WO2014126184A1 - 水添共役ジエン重合体の製造方法 - Google Patents
水添共役ジエン重合体の製造方法 Download PDFInfo
- Publication number
- WO2014126184A1 WO2014126184A1 PCT/JP2014/053419 JP2014053419W WO2014126184A1 WO 2014126184 A1 WO2014126184 A1 WO 2014126184A1 JP 2014053419 W JP2014053419 W JP 2014053419W WO 2014126184 A1 WO2014126184 A1 WO 2014126184A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- conjugated diene
- group
- atom
- polymer
- compound
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F236/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
- C08F236/02—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
- C08F236/04—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
- C08F236/10—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated with vinyl-aromatic monomers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08C—TREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
- C08C19/00—Chemical modification of rubber
- C08C19/02—Hydrogenation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08C—TREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
- C08C19/00—Chemical modification of rubber
- C08C19/30—Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F136/00—Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
- C08F136/02—Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
- C08F136/04—Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
- C08F136/06—Butadiene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F297/00—Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
- C08F297/02—Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
- C08F297/04—Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/54—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with other compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F8/00—Chemical modification by after-treatment
- C08F8/04—Reduction, e.g. hydrogenation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
- C08K3/36—Silica
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L15/00—Compositions of rubber derivatives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L19/00—Compositions of rubbers not provided for in groups C08L7/00 - C08L17/00
- C08L19/006—Rubber characterised by functional groups, e.g. telechelic diene polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/10—Homopolymers or copolymers of propene
- C08L23/12—Polypropene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
- C08L67/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
Definitions
- the present invention relates to a method for producing a hydrogenated conjugated diene polymer. More specifically, the present invention relates to a method for producing a hydrogenated conjugated diene polymer using a modified polymerization initiator, a hydrogenated conjugated diene polymer obtained by the production method, and a polymer composition containing the polymer.
- Hydrogenated block copolymers which are hydrogenated block copolymers formed from conjugated diene compounds and aromatic vinyl compounds, are nonpolar resins such as polyolefin resins and polystyrene resins, and nonpolar resins such as ethylene / propylene rubber. Since rubber is relatively compatible, various compositions containing the hydrogenated block copolymer have been produced and widely used.
- the above hydrogenated block copolymer has low compatibility with polar resins such as polyethylene terephthalate (PET), acrylonitrile / butadiene / styrene copolymer resin (ABS), nylon, etc., and thus ensures physical properties that can be used. For this, it is necessary to add a polar group to the hydrogenated block copolymer.
- polar resins such as polyethylene terephthalate (PET), acrylonitrile / butadiene / styrene copolymer resin (ABS), nylon, etc.
- PET polyethylene terephthalate
- ABS acrylonitrile / butadiene / styrene copolymer resin
- nylon etc.
- Patent Document 1 discloses a hydrogenated conjugated diene block copolymer modified with an amino group.
- the conventional hydrogenated conjugated diene block copolymer modified with an amino group has a problem that the processability at the time of compounding with a thermoplastic resin or the like is poor and the physical properties of the polymer alloy after compounding are poor.
- an conjugated diene monomer, or a conjugated diene monomer and an aromatic vinyl monomer are polymerized in a hydrocarbon solvent in the presence of an alkali metal catalyst to obtain an active polymer having an alkali metal terminal.
- a modified diene polymer rubber obtained from Step 1 a step 2 in which the active polymer is reacted with a compound represented by a specific formula to obtain a modified polymer rubber.
- Patent Document 3 also proposes a method for producing a modified polymer that can enhance the interaction with silica and carbon black and improve the fracture characteristics, wear resistance, and low heat build-up.
- the object of the present invention is to improve the dispersibility at the time of compounding with a filler, to reduce hysteresis loss after compounding, to be excellent in workability at the time of compounding with a thermoplastic resin, etc., and to have excellent physical properties after compounding.
- Another object of the present invention is to provide a method for producing a hydrogenated conjugated diene polymer capable of forming a polymer alloy.
- the subject of this invention is providing the molded object which consists of the hydrogenated conjugated diene polymer obtained by the said manufacturing method, the polymer composition containing the said polymer, and the said polymer composition.
- the present inventors have intensively studied to solve the above problems. As a result, the inventors have found that the above problems can be solved by a manufacturing method having the following configuration, and have completed the present invention. That is, the present invention relates to, for example, the following [1] to [7].
- Presence of a polymerization initiator comprising an amine compound having at least one structure of formulas (x) and (y) and at least one metal compound selected from an alkali metal compound and an alkaline earth metal compound
- a method for producing a hydrogenated conjugated diene polymer comprising: a step of polymerizing at least a conjugated diene compound to obtain a conjugated diene polymer; and a step of hydrogenating the conjugated diene polymer.
- R 1 is a hydrocarbylene group, and the hydrocarbylene group in R 1 may contain a heteroatom as long as it has no active hydrogen, and A 1 is a trihydrocarbylsilyl group.
- R 2 and R 3 are each independently a hydrocarbylene group, and the hydrocarbylene group in R 2 and R 3 contains a hetero atom unless it has an active hydrogen.
- a 2 may have at least one atom selected from a nitrogen atom N, a phosphorus atom P, and a sulfur atom S, a trihydrocarbylsilyl group, no active hydrogen, and bonded to R 3 .
- a functional group having an atom of N, P or S; R 1 and A 1 may be bonded to each other to form a cyclic structure, and a part of R 2 , R 3 and A 2 may be They may be bonded to each other to form a cyclic structure.
- the amine compound having a structure represented by the formula (x) is at least one compound selected from the compound represented by the formula (x1) and the compound represented by the formula (x2), [1] A process for producing a hydrogenated conjugated diene polymer according to [1].
- R 11 is each independently a hydrocarbylene group, and the hydrocarbylene group in R 11 may contain a hetero atom unless it has an active hydrogen; 1 independently represents a trihydrocarbylsilyl group; a plurality of R 11 and A 1 may be the same or different; and R 11 and A 1 are bonded to each other to form a cyclic structure. It may be formed.
- the amine compound having a structure represented by the formula (y) is at least one compound selected from a compound represented by the formula (y1) and a compound represented by the formula (y2).
- R 21 and R 3 are each independently a hydrocarbylene group, and the hydrocarbylene group in R 21 and R 3 is a heteroatom as long as it has no active hydrogen.
- a 2 has at least one atom selected from a nitrogen atom N, a phosphorus atom P, and a sulfur atom S, has a trihydrocarbylsilyl group, has no active hydrogen, R 3 and A functional group in which the atoms to be bonded are N, P or S; a plurality of R 21 , R 3 and A 2 may be the same or different; and R 21 , R 3 and A 2 May be bonded to each other to form a ring structure.
- [4] A hydrogenated conjugated diene polymer obtained by the production method according to any one of [1] to [3].
- R 1 is a hydrocarbylene group, and the hydrocarbylene group in R 1 may contain a hetero atom as long as it does not have an active hydrogen, and A 3 represents a hydrogen atom or It is a hydrocarbylsilyl group; wherein (Y), R 2 and R 3 are each independently hydrocarbylene group, a hydrocarbylene group in R 2 and R 3, unless no active hydrogen, a hetero A 4 may contain an atom, and A 4 has at least one atom selected from a nitrogen atom N, a phosphorus atom P, and a sulfur atom S, and all or part of the atom is protected with a trihydrocarbylsilyl group.
- a polymer composition comprising the hydrogenated conjugated diene polymer according to the above [4] or [5] and at least one selected from carbon black and silica.
- a polymer composition comprising the hydrogenated conjugated diene polymer according to the above [4] or [5] and at least one polymer selected from a nonpolar polymer and a polar polymer.
- the present invention it is excellent in dispersibility improvement at the time of compounding with a filler, excellent in reducing hysteresis loss after compounding, excellent in workability at the time of compounding with a thermoplastic resin, etc., and excellent in physical properties after compounding. Further, it is possible to provide a hydrogenated conjugated diene polymer capable of forming a polymer alloy.
- a crosslinked product formed from a polymer composition containing the hydrogenated conjugated diene polymer has low hysteresis loss characteristics (70 ° C. tan ⁇ ), wet skid resistance (0 ° C. tan ⁇ ), wear resistance, and the like. It is excellent, and when used as a material for automobile tires (especially treads), it can provide excellent fuel efficiency.
- a compound represented by formula (i) (i is a formula number) is also referred to as “compound (i)”, and a structural unit derived from compound x in a polymer is also referred to as “compound x unit”.
- the hydrogenation reaction is also referred to as “hydrogenation reaction”, the hydrogenation catalyst as “hydrogenation catalyst”, the conjugated diene polymer after hydrogenation as “hydrogenated conjugated diene polymer”, and the hydrogenation rate as “hydrogenation rate”.
- Vinyl bond content refers to conjugated diene compound units that are incorporated in the conjugated diene polymer or polymer block before hydrogenation in the form of 1, 2 bonds, 3, 4 bonds, and 1, 4 bonds. , 1, 2 and 3,4 units combined (mol% basis).
- the vinyl bond content, 1,2 bond content, and 3,4 bond content can be determined by an infrared absorption spectrum method (Morello method).
- Active hydrogen refers to a hydrogen atom bonded to an atom other than a carbon atom.
- Polymerization is used in the meaning including homopolymerization and copolymerization.
- the method for producing the hydrogenated conjugated diene polymer of the present invention comprises: (1) A polymerization initiator (hereinafter referred to as an amine compound having at least one structure selected from the formulas (x) and (y)) and at least one metal compound selected from an alkali metal compound and an alkaline earth metal compound A step of polymerizing at least a conjugated diene compound in the presence of “modified polymerization initiator” to obtain a conjugated diene polymer; (2) a step of hydrogenating the conjugated diene polymer.
- a polymerization initiator hereinafter referred to as an amine compound having at least one structure selected from the formulas (x) and (y)
- Step (1) (Preparation step of conjugated diene polymer before hydrogenation)
- One embodiment of the step (1) includes a step (1a) of performing a polymerization reaction.
- 1 or 2 or more processes chosen from the process (1d) which performs a polymerization termination reaction are included.
- Step (1a) (Polymerization reaction)
- a monomer such as a conjugated diene compound is polymerized in the presence of a modified polymerization initiator to obtain a conjugated diene polymer.
- a modified polymerization initiator As the polymerization form, it is preferable to employ anionic polymerization (living anionic polymerization).
- “Polymerize monomer in the presence of a modified polymerization initiator” means that the amine compound and the metal compound are respectively supplied to a reaction vessel, or a reaction product of the amine compound and the metal compound is supplied to a reaction vessel. And a mode in which the monomer is polymerized in the reaction vessel.
- any of solution polymerization method, bulk polymerization method and gas phase polymerization method can be used.
- the solution polymerization method is preferable.
- a polymerization form both a batch type and a continuous type can be used.
- the liquid phase temperature of the polymerization reaction in the solution polymerization method is preferably ⁇ 20 to 150 ° C., more preferably 0 to 120 ° C., and particularly preferably 20 to 100 ° C.
- the polymerization reaction is preferably carried out under a pressure sufficient to keep the monomer in a substantially liquid phase.
- a pressure can be obtained by a method such as pressurizing the inside of the reaction vessel with a gas inert to the polymerization reaction (eg, nitrogen gas).
- a monomer such as a conjugated diene compound, a polymerization initiator, and a vinyl content adjustment to be used as required in a solvent composed of an organic solvent inert to the polymerization reaction
- examples of the method include anionic polymerization in the presence of an agent.
- the monomer concentration in the solution is preferably 5 to 50% by mass, more preferably 10 to 30% by mass from the viewpoint of maintaining a balance between productivity and ease of polymerization control. .
- the conjugated diene polymer obtained by the polymerization reaction may be a homopolymer composed of a conjugated diene compound or a random copolymer composed of another monomer such as a conjugated diene compound and an aromatic vinyl compound.
- a conjugated diene compound, or a block copolymer composed of a conjugated diene compound and another monomer such as an aromatic vinyl compound may be a homopolymer composed of a conjugated diene compound or a random copolymer composed of another monomer such as a conjugated diene compound and an aromatic vinyl compound.
- the conjugated diene block copolymer can be obtained by block polymerization of a conjugated diene compound or by block polymerization of another monomer such as a conjugated diene compound and an aromatic vinyl compound.
- the conjugated diene block copolymer comprises at least two polymer blocks selected from the following polymer blocks (A) to (D). It is preferable that it is a block copolymer containing.
- (C) A conjugated diene polymer block having a conjugated diene compound unit amount of 80% by mass or more and a vinyl bond content of 30 to 90 mol%.
- (D) A random copolymer block of a conjugated diene compound and an aromatic vinyl compound, wherein the conjugated diene compound unit amount exceeds 20% by mass and is less than 80% by mass.
- the content of random type, conjugated diene compound unit or aromatic vinyl compound unit may be A so-called taper type that continuously changes in the polymer block can be obtained.
- Examples of the “block copolymer containing two or more polymer blocks selected from the polymer blocks (A) to (D)” include (A)-(B), (A)- (C), (A)-(D), (B)-(C), (B)-(D), [(A)-(B)] xY, [(A)-(C)] x-Y, [(A)-(D)] x-Y, [(B)-(C)] x-Y, [(B)-(D)] x-Y, [(B)-(A )] X-Y, [(C)-(A)] x-Y, [(D)-(A)] x-Y, (A)-(B)-(D), (A)-(B )-(A), (A)-(C)-(A), (A)-(C)-(B), (A)-(D)-(A), (A)-(D)-(A), (A)-(D)-
- the copolymer obtained by the coupling reaction mentioned later is also illustrated here.
- at least one polymer block (A) and / or at least one polymer block (B) is included as a block component outside the conjugated diene block copolymer.
- a polymerization initiator an amine compound having at least one structure of formulas (x) and (y) and at least one metal compound selected from an alkali metal compound and an alkaline earth metal compound are used.
- a modified polymerization initiator is used as a polymerization initiator.
- the modified polymerization initiator can be obtained, for example, by reacting the amine compound with the metal compound.
- a modified group derived from the amine compound can be introduced into the polymerization initiation terminal of the conjugated diene polymer.
- an N atom that is an interaction point that increases the dispersibility of various fillers or a reaction point for acting as a compatibilizer for various polymers is introduced into the polymerization initiation terminal.
- this N atom can be deprotected by hydrolysis and converted to an active amino group, depending on the desired physical properties.
- R 1 is a hydrocarbylene group, and the hydrocarbylene group in R 1 may contain a heteroatom as long as it has no active hydrogen; A 1 is a trihydrocarbylsilyl group is there.
- R 2 and R 3 are each independently a hydrocarbylene group, and the hydrocarbylene group in R 2 and R 3 may contain a hetero atom unless it has an active hydrogen; A 2 has at least one atom selected from a nitrogen atom N, a phosphorus atom P and a sulfur atom S, has a trihydrocarbylsilyl group, has no active hydrogen, and an atom bonded to R 3 is N , P or S.
- R 1 and A 1 may be bonded to each other to form a cyclic structure. That is, the atom in R 1 and the atom in A 1 may be bonded to form a cyclic structure.
- a part of R 2 , R 3 and A 2 may be bonded to each other to form a cyclic structure. That is, an atom in R 2 and an atom in R 3 may be bonded to form a cyclic structure, or an atom in R 2 and an atom in A 2 may be bonded to form a cyclic structure.
- the atom in R 3 and the atom in A 2 may combine to form a cyclic structure.
- hydrocarbylene group examples include a methylene group, an alkylene group, an arylene group, and an aralkylene group.
- the carbon number of the hydrocarbylene group is usually 1 to 10, preferably 1 to 3.
- the hydrocarbylene group having no active hydrogen and containing a hetero atom is a group obtained by substituting one or more atoms or groups contained in the hydrocarbylene group with a hetero atom. And a group having no active hydrogen.
- the carbon atom bonded to the nitrogen atom described in the formulas (x) and (y) and the carbon atom bonded to the terminal N, P or S in A 2 are heteroatoms. Is preferably not substituted.
- an oxygen atom, a sulfur atom, a nitrogen atom, a silicon atom, and a halogen atom are mentioned, for example.
- the nitrogen atom to which —A 1 or —R 3 —A 2 is bonded is excluded.
- a 1 , R 3 and A 2 in the above formula are synonymous with the same symbols in the formulas (x) and (y).
- Examples of the substituent containing a nitrogen atom include an imino group and an amino group (—NR—, —NR 2 (R is independently a hydrocarbon group)).
- the trihydrocarbylsilyl group means a group represented by —SiR 3 (wherein each R is independently a hydrocarbon group).
- examples of the hydrocarbyl group that the trihydrocarbylsilyl group has, that is, a hydrocarbon group, include an alkyl group, an aryl group, and an aralkyl group.
- the carbon number of the hydrocarbyl group is usually 1 to 10, preferably 1 to 4.
- a trialkylsilyl group is preferable, and a trimethylsilyl group and a t-butyldimethylsilyl group are particularly preferable.
- the trihydrocarbylsilyl group in A 2 is preferably bonded to at least one atom selected from a nitrogen atom N, a phosphorus atom P and a sulfur atom S.
- a 2 is preferably —XR n , wherein X is N, P or S; each R is independently a trihydrocarbylsilyl group; n is 2 when X is N; 2 when P and 1 when X is S).
- Examples of the amine compound having a structure represented by the formula (x) include at least one compound selected from the compound represented by the formula (x1) and the compound represented by the formula (x2). Specifically, compounds represented by formula (x1-1), formula (x1-2), and formula (x2-1) can be given.
- R 11 is each independently a hydrocarbylene group, and the hydrocarbylene group in R 11 may contain a heteroatom as long as it has no active hydrogen, preferably A methylene group, an alkylene group having 2 to 10 carbon atoms, more preferably a methylene group or an ethylene group; each A 1 is independently a trihydrocarbylsilyl group, preferably a trialkylsilyl group, more preferably Is a trimethylsilyl group or a t-butyldimethylsilyl group.
- a plurality of R 11 and A 1 may be the same or different.
- R 11 and A 1 may be bonded to each other to form a cyclic structure. That is, the atom in R 11 and the atom in A 1 may be bonded to form a cyclic structure.
- Examples of the amine compound having a structure represented by the formula (y) include at least one compound selected from the compound represented by the formula (y1) and the compound represented by the formula (y2). Specifically, compounds represented by formula (y1-1), formula (y1-2), and formula (y2-1) can be given.
- R 21 and R 3 are each independently a hydrocarbylene group, and the hydrocarbylene group in R 21 and R 3 is a heteroatom as long as it has no active hydrogen.
- a methylene group or an alkylene group having 2 to 10 carbon atoms more preferably a methylene group or an ethylene group;
- a 2 is at least selected from a nitrogen atom N, a phosphorus atom P and a sulfur atom S
- a 2 is preferably —XR n , wherein X is N, P or S; each R is independently a trihydrocarbylsilyl group; n is 2 when X is N; 2 when P and 1 when X is S).
- a plurality of R 21 , R 3 and A 2 may be the same or different.
- R 21 , R 3 and A 2 may be bonded to each other to form a cyclic structure. That is, an atom in R 21 and an atom in R 3 may be bonded to form a cyclic structure, or an atom in R 21 and an atom in A 2 may be bonded to form a cyclic structure. Alternatively, the atom in R 3 and the atom in A 2 may combine to form a cyclic structure.
- the modified polymerization initiator can be prepared by adding the amine compound and the metal compound in a polymerization system (in-situ). Alternatively, the modified polymerization initiator can be prepared in advance from the amine compound and the metal compound and added to the polymerization system.
- the modified polymerization initiator can be obtained by supplying the amine compound and the metal compound to a polymerization solution containing a monomer and a solvent, and mixing and reacting these two compounds.
- the modified polymerization initiator can be obtained by mixing and reacting the amine compound and the metal compound in advance before supplying them into the polymerization solution.
- Examples of the alkali metal in the alkali metal compound include lithium, sodium, and potassium.
- Examples of the alkaline earth metal in the alkaline earth metal compound include calcium and magnesium.
- alkali metal compounds are preferable, and lithium is particularly preferable as the alkali metal.
- lithium will be described below as an example, but embodiments using other alkali metals or alkaline earth metals instead of lithium are also possible.
- Alkali lithium is preferable as the alkali metal compound, and examples thereof include alkyl lithium having 1 to 4 carbon atoms.
- alkyl lithium having 1 to 4 carbon atoms include methyl lithium, ethyl lithium, n-propyl lithium, iso-propyl lithium, n-butyl lithium, and sec-butyl lithium.
- the amount of the amine compound used is preferably 0.2 to 20 mmol, more preferably 0.3 to 10 mmol, still more preferably 0.5 to 3 mmol per 100 g of monomer.
- the amount used is the amount of the amine compound used to form the reaction product.
- the amount of the amine compound used is an amount per 100 g of all monomers.
- the amount of the metal compound used is preferably 10 to 1 mol, more preferably 5 to 1 mol, and still more preferably 2 to 1 mol with respect to 1 mol of active hydrogen on the nitrogen atom of the amine compound.
- 1,3-butadiene, isoprene, and 2,3-dimethyl-1,3-butadiene are preferable.
- the conjugated diene compound may be used alone or in combination of two or more.
- a monomer other than the conjugated diene compound (hereinafter also referred to as “other monomer”) can be used as the monomer, and an aromatic vinyl compound (aromatic vinyl monomer) can be preferably used.
- aromatic vinyl compound examples include styrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, ⁇ -methylstyrene, 2,4-dimethylstyrene, 2,4-diisopropylstyrene, 4-tert-butyl.
- Styrene 5-t-butyl-2-methylstyrene, vinylethylbenzene, divinylbenzene, trivinylbenzene, divinylnaphthalene, tert-butoxystyrene, vinylbenzyldimethylamine, (4-vinylbenzyl) dimethylaminoethyl ether, N, N -Dimethylaminoethylstyrene, N, N-dimethylaminomethylstyrene, 2-ethylstyrene, 3-ethylstyrene, 4-ethylstyrene, 2-t-butylstyrene, 3-t-butylstyrene, 4-t-butylstyrene Vinyl xylene, Sulfonyl naphthalene, vinyl toluene, vinyl pyridine, diphenylethylene, and a tertiary amino group-containing diphenylethylene
- An aromatic vinyl compound may be used individually by 1 type, and may use 2 or more types together.
- the weight of the aromatic vinyl compound / conjugated diene compound from the viewpoint of the balance between low hysteresis loss characteristics and wet skid resistance of the resulting crosslinked polymer.
- the ratio is preferably 0.5 / 99.5 to 55/45, more preferably 5/95 to 50/50.
- Examples of monomers other than aromatic vinyl compounds include functional group-containing monomers.
- the functional group in the copolymer can be activated by the polymerization initiator.
- it is also effective to lithiate the functional group portion of a copolymer containing an isobutylene unit, a paramethylstyrene unit, and a parahalogenated methylstyrene unit to form an active site.
- Examples of the other monomer include 1- (4-N, N-dimethylaminophenyl) -1-phenylethylene.
- solvent in the solution polymerization method for example, an organic solvent inert to the polymerization reaction such as a hydrocarbon solvent can be used.
- a hydrocarbon solvent include an aliphatic hydrocarbon solvent, an alicyclic hydrocarbon solvent, and an aromatic hydrocarbon solvent, and a hydrocarbon solvent having 3 to 8 carbon atoms is preferable.
- hydrocarbon solvent having 3 to 8 carbon atoms examples include propane, n-butane, isobutane, n-pentane, isopentane, hexane, heptane, propene, 1-butene, isobutene, trans-2-butene, and cis-2.
- the solvent may be used alone or in combination of two or more.
- a vinyl content adjusting agent (hereinafter also referred to as “randomizer”) can be used for adjusting the vinyl bond content derived from a conjugated diene compound.
- the microstructure of the conjugated diene block copolymer i.e., 1,2 bond content and 3,4 bond content, can be controlled by using a randomizer with the hydrocarbon solvent.
- Randomizers include Lewis bases such as ethers and amines, specifically tetrahydrofuran, 1,4-dioxane, diethyl ether, propyl ether, butyl ether, higher ethers, 2,2-di (tetrahydrofuryl) propane.
- Randomizers may be used alone or in combination of two or more.
- Step (1b) (coupling reaction)
- the production method of the present invention may have a step (1b) of reacting a conjugated diene polymer having an active site such as an active lithium terminal and a coupling agent capable of reacting with the active site.
- the Mooney viscosity of the conjugated diene polymer can be adjusted, and a branched structure can be introduced into the polymer.
- Examples of the coupling agent include N, N-bis (trimethylsilyl) aminopropyltrichlorosilane, N, N-bis (trimethylsilyl) aminopropylmethyldichlorosilane, and 1- (3-trichlorosilylpropyl) -2,2,5. , 5-tetramethyl-1-aza-2,5-disilacyclopentane, 1- (3-methyldichlorosilylpropyl) -2,2,5,5-tetramethyl-1-aza-2,5-di Silacyclopentane is mentioned.
- examples of the coupling agent include halogen compounds, epoxy compounds, carbonyl compounds, and polyvinyl compounds other than those described above. Specifically, methyldichlorosilane, methyltrichlorosilane, butyltrichlorosilane, tetrachlorosilane, dibromoethane, epoxidized soybean oil, tetraglycidyl-1,3-bisaminomethylcyclohexane, divinylbenzene, tetrachlorotin, butyltrichlorotin Tetrachlorogermanium, bis (trichlorosilyl) ethane, diethyl adipate, dimethyl adipate, dimethyl terephthalic acid, diethyl terephthalic acid, and polyisocyanate.
- ⁇ Coupling agents may be used alone or in combination of two or more.
- the amount of the coupling agent to be used is usually 0.1 to 1.2 mol, preferably 0.5 to 1.0 mol as a reaction point of the coupling agent with respect to 1 mol of the active site at the polymerization terminal.
- the coupling reaction can be performed as a solution reaction, for example.
- the reaction temperature is usually 0 to 120 ° C., preferably 50 to 100 ° C.
- the reaction time is usually 1 to 30 minutes, preferably 5 to 20 minutes.
- Step (1c) Modification Reaction
- the polymer is further modified by reacting a conjugated diene polymer having an active site such as an active lithium terminal and a modifier capable of reacting with the active site. You may have the process (1c) to do.
- a modification group is further introduced at the polymer terminal of the conjugated diene polymer to obtain a modified conjugated diene polymer.
- the modifier examples include a silane compound that can react with the active site of the conjugated diene polymer, and the silane represented by the formula (z) from the viewpoint of reactivity with the conjugated diene polymer having the active site. Compounds are preferred.
- R 31 and R 32 are each independently a hydrocarbyl group, preferably an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 20 carbon atoms.
- R 33 is a hydrocarbylene group, preferably a methylene group, an alkylene group having 2 to 20 carbon atoms, or an arylene group having 6 to 20 carbon atoms.
- a plurality of R 31 and R 32 may be the same or different.
- n is an integer of 0 to 2, and n is preferably 0 or 1 from the viewpoint of increasing the reactivity with the conjugated diene polymer having an active site.
- a 31 is a functional group having at least one atom selected from a nitrogen atom N, a phosphorus atom P, and a sulfur atom S, having no active hydrogen, and an atom bonded to R 33 being N, P, or S It is.
- part or all of at least one atom selected from N, P and S may be protected with a trihydrocarbylsilyl group.
- a 31 is preferably —XR n , wherein X is N, P or S; each R is independently a trihydrocarbylsilyl group; n is 2 when X is N; 2 when P and 1 when X is S).
- active hydrogen refers to a hydrogen atom bonded to an atom other than a carbon atom, preferably a hydrogen atom having a lower binding energy than the carbon-hydrogen bond of polymethylene.
- silane compound capable of reacting with an active site such as an active lithium terminal of a conjugated diene polymer
- a compound having a group capable of becoming onium by an onium generator can also be used.
- excellent shape retention can be imparted to the polymer before crosslinking.
- a 31 in the formula (z) is a group that can be converted to onium by the onium generator.
- the active site reacts with a site of Si—OR 32 to give a modified conjugated diene polymer having a group capable of becoming an onium. Coalescence can be obtained.
- Examples of the group that can be converted to onium by the onium generator include, for example, a nitrogen-containing group in which two hydrogen atoms of a primary amino group are substituted by two protecting groups, and one hydrogen atom of a secondary amino group has one protection.
- Examples thereof include phosphorus-containing groups in which one hydrogen atom is substituted with one protecting group, tertiary phosphino group, and sulfur-containing groups in which one hydrogen atom of thiol is substituted with one protecting group.
- a nitrogen-containing group in which two hydrogen atoms of a primary amino group are substituted by two protecting groups a nitrogen-containing group in which one hydrogen atom of a secondary amino group is substituted by one protecting group, or a tertiary amino group
- the compound having a group and an alkoxysilyl group include N, N-bis (trimethylsilyl) aminopropyltrimethoxysilane, N, N-bis (trimethylsilyl) aminopropylmethyldiethoxysilane, N, N ′, N '-Tris (trimethylsilyl) -N- (2-aminoethyl) -3-aminopropyltriethoxysilane, 1- (3-triethoxysilylpropyl) -2,2,5,5-tetramethyl-1-aza- 2,5-disilacyclopentane, 1-trimethylsilyl-2,2-dimethoxy-1-aza-2-silacyclopentane, N- [3- ( Lime
- examples of preferred compounds include N, N-bis (triethylsilyl) aminopropylmethyldimethoxysilane, N, N-bis (trimethylsilyl) aminopropylmethyldimethoxysilane, and N, N-bis (trimethylsilyl) aminopro Pyrmethyldiethoxysilane, N, N-bis (trimethylsilyl) aminopropyltriethoxysilane, 1- (3-triethoxysilylpropyl) -2,2,5,5-tetramethyl-1-aza-2,5- Disilacyclopentane, N, N ′, N′-tris (trimethylsilyl) -N- (2-aminoethyl) -3-aminopropyltriethoxysilane, 1-trimethylsilyl-2,2-dimethoxy-1-aza-2 -Silacyclopentane, N- [3- (trimethoxysilyl) -propyl] -N, N'
- Examples of the compound having an imino group, pyridyl group or imidazole group and an alkoxysilyl group include N- (1,3-dimethylbutylidene) -3- (triethoxysilyl) -1-propanamine, N- ( 1-methylpropylidene) -3- (triethoxysilyl) -1-propanamine, N- (4-N, N-dimethylaminobenzylidene) -3- (triethoxysilyl) -1-propanamine, N- ( Cyclohexylidene) -3- (triethoxysilyl) -1-propanamine and the trimethoxysilyl compounds, methyldiethoxysilyl compounds, ethyldimethoxysilyl compounds, N- (3- Trimethoxysilylpropyl) -4,5-dihydroimidazole, N- (3-triethoxysilyl) Propyl) -4,5-dihydro
- examples of preferred compounds include N- (1,3-dimethylbutylidene) -3- (triethoxysilyl) -1-propanamine, N- (1-methylpropylidene) -3- (triethoxy Silyl) -1-propanamine, N- (3-trimethoxysilylpropyl) -4,5-dihydroimidazole, N- (3-triethoxysilylpropyl) -4,5-dihydroimidazole, N- (3-tri And methoxysilylpropyl) -4,5-imidazole and N- (3-triethoxysilylpropyl) -4,5-imidazole.
- a phosphorus-containing group in which two hydrogen atoms of a primary phosphino group are substituted by two protecting groups a phosphorus-containing group in which one hydrogen atom of a secondary phosphino group is substituted by one protecting group, a tertiary phosphino group Or a compound having a sulfur-containing group in which one hydrogen atom of a thiol is substituted with one protecting group and an alkoxysilyl group, for example, P, P-bis (trimethylsilyl) phosphinopropylmethyldimethoxysilane, P, P-bis (trimethylsilyl) phosphinopropyltrimethoxysilane, 3-dimethylphosphinopropyltrimethoxysilane, 3-dimethylphosphinopropylmethyldimethoxysilane, 3-diphenylphosphinopropyltrimethoxysilane, 3-diphenylphosphinopropyltrimethoxysi
- examples of preferred compounds include 3-diphenylphosphinopropyltrimethoxysilane, 3-diphenylphosphinopropyltriethoxysilane, S-trimethylsilylmercaptopropylmethyldimethoxysilane, S-trimethylsilylmercaptopropyltrimethoxysilane, S- Examples thereof include trimethylsilyl mercaptopropyltriethoxysilane and S-trimethylsilylmercaptopropylmethyldiethoxysilane.
- the denaturation reaction can be performed as a solution reaction, for example.
- the solution reaction may be performed using a solution containing unreacted monomers after completion of the polymerization reaction or the like.
- the modification reaction is preferably carried out after completion of the polymerization reaction or the like and before performing various operations necessary for solvent removal treatment, water treatment, heat treatment and polymer isolation.
- the denaturation reaction may be performed in a batch system using a batch-type reaction container, or may be performed in a continuous system using an apparatus such as a multistage continuous reaction container.
- the reaction temperature can be about the same as the polymerization temperature described above, and is preferably ⁇ 20 to 150 ° C., more preferably 0 to 120 ° C., and particularly preferably 20 to 100 ° C.
- the reaction temperature is low, the viscosity of the modified conjugated diene polymer tends to increase.
- the reaction temperature is high, the active sites of the modified conjugated diene polymer are liable to be deactivated.
- the reaction time of the denaturation reaction is preferably 1 minute to 5 hours, more preferably 2 minutes to 1 hour.
- the amount of modifier used in the modification reaction is preferably 0.1 mol equivalent or more, more preferably 0.3 mol equivalent or more, relative to the active point of the conjugated diene polymer. If the amount used exceeds the above value, the modification reaction proceeds sufficiently, the dispersibility of reinforcing agents such as carbon black and silica is improved, and the abrasion resistance, wet skid resistance and low hysteresis loss characteristics of the crosslinked body are improved. In addition, compatibility with polar resins tends to be improved.
- the addition method of the modifier is not particularly limited, and examples thereof include a method of adding all at once, a method of adding in divided portions, and a method of adding continuously. Among these, the method of adding all at once is preferable.
- the production method of the present invention may include a step (1d) of reacting a conjugated diene polymer having an active site such as an active lithium terminal and a polymerization terminator capable of reacting with the active site.
- ⁇ Polymerization terminator> In the polymerization reaction, coupling reaction or modification reaction described above, when the resulting conjugated diene polymer has an active site such as an active lithium end, the active site can be deactivated by using a polymerization terminator.
- Examples of the polymerization terminator include hydrogen; alcohols such as methanol, ethanol, propanol, isopropanol, butanol, pentanol, hexanol, heptanol, octanol; methyl chloride, ethyl chloride, propyl chloride, butyl chloride, benzyl chloride, bromide
- Examples thereof include alkyl halides such as methyl, ethyl bromide, propyl bromide, butyl bromide, methyl iodide, ethyl iodide, propyl iodide, and butyl iodide.
- hydrogen is preferable.
- a polymerization terminator may be used alone or in combination of two or more.
- step (2) the conjugated diene polymer obtained in step (1) is hydrogenated.
- the method and reaction conditions for hydrogenation are not particularly limited.
- the hydrogenation is performed at 20 to 150 ° C. under hydrogen pressure of 0.1 to 10 MPa in the presence of a hydrogenation catalyst.
- the hydrogenation rate of the obtained hydrogenated conjugated diene polymer can be arbitrarily selected by changing the amount of the hydrogenation catalyst, the hydrogen pressure during the hydrogenation reaction or the reaction time. From the viewpoint of improving the weather resistance, the hydrogenation rate is usually 10% or more, preferably 50% or more, more preferably 80% or more, particularly preferably 95% or more of the aliphatic double bond derived from the conjugated diene compound. .
- the details of the hydrogenation rate measurement conditions are as described in the examples.
- a polymer excellent in heat resistance and weather resistance can be obtained by hydrogenating a conjugated diene polymer obtained using a modified polymerization initiator.
- a hydrogenation catalyst a compound containing any one of elements of Group 4, 5, 6, 7, 8, 9, or 10 of the periodic table, for example, Ti, V, Co, Ni, Zr, Ru, Rh, Pd
- a compound containing H, Hf, Re, and Pt elements can be used.
- the hydrogenation catalyst examples include metallocene compounds containing, for example, Ti, Zr, Hf, Co, Ni, Pd, Pt, Ru, Rh, Re; metals such as Pd, Ni, Pt, Rh, Ru, etc., carbon, silica, Supported heterogeneous catalyst supported on a support such as alumina or diatomaceous earth; Uniform Ziegler type catalyst combining organic salt such as Ni or Co or acetylacetone salt and reducing agent such as organic aluminum; Organometallic such as Ru or Rh Compounds or complexes; and fullerenes and carbon nanotubes occluded with hydrogen.
- metallocene compounds containing, for example, Ti, Zr, Hf, Co, Ni, Pd, Pt, Ru, Rh, Re
- metals such as Pd, Ni, Pt, Rh, Ru, etc., carbon, silica
- Supported heterogeneous catalyst supported on a support such as alumina or diatomaceous earth
- metallocene compounds containing any one of Ti, Zr, Hf, Co, and Ni are preferable in that they can be hydrogenated in a homogeneous system in an inert organic solvent. Furthermore, a metallocene compound containing any of Ti, Zr, and Hf is preferable.
- a hydrogenation catalyst obtained by reacting a titanocene compound with an alkyl lithium is preferable because it is an inexpensive and industrially useful catalyst.
- JP-A-1-275605 JP-A-5-271326, JP-A-5-271325, JP-A-5-222115, JP-A-11-292924, and JP-A-11-292924.
- JP 2000-37632 A JP 59-133203 A, JP 63-5401 A, JP 62-218403 A, JP 7-90017 A, JP 43-19960 A, Examples thereof include hydrogenation catalysts described in JP-A-47-40473.
- the hydrogenation catalyst can be used alone or in combination of two or more.
- the production method of the present invention may include a step (3) of mixing and reacting the above-mentioned hydrogenated modified conjugated diene polymer having a group capable of becoming onium and an onium generator.
- a step (3) of mixing and reacting the above-mentioned hydrogenated modified conjugated diene polymer having a group capable of becoming onium and an onium generator By this step, an onium structure can be introduced into the hydrogenated modified conjugated diene polymer and its shape retention can be improved.
- the group that can be onium by the onium generator is a group corresponding to A 31 in the formula (z).
- Examples of the onium generator include halogens such as silicon halide compounds, tin halide compounds, aluminum halide compounds, titanium halide compounds, halogenated zirconium compounds, halogenated germanium compounds, gallium halide compounds, and zinc halide compounds.
- halogens such as silicon halide compounds, tin halide compounds, aluminum halide compounds, titanium halide compounds, halogenated zirconium compounds, halogenated germanium compounds, gallium halide compounds, and zinc halide compounds.
- Esters of inorganic acids such as sulfates, phosphates, carbonates and nitrates
- Inorganic acids such as hydrofluoric acid, hydrochloric acid, odorous acid, iodine acid, sulfuric acid, nitric acid, carbonic acid and phosphoric acid
- Potassium fluoride fluoride
- Inorganic acid salts such as tetramethylammonium fluoride and tetra-n-butylammonium fluoride
- organic acids such as carboxylic acid (eg maleic acid) and sulfonic acid (eg benzenesulfonic acid).
- the halogenated silicon compound, tin halide compound, aluminum halide compound, halogenated titanium compound, halogenated zirconium compound, halogenated germanium compound, halogenated because of the availability of the compound and ease of handling.
- Gallium compounds, zinc halide compounds, sulfate esters, phosphate esters, carboxylic acids and sulfonic acids are preferred.
- the onium generator examples include silicon tetrachloride, tin tetrachloride, trimethylsilyl chloride, dimethyldichlorosilane, diethylaluminum chloride, zinc chloride, titanium tetrachloride, zirconium tetrachloride, germanium tetrachloride, gallium trichloride, diethyl sulfate, Examples include trimethyl phosphate, dimethyl carbonate, maleic acid, and benzene sulfonic acid.
- the mixing of the hydrogenated modified conjugated diene polymer and the onium generating agent can be performed, for example, in the form of a solution.
- Mixing may be carried out as a batch type using a batch type mixer, or may be carried out as a continuous type using an apparatus such as a multistage continuous mixer or an in-line mixer.
- the addition amount of the onium-forming agent is preferably 0.5 mol equivalent or more, more preferably 1.0 mol equivalent or more with respect to the group capable of becoming onium of the hydrogenated modified conjugated diene polymer.
- the addition amount is equal to or more than the above value, oniumation proceeds sufficiently and the shape retention of the hydrogenated modified conjugated diene polymer tends to be improved.
- the addition method of the onium generator is not particularly limited, and examples thereof include a batch addition method, a divided addition method, and a continuous addition method. Among these, the method of adding all at once is preferable.
- the mixing temperature of the hydrogenated modified conjugated diene polymer and the onium generating agent is about the same as the polymerization temperature in the above polymerization reaction, preferably ⁇ 20 to 150 ° C., more preferably 0 to 120 ° C., and particularly preferably 20 ⁇ 100 ° C.
- the temperature is low, the viscosity of the hydrogenated modified conjugated diene polymer tends to increase.
- active sites such as active lithium terminals are likely to be altered.
- Formation of the onium structure in the hydrogenated modified conjugated diene polymer is performed in the presence of water.
- the method for forming the onium structure include (i) a method in which water is directly added and mixed in a hydrogenated modified conjugated diene polymer solution, and (ii) an organic such as an alcohol that is soluble in both water and an organic solvent.
- the polymer solution obtained when preparing the hydrogenated modified conjugated diene polymer may be used in the state of the polymer solution without removing the solvent, or the polymer solution may be used by steam stripping or the like.
- the hydrogenated modified conjugated diene polymer obtained by removing the solvent and further drying may be used by dissolving it again in an organic solvent such as cyclohexane.
- the conjugated diene polymer can be recovered from the solution containing the hydrogenated conjugated diene polymer obtained as described above, for example, by a known solvent removal method and drying operation in the production of the conjugated diene polymer. it can.
- Known desolvation methods include a steam stripping method, a drum dryer method, a flash evaporation (flash) desolvation method, and the like.
- Mooney viscosity can be adjusted and workability can be improved by adding an extender oil as necessary.
- the extending oil include aroma oil, naphthenic oil, and paraffin oil.
- the amount of the extending oil is usually 10 to 50 parts by mass with respect to 100 parts by mass of the hydrogenated conjugated diene polymer.
- the hydrogenated conjugated diene polymer of the present invention has at least one structure of formulas (X) and (Y) at the polymer terminal. Moreover, the hydrogenated conjugated diene polymer of the present invention may have a structure represented by the formula (Z).
- R 1 is a hydrocarbylene group, and the hydrocarbylene group in R 1 may contain a hetero atom as long as it has no active hydrogen;
- a 3 is a hydrogen atom or trihydrocarbyl A silyl group.
- R 2 and R 3 are each independently a hydrocarbylene group, and the hydrocarbylene group in R 2 and R 3 may contain a hetero atom unless it has an active hydrogen;
- a 4 is a nitrogen atom N, at least one atom selected from a phosphorus atom P, and sulfur atom S, all or some of the atoms may be protected by tri-hydrocarbylsilyl group, and
- R 3 A functional group in which the atom to be bonded is N, P or S.
- R 1 and A 3 may be bonded to each other to form a cyclic structure. That is, the atom in R 1 and the atom in A 3 may be bonded to form a cyclic structure.
- a part of R 2 , R 3 and A 4 may be bonded to each other to form a cyclic structure. That is, an atom in R 2 and an atom in R 3 may be bonded to form a cyclic structure, or an atom in R 2 and an atom in A 4 may be bonded to form a cyclic structure.
- the atom in R 3 and the atom in A 4 may combine to form a cyclic structure.
- each R 31 is independently a hydrocarbyl group.
- R 32 is each independently a hydrogen atom or a hydrocarbyl group.
- R 33 is a hydrocarbylene group.
- a 32 is a nitrogen atom N, at least one atom selected from a phosphorus atom P, and sulfur atom S, a part or all of the atoms may be protected by tri-hydrocarbylsilyl group, and R 33 A functional group in which the atom to be bonded is N, P or S.
- a 32 may be a group in which A 31 in formula (z) is onium-ized.
- n is an integer of 0-2.
- a plurality of R 31 and R 32 may be the same or different.
- Examples of the hydrogenated conjugated diene polymer having a structure represented by the formula (X) include at least a group represented by the formula (X1) and a group represented by the formula (X2) at the polymer terminal. Examples thereof include a hydrogenated conjugated diene polymer having one kind of group.
- R 11 is each independently a hydrocarbylene group, and the hydrocarbylene group in R 11 may contain a hetero atom unless it has an active hydrogen;
- a 3 Are each independently a hydrogen atom or a trihydrocarbylsilyl group.
- a plurality of R 11 and A 3 may be the same or different.
- R 11 and A 3 may be bonded to each other to form a cyclic structure. That is, the atom in R 11 and the atom in A 3 may be bonded to form a cyclic structure.
- Examples of the hydrogenated conjugated diene polymer having a structure represented by the formula (Y) include at least a group represented by the formula (Y1) and a group represented by the formula (Y2) at the polymer terminal. Examples thereof include a hydrogenated modified conjugated diene polymer having one kind of group.
- R 21 and R 3 are each independently a hydrocarbylene group, and the hydrocarbylene group in R 21 and R 3 is a heteroatom as long as it has no active hydrogen.
- a 4 may have at least one atom selected from a nitrogen atom N, a phosphorus atom P, and a sulfur atom S, and all or a part of the atoms may be protected with a trihydrocarbylsilyl group.
- a functional group in which the atom bonded to R 3 is N, P or S.
- a plurality of R 21 , R 3 and A 4 may be the same or different.
- R 21 , R 3 and A 4 may be bonded to each other to form a cyclic structure. That is, an atom in R 21 and an atom in R 3 may be bonded to form a cyclic structure, or an atom in R 21 and an atom in A 4 may be bonded to form a cyclic structure. Alternatively, the atom in R 3 and the atom in A 4 may combine to form a cyclic structure.
- the hydrogenated conjugated diene polymer of the present invention may be a homopolymer composed of a conjugated diene compound or a random copolymer composed of a conjugated diene compound and another monomer such as an aromatic vinyl compound.
- a conjugated diene compound, or a block copolymer composed of a conjugated diene compound and another monomer such as an aromatic vinyl compound may be a homopolymer composed of a conjugated diene compound or a random copolymer composed of a conjugated diene compound and another monomer such as an aromatic vinyl compound.
- the hydrogenated conjugated diene polymer having the above configuration can be synthesized, for example, by the production method of the present invention described above. Specific examples and preferred examples of each group in the above formula are the same as those described in the column of the production method of the present invention.
- the molecular weight of the hydrogenated conjugated diene polymer of the present invention is a weight average molecular weight in terms of polystyrene in a gel permeation chromatography (GPC) method, and is usually 30,000 to 2,000,000, preferably 40,000 to 1,000,000, and more preferably 5 10,000 to 500,000.
- GPC gel permeation chromatography
- the hydrogenation rate of the hydrogenated conjugated diene polymer of the present invention is usually 10% or more, preferably 50% or more, more preferably 80% of the aliphatic double bond derived from the conjugated diene compound because the weather resistance is improved. Above, particularly preferably 90% or more, most preferably 95% or more.
- the details of the hydrogenation rate measurement conditions are as described in the examples.
- the hydrogenated conjugated diene polymer of the present invention described above and the hydrogenated conjugated diene polymer obtained by the production method of the present invention are collectively referred to as “the hydrogenated conjugated diene polymer of the present invention”.
- the hydrogenated conjugated diene polymer of the present invention has an interaction point that increases the dispersibility of fillers such as carbon black and silica, or a reaction point for acting as a compatibilizer for various polymers at the polymerization initiation terminal. Has atoms. For this reason, the polymer can improve the dispersibility of fillers such as carbon black and silica, and is excellent in workability at the time of compounding with a thermoplastic resin and the like, and a polymer alloy having excellent physical properties after compounding. It can be formed.
- the N atom may be protected with a trihydrocarbylsilyl group, and can be converted to an active amino group by deprotection by hydrolysis according to the intended physical properties.
- the first polymer composition of the present invention contains the hydrogenated conjugated diene polymer of the present invention, and further contains a polymer component other than the polymer (hereinafter also referred to as “other polymer component”). be able to. Further, the first polymer composition of the present invention can contain at least one selected from carbon black and silica.
- the first polymer composition of the present invention can contain the hydrogenated conjugated diene polymer of the present invention without any particular limitation, but it has a balance of wet skid resistance, low hysteresis loss characteristics, and wear resistance. From the viewpoint, the above-mentioned conjugated diene homopolymer and random copolymer are preferable.
- the content of the hydrogenated conjugated diene polymer of the present invention is preferably 30% by mass or more, more preferably 50 to 100% by mass, based on the total amount of the polymer components. Particularly preferred is 70 to 100% by mass.
- the cross-linked product can have better mechanical properties such as tensile strength and tensile elongation, crack growth resistance, and wear resistance.
- ⁇ Other polymer components examples include natural rubber, synthetic isoprene rubber, butadiene rubber, modified butadiene rubber, styrene-butadiene rubber, modified styrene-butadiene rubber, ethylene- ⁇ -olefin copolymer rubber, ethylene- ⁇ -olefin- Diene copolymer rubber, acrylonitrile-butadiene copolymer rubber, chloroprene rubber, halogenated butyl rubber, styrene-isoprene copolymer rubber, butadiene-isoprene copolymer rubber, random styrene-butadiene-isoprene copolymer rubber, styrene-acrylonitrile-butadiene copolymer Examples thereof include polymer rubber, acrylonitrile-butadiene copolymer rubber, and polystyrene-polybutadiene-polystyren
- polymer components may be used alone or in combination of two or more.
- Carbon black examples include furnace black, acetylene black, and thermal black represented by SRF, GPF, FEF, HAF, ISAF, SAF, ISAF-HS, ISAF-LS, IISAF-HS, HAF-HS, and HAF-LS. , Channel black, graphite, and carbon black of various grades such as graphite fiber and fullerene.
- Carbon black having an iodine adsorption amount (IA) of 60 mg / g or more and a dibutyl phthalate oil absorption amount (DBP) of 80 ml / 100 g or more is preferable.
- IA iodine adsorption amount
- DBP dibutyl phthalate oil absorption amount
- Carbon black may be used alone or in combination of two or more.
- silica examples include wet silica (hydrous silicic acid), dry silica (anhydrous silicic acid), colloidal silica, precipitated silica, calcium silicate, and aluminum silicate.
- wet silica is most preferable because it has the most remarkable effects of improving the fracture resistance, wet grip properties, and low rolling resistance. It is also preferable to use high-dispersion type silica from the viewpoint of improving dispersibility in the polymer composition and improving physical properties and processability.
- Silica may be used alone or in combination of two or more.
- the content of carbon black and / or silica (the total amount when containing both) is a polymer component (hydrogenated conjugated diene polymer and other polymers). From the viewpoint of reinforcing properties and the effect of improving various physical properties thereby, the amount is preferably 20 to 130 parts by weight, more preferably 25 to 110 parts by weight, based on 100 parts by weight of the total of the components.
- the content of carbon black and / or silica is preferably not less than the above lower limit from the viewpoint of obtaining an effect of improving the fracture resistance and the like, and is preferably not more than the above upper limit from the viewpoint of maintaining the workability of the polymer composition.
- the carbon-silica dual phase filler is a so-called silica-coated carbon black in which silica is chemically bonded to the surface of carbon black, and is sold by Cabot Corporation under the trade names CRX2000, CRX2002, and CRX2006.
- the content of the carbon-silica dual phase filler is preferably 1 to 100 parts by mass, more preferably 100 parts by mass with respect to 100 parts by mass of the polymer component (total of hydrogenated conjugated diene polymer and other polymer components). 5 to 95 parts by mass.
- silane coupling agent When silica is added as a reinforcing agent to the first polymer composition of the present invention, it is preferable to add a silane coupling agent in order to further improve the reinforcing effect.
- silane coupling agents include bis (3-triethoxysilylpropyl) tetrasulfide, bis (3-triethoxysilylpropyl) trisulfide, bis (3-triethoxysilylpropyl) disulfide, and bis (2-triethoxy).
- Silylethyl) tetrasulfide bis (3-trimethoxysilylpropyl) tetrasulfide, bis (2-trimethoxysilylethyl) tetrasulfide, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 2-mercaptoethyl Trimethoxysilane, 2-mercaptoethyltriethoxysilane, 3-trimethoxysilylpropyl-N, N-dimethylthiocarbamoyl tetrasulfide, 3-triethoxysilylpropyl-N, N-dimethylthiocarb Moyl tetrasulfide, 2-triethoxysilylethyl-N, N-dimethylthiocarbamoyl tetrasulfide, 3-trimethoxysilylpropylbenzothiazolyl tetrasulf
- silane coupling agents bis (3-triethoxysilylpropyl) disulfide, 3-trimethoxysilylpropylbenzothiazyltetrasulfide, 3-methacryloxypropyltrimethoxysilane, Mercaptosilane compounds exemplified in Kaikai 2006-249069 are preferred.
- the silane coupling agent may be used alone or in combination of two or more.
- the content of the silane coupling agent is preferably 1 to 20 parts by mass, more preferably 3 to 15 parts by mass with respect to 100 parts by mass of silica.
- the content is less than the above value, the effect as a coupling agent tends to be hardly exhibited.
- content exceeds the said value, it exists in the tendency for a polymer component to gelatinize easily.
- ⁇ Compatibilizer> In preparation of the first polymer composition of the present invention, in order to improve the workability during kneading, or to further improve the balance of wet skid resistance, low hysteresis loss characteristics, and wear resistance, compatibility is achieved. An agent can be added during kneading.
- Preferred examples of the compatibilizer include an epoxy group-containing compound, a carboxylic acid compound, a carboxylic ester compound, a ketone compound, an ether compound, an aldehyde compound, a hydroxyl group-containing compound and an amino group-containing compound; an alkoxysilane Examples include silicone compounds selected from compounds, siloxane compounds, and aminosilane compounds.
- organic compounds that are compatibilizers include the following compounds.
- Epoxy group-containing compounds ethylene glycidyl methacrylate, butyl glycidyl ether, diglycidyl ether, propylene oxide, neopentyl glycol glycidyl ether, epoxy resin, epoxidized soybean oil, epoxidized fatty acid ester, and the like.
- Carboxylic acid compounds adipic acid, octylic acid, methacrylic acid, etc.
- Carboxylic acid ester compounds acrylic acid esters, diethylene acrylate, ethyl methacrylate, orthoacetic acid ester, ethyl acetoacetate, butyl acetate, isopropyl acetate, dimethyl carbonate, p-hydroxyphenylacetic acid, polyester plasticizer, stearic acid plastic Agents.
- -Ketone compounds methylcyclohexanone, acetylacetone, etc.
- Ether compounds isopropyl ether, dibutyl ether, etc.
- Aldehyde compounds undecylenaldehyde, decylaldehyde, vanillin, 3,4-dimethoxybenzaldehyde, cuminaldehyde, etc.
- Amino group-containing compounds isopropylamine, diisopropylamine, triethylamine, 3-ethoxypropylamine, 2-ethylhexylamine, isopropanolamine, N-ethylethylenediamine, ethyleneimine, hexamethylenediamine, 3-lauryloxypropylamine, aminophenol, Aniline, 3-isopropoxyaniline, phenylenediamine, aminopyridine, N-methyldiethanolamine, N-methylethanolamine, 3-amino-1-propanol, ethylamine hydrochloride, n-butylamine hydrochloride and the like.
- Hydroxyl group-containing compounds isopropyl alcohol, butanol, octanol, octanediol, ethylene glycol, methylcyclohexanol, 2-mercaptoethanol, 3-methyl-3-methoxy-1-butanol, 3-methyl-1,5-pentanediol, 1-octadecanol, diethylene glycol, butylene glycol, dibutylene glycol, triethylene glycol, etc.
- silicone compounds that are compatibilizers include the following compounds.
- Alkoxysilane compounds trimethylmethoxysilane, trimethylethoxysilane, dimethyldimethoxysilane, methyltriethoxysilane, methyltriphenoxysilane, tetraethoxysilane, methyldiethoxysilane, vinyltrimethoxysilane, etc.
- Siloxane compound Dimethylsiloxane oligomer, silicone oil, amino modified silicone oil, epoxy modified silicone oil, carboxyl modified silicone oil, polyether modified silicone oil, alkyl modified silicone oil, higher fatty acid ester modified silicone oil, higher alkoxy modified silicone oil, Higher fatty acid-containing silicone oil.
- Aminosilane compounds hexamethyldisilazane, nonamethyltrisilazane, anilitrimethylsilane, bis (dimethylamino) dimethylsilane, bis (diethylamino) dimethylsilane, triethylaminosilane and the like.
- organic compounds epoxy group-containing compounds, amino group-containing compounds, and hydroxyl group-containing compounds are preferable; among silicone compounds, silazane compounds and bis (dimethylamino) dimethylsilane are preferable.
- the content of the compatibilizer is preferably 0.1 to 20 parts by mass, more preferably 0.5 to 10 parts by mass with respect to 100 parts by mass of silica. is there.
- the content is in the above range, the balance of wet skid resistance, low hysteresis loss characteristics, and wear resistance tends to be improved.
- the 1st polymer composition of this invention can contain the various chemical
- chemicals or additives include cross-linking agents (eg, vulcanizing agents), cross-linking aids (eg, vulcanizing aids), processing aids, cross-linking accelerators, process oils, anti-aging agents, scorch preventing agents, Zinc flower is mentioned.
- crosslinking agent examples include sulfur, sulfur halides, organic peroxides, quinonedioximes, organic polyvalent amine compounds, and alkylphenol resins having a methylol group.
- sulfur is preferable.
- the amount of sulfur is preferably 0.1 to 5 parts by mass, more preferably 0.2 to 3 parts per 100 parts by mass of the polymer component (total of hydrogenated conjugated diene polymer and other polymer components). Part by mass.
- stearic acid is preferred.
- the content of the vulcanization aid and the processing aid is usually 0.5 to 5 parts by mass with respect to 100 parts by mass of the polymer component (total of hydrogenated conjugated diene polymer and other polymer components). .
- crosslinking accelerator examples include sulfenamide-based, guanidine-based, thiuram-based, thiourea-based, thiazole-based, dithiocarbamic acid-based, and xanthogenic acid-based compounds, and preferably 2-mercaptobenzothiazole, dibenzothiazyldioxide.
- the amount of the crosslinking accelerator is preferably 0.1 to 5 parts by mass, more preferably 0.4 to 100 parts by mass of the polymer component (total of hydrogenated conjugated diene polymer and other polymer components). Is 4 parts by mass.
- the first polymer composition of the present invention is produced by kneading each component using a kneader such as an open kneader (eg roll) or a closed kneader (eg Banbury mixer). Can do.
- a kneader such as an open kneader (eg roll) or a closed kneader (eg Banbury mixer). Can do.
- the 1st polymer composition of this invention is applicable to various rubber products as a crosslinked body by bridge
- Examples of the use of the crosslinked body include tire uses such as tire treads, under treads, carcass, sidewalls, and bead parts; uses for vibration-proof rubber, fenders, belts, hoses, and other industrial products.
- the crosslinked body of the present invention is particularly preferably used as a tire tread rubber from the viewpoint of providing low fuel consumption performance.
- the second polymer composition of the present invention comprises a hydrogenated conjugated diene polymer of the present invention (hereinafter also referred to as “component (I)”) and a nonpolar polymer (hereinafter “component”) other than component (I). (II-1) ”) and at least one polymer selected from polar polymers (hereinafter also referred to as“ component (II-2) ”).
- the hydrogenated conjugated diene polymer of the present invention is excellent in a polar polymer modifying effect and also in a compatibilizing effect of a conventional heteropolymer mixture. For this reason, by using the polymer as a component of a polymer composition containing another polymer or the like, workability, heat resistance, rigidity, impact resistance, surface impact, tensile elongation at break, specularity and A molded product having an excellent balance such as delamination can be provided.
- the nonpolar polymer and the polar polymer may be resin or rubber.
- the hydrogenated conjugated diene polymer of the present invention can be contained without any particular limitation. From the viewpoint of improving the compatibility with the polar resin, the conjugated diene described above is used. Block copolymers are preferred.
- the olefin polymer examples include polyethylene resins such as very low density polyethylene (VLDPE), linear low density polyethylene (LLDPE), low density polyethylene (LDPE), medium density polyethylene (MDPE), and high density polyethylene (HDPE); Random type, block type or homo type polypropylene resin (PP); ethylene / propylene copolymer (EPM), ethylene / 1-butene copolymer (EBM), ethylene / hexene copolymer (EHM), ethylene / octene A copolymer of ethylene such as a copolymer (EOM) and an ⁇ -olefin having 3 to 20 carbon atoms; a propylene such as a propylene / 1-butene copolymer (PBM) and an ⁇ -olefin having 4 to 20 carbon atoms; Copolymer of ethylene; propylene / 1-butene copolymer (EPBM) Ethylene terpolymers such as ethylene
- aromatic vinyl polymer examples include general polystyrene (GPPS), impact-resistant polystyrene (HIPS), isotactic polystyrene (iPS), syndiotactic polystyrene (sPS), and poly ⁇ -methylstyrene (P ⁇ MS).
- GPPS general polystyrene
- HIPS impact-resistant polystyrene
- iPS isotactic polystyrene
- sPS syndiotactic polystyrene
- P ⁇ MS poly ⁇ -methylstyrene
- polystyrene resins examples include polystyrene resins. These may be used alone or in combination of two or more.
- Examples of the component (II-2) include a carboxyl group (including a carboxyl group that is an acid anhydride or a metal salt), a hydroxyl group, a halogen group, an epoxy group, an oxazoline group, a sulfonic acid group, an isocyanate group, A polymer having at least one functional group selected from a thiol group, an ester bond, a carbonate bond, an amide bond, an ether bond, a urethane bond and a urea bond is preferable.
- EAA Ethylene / acrylic acid copolymer
- EMA ethylene / methacrylic acid copolymer
- EMA ethylene / maleic anhydride / (meth) acrylic acid copolymer
- Polymer a copolymer of ethylene and (meth) acrylic acid having a content of structural units derived from (meth) acrylic acid of 7 to 15 mol%, and neutralization with metal ions such as Na, Zn, Mg, etc.
- Carboxyl group-containing polymer such as ionomer (IO) having a degree of 20% or more; Polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), polylactic acid (PLA), polyhydroxyalkanoic acid (PHA), polylactone, polycaprolactone, polyethylene succinate, polybutylene succinate, polyethylene adipate Polyester resins such as polybutylene succinate adipate; Nylon 4,6 (PA46), nylon 6 (PA6), nylon 6,6 (PA66), nylon 6,10 (PA610), nylon 6,12 (PA612), nylon 12 (PA12), nylon 6, T (PA6T ), Nylon 9, T (PA9T), reinforced polyamide, polyamide resin (PA) such as modified polyamide formed from hexamethylenediamine and terephthalic acid; Ethylene / methyl acrylate copolymer (EMA), ethylene / ethyl acrylate copolymer (EEA
- a polyethylene resin having a structural unit derived from ethylene and a structural unit derived from propylene are derived from the molecular chain structure of the component (I).
- Polypropylene resin, polystyrene resin having a structural unit derived from an aromatic vinyl compound, polyester resin such as polylactic acid and polyethylene terephthalate, polyamide resin, acrylic polymer, and ethylene-vinyl alcohol copolymer have excellent physical property improving effects and are used. This is particularly preferable because it can be used for a wide range of purposes.
- the polymers exemplified as the component (II-1) and the component (II-2) may be synthetic resins using biomass-derived monomers.
- the content can be as follows. That is, the component (II-1) / component (II-2) (mass ratio) is preferably 1 to 99/99 to 1, more preferably 5 to 95/95 to 5, and still more preferably 10 to 90/90.
- the content of component (I) is preferably 1 to 100 parts by mass, more preferably 5 parts, with the total content of component (II-1) and component (II-2) being 100 parts by mass. -50 parts by mass, more preferably 10-40 parts by mass.
- the second polymer composition of the present invention may contain a filler (hereinafter also referred to as “component (III)”).
- component (III) include magnesium hydroxide, aluminum hydroxide, zirconium hydroxide, calcium hydroxide, barium hydroxide, basic magnesium carbonate, dolomite, hydrotalcite, tin oxide, titanium oxide, zinc oxide, and oxidation.
- inorganic fibers such as zeolite, kaolin, silica sand, silica stone, quartz powder, shirasu, carbon fiber, and metal fiber
- inorganic whiskers such as potassium titanate whisker.
- Component (III) may be used as it is, but for the purpose of increasing affinity with various polymers and interfacial bond strength, fatty acids (eg, stearic acid, oleic acid, palmitic acid) or their metals
- fatty acids eg, stearic acid, oleic acid, palmitic acid
- a surface treated with a salt, paraffin, wax, polyethylene wax or a modified product thereof, organic borane, organic titanate, silane coupling agent, aluminum coupling agent, or the like can also be used.
- what is used as a flame retardant includes, for example, magnesium hydroxide, aluminum hydroxide, zirconium hydroxide, calcium hydroxide, barium hydroxide, basic magnesium carbonate, dolomite, hydrotalcite, and tin oxide. .
- magnesium hydroxide, aluminum hydroxide, and calcium hydroxide are preferable because they are useful and industrially available.
- Magnesium hydroxide is particularly preferable because of its high flame retardancy.
- red phosphorus flame retardants in order to enhance the flame retardant effect, red phosphorus flame retardants, ammonium polyphosphate flame retardants, phosphorus flame retardants such as phosphate esters, silicone compounds, quartz glass, etc.
- phosphorus flame retardants such as phosphate esters, silicone compounds, quartz glass, etc.
- water glass, frit, short silicon nitride fibers for preventing drip, and the like can be used in combination.
- the content of component (III) is preferably 1 to 90 parts by mass, more preferably 2 to 80 parts by mass, when the total of polymer components such as component (I) and component (II) is 100 parts by mass. is there.
- properties such as flame retardancy and strength are imparted without inhibiting the effects of component (I), component (II-1) and component (II-2). can do.
- anti-aging agents in addition to the above components, as other additives, anti-aging agents, weathering agents, metal deactivators, light stabilizers, ultraviolet absorbers, heat stabilizers and the like Agent, antibacterial / antifungal agent, dispersant, softener, plasticizer, crosslinking agent, co-crosslinking agent, vulcanizing agent, vulcanization aid, foaming agent, foaming aid, colorant, metal powder such as ferrite, Organic fibers such as aramid fibers, composite fibers, and the like can be blended.
- crosslinking the method is not particularly limited, and examples thereof include sulfur crosslinking, peroxide crosslinking, electron beam crosslinking, ultraviolet crosslinking, radiation crosslinking, metal ion crosslinking, silane crosslinking, and resin crosslinking.
- the foaming agent will be described together with the description of foam molding.
- a conventionally known blend such as an extruder, a pressure kneader, an open kneader (eg, roll), a closed kneader (eg, Banbury mixer), etc.
- a kneader and a kneader combining them can be used.
- each component may be kneaded at once, or a multistage divided kneading method may be employed in which any components are kneaded and then the remaining components are added and kneaded.
- a twin screw extruder is particularly preferable for the preparation of the second polymer composition of the present invention, and either the same direction rotating type or the different direction rotating type can be suitably used.
- L / D ratio of the effective length (L) of the screw of the extruder to the diameter (D) of the screw
- the kneading segment may be a general-purpose kneading disk, rotor, or VCMT (trademark: Kobe Steel), twist kneading (trademark: Nippon Steel Works), BMS (trademark: Japan Steel Works) screw, etc. can be used.
- the kneading conditions are not particularly limited.
- the kneading temperature is 150 to 290 ° C.
- the shear rate is 100 / s to 10000 / s
- the electric power consumption of the motor of the kneader per unit time is the kneading amount per unit time.
- the specific energy divided by is 0.1 to 6 kW ⁇ H / kg.
- a biaxial and biaxial connection, a biaxial and uniaxial connection, and a continuous kneader and biaxial connection may be used.
- examples of the extruder manufacturer include Nippon Steel Works, Kobe Steel Works, Werner, Ikekai, and Toshiba Machine.
- the polymer composition thus obtained is injection molding, two-color injection molding, extrusion molding, rotational molding, press molding, hollow molding, sandwich molding, compression molding, vacuum molding, powder slush molding, laminate molding, calendering. It is possible to mold by a known method such as molding or blow molding. You may process foaming, extending
- the second polymer composition of the present invention has the above-described configuration, by using this, the heat resistance, rigidity, impact resistance, surface impact, tensile elongation at break, specularity, delamination, etc.
- a molded article having an excellent balance can be provided.
- Examples of the molded body made of the second polymer composition include, for example, food packaging containers, various trays, sheets, tubes, films, fibers, laminates, electrical and electronic parts of coatings and printed boards, OA equipment such as computers, Various industrial parts such as housings for home appliances, automobile interior and exterior materials, outer plate parts, precision parts, building materials, and the like can be mentioned.
- the second polymer composition of the present invention can be preferably used even when foamed.
- the second polymer composition of the present invention may be subjected to foam molding using a foaming agent.
- the foaming method is not particularly limited, and may be either a batch method or a continuous method. Specifically, it can be foamed by a molding method such as extrusion molding, injection molding, or press molding.
- foaming agent for example, a chemical foaming agent or a physical foaming agent can be used.
- a foaming agent can be selected according to a manufacturing method.
- a foaming agent may be used individually by 1 type, and may use 2 or more types together.
- ⁇ Chemical foaming agent examples include a pyrolytic foaming agent and a hollow particle foam.
- Pyrolytic foaming agents include N, N'-dinitrosopentamethylenetetramine, N, N'-dimethyl-N, N'-dinitrosotephthalamide, and other nitroso foaming agents; azodicarbonamide, barium azodicarboxylate Azo foaming agents such as barium azodicarboxylate; sulfohydrazide foaming agents such as p, p-oxybisbenzenesulfonylhydrazide, 4,4′-oxybis (benzenesulfonylhydrazide), p-toluenesulfonylyl semicarbazide; Examples include triazine foaming agents such as trihydrazinotriazine; tetrazole foaming agents such as 5-phenyltetrazole, azobistetrazole diguanidine, and azobistetrazoleaminoguanidine; and inorganic foaming agents such as sodium hydrogen carbonate.
- the addition amount of the pyrolyzable foaming agent is not particularly limited, and is, for example, 0.1 to 100 parts by mass with respect to 100 parts by mass of the polymer composition excluding the pyrolyzable foaming agent.
- the hollow particle type foaming agent is a thermally expandable microsphere that contains an expansion agent and has a thermoplastic resin as an outer shell component.
- the expansion agent constituting the hollow particle type foaming agent include the same foaming agents as the above pyrolyzable foaming agent.
- the proportion of the swelling agent in the hollow particle foaming agent is preferably 5 to 30% by mass.
- the thermoplastic resin constituting the hollow particle foaming agent include (meth) acrylonitrile, (meth) acrylate, vinyl halide, vinylidene halide, styrene monomer, vinyl acetate, butadiene, chloroprene, vinyl pyridine and the like. There may be mentioned thermoplastic resins such as homopolymers or copolymers.
- Thermoplastic resins are divinylbenzene, ethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, 1,3-butylene glycol di (meth) acrylate, allyl (meth) It may be made crosslinkable or crosslinkable with a crosslinking agent such as acrylate, triacryl formal, triallyl isocyanurate or the like.
- a hollow particle type foaming agent may be used individually by 1 type, and may use 2 or more types together.
- the mass average particle diameter of the hollow particle type foaming agent (in an unexpanded microsphere state) is preferably 1 to 100 ⁇ m.
- the addition amount of the hollow particle type foaming agent is not particularly limited, and is, for example, 0.1 to 100 parts by mass with respect to 100 parts by mass of the polymer composition excluding the hollow particle type foaming agent.
- ⁇ Physical foaming agent examples include aliphatic hydrocarbons such as propane, butane and pentane; alicyclic hydrocarbons such as cyclobutane, cyclopentane and cyclohexane; chlorodifluoromethane, difluoromethane, trifluoromethane, trichlorofluoromethane, dichloromethane, Dichlorofluoromethane, dichlorodifluoromethane, trichlorofluoromethane, chloromethane, chloroethane, dichlorotrifluoroethane, dichlorofluoroethane, chlorodifluoroethane, dichloropentafluoroethane, pentafluoroethane, trifluoroethane, dichlorotetrafluoroethane, trichlorotrimethane Halogenated hydrocarbons such as fluoroethane, tetrach
- the addition amount of the physical foaming agent is not particularly limited, and is, for example, 0.1 to 100 parts by mass with respect to 100 parts by mass of the polymer composition excluding the physical foaming agent.
- foaming agents it is suitable for foam molding because it becomes supercritical at a relatively low temperature and pressure, has a high impregnation rate into a polymer composition in a molten state, and can be mixed at a high concentration.
- supercritical carbon dioxide is preferable because uniform bubbles can be obtained.
- the second polymer composition of the present invention may contain a foam nucleating agent (nucleating agent).
- foam nucleating agent examples include powders of inorganic compounds such as calcium carbonate, talc, mica, silica, and titania. By containing these foam nucleating agents in the polymer composition, the foamed cell diameter can be easily adjusted, and a foamed molded article having appropriate flexibility and the like can be obtained.
- the particle size of the foam nucleating agent is preferably 0.1 to 50 ⁇ m, more preferably 0.1 to 20 ⁇ m.
- the particle size of the foam nucleating agent is not less than the lower limit of the above range, the effect as the foam nucleating agent is easily obtained, the foam cell diameter tends to be small, and the foam cell diameter tends to be uniform.
- the particle size of the foam nucleating agent is not more than the upper limit of the above range, the foamed cell diameter and the number of foamed cells are appropriate, and the foamed molded article tends to have excellent cushioning properties.
- the content of the foam nucleating agent is preferably 0 to 20 parts by mass, more preferably 0.01 to 15 parts by mass, and still more preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the polymer composition.
- a foam nucleating agent to a molding machine as masterbatch, such as a polypropylene resin.
- the physical property value of the (hydrogenated) conjugated diene polymer was measured by the following method. However, the following physical property values (1) to (3) are for the polymer before hydrogenation, and the physical property values (4) to (7) below are for the polymer after hydrogenation. is there.
- Vinyl bond content and styrene unit content The vinyl bond content was determined by an infrared absorption spectrum method (Morello method). However, the unit of vinyl bond content is on a mol% basis.
- the styrene unit content was determined by preparing a calibration curve by the infrared absorption spectrum method (Morero method). However, the unit of the content of styrene units is based on mass%.
- Weight average molecular weight (Mw) The weight average molecular weight (Mw) is a polystyrene equivalent weight average molecular weight measured by gel permeation chromatography (GPC) (HLC-8120, manufactured by Tosoh Corporation). ⁇ Developing solvent: Tetrahydrofuran (THF) ⁇ Measurement temperature: 40 °C -Column: TSKgel GMHxl (3) Coupling rate The coupling rate is a value representing how much of a polymer that is coupled or branched is included in the total polymer. It was determined from the ratio of the coupled polymer after addition of the coupling agent by GPC analysis.
- melt flow rate (MFR) The melt flow rate (MFR) was measured according to JIS K7210 under the conditions of temperature: 230 ° C. and load: 2.16 kg.
- Mooney viscosity (MV1 + 4) Mooney viscosity (MV1 + 4) conforms to JIS K6300, using L rotor, preheating 1 minute, rotor operating time 4 minutes, hydrogenated BR at a temperature of 125 ° C, hydrogenated SBR at a temperature It measured on 100 degreeC conditions.
- Glass transition temperature (Tg) The glass transition temperature (Tg) was determined according to ASTM D3418.
- the reaction solution was brought to 80 ° C. or higher, 4.48 g of diethylaluminum chloride, 3.11 g of bis ( ⁇ 5-cyclopentadienyl) titanium (furfuryloxy) chloride, 1.18 g of n-butyllithium were added, and a hydrogen pressure of 1. Hydrogenation reaction was carried out so as to maintain 0 MPa. When the amount of absorbed hydrogen reached an integrated amount at which the desired hydrogenation rate was achieved, the reaction solution was returned to room temperature and normal pressure and extracted from the reaction vessel to obtain a polymer solution.
- the resulting polymer solution was desolvated by steam stripping, and dried with a hot roll adjusted to 110 ° C. to obtain a hydrogenated conjugated diene polymer A.
- Example 2A In the same manner as in Example 1A, except that N- (tert-butyldimethylsilyl) piperazine was changed to N ′-(N, N-bis (trimethylsilyl) aminoethyl) piperazine in Example 1A, hydrogenated conjugated diene Polymer B was obtained.
- Example 3A In Example 1A, 32.3 mmol of N, N-bis (trimethylsilyl) aminopropylmethyldiethoxysilane was added and reacted for 15 minutes, and 1.60 mmol of silicon tetrachloride was added and reacted for 5 minutes. Then, hydrogenated conjugated diene polymer C was obtained in the same manner as in Example 1A, except that 29.1 mmol of N, N-bis (trimethylsilyl) aminopropylmethyldiethoxysilane was added and the reaction was performed for 15 minutes.
- Example 4A In Example 1A, hydrogenation was performed in the same manner as in Example 1A, except that after obtaining a polymer solution after the hydrogenation reaction, 32.1 mmol of silicon tetrachloride was added as an onium generator and the reaction was performed for 5 minutes. A conjugated diene polymer D was obtained.
- Example 3A A hydrogenated conjugated diene polymer G was obtained in the same manner as in Example 1A, except that N- (tert-butyldimethylsilyl) piperazine was changed to piperidine in Example 1A.
- Example 4A In Example 1A, except that 29.1 mmol of N- (tert-butyldimethylsilyl) piperazine and 38.0 mmol of n-butyllithium were added as polymerization initiators, 38.0 mmol of n-butyllithium was added. In the same manner as in Example 1A, a hydrogenated conjugated diene polymer H was obtained.
- Static ratio (Dynamic elastic modulus 1 at 70 Hz) / (Dynamic elastic modulus 2 at 0.1 Hz)
- Comparative Example 4A since the conventional polymerization initiator n-butyllithium is used, it is estimated that the static ratio was poorly evaluated. In Comparative Example 3A, since the modified polymerization initiator composed of n-butyllithium and piperidine is used, the static ratio is estimated to be poor. In Comparative Example 2A, since the hydrogenation reaction was not performed, it is estimated that the evaluation of Tb and Eb was low. In contrast, in Example 1A, a modified polymerization initiator composed of n-butyllithium and a specific amine compound is used, so that it is presumed that the static ratio is excellent.
- the reaction solution was brought to 80 ° C. or more, 3.67 g of diethylaluminum chloride, 2.27 g of bis ( ⁇ 5-cyclopentadienyl) titanium (furfuryloxy) chloride, 0.83 g of n-butyllithium were added, and a hydrogen pressure of 1.
- the reaction was performed for 2 hours while maintaining 0 MPa. After the reaction, the reaction solution was returned to room temperature and normal pressure and extracted from the reaction vessel to obtain a polymer solution.
- the obtained polymer solution was desolvated by steam stripping, and dried by a hot roll adjusted to 110 ° C. to obtain a hydrogenated conjugated diene copolymer a.
- Example 2B A hydrogenated conjugated diene was prepared in the same manner as in Example 1B except that N- (tert-butyldimethylsilyl) piperazine was changed to N ′-(N, N-bis (trimethylsilyl) aminoethyl) piperazine in Example 1B. Copolymer b was obtained.
- Example 3B In Example 1B, 26.5 mmol of N, N-bis (trimethylsilyl) aminopropylmethyldiethoxysilane was added and reacted for 15 minutes, and 1.33 mmol of silicon tetrachloride was added and reacted for 5 minutes. Then, hydrogenated conjugated diene copolymer c was obtained in the same manner as in Example 1B except that 22.2 mmol of N, N-bis (trimethylsilyl) aminopropylmethyldiethoxysilane was added and the reaction was performed for 15 minutes. .
- Example 4B In Example 1B, hydrogenation was performed in the same manner as in Example 1B, except that 26.8 mmol of silicon tetrachloride was added as an onium generator and the reaction was performed for 5 minutes after obtaining the polymer solution after the hydrogenation reaction. A conjugated diene copolymer d was obtained.
- the reaction solution was brought to 80 ° C. or higher, and 3.67 g of diethylaluminum chloride, 3.79 g of bis ( ⁇ 5-cyclopentadienyl) titanium (furfuryloxy) chloride and 0.83 g of n-butyllithium were added, and a hydrogen pressure of 1.
- the reaction was performed for 2 hours while maintaining 0 MPa.
- the reaction solution was returned to room temperature and normal pressure and extracted from the reaction vessel to obtain a polymer solution.
- the obtained polymer solution was desolvated by steam stripping, and dried with a hot roll adjusted to 110 ° C. to obtain a hydrogenated conjugated diene copolymer e.
- Example 3B A hydrogenated conjugated diene copolymer g was obtained in the same manner as in Example 1B except that N- (tert-butyldimethylsilyl) piperazine was changed to piperidine in Example 1B.
- Example 1B instead of adding 23.8 mmol of N- (tert-butyldimethylsilyl) piperazine and 33 mmol of n-butyllithium as the polymerization initiator, Example 1B was used except that 33 mmol of n-butyllithium was added. In the same manner as above, a hydrogenated conjugated diene copolymer h was obtained.
- (Iii) Abrasion resistance The above-mentioned crosslinked body was used as a measurement sample, a DIN abrasion tester (manufactured by Toyo Seiki Co., Ltd.) was used, and the measurement was performed at 25 ° C. under a load of 10 N in accordance with JIS K6264. It displays with the index
- the first stage polymerization was carried out at a polymerization initiation temperature of 50 ° C., then, the temperature was set to 15 ° C., 4471 g of 1,3-butadiene was added, and the second stage polymerization was carried out with heat insulation. Thereafter, the temperature was set to 80 ° C., 316 g of styrene was added, and the third stage polymerization was performed by heat insulation. After completion of the polymerization, the mixture was left for 10 minutes while supplying hydrogen gas at a pressure of 0.4 MPa-Gauge.
- the reaction solution was brought to 80 ° C., 2.5 g of silicon tetrachloride, 1.2 g of diethylaluminum chloride and 2.9 g of bis ( ⁇ 5-cyclopentadienyl) titanium (furfuryloxy) chloride were added as hydrogenation catalysts, The reaction was carried out for 2 hours while maintaining 1.0 MPa. This reaction solution was put into a large amount of methyl alcohol, and the precipitated solid was collected and dried in a vacuum dryer to obtain a hydrogenated block copolymer.
- the obtained hydrogenated block copolymer had a hydrogenation rate of 98%, a weight average molecular weight of 125,000, and a melt flow rate (230 ° C., 2.16 kg) of 30 g / 10 min.
- the vinyl bond content measured at the end of the third stage block polymerization was calculated to be 79 mol%.
- the styrene unit content was 15% by mass.
- Example 1C instead of adding 11.1 g of N- (tert-butyldimethylsilyl) piperazine and 5.5 g of n-butyllithium as the polymerization initiator, 4.7 g of piperidine and n-butyl were used in Comparative Example 1C.
- a hydrogenated block copolymer was obtained in the same manner as in Example 1C, except that 5.5 g of lithium was added and only 5.5 g of n-butyllithium was added in Comparative Example 1C ′.
- Example 2C SEBS Add 24 kg of cyclohexane, 472 g of styrene, 201 g of tetrahydrofuran, 13.1 g of N- (tert-butyldimethylsilyl) piperazine and 6.6 g of n-butyllithium as a polymerization initiator to a reaction vessel having an internal volume of 50 liters purged with nitrogen. Then, the first stage polymerization was carried out at a polymerization initiation temperature of 50 ° C., then, 4771 g of 1,3-butadiene was added at a temperature of 15 ° C., and the second stage polymerization was carried out by heat insulation. After completion of the polymerization, 3.2 g of methyldichlorosilane was added and reacted for 30 minutes, and the mixture was left for 10 minutes while supplying hydrogen gas at a pressure of 0.4 MPa-Gauge.
- the reaction solution was brought to 80 ° C., and 0.95 g of silicon tetrachloride, 1.1 g of diethylaluminum chloride and 3.1 g of bis ( ⁇ 5-cyclopentadienyl) titanium (furfuryloxy) chloride were added as a hydrogenation catalyst.
- the reaction was carried out for 2 hours while maintaining 1.0 MPa.
- This reaction solution was put into a large amount of methyl alcohol, and the precipitated solid was collected and dried in a vacuum dryer to obtain a hydrogenated block copolymer.
- the resulting hydrogenated block copolymer had a hydrogenation rate of 98%, a weight average molecular weight of 170,000, a coupling rate of 60%, and a melt flow rate (230 ° C., 2.16 kg) of 7 g / 10 min. Met.
- the vinyl bond content measured at the end of the second stage block polymerization was calculated to be 64 mol%.
- the styrene unit content was 9% by mass.
- Example 2C SEBS In Example 2C, instead of adding 13.1 g of N- (tert-butyldimethylsilyl) piperazine and 6.6 g of n-butyllithium as the polymerization initiator, only 6.6 g of n-butyllithium was added. Except for the above, a hydrogenated block copolymer was obtained in the same manner as in Example 2C.
- Example 3C SEBS (silazane modification) Into a reaction vessel having an internal volume of 50 liters purged with nitrogen, 22 kg of cyclohexane, 562 g of styrene, 7.4 g of 2,2-di (tetrahydrofuryl) propane, and N- (tert-butyldimethylsilyl) piperazine as a polymerization initiator 11.
- the reaction solution was brought to 80 ° C., and 9.4 g of diethylaluminum chloride, 7.6 g of bis ( ⁇ 5-cyclopentadienyl) titanium (furfuryloxy) chloride and 2.0 g of n-butyllithium were added as hydrogenation catalysts, The reaction was carried out for 2 hours while maintaining the pressure at 1.0 MPa. This reaction solution was put into a large amount of methyl alcohol, and the precipitated solid was collected and dried in a vacuum dryer to obtain a hydrogenated block copolymer.
- the obtained hydrogenated block copolymer had a hydrogenation rate of 98%, a weight average molecular weight of 135,000, and a melt flow rate (230 ° C., 2.16 kg) of 15 g / 10 min.
- the vinyl bond content measured at the end of the fourth stage block polymerization was calculated to be 80 mol%.
- the styrene unit content was 15% by mass.
- Example 3C SEBS (silazane modification)
- Example 3C instead of adding 11.3 g of N- (tert-butyldimethylsilyl) piperazine and 5.6 g of n-butyllithium as polymerization initiators, only 5.6 g of n-butyllithium was added. Except for the above, a hydrogenated block copolymer was obtained in the same manner as in Example 3C.
- Example 4C CEBC Into a reaction vessel with an internal volume of 50 liters purged with nitrogen, 26 kg of cyclohexane, 973 g of 1,3-butadiene, 1.3 g of tetrahydrofuran, 5.7 g of N- (tert-butyldimethylsilyl) piperazine as a polymerization initiator and n-butyl 2.8 g of lithium was added, and the first stage polymerization was carried out at a polymerization start temperature of 70 ° C., then, the temperature was set to 20 ° C., 31 g of tetrahydrofuran was added, 2270 g of 1,3-butadiene was added, and the second stage was insulated. Polymerized.
- the reaction solution was brought to 80 ° C. and 0.24 g of diethylaluminum chloride, 2.1 g of bis ( ⁇ 5-cyclopentadienyl) titanium (furfuryloxy) chloride and 0.26 g of n-butyllithium were added as a hydrogenation catalyst, The reaction was carried out for 2 hours while maintaining the hydrogen pressure at 1.0 MPa. This reaction solution was put into a large amount of methyl alcohol, and the precipitated solid was collected and dried in a vacuum dryer to obtain a hydrogenated block copolymer.
- the resulting hydrogenated block copolymer had a hydrogenation rate of 98%, a weight average molecular weight of 275,000, a coupling rate of 80%, and a melt flow rate (230 ° C., 2.16 kg) of 4. It was 5 g / 10 minutes.
- the vinyl bond content of the 1,3-butadiene unit (vinyl bond content of block A) measured at the end of the first stage block polymerization was 15 mol%. Further, from the vinyl bond content of the 1,3-butadiene unit measured at the end of the second stage block polymerization and the vinyl bond content of the first stage, the 1,3-butadiene unit in the second stage block was determined.
- the vinyl bond content (block B vinyl bond content) was calculated to be 36 mol%.
- Example 4C CEBC In Example 4C, instead of adding 5.7 g of N- (tert-butyldimethylsilyl) piperazine and 2.8 g of n-butyllithium as the polymerization initiator, only 2.8 g of n-butyllithium was added. A hydrogenated block copolymer was obtained in the same manner as in Example 4C.
- Example 5C SEBC Into a reaction vessel with an internal volume of 50 liters purged with nitrogen, 24 kg of cyclohexane, 1846 g of 1,3-butadiene, 1.2 g of tetrahydrofuran, and 11.6 g of N- (tert-butyldimethylsilyl) piperazine as a polymerization initiator and n-butyl 5.8 g of lithium was added, and the first stage polymerization was performed at a polymerization start temperature of 70 ° C., then, the temperature was set to 20 ° C., 52 g of tetrahydrofuran was added, 2374 g of 1,3-butadiene and 791 g of styrene were added, and heat insulation was performed.
- Second stage polymerization was performed. Thereafter, the temperature was set to 80 ° C., 264 g of styrene was added, and the third stage polymerization was performed by heat insulation. After completion of the polymerization, the mixture was left for 10 minutes while supplying hydrogen gas at a pressure of 0.4 MPa-Gauge.
- the reaction solution is brought to 80 ° C., and 3.2 g of methyldichlorosilane and 2.7 g of bis ( ⁇ 5-cyclopentadienyl) titanium (furfuryloxy) chloride are added as a hydrogenation catalyst to maintain a hydrogen pressure of 1.0 MPa. For 2 hours.
- This reaction solution was put into a large amount of methyl alcohol, and the precipitated solid was collected and dried in a vacuum dryer to obtain a hydrogenated block copolymer.
- the obtained hydrogenated block copolymer had a hydrogenation rate of 98%, a weight average molecular weight of 140,000, and a melt flow rate (230 ° C., 2.16 kg) of 5.5 g / 10 min.
- the vinyl bond content of the 1,3-butadiene unit (vinyl bond content of block A) measured at the end of the first stage block polymerization was 15 mol%. Further, from the vinyl bond content of the 1,3-butadiene unit measured at the end of the second stage block polymerization and the vinyl bond content of the first stage, the 1,3-butadiene unit in the second stage block was determined.
- the vinyl bond content (block B vinyl bond content) was calculated to be 41 mol%.
- the styrene unit content was 20% by mass (the styrene unit content of block B was 25% by mass).
- Example 5C SEBC In Example 5C, instead of adding 11.6 g of N- (tert-butyldimethylsilyl) piperazine and 5.8 g of n-butyllithium as the polymerization initiator, only 5.8 g of n-butyllithium was added. Otherwise, a hydrogenated block copolymer was obtained in the same manner as in Example 5C.
- Example 6C SEBC (silazane modification) Into a reaction vessel with an internal volume of 50 liters purged with nitrogen, 25 kg of cyclohexane, 829 g of 1,3-butadiene, 1.3 g of tetrahydrofuran, 7.4 g of N- (tert-butyldimethylsilyl) piperazine as a polymerization initiator and n-butyl 3.7 g of lithium was added, and the first stage polymerization was carried out at a polymerization start temperature of 70 ° C., then the temperature was set to 20 ° C., 52 g of tetrahydrofuran was added, 3027 g of 1,3-butadiene was added, and the second stage was heat-insulated. Polymerized. Thereafter, the temperature was set to 80 ° C., 207 g of styrene was added, and the third stage polymerization was performed by heat insulation. Thereafter, 83 g of 1,3
- the reaction solution was brought to 80 ° C., and 1.5 g of silicon tetrachloride, 2.8 g of diethylaluminum chloride, 3.2 g of bis ( ⁇ 5-cyclopentadienyl) titanium (furfuryloxy) chloride, n-butyllithium 1 as a hydrogenation catalyst .2 g was added and reacted for 2 hours while maintaining a hydrogen pressure of 1.0 MPa. This reaction solution was put into a large amount of methyl alcohol, and the precipitated solid was collected and dried in a vacuum dryer to obtain a hydrogenated block copolymer.
- the obtained hydrogenated block copolymer had a hydrogenation rate of 98%, a weight average molecular weight of 15,000, and a melt flow rate (230 ° C., 2.16 kg) of 3 g / 10 min.
- the vinyl bond content of the 1,3-butadiene unit (vinyl bond content of block A) measured at the end of the first stage block polymerization was 15 mol%. Further, from the vinyl bond content of the 1,3-butadiene unit measured at the end of the second stage block polymerization and the vinyl bond content of the first stage, the 1,3-butadiene unit in the second stage block was determined.
- the vinyl bond content (block B vinyl bond content) was calculated to be 42 mol%.
- the styrene unit content was 5% by mass.
- Example 6C SEBC (silazane modification)
- Example 6C instead of adding 7.4 g of N- (tert-butyldimethylsilyl) piperazine and 3.7 g of n-butyllithium as polymerization initiators, only 3.7 g of n-butyllithium was added.
- a hydrogenated block copolymer was obtained in the same manner as in Example 6C.
- Example 1D 68 parts of polypropylene (trade name “BC06C” manufactured by Nippon Polypro), 27 parts of polylactic acid (trade name “Ingeo 3001D” manufactured by Nature Works), 5 parts of hydrogenated block copolymer obtained in Example 1C, anti-aging 0.1 part of an agent (trade name “Irganox 1010”, manufactured by BASF) was mixed with a Henschel mixer at room temperature for 30 seconds.
- the obtained pellets were dried at 80 ° C. for 5 hours using a dehumidifying dryer to obtain a thermoplastic resin composition.
- the obtained thermoplastic resin composition was molded at a processing temperature of 200 ° C. with an injection molding machine (manufactured by Nippon Steel Works) to obtain a test piece for evaluating physical properties.
- Example 1D a thermoplastic resin composition and a test piece for evaluating physical properties were obtained in the same manner as in Example 1D, except that the type of the hydrogenated block copolymer was changed as described in Table 5.
- Example 4D 63 parts of polyethylene terephthalate (trade name “RT523C” manufactured by Nippon Unipet), 27 parts of polyethylene (trade name “NOVATEC UF331” manufactured by Nippon Polypro), 10 parts of the hydrogenated block copolymer obtained in Example 4C, aging 0.1 part of an inhibitor (trade name “Irganox 1010”, manufactured by BASF) was mixed with a Henschel mixer at room temperature for 30 seconds.
- an inhibitor trade name “Irganox 1010”, manufactured by BASF
- the obtained pellets were dried at 80 ° C. for 5 hours using a dehumidifying dryer to obtain a thermoplastic resin composition.
- the obtained thermoplastic resin composition was molded at a processing temperature of 280 ° C. by an injection molding machine (manufactured by Nippon Steel Works) to obtain a test piece for evaluating physical properties.
- thermoplastic resin composition and a test piece for evaluating physical properties were obtained in the same manner as in Example 4D, except that the type of hydrogenated block copolymer was changed as described in Table 6 in Example 4D.
- thermoplastic resin composition The following evaluation was performed using the thermoplastic resin composition and the test piece obtained above.
- Test piece evaluation method (1) Rigidity According to ISO 178, the bending elastic modulus of the test piece was measured under a temperature condition of 23 ° C. by a three-point bending test method. The magnitude of the flexural modulus was used as an index representing the rigidity of the test piece.
- test piece obtained by molding the resin composition obtained in Examples etc. into a flat plate shape by injection molding is cut into a grid pattern with a cutter, and an adhesive tape is attached to the cut, and immediately adhered. Pull the adhesive tape slowly so that the angle between the tape and the test piece is 90 degrees, and visually check whether or not at least a part of the surface layer of the test piece is peeled off. The delamination of the pieces was evaluated.
- ⁇ The surface does not peel off.
- X The surface peels.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Polymerization Catalysts (AREA)
Abstract
Description
[2]式(x)で表される構造を有するアミン化合物が、式(x1)で表される化合物および式(x2)で表される化合物から選ばれる少なくとも1種の化合物である、前記[1]に記載の水添共役ジエン重合体の製造方法。
[3]式(y)で表される構造を有するアミン化合物が、式(y1)で表される化合物および式(y2)で表される化合物から選ばれる少なくとも1種の化合物である、前記[1]に記載の水添共役ジエン重合体の製造方法。
[4]前記[1]~[3]のいずれか1項に記載の製造方法により得られる水添共役ジエン重合体。
[6]前記[4]または[5]に記載の水添共役ジエン重合体と、カーボンブラックおよびシリカから選ばれる少なくとも1種とを含有する重合体組成物。
本発明の水添共役ジエン重合体の製造方法は、
(1)式(x)および(y)のうち少なくとも1種の構造を有するアミン化合物と、アルカリ金属化合物およびアルカリ土類金属化合物から選ばれる少なくとも1種の金属化合物とからなる重合開始剤(以下「変性重合開始剤」ともいう。)の存在下で、少なくとも共役ジエン化合物を重合して、共役ジエン重合体を得る工程と、
(2)前記共役ジエン重合体を水素添加する工程と
を有する。
工程(1)の一実施態様は、重合反応を行う工程(1a)を含む。必要に応じて、重合反応等で得られた活性点を有する共役ジエン重合体に対して、カップリング反応を行う工程(1b)、重合反応等で得られた活性点を有する共役ジエン重合体と、当該活性点と反応しうる変性剤とを反応させて、当該重合体をさらに変性する工程(1c)、重合反応、カップリング反応または変性反応で得られた活性点を有する共役ジエン重合体に対して、重合停止反応を行う工程(1d)から選ばれる1または2以上の工程を含む。
工程(1a)では、変性重合開始剤の存在下で、共役ジエン化合物等のモノマーを重合して、共役ジエン重合体を得る。重合形態としては、アニオン重合(リビングアニオン重合)を採用することが好ましい。
(A)芳香族ビニル化合物単位量が80質量%以上である芳香族ビニル重合体ブロック。
(B)共役ジエン化合物単位量が80質量%以上であって、且つ
ビニル結合含量が30モル%未満の共役ジエン重合体ブロック。
(C)共役ジエン化合物単位量が80質量%以上であって、且つ
ビニル結合含量が30~90モル%の共役ジエン重合体ブロック。
(D)共役ジエン化合物単位量が20質量%を超えて80質量%未満である、共役ジエン化合物と芳香族ビニル化合物とのランダム共重合体ブロック。
本発明では、重合開始剤として、式(x)および(y)のうち少なくとも1種の構造を有するアミン化合物と、アルカリ金属化合物およびアルカリ土類金属化合物から選ばれる少なくとも1種の金属化合物とからなる変性重合開始剤が用いられる。前記変性重合開始剤は、例えば、前記アミン化合物と前記金属化合物とを反応させて得ることができる。
本発明で用いられる共役ジエン化合物(共役ジエンモノマー)としては、例えば、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、1,3-ヘキサジエン、1,3-ヘプタジエン、2,3-ジメチルブタジエン、2-フェニル-1,3-ブタジエン、3-メチル-1,3-ペンタジエン、2-クロロ-1,3-ブタジエンが挙げられる。これらの中でも、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエンが好ましい。
本発明において、モノマーとして、共役ジエン化合物以外のモノマー(以下「他のモノマー」ともいう。)を用いることができ、芳香族ビニル化合物(芳香族ビニルモノマー)を好ましく用いることができる。
溶液重合法における溶媒としては、例えば、炭化水素溶媒等の重合反応に不活性な有機溶媒を用いることができる。炭化水素溶媒としては、例えば、脂肪族炭化水素溶媒、脂環族炭化水素溶媒、芳香族炭化水素溶媒が挙げられ、炭素数3~8の炭化水素溶媒が好ましい。
ビニル含量調整剤(以下「ランダマイザー」ともいう。)は、共役ジエン化合物由来のビニル結合含量の調整等のために用いることができる。例えば、共役ジエンブロック共重合体のミクロ構造、すなわち1,2結合含量および3,4結合含量は、ランダマイザーを上記炭化水素溶媒と共に用いることにより制御することができる。
本発明の製造方法は、活性リチウム末端等の活性点を有する共役ジエン重合体と、当該活性点と反応しうるカップリング剤とを反応させる工程(1b)を有していてもよい。
カップリング反応により、共役ジエン重合体が活性リチウム末端等の活性点を有する場合、共役ジエン重合体のムーニー粘度の調整ができ、重合体に分岐構造を導入することもできる。
本発明の製造方法は、活性リチウム末端等の活性点を有する共役ジエン重合体と、当該活性点と反応しうる変性剤とを反応させて、重合体をさらに変性する工程(1c)を有していてもよい。
これらの中でも、好ましい化合物の例として、N,N-ビス(トリエチルシリル)アミノプロピルメチルジメトキシシラン、N,N-ビス(トリメチルシリル)アミノプロピルメチルジメトキシシラン、N,N-ビス(トリメチルシリル)アミノプロピルメチルジエトキシシラン、N,N-ビス(トリメチルシリル)アミノプロピルトリエトキシシラン、1-(3-トリエトキシシリルプロピル)-2,2,5,5-テトラメチル-1-アザ-2,5-ジシラシクロペンタン、N,N’,N’-トリス(トリメチルシリル)-N-(2-アミノエチル)-3-アミノプロピルトリエトキシシラン、1-トリメチルシリル-2,2-ジメトキシ-1-アザ-2-シラシクロペンタン、N-〔3-(トリメトキシシリル)-プロピル〕-N,N’-ジエチル-N’-トリメチルシリル-エタン-1,2-ジアミン、N-〔3-(トリエトキシシリル)-プロピル〕-N,N’-ジエチル-N’-トリメチルシリル-エタン-1,2-ジアミン、N-トリメチルシリル-N-メチルアミノプロピルメチルジエトキシシラン、3-(4-トリメチルシリル-1-ピペラジノ)プロピルトリエトキシシラン、N-[2-(トリメトキシシリル)-エチル]-N,N’,N’-トリメチルエタン-1,2-ジアミン、1-[3-(トリエトキシシリル)-プロピル]-4-メチルピペラジン、2-(トリメトキシシリル)-1,3-ジメチルイミダゾリジン、2-(3-トリメトキシシリル-プロピル)-1,3-ジメチルイミダゾリジン、3-ジメチルアミノプロピルトリメトキシシラン、3-ジエチルアミノプロピルトリメトキシシラン、3-ジメチルアミノプロピルトリエトキシシラン、3-ジエチルアミノプロピルトリエトキシシラン、ビス[3-(トリエトキシシリル)プロピル]トリメチルシリルアミン、ビス[3-(トリメトキシシリル)プロピル]トリメチルシリルアミン、3-(4-メチル-1‐ピペラジノ)プロピルトリエトキシシランが挙げられる。
本発明の製造方法は、活性リチウム末端等の活性点を有する共役ジエン重合体と、当該活性点と反応しうる重合停止剤とを反応させる工程(1d)を有していてもよい。
上述の重合反応、カップリング反応または変性反応において、得られる共役ジエン重合体が活性リチウム末端等の活性点を有する場合、重合停止剤を用いることにより、その活性点を失活させることができる。
工程(2)では、工程(1)で得られた共役ジエン重合体を水素添加する。水素添加の方法・反応条件については特に限定はなく、例えば、20~150℃、0.1~10MPaの水素加圧下、水添触媒の存在下で行われる。
本発明の製造方法は、上述のオニウムになり得る基を有する水添変性共役ジエン重合体とオニウム生成剤とを混合して反応させる工程(3)を有していてもよい。この工程によって、水添変性共役ジエン重合体にオニウム構造を導入し、その形状保持性を高めることができる。オニウム生成剤によってオニウムになり得る基は、式(z)中のA31に相当する基である。
以上のようにして得られた水添共役ジエン重合体を含有する溶液から、例えば、共役ジエン重合体の製造における公知の脱溶媒方法および乾燥の操作によって、前記共役ジエン重合体を回収することができる。公知の脱溶媒方法としては、スチームストリッピング法、ドラムドライヤ法、瞬間蒸発(フラッシュ)脱溶媒法等が挙げられる。
本発明の水添共役ジエン重合体は、重合体末端に、式(X)および(Y)のうち少なくとも1種の構造を有する。また、本発明の水添共役ジエン重合体は、式(Z)で表される構造を有していてもよい。
本発明の第1の重合体組成物は、本発明の水添共役ジエン重合体を含有し、さらに当該重合体以外の重合体成分(以下「他の重合体成分」ともいう。)を含有することができる。また、本発明の第1の重合体組成物は、カーボンブラックおよびシリカから選ばれる少なくとも1種を含有することができる。
本発明の第1の重合体組成物においては、本発明の水添共役ジエン重合体を特に制限なく含有することができるが、ウェットスキッド抵抗性、低ヒステリシスロス特性、および耐摩耗性のバランスの観点から、上述の共役ジエン単独重合体およびランダム共重合体が好ましい。
他の重合体成分としては、例えば、天然ゴム、合成イソプレンゴム、ブタジエンゴム、変性ブタジエンゴム、スチレン-ブタジエンゴム、変性スチレン-ブタジエンゴム、エチレン-α-オレフィン共重合ゴム、エチレン-α-オレフィン-ジエン共重合ゴム、アクリロニトリル-ブタジエン共重合ゴム、クロロプレンゴム、ハロゲン化ブチルゴム、スチレン-イソプレン共重合ゴム、ブタジエン-イソプレン共重合体ゴム、ランダムスチレン-ブタジエン-イソプレン共重合ゴム、スチレン-アクリロニトリル-ブタジエン共重合ゴム、アクリロニトリル-ブタジエン共重合ゴム、ポリスチレン-ポリブタジエン-ポリスチレンブロック共重合体が挙げられる。
カーボンブラックとしては、例えば、SRF、GPF、FEF、HAF、ISAF、SAF、ISAF-HS、ISAF-LS、IISAF-HS、HAF-HS、HAF-LSに代表されるファーネスブラック、アセチレンブラック、サーマルブラック、チャンネルブラック、グラファイト、さらに、グラファイト繊維、フラーレン等の各グレードのカーボンブラックが挙げられる。また、ヨウ素吸着量(IA)が60mg/g以上であり、ジブチルフタレート吸油量(DBP)が80ml/100g以上のカーボンブラックが好ましい。カーボンブラックを用いることにより、架橋体のグリップ性能および耐破壊特性の改良効果が大きくなる。架橋体の耐摩耗性を向上させる観点から、SRF、HAF、ISAF、SAFが特に好ましい。
本発明の第1の重合体組成物に補強剤としてシリカを配合する場合、補強効果をさらに向上させるために、シランカップリッグ剤を配合することが好ましい。シランカップリング剤としては、例えば、ビス(3-トリエトキシシリルプロピル)テトラスルフィド、ビス(3-トリエトキシシリルプロピル)トリスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィド、ビス(2-トリエトキシシリルエチル)テトラスルフィド、ビス(3-トリメトキシシリルプロピル)テトラスルフィド、ビス(2-トリメトキシシリルエチル)テトラスルフィド、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、2-メルカプトエチルトリメトキシシラン、2-メルカプトエチルトリエトキシシラン、3-トリメトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリエトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、2-トリエトキシシリルエチル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリメトキシシリルプロピルベンゾチアゾリルテトラスルフィド、3-トリエトキシシリルプロピルベンゾリルテトラスルフィド、3-トリエトキシシリルプロピルメタクリレートモノスルフィド、3-トリメトキシシリルプロピルメタクリレートモノスルフィド、ビス(3-ジエトキシメチルシリルプロピル)テトラスルフィド、3-メルカプトプロピルジメトキシメチルシラン、ジメトキシメチルシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、ジメトキシメチルシリルプロピルベンゾチアゾリルテトラスルフィド、3-メタクリロキシプロピルトリメトキシシラン、特開2006-249069号公報に例示されているメルカプトシラン化合物が挙げられる。
本発明の第1の重合体組成物の調製に際し、混練り時の加工性の改良、あるいはウェットスキッド抵抗性、低ヒステリシスロス特性、および耐摩耗性のバランスをさらに向上させる目的で、相容化剤を混練り時に添加することができる。
・エポキシ基含有化合物:エチレングリシジルメタクリレート、ブチルグリシジルエーテル、ジグリシジルエーテル、酸化プロピレン、ネオペンチルグリコールシグリシジルエーテル、エポキシ樹脂、エポキシ化大豆油、エポキシ化脂肪酸エステルなど。
・カルボン酸化合物:アジピン酸、オクチル酸、メタクリル酸など。
・カルボン酸エステル化合物:アクリル酸エステル、アクリル酸ジエチレン、メタクリル酸エチル、オルト酢酸エステル、アセト酢酸エチル、酢酸ブチル、酢酸イソプロピル、ジメチルカーボネート、p-ヒドロキシフェニル酢酸、ポリエステル系可塑剤、ステアリン酸系可塑剤など。
・ケトン化合物:メチルシクロヘキサノン、アセチルアセトンなど。
・エーテル化合物:イソプロピルエーテル、ジブチルエーテルなど。
・アルデヒド化合物:ウンデシレンアルデヒド、デシルアルデヒド、バニリン、3,4-ジメトキシベンズアルデヒド、クミンアルデヒドなど。
・アミノ基含有化合物:イソプロピルアミン、ジイソプロピルアミン、トリエチルアミン、3-エトキシプロピルアミン、2-エチルヘキシルアミン、イソプロパノールアミン、N-エチルエチレンジアミン、エチレンイミン、ヘキサメチレンジアミン、3-ラウリルオキシプロピルアミン、アミノフェノール、アニリン、3-イソプロポキシアニリン、フェニレンジアミン、アミノピリジン、N-メチルジエタノールアミン、N-メチルエタノールアミン、3-アミノ-1-プロパノール、塩酸エチルアミン、塩酸-n-ブチルアミンなど。
・水酸基含有化合物:イソプロピルアルコール、ブタノール、オクタノール、オクタンジオール、エチレングリコール、メチルシクロヘキサノール、2-メルカプトエタノール、3-メチル-3-メトキシ-1-ブタノール、3-メチル-1,5-ペンタンジオール、1-オクタデカノール、ジエチレングリコール、ブチレングリコール、ジブチレングリコール、トリエチレングリコールなど。
・アルコキシシラン化合物:トリメチルメトキシシラン、トリメチルエトキシシラン、ジメチルジメトキシシラン、メチルトリエトキシシラン、メチルトリフェノキシシラン、テトラエトキシシラン、メチルジエトキシシラン、ビニルトリメトキシシランなど。
・シロキサン化合物:ジメチルシロキサンオリゴマー、シリコーンオイル、アミノ変性シリコーンオイル、エポキシ変性シリコーンオイル、カルボキシル変性シリコーンオイル、ポリエーテル変性シリコーンオイル、アルキル変性シリコーンオイル、高級脂肪酸エステル変性シリコーンオイル、高級アルコキシ変性シリコーンオイル、高級脂肪酸含有シリコーンオイルなど。
・アミノシラン化合物:ヘキサメチルジシラザン、ノナメチルトリシラザン、アニリトリメチルシラン、ビス(ジメチルアミノ)ジメチルシラン、ビス(ジエチルアミノ)ジメチルシラン、トリエチルアミノシランなど。
本発明の第1の重合体組成物は、所望により、ゴム工業界で通常用いられている各種の薬品や添加剤等を含有することができる。薬品または添加剤としては、例えば、架橋剤(例:加硫剤)、架橋助剤(例:加硫助剤)、加工助剤、架橋促進剤、プロセス油、老化防止剤、スコーチ防止剤、亜鉛華が挙げられる。
本発明の第1の重合体組成物は、開放式混練機(例:ロール)、密閉式混練機(例:バンバリーミキサー)等の混練機を用いて、各成分を混練することによって製造することができる。
本発明の第1の重合体組成物は、成形加工後に架橋(加硫)することによって、架橋体として、各種ゴム製品に適用可能である。架橋体の用途としては、例えば、タイヤトレッド、アンダートレッド、カーカス、サイドウォール、ビード部等のタイヤ用途;防振ゴム、防舷材、ベルト、ホース、その他の工業品等の用途が挙げられる。本発明の架橋体は、低燃費性能を与える観点から、特に、タイヤトレッド用ゴムとして好適に使用される。
本発明の第2の重合体組成物は、本発明の水添共役ジエン重合体(以下「成分(I)」ともいう。)と、成分(I)以外の、非極性重合体(以下「成分(II-1)」ともいう。)および極性重合体(以下「成分(II-2)」ともいう。)から選ばれる少なくとも1種の重合体とを含有する。
本発明の第2の重合体組成物においては、本発明の水添共役ジエン重合体を特に制限なく含有することができるが、極性樹脂との相容性の向上の観点から、上述の共役ジエンブロック共重合体が好ましい。
成分(II-1)としては、オレフィン重合体および芳香族ビニル重合体が好ましい。
成分(II-2)としては、例えば、カルボキシル基(酸無水物または金属塩となっているカルボキシル基も含む。)、ヒドロキシル基、ハロゲン基、エポキシ基、オキサゾリン基、スルホン酸基、イソシアネート基、チオール基、エステル結合、カーボネート結合、アミド結合、エーテル結合、ウレタン結合および尿素結合から選ばれる少なくとも1種の官能基を有する重合体が好ましい。
エチレン・アクリル酸共重合体(EAA)、エチレン・メタクリル酸共重合体(EMA)、エチレン・無水マレイン酸・(メタ)アクリル酸共重合体、エチレン・(メタ)アクリル酸エチル・無水マレイン酸共重合体、(メタ)アクリル酸由来の構造単位の含有量が7~15mol%である、エチレンと(メタ)アクリル酸との共重合体で、且つNa、Zn、Mg等の金属イオンによる中和度が20%以上であるアイオノマー(IO)等のカルボキシル基含有重合体;
ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)、ポリ乳酸(PLA),ポリヒドロキシアルカン酸(PHA)、ポリラクトン、ポリカプロラクトン、ポリエチレンサクシネート、ポリブチレンサクシネート、ポリエチレンアジペート、ポリブチレンサクシネートアジペート等のポリエステル樹脂;
ナイロン4,6(PA46)、ナイロン6(PA6)、ナイロン6,6(PA66)、ナイロン6,10(PA610)、ナイロン6,12(PA612)、ナイロン12(PA12)、ナイロン6,T(PA6T)、ナイロン9,T(PA9T)、強化ポリアミド、ヘキサメチレンジアミンとテレフタル酸とから形成された変性ポリアミド等のポリアミド樹脂(PA);
エチレン・アクリル酸メチル共重合体(EMA)、エチレン・アクリル酸エチル共重合体(EEA)、エチレン・アクリル酸イソプロピル共重合体、エチレン・アクリル酸2-エチルへキシル共重合体、エチレン・メタクリル酸メチル共重合体、エチレン・メタクリル酸エチル共重合体、エチレン・メタクリル酸イソブチル共重合体、エチレン・メタクリル酸ブチル共重合体、エチレン・メタクリル酸ヒドロキシエチル共重合体(HEMA)、エチレン・メタクリル酸2-ヒドロキシプロピル共重合体、エチレン・メタクリル酸アミノアルキル共重合体、エチレン・メタクリル酸グリシジル共重合体(EGMA)、ポリメタクリル酸メチル(PMMA)、ポリメタクリル酸エチル(PEMA)、メタクリル-スチレン共重合体(MS Resin)等のアクリル重合体;
ポリ-2,2-ビス(ヒドロキシフェニル)プロパンカーボネート等のポリカーボネート(PC);ポリ(2,6-ジメチル-1,4-フェニレンエーテル)、ポリ(2-メチル-6-エチル-1,4-フェニレンエーテル)、ポリ(2-メチル-6-フェニル-1,4-フェニレンエーテル)、ポリ(2,6-ジクロロ-1,4-フェニレンエーテル)、変性ポリフェニレンエーテル(変性PPE)等のポリフェニレンエーテル(PPE); ポリ酢酸ビニル(PVAc)、液晶性ポリエステル(LCP)、ポリアセタール(POM)、ABS樹脂、AES樹脂、ASA樹脂、EVA樹脂、エチレン・プロピオン酸ビニル共重合体、ジアリルフタレート樹脂(DAP)、フェノール樹脂(PF)、ポリビニルアルコール(PVA)、エチレン-ビニルアルコール共重合体(EVOH)、ポリアリレート(PAR)、ノルボルネン樹脂、ポリエチレンオキサイド、ポリフェニレンスルフィド(PPS)、ポリスルホン(PSU)、ポリエーテルスルホン(PES);
熱可塑性ポリエステルエラストマー、熱可塑性ポリウレタンエラストマー、熱可塑性ポリアミドエラストマー、α,β-不飽和ニトリル-アクリル酸エステル-不飽和ジエン共重合ゴム、ウレタンゴム、塩素化ブチルゴム、臭素化ブチルゴム、アクリルゴム、エチレン・アクリルゴム、エピクロルヒドリンゴム、エピクロルヒドリン・エチレンオキシドゴム、クロロプレンゴム;
クロロスルフォン化ポリエチレン、塩素化ポリエチレン、塩素化ポリプロピレン、オキサゾリン変性ポリスチレン、オキサゾリン変性スチレン・アクリロニトリル共重合体
が挙げられる。
本発明の第2の重合体組成物は、充填剤(以下「成分(III)」ともいう。)を含有していてもよい。成分(III)としては、例えば、水酸化マグネシウム、水酸化アルミニウム、水酸化ジルコニウム、水酸化カルシウム、水酸化バリウム、塩基性炭酸マグネシウム、ドロマイト、ハイドロタルサイト、酸化錫、酸化チタン、酸化亜鉛、酸化鉄、酸化マグネシウム、アルミナ、硫酸バリウム、硫酸カルシウム、硫酸ナトリウム、亜硫酸カルシウム、ケイ酸カルシウム、炭酸カルシウム、炭酸マグネシウム、リン酸塩化合物、カーボン、ガラスビーズ、ガラスパウダー、アスベスト、マイカ、タルク、シリカ、ゼオライト、カオリン、ケイ砂、ケイ石、石英粉、シラス、炭素繊維、金属繊維等の無機繊維、チタン酸カリウムウィスカー等の無機ウィスカーが挙げられる。これらは1種単独で用いてもよく、2種以上を併用してもよい。
本発明の第2の重合体組成物には、上記成分以外に、その他の添加剤として、老化防止剤、耐候剤、金属不活性剤、光安定剤、紫外線吸収剤、熱安定剤等の安定剤、防菌・防黴剤、分散剤、軟化剤、可塑剤、架橋剤、共架橋剤、加硫剤、加硫助剤、発泡剤、発泡助剤、着色剤、フェライト等の金属粉末、アラミド繊維等の有機繊維、複合繊維等を配合することができる。また、グラファイト、軽石、エボ粉、コットンフロック、コルク粉、フッ素樹脂、ポリマービーズ、ポリオレフィンワックス、セルロースパウダー、ゴム粉、低分子量ポリマー等を配合してもよい。架橋させる場合には、その方法は特に限定されず、硫黄架橋、過酸化物架橋、電子線架橋、紫外線架橋、放射線架橋、金属イオン架橋、シラン架橋、樹脂架橋等が挙げられる。なお、発泡剤については、発泡成形を説明する際にあわせて説明する。
本発明の第2の重合体組成物の調製には、押出機、加圧ニーダー、開放式混練機(例:ロール)、密閉式混練機(例:バンバリーミキサー)等の等の従来公知の混練り機、およびそれらを組み合わせた混練り機を使用することができる。混練りするにあたり、各成分を一括混練りしてもよく、また任意の成分を混練りした後、残りの成分を添加して混練りする多段分割混練り法を採用することができる。
化学発泡剤としては、例えば、熱分解型発泡剤、中空粒子型発泡体が挙げられる。
物理発泡剤としては、例えば、プロパン、ブタンおよびペンタンなどの脂肪族炭化水素;シクロブタン、シクロペンタン、シクロヘキサンなどの脂環式炭化水素;クロロジフルオロメタン、ジフルオロメタン、トリフルオロメタン、トリクロロフルオロメタン、ジクロロメタン、ジクロロフルオロメタン、ジクロロジフルオロメタン、トリクロロフルオロメタン、クロロメタン、クロロエタン、ジクロロトリフルオロエタン、ジクロロフルオロエタン、クロロジフルオロエタン、ジクロロペンタフルオロエタン、ペンタフルオロエタン、トリフルオロエタン、ジクロロテトラフロオロエタン、トリクロロトリフルオロエタン、テトラクロロジフルオロエタン、クロロペンタフルオロエタン、パーフルオロシクロブタンなどのハロゲン化炭化水素;二酸化炭素、窒素、空気などの無機ガス;水が挙げられる。また、超臨界流体を用いて発泡体を成形することもできる。超臨界流体としては、例えば、窒素、二酸化炭素の超臨界流体が挙げられる。物理発泡剤は1種単独で用いてもよく、2種以上を併用してもよい。
本発明の第2の重合体組成物には、発泡核剤(造核剤)を含有させてもよい。
特許第3777810号公報の記載に従って、水添触媒であるビス(η5-シクロペンタジエニル)チタニウム(フルフリルオキシ)クロライド(以下「クロロビス(2,4-シクロペンタジエニル)チタン(IV)フルフリルアルコキシド」ともいう。)を得た。
(水添)共役ジエン重合体の物性値は、以下の方法で測定した。ただし、下記(1)~(3)の物性値は、水添前の重合体についてのものであり、下記(4)~(7)の物性値は、水添後の重合体についてのものである。
ビニル結合含量は、赤外吸収スペクトル法(モレロ法)によって求めた。ただし、ビニル結合含量の単位は、モル%基準である。スチレン単位の含有量は、赤外吸収スペクトル法(モレロ法)により、検量線を作成して求めた。ただし、スチレン単位の含有量の単位は、質量%基準である。
重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)(東ソー(株)製、HLC-8120)法により測定された、ポリスチレン換算の重量平均分子量である。
・展開溶媒:テトラヒドロフラン(THF)
・測定温度:40℃
・カラム:TSKgel GMHxl
(3)カップリング率
カップリング率は、カップリングまたは分岐した重合体が、全重合体のうちどれだけ含まれているかを表す値である。GPC分析によりカップリング剤添加後のカップリングした重合体の割合から求めた。
水添率は、四塩化炭素を溶媒として用い、400MHz、1H-NMRスペクトルから算出した。
メルトフローレート(MFR)は、JIS K7210に準拠し、温度:230℃、荷重:2.16kgの条件下で測定した。
ムーニー粘度(MV1+4)は、JIS K6300に準拠し、Lローターを使用して、予熱1分、ローター作動時間4分、水添BRの場合は温度125℃の条件で、水添SBRの場合は温度100℃の条件で測定した。
ガラス転移温度(Tg)は、ASTM D3418に準拠して求めた。
[実施例1A]
窒素置換された内容積50リットルの反応容器に、シクロヘキサン25.6kg、テトラヒドロフラン38.4g、1,3-ブタジエン3200g、ならびに重合開始剤としてN-(tert-ブチルジメチルシリル)ピペラジン29.1mmolおよびn-ブチルリチウム38.0mmolを加え、重合開始温度40℃からの断熱重合を行った。
実施例1Aにおいて、N-(tert-ブチルジメチルシリル)ピペラジンをN'-(N,N-ビス(トリメチルシリル)アミノエチル)ピペラジンに変更したこと以外は実施例1Aと同様にして、水添共役ジエン重合体Bを得た。
実施例1Aにおいて、N,N-ビス(トリメチルシリル)アミノプロピルメチルジエトキシシラン32.3mmolを加えて15分間反応を行ったことに変えて、四塩化ケイ素1.60mmolを加えて5分間反応を行い、次いでN,N-ビス(トリメチルシリル)アミノプロピルメチルジエトキシシラン29.1mmolを加えて15分間反応を行ったこと以外は実施例1Aと同様にして、水添共役ジエン重合体Cを得た。
実施例1Aにおいて、水添反応後の重合体溶液を得た後に、オニウム生成剤として四塩化ケイ素32.1mmolを加えて5分間反応を行ったこと以外は実施例1Aと同様にして、水添共役ジエン重合体Dを得た。
窒素置換された内容積50リットルの反応容器に、シクロヘキサン25.6kg、テトラヒドロフラン38.4g、1,3-ブタジエン3200gおよび重合開始剤としてn-ブチルリチウム38.0mmolを加え、重合開始温度40℃からの断熱重合を行った。重合完結後、系内に水素ガスを0.4MPa-Gaugeの圧力で供給しながら10分間攪拌を行った。反応液を80℃以上にして、ジエチルアルミニウムクロリド2.32g、ビス(η5-シクロペンタジエニル)チタニウム(フルフリルオキシ)クロライド5.19gを加え、水素圧1.0MPaを保つようにして水添反応を行った。水素の吸収量が目的の水添率となる積算量に達した時点で、反応液を常温、常圧に戻して反応容器より抜き出し、重合体溶液を得た。得られた重合体溶液に対してスチームストリッピングにより脱溶媒を行い、110℃に調温された熱ロールにより乾燥を行うことで、水添共役ジエン重合体Eを得た。
水添反応を行なかった以外は実施例1Aと同様にして、共役ジエン重合体Fを得た。
実施例1Aにおいて、N-(tert-ブチルジメチルシリル)ピペラジンをピペリジンに変更したこと以外は実施例1Aと同様にして、水添共役ジエン重合体Gを得た。
実施例1Aにおいて、重合開始剤としてN-(tert-ブチルジメチルシリル)ピペラジン29.1mmolおよびn-ブチルリチウム38.0mmolを加えたことに変えて、n-ブチルリチウム38.0mmolを加えたこと以外は実施例1Aと同様にして、水添共役ジエン重合体Hを得た。
温度制御装置を付属したプラストミル(内容量:250ml)を使用し、一段目の混練として、充填率72容量%、回転数60rpm、100℃の条件で、実施例または比較例で得られた(水添)共役ジエン重合体、亜鉛華、ステアリン酸、シリカ、カップリング剤、SRFカーボンおよび軟化剤を表2の配合処方に従って混練した。ついで、二段目の混練として、上記で得た配合物を室温まで冷却後、架橋剤を表2の配合処方に従って混練した。これを成型し、160℃で所定時間、加硫プレスにて加硫して架橋体を作成し、以下の特性評価を実施した。
[実施例1B]
窒素置換された内容積50リットルの反応容器に、シクロヘキサン25.6kg、テトラヒドロフラン179g、スチレン864g、1,3-ブタジエン2336g、ならびに重合開始剤としてN-(tert-ブチルジメチルシリル)ピペラジン23.8mmolおよびn-ブチルリチウム33mmolを加え、重合開始温度45℃からの断熱重合を行った。重合転化率が99%に達した時点で、1,3-ブタジエン64gを2分間かけて追加し、さらに3分間重合させた。
実施例1Bにおいて、N-(tert-ブチルジメチルシリル)ピペラジンをN'-(N,N-ビス(トリメチルシリル)アミノエチル)ピペラジンに変更したこと以外は実施例1Bと同様にして、水添共役ジエン共重合体bを得た。
実施例1Bにおいて、N,N-ビス(トリメチルシリル)アミノプロピルメチルジエトキシシラン26.5mmolを加えて15分間反応を行ったことに変えて、四塩化ケイ素1.33mmolを加えて5分間反応を行い、次いでN,N-ビス(トリメチルシリル)アミノプロピルメチルジエトキシシラン22.2mmolを加えて15分間反応を行ったこと以外は実施例1Bと同様にして、水添共役ジエン共重合体cを得た。
実施例1Bにおいて、水添反応後の重合体溶液を得た後に、オニウム生成剤として四塩化ケイ素26.8mmolを加えて5分間反応を行ったこと以外は実施例1Bと同様にして、水添共役ジエン共重合体dを得た。
窒素置換された内容積50リットルの反応容器に、シクロヘキサン25.6kg、テトラヒドロフラン179g、スチレン864g、1,3-ブタジエン2336gおよび重合開始剤としてn-ブチルリチウム33mmolを加え、重合開始温度45℃からの断熱重合を行った。重合転化率が99%に達した時点で、1,3-ブタジエン64gを2分間かけて追加し、さらに3分間重合させた。重合完結後、系内に水素ガスを0.4MPa-Gaugeの圧力で供給しながら10分間攪拌した。反応液を80℃以上にして、ジエチルアルミニウムクロリド3.67g、ビス(η5-シクロペンタジエニル)チタニウム(フルフリルオキシ)クロライド3.79g、n-ブチルリチウム0.83gを加え、水素圧1.0MPaを保つようにして2時間反応させた。反応後、反応液を常温、常圧に戻して反応容器より抜き出し、重合体溶液を得た。得られた重合体溶液に対してスチームストリッピングにより脱溶媒を行い、110℃に調温された熱ロールにより乾燥を行うことで、水添共役ジエン共重合体eを得た。
水添反応を行なかった以外は実施例1Bと同様にして、共役ジエン共重合体fを得た。
実施例1Bにおいて、N-(tert-ブチルジメチルシリル)ピペラジンをピペリジンに変更したこと以外は実施例1Bと同様にして、水添共役ジエン共重合体gを得た。
実施例1Bにおいて、重合開始剤としてN-(tert-ブチルジメチルシリル)ピペラジン23.8mmolおよびn-ブチルリチウム33mmolを加えたことに変えて、n-ブチルリチウム33mmolを加えたこと以外は実施例1Bと同様にして、水添共役ジエン共重合体hを得た。
温度制御装置を付属したプラストミル(内容量:250ml)を使用し、一段目の混練として、充填率72容量%、回転数60rpm、100℃の条件で、実施例または比較例で得られた(水添)共役ジエン共重合体、亜鉛華、ステアリン酸、シリカ、カップリング剤および老化防止剤を表4の配合処方に従って、混練した。ついで、二段目の混練として、上記で得た配合物を室温まで冷却後、架橋剤および架橋促進剤を表4の配合処方に従って混練した。これを成型し、160℃で所定時間、加硫プレスにて加硫して架橋体を作成し、以下の特性評価を実施した。
(i)0℃tanδ:上記架橋体を測定用試料とし、動的スペクトロメーター(米国レオメトリックス社製)を使用し、引張動歪0.14%、角速度100ラジアン毎秒、0℃の条件で測定した。比較例1Bを100とした指数で表示し、数値が大きいほどウェットスキッド抵抗性が大きく良好である。
(ii)70℃tanδ:上記架橋体を測定用試料とし、動的スペクトロメーター(米国レオメトリックス社製)を使用し、引張動歪0.7%、角速度100ラジアン毎秒、70℃の条件で測定した。比較例1Bを100とした指数で表示し、数値が大きいほど低ヒステリシスロス特性が小さく良好である。
(iii)耐摩耗性:上記架橋体を測定用試料とし、DIN摩耗試験機(東洋精機社製)を使用し、JIS K6264に準拠し、荷重10Nで25℃にて測定した。比較例1Bを100とした指数で表示し、数値が大きいほど耐摩耗性が良好である。
(iv)引張破断強度(TB),引張破断伸び(EB):上記架橋体を測定用試料とし、JIS K6251に準拠し、室温(23℃)にて測定した。数値が大きいほど、力学特性に優れていることを示している。
[実施例1C]SEBS
窒素置換された内容積50リットルの反応容器に、シクロヘキサン24kg、スチレン473g、テトラヒドロフラン568g、ならびに重合開始剤としてN-(tert-ブチルジメチルシリル)ピペラジン11.1gおよびn-ブチルリチウム5.5gを加え、重合開始温度50℃にて1段目重合し、その後、温度を15℃として、1,3-ブタジエン4471gを加えて断熱にて2段目重合した。その後、温度を80℃として、スチレン316gを加えて断熱にて3段目重合した。重合完結後、水素ガスを0.4MPa-Gaugeの圧力で供給しながら10分間放置した。
実施例1Cにおいて、重合開始剤としてN-(tert-ブチルジメチルシリル)ピペラジン11.1gおよびn-ブチルリチウム5.5gを加えたことに変えて、比較例1Cではピペリジン4.7gおよびn-ブチルリチウム5.5gを加え、比較例1C'ではn-ブチルリチウム5.5gのみを加えたこと以外は実施例1Cと同様にして、水添ブロック共重合体を得た。
窒素置換された内容積50リットルの反応容器に、シクロヘキサン24kg、スチレン472g、テトラヒドロフラン201g、ならびに重合開始剤としてN-(tert-ブチルジメチルシリル)ピペラジン13.1gおよびn-ブチルリチウム6.6gを加え、重合開始温度50℃にて1段目重合し、その後、温度を15℃として1,3-ブタジエン4771gを加えて断熱にて2段目重合した。重合完結後、メチルジクロロシラン3.2gを加えて30分間反応させ、水素ガスを0.4MPa-Gaugeの圧力で供給しながら10分間放置した。
実施例2Cにおいて、重合開始剤としてN-(tert-ブチルジメチルシリル)ピペラジン13.1gおよびn-ブチルリチウム6.6gを加えたことに変えて、n-ブチルリチウム6.6gのみを加えたこと以外は実施例2Cと同様にして、水添ブロック共重合体を得た。
窒素置換された内容積50リットルの反応容器に、シクロヘキサン22kg、スチレン562g、2,2-ジ(テトラヒドロフリル)プロパン7.4g、ならびに重合開始剤としてN-(tert-ブチルジメチルシリル)ピペラジン11.3gおよびn-ブチルリチウム5.6gを加え、重合開始温度50℃にて1段目重合し、その後、温度を15℃として、1,3-ブタジエン5184gを加えて断熱にて2段目重合した。その後、温度を80℃として、スチレン375gを加えて断熱にて3段目重合した。その後、1,3-ブタジエン125gを加えた。
実施例3Cにおいて、重合開始剤としてN-(tert-ブチルジメチルシリル)ピペラジン11.3gおよびn-ブチルリチウム5.6gを加えたことに変えて、n-ブチルリチウム5.6gのみを加えたこと以外は実施例3Cと同様にして、水添ブロック共重合体を得た。
窒素置換された内容積50リットルの反応容器に、シクロヘキサン26kg、1,3-ブタジエン973g、テトラヒドロフラン1.3g、ならびに重合開始剤としてN-(tert-ブチルジメチルシリル)ピペラジン5.7gおよびn-ブチルリチウム2.8gを加え、重合開始温度70℃にて1段目重合し、その後、温度を20℃として、テトラヒドロフラン31gを加えた後、1,3-ブタジエン2270gを加えて断熱にて2段目重合した。
実施例4Cにおいて、重合開始剤としてN-(tert-ブチルジメチルシリル)ピペラジン5.7gおよびn-ブチルリチウム2.8gを加えたことに変えて、n-ブチルリチウム2.8gのみを加えたこと以外は実施例4Cと同様にして、水添ブロック共重合体を得た。
窒素置換された内容積50リットルの反応容器に、シクロヘキサン24kg、1,3-ブタジエン1846g、テトラヒドロフラン1.2g、ならびに重合開始剤としてN-(tert-ブチルジメチルシリル)ピペラジン11.6gおよびn-ブチルリチウム5.8gを加え、重合開始温度70℃にて1段目重合し、その後、温度を20℃として、テトラヒドロフラン52gを加えた後、1,3-ブタジエン2374gおよびスチレン791gを加えて断熱にて2段目重合した。その後、温度を80℃として、スチレン264gを加えて断熱にて3段目重合した。重合完結後、水素ガスを0.4MPa-Gaugeの圧力で供給しながら10分間放置した。
実施例5Cにおいて、重合開始剤としてN-(tert-ブチルジメチルシリル)ピペラジン11.6gおよびn-ブチルリチウム5.8gを加えたことに変えて、n-ブチルリチウム5.8gのみを加えたこと以外は実施例5Cと同様にして、水添ブロック共重合体を得た。
窒素置換された内容積50リットルの反応容器に、シクロヘキサン25kg、1,3-ブタジエン829g、テトラヒドロフラン1.3g、ならびに重合開始剤としてN-(tert-ブチルジメチルシリル)ピペラジン7.4gおよびn-ブチルリチウム3.7gを加え、重合開始温度70℃にて1段目重合し、その後、温度を20℃として、テトラヒドロフラン52gを加えた後、1,3-ブタジエン3027gを加えて断熱にて2段目重合した。その後、温度を80℃として、スチレン207gを加えて断熱にて3段目重合した。その後、1,3-ブタジエン83gを加えた。
実施例6Cにおいて、重合開始剤としてN-(tert-ブチルジメチルシリル)ピペラジン7.4gおよびn-ブチルリチウム3.7gを加えたことに変えて、n-ブチルリチウム3.7gのみを加えたこと以外は実施例6Cと同様にして、水添ブロック共重合体を得た。
[実施例1D]
ポリプロピレン(商品名「BC06C」日本ポリプロ社製)68部、ポリ乳酸(商品名「Ingeo 3001D」ネイチャーワークス社製)27部、実施例1Cで得られた水添ブロック共重合体5部、老化防止剤(商品名「イルガノックス1010」、BASF社製)0.1部をヘンシェルミキサーにて室温で30秒間混合した。その後、得られた混合物を二軸押出機(同方向非噛み合い型スクリュー、L/D=33.5、(株)池貝製、品名「PCM-45」)に吐出量20kg/時間で供給し、温度200℃、スクリュー回転数200rpm(せん断速度:470s-1)で押出を行い、ペレットを得た。得られたペレットを除湿乾燥機を用いて80℃で5時間乾燥を行い、熱可塑性樹脂組成物を得た。得られた熱可塑性樹脂組成物を射出成形機(日本製鋼所社製)にて加工温度200℃で成形して物性評価用の試験片を得た。
実施例1Dにおいて、水添ブロック共重合体の種類を表5に記載したとおりに変更したこと以外は実施例1Dと同様にして、熱可塑性樹脂組成物および物性評価用の試験片を得た。
ポリエチレンテレフタレート(商品名「RT523C」日本ユニペット社製)63部、ポリエチレン(商品名「ノバテックUF331」日本ポリプロ社製)27部、実施例4Cで得られた水添ブロック共重合体10部、老化防止剤(商品名「イルガノックス1010」、BASF社製)0.1部をヘンシェルミキサーにて室温で30秒間混合した。その後、得られた混合物を二軸押出機(同方向非噛み合い型スクリュー、L/D=33.5、(株)池貝製、品名「PCM-45」)に吐出量20kg/時間で供給し、温度280℃、スクリュー回転数200rpm(せん断速度:470s-1)で押出を行い、ペレットを得た。得られたペレットを除湿乾燥機を用いて80℃で5時間乾燥を行い、熱可塑性樹脂組成物を得た。得られた熱可塑性樹脂組成物を射出成形機(日本製鋼所社製)にて加工温度280℃で成形して物性評価用の試験片を得た。
実施例4Dにおいて、水添ブロック共重合体の種類を表6に記載したとおりに変更したこと以外は実施例4Dと同様にして、熱可塑性樹脂組成物および物性評価用の試験片を得た。
(1)剛性
ISO 178に従って、三点曲げ試験法により、23℃の温度条件下で、試験片の曲げ弾性率を測定した。曲げ弾性率の大きさを、試験片の剛性を表す指標とした。
ISO 179に従って、シャルピー衝撃試験器により、23℃の温度条件下で、試験片のシャルピー衝撃強度を測定した。シャルピー衝撃強度の大きさを、試験片の耐衝撃性を表す一つの指標とした。なお、NBは、試験片がこの試験で破壊されなかったことを示す。
試験片の耐衝撃性を表すもう一つの指標として、試験片の面衝撃性を測定した。面衝撃性は、実施例等で得られた樹脂組成物を射出成形して得られた55mm×80mm×2.4mmの平板状試験片を25mmφの穴の上に置き、先端が半球状の15.7mmφの打撃棒を用いて2.4mm/secの速度で試験片を打撃し、試験片が破壊するまでの変位と荷重との測定から破壊エネルギーを算出した。破壊エネルギーの大きさを、面衝撃性の指標とした。
ISO 527に従って、23℃の温度条件下で試験片の引張試験を行い、引張破断強度および引張破断伸びを測定した。
実施例等で得られた樹脂組成物を射出成形により平板状に成形した試験片の表面を、下記の基準に従って目視で観察し、試験片の鏡面性を評価した。
○:試験片に映り込んだ映像の歪が小さい。
△:試験片に映り込んだ映像の歪が○と×の間である。
×:試験片に映り込んだ映像の歪が大きい。
実施例等で得られた樹脂組成物を射出成形により平板状に成形した試験片に、カッターで碁盤目状に切れ目を入れ、その切れ目に粘着テープを貼り付け、すぐに粘着テープと試験片とのなす角が90度になるように粘着テープをゆっくりと引っ張ってはがし、試験片の表面層の少なくとも一部が剥離するか否かを目視で確認し、下記の基準に従って試験片の層間剥離を評価した。
○:表面が剥離しない。
×:表面が剥離する。
Claims (7)
- 式(x)および(y)のうち少なくとも1種の構造を有するアミン化合物と、アルカリ金属化合物およびアルカリ土類金属化合物から選ばれる少なくとも1種の金属化合物とからなる重合開始剤の存在下で、少なくとも共役ジエン化合物を重合して、共役ジエン重合体を得る工程と、
前記共役ジエン重合体を水素添加する工程と
を有する、水添共役ジエン重合体の製造方法。
- 式(y)で表される構造を有するアミン化合物が、式(y1)で表される化合物および式(y2)で表される化合物から選ばれる少なくとも1種の化合物である、請求項1に記載の水添共役ジエン重合体の製造方法。
- 請求項1~3のいずれか1項に記載の製造方法により得られる水添共役ジエン重合体。
- 重合体末端に、式(X)および(Y)のうち少なくとも1種の構造を有する水添共役ジエン重合体。
- 請求項4または5に記載の水添共役ジエン重合体と、
カーボンブラックおよびシリカから選ばれる少なくとも1種と
を含有する重合体組成物。 - 請求項4または5に記載の水添共役ジエン重合体と、
非極性重合体および極性重合体から選ばれる少なくとも1種の重合体と
を含有する重合体組成物。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/765,199 US20150368387A1 (en) | 2013-02-14 | 2014-02-14 | Method for producing hydrogenated conjugated diene polymer |
CN201480008770.9A CN104995214A (zh) | 2013-02-14 | 2014-02-14 | 氢化共轭二烯聚合物的制造方法 |
BR112015019419A BR112015019419B8 (pt) | 2013-02-14 | 2014-02-14 | Método para produzir um polímero de dieno conjugado hidrogenado, polímero de dieno conjugado hidrogenado, e, composição polimérica |
KR1020157022073A KR102124874B1 (ko) | 2013-02-14 | 2014-02-14 | 수소 첨가 공액 디엔 중합체의 제조 방법, 수소 첨가 공액 디엔 중합체 및 중합체 조성물 |
EP14751252.9A EP2957572B1 (en) | 2013-02-14 | 2014-02-14 | Method for producing hydrogenated conjugated diene polymer |
JP2015500300A JP6194949B2 (ja) | 2013-02-14 | 2014-02-14 | 水添共役ジエン重合体の製造方法 |
SG11201506040XA SG11201506040XA (en) | 2013-02-14 | 2014-02-14 | Method for producing hydrogenated conjugated diene polymer |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013026616 | 2013-02-14 | ||
JP2013-026616 | 2013-02-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014126184A1 true WO2014126184A1 (ja) | 2014-08-21 |
Family
ID=51354183
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/053419 WO2014126184A1 (ja) | 2013-02-14 | 2014-02-14 | 水添共役ジエン重合体の製造方法 |
Country Status (9)
Country | Link |
---|---|
US (1) | US20150368387A1 (ja) |
EP (1) | EP2957572B1 (ja) |
JP (1) | JP6194949B2 (ja) |
KR (1) | KR102124874B1 (ja) |
CN (1) | CN104995214A (ja) |
BR (1) | BR112015019419B8 (ja) |
HU (1) | HUE051294T2 (ja) |
SG (1) | SG11201506040XA (ja) |
WO (1) | WO2014126184A1 (ja) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016039007A1 (ja) * | 2014-09-08 | 2016-03-17 | 住友ゴム工業株式会社 | 空気入りタイヤ |
WO2016039008A1 (ja) * | 2014-09-08 | 2016-03-17 | 住友ゴム工業株式会社 | 空気入りタイヤ |
WO2016039005A1 (ja) * | 2014-09-08 | 2016-03-17 | 住友ゴム工業株式会社 | 空気入りタイヤ |
WO2016039006A1 (ja) * | 2014-09-08 | 2016-03-17 | 住友ゴム工業株式会社 | 空気入りタイヤ |
WO2016039009A1 (ja) * | 2014-09-08 | 2016-03-17 | 住友ゴム工業株式会社 | 空気入りタイヤ |
JP2016056350A (ja) * | 2014-09-08 | 2016-04-21 | 住友ゴム工業株式会社 | 空気入りタイヤ |
JP2016056351A (ja) * | 2014-09-08 | 2016-04-21 | 住友ゴム工業株式会社 | 空気入りタイヤ |
JP2016056349A (ja) * | 2014-09-08 | 2016-04-21 | 住友ゴム工業株式会社 | 空気入りタイヤ |
JP2016056252A (ja) * | 2014-09-08 | 2016-04-21 | 住友ゴム工業株式会社 | 空気入りタイヤ |
JP2016069628A (ja) * | 2014-09-30 | 2016-05-09 | 住友ゴム工業株式会社 | 空気入りタイヤ |
JP2017145342A (ja) * | 2016-02-18 | 2017-08-24 | 住友ゴム工業株式会社 | 空気入りタイヤ |
JP2017145341A (ja) * | 2016-02-18 | 2017-08-24 | 住友ゴム工業株式会社 | 空気入りタイヤ及び空気入りタイヤの製造方法 |
US10472505B2 (en) | 2016-11-22 | 2019-11-12 | Sumitomo Rubber Industries, Ltd. | Pneumatic tire |
US10618037B2 (en) * | 2015-06-24 | 2020-04-14 | Zeon Corporation | Method for recovering catalyst |
JP2020105378A (ja) * | 2018-12-27 | 2020-07-09 | Toyo Tire株式会社 | タイヤ用ゴム組成物、及びそれを用いた空気入りタイヤ |
US10808082B2 (en) | 2016-10-31 | 2020-10-20 | Sumitomo Rubber Industries, Ltd. | Method for kneading a polymer |
WO2022196643A1 (ja) * | 2021-03-15 | 2022-09-22 | 株式会社Eneosマテリアル | 共役ジエン系重合体及びその製造方法、重合体組成物、架橋体並びにタイヤ |
WO2023171628A1 (ja) * | 2022-03-08 | 2023-09-14 | 株式会社Eneosマテリアル | 重合体組成物及びその製造方法、架橋体、並びにタイヤ |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2880573C (en) * | 2012-08-15 | 2017-05-02 | Gates Corporation | Power transmission belt |
KR101923160B1 (ko) * | 2015-12-24 | 2018-11-29 | 주식회사 엘지화학 | 변성 공액디엔계 중합체, 이의 제조방법 및 변성제 |
US20190062539A1 (en) * | 2016-03-03 | 2019-02-28 | Jsr Corporation | Hydrogenated conjugated diene-based rubber, rubber composition, crosslinked rubber, and tire |
JP6781622B2 (ja) * | 2016-12-15 | 2020-11-04 | Toyo Tire株式会社 | タイヤ用ゴム組成物、及びそれを用いた空気入りタイヤ |
KR102366422B1 (ko) * | 2016-12-26 | 2022-02-24 | 주식회사 엘지화학 | 신규 리튬 화합물 및 이의 제조방법 |
JP7089850B2 (ja) * | 2017-03-31 | 2022-06-23 | 住友化学株式会社 | 共役ジエン系重合体及び共役ジエン系重合体の製造方法 |
EP3950380A4 (en) * | 2019-04-01 | 2022-06-22 | JSR Corporation | CONNECTED PRODUCT AND TIRES |
JP2022057957A (ja) * | 2020-09-30 | 2022-04-11 | Jsr株式会社 | 重合体組成物、架橋体及びタイヤ |
WO2024128877A1 (ko) * | 2022-12-16 | 2024-06-20 | 주식회사 엘지화학 | 공액디엔계 중합체 제조방법 및 그라프트 공중합체 제조방법 |
CN117229431B (zh) * | 2023-11-16 | 2024-07-05 | 中石油(上海)新材料研究院有限公司 | 一种选择性氢化液体聚丁二烯橡胶的制备方法 |
Citations (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4319960B1 (ja) | 1964-01-20 | 1968-08-28 | ||
JPS4740473B1 (ja) | 1969-09-17 | 1972-10-13 | ||
JPS59133203A (ja) | 1983-01-20 | 1984-07-31 | Asahi Chem Ind Co Ltd | 重合体の水添方法 |
JPS62218403A (ja) | 1986-03-19 | 1987-09-25 | Nippon Zeon Co Ltd | 共役ジエン系重合体の水素化方法 |
JPS635401A (ja) | 1986-06-26 | 1988-01-11 | Omron Tateisi Electronics Co | プログラム温度調節器の比例制御方法 |
JPH01275605A (ja) | 1988-04-28 | 1989-11-06 | Japan Synthetic Rubber Co Ltd | 重合体の水素添加方法および触媒 |
JPH05222115A (ja) | 1991-11-28 | 1993-08-31 | Japan Synthetic Rubber Co Ltd | オレフィン性不飽和重合体の水素化方法および水素添加触媒 |
JPH05271326A (ja) | 1992-01-29 | 1993-10-19 | Japan Synthetic Rubber Co Ltd | オレフィン性不飽和重合体の水素化方法および水素添加触媒 |
JPH05271325A (ja) | 1992-01-29 | 1993-10-19 | Japan Synthetic Rubber Co Ltd | オレフィン性不飽和重合体の水素添加方法および水素添加触媒 |
JPH0790017A (ja) | 1990-05-29 | 1995-04-04 | Shell Internatl Res Maatschappij Bv | 共役ジオレフィンポリマーの選択水素化 |
JPH11292924A (ja) | 1998-04-10 | 1999-10-26 | Jsr Corp | オレフイン性不飽和化合物の水素添加触媒および水素添加方法 |
JP2000037632A (ja) | 1998-07-24 | 2000-02-08 | Jsr Corp | オレフイン性不飽和化合物の水素添加触媒および水素添加方法 |
WO2003048216A1 (fr) | 2001-12-03 | 2003-06-12 | Bridgestone Corporation | Procede de production de polymere modifie, polymere modifie obtenu par ce procede et composition de caoutchouc |
JP2005290355A (ja) | 2004-03-11 | 2005-10-20 | Sumitomo Chemical Co Ltd | 変性ジエン系重合体ゴム及びその製造方法 |
JP2005298797A (ja) | 2003-10-08 | 2005-10-27 | Asahi Kasei Chemicals Corp | 脂肪族ポリエステル系樹脂組成物成形体 |
JP2006249069A (ja) | 2005-01-20 | 2006-09-21 | Degussa Ag | メルカプトシラン |
JP2010538109A (ja) * | 2007-08-31 | 2010-12-09 | 株式会社ブリヂストン | 液状重合体及び官能基化重合体の合成 |
JP2011102347A (ja) * | 2009-11-10 | 2011-05-26 | Asahi Kasei Chemicals Corp | ゴム組成物 |
JP2013504662A (ja) * | 2009-09-10 | 2013-02-07 | 株式会社ブリヂストン | ポリアミノ官能性重合開始剤および対応するポリマーを製造するための組成物および方法 |
JP2013028781A (ja) * | 2011-01-24 | 2013-02-07 | Sumitomo Chemical Co Ltd | 共役ジエン系重合体の製造方法、共役ジエン系重合体、及び、共役ジエン系重合体組成物 |
WO2013084671A1 (ja) * | 2011-12-07 | 2013-06-13 | Jsr株式会社 | 変性重合体及びその水素付加物の製造方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5268427A (en) * | 1990-01-16 | 1993-12-07 | Mobil Oil Corporation | Solid block and random elastomeric copolymers |
WO1997043337A1 (fr) * | 1996-05-15 | 1997-11-20 | Sumitomo Chemical Company, Limited | Composition d'elastomere thermoplastique pulverulente et article obtenu par moulage de celle-ci |
KR100267080B1 (ko) * | 1998-08-03 | 2000-10-02 | 박찬구 | 공액디엔 중합체의 수소화 방법 |
ES2307678T3 (es) * | 2001-03-26 | 2008-12-01 | Jsr Corporation | Polimero modificado hidrogenado, procedimiento para producir el mismo y composicion que contiene el mismo. |
KR100577042B1 (ko) * | 2001-04-11 | 2006-05-08 | 아사히 가세이 가부시키가이샤 | 수소첨가 중합체 및 이의 제조 방법 |
EP1454924B1 (en) * | 2001-09-21 | 2009-03-18 | Zeon Corporation | Method of hydrogenating conjugated diene polymer, hydrogenation catalyst system, and composition of basic conjugated diene polymer |
US20030114592A1 (en) * | 2001-10-24 | 2003-06-19 | Fmc Corporation | Processes for improving stability of living polymer chain ends |
EP1942120B1 (en) * | 2005-09-22 | 2012-03-07 | Asahi Kasei Chemicals Corporation | Conjugated diene polymer and process for production thereof |
-
2014
- 2014-02-14 US US14/765,199 patent/US20150368387A1/en not_active Abandoned
- 2014-02-14 BR BR112015019419A patent/BR112015019419B8/pt active IP Right Grant
- 2014-02-14 CN CN201480008770.9A patent/CN104995214A/zh active Pending
- 2014-02-14 KR KR1020157022073A patent/KR102124874B1/ko active IP Right Grant
- 2014-02-14 EP EP14751252.9A patent/EP2957572B1/en active Active
- 2014-02-14 SG SG11201506040XA patent/SG11201506040XA/en unknown
- 2014-02-14 JP JP2015500300A patent/JP6194949B2/ja active Active
- 2014-02-14 HU HUE14751252A patent/HUE051294T2/hu unknown
- 2014-02-14 WO PCT/JP2014/053419 patent/WO2014126184A1/ja active Application Filing
Patent Citations (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4319960B1 (ja) | 1964-01-20 | 1968-08-28 | ||
JPS4740473B1 (ja) | 1969-09-17 | 1972-10-13 | ||
JPS59133203A (ja) | 1983-01-20 | 1984-07-31 | Asahi Chem Ind Co Ltd | 重合体の水添方法 |
JPS62218403A (ja) | 1986-03-19 | 1987-09-25 | Nippon Zeon Co Ltd | 共役ジエン系重合体の水素化方法 |
JPS635401A (ja) | 1986-06-26 | 1988-01-11 | Omron Tateisi Electronics Co | プログラム温度調節器の比例制御方法 |
JPH01275605A (ja) | 1988-04-28 | 1989-11-06 | Japan Synthetic Rubber Co Ltd | 重合体の水素添加方法および触媒 |
JPH0790017A (ja) | 1990-05-29 | 1995-04-04 | Shell Internatl Res Maatschappij Bv | 共役ジオレフィンポリマーの選択水素化 |
JPH05222115A (ja) | 1991-11-28 | 1993-08-31 | Japan Synthetic Rubber Co Ltd | オレフィン性不飽和重合体の水素化方法および水素添加触媒 |
JPH05271326A (ja) | 1992-01-29 | 1993-10-19 | Japan Synthetic Rubber Co Ltd | オレフィン性不飽和重合体の水素化方法および水素添加触媒 |
JPH05271325A (ja) | 1992-01-29 | 1993-10-19 | Japan Synthetic Rubber Co Ltd | オレフィン性不飽和重合体の水素添加方法および水素添加触媒 |
JPH11292924A (ja) | 1998-04-10 | 1999-10-26 | Jsr Corp | オレフイン性不飽和化合物の水素添加触媒および水素添加方法 |
JP2000037632A (ja) | 1998-07-24 | 2000-02-08 | Jsr Corp | オレフイン性不飽和化合物の水素添加触媒および水素添加方法 |
JP3777810B2 (ja) | 1998-07-24 | 2006-05-24 | Jsr株式会社 | オレフイン性不飽和化合物の水素添加触媒および水素添加方法 |
WO2003048216A1 (fr) | 2001-12-03 | 2003-06-12 | Bridgestone Corporation | Procede de production de polymere modifie, polymere modifie obtenu par ce procede et composition de caoutchouc |
JP2005298797A (ja) | 2003-10-08 | 2005-10-27 | Asahi Kasei Chemicals Corp | 脂肪族ポリエステル系樹脂組成物成形体 |
JP2005290355A (ja) | 2004-03-11 | 2005-10-20 | Sumitomo Chemical Co Ltd | 変性ジエン系重合体ゴム及びその製造方法 |
JP2006249069A (ja) | 2005-01-20 | 2006-09-21 | Degussa Ag | メルカプトシラン |
JP2010538109A (ja) * | 2007-08-31 | 2010-12-09 | 株式会社ブリヂストン | 液状重合体及び官能基化重合体の合成 |
JP2013504662A (ja) * | 2009-09-10 | 2013-02-07 | 株式会社ブリヂストン | ポリアミノ官能性重合開始剤および対応するポリマーを製造するための組成物および方法 |
JP2011102347A (ja) * | 2009-11-10 | 2011-05-26 | Asahi Kasei Chemicals Corp | ゴム組成物 |
JP2013028781A (ja) * | 2011-01-24 | 2013-02-07 | Sumitomo Chemical Co Ltd | 共役ジエン系重合体の製造方法、共役ジエン系重合体、及び、共役ジエン系重合体組成物 |
WO2013084671A1 (ja) * | 2011-12-07 | 2013-06-13 | Jsr株式会社 | 変性重合体及びその水素付加物の製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2957572A4 |
Cited By (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106795335B (zh) * | 2014-09-08 | 2019-12-27 | 住友橡胶工业株式会社 | 充气轮胎 |
CN106795335A (zh) * | 2014-09-08 | 2017-05-31 | 住友橡胶工业株式会社 | 充气轮胎 |
JPWO2016039006A1 (ja) * | 2014-09-08 | 2017-06-15 | 住友ゴム工業株式会社 | 空気入りタイヤ |
JPWO2016039008A1 (ja) * | 2014-09-08 | 2017-06-22 | 住友ゴム工業株式会社 | 空気入りタイヤ |
WO2016039009A1 (ja) * | 2014-09-08 | 2016-03-17 | 住友ゴム工業株式会社 | 空気入りタイヤ |
JP2016056350A (ja) * | 2014-09-08 | 2016-04-21 | 住友ゴム工業株式会社 | 空気入りタイヤ |
JP2016056351A (ja) * | 2014-09-08 | 2016-04-21 | 住友ゴム工業株式会社 | 空気入りタイヤ |
JP2016056349A (ja) * | 2014-09-08 | 2016-04-21 | 住友ゴム工業株式会社 | 空気入りタイヤ |
JP2016056252A (ja) * | 2014-09-08 | 2016-04-21 | 住友ゴム工業株式会社 | 空気入りタイヤ |
JPWO2016039009A1 (ja) * | 2014-09-08 | 2017-06-22 | 住友ゴム工業株式会社 | 空気入りタイヤ |
CN106574081A (zh) * | 2014-09-08 | 2017-04-19 | 住友橡胶工业株式会社 | 充气轮胎 |
CN106574079A (zh) * | 2014-09-08 | 2017-04-19 | 住友橡胶工业株式会社 | 充气轮胎 |
CN106661282A (zh) * | 2014-09-08 | 2017-05-10 | 住友橡胶工业株式会社 | 充气轮胎 |
CN106574081B (zh) * | 2014-09-08 | 2019-11-15 | 住友橡胶工业株式会社 | 充气轮胎 |
JPWO2016039007A1 (ja) * | 2014-09-08 | 2017-06-15 | 住友ゴム工業株式会社 | 空気入りタイヤ |
JPWO2016039005A1 (ja) * | 2014-09-08 | 2017-06-15 | 住友ゴム工業株式会社 | 空気入りタイヤ |
WO2016039005A1 (ja) * | 2014-09-08 | 2016-03-17 | 住友ゴム工業株式会社 | 空気入りタイヤ |
WO2016039006A1 (ja) * | 2014-09-08 | 2016-03-17 | 住友ゴム工業株式会社 | 空気入りタイヤ |
WO2016039008A1 (ja) * | 2014-09-08 | 2016-03-17 | 住友ゴム工業株式会社 | 空気入りタイヤ |
CN107075183A (zh) * | 2014-09-08 | 2017-08-18 | 住友橡胶工业株式会社 | 充气轮胎 |
CN110643094A (zh) * | 2014-09-08 | 2020-01-03 | 住友橡胶工业株式会社 | 充气轮胎 |
WO2016039007A1 (ja) * | 2014-09-08 | 2016-03-17 | 住友ゴム工業株式会社 | 空気入りタイヤ |
EP3181629A4 (en) * | 2014-09-08 | 2018-03-07 | Sumitomo Rubber Industries, Ltd. | Pneumatic tire |
EP3178879A4 (en) * | 2014-09-08 | 2018-03-14 | Sumitomo Rubber Industries, Ltd. | Pneumatic tire |
US10428203B2 (en) | 2014-09-08 | 2019-10-01 | Sumitomo Rubber Industries, Ltd. | Pneumatic tire |
JP2016069628A (ja) * | 2014-09-30 | 2016-05-09 | 住友ゴム工業株式会社 | 空気入りタイヤ |
US10618037B2 (en) * | 2015-06-24 | 2020-04-14 | Zeon Corporation | Method for recovering catalyst |
JP2017145341A (ja) * | 2016-02-18 | 2017-08-24 | 住友ゴム工業株式会社 | 空気入りタイヤ及び空気入りタイヤの製造方法 |
JP2017145342A (ja) * | 2016-02-18 | 2017-08-24 | 住友ゴム工業株式会社 | 空気入りタイヤ |
US10526472B2 (en) | 2016-02-18 | 2020-01-07 | Sumitomo Rubber Industries, Ltd. | Pneumatic tire and method for producing pneumatic tire |
US10808082B2 (en) | 2016-10-31 | 2020-10-20 | Sumitomo Rubber Industries, Ltd. | Method for kneading a polymer |
US10472505B2 (en) | 2016-11-22 | 2019-11-12 | Sumitomo Rubber Industries, Ltd. | Pneumatic tire |
JP2020105378A (ja) * | 2018-12-27 | 2020-07-09 | Toyo Tire株式会社 | タイヤ用ゴム組成物、及びそれを用いた空気入りタイヤ |
JP7174620B2 (ja) | 2018-12-27 | 2022-11-17 | Toyo Tire株式会社 | タイヤ用ゴム組成物、及びそれを用いた空気入りタイヤ |
WO2022196643A1 (ja) * | 2021-03-15 | 2022-09-22 | 株式会社Eneosマテリアル | 共役ジエン系重合体及びその製造方法、重合体組成物、架橋体並びにタイヤ |
WO2023171628A1 (ja) * | 2022-03-08 | 2023-09-14 | 株式会社Eneosマテリアル | 重合体組成物及びその製造方法、架橋体、並びにタイヤ |
Also Published As
Publication number | Publication date |
---|---|
KR102124874B1 (ko) | 2020-06-19 |
BR112015019419B1 (pt) | 2020-12-22 |
EP2957572A1 (en) | 2015-12-23 |
JP6194949B2 (ja) | 2017-09-13 |
SG11201506040XA (en) | 2015-08-28 |
CN104995214A (zh) | 2015-10-21 |
EP2957572B1 (en) | 2020-04-08 |
JPWO2014126184A1 (ja) | 2017-02-02 |
KR20150119865A (ko) | 2015-10-26 |
EP2957572A4 (en) | 2016-02-24 |
US20150368387A1 (en) | 2015-12-24 |
BR112015019419A2 (pt) | 2017-07-18 |
BR112015019419B8 (pt) | 2023-04-18 |
HUE051294T2 (hu) | 2021-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6194949B2 (ja) | 水添共役ジエン重合体の製造方法 | |
JP6631254B2 (ja) | 空気入りタイヤ | |
JP6862787B2 (ja) | 空気入りタイヤ | |
JP6627512B2 (ja) | 空気入りタイヤ | |
JP6627513B2 (ja) | 空気入りタイヤ | |
JP6805502B2 (ja) | 空気入りタイヤ | |
JP6627294B2 (ja) | 空気入りタイヤ | |
JP6229654B2 (ja) | 変性共役ジエン系重合体、重合体組成物、架橋体及びタイヤの製造方法 | |
JP5871011B2 (ja) | 変性共役ジエン系重合体及びその製造方法 | |
JP6627293B2 (ja) | 空気入りタイヤ | |
JP5994784B2 (ja) | 変性共役ジエン系重合体の製造方法 | |
JP6627511B2 (ja) | 空気入りタイヤ | |
JP5994783B2 (ja) | 変性共役ジエン系重合体の製造方法 | |
JP6801183B2 (ja) | 空気入りタイヤ | |
KR102021426B1 (ko) | 변성 공액 디엔계 중합체의 제조 방법, 변성 공액 디엔계 중합체, 중합체 조성물, 가교 중합체 및 타이어 | |
JP6631059B2 (ja) | 空気入りタイヤ | |
WO2005040267A1 (ja) | 履物用ゴム組成物 | |
JP2001131229A (ja) | 重合体、その製造方法、及びそれを用いたゴム組成物 | |
JP7371631B2 (ja) | 空気入りタイヤ | |
JP5259049B2 (ja) | ゴム組成物及びそれを用いたスタッドレスタイヤ | |
JPWO2018150882A1 (ja) | 共役ジエン系重合体、ゴム組成物、架橋ゴム、ゴム製品、及びタイヤ | |
KR102640782B1 (ko) | 랜덤 공중합체, 크럼의 제조 방법, 및 공기 타이어 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14751252 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015500300 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14765199 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014751252 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20157022073 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112015019419 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112015019419 Country of ref document: BR Kind code of ref document: A2 Effective date: 20150812 |