入する。これにより、各放熱板41の間には一定の空間が形成される。形成された各空間に対し、筺体の上面105および下面106と隣接する空間に断熱板40を挿入し、その他の空間に電池30を挿入する。各空間は予め、挿入されるこれら部品よりも大きな寸法で形成されているため、これら部品を無理なく挿入することができる。 <Parts accommodation step>
As shown in FIG. 5, first, a total of seven
端子接続・封止ステップで隣接する電池30同士を直列に接続しやすいよう(すなわち正負反対極の端子が直近に位置するよう)、各電池は向きが交互に反転している。また各電池30の外形の一部(図5の外装体周縁部134)が筺体101の内壁に当接し、電池30と筺体101との紙面水平方向相対位置が定められている。各電池30、断熱板40の紙面奥行き方向挿入量は、治具により一定量に管理されている。
In order to facilitate connecting the adjacent batteries 30 in series in the terminal connection / sealing step (that is, the terminals of the positive and negative opposite poles are positioned closest to each other), the direction of each battery is alternately reversed. Further, a part of the outer shape of each battery 30 (the outer peripheral edge portion 134 in FIG. 5) abuts on the inner wall of the casing 101, and the relative position in the paper surface horizontal direction between the battery 30 and the casing 101 is determined. The insertion amount of each battery 30 and the heat insulating plate 40 in the depth direction of the drawing is managed by a jig.
<加圧固定ステップ>
図6に示すように、筺体101の上面105、下面106を矢印Yの方向に加圧する。加圧の際には図示しない互いに平行な剛体平板を治具としてあてがい、上面105、下面106が挿入した電池30や断熱板40の反力で変形しないようにする。 <Pressure fixing step>
As shown in FIG. 6, theupper surface 105 and the lower surface 106 of the housing 101 are pressurized in the direction of arrow Y. When pressing, rigid parallel plates (not shown) are applied as jigs so that the upper surface 105 and the lower surface 106 are not deformed by the reaction force of the battery 30 or the heat insulating plate 40 inserted.
図6に示すように、筺体101の上面105、下面106を矢印Yの方向に加圧する。加圧の際には図示しない互いに平行な剛体平板を治具としてあてがい、上面105、下面106が挿入した電池30や断熱板40の反力で変形しないようにする。 <Pressure fixing step>
As shown in FIG. 6, the
加圧により、可撓部w1、w2は曲げ変形して隙間h1は0に近づくと同時に、各放熱板41同士の距離が電池30や断熱板40の厚さに近づき、やがて上下の放熱板部104が電池30や断熱板40を圧縮する。加圧をさらに継続すると、隙間h1は0になって(すなわち隙間h1を構成した筺体101の突き合わせ面205同士が当接して)、筺体101はそれ以上の加圧力をかけても紙面垂直方向に変形しなくなる。また同時に、放熱板41の可撓部w2は図5で示したような初期の形状に戻ろうとする力を内力として保有している。
Due to the pressurization, the flexible portions w1 and w2 are bent and deformed so that the gap h1 approaches 0. At the same time, the distance between the heat radiating plates 41 approaches the thickness of the battery 30 and the heat insulating plate 40, and then the upper and lower heat radiating plate portions. 104 compresses the battery 30 and the heat insulating plate 40. When the pressurization is further continued, the gap h1 becomes 0 (that is, the butted surfaces 205 of the casings 101 constituting the gap h1 come into contact with each other). No longer deforms. At the same time, the flexible portion w2 of the heat radiating plate 41 has as its internal force a force to return to the initial shape as shown in FIG.
図7および図1に示すように、筺体101の上面105から下面106にかけて剛体の固定部材201をあてがい、筺体101に形成されたフック42に引っかけて戻りを防止し固定する。これにより、加圧力を除いた後のスプリングバックにより筺体101形状が元に戻ることが防止される。
As shown in FIGS. 7 and 1, a rigid fixing member 201 is applied from the upper surface 105 to the lower surface 106 of the housing 101, and is hooked on the hook 42 formed on the housing 101 to prevent return and fix. This prevents the housing 101 from returning to its original shape due to the springback after the applied pressure is removed.
本ステップにおいて、可撓部w1、w2が弾性変形した状態で固定されてもよく、また塑性変形を伴った変形状態で固定されてもよい。
In this step, the flexible portions w1 and w2 may be fixed in an elastically deformed state, or may be fixed in a deformed state accompanied by plastic deformation.
<端子接続・封止ステップ>
積層された各電池は接続される正負極端子同士が近接した状態にあるので、組み合わせごと金属製のバスバーをあてがい超音波溶着により接続する。直列の両極端となる正極端子31、負極端子32は、図1に示したキャップ206に予め組み込まれた正負極外部端子203、204に超音波溶着によって接続される。これにより組電池と外部との電気的接点が確定される。 <Terminal connection / sealing step>
Since the stacked batteries are in a state where the positive and negative terminals to be connected are close to each other, the metal bus bars are assigned to each combination by ultrasonic welding. Thepositive electrode terminal 31 and the negative electrode terminal 32 which are the extremes in series are connected to the positive and negative external terminals 203 and 204 previously incorporated in the cap 206 shown in FIG. 1 by ultrasonic welding. Thereby, the electrical contact between the assembled battery and the outside is determined.
積層された各電池は接続される正負極端子同士が近接した状態にあるので、組み合わせごと金属製のバスバーをあてがい超音波溶着により接続する。直列の両極端となる正極端子31、負極端子32は、図1に示したキャップ206に予め組み込まれた正負極外部端子203、204に超音波溶着によって接続される。これにより組電池と外部との電気的接点が確定される。 <Terminal connection / sealing step>
Since the stacked batteries are in a state where the positive and negative terminals to be connected are close to each other, the metal bus bars are assigned to each combination by ultrasonic welding. The
端子接続部およびその反対面(すなわち筺体の押出し方向前後端面)にキャップ206、207を被せて封止し、組電池が得られる。
The caps 206 and 207 are placed on the terminal connection portion and the opposite surfaces (that is, the front and rear end surfaces in the pushing direction of the casing) and sealed to obtain an assembled battery.
(作用効果等)
次に、本実施形態の組電池の作用効果等について説明する。 (Effects etc.)
Next, the effects and the like of the assembled battery of this embodiment will be described.
次に、本実施形態の組電池の作用効果等について説明する。 (Effects etc.)
Next, the effects and the like of the assembled battery of this embodiment will be described.
本実施形態の組電池によれば、各電池と放熱板とが常に所定の荷重で押圧されるので、電池と放熱板との間の接触熱抵抗を小さくできる。
According to the assembled battery of the present embodiment, each battery and the heat radiating plate are always pressed with a predetermined load, so that the contact thermal resistance between the battery and the heat radiating plate can be reduced.
また、放熱板と筺体とが放熱板の可撓部w2に残存する内力(ばねの復元力)によって、放熱板と筺体の間の接触を十分に確保することができるため、接触熱抵抗を小さくできる。また、筺体が一体であるので、筺体内の熱抵抗を小さくできる。
In addition, since the heat sink and the housing can ensure sufficient contact between the heat sink and the housing by the internal force (spring restoring force) remaining in the flexible portion w2 of the heat sink, the contact thermal resistance is reduced. it can. Moreover, since the housing is integral, the thermal resistance in the housing can be reduced.
また、断熱材によって積層両端の電池の主面と筺体との間の熱抵抗を大きくでき、組電池100を構成する各電池30の放熱経路の主経路を筺体101の側面部への経路とすることができるため、各電池30の温度むらを抑制することができる。
Moreover, the thermal resistance between the main surface of the battery at both ends of the stack and the casing can be increased by the heat insulating material, and the main path of the heat dissipation path of each battery 30 constituting the assembled battery 100 is used as a path to the side surface portion of the casing 101. Therefore, the temperature unevenness of each battery 30 can be suppressed.
以上から、各電池の熱が等しく電池積層方向の垂直方向に伝えられるので、各電池の温度を均一化することができ、上記した目的を達することができる。
From the above, since the heat of each battery is equally transmitted in the vertical direction of the battery stacking direction, the temperature of each battery can be made uniform, and the above-described purpose can be achieved.
さらに、本発明の組電池では、電池収容部および断熱板収容部の寸法が収容される電池および断熱板の厚さよりも大きいので、これらの挿入収容を容易に行うことができる。
Furthermore, in the assembled battery of the present invention, since the dimensions of the battery housing portion and the heat insulating plate housing portion are larger than the thickness of the battery and heat insulating plate to be housed, these can be inserted and housed easily.
さらに、本発明の組電池では、筺体の突き合わせ面205同士が当接することによって電池収容部および断熱板収容部のつぶれ量が自動的に一定値に管理されるので、電池や断熱板などの収容部品の面圧が一定に管理され、電池や断熱板の特性を安定させることができる。
Furthermore, in the assembled battery of the present invention, the amount of crushing of the battery housing part and the heat insulating plate housing part is automatically managed to a constant value by the abutting surfaces 205 of the housings coming into contact with each other. The surface pressure of the parts is controlled to be constant, and the characteristics of the battery and the heat insulating plate can be stabilized.
上記した作用効果等を確認するために実施した、組電池の温度測定および熱伝導解析の結果について述べる。
The results of the temperature measurement and heat conduction analysis of the assembled battery conducted to confirm the above-described effects and the like will be described.
<組電池の温度測定>
従来の放熱板と筺体との熱接触がよくない組電池における各電池の温度測定を行った。 <Measurement of battery temperature>
The temperature of each battery in the assembled battery in which the thermal contact between the conventional heat sink and the casing was not good was measured.
従来の放熱板と筺体との熱接触がよくない組電池における各電池の温度測定を行った。 <Measurement of battery temperature>
The temperature of each battery in the assembled battery in which the thermal contact between the conventional heat sink and the casing was not good was measured.
定格容量約10Ahのラミネート電池7個を厚さ方向に積層すると共に、各電池間に厚さ0.5mm、アルミニウム合金製の放熱板8枚を介在させた。各放熱板は両端部4mmずつを、スプリングバックを含まない状態で角度が80度になるよう曲げ加工した。積層の両端には厚さ4mmで電池とほぼ同等の主面面積を有する発砲樹脂を断熱板として配置した。これらを、放熱板の曲げ加工した端面が接するよう寸法を調整した、アルミニウム合金製で厚さ2mmの筺体に収容し、電池積層方向に約200Nの圧縮荷重を与えて固定した。
7 laminate batteries having a rated capacity of about 10 Ah were laminated in the thickness direction, and 8 heat sinks made of aluminum alloy having a thickness of 0.5 mm were interposed between the batteries. Each radiator plate was bent at 4 mm at both ends so that the angle was 80 degrees without including the springback. At both ends of the laminate, a foaming resin having a thickness of 4 mm and a surface area substantially equivalent to that of the battery was disposed as a heat insulating plate. These were accommodated in a 2 mm thick housing made of aluminum alloy, the dimensions of which were adjusted so that the bent end face of the heat sink was in contact, and fixed by applying a compressive load of about 200 N in the battery stacking direction.
隣接する電池の正負極端子同士を、厚さ0.2mmの銅合金板を二つ折りにした形状のバスバーで挟み込んでかしめ固定して直列に接続し、末端の正負極端子を正負極外部接続端子にそれぞれ接続して組電池を構成した。収容した各電池の主面中央部表面には熱電対を貼り付け、それぞれの温度を測定できるようにした。正負極外部接続端子を、それぞれハーネスを介して電池充放電設備に接続し、充放電設備により予め満充電状態とした。環境温度を25℃に保って十分な休止時間を経た後、組電池表面(すなわち筺体表面)に冷却風が当たるようにして30A一定の条件で放電し、放電開始から1200s時点の各電池の温度を評価した。
The positive and negative terminals of adjacent batteries are clamped and fixed in series by sandwiching a 0.2 mm thick copper alloy plate into two folded bus bars, and the terminal positive and negative terminals are connected to positive and negative external connection terminals. A battery pack was constructed by connecting to each. A thermocouple was attached to the surface of the central part of the main surface of each battery accommodated so that the temperature of each battery could be measured. The positive and negative external connection terminals were respectively connected to the battery charge / discharge equipment via the harness, and were fully charged in advance by the charge / discharge equipment. After a sufficient rest time with the ambient temperature kept at 25 ° C., discharge was performed at a constant condition of 30 A so that cooling air hits the surface of the assembled battery (that is, the surface of the housing), and the temperature of each battery at 1200 s from the start of discharge. Evaluated.
図8に薄墨の三角で測定結果を記す。図8の横軸は電池の積層順であり、#01は積層下端、#07は積層上端の電池を示す。#04すなわち積層中央の電池の温度が最も高くなり、積層上下端に近づくにつれ低くなった。温度の最も高い電池では、温度は初期(25℃)から約43℃になり、約18℃上昇した。温度の最も高い電池と低い電池では2ないし3℃の温度差を生じた。
Fig. 8 shows the measurement results with thin ink triangles. The horizontal axis in FIG. 8 is the stacking order of the batteries, # 01 indicates the bottom of the stack, and # 07 indicates the battery at the top of the stack. # 04, that is, the temperature of the battery at the center of the stack became the highest, and decreased as it approached the upper and lower ends of the stack. In the battery having the highest temperature, the temperature was about 43 ° C. from the initial stage (25 ° C.), and increased by about 18 ° C. There was a temperature difference of 2 to 3 ° C. between the battery with the highest temperature and the battery with the lowest temperature.
<組電池の熱伝導解析>
上記測定の解析による再現を試みた。二次元非定常熱伝導解析条件とし、実機形状の左右対称性を組電池の断面片側半分(図7と同様)の形状をモデル化した。放熱板、断熱板、筺体の材料定数として、熱伝導率は順に236W/m・K、0.1(同)、236(同)を、また比熱は900J/kg・K、2000(同)、900(同)を、さらに密度は2700kg/m^3、85(同)、2700(同)を解析に用いた。また電池は複合材の積層構造であるため各材料個別の材料定数と使用量を勘案して求めた、電池としての等価材料定数を使用した。熱伝導率は厚さ方向(積層方向)で1W/m・K、幅方向で40(同)、比熱は954J/kg・K、密度は2000kg/m^3とした。各放熱板と筺体との界面は熱的な接触が不十分であると仮定し無限大の熱抵抗を与えた。 <Heat conduction analysis of battery pack>
An attempt was made to reproduce the above measurement by analysis. Two-dimensional unsteady heat conduction analysis conditions were used, and the shape of the half of the cross section of one side of the assembled battery (similar to FIG. 7) was modeled as the left-right symmetry of the actual machine shape. As the material constants of the heat sink, heat insulating plate, and housing, the thermal conductivity is 236 W / m · K, 0.1 (same), 236 (same) in order, and the specific heat is 900 J / kg · K, 2000 (same), 900 (same as above) and density of 2700 kg / m ^ 3, 85 (same as above) and 2700 (same as above) were used for the analysis. Further, since the battery has a laminated structure of composite materials, the equivalent material constant as the battery obtained by considering the material constant and the usage amount of each material was used. The thermal conductivity was 1 W / m · K in the thickness direction (stacking direction), 40 in the width direction (same), the specific heat was 954 J / kg · K, and the density was 2000 kg / m ^ 3. The interface between each heat sink and the housing was assumed to have insufficient thermal contact, and infinite thermal resistance was given.
上記測定の解析による再現を試みた。二次元非定常熱伝導解析条件とし、実機形状の左右対称性を組電池の断面片側半分(図7と同様)の形状をモデル化した。放熱板、断熱板、筺体の材料定数として、熱伝導率は順に236W/m・K、0.1(同)、236(同)を、また比熱は900J/kg・K、2000(同)、900(同)を、さらに密度は2700kg/m^3、85(同)、2700(同)を解析に用いた。また電池は複合材の積層構造であるため各材料個別の材料定数と使用量を勘案して求めた、電池としての等価材料定数を使用した。熱伝導率は厚さ方向(積層方向)で1W/m・K、幅方向で40(同)、比熱は954J/kg・K、密度は2000kg/m^3とした。各放熱板と筺体との界面は熱的な接触が不十分であると仮定し無限大の熱抵抗を与えた。 <Heat conduction analysis of battery pack>
An attempt was made to reproduce the above measurement by analysis. Two-dimensional unsteady heat conduction analysis conditions were used, and the shape of the half of the cross section of one side of the assembled battery (similar to FIG. 7) was modeled as the left-right symmetry of the actual machine shape. As the material constants of the heat sink, heat insulating plate, and housing, the thermal conductivity is 236 W / m · K, 0.1 (same), 236 (same) in order, and the specific heat is 900 J / kg · K, 2000 (same), 900 (same as above) and density of 2700 kg / m ^ 3, 85 (same as above) and 2700 (same as above) were used for the analysis. Further, since the battery has a laminated structure of composite materials, the equivalent material constant as the battery obtained by considering the material constant and the usage amount of each material was used. The thermal conductivity was 1 W / m · K in the thickness direction (stacking direction), 40 in the width direction (same), the specific heat was 954 J / kg · K, and the density was 2000 kg / m ^ 3. The interface between each heat sink and the housing was assumed to have insufficient thermal contact, and infinite thermal resistance was given.
図8に白抜きの三角で解析結果を示す。解析結果は実測結果にほぼ重なっていることから、この解析条件は妥当であると判断される。この解析条件で、各電池の熱が筺体に伝わり冷却風により冷却されるためには、熱はすべて隣接の電池および熱抵抗の大きな断熱板を経由して移動するほかなく、そのためには隣接電池間に温度差が必要となる。実測結果が本解析条件でよく再現されたことは、実機の熱移動が放熱板から筺体への経路を殆ど経由することなく、断熱板を経由した好ましくない経路で行われたことを示唆している。すなわち、薄く剛性の小さな放熱板のばね力による筺体との熱的な接触は期待できないことが明らかとなった。
Fig. 8 shows the analysis results with white triangles. Since the analysis result almost overlaps the actual measurement result, it is determined that this analysis condition is appropriate. Under this analysis condition, in order for the heat of each battery to be transferred to the housing and cooled by the cooling air, all heat must be transferred via the adjacent battery and the heat insulating plate having a large thermal resistance. A temperature difference is required between them. The fact that the actual measurement results were well reproduced under these analysis conditions suggests that the heat transfer of the actual machine was performed through an unfavorable route through the heat insulating plate, hardly passing through the route from the heat sink to the housing. Yes. That is, it became clear that thermal contact with the housing by the spring force of the thin and small heat sink cannot be expected.
次に、本実施形態の特性を再現する解析を試みた。上記解析と同じ形状、材料定数のモデルにおいて、各放熱板と筺体との界面に、予備実験により求めた0.01K/Wの熱抵抗を与えた。
Next, an analysis to reproduce the characteristics of this embodiment was attempted. In the model of the same shape and material constant as in the above analysis, a thermal resistance of 0.01 K / W obtained by a preliminary experiment was given to the interface between each heat sink and the housing.
図9に白抜きの丸で解析結果を示す。比較のため図8で示した解析結果を併記した。本実施形態の各電池温度は、図8の解析結果に比べ総じて低く、また各電池の温度のばらつきも小さいことがわかる。これは各電池の熱がそれぞれに近い放熱板の端部を介して筺体へ伝えられたことを示唆している。
Fig. 9 shows the analysis results with open circles. For comparison, the analysis results shown in FIG. 8 are also shown. It can be seen that the battery temperatures of the present embodiment are generally lower than the analysis results of FIG. 8, and the temperature variations of the batteries are small. This suggests that the heat of each battery was transferred to the housing through the end of the heat sink close to each battery.
以上、組電池内各電池の温度実測ならびに解析から、本実施形態の有効性が明らかとなった。
As described above, the effectiveness of the present embodiment has been clarified from the temperature measurement and analysis of each battery in the assembled battery.
(第2実施形態)
次に、本発明を車両駆動用二次電池の組電池に適用した第2の実施の形態について説明する。本実施形態の組電池は、放熱板と筺体の界面の熱的接触形態を変化させたものである。なお、本実施形態以下の実施形態において、上述した第1実施形態と同一の部材には同一の符号を付してその説明を省略し、以下、異なる箇所のみ説明する。 (Second Embodiment)
Next, a second embodiment in which the present invention is applied to an assembled battery of a vehicle driving secondary battery will be described. The assembled battery of the present embodiment is obtained by changing the thermal contact form of the interface between the heat sink and the housing. In addition, in embodiment below this embodiment, the same code | symbol is attached | subjected to the member same as 1st Embodiment mentioned above, the description is abbreviate | omitted, and only a different location is demonstrated hereafter.
次に、本発明を車両駆動用二次電池の組電池に適用した第2の実施の形態について説明する。本実施形態の組電池は、放熱板と筺体の界面の熱的接触形態を変化させたものである。なお、本実施形態以下の実施形態において、上述した第1実施形態と同一の部材には同一の符号を付してその説明を省略し、以下、異なる箇所のみ説明する。 (Second Embodiment)
Next, a second embodiment in which the present invention is applied to an assembled battery of a vehicle driving secondary battery will be described. The assembled battery of the present embodiment is obtained by changing the thermal contact form of the interface between the heat sink and the housing. In addition, in embodiment below this embodiment, the same code | symbol is attached | subjected to the member same as 1st Embodiment mentioned above, the description is abbreviate | omitted, and only a different location is demonstrated hereafter.
図10に示すように、本実施形態の組電池110は、放熱板51が端部を含め平板状に構成されている。また放熱板51と筺体111の界面に可撓材116が設けられている。可撓材116には発泡樹脂が用いられている。
As shown in FIG. 10, in the assembled battery 110 of the present embodiment, the heat radiating plate 51 is configured in a flat plate shape including the end portions. A flexible material 116 is provided at the interface between the heat sink 51 and the casing 111. Foamed resin is used for the flexible material 116.
可撓材116は厚さ方向に圧縮された状態で(すなわち元の厚さよりも小さな厚さ寸法で)固定されている。
The flexible material 116 is fixed in a compressed state in the thickness direction (that is, with a thickness dimension smaller than the original thickness).
本実施形態の組電池110によれば、可撓材116が圧縮された状態で固定されたことによる内力(元の形状に戻ろうとする力)により放熱板51の図示下面と筺体111との接触面に大きな面圧を作用させることができる。したがって、筺体101の突合わせ面205と放熱板51とを密に当接させることができるため、接触熱抵抗を効果的に低減させることができる。
According to the assembled battery 110 of the present embodiment, the illustrated lower surface of the heat radiating plate 51 and the housing 111 are brought into contact with each other by an internal force (force to return to the original shape) due to the flexible material 116 being fixed in a compressed state. A large surface pressure can be applied to the surface. Therefore, since the abutting surface 205 of the housing 101 and the heat radiating plate 51 can be brought into close contact with each other, the contact thermal resistance can be effectively reduced.
なお本実施形態では、可撓材116は別個の部品として部品収容ステップの段階で放熱板51と筺体111との間に配置してもよく、あるいは予め放熱板51もしくは筺体111の所定位置に仮止めされていてもよい。
In the present embodiment, the flexible material 116 may be disposed as a separate component between the heat sink 51 and the casing 111 at the stage of the component housing step, or temporarily placed in a predetermined position on the heat sink 51 or the casing 111. It may be stopped.
また可撓材116の材料として、発泡金属が用いられてもよく、この場合発泡樹脂を用いた場合に比べ自身の熱伝導率が高くなるので、可撓材116を通じた放熱板116と筺体111の熱移動も効果的に行うことができる。(第2の実施形態が第1の実施形態よりも優れている点を記載する。)
In addition, a foam metal may be used as the material of the flexible material 116. In this case, the thermal conductivity thereof is higher than that in the case of using the foam resin, and therefore the heat sink 116 and the casing 111 through the flexible material 116 are used. This heat transfer can also be performed effectively. (The point that the second embodiment is superior to the first embodiment will be described.)
(第3実施形態)
次に、本発明を車両駆動用二次電池の組電池に適用した第3の実施の形態について説明する。本実施形態の組電池は、放熱板と筺体の界面の熱的接触形態をさらに変化させたものである。 (Third embodiment)
Next, a third embodiment in which the present invention is applied to an assembled battery of a vehicle driving secondary battery will be described. The assembled battery of the present embodiment is obtained by further changing the thermal contact mode at the interface between the heat sink and the housing.
次に、本発明を車両駆動用二次電池の組電池に適用した第3の実施の形態について説明する。本実施形態の組電池は、放熱板と筺体の界面の熱的接触形態をさらに変化させたものである。 (Third embodiment)
Next, a third embodiment in which the present invention is applied to an assembled battery of a vehicle driving secondary battery will be described. The assembled battery of the present embodiment is obtained by further changing the thermal contact mode at the interface between the heat sink and the housing.
図11に示すように、本実施形態の組電池120は、放熱板61の端部がU字状に曲げ加工され、可撓部w3を形成している。またU字状の曲げ加工部の内周部には、可撓材126が設けられている。可撓材126には発泡樹脂が用いられている。
As shown in FIG. 11, in the assembled battery 120 of the present embodiment, the end of the heat radiating plate 61 is bent into a U shape to form a flexible portion w3. A flexible material 126 is provided on the inner periphery of the U-shaped bending portion. Foamed resin is used for the flexible material 126.
可撓材126は厚さ方向に圧縮された状態で固定されている。また可撓部w3は元の形状に比べ変形した状態で固定されている。
The flexible material 126 is fixed in a compressed state in the thickness direction. The flexible portion w3 is fixed in a deformed state compared to the original shape.
本実施形態の組電池120によれば、可撓材126の内力および放熱板61の可撓部w3の内力の合力により放熱板61と筺体との接触面に大きな面圧を作用させることができるので、接触熱抵抗を効果的に低減させることができる。また、放熱板61と筺体121とが二つの面(すなわちU字状曲げ部の上面と下面)で接触させることができるため、第2実施形態に比べ伝熱面積を大きくすることができ、やはり接触熱抵抗を効果的に低減させることができる。
According to the assembled battery 120 of this embodiment, a large surface pressure can be applied to the contact surface between the heat sink 61 and the housing by the resultant force of the internal force of the flexible material 126 and the internal force of the flexible portion w3 of the heat sink 61. Therefore, the contact thermal resistance can be effectively reduced. Moreover, since the heat sink 61 and the housing 121 can be brought into contact with each other on two surfaces (that is, the upper surface and the lower surface of the U-shaped bent portion), the heat transfer area can be increased compared to the second embodiment. The contact thermal resistance can be effectively reduced.
(第4実施形態)
次に、本発明を車両駆動用二次電池の組電池に適用した第4の実施の形態について説明する。本実施形態の組電池は、組電池表面すなわち筺体表面からの冷却性を向上させたものである。 (Fourth embodiment)
Next, a fourth embodiment in which the present invention is applied to an assembled battery of a vehicle driving secondary battery will be described. The assembled battery of the present embodiment has improved cooling performance from the assembled battery surface, that is, the housing surface.
次に、本発明を車両駆動用二次電池の組電池に適用した第4の実施の形態について説明する。本実施形態の組電池は、組電池表面すなわち筺体表面からの冷却性を向上させたものである。 (Fourth embodiment)
Next, a fourth embodiment in which the present invention is applied to an assembled battery of a vehicle driving secondary battery will be described. The assembled battery of the present embodiment has improved cooling performance from the assembled battery surface, that is, the housing surface.
図12、図13に示すように、本実施形態の組電池130は、筺体131の可撓部w1群を包含する側面部を覆うダクト208を備えている。ダクト208のさらに外側には固定部材221が設けられている。ダクト208は射出成型されたPBTにより形成されている。ダクト208の組電池奥行き方向両端にはさらに外部のダクトとの接続インタフェース部230(図13参照)が形成されている。二つの接続インタフェースのうち片方は冷却冷媒の導入、もう片方は排出を行う。
As shown in FIGS. 12 and 13, the assembled battery 130 of this embodiment includes a duct 208 that covers a side surface including the flexible portion w <b> 1 group of the housing 131. A fixing member 221 is provided on the outer side of the duct 208. The duct 208 is formed by injection molded PBT. A connection interface unit 230 (see FIG. 13) with an external duct is further formed at both ends of the duct 208 in the assembled battery depth direction. One of the two connection interfaces introduces cooling refrigerant and the other exhausts.
ダクト208と筺体131で画定される空間(図12参照)は冷却冷媒の流路209を構成している。固定部材221は筺体131が元の形状に戻るのを防ぐと同時に、ダクト208が変形あるいは脱落するのを防止する機能を有している。冷却冷媒には外部からファンによって導入された空気が用いられている。
The space defined by the duct 208 and the casing 131 (see FIG. 12) constitutes a cooling refrigerant flow path 209. The fixing member 221 functions to prevent the casing 131 from returning to its original shape, and at the same time, prevent the duct 208 from being deformed or dropped. Air introduced from outside by a fan is used as the cooling refrigerant.
本実施形態の組電池130によれば、各電池30から各放熱板41を通じて筺体131に伝えられた熱は、筺体131の表面で即座に冷却冷媒を通じて外部に放出されるため、筺体131の上面105、下面106への拡散を軽減することができ、上面105、下面106に対して直接冷却冷媒を当てる必要がなくなり、結果として組電池130をさらに複数近接配置して大規模な蓄電システムを構成する場合に、上面105あるいは下面106に冷却冷媒が流れる空隙を用意する必要がなくなる。したがって複数の組電池130をより高密度に配置することが可能になる。
According to the assembled battery 130 of the present embodiment, the heat transmitted from each battery 30 to the housing 131 through each heat sink 41 is immediately released to the outside through the cooling refrigerant on the surface of the housing 131, and thus the upper surface of the housing 131. 105, the diffusion to the lower surface 106 can be reduced, and it is not necessary to directly apply the cooling refrigerant to the upper surface 105 and the lower surface 106. As a result, a plurality of assembled batteries 130 are arranged closer to each other to configure a large-scale power storage system. In this case, it is not necessary to prepare a gap through which the cooling refrigerant flows on the upper surface 105 or the lower surface 106. Therefore, it becomes possible to arrange a plurality of assembled batteries 130 with higher density.
(第5実施形態)
次に、本発明を車両駆動用二次電池の組電池に適用した第5の実施の形態について説明する。本実施形態の組電池は、放熱板と筺体との界面の熱的接触形態をさらに変化させたものである。 (Fifth embodiment)
Next, a fifth embodiment in which the present invention is applied to an assembled battery of a vehicle driving secondary battery will be described. The assembled battery of the present embodiment is obtained by further changing the thermal contact mode at the interface between the heat sink and the housing.
次に、本発明を車両駆動用二次電池の組電池に適用した第5の実施の形態について説明する。本実施形態の組電池は、放熱板と筺体との界面の熱的接触形態をさらに変化させたものである。 (Fifth embodiment)
Next, a fifth embodiment in which the present invention is applied to an assembled battery of a vehicle driving secondary battery will be described. The assembled battery of the present embodiment is obtained by further changing the thermal contact mode at the interface between the heat sink and the housing.
図14に示すように、本実施形態の組電池140は、各放熱板71が端部を含め平板状に構成されている。各放熱板71の端部すなわち筺体141と接触する部分には厚さ方向の貫通孔231が形成されている。また筺体141の、貫通孔231と合致する部分にはやはり貫通孔232が形成されている。各放熱板71の貫通孔231は同じ位置に形成されており、筺体141の貫通孔232は筺体141を貫通している。またこれら貫通孔231、232をシャフト233が貫通しており、各放熱板71と筺体141の界面が接触した状態で両端がかしめ234によりで固定されている。
As shown in FIG. 14, in the assembled battery 140 of the present embodiment, each heat radiating plate 71 is configured in a flat plate shape including an end portion. A through-hole 231 in the thickness direction is formed at the end of each heat radiating plate 71, that is, at the portion that contacts the housing 141. A through hole 232 is also formed in a portion of the housing 141 that coincides with the through hole 231. The through holes 231 of the heat radiating plates 71 are formed at the same position, and the through holes 232 of the housing 141 penetrate the housing 141. Further, the shaft 233 passes through the through holes 231 and 232, and both ends are fixed by caulking 234 in a state where the interfaces between the heat radiating plates 71 and the housing 141 are in contact with each other.
本実施形態の組電池140によれば、各放熱板71と筺体141とが十分な面圧によって熱的に良好に接触した状態でかしめ234によって固定されるので、接触熱抵抗を効果的に低減させることができる。
According to the assembled battery 140 of the present embodiment, each heat sink 71 and the casing 141 are fixed by the caulking 234 in a state of being in good thermal contact with a sufficient surface pressure, so that the contact thermal resistance is effectively reduced. Can be made.
なお本実施形態において、シャフト233は図示奥行き方向に複数設けてもよい。またシャフト233とかしめ234の機械的機能は、ボルトとナットにより達せられてもよい(本実施形態のクレームアップをどうするか?単一性の問題をどうするか?本発明のポイントは筺体の可曉部&放熱板が可曉部を有していること)。
In the present embodiment, a plurality of shafts 233 may be provided in the illustrated depth direction. Further, the mechanical functions of the shaft 233 and the caulking 234 may be achieved by bolts and nuts (how to raise the claim of this embodiment, what to deal with the problem of unity? The point of the present invention is the possibility of the housing) And the heat sink has a flexible part).
(第6実施形態)
次に、本発明を車両駆動用二次電池の組電池に適用した第6の実施の形態について説明する。本実施形態の組電池は、電池に放熱板の機能を付与したものである。 (Sixth embodiment)
Next, a sixth embodiment in which the present invention is applied to an assembled battery of a vehicle driving secondary battery will be described. The assembled battery of the present embodiment is a battery provided with the function of a heat sink.
次に、本発明を車両駆動用二次電池の組電池に適用した第6の実施の形態について説明する。本実施形態の組電池は、電池に放熱板の機能を付与したものである。 (Sixth embodiment)
Next, a sixth embodiment in which the present invention is applied to an assembled battery of a vehicle driving secondary battery will be described. The assembled battery of the present embodiment is a battery provided with the function of a heat sink.
図15に示すように、本実施形態の組電池150において、電池35は周囲の熱シールされた部分が筺体141に接触し、筺体141に上下方向から挟まれている。積層上下端の電池35は筺体141に各ひとつずつ挟まれており、それ以外の積層中央付近に位置する電池35は各二つずつ挟まれている。
As shown in FIG. 15, in the assembled battery 150 of the present embodiment, the battery 35 has a peripheral heat-sealed portion in contact with the housing 141 and is sandwiched between the housing 141 from above and below. The batteries 35 at the upper and lower ends of the stack are each sandwiched between the casings 141, and the other batteries 35 located near the center of the stack are sandwiched two by two.
図17に示すように、本実施形態の電池35において、図示下側の外装体39は、電池35の内側に熱融着層43が、外側に外装樹脂層38が形成された放熱板81を含む外装体39により構成されている。放熱板81はアルミニウム合金製であり、厚さが0.5mmとされている。熱融着層43には変性ポリオレフィンフィルムが用いられており、厚さが50μmとされている。外装樹脂層38はポリエステル(PE)製であり、厚さが50μmとされている。図示上側の外装体33と下側の外装体39は、電極体37を挟むように配置された後、上側下側の熱融着樹脂層34、38が電極部37の周囲で熱シールされて一体化され、これにより外装体33、39内が密閉されている。
As shown in FIG. 17, in the battery 35 of the present embodiment, the lower packaging body 39 in the figure includes a heat dissipation plate 81 in which a heat fusion layer 43 is formed inside the battery 35 and an exterior resin layer 38 is formed outside. It is comprised by the exterior body 39 containing. The heat sink 81 is made of an aluminum alloy and has a thickness of 0.5 mm. A modified polyolefin film is used for the heat-sealing layer 43, and the thickness is 50 μm. The exterior resin layer 38 is made of polyester (PE) and has a thickness of 50 μm. The upper outer packaging body 33 and the lower outer packaging body 39 are arranged so as to sandwich the electrode body 37, and then the upper lower thermal sealing resin layers 34 and 38 are heat sealed around the electrode portion 37. As a result, the exterior bodies 33 and 39 are hermetically sealed.
本実施形態の組電池140によれば、予め電池35に一体化された放熱板81を含む外装体39(および33)が直接筺体141に接触し、かつ接触部分に十分な面圧が作用するので、放熱板81と筺体141との接触熱抵抗を低減させることができる。また、電池35と放熱板81は予め熱融着によって機械的に一体化されているので、部品収容ステップにおける収容部品の点数(組電池を構成する部品点数)を低減させることができる。また、電極部37と放熱板81との間に介在する部材点数が低減する(図16に示した電池の下側の金属層がなくなる)ので、電極部37から放熱板81にかけての熱抵抗が小さくなり、より効果的に電池35の熱を放熱板に伝達することができる。
According to the assembled battery 140 of the present embodiment, the exterior body 39 (and 33) including the heat radiation plate 81 integrated in advance with the battery 35 is in direct contact with the housing 141, and sufficient contact pressure acts on the contact portion. Therefore, the contact thermal resistance between the heat sink 81 and the housing 141 can be reduced. Further, since the battery 35 and the heat radiating plate 81 are mechanically integrated in advance by heat fusion, it is possible to reduce the number of housed parts (the number of parts constituting the assembled battery) in the part housing step. In addition, since the number of members interposed between the electrode portion 37 and the heat radiating plate 81 is reduced (the metal layer on the lower side of the battery shown in FIG. 16 is eliminated), the thermal resistance from the electrode portion 37 to the heat radiating plate 81 is reduced. As a result, the heat of the battery 35 can be more effectively transferred to the heat sink.
なお本実施形態において、より熱の伝達量を増大させるために、電池35同士の間に別の放熱板が設けられ、ふたつの電池35と共に筺体141に挟まれてもよい。また、本実施形態では放熱板81の厚さを0.5mmとしたが、電池35の熱を効果的に筺体141に伝達する上で、厚さを0.2mm以上とすることが望ましい。また、本実施形態では図示下側の外装体39のみに放熱板81を設けたが、図示上側の外装体33にこれを設けても差し支えない。
In this embodiment, in order to further increase the amount of heat transfer, another heat radiating plate may be provided between the batteries 35, and may be sandwiched between the two batteries 35 and the housing 141. In this embodiment, the thickness of the heat radiating plate 81 is 0.5 mm. However, in order to effectively transfer the heat of the battery 35 to the housing 141, it is desirable that the thickness be 0.2 mm or more. In the present embodiment, the heat radiating plate 81 is provided only on the lower exterior body 39 in the figure, but it may be provided on the upper exterior body 33 in the figure.
なお、これまで本発明が適用可能な実施形態について説明したが、本発明は以下のように変形して実施することができる。
Although the embodiments to which the present invention can be applied have been described so far, the present invention can be carried out with the following modifications.
(1)上記実施形態では、リチウムイオン二次電池を例示したが、本発明はこれに限定されるものではなく、二次電池一般に適用することができる。
(1) In the above embodiment, the lithium ion secondary battery is exemplified, but the present invention is not limited to this, and can be applied to secondary batteries in general.
(2)筺体は、上記実施形態で例示したA6000系アルミニウム合金に限らず、同様に押出し加工性に優れ、より熱伝導率の高いA1000系アルミニウム合金により作成してもよい。
(2) The casing is not limited to the A6000 series aluminum alloy exemplified in the above embodiment, but may be made of an A1000 series aluminum alloy having excellent extrudability and higher thermal conductivity.
(3)筺体は、上記実施形態で例示したアルミニウム合金に限らず、ポリブチレンテレフタレート(PBT)、ポリフェニレンサルファイド(PPS)およびその他の樹脂により作成してもよい。
(3) The casing is not limited to the aluminum alloy exemplified in the above embodiment, but may be made of polybutylene terephthalate (PBT), polyphenylene sulfide (PPS), and other resins.
(4)上記実施形態では、ひとつの組電池中の各放熱板部厚さは同等に図示したが、部位に応じて厚さを変更してもよい。これにより、各電池の熱流をさらに細かく均等化させることができる。
(4) In the above-described embodiment, the thickness of each heat radiating plate in one assembled battery is illustrated equally, but the thickness may be changed according to the part. Thereby, the heat flow of each battery can be equalized more finely.
(5)上記実施形態では、断熱板は直方体状で電池積層方向上端、下端にそれぞれひとつずつ配したが、各断熱板収容部に筺体押出し方向の仕切りを設けてそれぞれを分割してもよい。あるいはそれぞれを直方体以外の異形としてもよい。これにより、仕切りに筺体加圧方向の変形を抑制する機能を持たせることができ、筺体加圧時の断熱板収容部の変形を安定化させることができる。
(5) In the above embodiment, the heat insulating plates are in the shape of a rectangular parallelepiped, and one heat dissipating plate is provided at each of the upper end and the lower end in the battery stacking direction. Alternatively, each may be a variant other than a rectangular parallelepiped. Thereby, the function which suppresses a deformation | transformation of a housing pressurization direction can be given to a partition, and the deformation | transformation of the heat insulation board accommodating part at the time of a housing pressurization can be stabilized.
(6)筺体には絶縁性向上あるいは表面保護等の必要に応じてアルマイト処理を施してもよい。
(6) The casing may be anodized as necessary for improving insulation or protecting the surface.
(7)上記実施形態では、別途設けた固定部材で電池等を収容した後の筺体形状を固定したが、本発明はこれに制限されるものではなく、加圧固定ステップにおいて筺体を加圧した状態で筺体上下面から超音波溶接を施し、複数の突き合わせ部同士を溶接して固定してもよい。また各突き合わせ部をそれぞれ抵抗溶接等の方法で固定してもよい。
(7) In the above embodiment, the housing shape after the battery or the like is accommodated is fixed by a separately provided fixing member, but the present invention is not limited to this, and the housing is pressurized in the pressure fixing step. In this state, ultrasonic welding may be performed from the upper and lower surfaces of the housing, and a plurality of butted portions may be welded and fixed. Moreover, you may fix each butt | matching part by methods, such as resistance welding, respectively.
(8)上記実施形態では、金属単体からなる放熱板を開示したが、本発明はこれに制限されるものではなく、放熱板の表面に樹脂からなる絶縁性材料を塗布した複数材料の積層体としてもよい。また樹脂からなる絶縁性材料のシートを電池と放熱板の間に介在させてもよい。これらにより電池表面の外装樹脂層が何らかの原因で破損しても隣接する電池の外装体同士が短絡するといった不具合を回避することができる。
(8) In the above-described embodiment, a heat sink made of a single metal has been disclosed. However, the present invention is not limited to this, and a multi-material laminate in which an insulating material made of resin is applied to the surface of the heat sink. It is good. A sheet of insulating material made of resin may be interposed between the battery and the heat sink. By these, even if the exterior resin layer on the surface of the battery is broken for some reason, it is possible to avoid a problem that the exterior bodies of adjacent batteries are short-circuited.
(9)上記実施形態では、正極活物質としてコバルト酸リチウム、負極活物質として黒鉛をそれぞれ例示したが、本発明はこれらに制限されるものではなく、通常リチウムイオン二次電池に用いられる活物質を用いることもできる。正極活物質としては、リチウムイオンを挿入・脱離可能な材料であり、予め十分な量のリチウムイオンを挿入したリチウム遷移金属複合酸化物を用いればよく、リチウム遷移金属複合酸化物の結晶中のリチウムや遷移金属の一部をそれら以外の元素で置換あるいはドープした材料を使用するようにしてもよい。また、リチウム遷移金属複合酸化物の結晶構造についても特に制限はなく、スピネル系、層状系、オリビン系のいずれの結晶構造を有していてもよい。一方、黒鉛以外の負極活物質としては、例えば、コークスや非晶質炭素等の炭素材を挙げることができ、その粒子形状においても、鱗片状、球状、繊維状、塊状等、特に制限されるものではない。
(9) In the above embodiment, lithium cobaltate was exemplified as the positive electrode active material, and graphite was exemplified as the negative electrode active material. However, the present invention is not limited to these, and an active material usually used for a lithium ion secondary battery. Can also be used. The positive electrode active material is a material capable of inserting and removing lithium ions, and a lithium transition metal composite oxide in which a sufficient amount of lithium ions has been inserted in advance may be used. A material in which a part of lithium or a transition metal is substituted or doped with an element other than those may be used. Moreover, there is no restriction | limiting in particular also about the crystal structure of lithium transition metal complex oxide, You may have any crystal structure of a spinel system, a layer system, and an olivine system. On the other hand, as the negative electrode active material other than graphite, for example, carbon materials such as coke and amorphous carbon can be mentioned, and the particle shape is also particularly limited such as scaly, spherical, fibrous, and massive. It is not a thing.
(10)上記実施形態で例示した導電材やバインダについても特に限定されず、通常リチウムイオン二次電池に用いられているいずれのものも使用可能である。本実施形態以外で用いることのできるバインダとしては、ポリテトラフルオロエチレン、ポリエチレン、ポリスチレン、ポリブタジエン、ブチルゴム、ニトリルゴム、スチレン/ブタジエンゴム、多硫化ゴム、ニトロセルロース、シアノエチルセルロース、各種ラテックス、アクリロニトリル、フッ化ビニル、フッ化ビニリデン、フッ化プロピレン、フッ化クロロプレン等の重合体およびこれらの混合体等を挙げることができる。
(10) The conductive material and the binder exemplified in the above embodiment are not particularly limited, and any of those normally used in lithium ion secondary batteries can be used. Examples of binders that can be used in other embodiments include polytetrafluoroethylene, polyethylene, polystyrene, polybutadiene, butyl rubber, nitrile rubber, styrene / butadiene rubber, polysulfide rubber, nitrocellulose, cyanoethyl cellulose, various latexes, acrylonitrile, fluorine. Examples thereof include polymers such as vinyl fluoride, vinylidene fluoride, propylene fluoride, and chloroprene fluoride, and mixtures thereof.
(11)上記実施形態では、エチレンカーボネート等の炭酸エチレン系有機溶媒にLiPF6を溶解した非水電解液を例示したが、一般的なリチウム塩を電解質とし、これを有機溶媒に溶解した非水電解液を用いてもよく、本発明は用いられるリチウム塩や有機溶媒には特に制限されるものではない。例えば、電解質としては、LiClO4、LiAsF6、LiBF4、LiB(C6H5)4、CH3SO3Li、CF3SO3Li等やこれらの混合物を用いることができる。また、有機溶媒としてはジエチルカーボネート、プロピレンカーボネート、1、2-ジエトキシエタン、γ-ブチロラクトン、スルホラン、プロピオニトリル等、または、これらの2種以上を混合した混合溶媒を用いることができる。
(11) In the above embodiment, the nonaqueous electrolytic solution in which LiPF6 is dissolved in an ethylene carbonate-based organic solvent such as ethylene carbonate is exemplified. However, nonaqueous electrolysis in which a general lithium salt is used as an electrolyte and this is dissolved in an organic solvent. A liquid may be used, and the present invention is not particularly limited to the lithium salt or organic solvent used. For example, as the electrolyte, LiClO4, LiAsF6, LiBF4, LiB (C6H5) 4, CH3SO3Li, CF3SO3Li, or a mixture thereof can be used. As the organic solvent, diethyl carbonate, propylene carbonate, 1,2-diethoxyethane, γ-butyrolactone, sulfolane, propionitrile, or a mixed solvent in which two or more of these are mixed can be used.
(12)上記実施形態では、各電池同士の端子接続において、接続する端子間に金属製のバスバーを接触させて超音波溶着を行ったが、各端子に貫通孔を設け、接続される端子同士が直接接触し、そうでない端子との間は接触しないよう絶縁材を介在させて、絶縁性材料からなるボルトで積層方向に一括してねじ締結して接続してもよい。
(12) In the above embodiment, in the terminal connection between the batteries, ultrasonic welding was performed by bringing a metal bus bar into contact between the terminals to be connected. May be directly contacted with each other, and an insulating material may be interposed so as not to contact with other terminals, and the bolts made of an insulating material may be collectively screwed and connected in the stacking direction.
(13)ラミネートフィルムの金属層には、ステンレス鋼フィルムが用いられてもよい。
(13) A stainless steel film may be used for the metal layer of the laminate film.
(14)上記実施形態では、筺体内に収容する部品として電池と断熱板を示したが、その他に組電池の制御回路や各電池の電圧検出回路などの構造体を収容してもよい。
(14) In the above embodiment, the battery and the heat insulating plate are shown as the components to be accommodated in the housing, but other structures such as an assembled battery control circuit and a voltage detection circuit for each battery may be accommodated.
本発明は温度に起因する劣化を最小限に抑えることができる二次電池を提供するものであるため、二次電池の製造、販売に寄与するので、産業上の利用可能性を有する。
Since the present invention provides a secondary battery capable of minimizing deterioration due to temperature, it contributes to the manufacture and sale of secondary batteries, and thus has industrial applicability.
30、35 電池
31 正極端子
32 負極端子
33 外装体(ラミネートフィルム)
39 外装体
34、43 熱融着樹脂層
35 金属層
36、38 外装樹脂層
37 電極体
40 断熱板
41、51、61、71、81 放熱板
42 フック
100、110、120、130、140 組電池
101、111、121、131、141 筺体
105 上面
106 下面
116、126 可撓材
117 空隙
118 凹凸部
201、211、221 固定部材
202 ねじ部材
203 正極外部端子
204 負極外部端子
205 突き合わせ面
206、207 キャップ
208 ダクト
209 流路
230 接続インタフェース部
231、232 貫通孔
233 シャフト
234 かしめ
351 電池缶
352 電池蓋
355 エンドプレート部
356、359 リブ
357 貫通孔
358 エンドプレート
b 屈曲部
h1 隙間
Y 加圧方向
w1、w2、w3、w4 可撓部 30, 35Battery 31 Positive electrode terminal 32 Negative electrode terminal 33 Exterior body (laminate film)
39 exterior body 34, 43 heat-sealing resin layer 35 metal layer 36, 38 exterior resin layer 37 electrode body 40 heat insulating plate 41, 51, 61, 71, 81 heat sink 42 hook 100, 110, 120, 130, 140 assembled battery 101, 111, 121, 131, 141 Housing 105 Upper surface 106 Lower surface
116, 126 Flexible material
117 Gap 118 Concavity and convexity 201, 211, 221 Fixing member 202 Screw member
203 Positive external terminal
204 Negative external terminal
205 Butting surface 206, 207 Cap
208 Duct
209Flow path 230 Connection interface portion 231, 232 Through hole 233 Shaft 234 Caulking 351 Battery can 352 Battery lid 355 End plate portion 356, 359 Rib 357 Through hole 358 End plate b Bending portion h1 Gap Y Pressure direction w1, w2, w3 , W4 flexible part
31 正極端子
32 負極端子
33 外装体(ラミネートフィルム)
39 外装体
34、43 熱融着樹脂層
35 金属層
36、38 外装樹脂層
37 電極体
40 断熱板
41、51、61、71、81 放熱板
42 フック
100、110、120、130、140 組電池
101、111、121、131、141 筺体
105 上面
106 下面
116、126 可撓材
117 空隙
118 凹凸部
201、211、221 固定部材
202 ねじ部材
203 正極外部端子
204 負極外部端子
205 突き合わせ面
206、207 キャップ
208 ダクト
209 流路
230 接続インタフェース部
231、232 貫通孔
233 シャフト
234 かしめ
351 電池缶
352 電池蓋
355 エンドプレート部
356、359 リブ
357 貫通孔
358 エンドプレート
b 屈曲部
h1 隙間
Y 加圧方向
w1、w2、w3、w4 可撓部 30, 35
39
116, 126 Flexible material
117 Gap 118 Concavity and
203 Positive external terminal
204 Negative external terminal
205
208 Duct
209
Claims (8)
- 複数の電池と、
金属単体もしくは金属の表面に別材からなる層を備えた複数の放熱板と、
複数の相互に対向する突き合わせ部、および前記突き合わせ部同士をそれぞれまたぐ可撓部を備えた筺体と、
前記筺体を固定する固定部材と、
を備え、
前記筺体に前記複数の電池、および前記複数の放熱板を収容し、
前記放熱板を前記突き合わせ部の間に介在させ、
前記可撓部の変形を伴って前記対向する突き合わせ部間の距離を近づけ、前記放熱板と前記対向する突き合わせ部とが接触した状態で、前記対向する突き合わせ部同士の距離を固定した
ことを特徴とする組電池。 Multiple batteries,
A plurality of heat sinks with a single metal layer or a layer made of a different material on the surface of the metal,
A plurality of abutting portions facing each other, and a housing having a flexible portion straddling each of the butting portions,
A fixing member for fixing the housing;
With
Housing the plurality of batteries and the plurality of heat sinks in the housing;
Interposing the heat sink between the butted portions,
The distance between the facing abutting portions is reduced with the deformation of the flexible portion, and the distance between the facing abutting portions is fixed in a state where the heat sink and the facing abutting portion are in contact with each other. The assembled battery. - 前記放熱板の前記突き合わせ部に接触する部分が可撓性を有することを特徴とする、請求項1に記載の組電池。 The assembled battery according to claim 1, wherein a portion of the heat radiating plate that comes into contact with the abutting portion has flexibility.
- 前記放熱板と前記突き合わせ部の間に可撓材が介在することを特徴とする、請求項1に記載の組電池。 The assembled battery according to claim 1, wherein a flexible material is interposed between the heat radiating plate and the abutting portion.
- 前記放熱板の前記可撓性を有する部分に可撓材が介在することを特徴とする、請求項1に記載の組電池。 The assembled battery according to claim 1, wherein a flexible material is interposed in the flexible portion of the heat radiating plate.
- 前記放熱板および前記筺体は貫通孔を備え、前記貫通孔に前記固定部材を貫通させたことを特徴とする、請求項1に記載の組電池。 The assembled battery according to claim 1, wherein the heat radiating plate and the housing include a through hole, and the fixing member is passed through the through hole.
- 前記放熱板の複数をひとつの前記突き合わせ部の間に介在させたことを特徴とする、請求項1に記載の組電池。 2. The assembled battery according to claim 1, wherein a plurality of the heat radiating plates are interposed between the butted portions.
- 前記筺体の可撓部表面に選択的に冷却冷媒を当節させる手段を備えることを特徴とする、請求項1ないし6に記載の組電池。 The assembled battery according to any one of claims 1 to 6, further comprising means for selectively supplying a cooling refrigerant to the surface of the flexible portion of the casing.
- 請求項1ないし7の組電池に収容される電池であって、正極シート、負極シートならびにセパレータの積層体からなる電極体の少なくともひとつの面が、厚さ0.2mm以上の金属板からなる前記放熱板の両面に樹脂層を備えてなる外装体により封止され、前記放熱板を前記突き合わせ部の間に介在させて用いられることを特徴とする電池。 The battery accommodated in the assembled battery according to any one of claims 1 to 7, wherein at least one surface of an electrode body made of a laminate of a positive electrode sheet, a negative electrode sheet and a separator is made of a metal plate having a thickness of 0.2 mm or more. A battery characterized in that it is sealed with an exterior body comprising a resin layer on both sides of a heat radiating plate, and is used with the heat radiating plate interposed between the butted portions.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2013/054071 WO2014128841A1 (en) | 2013-02-20 | 2013-02-20 | Assembled battery and battery used in same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2013/054071 WO2014128841A1 (en) | 2013-02-20 | 2013-02-20 | Assembled battery and battery used in same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014128841A1 true WO2014128841A1 (en) | 2014-08-28 |
Family
ID=51390675
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/054071 WO2014128841A1 (en) | 2013-02-20 | 2013-02-20 | Assembled battery and battery used in same |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2014128841A1 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016210207A (en) * | 2015-04-30 | 2016-12-15 | アイシン軽金属株式会社 | Battery protection structure of vehicle |
JP2016219246A (en) * | 2015-05-20 | 2016-12-22 | 株式会社Gsユアサ | Power storage device |
WO2017149146A1 (en) * | 2016-03-03 | 2017-09-08 | Johnson Controls Technology Company | Fixation of electrochemical cells in a housing of a battery module |
EP3309866A4 (en) * | 2016-05-31 | 2018-07-18 | LG Chem, Ltd. | Battery module, battery pack comprising same, and automobile |
CN109449338A (en) * | 2018-12-10 | 2019-03-08 | 广州市垠瀚能源科技有限公司 | A kind of the battery core fixed structure and electric vehicle of electric car |
WO2019059045A1 (en) * | 2017-09-22 | 2019-03-28 | Necエナジーデバイス株式会社 | Battery cell and battery module |
CN111668026A (en) * | 2020-07-01 | 2020-09-15 | 威海汉城成镐电子有限公司 | Filtering film capacitor of low-thermal-resistance automobile battery pack management system |
CN112060937A (en) * | 2020-09-20 | 2020-12-11 | 邹思良 | New energy automobile chassis |
WO2020253003A1 (en) * | 2019-06-20 | 2020-12-24 | 南京德朔实业有限公司 | Battery pack and combination of electric tool and battery pack |
JP2022549925A (en) * | 2020-08-05 | 2022-11-29 | エルジー エナジー ソリューション リミテッド | BATTERY MODULE, BATTERY PACK INCLUDING THE SAME, AND BATTERY MODULE MANUFACTURING METHOD |
WO2023134547A1 (en) * | 2022-01-13 | 2023-07-20 | 宁德时代新能源科技股份有限公司 | Box body, battery, electrical apparatus, and method and apparatus for preparing battery |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011034821A (en) * | 2009-08-03 | 2011-02-17 | Sumitomo Heavy Ind Ltd | Power storage module and hybrid type working machine |
JP2012003950A (en) * | 2010-06-17 | 2012-01-05 | Nissan Motor Co Ltd | Pressure device for laminate type battery |
JP2012216312A (en) * | 2011-03-31 | 2012-11-08 | Ube Ind Ltd | Battery supporting body |
JP2012248374A (en) * | 2011-05-26 | 2012-12-13 | Hitachi Ltd | Battery module |
JP5154706B1 (en) * | 2012-07-31 | 2013-02-27 | 新トモエ電機工業株式会社 | Battery pack and battery module |
-
2013
- 2013-02-20 WO PCT/JP2013/054071 patent/WO2014128841A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011034821A (en) * | 2009-08-03 | 2011-02-17 | Sumitomo Heavy Ind Ltd | Power storage module and hybrid type working machine |
JP2012003950A (en) * | 2010-06-17 | 2012-01-05 | Nissan Motor Co Ltd | Pressure device for laminate type battery |
JP2012216312A (en) * | 2011-03-31 | 2012-11-08 | Ube Ind Ltd | Battery supporting body |
JP2012248374A (en) * | 2011-05-26 | 2012-12-13 | Hitachi Ltd | Battery module |
JP5154706B1 (en) * | 2012-07-31 | 2013-02-27 | 新トモエ電機工業株式会社 | Battery pack and battery module |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016210207A (en) * | 2015-04-30 | 2016-12-15 | アイシン軽金属株式会社 | Battery protection structure of vehicle |
JP2016219246A (en) * | 2015-05-20 | 2016-12-22 | 株式会社Gsユアサ | Power storage device |
CN109314198A (en) * | 2016-03-03 | 2019-02-05 | 江森自控先进能源动力系统有限责任公司 | Electrochemical cell is fixed in the shell of battery module |
WO2017149146A1 (en) * | 2016-03-03 | 2017-09-08 | Johnson Controls Technology Company | Fixation of electrochemical cells in a housing of a battery module |
CN109314198B (en) * | 2016-03-03 | 2022-08-19 | 柯锐世先进解决方案有限责任公司 | Electrochemical cells are secured within a housing of a battery module |
US11075424B2 (en) | 2016-03-03 | 2021-07-27 | Clarios Advanced Solutions Gmbh | Fixation of electrochemical cells in a housing of a battery module |
US20190013502A1 (en) * | 2016-03-03 | 2019-01-10 | Johnson Controls Advanced Power Solutions Gmbh | Fixation of electrochemical cells in a housing of a battery module |
US11380955B2 (en) | 2016-05-31 | 2022-07-05 | Lg Energy Solution, Ltd. | Battery module, and battery pack and vehicle comprising the same |
JP2018533825A (en) * | 2016-05-31 | 2018-11-15 | エルジー・ケム・リミテッド | Battery module, battery pack including the same, automobile |
EP3309866A4 (en) * | 2016-05-31 | 2018-07-18 | LG Chem, Ltd. | Battery module, battery pack comprising same, and automobile |
JP7396895B2 (en) | 2017-09-22 | 2023-12-12 | 株式会社Aescジャパン | battery module |
CN111095668B (en) * | 2017-09-22 | 2024-08-13 | 株式会社Aesc日本 | Battery cells and battery modules |
WO2019059045A1 (en) * | 2017-09-22 | 2019-03-28 | Necエナジーデバイス株式会社 | Battery cell and battery module |
JPWO2019059045A1 (en) * | 2017-09-22 | 2020-10-22 | 株式会社エンビジョンAescエナジーデバイス | Battery cell and battery module |
CN111095668A (en) * | 2017-09-22 | 2020-05-01 | 远景Aesc能源元器件有限公司 | Battery cells and battery modules |
CN109449338A (en) * | 2018-12-10 | 2019-03-08 | 广州市垠瀚能源科技有限公司 | A kind of the battery core fixed structure and electric vehicle of electric car |
CN109449338B (en) * | 2018-12-10 | 2024-05-07 | 广州市垠瀚能源科技有限公司 | Battery core fixing structure of electric automobile and electric automobile |
WO2020253003A1 (en) * | 2019-06-20 | 2020-12-24 | 南京德朔实业有限公司 | Battery pack and combination of electric tool and battery pack |
US12170386B2 (en) | 2019-06-20 | 2024-12-17 | Nanjing Chervon Industry Co., Ltd. | Battery pack and combination of a power tool and the battery pack |
CN111668026A (en) * | 2020-07-01 | 2020-09-15 | 威海汉城成镐电子有限公司 | Filtering film capacitor of low-thermal-resistance automobile battery pack management system |
JP7394975B2 (en) | 2020-08-05 | 2023-12-08 | エルジー エナジー ソリューション リミテッド | Battery module, battery pack including the same, and battery module manufacturing method |
JP2022549925A (en) * | 2020-08-05 | 2022-11-29 | エルジー エナジー ソリューション リミテッド | BATTERY MODULE, BATTERY PACK INCLUDING THE SAME, AND BATTERY MODULE MANUFACTURING METHOD |
CN112060937A (en) * | 2020-09-20 | 2020-12-11 | 邹思良 | New energy automobile chassis |
WO2023134547A1 (en) * | 2022-01-13 | 2023-07-20 | 宁德时代新能源科技股份有限公司 | Box body, battery, electrical apparatus, and method and apparatus for preparing battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014128841A1 (en) | Assembled battery and battery used in same | |
JP5452303B2 (en) | Secondary battery and manufacturing method thereof | |
JP6306431B2 (en) | Battery module | |
JP6166994B2 (en) | Assembled battery | |
JP6198844B2 (en) | Assembled battery | |
JP5172496B2 (en) | Power storage unit and manufacturing method thereof | |
KR101252944B1 (en) | Battery pack with enhanced radiating ability | |
JP5889333B2 (en) | Assembled battery | |
CN102576910B (en) | Lithium rechargeable battery, vehicle and battery-mounted device | |
JP6506419B2 (en) | Power storage device | |
JPWO2012011470A1 (en) | Battery and battery pack | |
CN106688123B (en) | Rectangular secondary battery | |
JP5779562B2 (en) | Square battery | |
JP5334894B2 (en) | Lithium ion secondary battery | |
JP2014157722A (en) | Battery pack | |
EP4167338A1 (en) | Lithium-ion battery and preparation method therefor | |
JP6403644B2 (en) | Secondary battery | |
JP6186449B2 (en) | Assembled battery | |
JP5232751B2 (en) | Lithium ion secondary battery | |
JP5435268B2 (en) | Assembled battery | |
JP2017107719A (en) | Square secondary battery | |
JP2013222517A (en) | Square secondary battery | |
JP2011192518A (en) | Secondary battery | |
WO2020152857A1 (en) | Battery pack and battery system | |
JP5768002B2 (en) | Secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13875633 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13875633 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |