[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014126102A1 - Production method for liquid-crystal alignment film, liquid-crystal alignment film, liquid-crystal display element, and liquid-crystal alignment agent - Google Patents

Production method for liquid-crystal alignment film, liquid-crystal alignment film, liquid-crystal display element, and liquid-crystal alignment agent Download PDF

Info

Publication number
WO2014126102A1
WO2014126102A1 PCT/JP2014/053188 JP2014053188W WO2014126102A1 WO 2014126102 A1 WO2014126102 A1 WO 2014126102A1 JP 2014053188 W JP2014053188 W JP 2014053188W WO 2014126102 A1 WO2014126102 A1 WO 2014126102A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
carbon atoms
alignment film
crystal alignment
group
Prior art date
Application number
PCT/JP2014/053188
Other languages
French (fr)
Japanese (ja)
Inventor
幸司 巴
奈穂 菊池
雅章 片山
徳俊 三木
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to JP2015500256A priority Critical patent/JP6361887B6/en
Priority to CN201480020966.XA priority patent/CN105122128B/en
Priority to KR1020157024894A priority patent/KR102172134B1/en
Publication of WO2014126102A1 publication Critical patent/WO2014126102A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133715Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films by first depositing a monomer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide

Definitions

  • the present invention relates to a method for producing a liquid crystal alignment film, a liquid crystal alignment film, a liquid crystal display element using the liquid crystal alignment film, and a liquid crystal alignment agent used when producing the liquid crystal alignment film.
  • liquid crystal display elements used for liquid crystal televisions and liquid crystal displays are now widely used as thin and light display devices.
  • the liquid crystal alignment film plays a role of aligning the liquid crystal in a certain direction.
  • the main liquid crystal alignment films used industrially are a polyimide precursor polyamic acid (also called polyamic acid), a polyamic acid ester, and a liquid crystal aligning agent composed of a polyimide solution applied to a substrate and baked. It is formed by doing.
  • the liquid crystal alignment film of Patent Document 1 has a problem of high residual DC. Further, the liquid crystal alignment film is also required to have a high voltage holding ratio as another electrical characteristic.
  • An object of the present invention is to solve the above-described problems of the prior art, and a method for producing a liquid crystal alignment film, which can form a liquid crystal alignment film having a low residual DC and a high voltage holding ratio by firing at a low temperature, and a liquid crystal alignment It aims at providing a film
  • This invention which solves the said subject makes the following a summary.
  • 1. Contains at least one polymer selected from a polyimide precursor having a repeating unit represented by the following formula [1] and a polyimide having a repeating unit represented by the following formula [1] and having an imidation ratio of less than 50%
  • a method for producing a liquid crystal alignment film characterized in that a liquid crystal alignment film having an imidization ratio of 50 to 70% is obtained by applying a liquid crystal aligning agent to the substrate and then baking the liquid crystal aligning agent.
  • a 1 is a divalent organic group
  • a 2 is a divalent organic group
  • C 1 and C 2 are a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, It can be the same or different.
  • the firing is performed at 210 ° C. or lower.
  • the polymer has a side chain represented by the following formula [2]. Or 2.
  • Y 1 is a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO—.
  • Y 2 is a single bond or — (CH 2 ) b — (b is an integer of 1 to 15)
  • Y 3 is a single bond, — (CH 2 ) c — (c is an integer of 1 to 15) ), —O—, —CH 2 O—, —COO— or —OCO—
  • Y 4 is a carbon having a divalent cyclic group selected from a benzene ring, a cyclohexane ring and a heterocyclic ring, or a steroid skeleton
  • alkyl group a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms.
  • the polymer is obtained by reacting the following components (a), (b) and (c): ⁇ 3.
  • Component Compound containing two isocyanate groups in the molecule
  • Component Compound containing two primary or secondary amino groups in the molecule
  • Component Tetracarboxylic acid derivative
  • the component (b) is a compound having a side chain represented by the formula [2].
  • the component (b) is a compound represented by the following formula [2a].
  • Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , Y 6 , and n are Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , Y 6 in Formula [2].
  • N, m is an integer of 1 to 4
  • — (Y 1 —Y 2 —Y 3 —Y 4 — (Y 5 ) n —Y 6 ) m is a substituent Y 1 —Y 2 —.
  • Y 3 —Y 4 — (Y 5 ) n —Y 6 represents m, and when m is 2 or more, each substituent may be the same or different.)
  • the component (c) is a tetracarboxylic dianhydride represented by the following formula [3]. ⁇ 6. The manufacturing method of the liquid crystal aligning film as described in any one of these.
  • Z 1 is a structure represented by the following formulas [3a] to [3j]).
  • Z 2 to Z 5 are a hydrogen atom, a methyl group, a chlorine atom or a benzene ring, and may be the same or different.
  • Z 6 and Z 7 are hydrogen atoms or methyl groups, which may be the same or different.
  • the polymer in the liquid crystal aligning agent is 0.1 to 30% by mass.
  • the coating is performed by an ink jet method.
  • a liquid crystal alignment film comprising a polyimide having a repeating unit represented by the following formula [1] and having an imidization ratio of 50 to 70%.
  • a 1 is a divalent organic group
  • a 2 is a divalent organic group
  • C 1 and C 2 are a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, It can be the same or different.
  • a liquid crystal composition comprising a liquid crystal layer between a pair of substrates provided with electrodes and comprising a polymerizable compound that is polymerized by at least one of active energy rays and heat is disposed between the pair of substrates, and the electrodes 9. It is used for a liquid crystal display device manufactured through a step of polymerizing the polymerizable compound while applying a voltage therebetween. Or 11. A liquid crystal alignment film as described in 1.
  • a liquid crystal display element comprising the liquid crystal alignment film according to any one of the above.
  • a liquid crystal aligning agent comprising a polyimide precursor having a repeating unit represented by the following formula [1].
  • a 1 is a divalent organic group
  • a 2 is a divalent organic group
  • C 1 and C 2 are a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, It can be the same or different.
  • a liquid crystal aligning agent containing a polyimide precursor having a repeating unit represented by the formula [1] or a polyimide having a repeating unit represented by the formula [1] and having an imidization ratio of less than 50%.
  • a liquid crystal alignment film having a low residual DC and a high voltage holding ratio can be obtained by using, coating and baking to form a liquid crystal alignment film having an imidization ratio of 50 to 70%.
  • the baking temperature can be as low as 210 ° C. or less, for example, a plastic substrate having a relatively low heat resistance can be used as the substrate, and the color filter of the liquid crystal display element accompanying the baking at a high temperature. It is possible to suppress the deterioration of the color characteristics and to reduce the energy cost in manufacturing the liquid crystal display element.
  • the present invention is described in detail below.
  • the method for producing a liquid crystal alignment film of the present invention includes a polyimide precursor having a repeating unit represented by the formula [1] and a polyimide having a repeating unit represented by the formula [1] and an imidation ratio of less than 50%.
  • a liquid crystal alignment film having an imidation ratio of 50 to 70% is obtained by applying a liquid crystal aligning agent containing at least one polymer selected from the above to a substrate and then baking it.
  • the liquid crystal aligning agent used for manufacture of the liquid crystal aligning film of this invention has a polyimide precursor which has a repeating unit shown by the said Formula [1], a repeating unit shown by the said Formula [1], and an imidation rate Contains less than 50% polyimide.
  • a polyimide precursor having a repeating unit represented by the above formula [1] and a polyimide having a repeating unit represented by the above formula [1] and having an imidization ratio of less than 50%.
  • polyimide precursor having a plurality of repeating units represented by the above formula [1] and a polyimide having a plurality of repeating units represented by the above formula [1] and having an imidization ratio of less than 50%. It may be.
  • the polyimide precursor is a polyamic acid or a polyamic acid ester.
  • a polyimide precursor having a repeating unit represented by the above formula [1] or a polyimide having a repeating unit represented by the above formula [1] and an imidization ratio of less than 50% (hereinafter referred to as a repeating unit represented by the formula [1] It is preferable that the polymer having a side chain represented by the above formula [2].
  • a liquid crystal alignment film capable of vertically aligning liquid crystals can be produced.
  • the repeating unit represented by the formula [1] has a side chain represented by the formula [2]
  • a 1 and A 2 have a structure represented by the formula [2].
  • a polyimide precursor or a repeating unit of polyimide described later may have a side chain represented by the above formula [2].
  • Y 1 represents a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO—. .
  • a single bond — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O— or —COO.
  • More preferred is a single bond, — (CH 2 ) a — (a is an integer of 1 to 10), —O—, —CH 2 O— or —COO—.
  • Y 2 represents a single bond or — (CH 2 ) b — (b is an integer of 1 to 15).
  • a single bond or — (CH 2 ) b — (b is an integer of 1 to 10) is preferable.
  • Y 3 represents a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO—. .
  • a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O— or —COO— is preferable from the viewpoint of ease of synthesis. More preferred is a single bond, — (CH 2 ) c — (c is an integer of 1 to 10), —O—, —CH 2 O— or —COO—.
  • Y 4 represents a divalent cyclic group selected from a benzene ring, a cyclohexane ring and a heterocyclic ring, or a divalent organic group having 17 to 51 carbon atoms and having a steroid skeleton, Are substituted with an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom. It may be.
  • an organic group having 17 to 51 carbon atoms having a benzene ring, a cyclohexane ring or a steroid skeleton is preferable from the viewpoint of ease of synthesis.
  • Y 5 represents a divalent cyclic group selected from a benzene ring, a cyclohexane ring and a heterocyclic ring, and any hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms, carbon It may be substituted with an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom.
  • a benzene ring or a cyclohexane ring is preferable.
  • n is an integer of 0 to 4. Among these, 0 to 3 are preferable from the viewpoint of availability of raw materials and ease of synthesis. More preferred is 0-2.
  • Y 6 is an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms. .
  • an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 10 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 10 carbon atoms is preferable.
  • it is an alkyl group having 1 to 12 carbon atoms or an alkoxyl group having 1 to 12 carbon atoms. Particularly preferred is an alkyl group having 1 to 9 carbon atoms or an alkoxyl group having 1 to 9 carbon atoms.
  • Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , Y 6 and n are listed in Items 13 to 34 of International Publication No. WO2011 / 132751 (published 2011.10.27). Examples thereof include the same combinations as (2-1) to (2-629) listed in Tables 6 to 47 in the section.
  • Y 1 to Y 6 in the present invention are shown as Y 1 to Y 6 , but Y 1 to Y 6 are read as Y 1 to Y 6 .
  • the polyimide precursor having a repeating unit represented by the above formula [1] includes, for example, a component (a) which is a compound containing two isocyanate groups in the molecule, and a primary or secondary amino group in the molecule. It can manufacture by making (b) component which is a compound containing two, and (c) component which is a tetracarboxylic acid derivative react.
  • the component (a) is a compound represented by O ⁇ C ⁇ NA 1 —N ⁇ C ⁇ O (A 1 is the same as A 1 in the formula [1]).
  • a 1 include a substituent composed of a divalent benzene ring, an alkylene group, an aliphatic ring, or a combination thereof, in which a hydrogen atom may be substituted with an alkyl group having 1 to 5 carbon atoms.
  • component (a) examples include aromatic diisocyanates such as o-phenylene diisocyanate, m-phenylene diisocyanate, p-phenylene diisocyanate, toluene diisocyanates (for example, tolylene 2,4-diisocyanate), 1,4-diisocyanate.
  • aromatic diisocyanates such as o-phenylene diisocyanate, m-phenylene diisocyanate, p-phenylene diisocyanate, toluene diisocyanates (for example, tolylene 2,4-diisocyanate), 1,4-diisocyanate.
  • the component (b) is a compound represented by the following formula [b].
  • a 2 includes a divalent organic group derived from the component (b) compound.
  • Specific examples of the component (b) include compounds represented by the above formula [2a].
  • the bonding position of the two amino groups (—NH 2 ) in the above formula [2a] is not limited. Specifically, a few positions on the benzene ring with respect to the side chain linking group (— (Y 1 —Y 2 —Y 3 —Y 4 — (Y 5 ) n —Y 6 ) m ), 2,4 positions, 2,5 positions, 2,6 positions, 3,4 positions or 3,5 positions. Among these, from the viewpoint of the reactivity when synthesizing the polymer having the repeating unit represented by the formula [1], the positions 2, 4, 2, 5, or 3, 5 are preferable. Considering the ease in synthesizing the compound represented by the formula [2a], the positions 2, 4 or 2, 5 are more preferable.
  • formula [2a] is a structure represented by the following formula [2b-1] to formula [2b-29].
  • R 1 represents —O—, —OCH 2 —, —CH 2 O—, —COOCH 2 — or —CH 2 OCO—
  • R 2 represents An alkyl group having 1 to 18 carbon atoms, an alkoxy group, a fluorine-containing alkyl group or a fluorine-containing alkoxy group).
  • R 3 represents —COO—, —OCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, —OCH 2 — or — CH 2 —
  • R 4 represents an alkyl group having 1 to 18 carbon atoms, an alkoxy group, a fluorine-containing alkyl group or a fluorine-containing alkoxy group).
  • R 7 represents an alkyl group having 3 to 12 carbon atoms. Note that the cis-trans isomerism of 1,4-cyclohexylene is the trans isomer. preferable).
  • R 8 represents an alkyl group having 3 to 12 carbon atoms.
  • the cis-trans isomerism of 1,4-cyclohexylene is the trans isomer. preferable).
  • B 4 represents an alkyl group having 3 to 18 carbon atoms which may be substituted with a fluorine atom
  • B 3 represents a 1,4-cyclohexylene group or a 1,4-phenylene group
  • B 2 represents an oxygen atom or —COO— * (where a bond marked with “*” binds to B 3 )
  • B 1 represents an oxygen atom or —COO— * (where “*” bond marked with the (CH 2) showing the a 2 binds to).
  • a 1 represents an integer of 2 ⁇ 10
  • a 3 represents an integer of 0 or 1).
  • the liquid crystal can be aligned vertically as described above.
  • the compound represented by the formula [2a] is preferably 5 mol% or more and 80 mol% or less of the entire component (b). More preferably, from the viewpoint of liquid crystal alignment, the compound represented by the formula [2a] is 5 mol% or more and 60 mol% of the entire component (b). Most preferably, it is 10 mol% or more and 60 mol% or less of the whole component (b).
  • component (b) other than the compound represented by the formula [2a] m-phenylenediamine, 2,4-dimethyl-m-phenylenediamine, 2,6-diaminotoluene, 2,4-diaminophenol, 3,5 -Diaminophenol, 3,5-diaminobenzyl alcohol, 2,4-diaminobenzyl alcohol, 4,6-diaminoresorcinol, and diamines having structures represented by the following formulas [2b-30] to [2b-41] A compound can be mentioned.
  • R 5 represents —COO—, —OCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, —OCH 2 —, —CH 2- or -O-
  • R 6 is a fluorine group, a cyano group, a trifluoromethane group, a nitro group, an azo group, a formyl group, an acetyl group, an acetoxy group or a hydroxyl group).
  • a 1 represents an alkyl group having 1 to 22 carbon atoms or a fluorine-containing alkyl group).
  • the formula [2b-36] has a photoreactive side chain.
  • a photoreactive side chain is a portion that causes polymerization upon irradiation with light, and includes, for example, an acryl group, a methacryl group, a lactone group, a maleimide group, a vinyl group, an allyl group, and a styryl group.
  • the side chain which has is mentioned. However, it is not limited to this.
  • component (b) other than the compound represented by the formula [2a] 4,4′-diaminobiphenyl, 3,3′-dimethyl-4,4′-diaminobiphenyl, 3,3′-dimethoxy-4 , 4'-diaminobiphenyl, 3,3'-dihydroxy-4,4'-diaminobiphenyl, 3,3'-dicarboxy-4,4'-diaminobiphenyl, 3,3'-difluoro-4,4'- Biphenyl, 3,3'-trifluoromethyl-4,4'-diaminobiphenyl, 3,4'-diaminobiphenyl, 3,3'-diaminobiphenyl, 2,2'-diaminobiphenyl, 2,3'-diaminobiphenyl 4,4'-diaminodiphenylmethane, 3,3'-diaminodiphenylmethane, 3,4'-diaminomin
  • component (b) examples include those having an alkyl group, a fluorine-containing alkyl group, an aromatic ring, an aliphatic ring or a heterocyclic ring in the diamine side chain, and those having a macrocyclic substituent composed of these. it can.
  • diamine compounds represented by the following formulas [DA1] to [DA13] can be exemplified.
  • a 1 represents —COO—, —OCO—, —CONH—, —NHCO—, —CH 2 —, —O—, —CO— or —NH—
  • a 2 represents a linear or branched alkyl group having 1 to 22 carbon atoms or a linear or branched fluorine-containing alkyl group having 1 to 22 carbon atoms).
  • p represents an integer of 1 to 10).
  • diamine compounds represented by the following formulas [DA8] to [DA13] can be used as the component (b).
  • n represents an integer of 1 to 5
  • diamine compounds represented by the following formulas [DA14] to [DA17] can also be used.
  • a 1 is a single bond, —CH 2 —, —C 2 H 4 —, —C (CH 3 ) 2 —, —CF 2 —, —C (CF 3 ) 2 —, —O —, —CO—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —OCH 2 —, —COO—, —OCO—, —CON (CH 3 ) — Or —N (CH 3 ) CO—, each of m 1 and m 2 represents an integer of 0 to 4, and m 1 + m 2 represents an integer of 1 to 4, and in the formula [DA15], m 3 and m 4 each represent an integer of 1 to 5, and in formula [DA16], A 2 represents a linear or branched alkyl group having 1 to 5 carbon atoms, m 5 represents an integer of 1 to 5, [DA17] in, A 3 is
  • a diamine compound represented by the following formula [DA18] can also be used as long as the effects of the present invention are not impaired.
  • a 1 is —O—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —OCO—, —CON (CH 3 ).
  • a 3 is a hydrocarbon group, A 3 is a single bond, —O—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —COO—, —OCO—, —CON (CH 3 ) -, -N (CH 3 ) CO- or -O (CH 2 ) m- (m is an integer of 1 to 5), A 4 is a nitrogen-containing aromatic heterocycle, and n is 1 to It is an integer of 4.)
  • diamine compounds represented by the following formula [DA19] and formula [DA20] can also be used as other diamine compounds.
  • the component (b) includes the solubility of the polymer having the repeating unit represented by the formula [1] in the solvent, the coating property of the liquid crystal aligning agent, the alignment property of the liquid crystal when the liquid crystal alignment film is used, and the voltage holding ratio. Depending on the characteristics such as accumulated charge, one kind or a mixture of two or more kinds may be used.
  • the component (c) is a tetracarboxylic acid derivative, and examples thereof include a tetracarboxylic dianhydride represented by the above formula [3].
  • Z 1 represents the formula [3a], the formula [3c], the formula [3d], the formula [3e] from the viewpoint of easy synthesis and ease of polymerization reactivity when producing a polymer.
  • the structure represented by the formula [3f] or the formula [3g] is preferable.
  • a structure represented by the formula [3a], a formula [3e], a formula [3f] or a formula [3g] is more preferable, and a formula [3a], a formula [3e] or a formula [3f] is particularly preferable.
  • Or it is Formula [3g].
  • the tetracarboxylic dianhydride represented by the formula [3] is preferably 1 mol% or more of the entire component (c). More preferred is 5 mol% or more, and particularly preferred is 10 mol% or more.
  • Z 1 formula [3e] using the equation [3f] or tetracarboxylic acid dianhydride represented by the formula [3] is a structure of formula [3 g]
  • the amount used, (c) the entire component It is preferable to set it as 20 mol% or more, More preferably, it is 30 mol% or more.
  • all of the component (c) may be a tetracarboxylic dianhydride represented by the formula [3] in which Z 1 is a structure of the formula [3e], the formula [3f] or the formula [3g].
  • Examples of the component (c) other than the tetracarboxylic dianhydride represented by the formula [3] include the following tetracarboxylic acid compounds, tetracarboxylic dianhydrides, and tetracarboxylic acid dihalide compounds.
  • the component (c) is the solubility of the polymer having the repeating unit represented by the formula [1] in the solvent, the coating property of the liquid crystal aligning agent, the orientation of the liquid crystal when it is used as the liquid crystal alignment film, the voltage holding ratio, the accumulation.
  • One type or a mixture of two or more types can be used depending on the characteristics such as charge.
  • a polyimide precursor having a repeating unit represented by the formula [1] can be produced by polymerizing such components (a), (b) and (c).
  • a polyamic acid having a repeating unit represented by the formula [1] can be produced.
  • the polyamic acid ester which has a repeating unit shown by Formula [1] can be manufactured by converting the carboxyl group of the obtained polyamic acid which has a repeating unit shown by Formula [1] into ester.
  • the polyamic acid having the repeating unit represented by the formula [1] and the polyamic acid ester having the repeating unit represented by the formula [1] are cyclized (imidized) to repeat the compound represented by the formula [1].
  • a polyimide having units is obtained.
  • the repeating unit represented by the formula [1] is composed of the component (a) and the component (b).
  • the component (b) and the component (c) constitute a polyimide precursor or a repeating unit of polyimide.
  • the polyimide precursor and the repeating unit of polyimide composed of the component (b) and the component (c) can be represented by, for example, the following formula [8].
  • a 1 is a group derived from the component (a) which is a raw material
  • C 1 , C 2 and A 2 are groups derived from the component (b) which is a raw material.
  • C 1 , C 2 , and A 2 are groups derived from the component (b) as a raw material
  • Z 1 is a group derived from the component (c) as a raw material.
  • the repeating unit represented by the formula [1] of the polymer having the repeating unit represented by the formula [1] has one type each of C 1 , C 2 , A 1 and A 2 and the same formula [1]. Only the repeating unit shown may be sufficient, and C 1 , C 2 , A 1 and A 2 may be plural types, and may be a repeating unit represented by plural types of formula [1].
  • the repeating unit represented by the formula [8] possessed by the polymer having the repeating unit represented by the formula [1] is the same as each of C 1 , C 2 , A 2 , R 41 and R 42 . Only a repeating unit represented by the formula [8] may be used, or a plurality of C 1 , C 2 , A 2 , R 41 and R 42 may be used, and a plurality of repeating units represented by the formula [8] may be used.
  • the reaction of component (a), component (b) and component (c) is usually carried out in an organic solvent.
  • the organic solvent used at that time is not particularly limited as long as the produced polyimide precursor is dissolved.
  • Specific examples include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, dimethylsulfoxide, tetramethylurea, pyridine, dimethylsulfone, hexamethylsulfoxide, ⁇ - Butyrolactone, isopropyl alcohol, methoxymethylpentanol, dipentene, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, methyl cellosolve, ethyl cellosolve, methyl cellosolve acetate, ethyl cellosolve
  • Examples of the order of reacting the component (a), the component (b), and the component (c) include a method in which the component (a) and the component (b) are reacted and then the component (c) is added and reacted. It is done. By making it react in this way, the polyimide precursor which has the repeating unit shown by the formula [1] obtained, the repeating unit shown by the formula [1], and the repeating unit shown by the formula [8] were combined at random. Since it becomes a random copolymer, it is preferable.
  • the step of reacting the component (a) with the component (b) to obtain a urea polymer composed of the repeating unit represented by the formula [1] the reaction of the component (b) with the component (c) 8] to obtain a polyimide precursor composed of a repeating unit represented by formula [1], and then from the urea-based polymer composed of the repeating unit represented by formula [1] and the repeating unit represented by formula [8].
  • the resulting polymer having the repeating unit represented by the formula [1] has a structure like a block copolymer of polyurea and polyimide precursor, that is, the above random copolymer.
  • each Compared to the coalescence, each has a polymer structure composed of a urea polymer and a polyimide precursor having a higher degree of polymerization. In this case, problems such as poor solubility and poor applicability when used as a liquid crystal aligning agent may occur.
  • the temperature at which the component (a), the component (b) and the component (c) are reacted can be selected from -20 ° C to 150 ° C, but is preferably in the range of -5 ° C to 100 ° C. .
  • the reaction can be carried out at an arbitrary concentration. However, if the concentration is too low, it is difficult to obtain a polyimide precursor having a repeating unit represented by the high molecular weight formula [1]. The viscosity becomes too high, and uniform stirring becomes difficult. Therefore, the concentration of the total amount of component (a), component (b) and component (c) is preferably 1 to 50% by mass, more preferably 5 to 30% by mass in the reaction solution.
  • the initial stage of the reaction can be performed at a high concentration, and then an organic solvent can be added.
  • the proportion of the component (a) in the total amount of the component (a) and the component (c) is preferably 20 mol% to 60 mol% in order to achieve both voltage holding ratio and residual DC. This is because if the proportion of the component (a) is too small, the voltage holding ratio may be lowered during low-temperature firing, and if it is too large, residual DC tends to accumulate.
  • the polyamic acid having a repeating unit represented by the above formula [1] which is a polyimide precursor and the polyamic acid ester having a repeating unit represented by the above formula [1] are ring-closed (imidized) to form the formula [1
  • the polyimide which has a repeating unit shown by this can be obtained.
  • the ring closure rate (also referred to as imidation rate) of the amic acid group is 50. Must be less than%.
  • the imidation rate as used in this specification is a ratio of the imide group which occupies for the total amount of the imide group and carboxyl group derived from tetracarboxylic dianhydride.
  • Examples of the method for imidizing the polyimide precursor include thermal imidization in which the polyimide precursor solution is heated as it is or catalytic imidization in which a catalyst is added to the polyimide precursor solution.
  • the temperature is 100 ° C. to 400 ° C., preferably 120 ° C. to 250 ° C., and it is preferable to carry out while removing water generated by the imidation reaction from the system.
  • the catalyst imidation of the polyimide precursor can be performed by adding a basic catalyst and an acid anhydride to the polyimide precursor solution and stirring at -20 to 250 ° C, preferably 0 to 180 ° C.
  • the amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times of the amic acid group, and the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol of the amido acid group. Is double.
  • the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, and trioctylamine. Among them, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction.
  • Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is facilitated.
  • the imidization rate by catalytic imidation can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time.
  • the reaction solution may be poured into a solvent and precipitated.
  • the solvent used for precipitation include methanol, ethanol, isopropyl alcohol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, toluene, benzene, and water.
  • the polymer that has been introduced into the solvent and precipitated can be recovered by filtration, and then dried at normal temperature or under reduced pressure at room temperature or by heating.
  • the solvent at this time include alcohols, ketones, and hydrocarbons, and it is preferable to use three or more kinds of solvents selected from these because purification efficiency is further increased.
  • the molecular weight of the polyimide precursor having the repeating unit represented by the above formula [1] used in the present invention and the polyimide having the repeating unit represented by the above formula [1] and having an imidation ratio of less than 50% is determined therefrom.
  • the weight average molecular weight measured by GPC (Gel Permeation Chromatography) method is 5,000 to 1,000,000. More preferably, it is 10,000 to 150,000.
  • the compounding ratio of the polyimide with a rate of less than 50% is not particularly limited, for example, a polyimide precursor having a repeating unit represented by the above formula [1] and an imidation ratio having a repeating unit represented by the above formula [1] Is less than 50%
  • the total amount of polyimide is 0.1 to 30% by mass, preferably 3 to 10% by mass.
  • the liquid crystal aligning agent used for manufacture of a liquid crystal aligning film has a polyimide precursor in which a polymer component has a repeating unit shown by said Formula [1], and a repeating unit shown by said Formula [1]. Only a polyimide having an imidation ratio of less than 50% may be used, or other polymers other than these may be mixed. In that case, the content of the other polymer is 0.5 to 15% by mass, preferably 1 to 10% by mass, based on the total amount of the polymer components.
  • Other polymers include polyimide precursors and polyimides that do not have the repeating unit represented by the above formula [1].
  • an acrylic polymer, a methacryl polymer, polystyrene, polyamide, polysiloxane, etc. are mentioned.
  • the solvent contained in the liquid crystal aligning agent dissolves a polyimide precursor having a repeating unit represented by the above formula [1] and a polyimide having a repeating unit represented by the above formula [1] and having an imidization ratio of less than 50%.
  • the solvent contained in the liquid crystal aligning agent preferably has a solvent content of 70 to 99.9% by mass from the viewpoint of forming a uniform liquid crystal alignment film by coating. This content can be appropriately changed depending on the film thickness of the target liquid crystal alignment film.
  • liquid crystal aligning agent an organic solvent that improves the coating properties and surface smoothness of the liquid crystal aligning film when the liquid crystal aligning agent is applied, that is, a poor solvent can be used as long as the effects of the present invention are not impaired.
  • the poor solvent for improving the coating property and surface smoothness include ethanol, isopropyl alcohol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 3 -Pentanol, 2-methyl-1-butanol, isopentyl alcohol, tert-pentyl alcohol, 3-methyl-2-butanol, neopentyl alcohol, 1-hexanol, 2-methyl-1-pentanol, 2-methyl- 2-pentanol, 2-ethyl-1-butanol, 1-heptanol, 2-heptanol, 3-heptanol, 1-octanol, 2-octanol, 2-ethyl-1-hexanol, cyclohexanol, 1-methylcyclohexanol, 2-methylcyclohexanol 3-methylcyclohexanol, 1,2-ethanedi
  • These poor solvents may be used alone or in combination.
  • it is preferably 5 to 80% by mass, more preferably 20 to 60% by mass, based on the total organic solvent contained in the liquid crystal aligning agent.
  • the liquid crystal aligning agent is selected from the group consisting of a crosslinkable compound having an epoxy group, an isocyanate group, an oxetane group or a cyclocarbonate group, a hydroxyl group, a hydroxyalkyl group and a lower alkoxyalkyl group, unless the effects of the present invention are impaired. It is also possible to add a crosslinkable compound having at least one substituent or a crosslinkable compound having a polymerizable unsaturated bond. It is necessary to have two or more of these substituents and polymerizable unsaturated bonds in the crosslinkable compound.
  • crosslinkable compound having an epoxy group or an isocyanate group examples include bisphenolacetone glycidyl ether, phenol novolac epoxy resin, cresol novolac epoxy resin, triglycidyl isocyanurate, tetraglycidylaminodiphenylene, tetraglycidyl-m-xylenediamine, tetra Glycidyl-1,3-bis (aminoethyl) cyclohexane, tetraphenyl glycidyl ether ethane, triphenyl glycidyl ether ethane, bisphenol hexafluoroacetodiglycidyl ether, 1,3-bis (1- (2,3-epoxypropoxy)- 1-trifluoromethyl-2,2,2-trifluoromethyl) benzene, 4,4-bis (2,3-epoxypropoxy) octafluorobiphenyl Triglycidyl-p-amin
  • the crosslinkable compound having an oxetane group is a crosslinkable compound having at least two oxetane groups represented by the following formula [4].
  • crosslinkable compounds represented by the formulas [4a] to [4k] published on pages 58 to 59 of International Publication No. WO2011 / 132751 (published 2011.10.27).
  • the crosslinkable compound having a cyclocarbonate group is a crosslinkable compound having at least two cyclocarbonate groups represented by the following formula [5].
  • crosslinkable compounds represented by the formulas [5-1] to [5-42] described on pages 76 to 82 of International Publication No. WO2012 / 01132751 (2012.2.2 publication). It is done.
  • Examples of the crosslinkable compound having at least one substituent selected from the group consisting of a hydroxyl group and an alkoxyl group include an amino resin having a hydroxyl group or an alkoxyl group, such as a melamine resin, a urea resin, a guanamine resin, and a glycoluril.
  • a melamine derivative, a benzoguanamine derivative, or glycoluril in which a hydrogen atom of an amino group is substituted with a methylol group, an alkoxymethyl group, or both can be used.
  • the melamine derivative or benzoguanamine derivative can exist as a dimer or a trimer. These preferably have an average of 3 to 6 methylol
  • Examples of such melamine derivatives or benzoguanamine derivatives include MX-750, which has an average of 3.7 substituted methoxymethyl groups per triazine ring, and an average of 5. methoxymethyl groups per triazine ring.
  • Examples of the benzene or phenolic compound having a hydroxyl group or an alkoxyl group include 1,3,5-tris (methoxymethyl) benzene, 1,2,4-tris (isopropoxymethyl) benzene, 1,4-bis ( sec-butoxymethyl) benzene or 2,6-dihydroxymethyl-p-tert-butylphenol.
  • crosslinkable compound having a polymerizable unsaturated bond examples include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, and tri (meth) acryloyloxyethoxytrimethylol.
  • Crosslinkable compounds having three polymerizable unsaturated groups in the molecule such as propane or glycerin polyglycidyl ether poly (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (Meth) acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, butylene glycol Rudi (meth) acrylate, neopentyl glycol di (meth) acrylate, ethylene oxide bisphenol A type di (meth) acrylate, propylene oxide bisphenol type di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, glycerin Di (meth) acrylate, pentaerythritol di (meth) acrylate, ethylene glycol diglycidyl
  • E 1 represents a cyclohexane ring, bicyclohexane ring, a benzene ring, a biphenyl ring, a terphenyl ring, a naphthalene ring, a fluorene ring, a group selected from the group consisting of an anthracene ring or phenanthrene ring
  • E 2 Represents a group selected from the following formula [7a] or [7b], and n represents an integer of 1 to 4.
  • crosslinkable compound used for a liquid crystal aligning agent may be one type, and may combine two or more types.
  • the content of the crosslinkable compound in the liquid crystal aligning agent is preferably 0.1 to 150 parts by mass with respect to 100 parts by mass of all the polymer components.
  • the amount is more preferably 0.1 to 100 parts by weight, and most preferably 1 to 50 parts by weight, based on 100 parts by weight of all polymer components.
  • a compound that promotes charge transfer in a liquid crystal alignment film and promotes charge release of a liquid crystal cell using the liquid crystal alignment film when a liquid crystal alignment film using the liquid crystal alignment treatment agent using the composition of the present invention is formed. It is preferable to add nitrogen-containing heterocyclic amine compounds represented by the formulas [M1] to [M156], which are described on pages 69 to 73 of International Publication No. WO2011 / 132751 (published 2011.10.27). .
  • This amine compound may be added directly to the composition, but it may be added after a solution having a concentration of 0.1% by mass to 10% by mass, preferably 1% by mass to 7% by mass with an appropriate solvent.
  • the solvent is not particularly limited as long as it is an organic solvent that dissolves the specific polyimide polymer described above.
  • the liquid crystal aligning agent can contain a compound that improves the uniformity of the film thickness and surface smoothness of the liquid crystal aligning film when the liquid crystal aligning agent is applied, as long as the effects of the present invention are not impaired. Furthermore, you may contain the compound etc. which improve the adhesiveness of a liquid crystal aligning film and a board
  • Examples of compounds that improve the film thickness uniformity and surface smoothness of the liquid crystal alignment film include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants.
  • F-top EF301, EF303, EF352 (above, manufactured by Tochem Products), MegaFuck F171, F173, R-30 (above, manufactured by Dainippon Ink), Florard FC430, FC431 (or more) And Asahi Guard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (above, manufactured by Asahi Glass Co., Ltd.).
  • the use ratio of these surfactants is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass with respect to 100 parts by mass of all the polymer components contained in the liquid crystal aligning agent. is there.
  • Specific examples of the compound that improves the adhesion between the liquid crystal alignment film and the substrate include the following functional silane-containing compounds and epoxy group-containing compounds.
  • the amount is preferably 0.1 to 30 parts by mass, more preferably 1 to 20 parts per 100 parts by mass of all the polymer components contained in the liquid crystal aligning agent. Part by mass. If it is less than 0.1 part by mass, the effect of improving the adhesion cannot be expected, and if it exceeds 30 parts by mass, the storage stability of the liquid crystal aligning agent may be deteriorated.
  • the effect of the present invention is impaired. If it is within the range, a dielectric material or a conductive material for changing the electrical characteristics such as the dielectric constant and conductivity of the liquid crystal alignment film may be added.
  • such a liquid crystal aligning agent is applied on a substrate and then baked to obtain a liquid crystal aligning film having an imidization ratio of 50 to 70%.
  • a glass substrate, a silicon wafer, a plastic substrate such as an acrylic substrate or a polycarbonate substrate, or the like can be used depending on the target device. From the viewpoint of simplifying the process, it is preferable to use a substrate on which an ITO (Indium Tin Oxide) electrode or the like for driving the liquid crystal is formed.
  • an opaque substrate such as a silicon wafer can be used if only one substrate is used, and a material that reflects light such as aluminum can be used as an electrode in this case.
  • a plastic substrate or the like which is a substrate having low heat resistance can also be used.
  • the method of applying the liquid crystal aligning agent to the substrate is not particularly limited, but industrially, by dipping method, roll coater method, slit coater method, spinner method, spray method, screen printing, offset printing, flexographic printing, or inkjet method, etc.
  • the method of performing is common. You may use these according to the objective.
  • the firing conditions are such that the liquid crystal alignment film obtained after firing has an imidization ratio of 50 to 70%.
  • the firing temperature is 210 ° C. or lower, preferably 120 to 200 ° C.
  • the firing time is, for example, 5 minutes to 2 hours, preferably 10 minutes to 30 minutes.
  • a plastic substrate with low heat resistance can be used.
  • Examples of the heating means for performing firing include a thermal circulation oven or an IR (infrared) oven. If the thickness of the liquid crystal alignment film obtained by firing is too thick, it is disadvantageous in terms of power consumption of the liquid crystal display element. If it is too thin, the reliability of the liquid crystal display element may be lowered. More preferably, it is 10 to 100 nm.
  • the liquid crystal alignment film obtained by baking is treated by rubbing or irradiation with polarized ultraviolet rays.
  • polarized ultraviolet rays In the case of vertical alignment, etc., it can be used as a liquid crystal alignment film without alignment treatment.
  • the liquid crystal aligning agent containing the polyimide precursor which has a repeating unit shown by the said Formula [1], and the polyimide which has a repeating unit shown by the said Formula [1], and an imidation ratio is less than 50%.
  • a liquid crystal alignment film having an imidization ratio of 50 to 60% obtained by coating the substrate on the substrate and baking it has a low imidation ratio, a large amount of carboxyl groups, and a repeating unit represented by the formula [1]. For this reason, as shown in the examples described later, the residual DC is low and the voltage holding ratio is high.
  • the liquid crystal display element of the present invention is a liquid crystal display element obtained by applying and baking a liquid crystal aligning agent by the above-described method to obtain a substrate with a liquid crystal alignment film, and then preparing a liquid crystal cell by a known method.
  • a liquid crystal display element obtained by applying and baking a liquid crystal aligning agent by the above-described method to obtain a substrate with a liquid crystal alignment film, and then preparing a liquid crystal cell by a known method.
  • two substrates arranged to face each other a liquid crystal layer provided between the substrates, and a method for producing the liquid crystal alignment film of the present invention provided between the substrate and the liquid crystal layer.
  • a liquid crystal display device comprising a liquid crystal cell having a liquid crystal alignment film formed.
  • a liquid crystal display element of the present invention a twisted nematic (TN) method, a vertical alignment (VA) method, a horizontal alignment (IPS: In-Plane Switching) method, an OCB alignment (OCB).
  • TN twisted nematic
  • VA vertical alignment
  • IPS In-Plane Switching
  • OCB OCB alignment
  • a method for manufacturing a liquid crystal cell prepare a pair of substrates on which a liquid crystal alignment film is formed, spray spacers on the liquid crystal alignment film of one substrate, and place the other side of the liquid crystal alignment film on the other side. And a method of sealing the substrate by injecting liquid crystal under reduced pressure, or a method of sealing the substrate by bonding the liquid crystal after dropping the liquid crystal on the liquid crystal alignment film surface on which the spacers are dispersed.
  • liquid crystal examples include a positive liquid crystal having a positive dielectric anisotropy and a negative liquid crystal having a negative dielectric anisotropy.
  • a positive liquid crystal having a positive dielectric anisotropy examples include MLC-2003, MLC-6608, MLC-6609 manufactured by Merck & Co., Inc. Etc. can be used.
  • the liquid crystal alignment film of the present invention has a liquid crystal layer between a pair of substrates provided with electrodes, and contains a polymerizable compound that is polymerized by at least one of active energy rays and heat between the pair of substrates. It is also preferably used for a liquid crystal display element produced by a step of polymerizing a polymerizable compound by disposing a liquid crystal composition and applying a voltage between electrodes while at least one of irradiation with active energy rays and heating.
  • ultraviolet rays are suitable as the active energy ray.
  • the wavelength of ultraviolet rays is 300 to 400 nm, preferably 310 to 360 nm. In the case of polymerization by heating, the heating temperature is 40 to 120 ° C, preferably 60 to 80 ° C.
  • the above liquid crystal display element controls the pretilt of liquid crystal molecules by a PSA (Polymer Sustained Alignment) method.
  • a PSA method using active energy rays a small amount of a photopolymerizable compound, for example, a photopolymerizable monomer is mixed in a liquid crystal material, a liquid crystal cell is assembled, and a predetermined voltage is applied to the liquid crystal layer.
  • the photopolymerizable compound is polymerized by irradiating it with active energy rays such as ultraviolet rays, and the pretilt of the liquid crystal molecules is controlled by the produced polymer.
  • the pretilt of the liquid crystal molecules can be adjusted by controlling the electric field formed in the liquid crystal layer. it can.
  • the PSA method does not require a rubbing process and is suitable for forming a vertical alignment type liquid crystal layer in which it is difficult to control the pretilt by the rubbing process.
  • the production of the PSA type liquid crystal cell is the same as described above.
  • a pair of substrates on which a liquid crystal alignment film is formed is prepared, spacers are dispersed on the liquid crystal alignment film of one substrate, and the liquid crystal alignment film surface is on the inside.
  • the other substrate is bonded and the liquid crystal is injected under reduced pressure to seal, or the liquid crystal is dropped on the liquid crystal alignment film surface on which the spacers are dispersed, and then the substrate is bonded and sealed.
  • the liquid crystal is mixed with a polymerizable compound that is polymerized by irradiation with heat or active energy rays.
  • the polymerizable compound include compounds having at least one polymerizable unsaturated group such as an acrylate group or a methacrylate group in the molecule.
  • the polymerizable compound is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the liquid crystal component.
  • the polymerizable compound When the polymerizable compound is less than 0.01 part by mass, the polymerizable compound does not polymerize and the orientation of the liquid crystal cannot be controlled, and when it exceeds 10 parts by mass, the amount of unreacted polymerizable compound increases and the liquid crystal display The burn-in characteristic of the element is deteriorated.
  • the polymerizable compound is polymerized by applying heat or active energy rays while applying an AC or DC voltage to the liquid crystal cell. Thereby, the alignment of the liquid crystal molecules can be controlled.
  • the liquid crystal alignment film of the present invention has a liquid crystal layer between a pair of substrates provided with electrodes, and a polymerizable group that is polymerized by at least one of active energy rays and heat between the pair of substrates. It can also be used for a liquid crystal display device manufactured through a step of polymerizing a polymerizable group while disposing a liquid crystal alignment film containing a polymer and applying a voltage between electrodes (SC-PVA).
  • ultraviolet rays are suitable as the active energy ray.
  • the wavelength of ultraviolet rays is 300 to 400 nm, preferably 310 to 360 nm. In the case of polymerization by heating, the heating temperature is 40 to 120 ° C, preferably 60 to 80 ° C.
  • a method of adding a compound containing this polymerizable group to the liquid crystal aligning agent can be mentioned.
  • a polyimide having a repeating unit represented by the above formula [1] and having an imidization ratio of less than 50% include a polymerizable group.
  • liquid crystal alignment film on one substrate is formed in the same manner as described above.
  • a liquid crystal cell can be manufactured by a method in which the substrate is attached and sealed after dropping.
  • the orientation of the liquid crystal molecules can be controlled by irradiating the liquid crystal cell with heat or active energy rays while applying an AC or DC voltage.
  • the liquid crystal display device manufactured using the liquid crystal alignment film of the present invention has a low residual DC and a high voltage holding ratio, and thus has excellent reliability, and has a large screen and a high-definition liquid crystal. It can be suitably used for a television.
  • a lightweight plastic or the like can be used as the substrate, and the weight of the liquid crystal display element can be reduced.
  • the measurement method performed in this example will be described below.
  • the molecular weights of polyamic acid and polyimide were determined by measuring the polyamic acid and polyimide with a GPC (room temperature gel permeation chromatography) apparatus, and calculating the number average molecular weight and weight average molecular weight as polyethylene glycol and polyethylene oxide equivalent values.
  • GPC device Showa Denko GPC-101, Column: Shodex column (KD-803, KD-805 in series) Column temperature: 50 ° C Eluent: N, N′-dimethylformamide (as additives, lithium bromide-hydrate (LiBr ⁇ H 2 O) is 30 mmol / L, phosphoric acid / anhydrous crystal (o-phosphoric acid) is 30 mmol / L, Tetrahydrofuran (THF) 10ml / L) Flow rate: 1.0 ml / standard sample for preparing a calibration curve: TSK standard polyethylene oxide (molecular weight: about 900,000, 150,000, 100,000, 30,000) manufactured by Tosoh Corporation and polyethylene glycol (manufactured by Polymer Laboratories) (Molecular weight about 12,000, 4,000, 1,000)
  • the imidation ratio of polyimide was measured as follows.
  • x is the proton peak integrated value derived from the NH group of the amic acid
  • y is the peak integrated value of the reference proton
  • is one NH group proton of the amic acid in the case of polyamic acid (imidation rate is 0%). The number ratio of the reference protons.
  • polymer solution E having a repeating unit represented by the above formula [1] and having an imidization rate of 100% (Polyimide solution) (polymer concentration 15% by mass).
  • Example 1 Preparation of liquid crystal aligning agent and production of liquid crystal cell
  • NMP and BCS were added and stirred, and the polymer was 6 mass%, NMP was 64 mass%, and BCS was It prepared so that it might become 30 mass%.
  • This solution was pressure filtered through a membrane filter having a pore size of 1 ⁇ m to obtain a liquid crystal aligning agent.
  • the obtained liquid crystal aligning agent was spin-coated on a glass substrate with an ITO electrode, dried on an 80 ° C. hot plate for 5 minutes, and then baked in an IR oven at 180 ° C. for 15 minutes to form a coating film having a film thickness of 100 nm.
  • a (liquid crystal alignment film) was formed to obtain a substrate with a liquid crystal alignment film.
  • Two substrates with this liquid crystal alignment film are prepared, a spacer of 4 ⁇ m is sprayed on the surface of one liquid crystal alignment film, a sealant is printed thereon, and the other substrate has a liquid crystal alignment film surface.
  • the sealing agent was cured to produce an empty cell.
  • Liquid crystal MLC-6608 manufactured by Merck Japan Co., Ltd.
  • Example 2 and Comparative Examples 1 to 3 Liquid crystal alignment in the same manner as in Example 1 except that the polymer solutions B to E obtained in Synthesis Example 2 and Comparative Synthesis Examples 1 to 3 were used instead of the polymer solution A obtained in Synthesis Example 1, respectively. An agent, a liquid crystal alignment film, and a liquid crystal cell were obtained.
  • Example 3 A liquid crystal aligning agent, a liquid crystal alignment film, and a liquid crystal cell were obtained in the same manner as in Example 1 except that the firing temperature was 200 ° C.
  • Example 4 NMP and BCS were added to the polymer solution A obtained in Synthesis Example 1 and stirred to prepare a polymer of 3.5% by mass, NMP of 66.5% by mass, and BCS of 30% by mass. This solution was filtered under pressure through a membrane filter having a pore size of 1 ⁇ m, stored at ⁇ 15 ° C. for 48 hours, and then evaluated for ink jet coating properties.
  • HIS-200 manufactured by Hitachi Plant Technology
  • Example 2 Application was performed on an ITO (indium tin oxide) vapor-deposited substrate cleaned with pure water and IPA at a nozzle pitch of 0.423 mm, a scan pitch of 0.5 mm, and an application rate of 40 mm / sec. The film is then left for 60 seconds, dried on a hot plate at 80 ° C. for 5 minutes, and then baked in an IR oven at 180 ° C. for 15 minutes to form a coating film (liquid crystal alignment film) having a film thickness of 100 nm. A substrate with a film was obtained, and a liquid crystal cell was obtained in the same manner as in Example 1.
  • ITO indium tin oxide
  • This substrate with a liquid crystal alignment film was combined with a liquid crystal alignment film surface inside, with a 6 ⁇ m spacer in between, and the periphery was adhered with a sealant to produce an empty cell.
  • the polymerizable compound represented by the following formula [9] was added to nematic liquid crystal (MLC-6608) (manufactured by Merck Japan) by 100% by mass of nematic liquid crystal (MLC-6608) by vacuum injection into this empty cell.
  • MLC-6608 nematic liquid crystal
  • MLC-6608 nematic liquid crystal
  • the response speed of the liquid crystal before and after UV irradiation of this liquid crystal cell was measured.
  • T90 ⁇ T10 from 90% transmittance to 10% transmittance was measured.
  • the response speed of the liquid crystal cell after the ultraviolet irradiation was faster than that of the liquid crystal cell before the ultraviolet irradiation, so that it was confirmed that the alignment direction of the liquid crystal was controlled. Further, in any liquid crystal cell, it was confirmed by observation with a polarizing microscope (ECLIPSE E600WPOL) (manufactured by Nikon Corporation) that the liquid crystal was uniformly aligned.
  • ECLIPSE E600WPOL polarizing microscope
  • the imidization ratio of the liquid crystal alignment film was measured when the substrate with the liquid crystal alignment film was obtained.
  • the method for measuring the imidation ratio of the liquid crystal alignment film is as follows. A liquid crystal aligning agent is spin-coated on a glass substrate with an ITO electrode, dried on a hot plate at 80 ° C. for 5 minutes, and then baked in an IR oven to form a coating film (liquid crystal alignment film) having a film thickness of 100 nm. Thus, a substrate with a liquid crystal alignment film was obtained. This liquid crystal alignment film was shaved off with a cutter knife, and the imidization rate was measured by KBr method with FT-IR.
  • the imidation ratio was 50 to 70% using the liquid crystal aligning agents of Examples 1 to 4 containing the polyimide precursor having the repeating unit represented by the formula [1].
  • the voltage holding ratio was high and the residual DC was small.
  • the voltage holding ratio was high, but the residual DC was high.
  • the residual DC was small in the liquid crystal cell which has the liquid crystal aligning film which does not have the repeating unit represented by Formula [1] of the comparative example 2, and consists only of polyamic acid, the voltage holding rate was low.
  • the voltage holding ratio was high, but the residual DC was large.
  • the electrical characteristics such as residual DC and voltage holding ratio can be measured, it can be said that the measured liquid crystal alignment film has good liquid crystal alignment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Liquid Crystal (AREA)
  • Nonlinear Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

A liquid-crystal alignment agent is applied to a substrate and subsequently baked to obtain a liquid-crystal alignment film having an imidization ratio of 50-70%. The liquid-crystal alignment agent includes: a polyimide precursor having repeating units represent by formula [1]; and at least one polymer selected from polyimides which have repeating units represented by formula [1], and which have an imidization ratio of less than 50% (in formula [1]: A1 represents a divalent organic group; A2 represents a divalent organic group; and C1 and C2 each represent hydrogen or a C1-3 alkyl group, and may be the same as or different to each other).

Description

液晶配向膜の製造方法、液晶配向膜、液晶表示素子及び液晶配向剤Method for producing liquid crystal alignment film, liquid crystal alignment film, liquid crystal display element, and liquid crystal aligning agent
 本発明は、液晶配向膜の製造方法、液晶配向膜、液晶配向膜を用いた液晶表示素子、及び、液晶配向膜を作製する際に用いる液晶配向剤に関するものである。 The present invention relates to a method for producing a liquid crystal alignment film, a liquid crystal alignment film, a liquid crystal display element using the liquid crystal alignment film, and a liquid crystal alignment agent used when producing the liquid crystal alignment film.
 液晶テレビ、液晶ディスプレイなどに用いられる液晶表示素子は、薄型・軽量を実現する表示デバイスとして、現在広く使用されている。液晶表示素子において、液晶配向膜は液晶を一定の方向に配向させるという役割を担っている。現在、工業的に利用されている主な液晶配向膜は、ポリイミド前駆体であるポリアミック酸(ポリアミド酸ともいわれる)、ポリアミック酸エステルや、ポリイミドの溶液からなる液晶配向剤を、基板に塗布し焼成することで形成される。 Liquid crystal display elements used for liquid crystal televisions and liquid crystal displays are now widely used as thin and light display devices. In the liquid crystal display element, the liquid crystal alignment film plays a role of aligning the liquid crystal in a certain direction. Currently, the main liquid crystal alignment films used industrially are a polyimide precursor polyamic acid (also called polyamic acid), a polyamic acid ester, and a liquid crystal aligning agent composed of a polyimide solution applied to a substrate and baked. It is formed by doing.
 このような液晶配向膜の形成において、焼成温度が高いと、耐熱性が低い基板を用いることができない等の問題が生じるため、焼成温度を低くすることが望まれる。低い焼成温度で液晶配向膜を形成できる技術として、例えば、ポリ尿素系繰返し構造単位及びポリイミド系繰返し構造単位を同一分子中に含んでなる重合体を含有する液晶配向膜が開示されている(特許文献1参照)。 In the formation of such a liquid crystal alignment film, if the baking temperature is high, there arises a problem that a substrate having low heat resistance cannot be used. Therefore, it is desirable to lower the baking temperature. As a technique capable of forming a liquid crystal alignment film at a low baking temperature, for example, a liquid crystal alignment film containing a polymer containing a polyurea-based repeating structural unit and a polyimide-based repeating structural unit in the same molecule is disclosed (patent) Reference 1).
特開平08-220542号公報Japanese Patent Laid-Open No. 08-220542
 しかしながら、特許文献1の液晶配向膜は、残留DCが高いという問題がある。また、液晶配向膜には、その他の電気特性として電圧保持率が高いことも求められている。 However, the liquid crystal alignment film of Patent Document 1 has a problem of high residual DC. Further, the liquid crystal alignment film is also required to have a high voltage holding ratio as another electrical characteristic.
 本発明の目的は、上述の従来技術の問題点を解決することにあり、残留DCが低く且つ電圧保持率が高い液晶配向膜を低温での焼成によって形成できる液晶配向膜の製造方法、液晶配向膜、液晶表示素子及び液晶配向剤を提供することを目的とする。 An object of the present invention is to solve the above-described problems of the prior art, and a method for producing a liquid crystal alignment film, which can form a liquid crystal alignment film having a low residual DC and a high voltage holding ratio by firing at a low temperature, and a liquid crystal alignment It aims at providing a film | membrane, a liquid crystal display element, and a liquid crystal aligning agent.
 上記課題を解決する本発明は、以下を要旨とする。
1. 下記式[1]で示される繰り返し単位を有するポリイミド前駆体及び下記式[1]で示される繰り返し単位を有しイミド化率が50%未満であるポリイミドから選択される少なくとも一種の重合体を含有する液晶配向剤を、基板に塗布した後、焼成することにより、イミド化率が50~70%の液晶配向膜を得ることを特徴とする液晶配向膜の製造方法。
This invention which solves the said subject makes the following a summary.
1. Contains at least one polymer selected from a polyimide precursor having a repeating unit represented by the following formula [1] and a polyimide having a repeating unit represented by the following formula [1] and having an imidation ratio of less than 50% A method for producing a liquid crystal alignment film, characterized in that a liquid crystal alignment film having an imidization ratio of 50 to 70% is obtained by applying a liquid crystal aligning agent to the substrate and then baking the liquid crystal aligning agent.
Figure JPOXMLDOC01-appb-C000008
(式[1]中、Aは2価の有機基であり、Aは2価の有機基であり、C及びCは水素原子又は炭素数1~3のアルキル基であり、それぞれ同じであっても異なってもよい。)
Figure JPOXMLDOC01-appb-C000008
(In Formula [1], A 1 is a divalent organic group, A 2 is a divalent organic group, C 1 and C 2 are a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, It can be the same or different.)
2. 前記焼成を、210℃以下で行うことを特徴とする1.に記載の液晶配向膜の製造方法。 2. The firing is performed at 210 ° C. or lower. The manufacturing method of the liquid crystal aligning film as described in any one of.
3. 前記重合体が、下記式[2]で示される側鎖を有することを特徴とする1.又は2.に記載の液晶配向膜の製造方法。 3. The polymer has a side chain represented by the following formula [2]. Or 2. The manufacturing method of the liquid crystal aligning film as described in any one of.
Figure JPOXMLDOC01-appb-C000009
(式[2]中、Yは単結合、-(CH-(aは1~15の整数である)、-O-、-CHO-、-COO-又は-OCO-であり、Yは単結合又は-(CH-(bは1~15の整数である)であり、Yは単結合、-(CH-(cは1~15の整数である)、-O-、-CHO-、-COO-又は-OCO-であり、Yはベンゼン環、シクロヘキサン環及び複素環から選ばれる2価の環状基、又はステロイド骨格を有する炭素数17~51の2価の有機基を示し、前記環状基上の任意の水素原子が、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよく、Yはベンゼン環、シクロヘキサン環及び複素環から選ばれる2価の環状基を示し、これらの環状基上の任意の水素原子が、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよく、nは0~4の整数であり、Yは炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基又は炭素数1~18のフッ素含有アルコキシル基である。)
Figure JPOXMLDOC01-appb-C000009
(In the formula [2], Y 1 is a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO—. Y 2 is a single bond or — (CH 2 ) b — (b is an integer of 1 to 15), Y 3 is a single bond, — (CH 2 ) c — (c is an integer of 1 to 15) ), —O—, —CH 2 O—, —COO— or —OCO—, wherein Y 4 is a carbon having a divalent cyclic group selected from a benzene ring, a cyclohexane ring and a heterocyclic ring, or a steroid skeleton A divalent organic group having 17 to 51, wherein any hydrogen atom on the cyclic group contains an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, or fluorine having 1 to 3 carbon atoms alkyl group may be substituted with a fluorine-containing alkoxyl group or a fluorine atom having 1 to 3 carbon atoms, Y 5 Baie A divalent cyclic group selected from a zen ring, a cyclohexane ring and a heterocyclic ring, wherein any hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, carbon The fluorine-containing alkyl group having 1 to 3 carbon atoms, the fluorine-containing alkoxyl group having 1 to 3 carbon atoms or the fluorine atom may be substituted, n is an integer of 0 to 4, and Y 6 has 1 to 18 carbon atoms. An alkyl group, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms.)
4. 前記重合体が、下記の(a)成分、(b)成分及び(c)成分を反応させて得られることを特徴とする1.~3.のいずれか一つに記載の液晶配向膜の製造方法。
 (a)成分:分子内にイソシアネート基を2個含有する化合物
 (b)成分:分子内に1級又は2級のアミノ基を2個含有する化合物
 (c)成分:テトラカルボン酸誘導体
4). The polymer is obtained by reacting the following components (a), (b) and (c): ~ 3. The manufacturing method of the liquid crystal aligning film as described in any one of these.
(A) Component: Compound containing two isocyanate groups in the molecule (b) Component: Compound containing two primary or secondary amino groups in the molecule (c) Component: Tetracarboxylic acid derivative
5. 前記(b)成分が、前記式[2]で示される側鎖を有する化合物であることを特徴とする4.に記載の液晶配向膜の製造方法。 5. 3. The component (b) is a compound having a side chain represented by the formula [2]. The manufacturing method of the liquid crystal aligning film as described in any one of.
6. 前記(b)成分が、下記式[2a]で示される化合物であることを特徴とする4.に記載の液晶配向膜の製造方法。 6). 3. The component (b) is a compound represented by the following formula [2a]. The manufacturing method of the liquid crystal aligning film as described in any one of.
Figure JPOXMLDOC01-appb-C000010
(式[2a]中、Y、Y、Y、Y、Y、Y、nは、式[2]におけるY、Y、Y、Y、Y、Y、nと同じであり、mは1~4の整数であり、-(Y-Y-Y-Y-(Y-Yは置換基Y-Y-Y-Y-(Y-Yがm個あることを表し、mが2以上の場合は、それぞれの置換基は同一でも異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000010
(In Formula [2a], Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , Y 6 , and n are Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , Y 6 in Formula [2]. , N, m is an integer of 1 to 4, and — (Y 1 —Y 2 —Y 3 —Y 4 — (Y 5 ) n —Y 6 ) m is a substituent Y 1 —Y 2 —. Y 3 —Y 4 — (Y 5 ) n —Y 6 represents m, and when m is 2 or more, each substituent may be the same or different.)
7. 前記(c)成分が、下記式[3]で示されるテトラカルボン酸二無水物であることを特徴とする4.~6.のいずれか一つに記載の液晶配向膜の製造方法。 7). 3. The component (c) is a tetracarboxylic dianhydride represented by the following formula [3]. ~ 6. The manufacturing method of the liquid crystal aligning film as described in any one of these.
Figure JPOXMLDOC01-appb-C000011
(式[3]中、Zは下記式[3a]~式[3j]で示される構造である)。
Figure JPOXMLDOC01-appb-C000011
(In the formula [3], Z 1 is a structure represented by the following formulas [3a] to [3j]).
(式[3a]中、Z~Zは水素原子、メチル基、塩素原子又はベンゼン環であり、それぞれ、同じであっても異なってもよく、式[3g]中、Z及びZは水素原子又はメチル基であり、それぞれ、同じであっても異なってもよい)。 (In the formula [3a], Z 2 to Z 5 are a hydrogen atom, a methyl group, a chlorine atom or a benzene ring, and may be the same or different. In the formula [3g], Z 6 and Z 7 Are hydrogen atoms or methyl groups, which may be the same or different.
8. 液晶配向剤中の前記重合体が0.1~30質量%であることを特徴とする1.~7.のいずれか一つに記載の液晶配向膜の製造方法。 8). 1. The polymer in the liquid crystal aligning agent is 0.1 to 30% by mass. ~ 7. The manufacturing method of the liquid crystal aligning film as described in any one of these.
9. 前記塗布を、インクジェット法で行うことを特徴とする1.~8.のいずれか一つに記載の液晶配向膜の製造方法。 9. The coating is performed by an ink jet method. ~ 8. The manufacturing method of the liquid crystal aligning film as described in any one of these.
10. 1.~9.のいずれか一つに記載の液晶配向膜の製造方法により製造されたことを特徴とする液晶配向膜。 10. 1. ~ 9. A liquid crystal alignment film manufactured by the method for manufacturing a liquid crystal alignment film according to any one of the above.
11. 下記式[1]で示される繰り返し単位を有するポリイミドを含有し、イミド化率が50~70%であることを特徴とする液晶配向膜。 11. A liquid crystal alignment film comprising a polyimide having a repeating unit represented by the following formula [1] and having an imidization ratio of 50 to 70%.
Figure JPOXMLDOC01-appb-C000013
(式[1]中、Aは2価の有機基であり、Aは2価の有機基であり、C及びCは水素原子又は炭素数1~3のアルキル基であり、それぞれ同じであっても異なってもよい。)
Figure JPOXMLDOC01-appb-C000013
(In Formula [1], A 1 is a divalent organic group, A 2 is a divalent organic group, C 1 and C 2 are a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, It can be the same or different.)
12. 電極を備えた一対の基板の間に液晶層を有してなり、前記一対の基板の間に活性エネルギー線及び熱の少なくとも一方により重合する重合性化合物を含む液晶組成物を配置し、前記電極間に電圧を印加しつつ前記重合性化合物を重合させる工程を経て製造される液晶表示素子に用いられることを特徴とする10.又は11.に記載の液晶配向膜。 12 A liquid crystal composition comprising a liquid crystal layer between a pair of substrates provided with electrodes and comprising a polymerizable compound that is polymerized by at least one of active energy rays and heat is disposed between the pair of substrates, and the electrodes 9. It is used for a liquid crystal display device manufactured through a step of polymerizing the polymerizable compound while applying a voltage therebetween. Or 11. A liquid crystal alignment film as described in 1.
13. 電極を備えた一対の基板の間に液晶層を有してなり、前記一対の基板の間に活性エネルギー線及び熱の少なくとも一方により重合する重合性基を含む液晶配向膜を配置し、前記電極間に電圧を印加しつつ前記重合性基を重合させる工程を経て製造される液晶表示素子に用いられることを特徴とする10.又は11.に記載の液晶配向膜。 13. A liquid crystal layer between a pair of substrates provided with electrodes, and a liquid crystal alignment film containing a polymerizable group that is polymerized by at least one of active energy rays and heat between the pair of substrates; 9. It is used for a liquid crystal display device manufactured through a step of polymerizing the polymerizable group while applying a voltage therebetween. Or 11. A liquid crystal alignment film as described in 1.
14. 10.~13.のいずれか一つに記載の液晶配向膜を有することを特徴とする液晶表示素子。 14 10. ~ 13. A liquid crystal display element comprising the liquid crystal alignment film according to any one of the above.
15. 下記式[1]で表される繰り返し単位を有するポリイミド前駆体を含有することを特徴とする液晶配向剤。 15. A liquid crystal aligning agent comprising a polyimide precursor having a repeating unit represented by the following formula [1].
Figure JPOXMLDOC01-appb-C000014
(式[1]中、Aは2価の有機基であり、Aは2価の有機基であり、C及びCは水素原子又は炭素数1~3のアルキル基であり、それぞれ同じであっても異なってもよい。)
Figure JPOXMLDOC01-appb-C000014
(In Formula [1], A 1 is a divalent organic group, A 2 is a divalent organic group, C 1 and C 2 are a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, It can be the same or different.)
 本発明によれば、式[1]で示される繰り返し単位を有するポリイミド前駆体や式[1]で示される繰り返し単位を有しイミド化率が50%未満であるポリイミドを含有する液晶配向剤を用い、塗布及び焼成してイミド化率が50~70%の液晶配向膜を形成することにより、残留DCが低く且つ電圧保持率が高い液晶配向膜が得られる。そして、焼成温度を例えば210℃以下の低温にすることができるため、基板として比較的耐熱性が低いプラスチック製基板等も用いることができ、また、高温での焼成に伴う液晶表示素子のカラーフィルターの色特性の劣化の抑制や、液晶表示素子の製造におけるエネルギーコストを削減することができる。 According to the present invention, there is provided a liquid crystal aligning agent containing a polyimide precursor having a repeating unit represented by the formula [1] or a polyimide having a repeating unit represented by the formula [1] and having an imidization ratio of less than 50%. A liquid crystal alignment film having a low residual DC and a high voltage holding ratio can be obtained by using, coating and baking to form a liquid crystal alignment film having an imidization ratio of 50 to 70%. Further, since the baking temperature can be as low as 210 ° C. or less, for example, a plastic substrate having a relatively low heat resistance can be used as the substrate, and the color filter of the liquid crystal display element accompanying the baking at a high temperature. It is possible to suppress the deterioration of the color characteristics and to reduce the energy cost in manufacturing the liquid crystal display element.
 以下に、本発明について詳細に説明する。
 本発明の液晶配向膜の製造方法は、上記式[1]で示される繰り返し単位を有するポリイミド前駆体及び上記式[1]で示される繰り返し単位を有しイミド化率が50%未満であるポリイミドから選択される少なくとも一種の重合体を含有する液晶配向剤を、基板に塗布した後、焼成することにより、イミド化率が50~70%の液晶配向膜を得るものである。
The present invention is described in detail below.
The method for producing a liquid crystal alignment film of the present invention includes a polyimide precursor having a repeating unit represented by the formula [1] and a polyimide having a repeating unit represented by the formula [1] and an imidation ratio of less than 50%. A liquid crystal alignment film having an imidation ratio of 50 to 70% is obtained by applying a liquid crystal aligning agent containing at least one polymer selected from the above to a substrate and then baking it.
 本発明の液晶配向膜の製造に使用する液晶配向剤は、上記式[1]で示される繰り返し単位を有するポリイミド前駆体や、上記式[1]で示される繰り返し単位を有し且つイミド化率が50%未満のポリイミドを含有する。勿論、上記式[1]で示される繰り返し単位を有するポリイミド前駆体、及び、上記式[1]で示される繰り返し単位を有しイミド化率が50%未満のポリイミドの両方を含有していてもよい。また、複数種の上記式[1]で示される繰り返し単位を有するポリイミド前駆体や、複数種の上記式[1]で示される繰り返し単位を有しイミド化率が50%未満のポリイミドを含有していてもよい。なお、ポリイミド前駆体とは、ポリアミック酸やポリアミック酸エステルである。 The liquid crystal aligning agent used for manufacture of the liquid crystal aligning film of this invention has a polyimide precursor which has a repeating unit shown by the said Formula [1], a repeating unit shown by the said Formula [1], and an imidation rate Contains less than 50% polyimide. Of course, even if it contains both a polyimide precursor having a repeating unit represented by the above formula [1] and a polyimide having a repeating unit represented by the above formula [1] and having an imidization ratio of less than 50%. Good. In addition, it contains a polyimide precursor having a plurality of repeating units represented by the above formula [1] and a polyimide having a plurality of repeating units represented by the above formula [1] and having an imidization ratio of less than 50%. It may be. The polyimide precursor is a polyamic acid or a polyamic acid ester.
 上記式[1]で示される繰り返し単位有するポリイミド前駆体や上記式[1]で示される繰り返し単位を有しイミド化率が50%未満のポリイミド(以下「式[1]で示される繰り返し単位を有する重合体」とも記載する)は、上記式[2]で示される側鎖を有することが好ましい。上記式[2]で示される側鎖を有すると、液晶を垂直に配向させることができる液晶配向膜を製造することができる。例えば、式[1]で示される繰り返し単位が、式[2]で示される側鎖を有する場合は、AやAが式[2]で示される構造を有する。また、詳しくは後述するポリイミド前駆体やポリイミドの繰り返し単位が上記式[2]で示される側鎖を有していてもよい。 A polyimide precursor having a repeating unit represented by the above formula [1] or a polyimide having a repeating unit represented by the above formula [1] and an imidization ratio of less than 50% (hereinafter referred to as a repeating unit represented by the formula [1] It is preferable that the polymer having a side chain represented by the above formula [2]. When it has a side chain represented by the above formula [2], a liquid crystal alignment film capable of vertically aligning liquid crystals can be produced. For example, when the repeating unit represented by the formula [1] has a side chain represented by the formula [2], A 1 and A 2 have a structure represented by the formula [2]. Further, in detail, a polyimide precursor or a repeating unit of polyimide described later may have a side chain represented by the above formula [2].
 式[1]中、Yは単結合、-(CH-(aは1~15の整数である)、-O-、-CHO-、-COO-又は-OCO-を示す。なかでも、原料の入手性や合成の容易さの点から、単結合、-(CH-(aは1~15の整数である)、-O-、-CHO-又は-COO-が好ましい。より好ましいのは、単結合、-(CH-(aは1~10の整数である)、-O-、-CHO-又は-COO-である。 In the formula [1], Y 1 represents a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO—. . Among these, from the viewpoint of availability of raw materials and ease of synthesis, a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O— or —COO. -Is preferred. More preferred is a single bond, — (CH 2 ) a — (a is an integer of 1 to 10), —O—, —CH 2 O— or —COO—.
 式[1]中、Yは単結合又は-(CH-(bは1~15の整数である)を示す。なかでも、単結合又は-(CH-(bは1~10の整数である)が好ましい。 In the formula [1], Y 2 represents a single bond or — (CH 2 ) b — (b is an integer of 1 to 15). Among these, a single bond or — (CH 2 ) b — (b is an integer of 1 to 10) is preferable.
 式[1]中、Yは単結合、-(CH-(cは1~15の整数である)、-O-、-CHO-、-COO-又は-OCO-を示す。なかでも、合成の容易さの点から、単結合、-(CH-(cは1~15の整数である)、-O-、-CHO-又は-COO-が好ましい。より好ましいのは、単結合、-(CH-(cは1~10の整数である)、-O-、-CHO-又は-COO-である。 In the formula [1], Y 3 represents a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO—. . Of these, a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O— or —COO— is preferable from the viewpoint of ease of synthesis. More preferred is a single bond, — (CH 2 ) c — (c is an integer of 1 to 10), —O—, —CH 2 O— or —COO—.
 式[1]中、Yはベンゼン環、シクロヘキサン環及び複素環から選ばれる2価の環状基、又はステロイド骨格を有する炭素数17~51の2価の有機基を示し、環状基上の任意の水素原子が、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよい。なかでも、合成の容易さの点から、ベンゼン環、シクロへキサン環又はステロイド骨格を有する炭素数17~51の有機基が好ましい。 In the formula [1], Y 4 represents a divalent cyclic group selected from a benzene ring, a cyclohexane ring and a heterocyclic ring, or a divalent organic group having 17 to 51 carbon atoms and having a steroid skeleton, Are substituted with an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom. It may be. Among these, an organic group having 17 to 51 carbon atoms having a benzene ring, a cyclohexane ring or a steroid skeleton is preferable from the viewpoint of ease of synthesis.
 式[1]中、Yはベンゼン環、シクロヘキサン環及び複素環から選ばれる2価の環状基を示し、これらの環状基上の任意の水素原子が、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよい。なかでも、ベンゼン環又はシクロへキサン環が好ましい。 In the formula [1], Y 5 represents a divalent cyclic group selected from a benzene ring, a cyclohexane ring and a heterocyclic ring, and any hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms, carbon It may be substituted with an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom. Of these, a benzene ring or a cyclohexane ring is preferable.
 式[1]中、nは0~4の整数である。なかでも、原料の入手性や合成の容易さの点から、0~3が好ましい。より好ましいのは、0~2である。 In the formula [1], n is an integer of 0 to 4. Among these, 0 to 3 are preferable from the viewpoint of availability of raw materials and ease of synthesis. More preferred is 0-2.
 式[1]中、Yは炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基又は炭素数1~18のフッ素含有アルコキシル基である。なかでも、炭素数1~18のアルキル基、炭素数1~10のフッ素含有アルキル基、炭素数1~18のアルコキシル基又は炭素数1~10のフッ素含有アルコキシル基が好ましい。より好ましくは、炭素数1~12のアルキル基又は炭素数1~12のアルコキシル基である。特に好ましくは、炭素数1~9のアルキル基又は炭素数1~9のアルコキシル基である。 In the formula [1], Y 6 is an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms. . Of these, an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 10 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 10 carbon atoms is preferable. More preferably, it is an alkyl group having 1 to 12 carbon atoms or an alkoxyl group having 1 to 12 carbon atoms. Particularly preferred is an alkyl group having 1 to 9 carbon atoms or an alkoxyl group having 1 to 9 carbon atoms.
 式[1]中、Y、Y、Y、Y、Y、Y及びnの好ましい組み合わせとしては、国際公開公報WO2011/132751(2011.10.27公開)の13項~34項の表6~表47に掲載される(2-1)~(2-629)と同じ組み合わせが挙げられる。なお、国際公開公報の各表では、本発明におけるY~Yが、Y1~Y6として示されているが、Y1~Y6は、Y~Yと読み替えるものとする。 In the formula [1], preferred combinations of Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , Y 6 and n are listed in Items 13 to 34 of International Publication No. WO2011 / 132751 (published 2011.10.27). Examples thereof include the same combinations as (2-1) to (2-629) listed in Tables 6 to 47 in the section. In each table of the International Publication, Y 1 to Y 6 in the present invention are shown as Y 1 to Y 6 , but Y 1 to Y 6 are read as Y 1 to Y 6 .
 上記式[1]で示される繰り返し単位を有するポリイミド前駆体は、例えば、分子内にイソシアネート基を2個含有する化合物である(a)成分と、分子内に1級又は2級のアミノ基を2個含有する化合物である(b)成分と、テトラカルボン酸誘導体である(c)成分を反応させることにより、製造することができる。 The polyimide precursor having a repeating unit represented by the above formula [1] includes, for example, a component (a) which is a compound containing two isocyanate groups in the molecule, and a primary or secondary amino group in the molecule. It can manufacture by making (b) component which is a compound containing two, and (c) component which is a tetracarboxylic acid derivative react.
 (a)成分は、O=C=N-A-N=C=O(Aは、式[1]におけるAと同じである)で示される化合物である。Aとしては、水素原子が炭素数1~5のアルキル基で置換されていてもよい2価のベンゼン環、アルキレン、脂肪族環又はそれらの組み合わせからなる置換基等が挙げられる。(a)成分の具体例としては、芳香族ジイソシアネートとして、o-フェニレンジイソシアネート、m-フェニレンジイソシアネート、p - フェニレンジイソシアネート、トルエンジイソシアネート類(例えば、2,4-ジイソシアン酸トリレン)、1,4-ジイソシアン酸-2-メトキシベンゼン、2,5-ジイソシアン酸キシレン類、2,2’-ビス(4-ジイソシアン酸フェニル)プロパン、4,4’-ジイソシアン酸ジフェニルメタン、4,4’-ジイソシアン酸ジフェニルエーテル、4,4’-ジイソシアン酸ジフェニルスルホン、3,3’-ジイソシアン酸ジフェニルスルホン、2,2’-ジイソシアン酸ベンゾフェノンなど、脂肪族ジイソシアネートとしてイソホロンジイソシアネート、ヘキサメチレンジイソシアネート、テトラメチルエチレンジイソシアネート等が挙げられる。なかでも、2,4-ジイソシアン酸トリレンが、入手性、重合反応性、電圧保持率の観点から好ましい。 The component (a) is a compound represented by O═C═NA 1 —N═C═O (A 1 is the same as A 1 in the formula [1]). Examples of A 1 include a substituent composed of a divalent benzene ring, an alkylene group, an aliphatic ring, or a combination thereof, in which a hydrogen atom may be substituted with an alkyl group having 1 to 5 carbon atoms. Specific examples of the component (a) include aromatic diisocyanates such as o-phenylene diisocyanate, m-phenylene diisocyanate, p-phenylene diisocyanate, toluene diisocyanates (for example, tolylene 2,4-diisocyanate), 1,4-diisocyanate. Acid-2-methoxybenzene, 2,5-diisocyanate xylenes, 2,2′-bis (phenyl diisocyanate) propane, 4,4′-diisocyanate diphenylmethane, 4,4′-diisocyanate diphenyl ether, 4 , 4′-diisocyanate diphenylsulfone, 3,3′-diisocyanate diphenylsulfone, 2,2′-diisocyanate benzophenone, etc., as the aliphatic diisocyanate, isophorone diisocyanate, hexamethylene diisocyanate, tetramethyl Le ethylene diisocyanate. Of these, 2,4-diisocyanate tolylene is preferable from the viewpoints of availability, polymerization reactivity, and voltage holding ratio.
 (b)成分は、下記式[b]で示される化合物である。 The component (b) is a compound represented by the following formula [b].
Figure JPOXMLDOC01-appb-C000015
(式[b]中、C、C、Aは式[1]におけるC、C、Aと同じである)
 Aとしては、(b)成分の化合物に由来する2価の有機基が挙げられる。(b)成分の具体例としては、上記式[2a]で示される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000015
(Wherein [b], C 1, C 2, A 2 is the same as C 1, C 2, A 2 in the formula [1])
A 2 includes a divalent organic group derived from the component (b) compound. Specific examples of the component (b) include compounds represented by the above formula [2a].
 上記式[2a]における2つのアミノ基(-NH)の結合位置は限定されない。具体的には、側鎖の結合基(-(Y-Y-Y-Y-(Y-Y)に対して、ベンゼン環上の2,3の位置、2,4の位置、2,5の位置、2,6の位置、3,4の位置又は3,5の位置が挙げられる。なかでも、式[1]で示される繰り返し単位を有する重合体を合成する際の反応性の観点から、2,4の位置、2,5の位置又は3,5の位置が好ましい。式[2a]で示される化合物を合成する際の容易性も加味すると、2,4の位置又は2,5の位置がより好ましい。 The bonding position of the two amino groups (—NH 2 ) in the above formula [2a] is not limited. Specifically, a few positions on the benzene ring with respect to the side chain linking group (— (Y 1 —Y 2 —Y 3 —Y 4 — (Y 5 ) n —Y 6 ) m ), 2,4 positions, 2,5 positions, 2,6 positions, 3,4 positions or 3,5 positions. Among these, from the viewpoint of the reactivity when synthesizing the polymer having the repeating unit represented by the formula [1], the positions 2, 4, 2, 5, or 3, 5 are preferable. Considering the ease in synthesizing the compound represented by the formula [2a], the positions 2, 4 or 2, 5 are more preferable.
 より具体的には、式[2a]は、下記式[2b-1]~式[2b-29]で示される構造である。 More specifically, the formula [2a] is a structure represented by the following formula [2b-1] to formula [2b-29].
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
(式[2b-19]~式[2b-21]中、Rは-O-、-OCH-、-CHO-、-COOCH-又は-CHOCO-を示し、Rは炭素数1~18のアルキル基、アルコキシ基、フッ素含有アルキル基又はフッ素含有アルコキシ基を示す)。
Figure JPOXMLDOC01-appb-C000025
(In the formulas [2b-19] to [2b-21], R 1 represents —O—, —OCH 2 —, —CH 2 O—, —COOCH 2 — or —CH 2 OCO—, and R 2 represents An alkyl group having 1 to 18 carbon atoms, an alkoxy group, a fluorine-containing alkyl group or a fluorine-containing alkoxy group).
Figure JPOXMLDOC01-appb-C000026
(式[2b-22]~式[2b-24]中、Rは-COO-、-OCO-、-COOCH-、-CHOCO-、-CHO-、-OCH-又は-CH-を示し、Rは炭素数1~18のアルキル基、アルコキシ基、フッ素含有アルキル基又はフッ素含有アルコキシ基を示す)。
Figure JPOXMLDOC01-appb-C000026
(In the formulas [2b-22] to [2b-24], R 3 represents —COO—, —OCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, —OCH 2 — or — CH 2 —, and R 4 represents an alkyl group having 1 to 18 carbon atoms, an alkoxy group, a fluorine-containing alkyl group or a fluorine-containing alkoxy group).
Figure JPOXMLDOC01-appb-C000027
(式[2b-25]及び式[2b-26]中、Rは炭素数3~12のアルキル基を示す。なお、1,4-シクロヘキシレンのシス-トランス異性は、それぞれトランス異性体が好ましい)。
Figure JPOXMLDOC01-appb-C000027
(In the formulas [2b-25] and [2b-26], R 7 represents an alkyl group having 3 to 12 carbon atoms. Note that the cis-trans isomerism of 1,4-cyclohexylene is the trans isomer. preferable).
Figure JPOXMLDOC01-appb-C000028
(式[2b-27]及び式[2b-28]中、Rは炭素数3~12のアルキル基を示す。なお、1,4-シクロヘキシレンのシス-トランス異性は、それぞれトランス異性体が好ましい)。
Figure JPOXMLDOC01-appb-C000028
(In the formulas [2b-27] and [2b-28], R 8 represents an alkyl group having 3 to 12 carbon atoms. The cis-trans isomerism of 1,4-cyclohexylene is the trans isomer. preferable).
Figure JPOXMLDOC01-appb-C000029
(式[2b-29]中、Bはフッ素原子で置換されていてもよい炭素数3~18のアルキル基を示し、Bは1,4-シクロへキシレン基又は1,4-フェニレン基を示し、Bは酸素原子又は-COO-*(但し、「*」を付した結合手がBと結合する)を示し、Bは酸素原子又は-COO-*(但し、「*」を付した結合手が(CH)aと結合する)を示す。また、aは2~10の整数を示し、aは0又は1の整数を示す)。
Figure JPOXMLDOC01-appb-C000029
(In the formula [2b-29], B 4 represents an alkyl group having 3 to 18 carbon atoms which may be substituted with a fluorine atom, and B 3 represents a 1,4-cyclohexylene group or a 1,4-phenylene group. B 2 represents an oxygen atom or —COO— * (where a bond marked with “*” binds to B 3 ), and B 1 represents an oxygen atom or —COO— * (where “*” bond marked with the (CH 2) showing the a 2 binds to). Further, a 1 represents an integer of 2 ~ 10, a 3 represents an integer of 0 or 1).
 式[2a]で示される化合物を用いると、上述したように、液晶を垂直に配向させることができる。式[2a]で示される化合物は、(b)成分全体の5モル%以上80モル%以下であることが好ましい。より好ましくは、液晶配向性の観点から、式[2a]で示される化合物は、(b)成分全体の5モル%以上60モル%である。特に好ましくは、(b)成分全体の10モル%以上60モル%以下である。 When the compound represented by the formula [2a] is used, the liquid crystal can be aligned vertically as described above. The compound represented by the formula [2a] is preferably 5 mol% or more and 80 mol% or less of the entire component (b). More preferably, from the viewpoint of liquid crystal alignment, the compound represented by the formula [2a] is 5 mol% or more and 60 mol% of the entire component (b). Most preferably, it is 10 mol% or more and 60 mol% or less of the whole component (b).
 式[2a]で示される化合物以外の(b)成分としては、m-フェニレンジアミン、2,4-ジメチル-m-フェニレンジアミン、2,6-ジアミノトルエン、2,4-ジアミノフェノール、3,5-ジアミノフェノール、3,5-ジアミノベンジルアルコール、2,4-ジアミノベンジルアルコール、4,6-ジアミノレゾルシノールの他に、下記の式[2b-30]~[2b-41]で示される構造のジアミン化合物を挙げることができる。 As the component (b) other than the compound represented by the formula [2a], m-phenylenediamine, 2,4-dimethyl-m-phenylenediamine, 2,6-diaminotoluene, 2,4-diaminophenol, 3,5 -Diaminophenol, 3,5-diaminobenzyl alcohol, 2,4-diaminobenzyl alcohol, 4,6-diaminoresorcinol, and diamines having structures represented by the following formulas [2b-30] to [2b-41] A compound can be mentioned.
Figure JPOXMLDOC01-appb-C000030
([2b-30]及び式[2b-31]中、Rは-COO-、-OCO-、-COOCH-、-CHOCO-、-CHO-、-OCH-、-CH-又は-O-であり、Rはフッ素基、シアノ基、トリフルオロメタン基、ニトロ基、アゾ基、ホルミル基、アセチル基、アセトキシ基又は水酸基である)。
Figure JPOXMLDOC01-appb-C000030
(In [2b-30] and [2b-31], R 5 represents —COO—, —OCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, —OCH 2 —, —CH 2- or -O-, and R 6 is a fluorine group, a cyano group, a trifluoromethane group, a nitro group, an azo group, a formyl group, an acetyl group, an acetoxy group or a hydroxyl group).
Figure JPOXMLDOC01-appb-C000031
(式[2b-32]~式[2b-35]中、Aは、炭素数1~22のアルキル基又はフッ素含有アルキル基を示す)。
Figure JPOXMLDOC01-appb-C000031
(In the formulas [2b-32] to [2b-35], A 1 represents an alkyl group having 1 to 22 carbon atoms or a fluorine-containing alkyl group).
 尚、式[2b-36]は、光反応性の側鎖を有している。このような光反応性の側鎖とは、光を照射することにより重合を生じさせる部分であり、例えば、アクリル基、メタクリル基、ラクトン基、マレイミド基、ビニル基、アリル基や、スチリル基を有する側鎖が挙げられる。ただし、これに限定されるものではない。 The formula [2b-36] has a photoreactive side chain. Such a photoreactive side chain is a portion that causes polymerization upon irradiation with light, and includes, for example, an acryl group, a methacryl group, a lactone group, a maleimide group, a vinyl group, an allyl group, and a styryl group. The side chain which has is mentioned. However, it is not limited to this.
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
 また、式[2a]で示される化合物以外の(b)成分としては、4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、3,3’-ジヒドロキシ-4,4’-ジアミノビフェニル、3,3’-ジカルボキシ-4,4’-ジアミノビフェニル、3,3’-ジフルオロ-4,4’-ビフェニル、3,3’-トリフルオロメチル-4,4’-ジアミノビフェニル、3,4’-ジアミノビフェニル、3,3’-ジアミノビフェニル、2,2’-ジアミノビフェニル、2,3’-ジアミノビフェニル、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、2,2’-ジアミノジフェニルメタン、2,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、2,2’-ジアミノジフェニルエーテル、2,3’-ジアミノジフェニルエーテル、4,4’-スルホニルジアニリン、3,3’-スルホニルジアニリン、ビス(4-アミノフェニル)シラン、ビス(3-アミノフェニル)シラン、ジメチル-ビス(4-アミノフェニル)シラン、ジメチル-ビス(3-アミノフェニル)シラン、4,4’-チオジアニリン、3,3’-チオジアニリン、4,4’-ジアミノジフェニルアミン、3,3’-ジアミノジフェニルアミン、3,4’-ジアミノジフェニルアミン、2,2’-ジアミノジフェニルアミン、2,3’-ジアミノジフェニルアミン、N-メチル(4,4’-ジアミノジフェニル)アミン、N-メチル(3,3’-ジアミノジフェニル)アミン、N-メチル(3,4’-ジアミノジフェニル)アミン、N-メチル(2,2’-ジアミノジフェニル)アミン、N-メチル(2,3’-ジアミノジフェニル)アミン、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン、3,4’-ジアミノベンゾフェノン、1,4-ジアミノナフタレン、2,2’-ジアミノベンゾフェノン、2,3’-ジアミノベンゾフェノン、1,5-ジアミノナフタレン、1,6-ジアミノナフタレン、1,7-ジアミノナフタレン、1,8-ジアミノナフタレン、2,5-ジアミノナフタレン、2,6-ジアミノナフタレン、2,7-ジアミノナフタレン、2,8-ジアミノナフタレン、1,2-ビス(4-アミノフェニル)エタン、1,2-ビス(3-アミノフェニル)エタン、1,3-ビス(4-アミノフェニル)プロパン、1,3-ビス(3-アミノフェニル)プロパン、1,4-ビス(4-アミノフェニル)ブタン、1,4-ビス(3-アミノフェニル)ブタン、ビス(3,5-ジエチル-4-アミノフェニル)メタン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、1,4-ビス(4-アミノベンジル)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、4,4’-[1,4-フェニレンビス(メチレン)]ジアニリン、4,4’-[1,3-フェニレンビス(メチレン)]ジアニリン、3,4’-[1,4-フェニレンビス(メチレン)]ジアニリン、3,4’-[1,3-フェニレンビス(メチレン)]ジアニリン、3,3’-[1,4-フェニレンビス(メチレン)]ジアニリン、3,3’-[1,3-フェニレンビス(メチレン)]ジアニリン、1,4-フェニレンビス[(4-アミノフェニル)メタノン]、1,4-フェニレンビス[(3-アミノフェニル)メタノン]、1,3-フェニレンビス[(4-アミノフェニル)メタノン]、1,3-フェニレンビス[(3-アミノフェニル)メタノン]、1,4-フェニレンビス(4-アミノベンゾエート)、1,4-フェニレンビス(3-アミノベンゾエート)、1,3-フェニレンビス(4-アミノベンゾエート)、1,3-フェニレンビス(3-アミノベンゾエート)、ビス(4-アミノフェニル)テレフタレート、ビス(3-アミノフェニル)テレフタレート、ビス(4-アミノフェニル)イソフタレート、ビス(3-アミノフェニル)イソフタレート、N,N’-(1,4-フェニレン)ビス(4-アミノベンズアミド)、N,N’-(1,3-フェニレン)ビス(4-アミノベンズアミド)、N,N’-(1,4-フェニレン)ビス(3-アミノベンズアミド)、N,N’-(1,3-フェニレン)ビス(3-アミノベンズアミド)、N,N’-ビス(4-アミノフェニル)テレフタルアミド、N,N’-ビス(3-アミノフェニル)テレフタルアミド、N,N’-ビス(4-アミノフェニル)イソフタルアミド、N,N’-ビス(3-アミノフェニル)イソフタルアミド、9,10-ビス(4-アミノフェニル)アントラセン、4,4’-ビス(4-アミノフェノキシ)ジフェニルスルホン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2’-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2’-ビス(3-アミノフェニル)ヘキサフルオロプロパン、2,2’-ビス(3-アミノ-4-メチルフェニル)ヘキサフルオロプロパン、2,2’-ビス(4-アミノフェニル)プロパン、2,2’-ビス(3-アミノフェニル)プロパン、2,2’-ビス(3-アミノ-4-メチルフェニル)プロパン、1,3-ビス(4-アミノフェノキシ)プロパン、1,3-ビス(3-アミノフェノキシ)プロパン、1,4-ビス(4-アミノフェノキシ)ブタン、1,4-ビス(3-アミノフェノキシ)ブタン、1,5-ビス(4-アミノフェノキシ)ペンタン、1,5-ビス(3-アミノフェノキシ)ペンタン、1,6-ビス(4-アミノフェノキシ)へキサン、1,6-ビス(3-アミノフェノキシ)へキサン、1,7-ビス(4-アミノフェノキシ)ヘプタン、1,7-(3-アミノフェノキシ)ヘプタン、1,8-ビス(4-アミノフェノキシ)オクタン、1,8-ビス(3-アミノフェノキシ)オクタン、1,9-ビス(4-アミノフェノキシ)ノナン、1,9-ビス(3-アミノフェノキシ)ノナン、1,10-ビス(4-アミノフェノキシ)デカン、1,10-ビス(3-アミノフェノキシ)デカン、1,11-ビス(4-アミノフェノキシ)ウンデカン、1,11-ビス(3-アミノフェノキシ)ウンデカン、1,12-ビス(4-アミノフェノキシ)ドデカン、1,12-ビス(3-アミノフェノキシ)ドデカン、ビス(4-アミノシクロヘキシル)メタン、ビス(4-アミノ-3-メチルシクロヘキシル)メタン、1,3-ジアミノプロパン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノへキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカン、1,11-ジアミノウンデカン又は1,12-ジアミノドデカンなども挙げられる。 Further, as the component (b) other than the compound represented by the formula [2a], 4,4′-diaminobiphenyl, 3,3′-dimethyl-4,4′-diaminobiphenyl, 3,3′-dimethoxy-4 , 4'-diaminobiphenyl, 3,3'-dihydroxy-4,4'-diaminobiphenyl, 3,3'-dicarboxy-4,4'-diaminobiphenyl, 3,3'-difluoro-4,4'- Biphenyl, 3,3'-trifluoromethyl-4,4'-diaminobiphenyl, 3,4'-diaminobiphenyl, 3,3'-diaminobiphenyl, 2,2'-diaminobiphenyl, 2,3'-diaminobiphenyl 4,4'-diaminodiphenylmethane, 3,3'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 2,2'-diaminodiphenylmethane 2,3′-diaminodiphenylmethane, 4,4′-diaminodiphenyl ether, 3,3′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 2,2′-diaminodiphenyl ether, 2,3′-diaminodiphenyl ether, 4, 4'-sulfonyldianiline, 3,3'-sulfonyldianiline, bis (4-aminophenyl) silane, bis (3-aminophenyl) silane, dimethyl-bis (4-aminophenyl) silane, dimethyl-bis (3 -Aminophenyl) silane, 4,4'-thiodianiline, 3,3'-thiodianiline, 4,4'-diaminodiphenylamine, 3,3'-diaminodiphenylamine, 3,4'-diaminodiphenylamine, 2,2'-diamino Diphenylamine, 2,3'-diaminodiph Nylamine, N-methyl (4,4'-diaminodiphenyl) amine, N-methyl (3,4'-diaminodiphenyl) amine, N-methyl (3,4'-diaminodiphenyl) amine, N-methyl (2, 2'-diaminodiphenyl) amine, N-methyl (2,3'-diaminodiphenyl) amine, 4,4'-diaminobenzophenone, 3,3'-diaminobenzophenone, 3,4'-diaminobenzophenone, 1,4- Diaminonaphthalene, 2,2'-diaminobenzophenone, 2,3'-diaminobenzophenone, 1,5-diaminonaphthalene, 1,6-diaminonaphthalene, 1,7-diaminonaphthalene, 1,8-diaminonaphthalene, 2,5 -Diaminonaphthalene, 2,6-diaminonaphthalene, 2,7-diaminonaphthalene, 2,8-di Aminonaphthalene, 1,2-bis (4-aminophenyl) ethane, 1,2-bis (3-aminophenyl) ethane, 1,3-bis (4-aminophenyl) propane, 1,3-bis (3- Aminophenyl) propane, 1,4-bis (4-aminophenyl) butane, 1,4-bis (3-aminophenyl) butane, bis (3,5-diethyl-4-aminophenyl) methane, 1,4- Bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (4-aminophenyl) benzene, 1,3-bis (4-aminophenyl) benzene, 1, 4-bis (4-aminobenzyl) benzene, 1,3-bis (4-aminophenoxy) benzene, 4,4 ′-[1,4-phenylenebis (methylene)] dianiline, 4,4 ′-[1, 3 Phenylenebis (methylene)] dianiline, 3,4 ′-[1,4-phenylenebis (methylene)] dianiline, 3,4 ′-[1,3-phenylenebis (methylene)] dianiline, 3,3 ′-[ 1,4-phenylenebis (methylene)] dianiline, 3,3 ′-[1,3-phenylenebis (methylene)] dianiline, 1,4-phenylenebis [(4-aminophenyl) methanone], 1,4- Phenylenebis [(3-aminophenyl) methanone], 1,3-phenylenebis [(4-aminophenyl) methanone], 1,3-phenylenebis [(3-aminophenyl) methanone], 1,4-phenylenebis (4-aminobenzoate), 1,4-phenylenebis (3-aminobenzoate), 1,3-phenylenebis (4-aminobenzoate), 1 3-phenylenebis (3-aminobenzoate), bis (4-aminophenyl) terephthalate, bis (3-aminophenyl) terephthalate, bis (4-aminophenyl) isophthalate, bis (3-aminophenyl) isophthalate, N , N ′-(1,4-phenylene) bis (4-aminobenzamide), N, N ′-(1,3-phenylene) bis (4-aminobenzamide), N, N ′-(1,4-phenylene) ) Bis (3-aminobenzamide), N, N ′-(1,3-phenylene) bis (3-aminobenzamide), N, N′-bis (4-aminophenyl) terephthalamide, N, N′-bis (3-aminophenyl) terephthalamide, N, N′-bis (4-aminophenyl) isophthalamide, N, N′-bis (3-aminophenyl) ) Isophthalamide, 9,10-bis (4-aminophenyl) anthracene, 4,4′-bis (4-aminophenoxy) diphenylsulfone, 2,2′-bis [4- (4-aminophenoxy) phenyl] propane 2,2′-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane, 2,2′-bis (4-aminophenyl) hexafluoropropane, 2,2′-bis (3-aminophenyl) Hexafluoropropane, 2,2′-bis (3-amino-4-methylphenyl) hexafluoropropane, 2,2′-bis (4-aminophenyl) propane, 2,2′-bis (3-aminophenyl) Propane, 2,2′-bis (3-amino-4-methylphenyl) propane, 1,3-bis (4-aminophenoxy) propane, 1,3- (3-aminophenoxy) propane, 1,4-bis (4-aminophenoxy) butane, 1,4-bis (3-aminophenoxy) butane, 1,5-bis (4-aminophenoxy) pentane, 1, 5-bis (3-aminophenoxy) pentane, 1,6-bis (4-aminophenoxy) hexane, 1,6-bis (3-aminophenoxy) hexane, 1,7-bis (4-aminophenoxy) Heptane, 1,7- (3-aminophenoxy) heptane, 1,8-bis (4-aminophenoxy) octane, 1,8-bis (3-aminophenoxy) octane, 1,9-bis (4-aminophenoxy) Nonane, 1,9-bis (3-aminophenoxy) nonane, 1,10-bis (4-aminophenoxy) decane, 1,10-bis (3-aminophenoxy) decane 1,11-bis (4-aminophenoxy) undecane, 1,11-bis (3-aminophenoxy) undecane, 1,12-bis (4-aminophenoxy) dodecane, 1,12-bis (3-aminophenoxy) ) Dodecane, bis (4-aminocyclohexyl) methane, bis (4-amino-3-methylcyclohexyl) methane, 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6- Examples also include diaminohexane, 1,7-diaminoheptane, 1,8-diaminooctane, 1,9-diaminononane, 1,10-diaminodecane, 1,11-diaminoundecane, and 1,12-diaminododecane.
 また、(b)成分として、ジアミン側鎖にアルキル基、フッ素含有アルキル基、芳香環、脂肪族環又は複素環を有するもの、さらに、これらからなる大環状置換体を有するものなどを挙げることもできる。具体的には、下記の式[DA1]~[DA13]で示されるジアミン化合物を例示することができる。 Examples of the component (b) include those having an alkyl group, a fluorine-containing alkyl group, an aromatic ring, an aliphatic ring or a heterocyclic ring in the diamine side chain, and those having a macrocyclic substituent composed of these. it can. Specifically, diamine compounds represented by the following formulas [DA1] to [DA13] can be exemplified.
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
(式[DA1]~式[DA6]中、Aは-COO-、-OCO-、-CONH-、-NHCO-、-CH-、-O-、-CO-又は-NH-を示し、Aは炭素数1~22の直鎖状もしくは分岐状のアルキル基又は炭素数1~22の直鎖状もしくは分岐状のフッ素含有アルキル基を示す)。
Figure JPOXMLDOC01-appb-C000036
(In the formulas [DA1] to [DA6], A 1 represents —COO—, —OCO—, —CONH—, —NHCO—, —CH 2 —, —O—, —CO— or —NH—, A 2 represents a linear or branched alkyl group having 1 to 22 carbon atoms or a linear or branched fluorine-containing alkyl group having 1 to 22 carbon atoms).
Figure JPOXMLDOC01-appb-C000037
(式[DA7]中、pは1~10の整数を示す)。
Figure JPOXMLDOC01-appb-C000037
(In the formula [DA7], p represents an integer of 1 to 10).
 また、(b)成分として、下記の式[DA8]~式[DA13]で示されるジアミン化合物を用いることもできる。 Also, as the component (b), diamine compounds represented by the following formulas [DA8] to [DA13] can be used.
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
(式[DA10]中、mは0~3の整数を示し、式[DA13]中、nは1~5の整数を示す)。
Figure JPOXMLDOC01-appb-C000039
(In the formula [DA10], m represents an integer of 0 to 3, and in the formula [DA13], n represents an integer of 1 to 5).
 さらに、本発明の効果を損なわない限りにおいて、下記の式[DA14]~式[DA17]で示されるジアミン化合物を用いることもできる。 Furthermore, as long as the effects of the present invention are not impaired, diamine compounds represented by the following formulas [DA14] to [DA17] can also be used.
Figure JPOXMLDOC01-appb-C000040
(式[DA14]中、Aは単結合、-CH-、-C-、-C(CH-、-CF-、-C(CF-、-O-、-CO-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CHO-、-OCH-、-COO-、-OCO-、-CON(CH)-又は-N(CH)CO-を示し、mおよびmはそれぞれ0~4の整数を示し、かつm+mは1~4の整数を示し、式[DA15]中、m及びmはそれぞれ1~5の整数を示し、式[DA16]中、Aは炭素数1~5の直鎖又は分岐アルキル基を示し、mは1~5の整数を示し、式[DA17]中、Aは単結合、-CH-、-C-、-C(CH-、-CF-、-C(CF-、-O-、-CO-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CHO-、-OCH-、-COO-、-OCO-、-CON(CH)-又は-N(CH)CO-を示し、mは1~4の整数を示す。)
Figure JPOXMLDOC01-appb-C000040
(In the formula [DA14], A 1 is a single bond, —CH 2 —, —C 2 H 4 —, —C (CH 3 ) 2 —, —CF 2 —, —C (CF 3 ) 2 —, —O —, —CO—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —OCH 2 —, —COO—, —OCO—, —CON (CH 3 ) — Or —N (CH 3 ) CO—, each of m 1 and m 2 represents an integer of 0 to 4, and m 1 + m 2 represents an integer of 1 to 4, and in the formula [DA15], m 3 and m 4 each represent an integer of 1 to 5, and in formula [DA16], A 2 represents a linear or branched alkyl group having 1 to 5 carbon atoms, m 5 represents an integer of 1 to 5, [DA17] in, A 3 is a single bond, -CH 2 -, - C 2 H 4 -, - C (CH 3) 2 -, - CF 2 -, - C (CF 3) 2 , -O -, - CO -, - NH -, - N (CH 3) -, - CONH -, - NHCO -, - CH 2 O -, - OCH 2 -, - COO -, - OCO -, - CON (CH 3 ) — or —N (CH 3 ) CO— is represented, and m 6 represents an integer of 1 to 4.
 また、本発明の効果を損なわない限りにおいて、下記の式[DA18]で示されるジアミン化合物を用いることもできる。 In addition, a diamine compound represented by the following formula [DA18] can also be used as long as the effects of the present invention are not impaired.
Figure JPOXMLDOC01-appb-C000041
(式[DA18]中、Aは-O-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CHO-、-OCO-、-CON(CH)-又は-N(CH)CO-より選ばれる2価の有機基であり、Aは単結合、炭素数1~20の脂肪族炭化水素基、非芳香族環式炭化水素基又は芳香族炭化水素基であり、Aは単結合、-O-、-NH-、-N(CH)-、-CONH-、-NHCO-、-COO-、-OCO-、-CON(CH)-、-N(CH)CO-又は-O(CH-(mは1~5の整数である)より選ばれ、Aは窒素含有芳香族複素環であり、nは1~4の整数である。)
Figure JPOXMLDOC01-appb-C000041
(In the formula [DA18], A 1 is —O—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —OCO—, —CON (CH 3 ). A divalent organic group selected from — or —N (CH 3 ) CO—, and A 2 is a single bond, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, a non-aromatic cyclic hydrocarbon group or an aromatic group. A 3 is a hydrocarbon group, A 3 is a single bond, —O—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —COO—, —OCO—, —CON (CH 3 ) -, -N (CH 3 ) CO- or -O (CH 2 ) m- (m is an integer of 1 to 5), A 4 is a nitrogen-containing aromatic heterocycle, and n is 1 to It is an integer of 4.)
 加えて、その他ジアミン化合物として、下記の式[DA19]及び式[DA20]で示されるジアミン化合物を用いることもできる。 In addition, diamine compounds represented by the following formula [DA19] and formula [DA20] can also be used as other diamine compounds.
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
 上記の(b)成分は、式[1]で示される繰り返し単位を有する重合体の溶媒への溶解性や液晶配向剤の塗布性、液晶配向膜とした場合における液晶の配向性、電圧保持率、蓄積電荷などの特性に応じて、1種類又は2種類以上を混合して使用することもできる。 The component (b) includes the solubility of the polymer having the repeating unit represented by the formula [1] in the solvent, the coating property of the liquid crystal aligning agent, the alignment property of the liquid crystal when the liquid crystal alignment film is used, and the voltage holding ratio. Depending on the characteristics such as accumulated charge, one kind or a mixture of two or more kinds may be used.
 (c)成分は、テトラカルボン酸誘導体であり、例えば、上記式[3]で示されるテトラカルボン酸二無水物が挙げられる。式[3]中、Zは、合成の容易さやポリマーを製造する際の重合反応性のし易さの点から、式[3a]、式[3c]、式[3d]、式[3e]、式[3f]又は式[3g]で示される構造が好ましい。より好ましいのは、式[3a]、式[3e]、式[3f]又は式[3g]で示される構造であり、特に好ましいのは、式[3a]、式[3e]、式[3f]又は式[3g]である。 The component (c) is a tetracarboxylic acid derivative, and examples thereof include a tetracarboxylic dianhydride represented by the above formula [3]. In the formula [3], Z 1 represents the formula [3a], the formula [3c], the formula [3d], the formula [3e] from the viewpoint of easy synthesis and ease of polymerization reactivity when producing a polymer. The structure represented by the formula [3f] or the formula [3g] is preferable. A structure represented by the formula [3a], a formula [3e], a formula [3f] or a formula [3g] is more preferable, and a formula [3a], a formula [3e] or a formula [3f] is particularly preferable. Or it is Formula [3g].
 式[3]で示されるテトラカルボン酸二無水物は、(c)成分全体の1モル%以上であることが好ましい。より好ましいのは、5モル%以上であり、特に好ましいのは、10モル%以上である。 The tetracarboxylic dianhydride represented by the formula [3] is preferably 1 mol% or more of the entire component (c). More preferred is 5 mol% or more, and particularly preferred is 10 mol% or more.
 また、Zが式[3e]、式[3f]又は式[3g]の構造である式[3]で示されるテトラカルボン酸二無水物を用いる場合、その使用量は、(c)成分全体の20モル%以上とすることが好ましく、さらに好ましくは、30モル%以上である。さらに、(c)成分のすべてをZが式[3e]、式[3f]又は式[3g]の構造である式[3]で示されるテトラカルボン酸二無水物であってもよい。 Also, when Z 1 formula [3e], using the equation [3f] or tetracarboxylic acid dianhydride represented by the formula [3] is a structure of formula [3 g], the amount used, (c) the entire component It is preferable to set it as 20 mol% or more, More preferably, it is 30 mol% or more. Further, all of the component (c) may be a tetracarboxylic dianhydride represented by the formula [3] in which Z 1 is a structure of the formula [3e], the formula [3f] or the formula [3g].
 式[3]で示されるテトラカルボン酸二無水物以外の(c)成分として、以下に示すテトラカルボン酸化合物、テトラカルボン酸二無水物又はテトラカルボン酸ジハライド化合物が挙げられる。すなわち、式[3]で示されるテトラカルボン酸二無水物以外の(c)成分としては、ピロメリット酸、2,3,6,7-ナフタレンテトラカルボン酸、1,2,5,6-ナフタレンテトラカルボン酸、1,4,5,8-ナフタレンテトラカルボン酸、2,3,6,7-アントラセンテトラカルボン酸、1,2,5,6-アントラセンテトラカルボン酸、3,3’,4,4’-ビフェニルテトラカルボン酸、2,3,3’,4-ビフェニルテトラカルボン酸、ビス(3,4-ジカルボキシフェニル)エーテル、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、ビス(3,4-ジカルボキシフェニル)スルホン、ビス(3,4-ジカルボキシフェニル)メタン、2,2-ビス(3,4-ジカルボキシフェニル)プロパン、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス(3,4-ジカルボキシフェニル)プロパン、ビス(3,4-ジカルボキシフェニル)ジメチルシラン、ビス(3,4-ジカルボキシフェニル)ジフェニルシラン、2,3,4,5-ピリジンテトラカルボン酸、2,6-ビス(3,4-ジカルボキシフェニル)ピリジン、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸、3,4,9,10-ペリレンテトラカルボン酸又は1,3-ジフェニル-1,2,3,4-シクロブタンテトラカルボン酸が挙げられる。 Examples of the component (c) other than the tetracarboxylic dianhydride represented by the formula [3] include the following tetracarboxylic acid compounds, tetracarboxylic dianhydrides, and tetracarboxylic acid dihalide compounds. That is, as component (c) other than the tetracarboxylic dianhydride represented by the formula [3], pyromellitic acid, 2,3,6,7-naphthalenetetracarboxylic acid, 1,2,5,6-naphthalene Tetracarboxylic acid, 1,4,5,8-naphthalenetetracarboxylic acid, 2,3,6,7-anthracenetetracarboxylic acid, 1,2,5,6-anthracenetetracarboxylic acid, 3,3 ′, 4 4′-biphenyltetracarboxylic acid, 2,3,3 ′, 4-biphenyltetracarboxylic acid, bis (3,4-dicarboxyphenyl) ether, 3,3 ′, 4,4′-benzophenonetetracarboxylic acid, bis (3,4-dicarboxyphenyl) sulfone, bis (3,4-dicarboxyphenyl) methane, 2,2-bis (3,4-dicarboxyphenyl) propane, 1,1,1, , 3,3-hexafluoro-2,2-bis (3,4-dicarboxyphenyl) propane, bis (3,4-dicarboxyphenyl) dimethylsilane, bis (3,4-dicarboxyphenyl) diphenylsilane, 2,3,4,5-pyridinetetracarboxylic acid, 2,6-bis (3,4-dicarboxyphenyl) pyridine, 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic acid, 3,4,9 , 10-perylenetetracarboxylic acid or 1,3-diphenyl-1,2,3,4-cyclobutanetetracarboxylic acid.
 (c)成分は、式[1]で示される繰り返し単位を有する重合体の溶媒への溶解性や液晶配向剤の塗布性、液晶配向膜とした場合における液晶の配向性、電圧保持率、蓄積電荷などの特性に応じて、1種類又は2種類以上を混合して使用することもできる。 The component (c) is the solubility of the polymer having the repeating unit represented by the formula [1] in the solvent, the coating property of the liquid crystal aligning agent, the orientation of the liquid crystal when it is used as the liquid crystal alignment film, the voltage holding ratio, the accumulation. One type or a mixture of two or more types can be used depending on the characteristics such as charge.
 このような(a)成分、(b)成分及び(c)成分を重合反応させることにより、式[1]で示される繰り返し単位を有するポリイミド前駆体を製造することができる。例えば(c)成分として、テトラカルボン酸二無水物を用いると、式[1]で示される繰り返し単位を有するポリアミック酸を製造することができる。そして、得られた式[1]で示される繰り返し単位を有するポリアミック酸のカルボキシル基をエステルに変換すると、式[1]で示される繰り返し単位を有するポリアミック酸エステルを製造することができる。なお、これら式[1]で示される繰り返し単位を有するポリアミック酸や、式[1]で示される繰り返し単位を有するポリアミック酸エステルを閉環(イミド化)することにより、式[1]で示される繰り返し単位を有するポリイミドが得られる。 A polyimide precursor having a repeating unit represented by the formula [1] can be produced by polymerizing such components (a), (b) and (c). For example, when tetracarboxylic dianhydride is used as the component (c), a polyamic acid having a repeating unit represented by the formula [1] can be produced. And the polyamic acid ester which has a repeating unit shown by Formula [1] can be manufactured by converting the carboxyl group of the obtained polyamic acid which has a repeating unit shown by Formula [1] into ester. The polyamic acid having the repeating unit represented by the formula [1] and the polyamic acid ester having the repeating unit represented by the formula [1] are cyclized (imidized) to repeat the compound represented by the formula [1]. A polyimide having units is obtained.
 ここで、(a)成分と(b)成分とで、上記式[1]で示される繰り返し単位が構成される。また、(b)成分と(c)成分とで、ポリイミド前駆体やポリイミドの繰り返し単位が構成される。(b)成分と(c)成分とで構成されるポリイミド前駆体やポリイミドの繰り返し単位は、例えば、下記式[8]で示すことができる。上記式[1]において、Aは原料である(a)成分に由来する基であり、C、C、Aは原料である(b)成分に由来する基である。また、上記式[8]において、C、C、Aは原料である(b)成分に由来する基であり、Zは原料である(c)成分に由来する基である。 Here, the repeating unit represented by the formula [1] is composed of the component (a) and the component (b). The component (b) and the component (c) constitute a polyimide precursor or a repeating unit of polyimide. The polyimide precursor and the repeating unit of polyimide composed of the component (b) and the component (c) can be represented by, for example, the following formula [8]. In the above formula [1], A 1 is a group derived from the component (a) which is a raw material, and C 1 , C 2 and A 2 are groups derived from the component (b) which is a raw material. In the above formula [8], C 1 , C 2 , and A 2 are groups derived from the component (b) as a raw material, and Z 1 is a group derived from the component (c) as a raw material.
Figure JPOXMLDOC01-appb-C000043
(式[8]中、A、C、Cは式[b]と同じであり、Zは式[3]のZと同じであり、R41及びR42は、水素原子又は炭素数1~8のアルキル基でありそれぞれ同じであっても異なってもよく、jは正の整数を示す。)
Figure JPOXMLDOC01-appb-C000043
(Wherein [8], A 2, C 1, C 2 is the same as the formula [b], Z 1 is the same as Z 1 in the formula [3], R 41 and R 42 is a hydrogen atom or C 1-8 alkyl groups, which may be the same or different, and j represents a positive integer.)
 式[1]で示される繰り返し単位を有する重合体が有する式[1]で示される繰り返し単位は、C、C、A及びAがそれぞれ1種類であり同一の式[1]で示される繰り返し単位のみでもよく、また、C、C、A及びAが複数種であり、複数種の式[1]で示される繰り返し単位でもよい。 The repeating unit represented by the formula [1] of the polymer having the repeating unit represented by the formula [1] has one type each of C 1 , C 2 , A 1 and A 2 and the same formula [1]. Only the repeating unit shown may be sufficient, and C 1 , C 2 , A 1 and A 2 may be plural types, and may be a repeating unit represented by plural types of formula [1].
 また、式[1]で示される繰り返し単位を有する重合体が有する式[8]で示される繰り返し単位は、C、C、A、R41及びR42がそれぞれ1種類であり同一の式[8]で示される繰り返し単位のみでもよく、また、C、C、A、R41及びR42が複数種であり複数種の式[8]で示される繰り返し単位でもよい。 The repeating unit represented by the formula [8] possessed by the polymer having the repeating unit represented by the formula [1] is the same as each of C 1 , C 2 , A 2 , R 41 and R 42 . Only a repeating unit represented by the formula [8] may be used, or a plurality of C 1 , C 2 , A 2 , R 41 and R 42 may be used, and a plurality of repeating units represented by the formula [8] may be used.
 (a)成分、(b)成分及び(c)成分の反応は、通常有機溶媒中で行う。その際に用いる有機溶媒としては、生成したポリイミド前駆体が溶解するものであれば特に限定されない。具体例としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-メチルカプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン、イソプロピルアルコール、メトキシメチルペンタノール、ジペンテン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、メチルセルソルブ、エチルセルソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、ジオキサン、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、ジグライム又は4-ヒドロキシ-4-メチル-2-ペンタノンなどが挙げられる。これらは単独で使用しても、混合して使用してもよい。さらに、ポリイミド前駆体を溶解させない溶媒であっても、生成したポリイミド前駆体が析出しない範囲で、上記溶媒に混合して使用してもよい。また、有機溶媒中の水分は重合反応を阻害し、さらには生成したポリイミド前駆体を加水分解させる原因となるので、有機溶媒は脱水乾燥させたものを用いることが好ましい。 The reaction of component (a), component (b) and component (c) is usually carried out in an organic solvent. The organic solvent used at that time is not particularly limited as long as the produced polyimide precursor is dissolved. Specific examples include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, dimethylsulfoxide, tetramethylurea, pyridine, dimethylsulfone, hexamethylsulfoxide, γ- Butyrolactone, isopropyl alcohol, methoxymethylpentanol, dipentene, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, methyl cellosolve, ethyl cellosolve, methyl cellosolve acetate, ethyl cellosolve acetate, butyl carbitol, Ethyl carbitol, ethylene glycol, ethylene glycol monoacetate, ethylene glycol monoisopropyl ether, ethylene glycol Nobutyl ether, propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol-tert-butyl ether, dipropylene glycol monomethyl ether, diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, dipropylene glycol monoacetate monomethyl ether, dipropylene glycol monomethyl Ether, dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monoacetate monopropyl ether, 3-methyl-3-methoxybutyl acetate, tripropylene glycol Methyl ether, 3-methyl-3-methoxybutanol, diisopropyl ether, ethyl isobutyl ether, diisobutylene, amyl acetate, butyl butyrate, butyl ether, diisobutyl ketone, methylcyclohexene, propyl ether, dihexyl ether, dioxane, n-hexane , N-pentane, n-octane, diethyl ether, cyclohexanone, ethylene carbonate, propylene carbonate, methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl ether, methyl pyruvate, pyruvic acid Ethyl, methyl 3-methoxypropionate, methyl ethyl 3-ethoxypropionate, ethyl 3-methoxypropionate, 3-ethoxypropionic acid, 3-metho Shipuropion acid, 3-methoxy propionic acid propyl, 3-methoxy propionic acid butyl, and the like diglyme or 4-hydroxy-4-methyl-2-pentanone. These may be used alone or in combination. Furthermore, even if it is a solvent which does not dissolve a polyimide precursor, you may mix and use the said solvent in the range which the produced | generated polyimide precursor does not precipitate. Moreover, since the water | moisture content in an organic solvent inhibits a polymerization reaction, and also causes the produced polyimide precursor to hydrolyze, it is preferable to use what dehydrated and dried the organic solvent.
 (a)成分、(b)成分及び(c)成分を反応させる順番としては、例えば(a)成分と(b)成分を反応させた後、(c)成分を添加して反応させる方法が挙げられる。このように反応させることにより、得られる式[1]で示される繰り返し単位を有するポリイミド前駆体は、式[1]で示される繰り返し単位と式[8]で示される繰り返し単位がランダムに結合したランダム共重合体となるため好ましい。 Examples of the order of reacting the component (a), the component (b), and the component (c) include a method in which the component (a) and the component (b) are reacted and then the component (c) is added and reacted. It is done. By making it react in this way, the polyimide precursor which has the repeating unit shown by the formula [1] obtained, the repeating unit shown by the formula [1], and the repeating unit shown by the formula [8] were combined at random. Since it becomes a random copolymer, it is preferable.
 一方、(a)成分と(b)成分を反応させて式[1]で示される繰り返し単位からなるウレア系重合体を得る工程と、(b)成分と(c)成分を反応させて式[8]で示される繰り返し単位からなるポリイミド前駆体を得る工程を有し、その後、得られた式[1]で示される繰り返し単位からなるウレア系重合体と式[8]で示される繰り返し単位からなるポリイミド前駆体とを反応させる方法では、得られる式[1]で示される繰り返し単位を有する重合体が、ポリウレアとポリイミド前駆体とのブロック共重合体のような構造、すなわち、上記ランダム共重合体と比較して、それぞれ重合度がより大きいウレア系重合体とポリイミド前駆体とから成るポリマー構造になる。この場合、溶解性の低下や、液晶配向剤としたときの塗布性の悪化等の問題が生じることがある。 On the other hand, the step of reacting the component (a) with the component (b) to obtain a urea polymer composed of the repeating unit represented by the formula [1], the reaction of the component (b) with the component (c) 8] to obtain a polyimide precursor composed of a repeating unit represented by formula [1], and then from the urea-based polymer composed of the repeating unit represented by formula [1] and the repeating unit represented by formula [8]. In the method of reacting with the polyimide precursor, the resulting polymer having the repeating unit represented by the formula [1] has a structure like a block copolymer of polyurea and polyimide precursor, that is, the above random copolymer. Compared to the coalescence, each has a polymer structure composed of a urea polymer and a polyimide precursor having a higher degree of polymerization. In this case, problems such as poor solubility and poor applicability when used as a liquid crystal aligning agent may occur.
 (a)成分、(b)成分及び(c)成分を反応させる温度は、-20℃~150℃の任意の温度を選択することができるが、好ましくは-5℃~100℃の範囲である。また、反応は任意の濃度で行うことができるが、濃度が低すぎると高分子量の式[1]で示される繰り返し単位を有するポリイミド前駆体を得ることが難しくなり、濃度が高すぎると反応液の粘性が高くなり過ぎて均一な攪拌が困難となる。そのため、(a)成分、(b)成分及び(c)成分の総量の濃度は、反応液中で好ましくは1~50質量%、より好ましくは5~30質量%である。反応初期は高濃度で行い、その後、有機溶媒を追加することもできる。 The temperature at which the component (a), the component (b) and the component (c) are reacted can be selected from -20 ° C to 150 ° C, but is preferably in the range of -5 ° C to 100 ° C. . The reaction can be carried out at an arbitrary concentration. However, if the concentration is too low, it is difficult to obtain a polyimide precursor having a repeating unit represented by the high molecular weight formula [1]. The viscosity becomes too high, and uniform stirring becomes difficult. Therefore, the concentration of the total amount of component (a), component (b) and component (c) is preferably 1 to 50% by mass, more preferably 5 to 30% by mass in the reaction solution. The initial stage of the reaction can be performed at a high concentration, and then an organic solvent can be added.
 反応させる(a)成分、(b)成分及び(c)成分の割合は、例えば、モル比で、(a)成分と(c)成分との合計量:(b)成分=0.8:1~1.2:1であることが好ましい。(a)成分と(c)成分との合計量に占める(a)成分の割合は、20モル%~60モル%であることが、電圧保持率と残留DCとの両立のためには好ましい。(a)成分の割合が過小であると、低温焼成時に電圧保持率が低くなる場合があり、過大であると、残留DCがたまりやすくなるためである。 The proportion of the component (a), the component (b) and the component (c) to be reacted is, for example, a molar ratio, and the total amount of the component (a) and the component (c): (b) component = 0.8: 1 Preferably it is ˜1.2: 1. The proportion of the component (a) in the total amount of the component (a) and the component (c) is preferably 20 mol% to 60 mol% in order to achieve both voltage holding ratio and residual DC. This is because if the proportion of the component (a) is too small, the voltage holding ratio may be lowered during low-temperature firing, and if it is too large, residual DC tends to accumulate.
 また、ポリイミド前駆体である上記式[1]で示される繰り返し単位を有するポリアミック酸や上記式[1]で示される繰り返し単位を有するポリアミック酸エステルを閉環(イミド化)させることにより、式[1]で示される繰り返し単位を有するポリイミドを得ることができる。但し、本発明の液晶配向膜の製造方法において使用する液晶配向剤が含有する式[1]で示される繰り返し単位を有するポリイミドにおいては、アミド酸基の閉環率(イミド化率ともいう)が50%未満である必要がある。なお、本明細書でいうイミド化率とは、テトラカルボン酸二無水物由来のイミド基とカルボキシル基との合計量に占めるイミド基の割合のことである。 Further, the polyamic acid having a repeating unit represented by the above formula [1] which is a polyimide precursor and the polyamic acid ester having a repeating unit represented by the above formula [1] are ring-closed (imidized) to form the formula [1 The polyimide which has a repeating unit shown by this can be obtained. However, in the polyimide having the repeating unit represented by the formula [1] contained in the liquid crystal aligning agent used in the method for producing a liquid crystal alignment film of the present invention, the ring closure rate (also referred to as imidation rate) of the amic acid group is 50. Must be less than%. In addition, the imidation rate as used in this specification is a ratio of the imide group which occupies for the total amount of the imide group and carboxyl group derived from tetracarboxylic dianhydride.
 ポリイミド前駆体をイミド化させる方法としては、ポリイミド前駆体の溶液をそのまま加熱する熱イミド化又はポリイミド前駆体の溶液に触媒を添加する触媒イミド化が挙げられる。 Examples of the method for imidizing the polyimide precursor include thermal imidization in which the polyimide precursor solution is heated as it is or catalytic imidization in which a catalyst is added to the polyimide precursor solution.
 ポリイミド前駆体を溶液中で熱イミド化させる場合の温度は、100℃~400℃、好ましくは120℃~250℃であり、イミド化反応により生成する水を系外に除きながら行う方が好ましい。 When the polyimide precursor is thermally imidized in a solution, the temperature is 100 ° C. to 400 ° C., preferably 120 ° C. to 250 ° C., and it is preferable to carry out while removing water generated by the imidation reaction from the system.
 ポリイミド前駆体の触媒イミド化は、ポリイミド前駆体の溶液に、塩基性触媒と酸無水物とを添加し、-20~250℃、好ましくは0~180℃で攪拌することにより行うことができる。塩基性触媒の量はアミド酸基の0.5~30モル倍、好ましくは2~20モル倍であり、酸無水物の量はアミド酸基の1~50モル倍、好ましくは3~30モル倍である。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン又はトリオクチルアミンなどを挙げることができ、中でもピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。酸無水物としては、無水酢酸、無水トリメリット酸又は無水ピロメリット酸などを挙げることができ、中でも無水酢酸を用いると反応終了後の精製が容易となるので好ましい。触媒イミド化によるイミド化率は、触媒量と反応温度、反応時間を調節することにより制御することができる。 The catalyst imidation of the polyimide precursor can be performed by adding a basic catalyst and an acid anhydride to the polyimide precursor solution and stirring at -20 to 250 ° C, preferably 0 to 180 ° C. The amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times of the amic acid group, and the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol of the amido acid group. Is double. Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, and trioctylamine. Among them, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction. Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is facilitated. The imidization rate by catalytic imidation can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time.
 ポリイミド前駆体又はポリイミドの反応溶液から、生成したポリイミド前駆体又はポリイミドを回収する場合には、反応溶液を溶媒に投入して沈殿させればよい。沈殿に用いる溶媒としてはメタノール、エタノール、イソプロピルアルコール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、トルエン、ベンゼン、水などを挙げることができる。溶媒に投入して沈殿させた重合体は濾過して回収した後、常圧あるいは減圧下で、常温あるいは加熱して乾燥することができる。また、沈殿回収した重合体を、有機溶媒に再溶解させ、再沈殿回収する操作を2~10回繰り返すと、重合体中の不純物を少なくすることができる。この際の溶媒として、例えば、アルコール類、ケトン類又は炭化水素などが挙げられ、これらの内から選ばれる3種類以上の溶媒を用いると、より一層精製の効率が上がるので好ましい。 When recovering the produced polyimide precursor or polyimide from the polyimide precursor or polyimide reaction solution, the reaction solution may be poured into a solvent and precipitated. Examples of the solvent used for precipitation include methanol, ethanol, isopropyl alcohol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, toluene, benzene, and water. The polymer that has been introduced into the solvent and precipitated can be recovered by filtration, and then dried at normal temperature or under reduced pressure at room temperature or by heating. In addition, when the polymer collected by precipitation is redissolved in an organic solvent and reprecipitation and collection is repeated 2 to 10 times, impurities in the polymer can be reduced. Examples of the solvent at this time include alcohols, ketones, and hydrocarbons, and it is preferable to use three or more kinds of solvents selected from these because purification efficiency is further increased.
 本発明で使用する上記式[1]で示される繰り返し単位を有するポリイミド前駆体や、上記式[1]で示される繰り返し単位を有しイミド化率が50%未満のポリイミドの分子量は、そこから得られる液晶配向膜の強度、膜形成時の作業性及び塗膜性を考慮した場合、GPC(Gel Permeation Chromatography)法で測定した重量平均分子量で5,000~1,000,000とするのが好ましく、より好ましくは、10,000~150,000である。 The molecular weight of the polyimide precursor having the repeating unit represented by the above formula [1] used in the present invention and the polyimide having the repeating unit represented by the above formula [1] and having an imidation ratio of less than 50% is determined therefrom. Considering the strength of the obtained liquid crystal alignment film, workability during film formation, and coating properties, the weight average molecular weight measured by GPC (Gel Permeation Chromatography) method is 5,000 to 1,000,000. More preferably, it is 10,000 to 150,000.
 本発明の液晶配向膜の製造方法で使用する液晶配向剤が含有する上記式[1]で示される繰り返し単位を有するポリイミド前駆体や、上記式[1]で示される繰り返し単位を有しイミド化率が50%未満のポリイミドの配合割合は特に限定されないが、例えば、上記式[1]で示される繰り返し単位を有するポリイミド前駆体及び上記式[1]で示される繰り返し単位を有しイミド化率が50%未満のポリイミドの総量が、0.1~30質量%、好ましくは、3~10質量%である。 A polyimide precursor having a repeating unit represented by the above formula [1] contained in a liquid crystal aligning agent used in the method for producing a liquid crystal alignment film of the present invention, or an imidization having a repeating unit represented by the above formula [1] Although the compounding ratio of the polyimide with a rate of less than 50% is not particularly limited, for example, a polyimide precursor having a repeating unit represented by the above formula [1] and an imidation ratio having a repeating unit represented by the above formula [1] Is less than 50%, the total amount of polyimide is 0.1 to 30% by mass, preferably 3 to 10% by mass.
 また、液晶配向膜の製造に使用する液晶配向剤は、重合体成分が、上記式[1]で示される繰り返し単位を有するポリイミド前駆体や、上記式[1]で示される繰り返し単位を有しイミド化率が50%未満のポリイミドのみであってもよく、また、これら以外の他の重合体が混合されていても良い。その際、他の重合体の含有量は、重合体成分全量の0.5質量%~15質量%、好ましくは1質量%~10質量%である。それ以外の他の重合体としては、上記式[1]で示される繰り返し単位を有さないポリイミド前駆体やポリイミドが挙げられる。さらには、アクリルポリマー、メタクリルポリマー、ポリスチレン、ポリアミド又はポリシロキサンなどが挙げられる。 Moreover, the liquid crystal aligning agent used for manufacture of a liquid crystal aligning film has a polyimide precursor in which a polymer component has a repeating unit shown by said Formula [1], and a repeating unit shown by said Formula [1]. Only a polyimide having an imidation ratio of less than 50% may be used, or other polymers other than these may be mixed. In that case, the content of the other polymer is 0.5 to 15% by mass, preferably 1 to 10% by mass, based on the total amount of the polymer components. Other polymers include polyimide precursors and polyimides that do not have the repeating unit represented by the above formula [1]. Furthermore, an acrylic polymer, a methacryl polymer, polystyrene, polyamide, polysiloxane, etc. are mentioned.
 液晶配向剤が含有する溶媒は、上記式[1]で示される繰り返し単位を有するポリイミド前駆体や、上記式[1]で示される繰り返し単位を有しイミド化率が50%未満のポリイミドを溶解することができるものであれば、特に限定はされず、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-メチルカプロラクタム、2-ピロリドン、N-エチル-2-ピロリドン、N-ビニルピロリドン、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン、1,3-ジメチル-イミダゾリジノン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、ジグライム及び4-ヒドロキシ-4-メチル-2-ペンタノンなどの有機溶媒が挙げられる。これらは単独で使用しても、混合して使用してもよい。 The solvent contained in the liquid crystal aligning agent dissolves a polyimide precursor having a repeating unit represented by the above formula [1] and a polyimide having a repeating unit represented by the above formula [1] and having an imidization ratio of less than 50%. And N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, 2-pyrrolidone, N-ethyl- 2-pyrrolidone, N-vinylpyrrolidone, dimethyl sulfoxide, tetramethyl urea, pyridine, dimethyl sulfone, hexamethyl sulfoxide, γ-butyrolactone, 1,3-dimethyl-imidazolidinone, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl Isoamyl ketone, methyl isopropyl ketone, cyclo Cyclohexanone, ethylene carbonate, propylene carbonate, and organic solvents such as diglyme and 4-hydroxy-4-methyl-2-pentanone. These may be used alone or in combination.
 液晶配向剤が含有する溶媒は、塗布により均一な液晶配向膜を形成するという観点から、溶媒の含有量が70~99.9質量%であることが好ましい。この含有量は、目的とする液晶配向膜の膜厚によって適宜変更することができる。 The solvent contained in the liquid crystal aligning agent preferably has a solvent content of 70 to 99.9% by mass from the viewpoint of forming a uniform liquid crystal alignment film by coating. This content can be appropriately changed depending on the film thickness of the target liquid crystal alignment film.
 液晶配向剤は、本発明の効果を損なわない限り、液晶配向剤を塗布した際の液晶配向膜の塗膜性や表面平滑性を向上させる有機溶媒、すなわち貧溶媒を用いることができる。 As the liquid crystal aligning agent, an organic solvent that improves the coating properties and surface smoothness of the liquid crystal aligning film when the liquid crystal aligning agent is applied, that is, a poor solvent can be used as long as the effects of the present invention are not impaired.
 塗膜性や表面平滑性を向上させる貧溶媒の具体例としては、エタノール、イソプロピルアルコール、1-ブタノール、2-ブタノール、イソブチルアルコール、tert-ブチルアルコール、1-ペンタノール、2-ペンタノール、3-ペンタノール、2-メチル-1-ブタノール、イソペンチルアルコール、tert-ペンチルアルコール、3-メチル-2-ブタノール、ネオペンチルアルコール、1-ヘキサノール、2-メチル-1-ペンタノール、2-メチル-2-ペンタノール、2-エチル-1-ブタノール、1-ヘプタノール、2-ヘプタノール、3-ヘプタノール、1-オクタノール、2-オクタノール、2-エチル-1-ヘキサノール、シクロヘキサノール、1-メチルシクロヘキサノール、2-メチルシクロヘキサノール、3-メチルシクロヘキサノール、1,2-エタンジオール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、1,5-ペンタンジオール、2-メチル-2,4-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、ジプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、1,2-ブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジブチルエーテル、2-ペンタノン、3-ペンタノン、2-ヘキサノン、2-ヘプタノン、4-ヘプタノン、3-エトキシブチルアセタート、1-メチルペンチルアセタート、2-エチルブチルアセタート、2-エチルヘキシルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、プロピレンカーボネート、エチレンカーボネート、2-(メトキシメトキシ)エタノール、エチレングリコールモノブチルエーテル、エチレングリコールモノイソアミルエーテル、エチレングリコールモノヘキシルエーテル、2-(ヘキシルオキシ)エタノール、フルフリルアルコール、ジエチレングリコール、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールイソプロピルエーテル又はジエチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノブチルエーテル、1-(ブトキシエトキシ)プロパノール、プロピレングリコールモノメチルエーテルアセタート、ジプロピレングリコール、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリプロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテルアセタート、エチレングリコールモノエチルエーテルアセタート、エチレングリコールモノブチルエーテルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、ジエチレングリコールモノエチルエーテルアセタート、ジエチレングリコールモノブチルエーテルアセタート、2-(2-エトキシエトキシ)エチルアセタート、ジエチレングリコールアセタート、トリエチレングリコール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル又は乳酸イソアミルエステルなどの溶媒の表面張力が低い有機溶媒が挙げられる。 Specific examples of the poor solvent for improving the coating property and surface smoothness include ethanol, isopropyl alcohol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 3 -Pentanol, 2-methyl-1-butanol, isopentyl alcohol, tert-pentyl alcohol, 3-methyl-2-butanol, neopentyl alcohol, 1-hexanol, 2-methyl-1-pentanol, 2-methyl- 2-pentanol, 2-ethyl-1-butanol, 1-heptanol, 2-heptanol, 3-heptanol, 1-octanol, 2-octanol, 2-ethyl-1-hexanol, cyclohexanol, 1-methylcyclohexanol, 2-methylcyclohexanol 3-methylcyclohexanol, 1,2-ethanediol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2, 3-butanediol, 1,5-pentanediol, 2-methyl-2,4-pentanediol, 2-ethyl-1,3-hexanediol, dipropyl ether, dibutyl ether, dihexyl ether, dioxane, ethylene glycol dimethyl ether, Ethylene glycol diethyl ether, ethylene glycol dibutyl ether, 1,2-butoxyethane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, diethylene glycol dibutyl ether, 2 Pentanone, 3-pentanone, 2-hexanone, 2-heptanone, 4-heptanone, 3-ethoxybutyl acetate, 1-methylpentyl acetate, 2-ethylbutyl acetate, 2-ethylhexyl acetate, ethylene glycol monoacetate , Ethylene glycol diacetate, propylene carbonate, ethylene carbonate, 2- (methoxymethoxy) ethanol, ethylene glycol monobutyl ether, ethylene glycol monoisoamyl ether, ethylene glycol monohexyl ether, 2- (hexyloxy) ethanol, furfuryl alcohol, Diethylene glycol, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monopropyl ether, die Tylene glycol isopropyl ether or diethylene glycol monobutyl ether, propylene glycol, propylene glycol monobutyl ether, 1- (butoxyethoxy) propanol, propylene glycol monomethyl ether acetate, dipropylene glycol, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, tri Propylene glycol monomethyl ether, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, ethylene glycol monoacetate, ethylene glycol diacetate, diethylene glycol monoethyl ether acetate, diethylene glycol mono Chill ether acetate, 2- (2-ethoxyethoxy) ethyl acetate, diethylene glycol acetate, triethylene glycol, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, N-butyl acetate, propylene glycol monoethyl ether, methyl pyruvate, ethyl pyruvate, methyl 3-methoxypropionate, methyl ethyl 3-ethoxypropionate, ethyl 3-methoxypropionate, 3-ethoxypropionic acid, 3- Methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate, methyl lactate, ethyl lactate, n-propyl lactate, n-butyl lactate or Surface tension of a solvent such as lactic isoamyl esters low organic solvent.
 これらの貧溶媒は1種類でも複数種類を混合して用いてもよい。上記のような貧溶媒を用いる場合は、液晶配向剤に含まれる有機溶媒全体の5~80質量%であることが好ましく、より好ましくは20~60質量%である。 These poor solvents may be used alone or in combination. When the above poor solvent is used, it is preferably 5 to 80% by mass, more preferably 20 to 60% by mass, based on the total organic solvent contained in the liquid crystal aligning agent.
 液晶配向剤には、本発明の効果を損なわない限り、エポキシ基、イソシアネート基、オキセタン基又はシクロカーボネート基を有する架橋性化合物、ヒドロキシル基、ヒドロキシアルキル基及び低級アルコキシアルキル基からなる群より選ばれる少なくとも1種の置換基を有する架橋性化合物、又は重合性不飽和結合を有する架橋性化合物を添加することもできる。これら置換基や重合性不飽和結合は、架橋性化合物中に2個以上有する必要がある。 The liquid crystal aligning agent is selected from the group consisting of a crosslinkable compound having an epoxy group, an isocyanate group, an oxetane group or a cyclocarbonate group, a hydroxyl group, a hydroxyalkyl group and a lower alkoxyalkyl group, unless the effects of the present invention are impaired. It is also possible to add a crosslinkable compound having at least one substituent or a crosslinkable compound having a polymerizable unsaturated bond. It is necessary to have two or more of these substituents and polymerizable unsaturated bonds in the crosslinkable compound.
 エポキシ基又はイソシアネート基を有する架橋性化合物としては、例えば、ビスフェノールアセトングリシジルエーテル、フェノールノボラックエポキシ樹脂、クレゾールノボラックエポキシ樹脂、トリグリシジルイソシアヌレート、テトラグリシジルアミノジフェニレン、テトラグリシジル-m-キシレンジアミン、テトラグリシジル-1,3-ビス(アミノエチル)シクロヘキサン、テトラフェニルグリシジルエーテルエタン、トリフェニルグリシジルエーテルエタン、ビスフェノールヘキサフルオロアセトジグリシジルエーテル、1,3-ビス(1-(2,3-エポキシプロポキシ)-1-トリフルオロメチル-2,2,2-トリフルオロメチル)ベンゼン、4,4-ビス(2,3-エポキシプロポキシ)オクタフルオロビフェニル、トリグリシジル-p-アミノフェノール、テトラグリシジルメタキシレンジアミン、2-(4-(2,3-エポキシプロポキシ)フェニル)-2-(4-(1,1-ビス(4-(2,3-エポキシプロポキシ)フェニル)エチル)フェニル)プロパン又は1,3-ビス(4-(1-(4-(2,3-エポキシプロポキシ)フェニル)-1-(4-(1-(4-(2,3-エポキシプロポキシ)フェニル)-1-メチルエチル)フェニル)エチル)フェノキシ)-2-プロパノールなどが挙げられる。 Examples of the crosslinkable compound having an epoxy group or an isocyanate group include bisphenolacetone glycidyl ether, phenol novolac epoxy resin, cresol novolac epoxy resin, triglycidyl isocyanurate, tetraglycidylaminodiphenylene, tetraglycidyl-m-xylenediamine, tetra Glycidyl-1,3-bis (aminoethyl) cyclohexane, tetraphenyl glycidyl ether ethane, triphenyl glycidyl ether ethane, bisphenol hexafluoroacetodiglycidyl ether, 1,3-bis (1- (2,3-epoxypropoxy)- 1-trifluoromethyl-2,2,2-trifluoromethyl) benzene, 4,4-bis (2,3-epoxypropoxy) octafluorobiphenyl Triglycidyl-p-aminophenol, tetraglycidylmetaxylenediamine, 2- (4- (2,3-epoxypropoxy) phenyl) -2- (4- (1,1-bis (4- (2,3-epoxy) Propoxy) phenyl) ethyl) phenyl) propane or 1,3-bis (4- (1- (4- (2,3-epoxypropoxy) phenyl) -1- (4- (1- (4- (2,3 -Epoxypropoxy) phenyl) -1-methylethyl) phenyl) ethyl) phenoxy) -2-propanol and the like.
 オキセタン基を有する架橋性化合物は、下記の式[4]で示すオキセタン基を少なくとも2個有する架橋性化合物である。 The crosslinkable compound having an oxetane group is a crosslinkable compound having at least two oxetane groups represented by the following formula [4].
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
 具体的には、国際公開公報WO2011/132751(2011.10.27公開)の58頁~59頁に掲載される式[4a]~式[4k]で示される架橋性化合物が挙げられる。 Specific examples include crosslinkable compounds represented by the formulas [4a] to [4k] published on pages 58 to 59 of International Publication No. WO2011 / 132751 (published 2011.10.27).
 シクロカーボネート基を有する架橋性化合物としては、下記の式[5]で示されるシクロカーボネート基を少なくとも2個有する架橋性化合物である。 The crosslinkable compound having a cyclocarbonate group is a crosslinkable compound having at least two cyclocarbonate groups represented by the following formula [5].
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
 具体的には、国際公開公報WO2012/01132751(2012.2.2公開)の76頁~82頁に掲載される式[5-1]~式[5-42]で示される架橋性化合物が挙げられる。 Specific examples include crosslinkable compounds represented by the formulas [5-1] to [5-42] described on pages 76 to 82 of International Publication No. WO2012 / 01132751 (2012.2.2 publication). It is done.
 ヒドロキシル基及びアルコキシル基からなる群より選ばれる少なくとも1種の置換基を有する架橋性化合物としては、例えば、ヒドロキシル基又はアルコキシル基を有するアミノ樹脂、例えば、メラミン樹脂、尿素樹脂、グアナミン樹脂、グリコールウリル-ホルムアルデヒド樹脂、スクシニルアミド-ホルムアルデヒド樹脂又はエチレン尿素-ホルムアルデヒド樹脂などが挙げられる。具体的には、アミノ基の水素原子がメチロール基又はアルコキシメチル基又はその両方で置換されたメラミン誘導体、ベンゾグアナミン誘導体、又はグリコールウリルを用いることができる。このメラミン誘導体又はベンゾグアナミン誘導体は、2量体又は3量体として存在することも可能である。これらはトリアジン環1個当たり、メチロール基又はアルコキシメチル基を平均3個以上6個以下有するものが好ましい。 Examples of the crosslinkable compound having at least one substituent selected from the group consisting of a hydroxyl group and an alkoxyl group include an amino resin having a hydroxyl group or an alkoxyl group, such as a melamine resin, a urea resin, a guanamine resin, and a glycoluril. -Formaldehyde resin, succinylamide-formaldehyde resin or ethylene urea-formaldehyde resin. Specifically, a melamine derivative, a benzoguanamine derivative, or glycoluril in which a hydrogen atom of an amino group is substituted with a methylol group, an alkoxymethyl group, or both can be used. The melamine derivative or benzoguanamine derivative can exist as a dimer or a trimer. These preferably have an average of 3 to 6 methylol groups or alkoxymethyl groups per triazine ring.
 このようなメラミン誘導体又はベンゾグアナミン誘導体の例としては、市販品のトリアジン環1個当たりメトキシメチル基が平均3.7個置換されているMX-750、トリアジン環1個当たりメトキシメチル基が平均5.8個置換されているMW-30(以上、三和ケミカル社製)やサイメル300、301、303、350、370、771、325、327、703、712などのメトキシメチル化メラミン、サイメル235、236、238、212、253、254などのメトキシメチル化ブトキシメチル化メラミン、サイメル506、508などのブトキシメチル化メラミン、サイメル1141のようなカルボキシル基含有メトキシメチル化イソブトキシメチル化メラミン、サイメル1123のようなメトキシメチル化エトキシメチル化ベンゾグアナミン、サイメル1123-10のようなメトキシメチル化ブトキシメチル化ベンゾグアナミン、サイメル1128のようなブトキシメチル化ベンゾグアナミン、サイメル1125-80のようなカルボキシル基含有メトキシメチル化エトキシメチル化ベンゾグアナミン(以上、三井サイアナミド社製)が挙げられる。また、グリコールウリルの例として、サイメル1170のようなブトキシメチル化グリコールウリル、サイメル1172のようなメチロール化グリコールウリル等、パウダーリンク1174のようなメトキシメチロール化グリコールウリル等が挙げられる。 Examples of such melamine derivatives or benzoguanamine derivatives include MX-750, which has an average of 3.7 substituted methoxymethyl groups per triazine ring, and an average of 5. methoxymethyl groups per triazine ring. Eight-substituted MW-30 (Sanwa Chemical Co., Ltd.) and Cymel 300, 301, 303, 350, 370, 771, 325, 327, 703, 712 and other methoxymethylated melamines, Cymel 235, 236 Methoxymethylated butoxymethylated melamine such as 238, 212, 253, 254, butoxymethylated melamine such as Cymel 506, 508, carboxyl group-containing methoxymethylated isobutoxymethylated melamine such as Cymel 1141, Cymel 1123 and the like Methoxymethylated etoxy Methylated benzoguanamine, methoxymethylated butoxymethylated benzoguanamine such as Cymel 1123-10, butoxymethylated benzoguanamine such as Cymel 1128, carboxyl group-containing methoxymethylated ethoxymethylated benzoguanamine such as Cymel 1125-80 Cyanamide). Examples of glycoluril include butoxymethylated glycoluril such as Cymel 1170, methylolated glycoluril such as Cymel 1172, and methoxymethylolated glycoluril such as Powderlink 1174.
 ヒドロキシル基又はアルコキシル基を有するベンゼン又はフェノール性化合物としては、例えば、1,3,5-トリス(メトキシメチル)ベンゼン、1,2,4-トリス(イソプロポキシメチル)ベンゼン、1,4-ビス(sec-ブトキシメチル)ベンゼン又は2,6-ジヒドロキシメチル-p-tert-ブチルフェノール等が挙げられる。 Examples of the benzene or phenolic compound having a hydroxyl group or an alkoxyl group include 1,3,5-tris (methoxymethyl) benzene, 1,2,4-tris (isopropoxymethyl) benzene, 1,4-bis ( sec-butoxymethyl) benzene or 2,6-dihydroxymethyl-p-tert-butylphenol.
 より具体的には、国際公開公報WO2011/132751(2011.10.27公開)の62頁~66頁に掲載される、式[6-1]~式[6-48]で示される架橋性化合物が挙げられる。 More specifically, the crosslinkable compounds represented by the formulas [6-1] to [6-48] described on pages 62 to 66 of International Publication No. WO2011 / 132751 (published 2011.10.27). Is mentioned.
 重合性不飽和結合を有する架橋性化合物としては、例えば、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、トリ(メタ)アクリロイルオキシエトキシトリメチロールプロパン又はグリセリンポリグリシジルエーテルポリ(メタ)アクリレート等の重合性不飽和基を分子内に3個有する架橋性化合物、さらに、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ブチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エチレンオキサイドビスフェノールA型ジ(メタ)アクリレート、プロピレンオキサイドビスフェノール型ジ(メタ)アクリレート、1,6-へキサンジオールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、エチレングリコールジグリシジルエーテルジ(メタ)アクリレート、ジエチレングリコールジグリシジルエーテルジ(メタ)アクリレート、フタル酸ジグリシジルエステルジ(メタ)アクリレート又はヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレートなどの重合性不飽和基を分子内に2個有する架橋性化合物、加えて、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-フェノキシ-2-ヒドロキシプロピル(メタ)アクリレート、2-(メタ)アクリロイルオキシ-2-ヒドロキシプロピルフタレート、3-クロロ-2-ヒドロキシプロピル(メタ)アクリレート、グリセリンモノ(メタ)アクリレート、2-(メタ)アクリロイルオキシエチルリン酸エステル又はN-メチロール(メタ)アクリルアミド等の重合性不飽和基を分子内に1個有する架橋性化合物が挙げられる。 Examples of the crosslinkable compound having a polymerizable unsaturated bond include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, and tri (meth) acryloyloxyethoxytrimethylol. Crosslinkable compounds having three polymerizable unsaturated groups in the molecule such as propane or glycerin polyglycidyl ether poly (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (Meth) acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, butylene glycol Rudi (meth) acrylate, neopentyl glycol di (meth) acrylate, ethylene oxide bisphenol A type di (meth) acrylate, propylene oxide bisphenol type di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, glycerin Di (meth) acrylate, pentaerythritol di (meth) acrylate, ethylene glycol diglycidyl ether di (meth) acrylate, diethylene glycol diglycidyl ether di (meth) acrylate, diglycidyl phthalate di (meth) acrylate or hydroxypivalic acid neo Crosslinkable compounds having two polymerizable unsaturated groups in the molecule, such as pentyl glycol di (meth) acrylate, in addition, 2-hydroxyethyl (meth) acrylate 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 2-phenoxy-2-hydroxypropyl (meth) acrylate, 2- (meth) acryloyloxy-2-hydroxypropyl phthalate, 3-chloro-2 Crosslinkability having one polymerizable unsaturated group in the molecule such as hydroxypropyl (meth) acrylate, glycerin mono (meth) acrylate, 2- (meth) acryloyloxyethyl phosphate ester or N-methylol (meth) acrylamide Compounds.
 加えて、下記の式[7]で示される化合物を用いることもできる。 In addition, a compound represented by the following formula [7] can also be used.
Figure JPOXMLDOC01-appb-C000046
(式[7]中、Eはシクロヘキサン環、ビシクロヘキサン環、ベンゼン環、ビフェニル環、ターフェニル環、ナフタレン環、フルオレン環、アントラセン環又はフェナントレン環からなる群から選ばれる基を示し、Eは下記の式[7a]又は式[7b]から選ばれる基を示し、nは1~4の整数を示す。)
Figure JPOXMLDOC01-appb-C000046
(Wherein [7], E 1 represents a cyclohexane ring, bicyclohexane ring, a benzene ring, a biphenyl ring, a terphenyl ring, a naphthalene ring, a fluorene ring, a group selected from the group consisting of an anthracene ring or phenanthrene ring, E 2 Represents a group selected from the following formula [7a] or [7b], and n represents an integer of 1 to 4.
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
 上記化合物は架橋性化合物の一例であり、これらに限定されるものではない。また、液晶配向剤に用いる架橋性化合物は、1種類であってもよく、2種類以上組み合わせてもよい。 The above compound is an example of a crosslinkable compound and is not limited thereto. Moreover, the crosslinkable compound used for a liquid crystal aligning agent may be one type, and may combine two or more types.
 液晶配向剤における、架橋性化合物の含有量は、すべての重合体成分100質量部に対して、0.1~150質量部であることが好ましい。架橋反応が進行し目的の効果を発現させるためには、すべての重合体成分100質量部に対して0.1~100質量部がより好ましく、特に、1~50質量部が最も好ましい。 The content of the crosslinkable compound in the liquid crystal aligning agent is preferably 0.1 to 150 parts by mass with respect to 100 parts by mass of all the polymer components. In order for the crosslinking reaction to proceed and to achieve the desired effect, the amount is more preferably 0.1 to 100 parts by weight, and most preferably 1 to 50 parts by weight, based on 100 parts by weight of all polymer components.
 本発明の組成物を用いた液晶配向処理剤を用いて液晶配向膜とした際、液晶配向膜中の電荷移動を促進し、該液晶配向膜を用いた液晶セルの電荷抜けを促進させる化合物として、国際公開公報WO2011/132751(2011.10.27公開)の69頁~73頁に掲載される、式[M1]~式[M156]で示される窒素含有複素環アミン化合物を添加することが好ましい。このアミン化合物は、組成物に直接添加しても構わないが、適当な溶媒で濃度0.1質量%~10質量%、好ましくは1質量%~7質量%の溶液にしてから添加することが好ましい。この溶媒としては、上述した特定ポリイミド系重合体を溶解させる有機溶媒であれば特に限定されない。 As a compound that promotes charge transfer in a liquid crystal alignment film and promotes charge release of a liquid crystal cell using the liquid crystal alignment film when a liquid crystal alignment film using the liquid crystal alignment treatment agent using the composition of the present invention is formed. It is preferable to add nitrogen-containing heterocyclic amine compounds represented by the formulas [M1] to [M156], which are described on pages 69 to 73 of International Publication No. WO2011 / 132751 (published 2011.10.27). . This amine compound may be added directly to the composition, but it may be added after a solution having a concentration of 0.1% by mass to 10% by mass, preferably 1% by mass to 7% by mass with an appropriate solvent. preferable. The solvent is not particularly limited as long as it is an organic solvent that dissolves the specific polyimide polymer described above.
 液晶配向剤は、本発明の効果を損なわない限り、液晶配向剤を塗布した際の液晶配向膜の膜厚の均一性や表面平滑性を向上させる化合物を含有することができる。さらに、液晶配向膜と基板との密着性を向上させる化合物などを含有してもよい。 The liquid crystal aligning agent can contain a compound that improves the uniformity of the film thickness and surface smoothness of the liquid crystal aligning film when the liquid crystal aligning agent is applied, as long as the effects of the present invention are not impaired. Furthermore, you may contain the compound etc. which improve the adhesiveness of a liquid crystal aligning film and a board | substrate.
 液晶配向膜の膜厚の均一性や表面平滑性を向上させる化合物としては、フッ素系界面活性剤、シリコーン系界面活性剤、ノ二オン系界面活性剤などが挙げられる。 Examples of compounds that improve the film thickness uniformity and surface smoothness of the liquid crystal alignment film include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants.
 より具体的には、例えば、エフトップEF301、EF303、EF352(以上、トーケムプロダクツ社製)、メガファックF171、F173、R-30(以上、大日本インキ社製)、フロラードFC430、FC431(以上、住友スリーエム社製)、アサヒガードAG710、サーフロンS-382、SC101、SC102、SC103、SC104、SC105、SC106(以上、旭硝子社製)などが挙げられる。これらの界面活性剤の使用割合は、液晶配向剤に含有されるすべての重合体成分100質量部に対して、好ましくは0.01~2質量部、より好ましくは0.01~1質量部である。 More specifically, for example, F-top EF301, EF303, EF352 (above, manufactured by Tochem Products), MegaFuck F171, F173, R-30 (above, manufactured by Dainippon Ink), Florard FC430, FC431 (or more) And Asahi Guard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (above, manufactured by Asahi Glass Co., Ltd.). The use ratio of these surfactants is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass with respect to 100 parts by mass of all the polymer components contained in the liquid crystal aligning agent. is there.
 液晶配向膜と基板との密着性を向上させる化合物の具体例としては、以下に示す官能性シラン含有化合物やエポキシ基含有化合物が挙げられる。 Specific examples of the compound that improves the adhesion between the liquid crystal alignment film and the substrate include the following functional silane-containing compounds and epoxy group-containing compounds.
 例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリメトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリエトキシシラン、N-トリエトキシシリルプロピルトリエチレントリアミン、N-トリメトキシシリルプロピルトリエチレントリアミン、10-トリメトキシシリル-1,4,7-トリアザデカン、10-トリエトキシシリル-1,4,7-トリアザデカン、9-トリメトキシシリル-3,6-ジアザノニルアセテート、9-トリエトキシシリル-3,6-ジアザノニルアセテート、N-ベンジル-3-アミノプロピルトリメトキシシラン、N-ベンジル-3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリメトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリエトキシシラン、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2-ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6-テトラグリシジル-2,4-ヘキサンジオール、N,N,N’,N’,-テトラグリシジル-m-キシレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン又はN,N,N’,N’,-テトラグリシジル-4,4’-ジアミノジフェニルメタンなどが挙げられる。 For example, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, N-ethoxycarbonyl-3-aminopropyltrimethoxysilane, N-ethoxy Carbonyl-3-aminopropyltriethoxysilane, N-triethoxysilylpropyltriethylenetriamine, N-trimethoxysilylpropyltriethylenetriamine, 10-trimethoxysilyl-1,4,7-triazadecane, 10- Riethoxysilyl-1,4,7-triazadecane, 9-trimethoxysilyl-3,6-diazanonyl acetate, 9-triethoxysilyl-3,6-diazanonyl acetate, N-benzyl-3-aminopropyl Trimethoxysilane, N-benzyl-3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltriethoxysilane, N-bis (oxyethylene) -3- Aminopropyltrimethoxysilane, N-bis (oxyethylene) -3-aminopropyltriethoxysilane, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether Polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin diglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether, 1,3,5,6- Tetraglycidyl-2,4-hexanediol, N, N, N ′, N ′,-tetraglycidyl-m-xylenediamine, 1,3-bis (N, N-diglycidylaminomethyl) cyclohexane or N, N, N ′, N ′,-tetraglycidyl-4,4′-diaminodiphenylmethane and the like.
 これら基板との密着させる化合物を使用する場合は、液晶配向剤に含有されるすべての重合体成分100質量部に対して0.1~30質量部であることが好ましく、より好ましくは1~20質量部である。0.1質量部未満であると密着性向上の効果は期待できず、30質量部よりも多くなると液晶配向剤の保存安定性が悪くなる場合がある。 When using a compound to be adhered to these substrates, the amount is preferably 0.1 to 30 parts by mass, more preferably 1 to 20 parts per 100 parts by mass of all the polymer components contained in the liquid crystal aligning agent. Part by mass. If it is less than 0.1 part by mass, the effect of improving the adhesion cannot be expected, and if it exceeds 30 parts by mass, the storage stability of the liquid crystal aligning agent may be deteriorated.
 液晶配向剤には、上記の貧溶媒、架橋性化合物、液晶配向膜の膜厚の均一性や表面平滑性を向上させる化合物及び基板との密着させる化合物の他に、本発明の効果が損なわれない範囲であれば、液晶配向膜の誘電率や導電性などの電気特性を変化させる目的の誘電体や導電物質を添加してもよい。 In addition to the poor solvent, the crosslinkable compound, the liquid crystal alignment film thickness uniformity and surface smoothness, and the compound that adheres to the substrate, the effect of the present invention is impaired. If it is within the range, a dielectric material or a conductive material for changing the electrical characteristics such as the dielectric constant and conductivity of the liquid crystal alignment film may be added.
 本発明においては、このような液晶配向剤を、基板上に塗布した後、焼成することにより、イミド化率が50~70%の液晶配向膜を得る。 In the present invention, such a liquid crystal aligning agent is applied on a substrate and then baked to obtain a liquid crystal aligning film having an imidization ratio of 50 to 70%.
 基板としては、目的とするデバイスに応じて、ガラス基板、シリコンウェハ、アクリル基板やポリカーボネート基板などのプラスチック基板などを用いることができる。プロセスの簡素化の観点からは、液晶駆動のためのITO(Indium Tin Oxide)電極などが形成された基板を用いることが好ましい。また、反射型の液晶表示素子では、片側の基板のみにならばシリコンウェハなどの不透明な基板も使用でき、この場合の電極としてはアルミなどの光を反射する材料も使用できる。本発明においては、焼成温度を低くすることができるため、耐熱性が低い基板であるプラスチック基板等も用いることができる。 As the substrate, a glass substrate, a silicon wafer, a plastic substrate such as an acrylic substrate or a polycarbonate substrate, or the like can be used depending on the target device. From the viewpoint of simplifying the process, it is preferable to use a substrate on which an ITO (Indium Tin Oxide) electrode or the like for driving the liquid crystal is formed. In the reflective liquid crystal display element, an opaque substrate such as a silicon wafer can be used if only one substrate is used, and a material that reflects light such as aluminum can be used as an electrode in this case. In the present invention, since the firing temperature can be lowered, a plastic substrate or the like which is a substrate having low heat resistance can also be used.
 液晶配向剤を基板へ塗布する方法は特に限定されないが、工業的には、ディップ法、ロールコータ法、スリットコータ法、スピンナー法、スプレー法、スクリーン印刷、オフセット印刷、フレキソ印刷又はインクジェット法などで行う方法が一般的である。目的に応じてこれらを用いてもよい。 The method of applying the liquid crystal aligning agent to the substrate is not particularly limited, but industrially, by dipping method, roll coater method, slit coater method, spinner method, spray method, screen printing, offset printing, flexographic printing, or inkjet method, etc. The method of performing is common. You may use these according to the objective.
 液晶配向剤を基板上に塗布した後、焼成する。焼成条件は、焼成後に得られる液晶配向膜のイミド化率が50~70%になる条件とする。例えば、焼成温度は210℃以下、好ましくは120~200℃である。また、焼成時間は例えば5分~2時間、好ましくは10分~30分である。このように、低い温度で焼成することができるため、耐熱性が低いプラスチック基板を用いることができる。また、高温での焼成に伴う液晶表示素子のカラーフィルターの色特性の劣化の抑制や、液晶表示素子の製造におけるエネルギーコストを削減することができる。 After applying the liquid crystal aligning agent on the substrate, firing is performed. The firing conditions are such that the liquid crystal alignment film obtained after firing has an imidization ratio of 50 to 70%. For example, the firing temperature is 210 ° C. or lower, preferably 120 to 200 ° C. The firing time is, for example, 5 minutes to 2 hours, preferably 10 minutes to 30 minutes. Thus, since it can bake at low temperature, a plastic substrate with low heat resistance can be used. In addition, it is possible to suppress deterioration of the color characteristics of the color filter of the liquid crystal display element due to baking at a high temperature and to reduce the energy cost in manufacturing the liquid crystal display element.
 焼成を行う加熱手段としては、熱循環型オーブン又はIR(赤外線)型オーブンなどが挙げられる。焼成して得られる液晶配向膜の厚みは、厚すぎると液晶表示素子の消費電力の面で不利となり、薄すぎると液晶表示素子の信頼性が低下する場合があるので、好ましくは5~300nm、より好ましくは10~100nmである。 Examples of the heating means for performing firing include a thermal circulation oven or an IR (infrared) oven. If the thickness of the liquid crystal alignment film obtained by firing is too thick, it is disadvantageous in terms of power consumption of the liquid crystal display element. If it is too thin, the reliability of the liquid crystal display element may be lowered. More preferably, it is 10 to 100 nm.
 液晶を水平配向や傾斜配向させる場合は、焼成して得られた液晶配向膜をラビング又は偏光紫外線照射などで処理する。また、垂直配向用途などの場合では配向処理なしでも液晶配向膜として用いることができる。 When the liquid crystal is horizontally or tilted, the liquid crystal alignment film obtained by baking is treated by rubbing or irradiation with polarized ultraviolet rays. In the case of vertical alignment, etc., it can be used as a liquid crystal alignment film without alignment treatment.
 このように、上記式[1]で示される繰り返し単位を有するポリイミド前駆体や、上記式[1]で示される繰り返し単位を有しイミド化率が50%未満であるポリイミドを含有する液晶配向剤を、基板に塗布した後焼成することによって得たイミド化率が50~60%の液晶配向膜は、イミド化率が低くカルボキシル基が多く存在し且つ式[1]で示される繰り返し単位を有するためか、後述する実施例に示すように、残留DCが低く且つ電圧保持率が高い。一方、例えば、特許文献1のようにポリ尿素の繰り返し単位(特許文献1の一般式(I))とポリイミドの繰り返し単位(特許文献1の一般式(II))からなる液晶配向膜の場合は、本発明と比較して残留DCが非常に高い。なお、特許文献1では液晶配向剤を塗布した後に低温で焼成しているが、焼成する前の液晶配向剤の段階でポリイミドにしているため、特許文献1で得られる液晶配向膜のイミド化率は、本発明とは異なり、非常に高い。 Thus, the liquid crystal aligning agent containing the polyimide precursor which has a repeating unit shown by the said Formula [1], and the polyimide which has a repeating unit shown by the said Formula [1], and an imidation ratio is less than 50%. A liquid crystal alignment film having an imidization ratio of 50 to 60% obtained by coating the substrate on the substrate and baking it has a low imidation ratio, a large amount of carboxyl groups, and a repeating unit represented by the formula [1]. For this reason, as shown in the examples described later, the residual DC is low and the voltage holding ratio is high. On the other hand, for example, in the case of a liquid crystal alignment film composed of a polyurea repeating unit (general formula (I) in Patent Document 1) and a polyimide repeating unit (general formula (II) in Patent Document 1) as in Patent Document 1. The residual DC is very high compared to the present invention. In Patent Document 1, the liquid crystal aligning agent is applied and then fired at a low temperature. However, since the polyimide is formed at the stage of the liquid crystal aligning agent before firing, the imidation ratio of the liquid crystal aligning film obtained in Patent Document 1 Is very high, unlike the present invention.
 本発明の液晶表示素子は、上記した手法により液晶配向剤を塗布及び焼成して液晶配向膜付き基板を得た後、公知の方法で液晶セルを作製して液晶表示素子としたものである。一例を挙げるならば、対向するように配置された2枚の基板と、基板間に設けられた液晶層と、基板と液晶層との間に設けられ本発明の上記液晶配向膜の製造方法により形成された液晶配向膜とを有する液晶セルを具備する液晶表示素子である。このような本発明の液晶表示素子としては、ツイストネマティック(TN:Twisted Nematic)方式、垂直配向(VA:Vertical Alignment)方式や、水平配向(IPS:In-Plane Switching)方式、OCB配向(OCB:Optically Compensated Bend)等、種々のものが挙げられる。 The liquid crystal display element of the present invention is a liquid crystal display element obtained by applying and baking a liquid crystal aligning agent by the above-described method to obtain a substrate with a liquid crystal alignment film, and then preparing a liquid crystal cell by a known method. To give an example, two substrates arranged to face each other, a liquid crystal layer provided between the substrates, and a method for producing the liquid crystal alignment film of the present invention provided between the substrate and the liquid crystal layer. A liquid crystal display device comprising a liquid crystal cell having a liquid crystal alignment film formed. As such a liquid crystal display element of the present invention, a twisted nematic (TN) method, a vertical alignment (VA) method, a horizontal alignment (IPS: In-Plane Switching) method, an OCB alignment (OCB). There are various types such as Optically Compensated Bend).
 液晶セルの作製方法としては、液晶配向膜の形成された一対の基板を用意し、片方の基板の液晶配向膜上にスペーサを散布し、液晶配向膜面が内側になるようにして、もう片方の基板を貼り合わせ、液晶を減圧注入して封止する方法、又は、スペーサを散布した液晶配向膜面に液晶を滴下した後に基板を貼り合わせて封止を行う方法などが例示できる。 As a method for manufacturing a liquid crystal cell, prepare a pair of substrates on which a liquid crystal alignment film is formed, spray spacers on the liquid crystal alignment film of one substrate, and place the other side of the liquid crystal alignment film on the other side. And a method of sealing the substrate by injecting liquid crystal under reduced pressure, or a method of sealing the substrate by bonding the liquid crystal after dropping the liquid crystal on the liquid crystal alignment film surface on which the spacers are dispersed.
 液晶には、正の誘電異方性を有するポジ型液晶や負の誘電異方性を有するネガ型液晶、具体的には、例えば、メルク社製のMLC-2003、MLC-6608、MLC-6609などを用いることができる。 Examples of the liquid crystal include a positive liquid crystal having a positive dielectric anisotropy and a negative liquid crystal having a negative dielectric anisotropy. Specifically, for example, MLC-2003, MLC-6608, MLC-6609 manufactured by Merck & Co., Inc. Etc. can be used.
 また、本発明の液晶配向膜は、電極を備えた一対の基板の間に液晶層を有してなり、一対の基板の間に活性エネルギー線及び熱の少なくとも一方により重合する重合性化合物を含む液晶組成物を配置し、電極間に電圧を印加しつつ、活性エネルギー線の照射及び加熱の少なくとも一方により重合性化合物を重合させる工程を経て製造される液晶表示素子にも好ましく用いられる。ここで、活性エネルギー線としては、紫外線が好適である。紫外線は、波長が300~400nm、好ましくは310~360nmである。加熱による重合の場合、加熱温度は40~120℃、好ましくは60~80℃である。また、紫外線と加熱を同時に行ってもよい。 The liquid crystal alignment film of the present invention has a liquid crystal layer between a pair of substrates provided with electrodes, and contains a polymerizable compound that is polymerized by at least one of active energy rays and heat between the pair of substrates. It is also preferably used for a liquid crystal display element produced by a step of polymerizing a polymerizable compound by disposing a liquid crystal composition and applying a voltage between electrodes while at least one of irradiation with active energy rays and heating. Here, ultraviolet rays are suitable as the active energy ray. The wavelength of ultraviolet rays is 300 to 400 nm, preferably 310 to 360 nm. In the case of polymerization by heating, the heating temperature is 40 to 120 ° C, preferably 60 to 80 ° C. Moreover, you may perform an ultraviolet-ray and a heating simultaneously.
 上記の液晶表示素子は、PSA(Polymer Sustained Alignment)方式により、液晶分子のプレチルトを制御するものである。例えば活性エネルギー線を用いるPSA方式では、液晶材料中に少量の光重合性化合物、例えば光重合性モノマーを混入しておき、液晶セルを組み立てた後、液晶層に所定の電圧を印加した状態で光重合性化合物に紫外線などの活性エネルギー線を照射することにより重合させ、この生成した重合体によって液晶分子のプレチルトを制御する。この重合体が生成するときの液晶分子の配向状態が、電圧を取り去った後においても記憶されるので、液晶層に形成される電界などを制御することにより、液晶分子のプレチルトを調整することができる。また、PSA方式では、ラビング処理を必要としないので、ラビング処理によってプレチルトを制御することが難しい垂直配向型の液晶層の形成に適している。 The above liquid crystal display element controls the pretilt of liquid crystal molecules by a PSA (Polymer Sustained Alignment) method. For example, in the PSA method using active energy rays, a small amount of a photopolymerizable compound, for example, a photopolymerizable monomer is mixed in a liquid crystal material, a liquid crystal cell is assembled, and a predetermined voltage is applied to the liquid crystal layer. The photopolymerizable compound is polymerized by irradiating it with active energy rays such as ultraviolet rays, and the pretilt of the liquid crystal molecules is controlled by the produced polymer. Since the alignment state of the liquid crystal molecules when this polymer is formed is stored even after the voltage is removed, the pretilt of the liquid crystal molecules can be adjusted by controlling the electric field formed in the liquid crystal layer. it can. The PSA method does not require a rubbing process and is suitable for forming a vertical alignment type liquid crystal layer in which it is difficult to control the pretilt by the rubbing process.
 PSA方式の液晶セル作製は、上記と同様であり、液晶配向膜の形成された一対の基板を用意し、片方の基板の液晶配向膜上にスペーサを散布し、液晶配向膜面が内側になるようにして、もう片方の基板を貼り合わせ、液晶を減圧注入して封止する方法、又は、スペーサを散布した液晶配向膜面に液晶を滴下した後に基板を貼り合わせて封止を行う方法などが挙げられる。 The production of the PSA type liquid crystal cell is the same as described above. A pair of substrates on which a liquid crystal alignment film is formed is prepared, spacers are dispersed on the liquid crystal alignment film of one substrate, and the liquid crystal alignment film surface is on the inside. In this way, the other substrate is bonded and the liquid crystal is injected under reduced pressure to seal, or the liquid crystal is dropped on the liquid crystal alignment film surface on which the spacers are dispersed, and then the substrate is bonded and sealed. Is mentioned.
 そして、PSA方式の場合、液晶には、熱や活性エネルギー線照射により重合する重合性化合物が混合される。重合性化合物としては、アクリレート基やメタクリレート基等の重合性不飽和基を分子内に1個以上有する化合物が挙げられる。その際、重合性化合物は、液晶成分の100質量部に対して0.01~10質量部であることが好ましく、より好ましくは0.1~5質量部である。重合性化合物が0.01質量部未満であると、重合性化合物が重合せずに液晶の配向を制御できなくなり、10質量部よりも多くなると、未反応の重合性化合物が多くなって液晶表示素子の焼き付き特性が低下する。 In the case of the PSA method, the liquid crystal is mixed with a polymerizable compound that is polymerized by irradiation with heat or active energy rays. Examples of the polymerizable compound include compounds having at least one polymerizable unsaturated group such as an acrylate group or a methacrylate group in the molecule. In that case, the polymerizable compound is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the liquid crystal component. When the polymerizable compound is less than 0.01 part by mass, the polymerizable compound does not polymerize and the orientation of the liquid crystal cannot be controlled, and when it exceeds 10 parts by mass, the amount of unreacted polymerizable compound increases and the liquid crystal display The burn-in characteristic of the element is deteriorated.
 液晶セルを作製した後は、液晶セルに交流又は直流の電圧を印加しながら、熱や活性エネルギー線を照射して重合性化合物を重合する。これにより、液晶分子の配向を制御することができる。 After producing the liquid crystal cell, the polymerizable compound is polymerized by applying heat or active energy rays while applying an AC or DC voltage to the liquid crystal cell. Thereby, the alignment of the liquid crystal molecules can be controlled.
 加えて、本発明の液晶配向膜は、電極を備えた一対の基板の間に液晶層を有してなり、前記一対の基板の間に活性エネルギー線及び熱の少なくとも一方により重合する重合性基を含む液晶配向膜を配置し、電極間に電圧を印加しつつ重合性基を重合させる工程を経て製造される液晶表示素子にも用いることができる(SC-PVA)。ここで、活性エネルギー線としては、紫外線が好適である。紫外線は、波長が300~400nm、好ましくは310~360nmである。加熱による重合の場合、加熱温度は40~120℃、好ましくは60~80℃である。また、紫外線と加熱を同時に行ってもよい。 In addition, the liquid crystal alignment film of the present invention has a liquid crystal layer between a pair of substrates provided with electrodes, and a polymerizable group that is polymerized by at least one of active energy rays and heat between the pair of substrates. It can also be used for a liquid crystal display device manufactured through a step of polymerizing a polymerizable group while disposing a liquid crystal alignment film containing a polymer and applying a voltage between electrodes (SC-PVA). Here, ultraviolet rays are suitable as the active energy ray. The wavelength of ultraviolet rays is 300 to 400 nm, preferably 310 to 360 nm. In the case of polymerization by heating, the heating temperature is 40 to 120 ° C, preferably 60 to 80 ° C. Moreover, you may perform an ultraviolet-ray and a heating simultaneously.
 活性エネルギー線及び熱の少なくとも一方より重合する重合性基を含む液晶配向膜を得るためには、この重合性基を含む化合物を上記液晶配向剤中に添加する方法が挙げられる。また、(a)成分、(b)成分や(c)成分として重合性基を含む化合物を用いる等して、液晶配向剤に含有される上記式[1]で示される繰り返し単位を有するポリイミド前駆体や、上記式[1]で示される繰り返し単位を有し且つイミド化率が50%未満のポリイミドが、重合性基を含むようにする方法が挙げられる。 In order to obtain a liquid crystal alignment film containing a polymerizable group that polymerizes from at least one of active energy rays and heat, a method of adding a compound containing this polymerizable group to the liquid crystal aligning agent can be mentioned. Moreover, the polyimide precursor which has a repeating unit shown by the said Formula [1] contained in a liquid crystal aligning agent by using the compound containing a polymeric group as (a) component, (b) component, or (c) component etc. And a polyimide having a repeating unit represented by the above formula [1] and having an imidization ratio of less than 50% include a polymerizable group.
 そして、このような活性エネルギー線及び熱の少なくとも一方より重合する重合性基を含む液晶配向膜の形成された一対の基板を用意した後は、上記と同様に、片方の基板の液晶配向膜上にスペーサを散布し、液晶配向膜面が内側になるようにして、もう片方の基板を貼り合わせ、液晶を減圧注入して封止する方法、又は、スペーサを散布した液晶配向膜面に液晶を滴下した後に基板を貼り合わせて封止を行う方法などにより、液晶セルを製造することができる。 Then, after preparing a pair of substrates on which a liquid crystal alignment film containing a polymerizable group that is polymerized by at least one of active energy rays and heat is prepared, the liquid crystal alignment film on one substrate is formed in the same manner as described above. Sprinkle spacers on the liquid crystal alignment film so that the surface of the liquid crystal alignment film is on the inside, and bond the other substrate, inject liquid crystal under reduced pressure, or seal the liquid crystal on the liquid crystal alignment film surface on which the spacers are distributed. A liquid crystal cell can be manufactured by a method in which the substrate is attached and sealed after dropping.
 そして、液晶セルを作製した後は、液晶セルに交流又は直流の電圧を印加しながら、熱や活性エネルギー線を照射することで、液晶分子の配向を制御することができる。 And after producing the liquid crystal cell, the orientation of the liquid crystal molecules can be controlled by irradiating the liquid crystal cell with heat or active energy rays while applying an AC or DC voltage.
 以上のようにして、本発明の液晶配向膜を用いて作製された液晶表示素子は、残留DCが低く且つ電圧保持率が高いため、信頼性に優れたものとなり、大画面で高精細の液晶テレビなどに好適に利用できる。また、焼成温度が低いため、軽量であるプラスチック等を基板として用いることができ、液晶表示素子の軽量化を図ることができる。 As described above, the liquid crystal display device manufactured using the liquid crystal alignment film of the present invention has a low residual DC and a high voltage holding ratio, and thus has excellent reliability, and has a large screen and a high-definition liquid crystal. It can be suitably used for a television. In addition, since the firing temperature is low, a lightweight plastic or the like can be used as the substrate, and the weight of the liquid crystal display element can be reduced.
 以下に実施例を挙げて説明する。なお、本発明はこれらに限定して解釈されるものではない。下記で用いた略号は以下の通りである。 Hereinafter, an example will be given and described. In addition, this invention is limited to these and is not interpreted. Abbreviations used below are as follows.
 (ジイソシアネート)
A-1:2,4-ジイソシアン酸トリレン
(Diisocyanate)
A-1: Tolylene 2,4-diisocyanate
 (テトラカルボン酸二無水物)
B-1:1,2,3,4-シクロブタンテトラカルボン酸二無水物
(Tetracarboxylic dianhydride)
B-1: 1,2,3,4-cyclobutanetetracarboxylic dianhydride
 (ジアミン化合物)
C-1:1-アミノ-3-アミノメチル-3,5,5-トリメチルシクロヘキサン
C-2:N-(3-ピコリル)-3,5-ジアミノベンズアミド
C-3:1,3-ジアミノ-4-{4-(4-n-ヘプチルシクロヘキシル)フェノキシ}ベンゼン
(Diamine compound)
C-1: 1-amino-3-aminomethyl-3,5,5-trimethylcyclohexane C-2: N- (3-picolyl) -3,5-diaminobenzamide C-3: 1,3-diamino-4 -{4- (4-n-heptylcyclohexyl) phenoxy} benzene
 (有機溶媒)
NMP:N-メチル-2-ピロリドン
BCS:ブチルセロソルブ
(Organic solvent)
NMP: N-methyl-2-pyrrolidone BCS: Butyl cellosolve
 以下に、本実施例で行った測定方法について示す。
  (ポリマーの分子量測定)
 ポリアミック酸及びポリイミドの分子量は、該ポリアミック酸やポリイミドをGPC(常温ゲル浸透クロマトグラフィー)装置によって測定し、ポリエチレングリコール、ポリエチレンオキシド換算値として数平均分子量と重量平均分子量を算出した。
GPC装置:昭和電工社製 GPC-101、
カラム:Shodex社製カラム(KD-803、KD-805の直列)
カラム温度:50℃
溶離液:N,N’-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・HO)が30mmol/L、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)
流速:1.0ml/分
検量線作成用標準サンプル:東ソー社製 TSK 標準ポリエチレンオキサイド(分子量 約900,000、150,000、100,000、30,000)、及び、ポリマーラボラトリー社製 ポリエチレングリコール(分子量 約12,000、4,000、1,000)
The measurement method performed in this example will be described below.
(Measurement of molecular weight of polymer)
The molecular weights of polyamic acid and polyimide were determined by measuring the polyamic acid and polyimide with a GPC (room temperature gel permeation chromatography) apparatus, and calculating the number average molecular weight and weight average molecular weight as polyethylene glycol and polyethylene oxide equivalent values.
GPC device: Showa Denko GPC-101,
Column: Shodex column (KD-803, KD-805 in series)
Column temperature: 50 ° C
Eluent: N, N′-dimethylformamide (as additives, lithium bromide-hydrate (LiBr · H 2 O) is 30 mmol / L, phosphoric acid / anhydrous crystal (o-phosphoric acid) is 30 mmol / L, Tetrahydrofuran (THF) 10ml / L)
Flow rate: 1.0 ml / standard sample for preparing a calibration curve: TSK standard polyethylene oxide (molecular weight: about 900,000, 150,000, 100,000, 30,000) manufactured by Tosoh Corporation and polyethylene glycol (manufactured by Polymer Laboratories) (Molecular weight about 12,000, 4,000, 1,000)
 (ポリイミドのイミド化率の測定)
 ポリイミドのイミド化率は次のようにして測定した。
(Measurement of imidization ratio of polyimide)
The imidation ratio of polyimide was measured as follows.
 ポリイミド粉末20mgをNMRサンプル管に入れ、重水素化ジメチルスルホキシド(DMSO-d、0.05%TMS(テトラメチルシラン)混合品)0.53mlを添加し、完全に溶解させた。この溶液を日本電子データム社製NMR測定器(JNM-ECA500)にて500MHzのプロトンNMRを測定した。イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5ppm~10.0ppm付近に現れるアミック酸のNH基に由来するプロトンピーク積算値とを用い次式によって求めた。
イミド化率(%)=(1-α・x/y)×100
20 mg of polyimide powder was placed in an NMR sample tube, and 0.53 ml of deuterated dimethyl sulfoxide (DMSO-d 6 , 0.05% TMS (tetramethylsilane) mixture) was added and completely dissolved. This solution was measured for proton NMR at 500 MHz with an NMR measuring instrument (JNM-ECA500) manufactured by JEOL Datum. The imidation rate is determined based on protons derived from structures that do not change before and after imidation as reference protons, and the peak integrated value of these protons and proton peaks derived from NH groups of amic acid appearing in the vicinity of 9.5 ppm to 10.0 ppm. It calculated | required by following Formula using the integrated value.
Imidization rate (%) = (1−α · x / y) × 100
 上記式において、xはアミック酸のNH基由来のプロトンピーク積算値、yは基準プロトンのピーク積算値、αはポリアミック酸(イミド化率が0%)の場合におけるアミック酸のNH基プロトン一個に対する基準プロトンの個数割合である。 In the above formula, x is the proton peak integrated value derived from the NH group of the amic acid, y is the peak integrated value of the reference proton, and α is one NH group proton of the amic acid in the case of polyamic acid (imidation rate is 0%). The number ratio of the reference protons.
 <合成例1>
 A-1(1.56g,9.00mmol)、C-1(1.53g、8,98mmol)、C-2(1.30g、5.36mmol)、C-3(1.37g、3.59mmol)をNMP(23g)中で混合し40℃で15時間反応させた後、B-1(1.65g,8.46mmol)、NMP(19g)を添加し、さらに6時間反応させポリマー溶液A(上記式[1]で示される繰り返し単位を有するポリアミック酸の溶液)(ポリマー濃度15質量%)を得た。このポリマーの数平均分子量は16,020、重量平均分子量は49,319であった。
<Synthesis Example 1>
A-1 (1.56 g, 9.00 mmol), C-1 (1.53 g, 8,98 mmol), C-2 (1.30 g, 5.36 mmol), C-3 (1.37 g, 3.59 mmol) ) Was mixed in NMP (23 g) and reacted at 40 ° C. for 15 hours, then B-1 (1.65 g, 8.46 mmol) and NMP (19 g) were added, and the mixture was further reacted for 6 hours to react with polymer solution A ( A solution of a polyamic acid having a repeating unit represented by the above formula [1]) (polymer concentration 15% by mass) was obtained. The number average molecular weight of this polymer was 16,020, and the weight average molecular weight was 49,319.
 <合成例2>
 A-1(0.783g,4.50mmol)、C-1(1.53g、8,98mmol)、C-2(1.30g、5.36mmol)、C-3(1.37g、3.59mmol)をNMP(19g)中で混合し40℃で15時間反応させた後、B-1(2.63g,13.4mmol)、NMP(23g)を添加し、さらに6時間反応させポリマー溶液B(上記式[1]で示される繰り返し単位を有するポリアミック酸の溶液)(ポリマー濃度15質量%)を得た。このポリマーの数平均分子量は11,555、重量平均分子量は37,656であった。
<Synthesis Example 2>
A-1 (0.783 g, 4.50 mmol), C-1 (1.53 g, 8,98 mmol), C-2 (1.30 g, 5.36 mmol), C-3 (1.37 g, 3.59 mmol) ) Was mixed in NMP (19 g) and reacted at 40 ° C. for 15 hours, then B-1 (2.63 g, 13.4 mmol) and NMP (23 g) were added, and the mixture was further reacted for 6 hours to react with polymer solution B ( A solution of a polyamic acid having a repeating unit represented by the above formula [1]) (polymer concentration 15% by mass) was obtained. The number average molecular weight of this polymer was 11,555, and the weight average molecular weight was 37,656.
 <比較合成例1>
 A-1(3.82g,21.9mmol)、C-1(1.87g、10.9mmol)、C-2(1.59g、6.59mmol)、C-3(1.67g、4.38mmol)をNMP(50g)中で混合した後、40℃で15時間反応させポリマー溶液C(ポリウレアの溶液)(ポリマー濃度15質量%)を得た。このポリマーの数平均分子量は12,731、重量平均分子量は32,967であった。
<Comparative Synthesis Example 1>
A-1 (3.82 g, 21.9 mmol), C-1 (1.87 g, 10.9 mmol), C-2 (1.59 g, 6.59 mmol), C-3 (1.67 g, 4.38 mmol) ) Was mixed in NMP (50 g) and reacted at 40 ° C. for 15 hours to obtain a polymer solution C (polyurea solution) (polymer concentration: 15% by mass). The number average molecular weight of this polymer was 12,731, and the weight average molecular weight was 32,967.
 <比較合成例2>
 B-1(3.35g,17.0mmol)、C-1(1.53g、8,98mmol)、C-2(1.30g、5.36mmol)、C-3(1.37g、3.59mmol)をNMP(42g)中で混合した後、40℃で15時間反応させ、ポリマー溶液D(ポリアミック酸の溶液)(ポリマー濃度15質量%)を得た。このポリマーの数平均分子量は14,833、重量平均分子量は38,984であった。
<Comparative Synthesis Example 2>
B-1 (3.35 g, 17.0 mmol), C-1 (1.53 g, 8,98 mmol), C-2 (1.30 g, 5.36 mmol), C-3 (1.37 g, 3.59 mmol) ) Was mixed in NMP (42 g) and then reacted at 40 ° C. for 15 hours to obtain a polymer solution D (polyamic acid solution) (polymer concentration: 15% by mass). The number average molecular weight of this polymer was 14,833, and the weight average molecular weight was 38,984.
 <比較合成例3>
 合成例1に記載のポリマー溶液A(20g)にNMPを加え濃度が6質量%になるように希釈した後、イミド化触媒として無水酢酸(3.65g)、ピリジン(1.70g)を加え、50℃で3時間反応させた。この反応溶液をメタノール(200g)に注ぎ、生成した沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥し白色粉末を得た。このポリイミドのイミド化率は100%であり、数平均分子量は13,084、重量平均分子量は40,857であった。
<Comparative Synthesis Example 3>
After adding NMP to the polymer solution A (20 g) described in Synthesis Example 1 and diluting to a concentration of 6% by mass, acetic anhydride (3.65 g) and pyridine (1.70 g) were added as imidization catalysts, The reaction was carried out at 50 ° C. for 3 hours. The reaction solution was poured into methanol (200 g), and the produced precipitate was separated by filtration. This precipitate was washed with methanol and dried under reduced pressure at 100 ° C. to obtain a white powder. The imidation ratio of this polyimide was 100%, the number average molecular weight was 13,084 and the weight average molecular weight was 40,857.
 この粉末1.99gにNMP 11.3gを加えて、50℃にて30hr攪拌して溶解させた後、ポリマー溶液E(上記式[1]で示される繰り返し単位を有し且つイミド化率100%のポリイミドの溶液)(ポリマー濃度15質量%)を得た。 After 11.3 g of NMP was added to 1.99 g of this powder and dissolved by stirring at 50 ° C. for 30 hr, polymer solution E (having a repeating unit represented by the above formula [1] and having an imidization rate of 100% (Polyimide solution) (polymer concentration 15% by mass).
 <実施例1>液晶配向剤の調製及び液晶セルの作製
 合成例1で得られたポリマー溶液Aに、NMP、BCSを加えて攪拌し、ポリマーが6質量%、NMPが64質量%、BCSが30質量%になるよう調製した。この溶液を細孔径1μmのメンブランフィルタで加圧濾過し、液晶配向剤を得た。
<Example 1> Preparation of liquid crystal aligning agent and production of liquid crystal cell To polymer solution A obtained in Synthesis Example 1, NMP and BCS were added and stirred, and the polymer was 6 mass%, NMP was 64 mass%, and BCS was It prepared so that it might become 30 mass%. This solution was pressure filtered through a membrane filter having a pore size of 1 μm to obtain a liquid crystal aligning agent.
 得られた液晶配向剤をITO電極付きガラス基板にスピンコートし、80℃のホットプレート上で5分間乾燥させた後、180℃のIR式オーブンで15分間焼成を行い、膜厚100nmの塗膜(液晶配向膜)を形成させて液晶配向膜付き基板を得た。この液晶配向膜付き基板を2枚用意し、その1枚の液晶配向膜面上に4μmのスペーサーを散布した後、その上からシール剤を印刷し、もう1枚の基板を液晶配向膜面が向き合うようにして張り合わせた後、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶MLC-6608(メルク・ジャパン社製)を注入し、注入口を封止して、液晶セルを得た。 The obtained liquid crystal aligning agent was spin-coated on a glass substrate with an ITO electrode, dried on an 80 ° C. hot plate for 5 minutes, and then baked in an IR oven at 180 ° C. for 15 minutes to form a coating film having a film thickness of 100 nm. A (liquid crystal alignment film) was formed to obtain a substrate with a liquid crystal alignment film. Two substrates with this liquid crystal alignment film are prepared, a spacer of 4 μm is sprayed on the surface of one liquid crystal alignment film, a sealant is printed thereon, and the other substrate has a liquid crystal alignment film surface. After laminating so as to face each other, the sealing agent was cured to produce an empty cell. Liquid crystal MLC-6608 (manufactured by Merck Japan Co., Ltd.) was injected into this empty cell by a reduced pressure injection method, and the injection port was sealed to obtain a liquid crystal cell.
 <実施例2及び比較例1~3>
 合成例1で得られたポリマー溶液Aのかわりに、合成例2及び比較合成例1~3で得られたポリマー溶液B~Eをそれぞれ用いた以外は、実施例1と同様にして、液晶配向剤、液晶配向膜及び液晶セルを得た。
<Example 2 and Comparative Examples 1 to 3>
Liquid crystal alignment in the same manner as in Example 1 except that the polymer solutions B to E obtained in Synthesis Example 2 and Comparative Synthesis Examples 1 to 3 were used instead of the polymer solution A obtained in Synthesis Example 1, respectively. An agent, a liquid crystal alignment film, and a liquid crystal cell were obtained.
 <実施例3>
 焼成温度を200℃とした以外は、実施例1と同様にして、液晶配向剤、液晶配向膜及び液晶セルを得た。
<Example 3>
A liquid crystal aligning agent, a liquid crystal alignment film, and a liquid crystal cell were obtained in the same manner as in Example 1 except that the firing temperature was 200 ° C.
 <比較例4>
 焼成温度を230℃とした以外は、実施例1と同様にして、液晶配向剤、液晶配向膜及び液晶セルを得た。
<Comparative example 4>
A liquid crystal aligning agent, a liquid crystal aligning film and a liquid crystal cell were obtained in the same manner as in Example 1 except that the baking temperature was 230 ° C.
 <実施例4>
 合成例1で得られたポリマー溶液Aに、NMP、BCSを加えて攪拌し、ポリマーが3.5質量%、NMPが66.5質量%、BCSが30質量%になるよう調製した。この溶液を細孔径1μmのメンブランフィルタで加圧濾過し、-15℃にて48時間保管した後、インクジェット塗布性の評価を行った。インクジェット塗布機には、HIS-200(日立プラントテクノロジー社製)を用いた。塗布は、純水及びIPAにて洗浄を行ったITO(酸化インジウムスズ)蒸着基板上に、ノズルピッチ0.423mm、スキャンピッチ0.5mm、塗布速度40mm/秒にて行なった。その後60秒放置し、80℃のホットプレート上で5分間乾燥させた後、180℃のIR式オーブンで15分間焼成を行い、膜厚100nmの塗膜(液晶配向膜)を形成させて液晶配向膜付き基板を得、実施例1と同様にして、液晶セルを得た。
<Example 4>
NMP and BCS were added to the polymer solution A obtained in Synthesis Example 1 and stirred to prepare a polymer of 3.5% by mass, NMP of 66.5% by mass, and BCS of 30% by mass. This solution was filtered under pressure through a membrane filter having a pore size of 1 μm, stored at −15 ° C. for 48 hours, and then evaluated for ink jet coating properties. As the ink jet coater, HIS-200 (manufactured by Hitachi Plant Technology) was used. Application was performed on an ITO (indium tin oxide) vapor-deposited substrate cleaned with pure water and IPA at a nozzle pitch of 0.423 mm, a scan pitch of 0.5 mm, and an application rate of 40 mm / sec. The film is then left for 60 seconds, dried on a hot plate at 80 ° C. for 5 minutes, and then baked in an IR oven at 180 ° C. for 15 minutes to form a coating film (liquid crystal alignment film) having a film thickness of 100 nm. A substrate with a film was obtained, and a liquid crystal cell was obtained in the same manner as in Example 1.
 <電圧保持率の測定>
 実施例1~4及び比較例1~4で得られた液晶セルに、80℃の温度下で1Vの電圧を60μs印加し、50ms後の電圧を測定して、電圧がどのくらい保持できているかを電圧保持率として評価した。結果を表1に示す。
<Measurement of voltage holding ratio>
A voltage of 1 V was applied to the liquid crystal cells obtained in Examples 1 to 4 and Comparative Examples 1 to 4 at a temperature of 80 ° C. for 60 μs, and the voltage after 50 ms was measured to determine how much the voltage was maintained. The voltage holding rate was evaluated. The results are shown in Table 1.
 <残留DCの測定>
 実施例1~4及び比較例1~4で得られた液晶セルに、30Hz、6Vppの交流電圧、及び1Vの直流電圧を印加し、23℃の温度下で24時間駆動させた。その後フリッカを評価し、その強度が最小となる印加電圧を残留DCとした(フリッカ消去法)。結果を表1に示す。
<Measurement of residual DC>
To the liquid crystal cells obtained in Examples 1 to 4 and Comparative Examples 1 to 4, 30 Hz, an AC voltage of 6 Vpp, and a DC voltage of 1 V were applied and driven at a temperature of 23 ° C. for 24 hours. Thereafter, flicker was evaluated, and an applied voltage at which the intensity was minimized was defined as residual DC (flicker erasing method). The results are shown in Table 1.
 <液晶セルの作製及び液晶配向性の評価(PSAセル)>
 実施例1で得られたポリマー溶液A、実施例2で得られたポリマー溶液Bを細孔径1μmのメンブランフィルタで加圧濾過し、-15℃にて48時間保管した溶液を用いて、液晶セルの作製及び液晶配向性の評価(PSAセル)を行った。この溶液を、純水及びIPAにて洗浄した中心に10×10mmのパターン間隔20μmのITO電極付き基板(縦40mm×横30mm、厚さ0.7mm)と中心に10×40mmのITO電極付き基板(縦40mm×横30mm、厚さ0.7mm)のITO面にスピンコートし、80℃のホットプレート上で5分間乾燥させた後、180℃のIR式オーブンで15分間焼成を行い、膜厚100nmの塗膜(液晶配向膜)を形成させて液晶配向膜付き基板を得た。塗膜面を純水にて洗浄した後、熱循環型クリーンオーブン中にて100℃で15分間加熱処理をして、液晶配向膜付き基板を得た。
<Preparation of liquid crystal cell and evaluation of liquid crystal alignment (PSA cell)>
Using a solution obtained by pressure-filtering the polymer solution A obtained in Example 1 and the polymer solution B obtained in Example 2 through a membrane filter having a pore diameter of 1 μm and storing at −15 ° C. for 48 hours, a liquid crystal cell And evaluation of liquid crystal orientation (PSA cell) were performed. This solution was washed with pure water and IPA at the center with a 10 × 10 mm substrate with an ITO electrode having a pattern spacing of 20 μm (length 40 mm × width 30 mm, thickness 0.7 mm) and a substrate with an ITO electrode 10 × 40 mm at the center. After spin-coating on the ITO surface (length 40 mm x width 30 mm, thickness 0.7 mm), drying on an 80 ° C hot plate for 5 minutes, firing in an IR oven at 180 ° C for 15 minutes, A 100 nm coating film (liquid crystal alignment film) was formed to obtain a substrate with a liquid crystal alignment film. After the coated surface was washed with pure water, it was heat-treated at 100 ° C. for 15 minutes in a heat circulation type clean oven to obtain a substrate with a liquid crystal alignment film.
 この液晶配向膜付き基板を、液晶配向膜面を内側にして、6μmのスペーサーを挟んで組み合わせ、シール剤で周囲を接着して空セルを作製した。この空セルに減圧注入法によって、ネマティック液晶(MLC-6608)(メルク・ジャパン社製)に、下記の式[9]で示される重合性化合物を、ネマティック液晶(MLC-6608)の100質量%に対して下記の式[9]で示される重合性化合物を0.3質量%混合した液晶を注入し、注入口を封止して、液晶セルを得た。 This substrate with a liquid crystal alignment film was combined with a liquid crystal alignment film surface inside, with a 6 μm spacer in between, and the periphery was adhered with a sealant to produce an empty cell. The polymerizable compound represented by the following formula [9] was added to nematic liquid crystal (MLC-6608) (manufactured by Merck Japan) by 100% by mass of nematic liquid crystal (MLC-6608) by vacuum injection into this empty cell. Was injected with a liquid crystal mixed with 0.3% by mass of a polymerizable compound represented by the following formula [9], and the inlet was sealed to obtain a liquid crystal cell.
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
 得られた液晶セルに、交流5Vの電圧を印加しながら、照度60mWのメタルハライドランプを用いて、350nm以下の波長をカットし、365nm換算で20J/cmの紫外線照射を行い、液晶の配向方向が制御された液晶セル(PSAセル)を得た。液晶セルに紫外線を照射している際の照射装置内の温度は、50℃であった。 While applying an AC voltage of 5 V to the obtained liquid crystal cell, using a metal halide lamp with an illuminance of 60 mW, the wavelength of 350 nm or less was cut, and ultraviolet irradiation of 20 J / cm 2 in terms of 365 nm was performed, and the alignment direction of the liquid crystal A liquid crystal cell (PSA cell) was controlled. The temperature in the irradiation apparatus when the liquid crystal cell was irradiated with ultraviolet rays was 50 ° C.
 この液晶セルの紫外線照射前と紫外線照射後の液晶の応答速度を測定した。応答速度は、透過率90%から透過率10%までのT90→T10を測定した。 The response speed of the liquid crystal before and after UV irradiation of this liquid crystal cell was measured. As the response speed, T90 → T10 from 90% transmittance to 10% transmittance was measured.
 実施例で得られたPSAセルは、紫外線照射前の液晶セルに比べて、紫外線照射後の液晶セルの応答速度が速くなったことから、液晶の配向方向が制御されたことを確認した。また、いずれの液晶セルとも、偏光顕微鏡(ECLIPSE E600WPOL)(ニコン社製)での観察により、液晶は均一に配向していることを確認した。 In the PSA cell obtained in the example, the response speed of the liquid crystal cell after the ultraviolet irradiation was faster than that of the liquid crystal cell before the ultraviolet irradiation, so that it was confirmed that the alignment direction of the liquid crystal was controlled. Further, in any liquid crystal cell, it was confirmed by observation with a polarizing microscope (ECLIPSE E600WPOL) (manufactured by Nikon Corporation) that the liquid crystal was uniformly aligned.
 <液晶配向膜のイミド化率の測定>
 実施例1~4及び比較例1~4において、液晶配向膜付き基板を得た段階で、液晶配向膜のイミド化率を測定した。液晶配向膜のイミド化率の測定方法は以下である。液晶配向剤をITO電極付きガラス基板にスピンコートし、80℃のホットプレート上で5分間乾燥させた後、IR式オーブンで焼成を行い、膜厚100nmの塗膜(液晶配向膜)を形成させて液晶配向膜付き基板を得た。この液晶配向膜をカッターナイフで削り取り、FT-IRにてKBr法によりイミド化率の測定を行なった。
<Measurement of imidation ratio of liquid crystal alignment film>
In Examples 1 to 4 and Comparative Examples 1 to 4, the imidization ratio of the liquid crystal alignment film was measured when the substrate with the liquid crystal alignment film was obtained. The method for measuring the imidation ratio of the liquid crystal alignment film is as follows. A liquid crystal aligning agent is spin-coated on a glass substrate with an ITO electrode, dried on a hot plate at 80 ° C. for 5 minutes, and then baked in an IR oven to form a coating film (liquid crystal alignment film) having a film thickness of 100 nm. Thus, a substrate with a liquid crystal alignment film was obtained. This liquid crystal alignment film was shaved off with a cutter knife, and the imidization rate was measured by KBr method with FT-IR.
 この結果、表1に示すように、上記式[1]で示される繰り返し単位を有するポリイミド前駆体を含有する実施例1~実施例4の液晶配向剤を用いイミド化率が50~70%の液晶配向膜を有する液晶セルでは、電圧保持率が高く、残留DCが小さかった。一方、ポリウレアのみからなる液晶配向膜を有する比較例1の液晶セルでは、電圧保持率は高いが、残留DCが高かった。また、比較例2の式[1]で表される繰り返し単位を有さずポリアミック酸のみからなる液晶配向膜を有する液晶セルでは残留DCは小さいが、電圧保持率が低かった。また、イミド化率が高い液晶配向膜を有する比較例3及び比較例4の液晶セルでは、電圧保持率は高いが、残留DCが大きかった。なお、残留DC及び電圧保持率という電気特性が測定できているため、測定された液晶配向膜は液晶配向性も良好であると言える。 As a result, as shown in Table 1, the imidation ratio was 50 to 70% using the liquid crystal aligning agents of Examples 1 to 4 containing the polyimide precursor having the repeating unit represented by the formula [1]. In the liquid crystal cell having the liquid crystal alignment film, the voltage holding ratio was high and the residual DC was small. On the other hand, in the liquid crystal cell of Comparative Example 1 having a liquid crystal alignment film composed only of polyurea, the voltage holding ratio was high, but the residual DC was high. Moreover, although the residual DC was small in the liquid crystal cell which has the liquid crystal aligning film which does not have the repeating unit represented by Formula [1] of the comparative example 2, and consists only of polyamic acid, the voltage holding rate was low. Further, in the liquid crystal cells of Comparative Example 3 and Comparative Example 4 having the liquid crystal alignment film having a high imidization rate, the voltage holding ratio was high, but the residual DC was large. In addition, since the electrical characteristics such as residual DC and voltage holding ratio can be measured, it can be said that the measured liquid crystal alignment film has good liquid crystal alignment.
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000049

Claims (15)

  1.  下記式[1]で示される繰り返し単位を有するポリイミド前駆体及び下記式[1]で示される繰り返し単位を有しイミド化率が50%未満であるポリイミドから選択される少なくとも一種の重合体を含有する液晶配向剤を、基板に塗布した後、焼成することにより、イミド化率が50~70%の液晶配向膜を得ることを特徴とする液晶配向膜の製造方法。
    Figure JPOXMLDOC01-appb-C000001
    (式[1]中、Aは2価の有機基であり、Aは2価の有機基であり、C及びCは水素原子又は炭素数1~3のアルキル基であり、それぞれ同じであっても異なってもよい。)
    Contains at least one polymer selected from a polyimide precursor having a repeating unit represented by the following formula [1] and a polyimide having a repeating unit represented by the following formula [1] and having an imidation ratio of less than 50% A method for producing a liquid crystal alignment film, characterized in that a liquid crystal alignment film having an imidization ratio of 50 to 70% is obtained by applying a liquid crystal aligning agent to the substrate and then baking the liquid crystal aligning agent.
    Figure JPOXMLDOC01-appb-C000001
    (In Formula [1], A 1 is a divalent organic group, A 2 is a divalent organic group, C 1 and C 2 are a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, It can be the same or different.)
  2.  前記焼成を、210℃以下で行うことを特徴とする請求項1に記載の液晶配向膜の製造方法。 The method for producing a liquid crystal alignment film according to claim 1, wherein the baking is performed at 210 ° C. or lower.
  3.  前記重合体が、下記式[2]で示される側鎖を有することを特徴とする請求項1又は2に記載の液晶配向膜の製造方法。
    Figure JPOXMLDOC01-appb-C000002
    (式[2]中、Yは単結合、-(CH-(aは1~15の整数である)、-O-、-CHO-、-COO-又は-OCO-であり、Yは単結合又は-(CH-(bは1~15の整数である)であり、Yは単結合、-(CH-(cは1~15の整数である)、-O-、-CHO-、-COO-又は-OCO-であり、Yはベンゼン環、シクロヘキサン環及び複素環から選ばれる2価の環状基、又はステロイド骨格を有する炭素数17~51の2価の有機基を示し、前記環状基上の任意の水素原子が、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよく、Yはベンゼン環、シクロヘキサン環及び複素環から選ばれる2価の環状基を示し、これらの環状基上の任意の水素原子が、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよく、nは0~4の整数であり、Yは炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基又は炭素数1~18のフッ素含有アルコキシル基である。)
    The method for producing a liquid crystal alignment film according to claim 1, wherein the polymer has a side chain represented by the following formula [2].
    Figure JPOXMLDOC01-appb-C000002
    (In the formula [2], Y 1 is a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO—. Y 2 is a single bond or — (CH 2 ) b — (b is an integer of 1 to 15), Y 3 is a single bond, — (CH 2 ) c — (c is an integer of 1 to 15) ), —O—, —CH 2 O—, —COO— or —OCO—, wherein Y 4 is a carbon having a divalent cyclic group selected from a benzene ring, a cyclohexane ring and a heterocyclic ring, or a steroid skeleton A divalent organic group having 17 to 51, wherein any hydrogen atom on the cyclic group contains an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, or fluorine having 1 to 3 carbon atoms alkyl group may be substituted with a fluorine-containing alkoxyl group or a fluorine atom having 1 to 3 carbon atoms, Y 5 Baie A divalent cyclic group selected from a zen ring, a cyclohexane ring and a heterocyclic ring, wherein any hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, carbon The fluorine-containing alkyl group having 1 to 3 carbon atoms, the fluorine-containing alkoxyl group having 1 to 3 carbon atoms or the fluorine atom may be substituted, n is an integer of 0 to 4, and Y 6 has 1 to 18 carbon atoms. An alkyl group, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms.)
  4.  前記重合体が、下記の(a)成分、(b)成分及び(c)成分を反応させて得られることを特徴とする請求項1~3のいずれか一項に記載の液晶配向膜の製造方法。
     (a)成分:分子内にイソシアネート基を2個含有する化合物
     (b)成分:分子内に1級又は2級のアミノ基を2個含有する化合物
     (c)成分:テトラカルボン酸誘導体
    The production of the liquid crystal alignment film according to any one of claims 1 to 3, wherein the polymer is obtained by reacting the following components (a), (b) and (c): Method.
    (A) Component: Compound containing two isocyanate groups in the molecule (b) Component: Compound containing two primary or secondary amino groups in the molecule (c) Component: Tetracarboxylic acid derivative
  5.  前記(b)成分が、前記式[2]で示される側鎖を有する化合物であることを特徴とする請求項4に記載の液晶配向膜の製造方法。 The method for producing a liquid crystal alignment film according to claim 4, wherein the component (b) is a compound having a side chain represented by the formula [2].
  6.  前記(b)成分が、下記式[2a]で示される化合物であることを特徴とする請求項4に記載の液晶配向膜の製造方法。
    Figure JPOXMLDOC01-appb-C000003
    (式[2a]中、Yは単結合、-(CH-(aは1~15の整数である)、-O-、-CHO-、-COO-又は-OCO-であり、Yは単結合又は-(CH-(bは1~15の整数である)であり、Yは単結合、-(CH-(cは1~15の整数である)、-O-、-CHO-、-COO-又は-OCO-であり、Yはベンゼン環、シクロヘキサン環及び複素環から選ばれる2価の環状基、又はステロイド骨格を有する炭素数17~51の2価の有機基を示し、前記環状基上の任意の水素原子が、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよく、Yはベンゼン環、シクロヘキサン環及び複素環から選ばれる2価の環状基を示し、これらの環状基上の任意の水素原子が、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよく、nは0~4の整数であり、Yは炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基又は炭素数1~18のフッ素含有アルコキシル基である。また、mは1~4の整数であり、-(Y-Y-Y-Y-(Y-Yは置換基Y-Y-Y-Y-(Y-Yがm個あることを表し、mが2以上の場合は、それぞれの置換基は同一でも異なっていてもよい。)
    The method for producing a liquid crystal alignment film according to claim 4, wherein the component (b) is a compound represented by the following formula [2a].
    Figure JPOXMLDOC01-appb-C000003
    (In the formula [2a], Y 1 is a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO—. Y 2 is a single bond or — (CH 2 ) b — (b is an integer of 1 to 15), Y 3 is a single bond, — (CH 2 ) c — (c is an integer of 1 to 15) ), —O—, —CH 2 O—, —COO— or —OCO—, wherein Y 4 is a carbon having a divalent cyclic group selected from a benzene ring, a cyclohexane ring and a heterocyclic ring, or a steroid skeleton A divalent organic group having 17 to 51, wherein any hydrogen atom on the cyclic group contains an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, or fluorine having 1 to 3 carbon atoms alkyl group may be substituted with a fluorine-containing alkoxyl group or a fluorine atom having 1 to 3 carbon atoms, Y 5 is A divalent cyclic group selected from a benzene ring, a cyclohexane ring and a heterocyclic ring, and any hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, carbon The fluorine-containing alkyl group having 1 to 3 carbon atoms, the fluorine-containing alkoxyl group having 1 to 3 carbon atoms or the fluorine atom may be substituted, n is an integer of 0 to 4, and Y 6 has 1 to 18 carbon atoms. An alkyl group, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms, and m is an integer of 1 to 4; Y 1 -Y 2 -Y 3 -Y 4 - (Y 5) n -Y 6) m is a substituent Y 1 -Y 2 -Y 3 -Y 4 - (Y 5) that n -Y 6 is the m And when m is 2 or more, each substituent may be the same or different. It may be.)
  7.  前記(c)成分が、下記式[3]で示されるテトラカルボン酸二無水物であることを特徴とする請求項4~6のいずれか一項に記載の液晶配向膜の製造方法。
    Figure JPOXMLDOC01-appb-C000004
    (式[3]中、Zは下記式[3a]~式[3j]で示される構造である)。
    Figure JPOXMLDOC01-appb-C000005
    (式[3a]中、Z~Zは水素原子、メチル基、塩素原子又はベンゼン環であり、それぞれ、同じであっても異なってもよく、式[3g]中、Z及びZは水素原子又はメチル基であり、それぞれ、同じであっても異なってもよい)。
    The method for producing a liquid crystal alignment film according to any one of claims 4 to 6, wherein the component (c) is a tetracarboxylic dianhydride represented by the following formula [3].
    Figure JPOXMLDOC01-appb-C000004
    (In the formula [3], Z 1 is a structure represented by the following formulas [3a] to [3j]).
    Figure JPOXMLDOC01-appb-C000005
    (In the formula [3a], Z 2 to Z 5 are a hydrogen atom, a methyl group, a chlorine atom or a benzene ring, and may be the same or different. In the formula [3g], Z 6 and Z 7 Are hydrogen atoms or methyl groups, which may be the same or different.
  8.  液晶配向剤中の前記重合体が0.1~30質量%であることを特徴とする請求項1~7のいずれか一項に記載の液晶配向膜の製造方法。 8. The method for producing a liquid crystal alignment film according to claim 1, wherein the polymer in the liquid crystal alignment agent is 0.1 to 30% by mass.
  9.  前記塗布を、インクジェット法で行うことを特徴とする請求項1~8のいずれか一項に記載の液晶配向膜の製造方法。 The method for producing a liquid crystal alignment film according to any one of claims 1 to 8, wherein the coating is performed by an inkjet method.
  10.  請求項1~9のいずれか一項に記載の液晶配向膜の製造方法により製造されたことを特徴とする液晶配向膜。 A liquid crystal alignment film manufactured by the method for manufacturing a liquid crystal alignment film according to any one of claims 1 to 9.
  11.  下記式[1]で示される繰り返し単位を有するポリイミドを含有し、イミド化率が50~70%であることを特徴とする液晶配向膜。
    Figure JPOXMLDOC01-appb-C000006
    (式[1]中、Aは2価の有機基であり、Aは2価の有機基であり、C及びCは水素原子又は炭素数1~3のアルキル基であり、それぞれ同じであっても異なってもよい。)
    A liquid crystal alignment film comprising a polyimide having a repeating unit represented by the following formula [1] and having an imidization ratio of 50 to 70%.
    Figure JPOXMLDOC01-appb-C000006
    (In Formula [1], A 1 is a divalent organic group, A 2 is a divalent organic group, C 1 and C 2 are a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, It can be the same or different.)
  12.  電極を備えた一対の基板の間に液晶層を有してなり、前記一対の基板の間に活性エネルギー線及び熱の少なくとも一方により重合する重合性化合物を含む液晶組成物を配置し、前記電極間に電圧を印加しつつ前記重合性化合物を重合させる工程を経て製造される液晶表示素子に用いられることを特徴とする請求項10又は11に記載の液晶配向膜。 A liquid crystal composition comprising a liquid crystal layer between a pair of substrates provided with electrodes and comprising a polymerizable compound that is polymerized by at least one of active energy rays and heat is disposed between the pair of substrates, and the electrodes 12. The liquid crystal alignment film according to claim 10, wherein the liquid crystal alignment film is used for a liquid crystal display device manufactured through a step of polymerizing the polymerizable compound while applying a voltage therebetween.
  13.  電極を備えた一対の基板の間に液晶層を有してなり、前記一対の基板の間に活性エネルギー線及び熱の少なくとも一方により重合する重合性基を含む液晶配向膜を配置し、前記電極間に電圧を印加しつつ前記重合性基を重合させる工程を経て製造される液晶表示素子に用いられることを特徴とする請求項10又は11に記載の液晶配向膜。 A liquid crystal layer between a pair of substrates provided with electrodes, and a liquid crystal alignment film containing a polymerizable group that is polymerized by at least one of active energy rays and heat between the pair of substrates; 12. The liquid crystal alignment film according to claim 10, wherein the liquid crystal alignment film is used for a liquid crystal display device produced through a step of polymerizing the polymerizable group while applying a voltage therebetween.
  14.  請求項10~13のいずれか一項に記載の液晶配向膜を有することを特徴とする液晶表示素子。 A liquid crystal display element comprising the liquid crystal alignment film according to any one of claims 10 to 13.
  15.  下記式[1]で表される繰り返し単位を有するポリイミド前駆体を含有することを特徴とする液晶配向剤。
    Figure JPOXMLDOC01-appb-C000007
    (式[1]中、Aは2価の有機基であり、Aは2価の有機基であり、C及びCは水素原子又は炭素数1~3のアルキル基であり、それぞれ同じであっても異なってもよい。)
    A liquid crystal aligning agent comprising a polyimide precursor having a repeating unit represented by the following formula [1].
    Figure JPOXMLDOC01-appb-C000007
    (In Formula [1], A 1 is a divalent organic group, A 2 is a divalent organic group, C 1 and C 2 are a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, It can be the same or different.)
PCT/JP2014/053188 2013-02-13 2014-02-12 Production method for liquid-crystal alignment film, liquid-crystal alignment film, liquid-crystal display element, and liquid-crystal alignment agent WO2014126102A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015500256A JP6361887B6 (en) 2013-02-13 2014-02-12 Method for producing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
CN201480020966.XA CN105122128B (en) 2013-02-13 2014-02-12 The manufacture method of liquid crystal orientation film, liquid crystal orientation film, liquid crystal represent element and aligning agent for liquid crystal
KR1020157024894A KR102172134B1 (en) 2013-02-13 2014-02-12 Production method for liquid-crystal alignment film, liquid-crystal alignment film, liquid-crystal display element, and liquid-crystal alignment agent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013026054 2013-02-13
JP2013-026054 2013-02-13

Publications (1)

Publication Number Publication Date
WO2014126102A1 true WO2014126102A1 (en) 2014-08-21

Family

ID=51354101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053188 WO2014126102A1 (en) 2013-02-13 2014-02-12 Production method for liquid-crystal alignment film, liquid-crystal alignment film, liquid-crystal display element, and liquid-crystal alignment agent

Country Status (5)

Country Link
JP (1) JP6361887B6 (en)
KR (1) KR102172134B1 (en)
CN (1) CN105122128B (en)
TW (1) TWI628202B (en)
WO (1) WO2014126102A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021199974A1 (en) * 2020-03-30 2021-10-07 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
CN113635632A (en) * 2018-07-25 2021-11-12 日东电工株式会社 Optical film, method for producing same, polarizing plate, and image display device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180101453A (en) * 2016-01-07 2018-09-12 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element using same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08208835A (en) * 1995-01-31 1996-08-13 Japan Synthetic Rubber Co Ltd Production of polyimide-based copolymer, thin film-forming agent, liquid crystal oriented film and its production
JPH08220542A (en) * 1994-03-30 1996-08-30 Toray Ind Inc Liquid crystal orientation film and liquid crystal display element

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69732949T2 (en) * 1996-05-16 2006-02-23 Jsr Corp. LIQUID CRYSTAL ALIGNMENT AGENT
WO2011132752A1 (en) * 2010-04-22 2011-10-27 日産化学工業株式会社 Liquid-crystal alignment agent, liquid-crystal alignment film, and liquid-crystal display element
CN103119509B (en) * 2010-07-26 2015-08-19 日产化学工业株式会社 Aligning agent for liquid crystal, liquid crystal orientation film and liquid crystal display cells
JP5879693B2 (en) * 2011-02-22 2016-03-08 Jsr株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08220542A (en) * 1994-03-30 1996-08-30 Toray Ind Inc Liquid crystal orientation film and liquid crystal display element
JPH08208835A (en) * 1995-01-31 1996-08-13 Japan Synthetic Rubber Co Ltd Production of polyimide-based copolymer, thin film-forming agent, liquid crystal oriented film and its production

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113635632A (en) * 2018-07-25 2021-11-12 日东电工株式会社 Optical film, method for producing same, polarizing plate, and image display device
CN113635632B (en) * 2018-07-25 2023-06-06 日东电工株式会社 Optical film, method for producing the same, polarizing plate, and image display device
WO2021199974A1 (en) * 2020-03-30 2021-10-07 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element

Also Published As

Publication number Publication date
TW201446839A (en) 2014-12-16
JP6361887B6 (en) 2018-08-15
JPWO2014126102A1 (en) 2017-02-02
TWI628202B (en) 2018-07-01
JP6361887B2 (en) 2018-07-25
KR20150119199A (en) 2015-10-23
CN105122128B (en) 2017-11-28
CN105122128A (en) 2015-12-02
KR102172134B1 (en) 2020-10-30

Similar Documents

Publication Publication Date Title
KR101951501B1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP6504377B2 (en) Polymer
JP2020056034A (en) Composition, liquid crystal alignment treatment agent, liquid crystal alignment film and liquid crystal display element
WO2011132751A1 (en) Liquid-crystal alignment agent, liquid-crystal alignment film, and liquid-crystal display element
JP5930239B2 (en) Composition, liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element
WO2014157235A1 (en) Liquid crystal display element, liquid crystal alignment film, and liquid crystal alignment treatment agent
JP5900337B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP6331028B2 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP6079627B2 (en) Composition, liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element
JP6052171B2 (en) Composition, liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element
WO2014092126A1 (en) Composition, liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element
KR20140120353A (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
JP5930238B2 (en) Composition, liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element
JP6361887B6 (en) Method for producing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
WO2012121257A1 (en) Composition, liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2014133043A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14751141

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015500256

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157024894

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14751141

Country of ref document: EP

Kind code of ref document: A1