[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014126033A1 - Method for producing cured film, cured film, liquid crystal display device, organic el display device, and touch panel display device - Google Patents

Method for producing cured film, cured film, liquid crystal display device, organic el display device, and touch panel display device Download PDF

Info

Publication number
WO2014126033A1
WO2014126033A1 PCT/JP2014/053023 JP2014053023W WO2014126033A1 WO 2014126033 A1 WO2014126033 A1 WO 2014126033A1 JP 2014053023 W JP2014053023 W JP 2014053023W WO 2014126033 A1 WO2014126033 A1 WO 2014126033A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
acid
cured film
structural unit
resin composition
Prior art date
Application number
PCT/JP2014/053023
Other languages
French (fr)
Japanese (ja)
Inventor
中村 秀之
史絵 山下
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2015500221A priority Critical patent/JPWO2014126033A1/en
Priority to CN201480007791.9A priority patent/CN104981739A/en
Publication of WO2014126033A1 publication Critical patent/WO2014126033A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • G03F7/0397Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition the macromolecular compound having an alicyclic moiety in a side chain
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133357Planarisation layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04111Cross over in capacitive digitiser, i.e. details of structures for connecting electrodes of the sensing pattern where the connections cross each other, e.g. bridge structures comprising an insulating layer, or vias through substrate

Definitions

  • the present invention relates to a method for producing a cured film, a cured film obtained by the production method, a liquid crystal display device using the cured film, an organic EL display device, and a touch panel display device. More specifically, the present invention relates to a method for producing a cured film suitable for forming a planarizing film, a protective film, and an interlayer insulating film of electronic components such as a liquid crystal display device, an organic EL display device, a touch panel display device, an integrated circuit element, and a solid-state imaging device. .
  • JP 2006-98985 A Korean Published Patent No. 10-2012-0121850
  • high refractive index materials have obtained the required refractive index by increasing the filling rate of inorganic particles such as TiO 2 and ZrO 2 .
  • inorganic particles such as TiO 2 and ZrO 2 .
  • the filling rate is increased, the resolution is lowered and the taper shape is deteriorated.
  • the inventors of the present invention use a positive photosensitive resin composition and increase the shrinkage rate (shrink rate) of the film. It was found that by leaving the particles, the content of inorganic particles apparently increased, the refractive index could be increased by a considerable amount, and the resolution and taper shape were also excellent.
  • the present invention is a method for producing a cured film having a high refractive index and excellent resolution and taper shape, a cured film obtained by the above production method, a liquid crystal display device using the cured film, an organic EL display device, An object of the present invention is to provide a touch panel display device.
  • a method for producing a cured film comprising steps (a) and (b) in this order, (A) (Component A) inorganic particles, (Component B) a polymer containing a structural unit having a group in which an acid group is protected by an acid-decomposable group, and (Component C) a photosensitizer containing a photoacid generator A layer forming step of forming a layer composed of the solid content of the photosensitive resin composition on the substrate by using the resin composition and satisfying the following formula (2); and (b) a layer composed of the solid content of the photosensitive resin composition.
  • Heat treatment step for heat treating Shrinkage ratio r 2 (t 20 ⁇ t 21 ) / t 20 ⁇ 0.15 (2) (In the formula, t 20 represents the thickness of the layer composed of the solid content of the photosensitive resin composition, and t 21 represents the thickness after heating the above layer at 200 ° C. for 20 minutes.)
  • ⁇ 2> The method for producing a cured film according to ⁇ 1>, wherein the temperature of the heat treatment is 120 ° C. or higher and 200 ° C. or lower, ⁇ 3> The method for producing a cured film according to ⁇ 1> or ⁇ 2>, wherein the temperature of the heat treatment is 120 ° C. or higher and 175 ° C.
  • R represents a hydrogen atom or a methyl group.
  • ADVANTAGE OF THE INVENTION is a high refractive index, the manufacturing method of the cured film excellent in resolving power and a taper shape, the cured film obtained by the said manufacturing method, the liquid crystal display device using the said cured film, and organic electroluminescent display An apparatus and a touch panel display device can be provided.
  • 1 is a conceptual diagram of a configuration of an example of a liquid crystal display device.
  • the schematic sectional drawing of the active matrix substrate in a liquid crystal display device is shown, and it has the cured film 17 which is an interlayer insulation film.
  • 1 shows a conceptual diagram of a configuration of an example of an organic EL display device.
  • a schematic cross-sectional view of a substrate in a bottom emission type organic EL display device is shown, and a planarizing film 4 is provided.
  • It is sectional drawing which shows the structure of an electrostatic capacitance type input device.
  • component A inorganic particles or the like is also simply referred to as “component A” or the like, and “(a1) a structural unit having a group in which an acid group is protected by an acid-decomposable group”, which will be described later, etc. Is also simply referred to as “structural unit (a1)”.
  • structural unit (a1) a structural unit having a group in which an acid group is protected by an acid-decomposable group
  • the “alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
  • a combination of a preferred embodiment and another preferred embodiment is a more preferred embodiment.
  • the manufacturing method of the cured film of this invention is characterized by including process (a) and (b) in this order.
  • Heat treatment step for heat treating Shrinkage ratio r 2 (t 20 ⁇ t 21 ) / t 20 ⁇ 0.15 (2) (In the formula, t 20 represents the thickness of the layer composed of the solid content of the photosensitive resin composition, and t 21 represents the thickness after heating the above layer at 200 ° C. for 20 minutes.)
  • a resist layer formed from a negative photosensitive resin composition has a large shrinkage ratio due to volume shrinkage at the time of polymerization, but a resist layer formed from a positive photosensitive resin composition is smaller than a negative type.
  • the shrinkage rate is small.
  • the content of the inorganic particles is apparently increased, and the refractive index is increased.
  • the resolution and taper shape are excellent.
  • the cured film obtained by the method for producing a cured film of the present invention is a wiring used for an optical member such as a microlens, an optical waveguide, an antireflection film, an LED sealing material and an LED chip coating material, or a touch panel. It can be suitably used as a cured product for reducing the visibility of electrodes.
  • the cured film obtained by the method for producing a cured film of the present invention includes, for example, a flattening film, an interlayer insulating film, a color filter protective film, and a liquid crystal display in a liquid crystal display device or an organic EL device as described later. It can be suitably used as a spacer for keeping the thickness of the liquid crystal layer in the apparatus constant, a structural member of a MEMS (Micro Electro Mechanical Systems) device, or the like.
  • MEMS Micro Electro Mechanical Systems
  • the method for producing a cured film of the present invention comprises (a) (component A) inorganic particles, (component B) a polymer containing a structural unit having a group in which an acid group is protected by an acid-decomposable group, and (component C). )
  • a layer forming step (step (a) in which a photosensitive resin composition containing a photoacid generator is used, a layer satisfying the above formula (2) and formed of a solid content of the photosensitive resin composition is formed on a substrate. )) including.
  • the photosensitive resin composition used in the present invention will be described in detail later.
  • a layer made of the solid content of the photosensitive resin composition is formed on the substrate.
  • the layer which consists of solid content of the said photosensitive resin composition is a layer which removed the solvent. That is, it is preferable that the said layer formation process includes the solvent removal process of removing a solvent from the apply
  • the layer which consists of solid content of the said photosensitive resin composition should just be a layer which does not contain a solvent substantially, It is preferable that content of a solvent is 1 mass% or less, and is 0.5 mass% or less. More preferably, it is more preferably 0.1% by mass or less.
  • solid content of the photosensitive resin composition represents the composition except volatile components, such as a solvent, in the photosensitive resin composition.
  • the layer forming step it is preferable to perform substrate cleaning such as alkali cleaning or plasma cleaning before applying the photosensitive resin composition to the substrate, and further, the substrate surface may be treated with hexamethyldisilazane after the substrate cleaning. More preferred. By performing this treatment, the adhesion of the photosensitive resin composition to the substrate is improved.
  • the method of treating the substrate surface with hexamethyldisilazane is not particularly limited, and examples thereof include a method of exposing the substrate to hexamethyldisilazane vapor.
  • the substrate examples include inorganic substrates, resins, resin composite materials, plastic substrates such as indium tin oxide (ITO), indium zinc oxide (IZO), Cu substrates, polyethylene terephthalate, and cellulose triacetate (TAC).
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • Cu substrates polyethylene terephthalate
  • TAC cellulose triacetate
  • the inorganic substrate include glass, quartz, silicone, silicon nitride, and a composite substrate in which molybdenum, titanium, aluminum, copper, or the like is vapor-deposited on such a substrate.
  • the resins include polybutylene terephthalate, polyethylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polystyrene, polycarbonate, polysulfone, polyethersulfone, polyarylate, allyl diglycol carbonate, polyamide, polyimide, polyamideimide, polyetherimide, poly Fluorine resins such as benzazole, polyphenylene sulfide, polycycloolefin, norbornene resin, polychlorotrifluoroethylene, liquid crystal polymer, acrylic resin, epoxy resin, silicone resin, ionomer resin, cyanate resin, crosslinked fumaric acid diester resin, cyclic polyolefin, Synthetic resins such as aromatic ether resin, maleimide-olefin resin, cellulose, episulfide resin It is below.
  • Liquid-saving coaters such as slit coat and spray coat greatly reduce the amount of coating solution used, reduce the influence of mist that adheres when using the spin coat method, and suppress foreign matter generation. This is also preferable from a comprehensive viewpoint.
  • the coating conditions by the slit coating method may be appropriately selected depending on the composition of the photosensitive resin composition, the type of coating film to be manufactured, and the like.
  • the lip width at the nozzle tip is preferably 50 to 500 ⁇ m, and the distance between the nozzle tip and the substrate surface is preferably 30 to 300 ⁇ m.
  • the running speed of the lip and the discharge amount of the liquid curable resin composition from the lip may be adjusted.
  • the said solvent removal process it is preferable to remove a solvent from a photosensitive resin composition layer by pressure reduction (vacuum) and / or heating, and to form a dry coating film on a board
  • the heating conditions for the solvent removal step are preferably 70 to 130 ° C. and about 30 to 300 seconds. When the temperature and time are within the above ranges, the pattern adhesion is good and the residue can be reduced.
  • the thickness of the layer composed of the solid content of the photosensitive resin composition is not particularly limited and can be formed with a thickness according to the application, but is preferably in the range of 0.5 to 10 ⁇ m. The range of 0.8 to 5.0 ⁇ m is more preferable, and the range of 1.0 to 4.0 ⁇ m is more preferable.
  • the layer which consists of solid content of the said photosensitive resin composition is a layer which satisfy
  • Shrinkage rate r 2 (t 20 ⁇ t 21 ) / t 20 ⁇ 0.15 (2)
  • t 20 represents the thickness of the layer composed of the solid content of the photosensitive resin composition
  • t 21 represents the thickness after heating the above layer at 200 ° C. for 20 minutes.
  • the thickness was measured to prepare a layer consisting of the solid content of the photosensitive resin composition, further, 200 the layer It is preferable to measure the thickness of the layer after heating at 20 ° C. for 20 minutes to measure t 20 and t 21 .
  • the layer which consists of solid content of the said photosensitive resin composition on the glass substrate of 100 mm x 100 mm processed for 3 minutes using hexamethyldisilazane (HMDS).
  • HMDS hexamethyldisilazane
  • the film thickness is preferably calculated by measuring the central part of the film at several points and taking an average value.
  • a stylus type surface shape measuring device Dektak manufactured by ULVAC, Inc.
  • measure three locations (N 3) in the central portion of the film, and take an average value to calculate.
  • the shrinkage rate (also referred to as “shrink rate”) r 2 in Formula (2) is 0.15 or more, preferably 0.18 or more, more preferably 0.20 or more, and More preferably, it is 25 or more. It is excellent in the refractive index and taper shape of the cured film obtained as it is the said aspect. Further, r 2 is preferably 0.50 or less, more preferably 0.45 or less, further preferably 0.40 or less, and most preferably 0.35 or less. It is excellent in the taper shape of the cured film obtained as it is the said aspect.
  • the manufacturing method of the cured film of this invention includes the heat processing process (process (b)) which heat-processes the layer which consists of (b) solid content of the said photosensitive resin composition.
  • process (b) heat-processes the layer which consists of (b) solid content of the said photosensitive resin composition.
  • the heat treatment step post-bake
  • the obtained positive image is heated to cause thermal shrinkage, and a cured film having excellent refractive index and taper shape is obtained.
  • the acid-decomposable group of component B is thermally decomposed to form an acid group, for example, a carboxyl group or a phenolic hydroxyl group, and a cured film is formed by crosslinking with a crosslinkable group, a crosslinking agent, or the like. It is preferable to do.
  • the heat treatment in the heat treatment step is preferably performed using a heating device such as a hot plate, an oven, or an infrared heater. Further, the heat treatment in the heat treatment step is preferably performed at a lower temperature and for a longer time than conventional post-baking. When it is in the above range, a cured film that is more excellent in a tapered shape can be obtained.
  • the heat treatment temperature in the heat treatment step is preferably 120 ° C. or higher and 200 ° C. or lower, more preferably 120 ° C. or higher and lower than 180 ° C., further preferably 120 ° C. or higher and 175 ° C. or lower, and 140 ° C. or higher and 175 ° C. or lower.
  • the temperature is not higher than ° C.
  • a cured film that is more excellent in refractive index and tapered shape can be obtained.
  • the heat treatment time in the heat treatment step is preferably 10 to 240 minutes, more preferably 30 to 180 minutes, further preferably 45 to 120 minutes, and more preferably 45 to 90 minutes. Particularly preferred.
  • a cured film that is more excellent in refractive index and tapered shape can be obtained.
  • transparency can be improved by performing the heat treatment in a nitrogen atmosphere.
  • the heat treatment step Prior to the heat treatment step (post-bake), the heat treatment step can be performed after baking at a relatively low temperature (addition of a middle bake step).
  • middle baking it is preferable to perform post baking after heating at 90 to 150 ° C. for 1 to 60 minutes.
  • middle baking and post baking can be heated in three or more stages. The taper angle of the pattern can be adjusted by devising such middle baking and post baking.
  • These heating methods can use well-known heating methods, such as a hotplate, oven, and an infrared heater.
  • the entire surface of the patterned substrate was re-exposed with actinic rays (post-exposure), and post-baked to generate acid from the photoacid generator present in the unexposed areas, thereby promoting crosslinking. It can function as a catalyst that promotes the film curing reaction.
  • the exposure amount in the case of performing post exposure step preferably 100 ⁇ 3,000mJ / cm 2, particularly preferably 100 ⁇ 500mJ / cm 2.
  • the manufacturing method of the cured film of this invention includes the exposure process which exposes the layer which consists of solid content of the said photosensitive resin composition to a pattern shape with actinic light between the said process (a) and a process (b). Is preferred.
  • the exposure step the substrate provided with the coating film is irradiated with actinic rays through a mask having a predetermined pattern.
  • the photoacid generator is decomposed to generate an acid.
  • the acid-decomposable group contained in the coating film component is hydrolyzed to produce an acid group, for example, a carboxyl group or a phenolic hydroxyl group.
  • a low-pressure mercury lamp, a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a chemical lamp, an LED light source, an excimer laser generator, etc. can be used, and g-line (436 nm), i-line (365 nm), Actinic rays having a wavelength of 300 nm to 450 nm, such as 405 nm), can be preferably used.
  • irradiation light can also be adjusted through spectral filters, such as a long wavelength cut filter, a short wavelength cut filter, and a band pass filter, as needed.
  • PEB Post Exposure Bake
  • the temperature for performing PEB is preferably 30 ° C. or higher and 130 ° C. or lower, more preferably 40 ° C. or higher and 110 ° C. or lower, and particularly preferably 50 ° C.
  • the acid-decomposable group in the present invention has a low activation energy for acid decomposition and is easily decomposed by an acid derived from an acid generator by exposure to generate an acid group, for example, a carboxyl group or a phenolic hydroxyl group.
  • a positive image can be formed by development without performing PEB.
  • the manufacturing method of the cured film of this invention includes the image development process which develops the said exposed layer with an aqueous developing solution between the said exposure process and the said process (b).
  • a copolymer having a liberated acid group such as a carboxyl group or a phenolic hydroxyl group is developed using an aqueous developer, preferably an alkaline aqueous developer.
  • a positive image is formed by removing an exposed area containing a resin composition having an acid group that easily dissolves in an alkaline developer, such as a carboxyl group or a phenolic hydroxyl group.
  • the aqueous developer used in the development step preferably contains a basic compound.
  • Examples of the basic compound include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide and potassium hydroxide; alkali metal carbonates such as sodium carbonate and potassium carbonate; alkali such as sodium bicarbonate and potassium bicarbonate Metal bicarbonates; tetraalkylammonium hydroxides such as tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide and diethyldimethylammonium hydroxide: (hydroxyalkyl) trines such as choline Alkylammonium hydroxides; silicates such as sodium silicate and sodium metasilicate; alkyls such as ethylamine, propylamine, diethylamine and triethylamine Amines; alcohol amines such as dimethylethanolamine and triethanolamine; 1,8-diazabicyclo [5.4.0] -7-undec
  • sodium hydroxide, potassium hydroxide, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, and choline (2-hydroxyethyltrimethylammonium hydroxide) are preferable.
  • an aqueous solution obtained by adding an appropriate amount of a water-soluble organic solvent such as methanol or ethanol or a surfactant to an aqueous solution of the above basic compound can also be used as a developer.
  • Preferable developers include a 0.4% by mass aqueous solution, a 0.5% by mass aqueous solution, a 0.7% by mass aqueous solution, or a 2.38% by mass aqueous solution of tetraethylammonium hydroxide.
  • the pH of the developer is preferably 9.0 to 14, and more preferably 10.0 to 14.0.
  • the concentration of the developer is preferably from 0.1 to 20% by mass, more preferably from 0.1 to 5.0% by mass.
  • the development time is preferably 1 to 500 seconds, more preferably 10 to 180 seconds.
  • the developing method may be any of a liquid filling method, a dip method, a shower method, and the like. After development, washing with running water can be performed to form a desired pattern.
  • the running water washing time is preferably 30 to 300 seconds, more preferably 30 to 90 seconds.
  • the manufacturing method of the cured film of this invention may include well-known processes other than the process mentioned above.
  • a rinsing step of rinsing the developed layer with a rinsing liquid can be performed after the developing step.
  • the developed substrate and the development residue are removed by washing the developed substrate with a rinse solution such as pure water.
  • a known method can be used as the rinsing method. For example, a shower rinse, a dip rinse, etc. can be mentioned.
  • the cured film obtained by the method for producing a cured film of the present invention can also be used as a dry etching resist.
  • dry etching processes such as ashing, plasma etching, and ozone etching can be performed as the etching process.
  • the photosensitive resin composition that can be used in the present invention includes at least (Component A) inorganic particles, (Component B) a polymer containing a structural unit having a group in which an acid group is protected with an acid-decomposable group, and (Component C) contains a photoacid generator.
  • the photosensitive resin composition can be suitably used as a positive resist composition.
  • the photosensitive resin composition is preferably a resin composition having a property of being cured by heat.
  • the photosensitive resin composition is preferably a positive photosensitive resin composition, and more preferably a chemically amplified positive photosensitive resin composition (chemically amplified positive photosensitive resin composition). preferable.
  • the photosensitive resin composition preferably does not contain a 1,2-quinonediazide compound as a photoacid generator sensitive to actinic rays.
  • a 1,2-quinonediazide compound generates a carboxyl group by a sequential photochemical reaction, but its quantum yield is always 1 or less.
  • (Component C) photoacid generator used in the present invention is such that an acid generated in response to actinic rays acts as a catalyst for deprotection of the protected acid group in Component B. Therefore, the acid generated by the action of one photon contributes to a number of deprotection reactions, and the quantum yield exceeds 1, for example, a large value such as the power of 10, which is a result of so-called chemical amplification. As a result, high sensitivity can be obtained.
  • the photosensitive resin composition of the present invention will be described in detail.
  • the photosensitive resin composition that can be used in the present invention contains (Component A) inorganic particles.
  • the photosensitive resin composition contains inorganic particles for the purpose of adjusting the refractive index and light transmittance.
  • Component A preferably has a refractive index higher than the refractive index of the photosensitive resin composition made of the material excluding the particles, and specifically has a refractive index of 1 for light having a wavelength of 400 to 750 nm. More preferably, the particles have a refractive index of 1.70 or more, more preferably 1.90 or more.
  • the upper limit of the refractive index is not particularly limited, but particles of 5.00 or less are preferable from the viewpoint of availability.
  • the refractive index of light having a wavelength of 400 to 750 nm being 1.50 or more means that the average refractive index of light having a wavelength in the above range is 1.50 or more. It is not necessary that the refractive index of all light having a wavelength is 1.50 or more.
  • the average refractive index is a value obtained by dividing the sum of the measured values of the refractive index for each light having a wavelength in the above range by the number of measurement points.
  • inorganic oxide particles are preferable and metal oxide particles are more preferable because of high transparency and light transmittance.
  • the light-transmitting and high refractive index inorganic oxide particles include Be, Mg, Ca, Sr, Ba, Sc, Y, La, Ce, Gd, Tb, Dy, Yb, Lu, Ti, Zr, Hf, and Nb.
  • Oxide particles containing atoms such as Mo, W, Zn, B, Al, Si, Ge, Sn, Pb, Bi, Te, etc.
  • titanium oxide, zinc oxide, zirconium oxide, indium / tin oxide, or Antimony / tin oxide is more preferable, titanium oxide particles or zirconium oxide is further preferable, titanium oxide is particularly preferable, and titanium dioxide is most preferable.
  • Titanium dioxide is particularly preferably a rutile type having a high refractive index. The surface of these inorganic particles can also be treated with an organic material to impart dispersion stability.
  • the metal of the metal oxide particles in the present invention includes semimetals such as B, Si, Ge, As, Sb, and Te.
  • the light-transmitting and high refractive index metal oxide particles include Be, Mg, Ca, Sr, Ba, Sc, Y, La, Ce, Gd, Tb, Dy, Yb, Lu, Ti, Zr, Hf, and Nb.
  • Oxide particles containing atoms such as Mo, W, Zn, B, Al, Si, Ge, Sn, Pb, Sb, Bi, and Te are preferable.
  • Titanium oxide, titanium composite oxide, zinc oxide, zirconium oxide, indium / Tin oxide and antimony / tin oxide are more preferable, titanium oxide, titanium composite oxide and zirconium oxide are more preferable, titanium oxide and zirconium oxide are particularly preferable, and titanium dioxide is most preferable. Titanium dioxide is particularly preferably a rutile type having a high refractive index. The surface of these metal oxide particles can be treated with an organic material in order to impart dispersion stability.
  • the average primary particle diameter of the inorganic particles is preferably 1 to 200 nm, more preferably 2 to 100 nm, still more preferably 1 to 60 nm, and particularly preferably 5 to 50 nm. Within the above range, a cured product having excellent particle dispersibility, a high refractive index, and excellent transparency can be obtained.
  • the average primary particle diameter of the inorganic particles can be obtained from a photograph obtained by observing the dispersed inorganic particles with a transmission electron microscope. Specifically, the projected area of the inorganic particles is obtained, and the corresponding equivalent circle diameter is defined as the average primary particle diameter of the inorganic particles.
  • the average primary particle diameter in this invention be an arithmetic mean value of the circle
  • the number average particle diameter can also be used as an index of the average primary particle diameter.
  • the number average particle diameter of the inorganic particles in the present invention is measured by using a dynamic light scattering method for a diluted liquid obtained by diluting a mixed liquid or dispersion containing inorganic particles 80 times with propylene glycol monomethyl ether acetate. The value obtained by doing. This measurement is preferably the number average particle diameter obtained by using Microtrack UPA-EX150 manufactured by Nikkiso Co., Ltd.
  • an inorganic particle there is no restriction
  • it can be a rice grain shape, a spherical shape, a cubic shape, a spindle shape, or an indefinite shape.
  • the average aspect ratio (long side / short side) of the inorganic particles is preferably from 1 to 5, more preferably from 1 to 4.5, still more preferably from 1 to 4, and from 1 to 3 It is particularly preferred.
  • the average aspect ratio is measured by the following method. That is, an average value obtained by measuring 300 aspect ratios (long side / short side) of a particle image captured with a transmission electron microscope (TEM) was defined as an average aspect ratio.
  • TEM transmission electron microscope
  • the refractive index of the metal oxide particles is not particularly limited, but is preferably 1.70 to 2.70, more preferably 1.90 to 2.70 from the viewpoint of obtaining a high refractive index.
  • the specific surface area of the metal oxide particles is preferably 10 ⁇ 400m 2 / g, more preferably from 20 ⁇ 200m 2 / g, and most preferably 30 ⁇ 150m 2 / g.
  • the metal oxide particles may have been surface-treated with an organic compound.
  • organic compound used for the surface treatment include polyols, alkanolamines, stearic acid, silane coupling agents, and titanate coupling agents. Of these, stearic acid is preferred.
  • the surface treatment may be carried out by using a single surface treatment agent or a combination of two or more surface treatment agents.
  • the surface of the metal oxide particles is covered with an oxide such as aluminum, silicon, or zirconia. Thereby, a weather resistance improves more.
  • metal oxide particles in the present invention commercially available particles can be preferably used. Specifically, for example, TTO series (TTO-51 (A), TTO-51 (C), etc.), TTO-S, V series (TTO-S-1, TTO) manufactured by Ishihara Sangyo Co., Ltd. are used as titanium oxide particles.
  • MT series (MT-01, MT-05, etc.) manufactured by Teika Co., Ltd.
  • the component A may be used individually by 1 type, and can also use 2 or more types together.
  • the content of the inorganic particles in the photosensitive resin composition may be appropriately determined in consideration of the refractive index required for the optical member obtained from the photosensitive resin composition, light transmittance, and the like.
  • the total solid content of the resin composition is preferably 10% by mass or more, more preferably 30% by mass or more, and still more preferably 40% by mass or more. Moreover, it is preferable that it is 80 mass% or less, and it is more preferable that it is 70 mass% or less.
  • the solid content amount of the photosensitive resin composition represents an amount excluding volatile components such as a solvent.
  • Component B A polymer containing a structural unit having a group in which an acid group is protected with an acid-decomposable group
  • the photosensitive resin composition that can be used in the present invention has (Component B) an acid group having an acid-decomposable group A polymer containing a structural unit having a protected group is contained.
  • the “structural unit having a group in which an acid group is protected by an acid-decomposable group” is also referred to as “(a1) a structural unit having a group in which an acid group is protected by an acid-decomposable group”.
  • the photosensitive resin composition may further contain a polymer other than a polymer containing a structural unit having a group in which an acid group is protected with an acid-decomposable group.
  • the photosensitive resin composition preferably contains a polymer component including a polymer that satisfies at least one of the following (1) and (2). (1) (a1) a polymer comprising a structural unit having an acid group protected by an acid-decomposable group and (a2) a structural unit having a crosslinkable group (2) (a1) an acid group having an acid-decomposable group And a polymer having a structural unit having a group protected with (a2) a polymer having a structural unit having a crosslinkable group.
  • the photosensitive resin composition may further contain a polymer other than these. Good.
  • component B in the present invention means one including other polymers added as necessary in addition to the above (1) and / or (2). It is preferable that the said photosensitive resin composition contains the component which satisfy
  • Component B is a component satisfying the above (2), (a1) a polymer containing a structural unit having a group in which an acid group is protected by an acid-decomposable group and (a2) a structural unit having a crosslinkable group
  • the content ratio with respect to the polymer having is preferably 95: 5 to 60:40, more preferably 95: 5 to 70:30, and 95: 5 to 75:25 by mass ratio. More preferably, it is particularly preferably 90:10 to 80:20. It is excellent in the refractive index and taper shape of the cured film obtained as it is the said range.
  • Component B is preferably an addition polymerization type resin, and more preferably a polymer containing structural units derived from (meth) acrylic acid and / or its ester.
  • a polymer containing structural units derived from (meth) acrylic acid and / or its ester you may have structural units other than the structural unit derived from (meth) acrylic acid and / or its ester, for example, the structural unit derived from styrene, the structural unit derived from a vinyl compound, etc.
  • the “structural unit derived from (meth) acrylic acid and / or its ester” is also referred to as “acrylic structural unit”.
  • (meth) acrylic acid” means “methacrylic acid and / or acrylic acid”.
  • Component B includes (a1) a polymer having at least a structural unit having a group in which an acid group is protected with an acid-decomposable group.
  • Component B contains a polymer having the structural unit (a1), a highly sensitive photosensitive resin composition can be obtained.
  • group in which the acid group is protected with an acid-decomposable group those known as an acid group and an acid-decomposable group can be used, and are not particularly limited.
  • Specific examples of the acid group preferably include a carboxyl group and a phenolic hydroxyl group.
  • the acid-decomposable group is a group that is relatively easily decomposed by an acid (for example, an acetal group such as an ester structure of a group represented by the formula (A1) described later, a tetrahydropyranyl ester group, or a tetrahydrofuranyl ester group).
  • a functional group) or a group that is relatively difficult to decompose by an acid for example, a tertiary alkyl group such as a tert-butyl ester group or a tertiary alkyl carbonate group such as a tert-butyl carbonate group
  • a tertiary alkyl group such as a tert-butyl ester group
  • a tertiary alkyl carbonate group such as a tert-butyl carbonate group
  • a structural unit having a group in which an acid group is protected with an acid-decomposable group is a structural unit having a protected carboxyl group in which a carboxyl group is protected with an acid-decomposable group (“protection protected with an acid-decomposable group” Or a structural unit having a protected phenolic hydroxyl group in which the phenolic hydroxyl group is protected by an acid-decomposable group (having a protected phenolic hydroxyl group protected by an acid-decomposable group). It is also preferably referred to as a “structural unit”.
  • the structural unit (a1-1) having a protected carboxyl group protected with an acid-decomposable group is a protected carboxyl in which the carboxyl group of the structural unit having a carboxyl group is protected by an acid-decomposable group described in detail below.
  • a structural unit having a group is not particularly limited, and a known structural unit can be used.
  • a structural unit (a1-1-1) derived from an unsaturated carboxylic acid having at least one carboxyl group in the molecule, such as an unsaturated monocarboxylic acid, an unsaturated dicarboxylic acid, or an unsaturated tricarboxylic acid
  • a structural unit (a1-1-2) having both an ethylenically unsaturated group and a structure derived from an acid anhydride.
  • the structural units having both the unsaturated group and the structure derived from the acid anhydride will be described in order.
  • ⁇ (a1-1-1) Structural Unit Derived from Unsaturated Carboxylic Acid etc. Having at least One Carboxyl Group in the Molecule >>>
  • the unsaturated carboxylic acid used in the present invention as the structural unit (a1-1-1) derived from an unsaturated carboxylic acid having at least one carboxyl group in the molecule include those listed below. . That is, examples of the unsaturated monocarboxylic acid include acrylic acid, methacrylic acid, crotonic acid, ⁇ -chloroacrylic acid, cinnamic acid, 2- (meth) acryloyloxyethyl succinic acid, and 2- (meth) acryloyl.
  • Examples include loxyethyl hexahydrophthalic acid and 2- (meth) acryloyloxyethyl phthalic acid.
  • Examples of the unsaturated dicarboxylic acid include maleic acid, fumaric acid, itaconic acid, citraconic acid, and mesaconic acid.
  • the acid anhydride may be sufficient as unsaturated polyhydric carboxylic acid used in order to obtain the structural unit which has a carboxyl group. Specific examples include maleic anhydride, itaconic anhydride, citraconic anhydride, and the like.
  • the unsaturated polyvalent carboxylic acid may be a mono (2-methacryloyloxyalkyl) ester of a polyvalent carboxylic acid, such as succinic acid mono (2-acryloyloxyethyl), succinic acid mono (2 -Methacryloyloxyethyl), mono (2-acryloyloxyethyl) phthalate, mono (2-methacryloyloxyethyl) phthalate and the like.
  • the unsaturated polyvalent carboxylic acid may be a mono (meth) acrylate of a dicarboxy polymer at both ends, and examples thereof include ⁇ -carboxypolycaprolactone monoacrylate and ⁇ -carboxypolycaprolactone monomethacrylate.
  • unsaturated carboxylic acid acrylic acid-2-carboxyethyl ester, methacrylic acid-2-carboxyethyl ester, maleic acid monoalkyl ester, fumaric acid monoalkyl ester, 4-carboxystyrene and the like can also be used.
  • the structural unit (a1-1-1) derived from an unsaturated carboxylic acid having at least one carboxyl group in the molecule acrylic acid, methacrylic acid, 2- (meth) acryloyloxyethyl succinic acid, 2- (meth) acryloyloxyethyl hexahydrophthalic acid, 2- (meth) acryloyloxyethyl phthalic acid, anhydride of unsaturated polyvalent carboxylic acid, etc. It is preferable to use acrylic acid, methacrylic acid, and 2- (meth) acryloyloxyethyl hexahydrophthalic acid.
  • the structural unit (a1-1-1) derived from an unsaturated carboxylic acid or the like having at least one carboxyl group in the molecule may be composed of one kind alone or two or more kinds. May be.
  • a structural unit having both an ethylenically unsaturated group and a structure derived from an acid anhydride is obtained by reacting a hydroxyl group present in the structural unit having an ethylenically unsaturated group with an acid anhydride.
  • a unit derived from the obtained monomer is preferred.
  • the acid anhydride known ones can be used, and specifically, maleic anhydride, succinic anhydride, itaconic anhydride, phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, chlorendic anhydride, etc.
  • phthalic anhydride, tetrahydrophthalic anhydride, or succinic anhydride is preferable from the viewpoint of developability.
  • the reaction rate of the acid anhydride with respect to the hydroxyl group is preferably 10 to 100 mol%, more preferably 30 to 100 mol% from the viewpoint of developability.
  • the above-mentioned acid-decomposable groups can be used.
  • these acid-decomposable groups it is a protected carboxyl group in which the carboxyl group is protected in the form of an acetal. It is preferable from the viewpoint of the storage stability of the composition.
  • the carboxyl group is more preferably a protected carboxyl group protected in the form of an acetal represented by the following formula (a1-10) from the viewpoint of sensitivity.
  • the carboxyl group is a protected carboxyl group protected in the form of an acetal represented by the following formula (a1-10)
  • the entire protected carboxyl group is — (C ⁇ O) —O—CR 101 R
  • the structure is 102 (OR 103 ).
  • R 101 and R 102 each independently represents a hydrogen atom or an alkyl group, except that R 101 and R 102 are both hydrogen atoms, and R 103 represents an alkyl group.
  • R 101 or R 102 and R 103 may be linked to form a cyclic ether.
  • R 101 to R 103 each independently represents a hydrogen atom or an alkyl group, and the alkyl group may be linear, branched or cyclic.
  • both R 101 and R 102 do not represent a hydrogen atom, and at least one of R 101 and R 102 represents an alkyl group.
  • R 101 , R 102 and R 103 represent an alkyl group
  • the alkyl group may be linear, branched or cyclic.
  • the linear or branched alkyl group preferably has 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, and still more preferably 1 to 4 carbon atoms.
  • methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, neopentyl group, n examples include -hexyl group, texyl group (2,3-dimethyl-2-butyl group), n-heptyl group, n-octyl group, 2-ethylhexyl group, n-nonyl group, n-decyl group and the like.
  • the cyclic alkyl group preferably has 3 to 12 carbon atoms, more preferably 4 to 8 carbon atoms, and still more preferably 4 to 6 carbon atoms.
  • Examples of the cyclic alkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a norbornyl group, and an isobornyl group.
  • the alkyl group may have a substituent, and examples of the substituent include a halogen atom, an aryl group, and an alkoxy group.
  • R 101 , R 102 and R 103 When it has a halogen atom as a substituent, R 101 , R 102 and R 103 become a haloalkyl group, and when it has an aryl group as a substituent, R 101 , R 102 and R 103 become an aralkyl group.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and among these, a fluorine atom or a chlorine atom is preferable.
  • the aryl group is preferably an aryl group having 6 to 20 carbon atoms, and more preferably an aryl group having 6 to 12 carbon atoms.
  • Specific examples include a phenyl group, an ⁇ -methylphenyl group, a naphthyl group, and the like, and examples of the entire alkyl group substituted with an aryl group, that is, an aralkyl group include a benzyl group, an ⁇ -methylbenzyl group, a phenethyl group, A naphthylmethyl group etc. can be illustrated.
  • the alkoxy group is preferably an alkoxy group having 1 to 6 carbon atoms, more preferably an alkoxy group having 1 to 4 carbon atoms, and still more preferably a methoxy group or an ethoxy group.
  • the alkyl group is a cycloalkyl group
  • the cycloalkyl group may have a linear or branched alkyl group having 1 to 10 carbon atoms as a substituent, and the alkyl group is a linear chain. Or a branched alkyl group, it may have a cycloalkyl group having 3 to 12 carbon atoms as a substituent. These substituents may be further substituted with the above substituents.
  • R 101 , R 102 and R 103 represent an aryl group
  • the aryl group preferably has 6 to 12 carbon atoms, and more preferably 6 to 10 carbon atoms.
  • the aryl group may have a substituent, and preferred examples of the substituent include an alkyl group having 1 to 6 carbon atoms. Examples of the aryl group include a phenyl group, a tolyl group, a xylyl group, a cumenyl group, and a 1-naphthyl group.
  • R 101 , R 102 and R 103 can be bonded together to form a ring together with the carbon atom to which they are bonded.
  • Examples of the ring structure when R 101 and R 102 , R 101 and R 103 or R 102 and R 103 are bonded include, for example, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a tetrahydrofuranyl group, an adamantyl group, and a tetrahydropyrani group. And the like.
  • any one of R 101 and R 102 is preferably a hydrogen atom or a methyl group.
  • radical polymerizable monomer used for forming the structural unit having a protected carboxyl group represented by the above formula (a1-10) a commercially available one may be used, or one synthesized by a known method Can also be used. For example, it can be synthesized by the synthesis method described in paragraphs 0037 to 0040 of JP2011-212494A.
  • a first preferred embodiment of the structural unit (a1-1) having a protected carboxyl group protected by the acid-decomposable group is a structural unit represented by the following formula.
  • R 1 and R 2 each independently represent a hydrogen atom, an alkyl group or an aryl group, at least one of R 1 and R 2 is an alkyl group or an aryl group, and R 3 is an alkyl group. Or R 1 or R 2 and R 3 may be linked to form a cyclic ether, R 4 represents a hydrogen atom or a methyl group, and X represents a single bond or an arylene group. .
  • R 1 and R 2 are alkyl groups, alkyl groups having 1 to 10 carbon atoms are preferred. When R 1 and R 2 are aryl groups, a phenyl group is preferred. R 1 and R 2 are preferably each independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. R 3 represents an alkyl group or an aryl group, preferably an alkyl group having 1 to 10 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms. X represents a single bond or an arylene group, and a single bond is preferable.
  • a second preferred embodiment of the structural unit (a1-1) having a protected carboxyl group protected by the acid-decomposable group is a structural unit represented by the following formula.
  • R 121 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
  • L 1 represents a carbonyl group or a phenylene group
  • R 122 to R 128 each independently represents a hydrogen atom or 1 to 4 carbon atoms. Represents an alkyl group of
  • R 121 is preferably a hydrogen atom or a methyl group.
  • L 1 is preferably a carbonyl group.
  • R 122 to R 128 are preferably hydrogen atoms.
  • R represents a hydrogen atom or a methyl group.
  • the structural unit (a1-2) having a protected phenolic hydroxyl group protected with an acid-decomposable group is a protected phenolic group in which the structural unit having a phenolic hydroxyl group is protected by an acid-decomposable group described in detail below.
  • ⁇ (a1-2-1) Structural unit having phenolic hydroxyl group Examples of the structural unit having a phenolic hydroxyl group include a hydroxystyrene-based structural unit and a structural unit in a novolac-based resin. Among these, a structural unit derived from hydroxystyrene or ⁇ -methylhydroxystyrene is sensitive. From the viewpoint of In addition, as a structural unit having a phenolic hydroxyl group, a structural unit represented by the following formula (a1-20) is also preferable from the viewpoint of sensitivity.
  • R 220 represents a hydrogen atom or a methyl group
  • R 221 represents a single bond or a divalent linking group
  • R 222 represents a halogen atom or a linear or branched group having 1 to 5 carbon atoms.
  • R 220 represents a hydrogen atom or a methyl group, and is preferably a methyl group.
  • R 221 represents a single bond or a divalent linking group. A single bond is preferable because the sensitivity can be improved and the transparency of the cured film can be further improved.
  • the divalent linking group of R 221 may be exemplified alkylene groups, specific examples R 221 is an alkylene group, a methylene group, an ethylene group, a propylene group, isopropylene group, n- butylene group, isobutylene group, tert -Butylene group, pentylene group, isopentylene group, neopentylene group, hexylene group and the like. Among these, R 221 is preferably a single bond, a methylene group, or an ethylene group.
  • the divalent linking group may have a substituent, and examples of the substituent include a halogen atom, a hydroxyl group, and an alkoxy group.
  • A represents an integer of 1 to 5, but a is preferably 1 or 2 and more preferably 1 from the viewpoint of the effects of the present invention and the ease of production.
  • the bonding position of the hydroxyl group in the benzene ring is preferably bonded to the 4-position when the carbon atom bonded to R 221 is defined as the reference (first position).
  • R 222 each independently represents a halogen atom or a linear or branched alkyl group having 1 to 5 carbon atoms.
  • a chlorine atom, a bromine atom, a methyl group, or an ethyl group is preferable from the viewpoint of easy production.
  • B represents 0 or an integer of 1 to 4;
  • the acid-decomposable group that can be used in the structural unit (a1-2) having a protected phenolic hydroxyl group protected by the acid-decomposable group includes a structure having a protected carboxyl group protected by the acid-decomposable group Similar to the acid-decomposable group that can be used for the unit (a1-1), known ones can be used and are not particularly limited.
  • a structural unit having a protected phenolic hydroxyl group protected with acetal is a basic physical property of the photosensitive resin composition, particularly sensitivity and pattern shape, storage stability of the photosensitive resin composition, contact This is preferable from the viewpoint of hole formability.
  • the phenolic hydroxyl group is more preferably a protected phenolic hydroxyl group protected in the form of an acetal represented by the above formula (a1-10) from the viewpoint of sensitivity.
  • the phenolic hydroxyl group is a protected phenolic hydroxyl group protected in the form of an acetal represented by the above formula (a1-10)
  • the entire protected phenolic hydroxyl group is —Ar—O—CR 101 R 102.
  • the structure is (OR 103 ).
  • Ar represents an arylene group.
  • Examples of the radical polymerizable monomer used to form a structural unit having a protected phenolic hydroxyl group in which the phenolic hydroxyl group is protected in the form of an acetal include, for example, paragraph 0042 of JP2011-215590A And the like.
  • a 1-alkoxyalkyl protector of 4-hydroxyphenyl methacrylate and a tetrahydropyranyl protector of 4-hydroxyphenyl methacrylate are preferable from the viewpoint of transparency.
  • acetal protecting group for the phenolic hydroxyl group examples include a 1-alkoxyalkyl group, such as a 1-ethoxyethyl group, a 1-methoxyethyl group, a 1-n-butoxyethyl group, and a 1-isobutoxyethyl group.
  • 1- (2-chloroethoxy) ethyl group, 1- (2-ethylhexyloxy) ethyl group, 1-n-propoxyethyl group, 1-cyclohexyloxyethyl group, 1- (2-cyclohexylethoxy) ethyl group, 1 -A benzyloxyethyl group etc. can be mentioned, These can be used individually by 1 type or in combination of 2 or more types.
  • the radical polymerizable monomer used for forming the structural unit (a1-2) having a protected phenolic hydroxyl group protected by the acid-decomposable group a commercially available one may be used, or a known method may be used. What was synthesize
  • combined by can also be used. For example, it can be synthesized by reacting a compound having a phenolic hydroxyl group with vinyl ether in the presence of an acid catalyst. In the above synthesis, a monomer having a phenolic hydroxyl group may be previously copolymerized with another monomer, and then reacted with vinyl ether in the presence of an acid catalyst.
  • R represents a hydrogen atom or a methyl group.
  • the content of the structural unit (a1)- is large because the shrinkage rate can be further increased and the taper shape is excellent.
  • the content of the structural unit (a1) is 50 to 100 in the polymer having the structural unit (a1). Mol% is preferable, 55 to 90 mol% is more preferable, 60 to 85 mol% is further preferable, 65 to 85 mol% is particularly preferable, and 70 to 80 mol% is most preferable. It is excellent in the refractive index and taper shape of the cured film obtained as it is the said range.
  • the content of the structural unit (a1) is in the polymer having the structural unit (a1) and the structural unit (a2). From the viewpoint of sensitivity, it is preferably 50 to 95 mol%, more preferably 55 to 90 mol%, still more preferably 60 to 85 mol%, particularly preferably 65 to 85 mol%, and most preferably 70 to 80 mol%. It is excellent in the refractive index and taper shape of the cured film obtained as it is the said range.
  • the structural unit (a1) is preferably contained in an amount of 50 to 95 mol%, more preferably 55 to 90 mol% in all the structural units of Component B, regardless of any embodiment.
  • the “structural unit” is synonymous with the “monomer unit”.
  • the “monomer unit” may be modified after polymerization by a polymer reaction or the like. The same applies to the following.
  • the structural unit (a1-1) having a protected carboxyl group protected with an acid-decomposable group is more developed than the structural unit (a1-2) having a protected phenolic hydroxyl group protected with the acid-decomposable group. Is characterized by being fast. Therefore, when it is desired to develop quickly, the structural unit (a1-1) having a protected carboxyl group protected with an acid-decomposable group is preferred. Conversely, when it is desired to delay the development, it is preferable to use the structural unit (a1-2) having a protected phenolic hydroxyl group protected with an acid-decomposable group.
  • the structural unit having an acid group protected by an acid-decomposable group is represented by the following formulas (a1-1-1) to (a1-1-3) from the viewpoint of resolving power and refractive index.
  • a structural unit is particularly preferable, and a structural unit represented by the following formula (a1-1-1) is most preferable.
  • R represents a hydrogen atom or a methyl group.
  • Component B contains a polymer having a structural unit (a2) having a crosslinkable group.
  • the crosslinkable group is not particularly limited as long as it is a group that causes a curing reaction by heat treatment.
  • Preferred embodiments of the structural unit having a crosslinkable group are represented by an epoxy group, an oxetanyl group, and —NH—CH 2 —O—R (R represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms).
  • the photosensitive resin composition includes a structural unit in which Component B includes at least one of an epoxy group and an oxetanyl group. In more detail, the following are mentioned.
  • Component B preferably contains a polymer having a structural unit (structural unit (a2-1)) having an epoxy group and / or an oxetanyl group.
  • the 3-membered cyclic ether group is also called an epoxy group, and the 4-membered cyclic ether group is also called an oxetanyl group.
  • the structural unit (a2-1) having an epoxy group and / or oxetanyl group may have at least one epoxy group or oxetanyl group in one structural unit, one or more epoxy groups and one It may have an oxetanyl group, two or more epoxy groups, or two or more oxetanyl groups, and is not particularly limited, but preferably has a total of 1 to 3 epoxy groups and / or oxetanyl groups, It is more preferable to have one or two epoxy groups and / or oxetanyl groups in total, and it is even more preferable to have one epoxy group or oxetanyl group.
  • radical polymerizable monomer used for forming the structural unit having an epoxy group include, for example, glycidyl acrylate, glycidyl methacrylate, glycidyl ⁇ -ethyl acrylate, and glycidyl ⁇ -n-propyl acrylate.
  • radical polymerizable monomer used for forming the structural unit having an oxetanyl group include, for example, a (meth) acryl having an oxetanyl group described in paragraphs 0011 to 0016 of JP-A No. 2001-330953. Examples include acid esters.
  • radical polymerizable monomer used for forming the structural unit (a2-1) having the epoxy group and / or oxetanyl group include a monomer having a methacrylic ester structure and an acrylic ester structure. It is preferable that it is a monomer to contain.
  • These structural units can be used individually by 1 type or in combination of 2 or more types.
  • the copolymer used in the present invention is a structural unit (a2-3) having a group represented by —NH—CH 2 —O—R (R represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms). It is also preferable to have By having the structural unit (a2-3), a curing reaction can be caused by a mild heat treatment, and a cured film having excellent characteristics can be obtained.
  • R is preferably an alkyl group having 1 to 20 carbon atoms, more preferably an alkyl group having 1 to 9 carbon atoms, and still more preferably an alkyl group having 1 to 4 carbon atoms.
  • the alkyl group may be a linear, branched or cyclic alkyl group, but is preferably a linear or branched alkyl group.
  • the structural unit (a2) is more preferably a structural unit having a group represented by the following formula (a2-30).
  • R 31 represents a hydrogen atom or a methyl group
  • R 32 represents an alkyl group having 1 to 20 carbon atoms.
  • R 32 is preferably an alkyl group having 1 to 9 carbon atoms, and more preferably an alkyl group having 1 to 4 carbon atoms.
  • the alkyl group may be a linear, branched or cyclic alkyl group, but is preferably a linear or branched alkyl group.
  • Specific examples of R 32 include methyl group, ethyl group, n-butyl group, i-butyl group, cyclohexyl group, and n-hexyl group. Of these, i-butyl group, n-butyl group and methyl group are preferable.
  • the content of the structural unit (a2) is 5 to 90 in the polymer having the structural unit (a2).
  • the mol% is preferable, and 20 to 80 mol% is more preferable.
  • the polymer having the structural unit (a2) has the structural unit (a1)
  • the single structural unit (a2) has chemical resistance in the polymer having the structural unit (a1) and the structural unit (a2). From the viewpoint, it is preferably 3 to 70 mol%, more preferably 10 to 60 mol%.
  • the structural unit (a2) is preferably contained in an amount of 3 to 70 mol%, more preferably 10 to 60 mol%, in all the structural units of Component B, regardless of any embodiment.
  • the cured film obtained from the photosensitive resin composition has good transparency and chemical resistance.
  • component B may have other structural units (a3) in addition to the structural units (a1) and / or (a2). These structural units may contain a polymer component that satisfies the above (1) and / or (2). In addition to the polymer component satisfying the above (1) or (2), a polymer component having another structural unit (a3) substantially not including the structural unit (a1) and the structural unit (a2). You may have. In addition to the polymer component satisfying the above (1) or (2), a polymer component having substantially no structural unit (a1) and other structural unit (a3) without the structural unit (a2) is included.
  • the blending amount of the polymer component is preferably 60% by mass or less, more preferably 40% by mass or less, and still more preferably 20% by mass or less in all polymer components.
  • a polymer component does not include compounds corresponding to Component D, Component F, and Component I described later.
  • a monomer used as another structural unit (a3) For example, styrenes, (meth) acrylic acid alkyl ester, (meth) acrylic acid cyclic alkyl ester, (meth) acrylic acid aryl ester, unsaturated Dicarboxylic acid diesters, bicyclounsaturated compounds, maleimide compounds, unsaturated aromatic compounds, conjugated diene compounds, unsaturated monocarboxylic acids, unsaturated dicarboxylic acids, unsaturated dicarboxylic acid anhydrides, and other unsaturated compounds be able to.
  • the monomer which becomes another structural unit (a3) can be used individually by 1 type or in combination of 2 or more types.
  • the polymer component satisfying (1) further includes one or more other structural units (a3).
  • the polymer component satisfying (2) is a polymer containing a structural unit having a group in which an acid group is protected by an acid-decomposable group, and one or more other structural units (a3) The aspect which has.
  • fills (2) further has 1 type, or 2 or more types of other structural units (a3).
  • any polymer includes a structural unit containing at least an acid group as the other structural unit (a3).
  • the polymer further has a polymer having another structural unit (a3) without substantially including the structural unit (a1) and the structural unit (a2).
  • Aspect. -Sixth embodiment- A mode comprising a combination of two or more of the first to fifth embodiments.
  • the structural unit (a3) specifically includes styrene, tert-butoxystyrene, methylstyrene, hydroxystyrene, ⁇ -methylstyrene, acetoxystyrene, methoxystyrene, ethoxystyrene, chlorostyrene, methyl vinylbenzoate, vinylbenzoic acid.
  • compounds described in paragraphs 0021 to 0024 of JP-A No. 2004-264623 can be exemplified.
  • a structural unit derived from a monomer having a styrene or an aliphatic cyclic skeleton is preferable from the viewpoint of electrical characteristics.
  • styrene, tert-butoxystyrene, methylstyrene, hydroxystyrene, ⁇ -methylstyrene, dicyclopentanyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, benzyl (meth) acrylate, etc. Can be mentioned.
  • the other structural unit (a3) a structural unit derived from (meth) acrylic acid alkyl ester is preferable from the viewpoint of adhesion.
  • Specific examples include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, and n-butyl (meth) acrylate, and methyl (meth) acrylate is more preferable.
  • the content of the structural unit (a3) is preferably 60 mol% or less, more preferably 50 mol% or less, and still more preferably 40 mol% or less.
  • 0 mol% may be sufficient, it is preferable to set it as 1 mol% or more, for example, and it is more preferable to set it as 5 mol% or more.
  • various properties of the cured film obtained from the photosensitive resin composition are improved.
  • the polymer contained in Component B preferably has a structural unit having an acid group as the other structural unit (a3).
  • the acid group in the present invention means a proton dissociable group having a pKa of less than 10.5.
  • the acid group is usually incorporated into the polymer as a structural unit having an acid group using a monomer capable of forming an acid group. By including such a structural unit having an acid group in the polymer, the polymer tends to be easily dissolved in an alkaline developer.
  • Examples of the acid group used in the present invention include a carboxylic acid group, a phosphonic acid group, a sulfonic acid group, a phenolic hydroxyl group, a sulfonamide group, a sulfonylimide group, and acid anhydride groups of these acid groups, and these Examples include a group obtained by neutralizing an acid group to form a salt structure, and a carboxylic acid group and / or a phenolic hydroxyl group is preferable.
  • An alkali metal salt, alkaline-earth metal salt, and organic ammonium salt can illustrate preferably.
  • the structural unit having an acid group used in the present invention is more preferably a structural unit derived from a styrene compound, a structural unit derived from a vinyl compound, (meth) acrylic acid and / or an ester thereof. preferable.
  • the structural unit containing an acid group is preferably from 1 to 80 mol%, more preferably from 1 to 50 mol%, still more preferably from 5 to 40 mol%, particularly preferably from 5 to 30 mol%, based on the structural units of all polymer components. Most preferred is 5 to 20 mol%.
  • a polymer having another structural unit (a3) substantially not including the structural unit (a1) and the structural unit (a2) is included. You may go out.
  • a resin having a carboxyl group in the side chain is preferable.
  • methacrylic acid copolymer acrylic acid copolymer, itaconic acid copolymer, crotonic acid copolymer, maleic acid copolymer, partially esterified maleic acid copolymer, etc.
  • side chain examples thereof include acidic cellulose derivatives having a carboxyl group, those obtained by adding an acid anhydride to a polymer having a hydroxyl group, and high molecular polymers having a (meth) acryloyl group in the side chain.
  • benzyl (meth) acrylate / (meth) acrylic acid copolymer 2-hydroxyethyl (meth) acrylate / benzyl (meth) acrylate / (meth) acrylic acid copolymer, described in JP-A-7-140654 2-hydroxypropyl (meth) acrylate / polystyrene macromonomer / benzyl methacrylate / methacrylic acid copolymer, 2-hydroxy-3-phenoxypropyl acrylate / polymethyl methacrylate macromonomer / benzyl methacrylate / methacrylic acid copolymer, 2 -Hydroxyethyl methacrylate / polystyrene macromonomer / methyl methacrylate / methacrylic acid copolymer, 2-hydroxyethyl methacrylate / polystyrene macromonomer / benzyl methacrylate / methacrylic acid
  • Known polymer compounds described in JP-A-2003-233179, JP-A-2009-52020, and the like can be used. These polymers may contain only 1 type and may contain 2 or more types.
  • SMA 1000P, SMA 2000P, SMA 3000P, SMA 1440F, SMA 17352P, SMA 2625P, SMA 3840F (above, manufactured by Sartomer), ARUFON UC-3000, ARUFON UC-3510, ARUFON UC-3900, ARUFON UC-3910, ARUFON UC-3920, ARUFON UC-3080 (above, manufactured by Toagosei Co., Ltd.), JONCRYL 690, JONCRYL 678, JONCRYL 67, JONCRYL 586 (above, manufactured by BASF), etc. are used. You can also.
  • the molecular weight of the polymer in Component B is preferably from 1,000 to 200,000, more preferably from 2,000 to 50,000 in terms of polystyrene-equivalent weight average molecular weight. Various characteristics are favorable in the range of said numerical value.
  • the ratio (dispersity, Mw / Mn) between the number average molecular weight Mn and the weight average molecular weight Mw is preferably 1.0 to 5.0, more preferably 1.5 to 3.5.
  • the measurement of the weight average molecular weight in this invention and a number average molecular weight was measured by the gel permeation chromatography method (GPC).
  • HLC-8020GPC manufactured by Tosoh Corporation
  • TSKgel Super HZ MH TSK gel Super HZ4000
  • TSKgel SuperHZ200 manufactured by Tosoh Corporation, 4.6 mm ID ⁇ 15 cm
  • THF tetrahydrofuran
  • radicals used to form at least the structural unit (a1) and the structural unit (a3) can be synthesized by polymerizing a radical polymerizable monomer mixture containing a polymerizable monomer in an organic solvent using a radical polymerization initiator. It can also be synthesized by a so-called polymer reaction.
  • the content of Component B in the photosensitive resin composition is preferably 20 to 99.9% by mass and more preferably 50 to 98% by mass with respect to the total solid content of the photosensitive resin composition. It is preferably 70 to 95% by mass. When the content is within this range, the pattern formability during development is good, and a cured product having a higher refractive index can be obtained.
  • the photosensitive resin composition that can be used in the present invention contains (Component C) a photoacid generator.
  • the photoacid generator used in the present invention is preferably a compound that reacts with actinic rays having a wavelength of 300 nm or more, preferably 300 to 450 nm, and generates an acid, but is not limited to its chemical structure.
  • a photoacid generator that is not directly sensitive to an actinic ray having a wavelength of 300 nm or more can also be used as a sensitizer if it is a compound that reacts with an actinic ray having a wavelength of 300 nm or more and generates an acid when used in combination with a sensitizer. It can be preferably used in combination.
  • the photoacid generator used in the present invention is preferably a photoacid generator that generates an acid having a pKa of 4 or less, more preferably a photoacid generator that generates an acid having a pKa of 3 or less, and a pKa of 2 or less. Most preferred is a photoacid generator that generates an acid.
  • the lower limit of pKa is not particularly limited, but is preferably ⁇ 15 or more from the viewpoint of availability.
  • photoacid generator examples include trichloromethyl-s-triazines, sulfonium salts and iodonium salts, quaternary ammonium salts, diazomethane compounds, imide sulfonate compounds, and oxime sulfonate compounds. Among these, it is preferable to use an oxime sulfonate compound from the viewpoint of insulation and sensitivity.
  • photoacid generators can be used singly or in combination of two or more.
  • trichloromethyl-s-triazines diaryliodonium salts, triarylsulfonium salts, quaternary ammonium salts, and diazomethane derivatives include the compounds described in paragraphs 0083 to 0088 of JP2011-212494A. It can be illustrated.
  • Preferred examples of the oxime sulfonate compound that is, a compound having an oxime sulfonate structure include compounds having an oxime sulfonate structure represented by the following formula (C1).
  • R 21 represents an alkyl group or an aryl group, and a wavy line represents a bonding site with another group.
  • the alkyl group for R 21 is preferably a linear or branched alkyl group having 1 to 10 carbon atoms.
  • the alkyl group represented by R 21 is an aryl group having 6 to 11 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, or a cycloalkyl group (7,7-dimethyl-2-oxonorbornyl group or the like). It may be substituted with a cyclic group, preferably a bicycloalkyl group or the like.
  • aryl group for R 21 an aryl group having 6 to 11 carbon atoms is preferable, and a phenyl group or a naphthyl group is more preferable.
  • the aryl group of R 21 may be substituted with an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, or a halogen atom.
  • Preferred examples of the compound having an oxime sulfonate structure include the compounds described in paragraphs 0092 to 0171 of JP2011-221494A, but the present invention is not limited thereto.
  • the content of the (Component C) photoacid generator in the photosensitive resin composition is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of Component B in the photosensitive resin composition. More preferably, it is 5 to 10 parts by mass.
  • Component C may be used alone or in combination of two or more.
  • thermo crosslinking agent it is preferable that the photosensitive resin composition which can be used for this invention contains a thermal crosslinking agent as needed. By adding a thermal crosslinking agent, the cured film obtained by the method for producing a cured film of the present invention can be made stronger.
  • the thermal crosslinking agent is not limited as long as it causes a crosslinking reaction by heat (excluding component B).
  • the photosensitive resin composition preferably contains, as component D, a compound having two or more epoxy groups or oxetanyl groups in the molecule, and contains a compound having two or more epoxy groups in the molecule. Is more preferable, and an epoxy resin is still more preferable. Specific examples of compounds having two or more epoxy groups in the molecule include bisphenol A type epoxy resins, bisphenol F type epoxy resins, phenol novolac type epoxy resins, cresol novolac type epoxy resins, aliphatic epoxy compounds, and the like. Can do.
  • the aliphatic epoxy compound is a resin having a linear and / or branched carbon chain and an epoxy group, and an oxygen atom, a nitrogen atom, a sulfur atom, a chlorine atom, and the like are bonded to the carbon chain in addition to a hydrogen atom. You may do it.
  • the aliphatic epoxy compound is particularly preferably a resin comprising a linear and / or branched carbon chain, a hydrogen atom, and an epoxy group, or a resin in which a hydroxyl group is substituted on the resin.
  • JER827, JER828, JER834, JER1001, JER1002, JER1003, JER1055, JER1007, JER1009, JER1010 (above, manufactured by Japan Epoxy Resin Co., Ltd.), EPICLON860, EPICLON1050, EPICLON1051, EPICLON1051, EPICLON1051
  • bisphenol F type epoxy resins such as JER806, JER807, JER4004, JER4005, JER4007, JER4010 (above, Japan Epoxy Resin Co., Ltd.), EPICLON830, EPICLON835 (above, DIC Co., Ltd.), LCE-21, RE-602S (above, Nippon Kayaku Co., Ltd.)
  • phenol novolac type epoxy resins JER152, JER154, JER157S70, JER157S65 (above, Japan Epoxy Resin Co., Ltd.), E
  • ADEKA RESIN EP-4000S, EP-4003S, EP-4010S, EP-4010S, EP-4011S (above, manufactured by ADEKA Corporation), NC-2000, NC-3000, NC-7300, XD-1000, EPPN-501, EPPN-502 (above, manufactured by ADEKA Corporation) and the like.
  • the addition amount of the thermal crosslinking agent in the photosensitive resin composition is preferably 0.01 to 50 parts by mass, preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the total solid content of the photosensitive resin composition. More preferred is 0.5 to 20 parts by mass. By adding in this range, a cured film excellent in mechanical strength and solvent resistance can be obtained.
  • a plurality of thermal crosslinking agents can be used in combination, and in that case, the content is calculated by adding all the thermal crosslinking agents.
  • the photosensitive resin composition that can be used in the present invention preferably contains (Component E) an antioxidant.
  • an antioxidant a well-known antioxidant can be contained.
  • antioxidants include phosphorus antioxidants, amides, hydrazides, hindered amine antioxidants, sulfur antioxidants, phenol antioxidants, ascorbic acids, zinc sulfate, sugars, Examples thereof include nitrates, sulfites, thiosulfates, and hydroxylamine derivatives.
  • phenolic antioxidants are particularly preferable from the viewpoint of coloring the cured film and reducing the film thickness, and phenolic antioxidants are more preferred. preferable. These may be used alone or in combination of two or more. Examples of commercially available phenolic antioxidants include ADK STAB AO-15, ADK STAB AO-18, ADK STAB AO-20, ADK STAB AO-23, ADK STAB AO-30, ADK STAB AO-37, ADK STAB AO-40 and ADK STAB AO.
  • ADK STAB AO-51 ADK STAB AO-60
  • ADK STAB AO-70 ADK STAB AO-80
  • ADK STAB AO-330 ADK STAB AO-412S
  • ADK STAB AO-503 ADK STAB A-611, ADK STAB A-612, ADK STAB A -613, ADK STAB PEP-4C, ADK STAB PEP-8, ADK STAB PEP-8W, ADK STAB PEP-24G, ADK STAB PEP-36, ADK STAB PEP-36Z, ADK STAB HP-1 ADK STAB 2112, ADK STAB 260, ADK STAB 1522, ADK STAB 1178, ADK STAB 1500, ADK STAB C, ADK STAB 13510, ADK STAB 3010, ADK STAB CDA-1, ADK STAB CDA-6, ADK STAB ZS-27, ADK STAB ZS-90 -91 (above, manufactured by ADEKA Corporation), Irga
  • the content of the antioxidant is preferably 0.1 to 6% by mass, more preferably 0.2 to 5% by mass, based on the total solid content of the photosensitive resin composition. It is particularly preferably 5 to 4% by mass. By setting it within this range, sufficient transparency of the formed film can be obtained, and the sensitivity at the time of pattern formation becomes good.
  • the dispersion composition of the present invention preferably contains (Component F) a dispersant.
  • a dispersant By containing the dispersant, the dispersibility of the component A in the composition can be further improved.
  • a known pigment dispersant can be appropriately selected and used.
  • a polymer dispersant can be preferably used.
  • the polymer dispersant is a dispersant having a molecular weight (weight average molecular weight) of 1,000 or more.
  • organosiloxane polymer KP341 manufactured by Shin-Etsu Chemical Co., Ltd.
  • Cationic surfactants such as 95 (manufactured by Kyoeisha Chemical Co., Ltd.), W001 (manufactured by Yusho Co., Ltd.); polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene octylphenyl
  • Nonionic surfactants such as ether, polyoxyethylene nonylphenyl ether, polyethylene glycol dilaurate, polyethylene glycol distearate, and sorbitan fatty acid ester
  • anionic surfactants such as W004, W005, and W017 (manufactured by Yusho Co., Ltd.) EFKA-46, EFKA-47, EFKA-47EA, EFKA polymer 100, EFKA polymer 400, EFKA polymer 401, EFKA polymer 450 (all manufactured by Ciba Specialty Chemicals), DE Polymer dispersing agents such as Sparse Aid 6, Disperse Aid
  • an oligomer or polymer having a polar group at the molecular end or side chain such as an acrylic copolymer, may be mentioned.
  • the dispersant is preferably a dispersant having an acid group. Having an acid group is preferable because the dispersibility of Component A is excellent.
  • the dispersant having an acid group include “DISPERBYK101 (polyamideamine phosphate), 107 (carboxylic acid ester), 110, 111, 180 (copolymer containing an acid group), 130 (polyamide), manufactured by BYK Chemie.
  • a dispersing agent may be used individually by 1 type, or may be used together 2 or more types.
  • the content of the dispersant in the photosensitive resin composition is preferably in the range of 5 to 70% by mass and more preferably in the range of 10 to 50% by mass with respect to the total solid content of the photosensitive resin composition.
  • the photosensitive resin composition that can be used in the present invention preferably contains (Component G) a solvent. In the layer forming step, the solvent is removed from the photosensitive resin composition layer. A layer composed of the solid content of the photosensitive resin composition is formed.
  • the photosensitive resin composition that can be used in the present invention is preferably prepared as a solution obtained by dissolving and / or dispersing an essential component of components A to C and an optional component described later in a solvent. .
  • solvents can be used, such as ethylene glycol monoalkyl ethers, ethylene glycol dialkyl ethers, ethylene glycol monoalkyl ether acetates, propylene glycol monoalkyl ethers, Propylene glycol dialkyl ethers, propylene glycol monoalkyl ether acetates, diethylene glycol dialkyl ethers, diethylene glycol monoalkyl ether acetates, dipropylene glycol monoalkyl ethers, dipropylene glycol dialkyl ethers, dipropylene glycol monoalkyl ether acetates, Examples thereof include esters, ketones, amides, and lactones. In addition, the solvents described in paragraphs 0174 to 0178 of JP2011-221494A can also be mentioned.
  • the dispersion liquid which mixed the inorganic particle, the dispersing agent, the solvent, etc. before preparing the photosensitive resin composition.
  • it is prepared by mixing and dispersing the above components using a mixing apparatus such as a bead mill, a ball mill, or a rod mill.
  • the solvent used for preparing the dispersion include 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-2-propanol, and 1-pentanol in addition to the solvents described above.
  • Alcohols such as 2-pentanol, 3-pentanol, 3-methyl-1-butanol, 2-methyl-2-butanol, neopentanol, cyclopentanol, 1-hexanol and cyclohexanol; it can. These solvents can be used singly or in combination of two or more.
  • Component G is preferably a solvent having a boiling point of 130 ° C. or higher and lower than 160 ° C., a solvent having a boiling point of 160 ° C. or higher, or a mixture thereof.
  • Solvents having a boiling point of 130 ° C. or higher and lower than 160 ° C. include propylene glycol monomethyl ether acetate (boiling point 146 ° C.), propylene glycol monoethyl ether acetate (boiling point 158 ° C.), propylene glycol methyl-n-butyl ether (boiling point 155 ° C.), propylene glycol An example is methyl-n-propyl ether (boiling point 131 ° C.).
  • Solvents having a boiling point of 160 ° C or higher include ethyl 3-ethoxypropionate (boiling point 170 ° C), diethylene glycol methyl ethyl ether (boiling point 176 ° C), propylene glycol monomethyl ether propionate (boiling point 160 ° C), dipropylene glycol methyl ether acetate.
  • the content of the solvent in the photosensitive resin composition is preferably 50 to 3,000 parts by weight, more preferably 100 to 2,000 parts by weight, and more preferably 150 to 1,500 parts per 100 parts by weight of Component B. More preferably, it is part by mass.
  • the photosensitive resin composition that can be used in the present invention preferably contains (Component H) a basic compound from the viewpoint of liquid storage stability.
  • the basic compound can be arbitrarily selected from those used in chemically amplified resists. Examples thereof include aliphatic amines, aromatic amines, heterocyclic amines, quaternary ammonium hydroxides, and quaternary ammonium salts of carboxylic acids.
  • aliphatic amines examples include trimethylamine, diethylamine, triethylamine, di-n-propylamine, tri-n-propylamine, di-n-pentylamine, tri-n-pentylamine, diethanolamine, triethanolamine, dicyclohexylamine. , Dicyclohexylmethylamine and the like.
  • aromatic amine examples include aniline, benzylamine, N, N-dimethylaniline, diphenylamine and the like.
  • heterocyclic amine examples include pyridine, 2-methylpyridine, 4-methylpyridine, 2-ethylpyridine, 4-ethylpyridine, 2-phenylpyridine, 4-phenylpyridine, N-methyl-4-phenylpyridine, 4-dimethylaminopyridine, imidazole, benzimidazole, 4-methylimidazole, 2-phenylbenzimidazole, 2,4,5-triphenylimidazole, nicotine, nicotinic acid, nicotinamide, quinoline, 8-oxyquinoline, pyrazine, Pyrazole, pyridazine, purine, pyrrolidine, piperidine, piperazine, morpholine, 4-methylmorpholine, N-cyclohexyl-N ′-[2- (4-morpholinyl) ethyl] thiourea, 1,5-diazabicyclo [4.3.0 ] -5-Nonene, 1,8-di And azabicyclo
  • Examples of the quaternary ammonium hydroxide include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetra-n-butylammonium hydroxide, tetra-n-hexylammonium hydroxide, and the like.
  • Examples of the quaternary ammonium salt of carboxylic acid include tetramethylammonium acetate, tetramethylammonium benzoate, tetra-n-butylammonium acetate, tetra-n-butylammonium benzoate and the like.
  • N-cyclohexyl-N ′-[2- (4-morpholinyl) ethyl] thiourea is preferable.
  • the basic compounds that can be used in the present invention may be used singly or in combination of two or more.
  • the content of the basic compound in the photosensitive resin composition is preferably 0.001 to 1 part by mass, more preferably 0.002 to 0.2 part by mass with respect to 100 parts by mass of Component B. .
  • the photosensitive resin composition that can be used in the present invention may contain a surfactant.
  • a surfactant any of anionic, cationic, nonionic or amphoteric can be used, but a preferred surfactant is a nonionic surfactant.
  • nonionic surfactants include polyoxyethylene higher alkyl ethers, polyoxyethylene higher alkyl phenyl ethers, higher fatty acid diesters of polyoxyethylene glycol, silicone-based and fluorine-based surfactants.
  • fluorine surfactants and silicone surfactants include JP-A Nos. 62-36663, 61-226746, 61-226745, and 62-170950.
  • JP-A-63-34540 JP-A-7-230165, JP-A-8-62834, JP-A-9-54432, JP-A-9-5988, JP-A-2001-330953, etc.
  • An activator can be mentioned and a commercially available surfactant can also be used.
  • the following trade names are KP (manufactured by Shin-Etsu Chemical Co., Ltd.), Polyflow (manufactured by Kyoeisha Chemical Co., Ltd.), F-Top (manufactured by Mitsubishi Materials Denka Kasei Co., Ltd.), and Megafuck (manufactured by DIC Corporation).
  • Fluorard manufactured by Sumitomo 3M Co., Ltd.
  • Asahi Guard manufactured by Asahi Glass Co., Ltd.
  • Surflon manufactured by AGC Seimi Chemical Co., Ltd.
  • PolyFox manufactured by SH-8400 (Toray Dow Corning Co., Ltd.) And other series.
  • a fluorine-based surfactant or a silicone-based surfactant is preferable, a fluorine-based surfactant is more preferable, a fluorine-based nonionic surfactant is further preferable, and a perfluoro group-containing nonionic surfactant is particularly preferable.
  • the surfactant includes a structural unit A and a structural unit B represented by the following formula (I-1), and is a weight in terms of polystyrene measured by gel permeation chromatography using tetrahydrofuran (THF) as a solvent.
  • Preferred examples include copolymers having an average molecular weight (Mw) of 1,000 or more and 10,000 or less.
  • R 401 and R 403 each independently represent a hydrogen atom or a methyl group
  • R 402 represents a linear alkylene group having 1 to 4 carbon atoms
  • R 404 represents a hydrogen atom or Represents an alkyl group having 1 to 4 carbon atoms
  • L represents an alkylene group having 3 to 6 carbon atoms
  • p and q are mass percentages representing a polymerization ratio
  • p is 10 mass% to 80 mass%.
  • a numerical value is represented, q represents a numerical value of 20 mass% or more and 90 mass% or less, r represents an integer of 1 or more and 18 or less, and s represents an integer of 1 or more and 10 or less.
  • L is preferably a branched alkylene group represented by the following formula (I-2).
  • R 405 in formula (I-2) represents an alkyl group having 1 to 4 carbon atoms, and is preferably an alkyl group having 1 to 3 carbon atoms in terms of compatibility and wettability to the coated surface. Two or three alkyl groups are more preferred.
  • the weight average molecular weight (Mw) of the copolymer is more preferably from 1,500 to 5,000.
  • the addition amount of the surfactant in the photosensitive resin composition is preferably 10 parts by mass or less, and preferably 0.001 to 10 parts by mass with respect to 100 parts by mass of the total solid content in the photosensitive resin composition. More preferred is 0.01 to 3 parts by mass.
  • the photosensitive resin composition that can be used in the present invention may contain an adhesion improving agent.
  • the adhesion improver that can be used for the photosensitive resin composition is an inorganic substance as a base material, for example, a silicon compound such as silicon, silicon oxide, or silicon nitride, adhesion between a metal such as gold, copper, or aluminum and an insulating film. It is a compound that improves Specific examples include silane coupling agents and thiol compounds. Among these, a silane coupling agent is preferable.
  • the silane coupling agent as an adhesion improving agent used in the present invention is for the purpose of modifying the interface, and any known silane coupling agent can be used without any particular limitation.
  • Preferred silane coupling agents include, for example, ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, ⁇ -glycidoxypropyltrialkoxysilane, ⁇ -glycidoxypropylalkyldialkoxysilane, ⁇ -methacrylate.
  • the content of the adhesion improving agent in the photosensitive resin composition is preferably 0.1 to 20 parts by mass, more preferably 0.5 to 10 parts by mass with respect to 100 parts by mass of Component B.
  • the photosensitive resin composition that can be used in the present invention includes a sensitizer, an ultraviolet absorber, a metal deactivator, an acid proliferator, a development accelerator, a plasticizer, as necessary.
  • Known additives such as an agent, a thermal radical generator, a thermal acid generator, a thickener, and an organic or inorganic suspending agent can be added.
  • a thermal radical generator described in paragraphs 0120 to 0121 of JP2012-8223A, a nitrogen-containing compound and a thermal acid generator described in International Publication No. 2011-133604 are also used. Can do.
  • the cured film of the present invention is a cured film obtained by the method for producing a cured film of the present invention.
  • the cured film of the present invention can be suitably used as an interlayer insulating film.
  • the cured film of this invention is a cured film obtained by the formation method of the cured film of this invention.
  • an interlayer insulating film having excellent transparency and high transparency even when baked at a high temperature can be obtained. Since the interlayer insulating film obtained by the method for producing a cured film of the present invention has high transparency and excellent cured film properties, it is useful for organic EL display devices and liquid crystal display devices.
  • the liquid crystal display device of the present invention comprises the cured film of the present invention.
  • the liquid crystal display device of the present invention is not particularly limited except that it has a cured film such as a flattened film or an interlayer insulating film obtained by the method for producing a cured film of the present invention, and known liquid crystals having various structures.
  • a display device can be mentioned.
  • specific examples of TFT (Thin-Film Transistor) included in the liquid crystal display device of the present invention include amorphous silicon-TFT, low-temperature polysilicon-TFT, oxide semiconductor TFT, and the like. Since the cured film of the present invention is excellent in electrical characteristics, it can be preferably used in combination with these TFTs.
  • liquid crystal driving methods that can be taken by the liquid crystal display device of the present invention include TN (Twisted Nematic) method, VA (Vertical Alignment) method, IPS (In-Plane-Switching) method, FFS (Fringe Field Switching) method, OCB (OCB) method.
  • TN Transmission Nematic
  • VA Vertical Alignment
  • IPS In-Plane-Switching
  • FFS Ringe Field Switching
  • OCB Optical Compensated Bend
  • the cured film of the present invention can also be used in a COA (Color Filter on Array) type liquid crystal display device.
  • COA Color Filter on Array
  • the organic insulating film (115) described in JP-A-2005-284291 It can be used as the organic insulating film (212) described in Japanese Unexamined Patent Publication No. 2005-346054.
  • the polymer orientation may be supported by a PSA (Polymer Sustained Alignment) technique described in Japanese Patent Application Laid-Open Nos. 2003-149647 and 2011-257734.
  • the photosensitive resin composition of this invention and the cured film of this invention are not limited to the said use, It can be used for various uses.
  • a protective film for the color filter in addition to the planarization film and interlayer insulating film, a protective film for the color filter, a spacer for keeping the thickness of the liquid crystal layer in the liquid crystal display device constant, a microlens provided on the color filter in the solid-state imaging device, etc. Can be suitably used.
  • FIG. 1 is a conceptual cross-sectional view showing an example of an active matrix liquid crystal display device 10.
  • the color liquid crystal display device 10 is a liquid crystal panel having a backlight unit 12 on the back surface, and the liquid crystal panel includes all pixels disposed between two glass substrates 14 and 15 having a polarizing film attached thereto.
  • the elements of the TFT 16 corresponding to are arranged.
  • Each element formed on the glass substrate is wired with an ITO transparent electrode 19 that forms a pixel electrode through a contact hole 18 formed in the cured film 17.
  • an RGB color filter 22 in which a liquid crystal 20 layer and a black matrix are arranged is provided.
  • the light source of the backlight is not particularly limited, and a known light source can be used.
  • the liquid crystal display device can be a 3D (stereoscopic) type or a touch panel type. Further, it can be made flexible, and used as the second interlayer insulating film (48) described in JP2011-145686A and the interlayer insulating film (520) described in JP2009-258758A. Can do.
  • the organic EL display device of the present invention comprises the cured film of the present invention.
  • the organic EL display device of the present invention is not particularly limited except that it has a cured film such as a flattened film or an interlayer insulating film obtained by the method for producing a cured film of the present invention, and is known in various structures. Examples include various organic EL display devices and liquid crystal display devices.
  • specific examples of TFT (Thin-Film Transistor) included in the organic EL display device of the present invention include amorphous silicon-TFT, low-temperature polysilicon-TFT, oxide semiconductor TFT, and the like.
  • FIG. 2 is a conceptual diagram of an example of an organic EL display device.
  • a schematic cross-sectional view of a substrate in a bottom emission type organic EL display device is shown, and a planarizing film 4 is provided.
  • a bottom gate type TFT 1 is formed on a glass substrate 6, and an insulating film 3 made of Si 3 N 4 is formed so as to cover the TFT 1.
  • a contact hole (not shown) is formed in the insulating film 3, and then a wiring 2 (height: 1.0 ⁇ m) connected to the TFT 1 through the contact hole is formed on the insulating film 3.
  • the wiring 2 is used to connect the TFT 1 with an organic EL element formed between the TFTs 1 or in a later process. Further, in order to flatten the unevenness due to the formation of the wiring 2, a planarizing film 4 is formed on the insulating film 3 in a state where the unevenness due to the wiring 2 is embedded. On the planarizing film 4, a bottom emission type organic EL element is formed. That is, the first electrode 5 made of ITO is formed on the planarizing film 4 so as to be connected to the wiring 2 through the contact hole 7. The first electrode 5 corresponds to the anode of the organic EL element. An insulating film 8 having a shape covering the periphery of the first electrode 5 is formed.
  • a short circuit between the first electrode 5 and the second electrode formed in the subsequent process is prevented. can do.
  • a hole transport layer, an organic light emitting layer, and an electron transport layer are sequentially deposited through a desired pattern mask, and then a second layer made of Al is formed on the entire surface above the substrate.
  • An EL display device is obtained.
  • a resist pattern formed using the cured film as a structural member of a MEMS device can be used as a partition wall or a mechanical drive component. Used as part of it.
  • MEMS devices include, for example, SAW (surface acoustic wave) filters, BAW (bulk acoustic wave) filters, gyro sensors, micro shutters for displays, image sensors, electronic paper, inkjet heads, biochips, sealants. And the like. More specific examples are exemplified in JP-T-2007-522531, JP-A-2008-250200, JP-A-2009-263544, and the like.
  • the cured film obtained by the method for producing a cured film of the present invention is excellent in flatness and transparency, for example, the bank layer (16) and the planarizing film (see FIG. 2 of JP2011-107476A) 57), the partition wall (12) and the planarization film (102) described in FIG. 4A of JP 2010-9793 A, the bank layer (221) described in FIG. 10 of JP 2010-27591 A, and Third interlayer insulating film (216b), second interlayer insulating film (125) and third interlayer insulating film (126) described in FIG. 4A of JP-A-2009-128577, JP-A 2010-182638 3 can be used to form the planarization film (12) and the pixel isolation insulating film (14) shown in FIG.
  • the touch panel display device of the present invention includes a capacitive input device having the cured film of the present invention. Moreover, the capacitance-type input device of the present invention has the cured film of the present invention.
  • the capacitance-type input device of the present invention has at least the following elements (1) to (5) on the front plate and the non-contact side of the front plate, and the above (4) is the cured product of the present invention. Preferably there is.
  • Mask layer (2) A plurality of first transparent electrode patterns formed by extending a plurality of pad portions in the first direction (X) via connecting portions (3)
  • the first transparent electrode A plurality of second transparent electrode patterns comprising a plurality of pad portions which are electrically insulated from the pattern and extend in a direction intersecting the first direction (X).
  • the first transparent An insulating layer for electrically insulating the electrode pattern and the second transparent electrode pattern.
  • (5) electrically connected to at least one of the first transparent electrode pattern and the second transparent electrode pattern; Conductive element different from the transparent electrode pattern and the second transparent electrode pattern of the present invention
  • the capacitive input device of the present invention further covers all or part of the elements (1) to (5). It is preferable to install a transparent protective layer, the above transparent More preferably Mamoruso is cured film of the present invention.
  • FIG. 3 is a cross-sectional view showing the configuration of the capacitive input device.
  • the capacitive input device 30 includes a front plate 31, a mask layer 32, a first transparent electrode pattern 33, a second transparent electrode pattern 34, an insulating layer 35, and a conductive element 36. And a transparent protective layer 37.
  • the front plate 31 is composed of a light-transmitting substrate such as a glass substrate, and tempered glass represented by gorilla glass manufactured by Corning Inc. can be used. Moreover, in FIG. 3, the side in which each element of the front plate 31 is provided is called a non-contact surface. In the capacitive input device 30 of the present invention, input is performed by bringing a finger or the like into contact with the contact surface (the surface opposite to the non-contact surface) of the front plate 31.
  • the front plate may be referred to as a “base material”.
  • a mask layer 32 is provided on the non-contact surface of the front plate 31.
  • the mask layer 32 is a frame-like pattern around the display area formed on the non-contact side of the touch panel front plate, and is formed so as not to show the lead wiring and the like.
  • a mask layer 32 is provided so as to cover a part of the front plate 31 (a region other than the input surface in FIG. 4).
  • the front plate 31 may be provided with an opening 38 in part as shown in FIG. A mechanical switch by pressing can be installed in the opening 38.
  • a plurality of first transparent electrode patterns 33 are formed on the contact surface of the front plate 31 by a plurality of pad portions extending in the first direction (X) via the connection portions.
  • a plurality of second transparent electrode patterns 34 each including a plurality of pad portions that are electrically insulated from the first transparent electrode pattern 33 and extend in a direction intersecting the first direction (X).
  • the insulating layer 35 which electrically insulates the 1st transparent electrode pattern 33 and the 2nd transparent electrode pattern 34 is formed.
  • the first transparent electrode pattern 33, the second transparent electrode pattern 34, and the conductive element 36 to be described later are translucent conductive materials such as ITO (Indium Tin Oxide) and IZO (Indium Zinc Oxide).
  • the film thickness of each element can be set to 10 to 200 nm.
  • the first transparent electrode pattern 33, the second transparent electrode pattern 34, and the conductive element 36 described later are a photocurable transfer material having a photosensitive resin composition using the conductive fibers. It can also be manufactured.
  • paragraphs 0014 to 0016 of Japanese Patent No. 4506785 can be referred to.
  • At least one of the first transparent electrode pattern 33 and the second transparent electrode pattern 34 extends over both the non-contact surface of the front plate 31 and the region opposite to the front plate 31 of the mask layer 32. Can be installed.
  • FIG. 3 a diagram is shown in which the second transparent electrode pattern is installed across both areas of the non-contact surface of the front plate 31 and the surface opposite to the front plate 31 of the mask layer 32. Yes.
  • FIG. 5 is an explanatory diagram showing an example of the first transparent electrode pattern and the second transparent electrode pattern in the present invention.
  • the first transparent electrode pattern 33 is formed such that the pad portion 33a extends in the first direction (X) via the connection portion 33b.
  • the second transparent electrode pattern 34 is electrically insulated by the first transparent electrode pattern 33 and the insulating layer 35, and intersects the first direction (X) (second direction in FIG. 5).
  • (Y)) is constituted by a plurality of pad portions formed to extend.
  • the pad portion 33a and the connection portion 33b may be manufactured as one body, or only the connection portion 33b is manufactured, and the pad portion 33a and the second portion 33b are formed.
  • the transparent electrode pattern 34 may be integrally formed (patterned).
  • the pad portion 33a and the second transparent electrode pattern 34 are integrally formed (patterned), as shown in FIG. 5, a part of the connection part 33b and a part of the pad part 33a are connected, and an insulating layer is formed. Each layer is formed so that the first transparent electrode pattern 33 and the second transparent electrode pattern 34 are electrically insulated by 35.
  • a conductive element 36 is provided on the surface of the mask layer 32 opposite to the front plate 31.
  • the conductive element 36 is electrically connected to at least one of the first transparent electrode pattern 33 and the second transparent electrode pattern 34, and is different from the first transparent electrode pattern 33 and the second transparent electrode pattern 34. Is another element.
  • FIG. 3 a view in which the conductive element 36 is connected to the second transparent electrode pattern 34 is shown.
  • the transparent protective layer 37 is installed so that all of each component may be covered.
  • the transparent protective layer 37 may be configured to cover only a part of each component.
  • the insulating layer 35 and the transparent protective layer 37 may be made of the same material or different materials.
  • the capacitive input device of the present invention and the touch panel display device including the capacitive input device as a constituent element are “latest touch panel technology” (issued July 6, 2009, Techno Times), Supervised by Yuji Mitani, “Touch Panel Technology and Development,” CM Publishing (2004, 12), FPD International 2009 Forum T-11 Lecture Textbook, Cypress Semiconductor Corporation Application Note AN2292, etc. it can.
  • MATHF tetrahydrofuran-2-yl methacrylate (synthetic product)
  • GMA Glycidyl methacrylate (manufactured by Wako Pure Chemical Industries, Ltd.)
  • MAA Methacrylic acid (manufactured by Wako Pure Chemical Industries, Ltd.)
  • MMA Methyl methacrylate (Wako Pure Chemical Industries, Ltd.)
  • St Styrene (Wako Pure Chemical Industries, Ltd.)
  • DCPM Dicyclopentanyl methacrylate (manufactured by Hitachi Chemical Co., Ltd.)
  • V-601 Dimethyl 2,2′-azobis (2-methylpropionate) (manufactured by Wako Pure Chemical Industries, Ltd.)
  • PGMEA Propylene glycol monomethyl ether acetate
  • MAEVE 1-ethoxyethyl methacrylate (synthetic product)
  • MACHOE 1- (cyclohexyloxy) ethyl methacrylate (synthetic product)
  • MATHP Tetrahydro-2H-pyran-2-yl methacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd.)
  • OXE-30 Methacrylic acid (3-ethyloxetane-3-yl) methyl (Osaka Organic Chemical Industry Co., Ltd.)
  • dispersion D1 A dispersion having the following composition was prepared, mixed with 17,000 parts of zirconia beads (0.3 mm ⁇ ), and dispersed for 12 hours using a paint shaker. Zirconia beads (0.3 mm ⁇ ) were filtered off to obtain dispersion D1. Titanium dioxide (manufactured by Ishihara Sangyo Co., Ltd., trade name: TTO-51 (C), average primary particle size: 10 to 30 nm): 1,875 parts Dispersant (DISPERBYK-111, 30% by mass PGMEA solution): 2,200 parts, solvent PGMEA (propylene glycol monomethyl ether acetate): 3,425 parts
  • Dispersions D2 and D3 were obtained in the same manner as in the preparation of Dispersion D1, except that TTO-51 (C) and the dispersant were changed to those shown in Table 1, respectively.
  • radical polymerization initiator V-601 (dimethyl-2,2′-azobis (2-methylpropionate)), manufactured by Wako Pure Chemical Industries, Ltd., 12.0 parts) and PGMEA (80 parts) of the mixed solution was added dropwise over 3.5 hours.
  • a PGMEA solution of polymer P1-1 was obtained by reacting at 70 ° C. for 2 hours. Further, PGMEA was added to adjust the solid content concentration to 30% by mass.
  • the obtained polymer P1-1 had a weight average molecular weight (Mw) of 15,000 as measured by gel permeation chromatography (GPC). The acid value was 45 mg KOH / g.
  • Mw weight average molecular weight
  • GPC gel permeation chromatography
  • PGMEA solution of polymer P2-1 was obtained in the same manner as for polymer P1, except that the monomer composition was changed as follows. Further, PGMEA was added to adjust the solid content concentration to 30% by mass. Tetrahydrofuran-2-yl methacrylate (0.65 molar equivalent), Methacrylic acid (0.15 molar equivalent), Methyl methacrylate (0.20 molar equivalent)
  • the obtained polymer P2-1 had a weight average molecular weight (Mw) of 15,000 measured by gel permeation chromatography (GPC). The acid value was 60 mgKOH / g.
  • a PGMEA solution of polymer P3 was obtained in the same manner as polymer P1-1, except that the monomer composition was changed as follows. Further, PGMEA was added to adjust the solid content concentration to 30% by mass. Glycidyl methacrylate (0.70 molar equivalent), Methacrylic acid (0.10 molar equivalent), Styrene (0.15 molar equivalent), Dicyclopentanyl methacrylate (0.05 molar equivalent) The obtained polymer P3 had a weight average molecular weight (Mw) of 12,000 as measured by gel permeation chromatography (GPC). The acid value was 45 mg KOH / g.
  • MAEVE was synthesized in the same manner as MATH, except that 2-dihydrofuran was changed to the corresponding compound.
  • MACHOE was synthesized in the same manner as MATH, except that 2-dihydrofuran was changed to the corresponding compound.
  • Crude B2A was purified by silica gel column chromatography to obtain 1.7 g of intermediate B2A.
  • B2A (1.7 g) and p-xylene (6 mL) were mixed, 0.23 g of p-toluenesulfonic acid monohydrate (manufactured by Wako Pure Chemical Industries, Ltd.) was added, and the mixture was heated at 140 ° C. for 2 hours. .
  • water and ethyl acetate were added to the reaction mixture and the phases were separated.
  • the total amount of the intermediate crude B2C was mixed with acetone (10 mL), and triethylamine (Wako Pure Chemical Industries, Ltd.) (1.2 g) and p-toluenesulfonyl chloride (Tokyo Chemical Industry Co., Ltd.) under ice cooling ( After adding 1.4 g), the mixture was warmed to room temperature and stirred for 1 hour. Water and ethyl acetate were added to the resulting reaction mixture to separate it, and the organic phase was dried over magnesium sulfate, filtered and concentrated to obtain crude B2. Crude B2 was reslurried with cold methanol, filtered and dried to obtain B2 (1.2 g).
  • B3 was synthesized in the same manner as B1 except that benzenesulfonyl chloride was used instead of p-toluenesulfonyl chloride in B1.
  • Example 1 Preparation of photosensitive resin composition> After mixing and mixing with the following composition to make a uniform solution, the mixture was filtered using a polyethylene filter having a pore size of 0.2 ⁇ m to prepare a photosensitive resin composition of Example 1. Various evaluations described later were performed using the obtained photosensitive resin composition. The evaluation results are shown in Tables 3 and 4 below.
  • PGMEA solution 191.1 parts-0.2% PGMEA solution of the following compound (Toyo Kasei Kogyo Co., Ltd., CMTU): 25.7 parts-30% PGMEA solution of polymer P1: 263.3 Parts / photo acid generator B1: 5.1 parts / JER157S65 (epoxy resin, manufactured by Mitsubishi Chemical Corporation, epoxy equivalent: 200 to 220 g / eq): 17.9 parts / 3-glycidoxypropyltrimethoxysilane ( KBM-403, manufactured by Shin-Etsu Chemical Co., Ltd.): 4.5 parts Irganox 1726 (antioxidant, 2,4-bis (dodecylthiomethyl) -6-methylphenol, manufactured by BASF): 3.0 Part: Perfluoroalkyl group-containing nonionic surfactant (F-554, manufactured by DIC Corporation) 2.0% PGMEA solution: 11.0 parts Dispersion D1: 4 8.4 parts
  • the resulting photosensitive resin composition has a thickness of 2.0 ⁇ m on a 100 mm ⁇ 100 mm glass substrate (trade name: XG, manufactured by Corning) treated with hexamethyldisilazane (HMDS) for 3 minutes.
  • HMDS hexamethyldisilazane
  • the solution was applied with a spin coater and dried (prebaked) for 120 seconds on a hot plate at 80 ° C. to remove the solvent.
  • PVC-211 manufactured by HORIBA, Ltd.
  • thermocouple at a preset temperature of 200 ° C. for 5 minutes. The subsequent film thickness was measured.
  • the layer after rinsing was heated at 200 ° C. for 20 minutes in the same manner as described above, and then the film thickness was measured.
  • the film thickness after development and rinsing and the film thickness after development, rinsing and heating were measured.
  • the shrink rate was the same as above.
  • the obtained photosensitive resin composition was applied on a silicon wafer substrate and dried at 80 ° C. for 120 seconds to form a film having a thickness of 0.5 ⁇ m.
  • This substrate was exposed at 200 mJ / cm 2 (measured with i-line) using an ultrahigh pressure mercury lamp, and then heated in an oven at 150 ° C. for 60 minutes.
  • the refractive index of the cured film at 589 nm was measured using an ellipsometer VUV-VASE (manufactured by JA Woollam Japan Co., Ltd.). A higher refractive index is preferable, and 1.70 or more is more preferable.
  • the resulting photosensitive resin composition has a thickness of 2.0 ⁇ m on a 100 mm ⁇ 100 mm glass substrate (trade name: XG, manufactured by Corning) treated with hexamethyldisilazane (HMDS) for 3 minutes. Thus, it was applied with a spin coater and dried (prebaked) for 120 seconds on an 80 ° C. hot plate. Next, using a ghi-line high pressure mercury lamp exposure machine, exposure was performed through a 1% to 60% gradation mask with a line and space of 1: 1 at an illuminance of 20 mW / cm 2 and 200 mJ / cm 2 . Next, the film was developed with a 0.5% KOH aqueous solution at 23 ° C.
  • a pattern was obtained by heating at 150 ° C. for 60 minutes. This pattern was observed with an optical microscope. This operation is started from the width of the mask line and space of 50 ⁇ m, and until 10 ⁇ m, the width is reduced by 5 ⁇ m by 10 ⁇ m, and the width is reduced by 1 ⁇ m. . 4 or 3 is a practical range. 4: The resolution was 5 ⁇ m or less. 3: The resolution was more than 5 ⁇ m and 10 ⁇ m or less. 2: The resolution was more than 10 ⁇ m and 50 ⁇ m or less. 1: A pattern could not be formed with a line and space width of 50 ⁇ m of the mask.
  • ⁇ Taper shape evaluation> The taper shape of the section of the line-and-space width 50 ⁇ m formed above was observed with a scanning electron microscope (SEM). Using a ghi-line high pressure mercury lamp exposure machine, the gap between the mask and the substrate was exposed to 100 ⁇ m at an illuminance of 20 mW / cm 2 and 200 mJ / cm 2 . The collimation angle was 2 degrees. Note that a proximity type exposure machine (manufactured by Hitachi High-Tech Electronics Engineering Co., Ltd.) having an ultrahigh pressure mercury lamp was used as the exposure machine. Evaluation criteria based on the taper angle of the tapered shape are shown below.
  • the “taper angle” is an angle formed by the side surface of the pattern and the substrate plane on which the pattern is formed in the cross-sectional shape of the pattern in the line width direction.
  • the cross-sectional shape of the pattern is a semicircle or an arcuate shape and the cross-section of the side surface is a curve
  • the tangent line at the midpoint between the uppermost part of the pattern and the substrate that is, the point of the film thickness 1/2 and the plate substrate plane
  • the angle formed by As a specific example of the taper angle, ⁇ in each pattern cross-sectional shape shown in FIGS. 6 to 9 is the taper angle.
  • the taper shape shown in FIG. 6 is an example when the taper angle is 20 ° or more and 30 ° or less.
  • the taper shape shown in FIG. 7 is an example when the taper angle is less than 20 °. If the taper angle is less than 20 °, the height of the cured film cannot be obtained sufficiently, and the reproducibility of the exposure pattern is poor.
  • the taper shape shown in FIG. 8 is an example when the taper angle is more than 75 ° and not more than 90 °. When the taper angle exceeds 75 °, disconnection is likely to occur when wiring such as ITO is deposited.
  • the taper shape shown in FIG. 9 is an example when the taper angle exceeds 90 °. When the taper angle exceeds 90 °, the shape is similar to that of side etching in etching, and disconnection is very likely to occur when a wiring such as ITO is deposited.
  • Examples 2 to 22 and Comparative Example 5 The photosensitive resin compositions of Examples 2 to 22 and Comparative Example 5 were prepared in the same manner as in Example 1 except that the components were changed to those shown in Table 2, and the resulting photosensitive resin composition was obtained. Various evaluations were performed using The evaluation results are shown in Tables 3 and 4 below.
  • DPHA mixture of 70% by mass of dipentaerythritol hexaacrylate and 30% by mass of dipentaerythritol pentaacrylate
  • OXE-02 initiator, the following compound, manufactured by BASF, IRGACURE OXE 02
  • OXE-01 initiator, the following compound, manufactured by BASF, IRGACURE OXE 01
  • Comparative Example 4 film slippage due to development was observed. Further, in the resolving power evaluation of Comparative Examples 1 to 3, the resolving power was rank 2, and a portion where the line and space pattern was crushed was partially observed.
  • Example 23 In the active matrix liquid crystal display device shown in FIG. 1 of Japanese Patent No. 3321003, a cured film 17 was formed as an interlayer insulating film as follows, and a liquid crystal display device of an example was obtained. That is, the photosensitive resin composition of Example 1 was spin-coated on a substrate, pre-baked (80 ° C./120 seconds) on a hot plate, and then i-line (365 nm) was 200 mJ / mm from the mask using a high-pressure mercury lamp.
  • liquid crystal display device When a driving voltage was applied to the obtained liquid crystal display device, it was found that the liquid crystal display device showed good display characteristics and high reliability.
  • Example 24 An organic EL display device using a thin film transistor (TFT) was produced by the following method (see FIG. 2).
  • a bottom gate type TFT 1 was formed on a glass substrate 6, and an insulating film 3 made of Si 3 N 4 was formed so as to cover the TFT 1.
  • a contact hole (not shown) is formed in the insulating film 3, and then a wiring 2 (height 1.0 ⁇ m) connected to the TFT 1 through the contact hole is formed on the insulating film 3.
  • This wiring 2 is a Cu wiring for connecting the TFT 1 to an organic EL element formed between TFTs 1 or in a later process.
  • the flattening film 4 was formed on the insulating film 3 in a state where the unevenness due to the wiring 2 was embedded.
  • the planarization film 4 is formed on the insulating film 3 by spin-coating the photosensitive resin composition of Example 1 on a substrate, pre-baking (80 ° C./120 seconds) on a hot plate, and then applying high pressure from above the mask. After irradiating i-line (365 nm) with 200 mJ / cm 2 (energy intensity 20 mW / cm 2 ) using a mercury lamp, a pattern was formed by developing with an alkaline aqueous solution, and heat treatment was performed at 150 ° C./60 minutes.
  • the applicability when applying the photosensitive resin composition was good, and no wrinkles or cracks were observed in the cured film obtained after exposure, development and baking. Furthermore, the average step of the wiring 2 was 500 nm, and the thickness of the prepared planarizing film 4 was 2,000 nm.
  • a bottom emission type organic EL element was formed on the obtained flattening film 4.
  • a first electrode 5 made of ITO was formed on the planarizing film 4 so as to be connected to the wiring 2 through the contact hole 7.
  • a resist was applied, prebaked, exposed through a mask having a desired pattern, and developed.
  • pattern processing was performed by wet etching using an ITO etchant.
  • the resist pattern was stripped at 50 ° C. using a resist stripper (remover 100, manufactured by AZ Electronic Materials).
  • the first electrode 5 thus obtained corresponds to the anode of the organic EL element.
  • an insulating film 8 having a shape covering the periphery of the first electrode 5 was formed.
  • the photosensitive resin composition of Example 1 was used, and the insulating film 8 was formed by the same method as described above. By providing this insulating film 8, it is possible to prevent a short circuit between the first electrode 5 and the second electrode formed in the subsequent process.
  • a hole transport layer, an organic light emitting layer, and an electron transport layer were sequentially deposited through a desired pattern mask in a vacuum deposition apparatus.
  • a second electrode made of Al was formed on the entire surface above the substrate.
  • substrate was taken out from the vapor deposition machine, and it sealed by bonding together using the glass plate for sealing, and an ultraviolet curable epoxy resin.
  • a touch panel display device was produced using the high refractive index curable resin material of the present invention by the method described below.
  • ⁇ Formation of first transparent electrode pattern> [Formation of transparent electrode layer]
  • a front plate of tempered glass (300 mm ⁇ 400 mm ⁇ 0.7 mm) with a mask layer formed in advance is introduced into a vacuum chamber, and an ITO target (indium: tin 95: 5) with a SnO 2 content of 10% by mass. (Molar ratio)) was used to form an ITO thin film having a thickness of 40 nm by DC magnetron sputtering (conditions: substrate temperature 250 ° C., argon pressure 0.13 Pa, oxygen pressure 0.01 Pa), and a transparent electrode layer was formed.
  • a formed front plate was obtained.
  • the surface resistance of the ITO thin film was 80 ⁇ / ⁇ .
  • etching resist was applied onto ITO and dried to form an etching resist layer.
  • the distance between the surface of the exposure mask (quartz exposure mask having a transparent electrode pattern) and the etching resist layer is set to 100 ⁇ m, pattern exposure is performed at an exposure amount of 50 mJ / cm 2 (i-line), and then a dedicated developer. And a post-baking treatment at 130 ° C. for 30 minutes to obtain a front plate on which a transparent electrode layer and an etching resist layer pattern were formed.
  • the front plate on which the transparent electrode layer and the etching resist layer pattern are formed is immersed in an etching bath containing ITO etchant (hydrochloric acid, potassium chloride aqueous solution, liquid temperature 30 ° C.), treated for 100 seconds, and covered with the etching resist layer.
  • ITO etchant hydroochloric acid, potassium chloride aqueous solution, liquid temperature 30 ° C.
  • the exposed transparent electrode layer was removed by dissolution to obtain a front plate with a transparent electrode layer pattern with an etching resist layer pattern.
  • the front plate with the transparent electrode layer pattern with the etching resist layer pattern is immersed in a dedicated resist stripping solution, the etching resist layer is removed, and the mask layer and the first transparent electrode pattern are formed.
  • a face plate was obtained.
  • the photosensitive resin composition of Example 1 was applied and dried (film thickness: 1 ⁇ m, 80 ° C., 120 seconds) to form a photosensitive resin composition layer.
  • the distance between the exposure mask (quartz exposure mask having an insulating layer pattern) surface and the photosensitive resin composition layer was set to 30 ⁇ m, and pattern exposure was performed at an exposure amount of 200 mJ / cm 2 (i-line).
  • the film was developed with a 2.38 mass% tetramethylammonium hydroxide aqueous solution at 23 ° C. for 15 seconds and rinsed with ultrapure water for 10 seconds.
  • a post-bake treatment at 220 ° C. for 45 minutes was performed to obtain a front plate on which a mask layer, a first transparent electrode pattern, and an insulating layer pattern were formed.
  • the first transparent electrode pattern using a commercially available etching resist, the first transparent electrode pattern, an insulating layer pattern formed using the photosensitive resin composition of Example 1, a transparent electrode layer, A front plate on which an etching resist pattern was formed was obtained (post-baking treatment; 130 ° C. for 30 minutes). Further, etching was performed in the same manner as the formation of the first transparent electrode pattern, and the etching resist layer was removed to form the mask layer, the first transparent electrode pattern, and the photosensitive resin composition of Example 1. A front plate on which an insulating layer pattern and a second transparent electrode pattern were formed was obtained.
  • a front plate on which a pattern, a second transparent electrode pattern, and an etching resist pattern were formed was obtained (post-bake treatment; 130 ° C. for 30 minutes). Further, in the same manner as the formation of the first transparent electrode pattern, etching (30 ° C. for 50 seconds) is performed, and the etching resist layer is removed (45 ° C. for 200 seconds).
  • a front plate on which a conductive element different from the insulating layer pattern, the second transparent electrode pattern, and the first and second transparent electrode patterns formed using the photosensitive resin composition of Example 1 was obtained was obtained.
  • the photosensitive resin composition of Example 1 was applied and dried (film thickness: 1 ⁇ m) on the front plate formed up to the conductive element different from the first and second transparent electrode patterns. , 90 ° C. for 120 seconds) to obtain a photosensitive resin composition film.
  • the front exposure is performed with an exposure amount of 50 mJ / cm 2 (i-line) without using an exposure mask, development, post-exposure (1,000 mJ / cm 2 ), and post-bake treatment are performed to obtain a mask layer and a first transparent
  • the electrode pattern, the insulating layer pattern formed using the photosensitive resin composition of Example 1, the second transparent electrode pattern, and all the conductive elements different from the first and second transparent electrode patterns are covered.
  • stacked the insulating layer (transparent protective layer) formed using the photosensitive resin composition of Example 1 was obtained.
  • a liquid crystal display device manufactured by the method described in Japanese Patent Application Laid-Open No. 2009-47936 is bonded to the previously manufactured front plate, and an image display device including a capacitive input device as a constituent element is manufactured by a known method. did.
  • TFT thin film transistor
  • 2 wiring
  • 3 insulating film
  • 4 planarization film
  • 5 first electrode
  • 6 glass substrate
  • 7 contact hole
  • 8 insulating film
  • 10 liquid crystal display device
  • 12 Backlight unit
  • 14 15: Glass substrate
  • 16 TFT
  • 17 Cured film
  • 18 Contact hole
  • 19 ITO transparent electrode
  • 20 Liquid crystal
  • 22 Color filter
  • 30 Capacitive input device 31: front plate, 32: mask layer, 33: first transparent electrode pattern, 33a: pad portion, 33b: connection portion, 34: second transparent electrode pattern, 35: insulating layer
  • 36 conductive element
  • 37 transparent protective layer
  • 38 opening
  • 100 substrate
  • 102 substrate surface
  • 104 cured film
  • X first direction
  • Y second direction
  • taper angle

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Materials For Photolithography (AREA)
  • Electroluminescent Light Sources (AREA)
  • Liquid Crystal (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

The purpose of the present invention is to provide: a method for producing a cured film which has high refractive index, excellent resolving power and excellent tapered shape; a cured film which is obtained by the above-described production method; and a liquid crystal display device, an organic EL display device and a touch panel display device, each of which uses the above-described cured film. A method for producing a cured film according to the present invention is characterized by comprising steps (a) and (b) in this order. (a) a layer formation step wherein a photosensitive resin composition, which contains (component A) inorganic particles, (component B) a polymer which contains a constituent unit that has a group wherein an acid group is protected by an acid-decomposable group and (component C) a photoacid generator, is used, and a layer that is formed of the solid content of the photosensitive resin composition and satisfies formula (2) is formed on a substrate (b) a heat treatment step wherein the layer that is formed of the solid content of the photosensitive resin composition is subjected to a heat treatment shrinkage r2 = (t20 - t21)/t20 ≥ 0.15 (2) In formula (2), t20 represents the thickness of the layer that is formed of the solid content of the photosensitive resin composition; and t21 represents the thickness of the layer after being heated at 200°C for 20 minutes.

Description

硬化膜の製造方法、硬化膜、液晶表示装置、有機EL表示装置、及び、タッチパネル表示装置Manufacturing method of cured film, cured film, liquid crystal display device, organic EL display device, and touch panel display device
 本発明は、硬化膜の製造方法、上記製造方法により得られた硬化膜、並びに、上記硬化膜を用いた液晶表示装置、有機EL表示装置、及び、タッチパネル表示装置に関する。
 更に詳しくは、液晶表示装置、有機EL表示装置、タッチパネル表示装置、集積回路素子、固体撮像素子などの電子部品の平坦化膜、保護膜や層間絶縁膜の形成に好適な硬化膜の製造方法に関する。
The present invention relates to a method for producing a cured film, a cured film obtained by the production method, a liquid crystal display device using the cured film, an organic EL display device, and a touch panel display device.
More specifically, the present invention relates to a method for producing a cured film suitable for forming a planarizing film, a protective film, and an interlayer insulating film of electronic components such as a liquid crystal display device, an organic EL display device, a touch panel display device, an integrated circuit element, and a solid-state imaging device. .
 固体撮像素子や液晶表示装置の発達により、有機素材(樹脂)によりマイクロレンズ、光導波路、反射防止膜などの光学部材を作製することが広く行われるようになっている。
 これら光学部材は、高屈折率にするために、酸化チタンなどの粒子を添加することが検討されている(下記特許文献1参照)。
 また、従来の感光性樹脂組成物としては、特許文献2に記載された感光性樹脂組成物が知られている。
With the development of solid-state imaging devices and liquid crystal display devices, it has become widely practiced to produce optical members such as microlenses, optical waveguides, and antireflection films using organic materials (resins).
In order to make these optical members have a high refractive index, it has been studied to add particles such as titanium oxide (see Patent Document 1 below).
Moreover, the photosensitive resin composition described in patent document 2 is known as a conventional photosensitive resin composition.
特開2006-98985号公報JP 2006-98985 A 韓国公開特許第10-2012-0121850号公報Korean Published Patent No. 10-2012-0121850
 従来、高屈折率材料はTiO2やZrO2といった無機粒子の充填率を上げることで、必要とする屈折率を得ていた。しかし、充填率が上がると解像力の低下や、テーパー形状の悪化が生じていた。
 本発明者等は、詳細な検討の結果、ポジ型の感光性樹脂組成物を使用し、かつ膜の収縮率(シュリンク率)を上げる、すなわち、バインダーポリマーの一部をポストベークで飛ばし、無機粒子は残すことにより、見かけ上無機粒子の含有率が高まり、相当量屈折率を上げることができ、また、解像力及びテーパー形状にも優れることを見いだした。
Conventionally, high refractive index materials have obtained the required refractive index by increasing the filling rate of inorganic particles such as TiO 2 and ZrO 2 . However, when the filling rate is increased, the resolution is lowered and the taper shape is deteriorated.
As a result of detailed studies, the inventors of the present invention use a positive photosensitive resin composition and increase the shrinkage rate (shrink rate) of the film. It was found that by leaving the particles, the content of inorganic particles apparently increased, the refractive index could be increased by a considerable amount, and the resolution and taper shape were also excellent.
 本発明は、高屈折率であり、解像力及びテーパー形状に優れた硬化膜の製造方法、上記製造方法により得られた硬化膜、及び、上記硬化膜を用いた液晶表示装置、有機EL表示装置、並びに、タッチパネル表示装置を提供することを目的とする。 The present invention is a method for producing a cured film having a high refractive index and excellent resolution and taper shape, a cured film obtained by the above production method, a liquid crystal display device using the cured film, an organic EL display device, An object of the present invention is to provide a touch panel display device.
 本発明の上記課題は、以下の<1>、<12>及び<14>~<16>に記載の手段により解決された。好ましい実施態様である<2>~<11>及び<13>と共に以下に記載する。
 <1>工程(a)及び(b)をこの順に含むことを特徴とする硬化膜の製造方法、
 (a)(成分A)無機粒子、(成分B)酸基が酸分解性基で保護された基を有する構成単位を含む重合体、及び、(成分C)光酸発生剤を含有する感光性樹脂組成物を使用し、下記式(2)を満たし、かつ上記感光性樹脂組成物の固形分からなる層を基板上に形成する層形成工程
 (b)上記感光性樹脂組成物の固形分からなる層を熱処理する熱処理工程
   収縮率r2=(t20-t21)/t20≧0.15   (2)
(式中、t20は感光性樹脂組成物の固形分からなる層の厚みを表し、t21は上記層を200℃で20分間加熱した後の厚みを表す。)
 <2>上記熱処理の温度が、120℃以上200℃以下である、上記<1>に記載の硬化膜の製造方法、
 <3>上記熱処理の温度が、120℃以上175℃以下である、上記<1>又は<2>に記載の硬化膜の製造方法、
 <4>上記熱処理が、120℃以上175℃以下の温度で30~180分間行われる、上記<1>~<3>のいずれか1つに記載の硬化膜の製造方法、
 <5>上記酸基が酸分解性基で保護された基を有する構成単位を含む重合体の全構成単位に対し、上記酸基が酸分解性基で保護された基を有する構成単位の割合が、50~95モル%である、上記<1>~<4>のいずれか1つに記載の硬化膜の製造方法、
 <6>上記酸基が酸分解性基で保護された基を有する構成単位を含む重合体の全構成単位に対し、上記酸基が酸分解性基で保護された基を有する構成単位の割合が、65~85モル%である、上記<1>~<5>のいずれか1つに記載の硬化膜の製造方法、
 <7>上記酸基が酸分解性基で保護された基を有する構成単位が、下記式(a1-1-1)で表される構成単位である、上記<1>~<6>のいずれか1つに記載の硬化膜の製造方法、
The above-described problems of the present invention have been solved by means described in the following <1>, <12>, and <14> to <16>. It is described below together with <2> to <11> and <13> which are preferred embodiments.
<1> A method for producing a cured film comprising steps (a) and (b) in this order,
(A) (Component A) inorganic particles, (Component B) a polymer containing a structural unit having a group in which an acid group is protected by an acid-decomposable group, and (Component C) a photosensitizer containing a photoacid generator A layer forming step of forming a layer composed of the solid content of the photosensitive resin composition on the substrate by using the resin composition and satisfying the following formula (2); and (b) a layer composed of the solid content of the photosensitive resin composition. Heat treatment step for heat treating Shrinkage ratio r 2 = (t 20 −t 21 ) / t 20 ≧ 0.15 (2)
(In the formula, t 20 represents the thickness of the layer composed of the solid content of the photosensitive resin composition, and t 21 represents the thickness after heating the above layer at 200 ° C. for 20 minutes.)
<2> The method for producing a cured film according to <1>, wherein the temperature of the heat treatment is 120 ° C. or higher and 200 ° C. or lower,
<3> The method for producing a cured film according to <1> or <2>, wherein the temperature of the heat treatment is 120 ° C. or higher and 175 ° C. or lower,
<4> The method for producing a cured film according to any one of <1> to <3>, wherein the heat treatment is performed at a temperature of 120 ° C. to 175 ° C. for 30 to 180 minutes,
<5> The ratio of the structural unit in which the acid group has a group protected by an acid-decomposable group with respect to all the structural units of the polymer including the structural unit in which the acid group has a group protected by an acid-decomposable group Is 50 to 95 mol%, the method for producing a cured film according to any one of the above <1> to <4>,
<6> The ratio of the structural unit in which the acid group has a group protected by an acid-decomposable group with respect to all the structural units of the polymer including the structural unit in which the acid group has a group protected by an acid-decomposable group Is 65 to 85 mol%, the method for producing a cured film according to any one of the above <1> to <5>,
<7> Any of the above <1> to <6>, wherein the structural unit having a group in which the acid group is protected with an acid-decomposable group is a structural unit represented by the following formula (a1-1-1): A method for producing the cured film according to claim 1,
Figure JPOXMLDOC01-appb-C000002
(式中、Rは水素原子又はメチル基を表す。)
Figure JPOXMLDOC01-appb-C000002
(In the formula, R represents a hydrogen atom or a methyl group.)
 <8>成分Aが、金属酸化物粒子である、上記<1>~<7>のいずれか1つに記載の硬化膜の製造方法、
 <9>成分Aが、酸化チタン粒子又は酸化ジルコニウム粒子である、上記<1>~<8>のいずれか1つに記載の硬化膜の製造方法、
 <10>(成分D)熱架橋剤を更に含む、上記<1>~<9>のいずれか1つに記載の硬化膜の製造方法、
 <11>(成分E)酸化防止剤を更に含む、上記<1>~<10>のいずれか1つに記載の硬化膜の製造方法、
 <12>上記<1>~<11>のいずれか1つに記載の硬化膜の製造方法により得られた硬化膜、
 <13>層間絶縁膜である、上記<12>に記載の硬化膜、
 <14>上記<12>又は<13>に記載の硬化膜を有する液晶表示装置、
 <15>上記<12>又は<13>に記載の硬化膜を有する有機EL表示装置、
 <16>上記<12>又は<13>に記載の硬化膜を有するタッチパネル表示装置。
<8> The method for producing a cured film according to any one of the above <1> to <7>, wherein the component A is metal oxide particles,
<9> The method for producing a cured film according to any one of the above <1> to <8>, wherein the component A is titanium oxide particles or zirconium oxide particles,
<10> (Component D) The method for producing a cured film according to any one of the above <1> to <9>, further comprising a thermal crosslinking agent,
<11> (Component E) The method for producing a cured film according to any one of <1> to <10>, further comprising an antioxidant,
<12> A cured film obtained by the method for producing a cured film according to any one of <1> to <11> above,
<13> The cured film according to <12>, which is an interlayer insulating film,
<14> A liquid crystal display device having the cured film according to <12> or <13> above,
<15> An organic EL display device having the cured film according to <12> or <13> above,
<16> A touch panel display device having the cured film according to <12> or <13>.
 本発明によれば、高屈折率であり、解像力及びテーパー形状に優れた硬化膜の製造方法、上記製造方法により得られた硬化膜、及び、上記硬化膜を用いた液晶表示装置、有機EL表示装置、並びに、タッチパネル表示装置を提供することができた。 ADVANTAGE OF THE INVENTION According to this invention, it is a high refractive index, the manufacturing method of the cured film excellent in resolving power and a taper shape, the cured film obtained by the said manufacturing method, the liquid crystal display device using the said cured film, and organic electroluminescent display An apparatus and a touch panel display device can be provided.
液晶表示装置の一例の構成概念図を示す。液晶表示装置におけるアクティブマトリックス基板の模式的断面図を示し、層間絶縁膜である硬化膜17を有している。1 is a conceptual diagram of a configuration of an example of a liquid crystal display device. The schematic sectional drawing of the active matrix substrate in a liquid crystal display device is shown, and it has the cured film 17 which is an interlayer insulation film. 有機EL表示装置の一例の構成概念図を示す。ボトムエミッション型の有機EL表示装置における基板の模式的断面図を示し、平坦化膜4を有している。1 shows a conceptual diagram of a configuration of an example of an organic EL display device. A schematic cross-sectional view of a substrate in a bottom emission type organic EL display device is shown, and a planarizing film 4 is provided. 静電容量型入力装置の構成を示す断面図である。It is sectional drawing which shows the structure of an electrostatic capacitance type input device. 前面板の一例を示す説明図である。It is explanatory drawing which shows an example of a front plate. 第一の透明電極パターン及び第二の透明電極パターンの一例を示す説明図である。It is explanatory drawing which shows an example of a 1st transparent electrode pattern and a 2nd transparent electrode pattern. パターン断面形状におけるテーパー角が20°以上30°以下の場合の一例を示す部分模式図である。It is a partial schematic diagram which shows an example in case the taper angle in pattern cross-sectional shape is 20 degrees or more and 30 degrees or less. パターン断面形状におけるテーパー角が20°未満の場合の一例を示す部分模式図である。It is a partial schematic diagram which shows an example in case the taper angle in pattern cross-sectional shape is less than 20 degrees. パターン断面形状におけるテーパー角が75°を超え90°以下の場合の一例を示す部分模式図である。It is a partial schematic diagram which shows an example in case the taper angle in pattern cross-sectional shape exceeds 75 degrees and is 90 degrees or less. パターン断面形状におけるテーパー角が90°を超える場合の一例を示す部分模式図である。It is a partial schematic diagram which shows an example in case the taper angle in pattern cross-sectional shape exceeds 90 degrees.
 以下において、本発明の内容について詳細に説明する。以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
 なお、本発明において、数値範囲を表す「下限~上限」の記載は、「下限以上、上限以下」を表し、「上限~下限」の記載は、「上限以下、下限以上」を表す。すなわち、上限及び下限を含む数値範囲を表す。また、「質量部」及び「質量%」は、それぞれ「重量部」及び「重量%」と同義である。
 更に、本発明において、「(成分A)無機粒子」等を、単に「成分A」等ともいい、後述する「(a1)酸基が酸分解性基で保護された基を有する構成単位」等を、単に「構成単位(a1)」等ともいう。
 また、本明細書における基(原子団)の表記において、置換及び無置換を記していない表記は置換基を有さないものと共に置換基を有するものをも包含するものである。例えば「アルキル基」とは、置換基を有さないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含するものである。
 以下の説明において、ある好ましい態様と、別の好ましい態様との組み合わせは、より好ましい態様である。
Hereinafter, the contents of the present invention will be described in detail. The description of the constituent elements described below may be made based on typical embodiments of the present invention, but the present invention is not limited to such embodiments.
In the present invention, the description of “lower limit to upper limit” representing the numerical range represents “lower limit or higher and lower limit or lower”, and the description of “upper limit to lower limit” represents “lower limit or higher and lower limit or higher”. That is, it represents a numerical range including an upper limit and a lower limit. Further, “parts by mass” and “% by mass” are synonymous with “parts by weight” and “% by weight”, respectively.
Furthermore, in the present invention, “(component A) inorganic particles” or the like is also simply referred to as “component A” or the like, and “(a1) a structural unit having a group in which an acid group is protected by an acid-decomposable group”, which will be described later, etc. Is also simply referred to as “structural unit (a1)”.
In addition, in the description of groups (atomic groups) in this specification, the description that does not indicate substitution and non-substitution includes not only those having no substituent but also those having a substituent. For example, the “alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
In the following description, a combination of a preferred embodiment and another preferred embodiment is a more preferred embodiment.
(硬化膜の製造方法)
 本発明の硬化膜の製造方法は、工程(a)及び(b)をこの順に含むことを特徴とする。
 (a)(成分A)無機粒子、(成分B)酸基が酸分解性基で保護された基を有する構成単位を含む重合体、及び、(成分C)光酸発生剤を含有する感光性樹脂組成物を使用し、下記式(2)を満たし、かつ上記感光性樹脂組成物の固形分からなる層を基板上に形成する層形成工程
 (b)上記感光性樹脂組成物の固形分からなる層を熱処理する熱処理工程
   収縮率r2=(t20-t21)/t20≧0.15   (2)
(式中、t20は感光性樹脂組成物の固形分からなる層の厚みを表し、t21は上記層を200℃で20分間加熱した後の厚みを表す。)
(Method for producing cured film)
The manufacturing method of the cured film of this invention is characterized by including process (a) and (b) in this order.
(A) (Component A) inorganic particles, (Component B) a polymer containing a structural unit having a group in which an acid group is protected by an acid-decomposable group, and (Component C) a photosensitizer containing a photoacid generator A layer forming step of forming a layer composed of the solid content of the photosensitive resin composition on the substrate by using the resin composition and satisfying the following formula (2); and (b) a layer composed of the solid content of the photosensitive resin composition. Heat treatment step for heat treating Shrinkage ratio r 2 = (t 20 −t 21 ) / t 20 ≧ 0.15 (2)
(In the formula, t 20 represents the thickness of the layer composed of the solid content of the photosensitive resin composition, and t 21 represents the thickness after heating the above layer at 200 ° C. for 20 minutes.)
 従来、ネガ型の感光性樹脂組成物から形成されたレジスト層は、重合時の体積収縮によって収縮率が大きいが、ポジ型の感光性樹脂組成物から形成されたレジスト層は、ネガ型に比べ、収縮率は小さい。
 本発明の硬化膜の製造方法は、無機粒子を含有し、かつ収縮率の大きなポジ型の感光性樹脂組成物を用い、熱処理を行うことにより、見かけ上無機粒子の含有率が高まり、屈折率を上げることができ、また、解像力及びテーパー形状に優れる。
Conventionally, a resist layer formed from a negative photosensitive resin composition has a large shrinkage ratio due to volume shrinkage at the time of polymerization, but a resist layer formed from a positive photosensitive resin composition is smaller than a negative type. The shrinkage rate is small.
In the method for producing a cured film of the present invention, by using a positive photosensitive resin composition containing inorganic particles and having a large shrinkage rate, the content of the inorganic particles is apparently increased, and the refractive index is increased. In addition, the resolution and taper shape are excellent.
 本発明の硬化膜の製造方法により得られた硬化膜は、マイクロレンズ、光導波路、反射防止膜、LED用封止材及びLED用チップコート材等の光学部材、又は、タッチパネルに使用される配線電極の視認性低減用硬化物として好適に用いることができる。
 また、本発明の硬化膜の製造方法により得られた硬化膜は、例えば、後述するような、液晶表示装置又は有機EL装置等における平坦化膜や層間絶縁膜、カラーフィルターの保護膜、液晶表示装置における液晶層の厚みを一定に保持するためのスペーサー、MEMS(Micro Electro Mechanical Systems)デバイスの構造部材等に好適に用いることができる。
The cured film obtained by the method for producing a cured film of the present invention is a wiring used for an optical member such as a microlens, an optical waveguide, an antireflection film, an LED sealing material and an LED chip coating material, or a touch panel. It can be suitably used as a cured product for reducing the visibility of electrodes.
The cured film obtained by the method for producing a cured film of the present invention includes, for example, a flattening film, an interlayer insulating film, a color filter protective film, and a liquid crystal display in a liquid crystal display device or an organic EL device as described later. It can be suitably used as a spacer for keeping the thickness of the liquid crystal layer in the apparatus constant, a structural member of a MEMS (Micro Electro Mechanical Systems) device, or the like.
<層形成工程>
 本発明の硬化膜の製造方法は、(a)(成分A)無機粒子、(成分B)酸基が酸分解性基で保護された基を有する構成単位を含む重合体、及び、(成分C)光酸発生剤を含有する感光性樹脂組成物を使用し、上記式(2)を満たし、かつ上記感光性樹脂組成物の固形分からなる層を基板上に形成する層形成工程(工程(a))を含む。
 本発明に用いられる感光性樹脂組成物については、後述にて詳細に説明する。
 上記層形成工程においては、上記感光性樹脂組成物の固形分からなる層を基板上に形成する。
 上記感光性樹脂組成物が溶剤を含有する場合、上記感光性樹脂組成物の固形分からなる層は、溶剤を除去した層であることが好ましい。
 すなわち、上記層形成工程は、塗布された感光性樹脂組成物層から溶剤を除去する溶剤除去工程を含むことが好ましい。
 なお、上記感光性樹脂組成物の固形分からなる層は、実質的に溶剤を含有しない層であればよく、溶剤の含有量が1質量%以下であることが好ましく、0.5質量%以下であることがより好ましく、0.1質量%以下であることが更に好ましい。
 感光性樹脂組成物の固形分からなる層の形成方法は、特に制限はなく、公知の方法により行えばよい。なお、感光性樹脂組成物の固形分とは、感光性樹脂組成物中における溶剤などの揮発性成分を除いた組成物を表す。
<Layer formation process>
The method for producing a cured film of the present invention comprises (a) (component A) inorganic particles, (component B) a polymer containing a structural unit having a group in which an acid group is protected by an acid-decomposable group, and (component C). ) A layer forming step (step (a) in which a photosensitive resin composition containing a photoacid generator is used, a layer satisfying the above formula (2) and formed of a solid content of the photosensitive resin composition is formed on a substrate. ))including.
The photosensitive resin composition used in the present invention will be described in detail later.
In the layer forming step, a layer made of the solid content of the photosensitive resin composition is formed on the substrate.
When the said photosensitive resin composition contains a solvent, it is preferable that the layer which consists of solid content of the said photosensitive resin composition is a layer which removed the solvent.
That is, it is preferable that the said layer formation process includes the solvent removal process of removing a solvent from the apply | coated photosensitive resin composition layer.
In addition, the layer which consists of solid content of the said photosensitive resin composition should just be a layer which does not contain a solvent substantially, It is preferable that content of a solvent is 1 mass% or less, and is 0.5 mass% or less. More preferably, it is more preferably 0.1% by mass or less.
There is no restriction | limiting in particular in the formation method of the layer which consists of solid content of the photosensitive resin composition, What is necessary is just to perform by a well-known method. In addition, solid content of the photosensitive resin composition represents the composition except volatile components, such as a solvent, in the photosensitive resin composition.
 上記層形成工程においては、感光性樹脂組成物を基板へ塗布する前にアルカリ洗浄やプラズマ洗浄といった基板の洗浄を行うことが好ましく、更に基板洗浄後にヘキサメチルジシラザンで基板表面を処理することがより好ましい。この処理を行うことにより、感光性樹脂組成物の基板への密着性が向上する。ヘキサメチルジシラザンで基板表面を処理する方法としては、特に限定されないが、例えば、ヘキサメチルジシラザン蒸気の中に基板を晒しておく方法等が挙げられる。
 上記の基板としては、無機基板、樹脂、樹脂複合材料、酸化インジウムスズ(ITO)、酸化インジウム亜鉛(IZO)、Cu基板、ポリエチレンテレフタレート、セルローストリアセテート(TAC)などのプラスチック基板が挙げられる。
 無機基板としては、例えばガラス、石英、シリコーン、シリコンナイトライド、及び、それらのような基板上にモリブデン、チタン、アルミ、銅などを蒸着した複合基板が挙げられる。
 樹脂としては、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリスチレン、ポリカーボネート、ポリスルホン、ポリエーテルスルホン、ポリアリレート、アリルジグリコールカーボネート、ポリアミド、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリベンズアゾール、ポリフェニレンサルファイド、ポリシクロオレフィン、ノルボルネン樹脂、ポリクロロトリフルオロエチレン等のフッ素樹脂、液晶ポリマー、アクリル樹脂、エポキシ樹脂、シリコーン樹脂、アイオノマー樹脂、シアネート樹脂、架橋フマル酸ジエステル樹脂、環状ポリオレフィン、芳香族エーテル樹脂、マレイミド-オレフィン樹脂、セルロース、エピスルフィド樹脂等の合成樹脂が挙げられる。
 これらの基板は、上記の形態のまま用いられる場合は少なく、最終製品の形態によって、例えばTFT素子のような多層積層構造が形成されている場合が通常である。
 基板への塗布方法は特に限定されず、例えば、スリットコート法、スプレーコート法、ロールコート法、回転塗布法、流延塗布法、スリットアンドスピン法等の方法を用いることができる。更に、特開2009-145395号公報に記載されているような、所謂プリウェット法を適用することも可能である。
 塗布膜厚は特に限定されるものではなく、用途に応じた膜厚で塗布することができるが、0.5~10μmの範囲で使用されることが好ましい。
In the layer forming step, it is preferable to perform substrate cleaning such as alkali cleaning or plasma cleaning before applying the photosensitive resin composition to the substrate, and further, the substrate surface may be treated with hexamethyldisilazane after the substrate cleaning. More preferred. By performing this treatment, the adhesion of the photosensitive resin composition to the substrate is improved. The method of treating the substrate surface with hexamethyldisilazane is not particularly limited, and examples thereof include a method of exposing the substrate to hexamethyldisilazane vapor.
Examples of the substrate include inorganic substrates, resins, resin composite materials, plastic substrates such as indium tin oxide (ITO), indium zinc oxide (IZO), Cu substrates, polyethylene terephthalate, and cellulose triacetate (TAC).
Examples of the inorganic substrate include glass, quartz, silicone, silicon nitride, and a composite substrate in which molybdenum, titanium, aluminum, copper, or the like is vapor-deposited on such a substrate.
The resins include polybutylene terephthalate, polyethylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polystyrene, polycarbonate, polysulfone, polyethersulfone, polyarylate, allyl diglycol carbonate, polyamide, polyimide, polyamideimide, polyetherimide, poly Fluorine resins such as benzazole, polyphenylene sulfide, polycycloolefin, norbornene resin, polychlorotrifluoroethylene, liquid crystal polymer, acrylic resin, epoxy resin, silicone resin, ionomer resin, cyanate resin, crosslinked fumaric acid diester resin, cyclic polyolefin, Synthetic resins such as aromatic ether resin, maleimide-olefin resin, cellulose, episulfide resin It is below.
These substrates are rarely used in the above-described form, and usually have a multilayer laminated structure such as a TFT element formed depending on the form of the final product.
The coating method on the substrate is not particularly limited, and for example, methods such as a slit coating method, a spray coating method, a roll coating method, a spin coating method, a casting coating method, and a slit and spin method can be used. Furthermore, it is also possible to apply a so-called pre-wet method as described in JP-A-2009-145395.
The coating film thickness is not particularly limited, and can be applied with a film thickness according to the application, but it is preferably used in the range of 0.5 to 10 μm.
 スリットコートや、スプレーコートなどの省液コーターは、塗布液使用量が大幅に削減され、かつ、スピンコート法によった際に付着するミストなどの影響が低減され、異物発生が抑制されるなど、総合的な観点からも好ましい。
 例えば、スリットコート法による塗布条件は、感光性樹脂組成物の組成や、製造する塗膜の種類などによって適宜選択すればよい。例えば、ノズル先端のリップ幅は50~500μmとし、ノズル先端と基板面との間隔は30~300μmとするのが好ましい。塗布膜の厚さを調節するためには、リップの走行速度、及び、リップからの液状の硬化性樹脂組成物の吐出量を調整すればよい。
 スプレーコート法に用いられるスプレーコーターとしては、特に制限はなく、公知のスプレー塗布方法及び噴射装置を適用すればよい。具体的には、超音波スプレーコーティング装置、二流体スプレーコーティング装置、一流体スプレーコーティング装置などが挙げられる。
Liquid-saving coaters such as slit coat and spray coat greatly reduce the amount of coating solution used, reduce the influence of mist that adheres when using the spin coat method, and suppress foreign matter generation. This is also preferable from a comprehensive viewpoint.
For example, the coating conditions by the slit coating method may be appropriately selected depending on the composition of the photosensitive resin composition, the type of coating film to be manufactured, and the like. For example, the lip width at the nozzle tip is preferably 50 to 500 μm, and the distance between the nozzle tip and the substrate surface is preferably 30 to 300 μm. In order to adjust the thickness of the coating film, the running speed of the lip and the discharge amount of the liquid curable resin composition from the lip may be adjusted.
There is no restriction | limiting in particular as a spray coater used for the spray coat method, What is necessary is just to apply a well-known spray coating method and injection apparatus. Specific examples include an ultrasonic spray coating apparatus, a two-fluid spray coating apparatus, and a one-fluid spray coating apparatus.
 また、上記溶剤除去工程では、感光性樹脂組成物層から、減圧(バキューム)及び/又は加熱により、溶剤を除去して基板上に乾燥塗膜を形成させることが好ましい。溶剤除去工程の加熱条件は、好ましくは70~130℃で30~300秒間程度である。温度と時間が上記範囲である場合、パターンの密着性が良好で、かつ残渣も低減できる。
 上記感光性樹脂組成物の固形分からなる層の厚さは、特に限定されるものではなく、用途に応じた厚さで形成することができるが、0.5~10μmの範囲であることが好ましく、0.8~5.0μmの範囲であることがより好ましく、1.0~4.0μmの範囲であることが更に好ましい。
Moreover, in the said solvent removal process, it is preferable to remove a solvent from a photosensitive resin composition layer by pressure reduction (vacuum) and / or heating, and to form a dry coating film on a board | substrate. The heating conditions for the solvent removal step are preferably 70 to 130 ° C. and about 30 to 300 seconds. When the temperature and time are within the above ranges, the pattern adhesion is good and the residue can be reduced.
The thickness of the layer composed of the solid content of the photosensitive resin composition is not particularly limited and can be formed with a thickness according to the application, but is preferably in the range of 0.5 to 10 μm. The range of 0.8 to 5.0 μm is more preferable, and the range of 1.0 to 4.0 μm is more preferable.
 また、上記感光性樹脂組成物の固形分からなる層は、式(2)を満たす層である。
   収縮率r2=(t20-t21)/t20≧0.15   (2)
(式中、t20は感光性樹脂組成物の固形分からなる層の厚みを表し、t21は上記層を200℃で20分間加熱した後の厚みを表す。)
 収縮率r2の測定において、上記感光性樹脂組成物を乾燥し溶剤を除去することにより、上記感光性樹脂組成物の固形分からなる層を作製して厚みを測定し、更に、上記層を200℃で20分間加熱した後の層の厚みを測定し、t20及びt21を測定することが好ましい。また、上記感光性樹脂組成物の固形分からなる層は、ヘキサメチルジシラザン(HMDS)を用いて、3分処理した100mm×100mmのガラス基板上に設けることが好ましい。
 なお、膜厚の測定は、膜の中央部分を数カ所測定し、平均値をとり算出することが好ましい。具体的には、触針式表面形状測定器Dektak((株)アルバック製)を使用し、膜の中央部分の3箇所(N=3)を測定して平均値をとり、算出する方法が好ましく挙げられる。
 式(2)における収縮率(「シュリンク率」ともいう。)r2は、0.15以上であり、0.18以上であることが好ましく、0.20以上であることがより好ましく、0.25以上であることが更に好ましい。上記態様であると、得られる硬化膜の屈折率及びテーパー形状に優れる。
 また、r2は、0.50以下であることが好ましく、0.45以下であることがより好ましく、0.40以下であることが更に好ましく、0.35以下が最も好ましい。上記態様であると、得られる硬化膜のテーパー形状に優れる。
Moreover, the layer which consists of solid content of the said photosensitive resin composition is a layer which satisfy | fills Formula (2).
Shrinkage rate r 2 = (t 20 −t 21 ) / t 20 ≧ 0.15 (2)
(In the formula, t 20 represents the thickness of the layer composed of the solid content of the photosensitive resin composition, and t 21 represents the thickness after heating the above layer at 200 ° C. for 20 minutes.)
In the measurement of the shrinkage rate r 2, by removing the solvent by drying the photosensitive resin composition, the thickness was measured to prepare a layer consisting of the solid content of the photosensitive resin composition, further, 200 the layer It is preferable to measure the thickness of the layer after heating at 20 ° C. for 20 minutes to measure t 20 and t 21 . Moreover, it is preferable to provide the layer which consists of solid content of the said photosensitive resin composition on the glass substrate of 100 mm x 100 mm processed for 3 minutes using hexamethyldisilazane (HMDS).
The film thickness is preferably calculated by measuring the central part of the film at several points and taking an average value. Specifically, it is preferable to use a stylus type surface shape measuring device Dektak (manufactured by ULVAC, Inc.), measure three locations (N = 3) in the central portion of the film, and take an average value to calculate. Can be mentioned.
The shrinkage rate (also referred to as “shrink rate”) r 2 in Formula (2) is 0.15 or more, preferably 0.18 or more, more preferably 0.20 or more, and More preferably, it is 25 or more. It is excellent in the refractive index and taper shape of the cured film obtained as it is the said aspect.
Further, r 2 is preferably 0.50 or less, more preferably 0.45 or less, further preferably 0.40 or less, and most preferably 0.35 or less. It is excellent in the taper shape of the cured film obtained as it is the said aspect.
<熱処理工程>
 本発明の硬化膜の製造方法は、(b)上記感光性樹脂組成物の固形分からなる層を熱処理する熱処理工程(工程(b))を含む。
 上記熱処理工程(ポストベーク)では、得られたポジ画像を加熱することにより、熱収縮を行い、屈折率及びテーパー形状に優れる硬化膜が得られる。
 また、上記熱処理工程では、成分Bの酸分解性基を熱分解し酸基、例えば、カルボキシル基又はフェノール性水酸基を生成させ、架橋性基、架橋剤等と架橋させることにより、硬化膜を形成することが好ましい。
 上記熱処理工程における熱処理は、ホットプレートやオーブン、赤外線ヒーター等の加熱装置を用いることが好ましい。
 また、上記熱処理工程における熱処理は、従来のポストベークよりも低温かつ長時間行うことが好ましい。上記範囲であると、テーパー形状により優れる硬化膜が得られる。
 上記熱処理工程における熱処理温度は、120℃以上200℃以下であることが好ましく、120℃以上180℃未満であることがより好ましく、120℃以上175℃以下であることが更に好ましく、140℃以上175℃以下であることが特に好ましい。上記範囲であると、屈折率及びテーパー形状により優れる硬化膜が得られる。
 また、上記熱処理工程における熱処理時間は、10~240分であることが好ましく、30~180分であることがより好ましく、45~120分であることが更に好ましく、45~90分であることが特に好ましい。上記範囲であると、屈折率及びテーパー形状により優れる硬化膜が得られる。
 また、熱処理を行う際は窒素雰囲気下で行うことにより透明性を向上させることもできる。
<Heat treatment process>
The manufacturing method of the cured film of this invention includes the heat processing process (process (b)) which heat-processes the layer which consists of (b) solid content of the said photosensitive resin composition.
In the heat treatment step (post-bake), the obtained positive image is heated to cause thermal shrinkage, and a cured film having excellent refractive index and taper shape is obtained.
In the heat treatment step, the acid-decomposable group of component B is thermally decomposed to form an acid group, for example, a carboxyl group or a phenolic hydroxyl group, and a cured film is formed by crosslinking with a crosslinkable group, a crosslinking agent, or the like. It is preferable to do.
The heat treatment in the heat treatment step is preferably performed using a heating device such as a hot plate, an oven, or an infrared heater.
Further, the heat treatment in the heat treatment step is preferably performed at a lower temperature and for a longer time than conventional post-baking. When it is in the above range, a cured film that is more excellent in a tapered shape can be obtained.
The heat treatment temperature in the heat treatment step is preferably 120 ° C. or higher and 200 ° C. or lower, more preferably 120 ° C. or higher and lower than 180 ° C., further preferably 120 ° C. or higher and 175 ° C. or lower, and 140 ° C. or higher and 175 ° C. or lower. It is particularly preferable that the temperature is not higher than ° C. When it is in the above range, a cured film that is more excellent in refractive index and tapered shape can be obtained.
The heat treatment time in the heat treatment step is preferably 10 to 240 minutes, more preferably 30 to 180 minutes, further preferably 45 to 120 minutes, and more preferably 45 to 90 minutes. Particularly preferred. When it is in the above range, a cured film that is more excellent in refractive index and tapered shape can be obtained.
Further, when the heat treatment is performed, transparency can be improved by performing the heat treatment in a nitrogen atmosphere.
 熱処理工程(ポストベーク)の前に、比較的低温でベークを行った後に熱処理工程を行うこともできる(ミドルベーク工程の追加)。ミドルベークを行う場合は、90~150℃で1~60分加熱した後に、ポストベークを行うことが好ましい。また、ミドルベーク、ポストベークを3段階以上の多段階に分けて加熱することもできる。このようなミドルベーク、ポストベークの工夫により、パターンのテーパー角を調整することができる。これらの加熱は、ホットプレート、オーブン、赤外線ヒーターなど、公知の加熱方法を使用することができる。
 なお、ポストベークに先立ち、パターンを形成した基板に活性光線により全面再露光(ポスト露光)した後、ポストベークすることにより未露光部分に存在する光酸発生剤から酸を発生させ、架橋を促進する触媒として機能させることができ、膜の硬化反応を促進することができる。ポスト露光工程を行う場合の露光量としては、100~3,000mJ/cm2が好ましく、100~500mJ/cm2が特に好ましい。
Prior to the heat treatment step (post-bake), the heat treatment step can be performed after baking at a relatively low temperature (addition of a middle bake step). When performing middle baking, it is preferable to perform post baking after heating at 90 to 150 ° C. for 1 to 60 minutes. Further, middle baking and post baking can be heated in three or more stages. The taper angle of the pattern can be adjusted by devising such middle baking and post baking. These heating methods can use well-known heating methods, such as a hotplate, oven, and an infrared heater.
Prior to post-baking, the entire surface of the patterned substrate was re-exposed with actinic rays (post-exposure), and post-baked to generate acid from the photoacid generator present in the unexposed areas, thereby promoting crosslinking. It can function as a catalyst that promotes the film curing reaction. The exposure amount in the case of performing post exposure step, preferably 100 ~ 3,000mJ / cm 2, particularly preferably 100 ~ 500mJ / cm 2.
 本発明の硬化膜の製造方法は、上記工程(a)と工程(b)との間に、上記感光性樹脂組成物の固形分からなる層を活性光線によりパターン状に露光する露光工程、及び、露光された上記層を水性現像液により現像する現像工程を含むことが好ましい。
 すなわち、本発明の硬化膜の製造方法は、(成分A)無機粒子、(成分B)酸基が酸分解性基で保護された基を有する構成単位を含む重合体、及び、(成分C)光酸発生剤を含有する感光性樹脂組成物を使用し、上記感光性樹脂組成物の固形分からなり、かつ上記式(2)を満たす層を基板上に形成する層形成工程、上記感光性樹脂組成物の固形分からなる層を活性光線によりパターン状に露光する露光工程、露光された上記層を水性現像液により現像する現像工程、並びに、現像された上記層を熱処理する熱処理工程を含むことが好ましい。
In the method for producing a cured film of the present invention, an exposure step of exposing a layer comprising the solid content of the photosensitive resin composition in a pattern with active light between the step (a) and the step (b), and It is preferable to include a developing step of developing the exposed layer with an aqueous developer.
That is, the method for producing a cured film of the present invention comprises (Component A) inorganic particles, (Component B) a polymer containing a structural unit having a group in which an acid group is protected with an acid-decomposable group, and (Component C). A layer forming step in which a photosensitive resin composition containing a photoacid generator is used and a layer made of the solid content of the photosensitive resin composition and satisfying the formula (2) is formed on a substrate; and the photosensitive resin An exposure step of exposing the solid layer of the composition in a pattern with actinic rays, a development step of developing the exposed layer with an aqueous developer, and a heat treatment step of heat-treating the developed layer. preferable.
<露光工程>
 本発明の硬化膜の製造方法は、上記工程(a)と工程(b)との間に、上記感光性樹脂組成物の固形分からなる層を活性光線によりパターン状に露光する露光工程を含むことが好ましい。
 露光工程では、塗膜を設けた基板に所定のパターンを有するマスクを介して、活性光線を照射する。この工程では、光酸発生剤が分解し酸が発生する。発生した酸の触媒作用により、塗膜成分中に含まれる酸分解性基が加水分解されて、酸基、例えば、カルボキシル基又はフェノール性水酸基が生成する。
 活性光線による露光光源としては、低圧水銀灯、高圧水銀灯、超高圧水銀灯、ケミカルランプ、LED光源、エキシマレーザー発生装置などを用いることができ、g線(436nm)、i線(365nm)、h線(405nm)などの波長300nm以上450nm以下の波長を有する活性光線が好ましく使用できる。また、必要に応じて長波長カットフィルター、短波長カットフィルター、バンドパスフィルターのような分光フィルターを通して照射光を調整することもできる。
 露光装置としては、ミラープロジェクションアライナー、ステッパー、スキャナー、プロキシミティー、コンタクト、マイクロレンズアレイ、レーザー露光など各種方式の露光機を用いることができる。
 また、酸触媒の生成した領域において、上記の加水分解反応を加速させるために、露光後加熱処理:Post Exposure Bake(以下、「PEB」ともいう。)を行うことができる。PEBにより、酸分解性基からのカルボキシル基又はフェノール性水酸基の生成を促進させることができる。PEBを行う場合の温度は、30℃以上130℃以下であることが好ましく、40℃以上110℃以下がより好ましく、50℃以上100℃以下が特に好ましい。
 ただし、本発明における酸分解性基は、酸分解の活性化エネルギーが低く、露光による酸発生剤由来の酸により容易に分解し、酸基、例えば、カルボキシル基又はフェノール性水酸基を生じるため、必ずしもPEBを行うことなく、現像によりポジ画像を形成することもできる。
<Exposure process>
The manufacturing method of the cured film of this invention includes the exposure process which exposes the layer which consists of solid content of the said photosensitive resin composition to a pattern shape with actinic light between the said process (a) and a process (b). Is preferred.
In the exposure step, the substrate provided with the coating film is irradiated with actinic rays through a mask having a predetermined pattern. In this step, the photoacid generator is decomposed to generate an acid. By the catalytic action of the generated acid, the acid-decomposable group contained in the coating film component is hydrolyzed to produce an acid group, for example, a carboxyl group or a phenolic hydroxyl group.
As an exposure light source using actinic light, a low-pressure mercury lamp, a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a chemical lamp, an LED light source, an excimer laser generator, etc. can be used, and g-line (436 nm), i-line (365 nm), Actinic rays having a wavelength of 300 nm to 450 nm, such as 405 nm), can be preferably used. Moreover, irradiation light can also be adjusted through spectral filters, such as a long wavelength cut filter, a short wavelength cut filter, and a band pass filter, as needed.
As the exposure apparatus, various types of exposure machines such as a mirror projection aligner, a stepper, a scanner, a proximity, a contact, a microlens array, and a laser exposure can be used.
In addition, in order to accelerate the hydrolysis reaction in the region where the acid catalyst is generated, post-exposure heat treatment: Post Exposure Bake (hereinafter also referred to as “PEB”) can be performed. PEB can promote the formation of a carboxyl group or a phenolic hydroxyl group from an acid-decomposable group. The temperature for performing PEB is preferably 30 ° C. or higher and 130 ° C. or lower, more preferably 40 ° C. or higher and 110 ° C. or lower, and particularly preferably 50 ° C. or higher and 100 ° C. or lower.
However, the acid-decomposable group in the present invention has a low activation energy for acid decomposition and is easily decomposed by an acid derived from an acid generator by exposure to generate an acid group, for example, a carboxyl group or a phenolic hydroxyl group. A positive image can be formed by development without performing PEB.
<現像工程>
 本発明の硬化膜の製造方法は、上記露光工程と上記工程(b)との間に、露光された上記層を水性現像液により現像する現像工程を含むことが好ましい。
 現像工程では、遊離した酸基、例えば、カルボキシル基又はフェノール性水酸基を有する共重合体を、水性現像液、好ましくはアルカリ性の水性現像液を用いて現像する。アルカリ性現像液に溶解しやすい酸基、例えば、カルボキシル基又はフェノール性水酸基を有する樹脂組成物を含む露光部領域を除去することにより、ポジ画像が形成する。
 現像工程で使用する水性現像液には、塩基性化合物が含まれることが好ましい。
 塩基性化合物としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物類;炭酸ナトリウム、炭酸カリウムなどのアルカリ金属炭酸塩類;重炭酸ナトリウム、重炭酸カリウムなどのアルカリ金属重炭酸塩類;テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、ジエチルジメチルアンモニウムヒドロキシド等のテトラアルキルアンモニウムヒドロキシド類:コリン等の(ヒドロキシアルキル)トリアルキルアンモニウムヒドロキシド類;ケイ酸ナトリウム、メタケイ酸ナトリウムなどのケイ酸塩類;エチルアミン、プロピルアミン、ジエチルアミン、トリエチルアミン等のアルキルアミン類;ジメチルエタノールアミン、トリエタノールアミン等のアルコールアミン類;1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、1,5-ジアザビシクロ[4.3.0]-5-ノネン等の脂環式アミン類を使用することができる。
 これらのうち、水酸化ナトリウム、水酸化カリウム、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、コリン(2-ヒドロキシエチルトリメチルアンモニウムヒドロキシド)が好ましい。
 また、上記塩基性化合物の水溶液にメタノールやエタノールなどの水溶性有機溶剤や界面活性剤を適当量添加した水溶液を現像液として使用することもできる。
 好ましい現像液としては、テトラエチルアンモニウムヒドロキシドの0.4質量%水溶液、0.5質量%水溶液、0.7質量%水溶液、又は、2.38質量%水溶液を挙げることができる。
 現像液のpHは、9.0~14が好ましく、10.0~14.0がより好ましい。現像液の濃度は0.1~20質量%が好ましく、0.1~5.0質量%がより好ましい。
 現像時間は、好ましくは1~500秒間であり、より好ましくは10~180秒間である。また、現像の手法は液盛り法、ディップ法、シャワー法等の何れでもよい。現像後は、流水洗浄を行い、所望のパターンを形成させることができる。流水洗浄の時間は、好ましくは30~300秒間であり、より好ましくは30~90秒間である。
<Development process>
It is preferable that the manufacturing method of the cured film of this invention includes the image development process which develops the said exposed layer with an aqueous developing solution between the said exposure process and the said process (b).
In the development step, a copolymer having a liberated acid group such as a carboxyl group or a phenolic hydroxyl group is developed using an aqueous developer, preferably an alkaline aqueous developer. A positive image is formed by removing an exposed area containing a resin composition having an acid group that easily dissolves in an alkaline developer, such as a carboxyl group or a phenolic hydroxyl group.
The aqueous developer used in the development step preferably contains a basic compound.
Examples of the basic compound include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide and potassium hydroxide; alkali metal carbonates such as sodium carbonate and potassium carbonate; alkali such as sodium bicarbonate and potassium bicarbonate Metal bicarbonates; tetraalkylammonium hydroxides such as tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide and diethyldimethylammonium hydroxide: (hydroxyalkyl) trines such as choline Alkylammonium hydroxides; silicates such as sodium silicate and sodium metasilicate; alkyls such as ethylamine, propylamine, diethylamine and triethylamine Amines; alcohol amines such as dimethylethanolamine and triethanolamine; 1,8-diazabicyclo [5.4.0] -7-undecene, 1,5-diazabicyclo [4.3.0] -5-nonene The alicyclic amines can be used.
Of these, sodium hydroxide, potassium hydroxide, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, and choline (2-hydroxyethyltrimethylammonium hydroxide) are preferable.
Further, an aqueous solution obtained by adding an appropriate amount of a water-soluble organic solvent such as methanol or ethanol or a surfactant to an aqueous solution of the above basic compound can also be used as a developer.
Preferable developers include a 0.4% by mass aqueous solution, a 0.5% by mass aqueous solution, a 0.7% by mass aqueous solution, or a 2.38% by mass aqueous solution of tetraethylammonium hydroxide.
The pH of the developer is preferably 9.0 to 14, and more preferably 10.0 to 14.0. The concentration of the developer is preferably from 0.1 to 20% by mass, more preferably from 0.1 to 5.0% by mass.
The development time is preferably 1 to 500 seconds, more preferably 10 to 180 seconds. Further, the developing method may be any of a liquid filling method, a dip method, a shower method, and the like. After development, washing with running water can be performed to form a desired pattern. The running water washing time is preferably 30 to 300 seconds, more preferably 30 to 90 seconds.
 また、本発明の硬化膜の製造方法は、上述した工程以外の公知の工程を含んでいてもよい。
 例えば、現像工程の後に、現像された上記層をリンス液によりリンスするリンス工程を行うこともできる。リンス工程では、現像後の基板を純水などのリンス液で洗うことで、付着している現像液除去、現像残渣除去を行う。リンス方法は公知の方法を用いることができる。例えばシャワーリンスやディップリンスなどを挙げることができる。
Moreover, the manufacturing method of the cured film of this invention may include well-known processes other than the process mentioned above.
For example, a rinsing step of rinsing the developed layer with a rinsing liquid can be performed after the developing step. In the rinsing step, the developed substrate and the development residue are removed by washing the developed substrate with a rinse solution such as pure water. A known method can be used as the rinsing method. For example, a shower rinse, a dip rinse, etc. can be mentioned.
 更に、本発明の硬化膜の製造方法より得られた硬化膜は、ドライエッチングレジストとして使用することもできる。硬化膜をドライエッチングレジストとして使用する場合、エッチング処理としてはアッシング、プラズマエッチング、オゾンエッチングなどのドライエッチング処理を行うことができる。 Furthermore, the cured film obtained by the method for producing a cured film of the present invention can also be used as a dry etching resist. When the cured film is used as a dry etching resist, dry etching processes such as ashing, plasma etching, and ozone etching can be performed as the etching process.
<感光性樹脂組成物>
 本発明に用いることができる感光性樹脂組成物は、少なくとも、(成分A)無機粒子、(成分B)酸基が酸分解性基で保護された基を有する構成単位を含む重合体、及び、(成分C)光酸発生剤を含有する。
 上記感光性樹脂組成物は、ポジ型レジスト組成物として好適に用いることができる。
 上記感光性樹脂組成物は、熱で硬化する性質を有する樹脂組成物であることが好ましい。
 また、上記感光性樹脂組成物は、ポジ型感光性樹脂組成物であることが好ましく、化学増幅型のポジ型感光性樹脂組成物(化学増幅ポジ型感光性樹脂組成物)であることがより好ましい。
 上記感光性樹脂組成物は、活性光線に感応する光酸発生剤として1,2-キノンジアジド化合物を含まない方が好ましい。1,2-キノンジアジド化合物は、逐次型光化学反応によりカルボキシル基を生成するが、その量子収率は必ず1以下である。
 これに対して、本発明で使用する(成分C)光酸発生剤は、活性光線に感応して生成される酸が、成分B中の保護された酸基の脱保護に対して触媒として作用するので、1個の光量子の作用で生成した酸が、多数の脱保護反応に寄与し、量子収率は1を超え、例えば、10の数乗のような大きい値となり、いわゆる化学増幅の結果として、高感度が得られる。
 以下、本発明の感光性樹脂組成物について詳細に説明する。
<Photosensitive resin composition>
The photosensitive resin composition that can be used in the present invention includes at least (Component A) inorganic particles, (Component B) a polymer containing a structural unit having a group in which an acid group is protected with an acid-decomposable group, and (Component C) contains a photoacid generator.
The photosensitive resin composition can be suitably used as a positive resist composition.
The photosensitive resin composition is preferably a resin composition having a property of being cured by heat.
The photosensitive resin composition is preferably a positive photosensitive resin composition, and more preferably a chemically amplified positive photosensitive resin composition (chemically amplified positive photosensitive resin composition). preferable.
The photosensitive resin composition preferably does not contain a 1,2-quinonediazide compound as a photoacid generator sensitive to actinic rays. A 1,2-quinonediazide compound generates a carboxyl group by a sequential photochemical reaction, but its quantum yield is always 1 or less.
On the other hand, (Component C) photoacid generator used in the present invention is such that an acid generated in response to actinic rays acts as a catalyst for deprotection of the protected acid group in Component B. Therefore, the acid generated by the action of one photon contributes to a number of deprotection reactions, and the quantum yield exceeds 1, for example, a large value such as the power of 10, which is a result of so-called chemical amplification. As a result, high sensitivity can be obtained.
Hereinafter, the photosensitive resin composition of the present invention will be described in detail.
(成分A)無機粒子
 本発明に用いることができる感光性樹脂組成物は、(成分A)無機粒子を含有する。感光性樹脂組成物は、屈折率や光透過性を調節することを目的として、無機粒子を含有する。
 成分Aは、上記粒子を除いた材料からなる感光性樹脂組成物の屈折率より屈折率が高いものであることが好ましく、具体的には、400~750nmの波長を有する光における屈折率が1.50以上の粒子がより好ましく、屈折率が1.70以上の粒子が更に好ましく、1.90以上の粒子が特に好ましい。また、屈折率の上限は特に限定されないが、入手容易性の観点から、5.00以下の粒子が好ましい。
 ここで、400~750nmの波長を有する光における屈折率が1.50以上であるとは、上記範囲の波長を有する光における平均屈折率が1.50以上であることを意味し、上記範囲の波長を有する全ての光における屈折率が1.50以上であることを要しない。また、平均屈折率は、上記範囲の波長を有する各光に対する屈折率の測定値の総和を、測定点の数で割った値である。
(Component A) Inorganic Particle The photosensitive resin composition that can be used in the present invention contains (Component A) inorganic particles. The photosensitive resin composition contains inorganic particles for the purpose of adjusting the refractive index and light transmittance.
Component A preferably has a refractive index higher than the refractive index of the photosensitive resin composition made of the material excluding the particles, and specifically has a refractive index of 1 for light having a wavelength of 400 to 750 nm. More preferably, the particles have a refractive index of 1.70 or more, more preferably 1.90 or more. The upper limit of the refractive index is not particularly limited, but particles of 5.00 or less are preferable from the viewpoint of availability.
Here, the refractive index of light having a wavelength of 400 to 750 nm being 1.50 or more means that the average refractive index of light having a wavelength in the above range is 1.50 or more. It is not necessary that the refractive index of all light having a wavelength is 1.50 or more. The average refractive index is a value obtained by dividing the sum of the measured values of the refractive index for each light having a wavelength in the above range by the number of measurement points.
 このような高い屈折率を有する無機粒子としては、透明性が高く光透過性を有することから無機酸化物粒子が好ましく、金属酸化物粒子がより好ましい。
 光透過性で屈折率の高い無機酸化物粒子としては、Be、Mg、Ca、Sr、Ba、Sc、Y、La、Ce、Gd、Tb、Dy、Yb、Lu、Ti、Zr、Hf、Nb、Mo、W、Zn、B、Al、Si、Ge、Sn、Pb、Bi、Te等の原子を含む酸化物粒子が好ましく、酸化チタン、酸化亜鉛、酸化ジルコニウム、インジウム/スズ酸化物、又は、アンチモン/スズ酸化物がより好ましく、酸化チタン粒子、又は、酸化ジルコニウムが更に好ましく、酸化チタンが特に好ましく、二酸化チタンが最も好ましい。二酸化チタンとしては、特に屈折率の高いルチル型が好ましい。これら無機粒子は、分散安定性付与のために表面を有機材料で処理することもできる。
As such inorganic particles having a high refractive index, inorganic oxide particles are preferable and metal oxide particles are more preferable because of high transparency and light transmittance.
The light-transmitting and high refractive index inorganic oxide particles include Be, Mg, Ca, Sr, Ba, Sc, Y, La, Ce, Gd, Tb, Dy, Yb, Lu, Ti, Zr, Hf, and Nb. , Oxide particles containing atoms such as Mo, W, Zn, B, Al, Si, Ge, Sn, Pb, Bi, Te, etc. are preferred, titanium oxide, zinc oxide, zirconium oxide, indium / tin oxide, or Antimony / tin oxide is more preferable, titanium oxide particles or zirconium oxide is further preferable, titanium oxide is particularly preferable, and titanium dioxide is most preferable. Titanium dioxide is particularly preferably a rutile type having a high refractive index. The surface of these inorganic particles can also be treated with an organic material to impart dispersion stability.
 なお、本発明における金属酸化物粒子の金属には、B、Si、Ge、As、Sb、Te等の半金属も含まれるものとする。
 光透過性で屈折率の高い金属酸化物粒子としては、Be、Mg、Ca、Sr、Ba、Sc、Y、La、Ce、Gd、Tb、Dy、Yb、Lu、Ti、Zr、Hf、Nb、Mo、W、Zn、B、Al、Si、Ge、Sn、Pb、Sb、Bi、Te等の原子を含む酸化物粒子が好ましく、酸化チタン、チタン複合酸化物、酸化亜鉛、酸化ジルコニウム、インジウム/スズ酸化物、アンチモン/スズ酸化物がより好ましく、酸化チタン、チタン複合酸化物、酸化ジルコニウムが更に好ましく、酸化チタン、酸化ジルコニウムが特に好ましく、二酸化チタンが最も好ましい。二酸化チタンとしては、特に屈折率の高いルチル型が好ましい。これら金属酸化物粒子は、分散安定性付与のために表面を有機材料で処理することもできる。
Note that the metal of the metal oxide particles in the present invention includes semimetals such as B, Si, Ge, As, Sb, and Te.
The light-transmitting and high refractive index metal oxide particles include Be, Mg, Ca, Sr, Ba, Sc, Y, La, Ce, Gd, Tb, Dy, Yb, Lu, Ti, Zr, Hf, and Nb. Oxide particles containing atoms such as Mo, W, Zn, B, Al, Si, Ge, Sn, Pb, Sb, Bi, and Te are preferable. Titanium oxide, titanium composite oxide, zinc oxide, zirconium oxide, indium / Tin oxide and antimony / tin oxide are more preferable, titanium oxide, titanium composite oxide and zirconium oxide are more preferable, titanium oxide and zirconium oxide are particularly preferable, and titanium dioxide is most preferable. Titanium dioxide is particularly preferably a rutile type having a high refractive index. The surface of these metal oxide particles can be treated with an organic material in order to impart dispersion stability.
 無機粒子の平均一次粒子径は、1~200nmであることが好ましく、2~100nmであることがより好ましく、1~60nmであることが更に好ましく、5~50nmであることが特に好ましい。上記範囲であると、粒子の分散性に優れ、また、高屈折率であり、かつ透明性により優れる硬化物が得られる。
 無機粒子の平均一次粒子径は、分散した無機粒子を透過型電子顕微鏡により観察し、得られた写真から求めることができる。具体的には無機粒子の投影面積を求め、それに対応する円相当径を無機粒子の平均一次粒子径とする。なお、本発明における平均一次粒子径は、300個の無機粒子について求めた円相当径の算術平均値とする。
 また、本発明においては、平均一次粒子径の指標として数平均粒子径を用いることもできる。本発明における無機粒子の数平均粒子径は、無機粒子を含む混合液又は分散液を、プロピレングリコールモノメチルエーテルアセテートで80倍に希釈し、得られた希釈液について動的光散乱法を用いて測定することにより得られた値のことを言う。この測定は、日機装(株)製マイクロトラックUPA-EX150を用いて行って得られた数平均粒子径であることが好ましい。
The average primary particle diameter of the inorganic particles is preferably 1 to 200 nm, more preferably 2 to 100 nm, still more preferably 1 to 60 nm, and particularly preferably 5 to 50 nm. Within the above range, a cured product having excellent particle dispersibility, a high refractive index, and excellent transparency can be obtained.
The average primary particle diameter of the inorganic particles can be obtained from a photograph obtained by observing the dispersed inorganic particles with a transmission electron microscope. Specifically, the projected area of the inorganic particles is obtained, and the corresponding equivalent circle diameter is defined as the average primary particle diameter of the inorganic particles. In addition, let the average primary particle diameter in this invention be an arithmetic mean value of the circle | round | yen equivalent diameter calculated | required about 300 inorganic particles.
In the present invention, the number average particle diameter can also be used as an index of the average primary particle diameter. The number average particle diameter of the inorganic particles in the present invention is measured by using a dynamic light scattering method for a diluted liquid obtained by diluting a mixed liquid or dispersion containing inorganic particles 80 times with propylene glycol monomethyl ether acetate. The value obtained by doing. This measurement is preferably the number average particle diameter obtained by using Microtrack UPA-EX150 manufactured by Nikkiso Co., Ltd.
 無機粒子の形状には、特に制限はない。例えば、米粒状、球形状、立方体状、紡錘形状又は不定形状であることができる。
 無機粒子の平均アスペクト比(長辺/短辺)は、1~5であることが好ましく、1~4.5であることがより好ましく、1~4であることが更に好ましく、1~3であることが特に好ましい。
 平均アスペクト比は、以下の方法により測定される。すなわち、透過型電子顕微鏡(TEM)にて撮像した粒子画像のアスペクト比(長辺/短辺)を300個測定した平均値を平均アスペクト比とした。
There is no restriction | limiting in particular in the shape of an inorganic particle. For example, it can be a rice grain shape, a spherical shape, a cubic shape, a spindle shape, or an indefinite shape.
The average aspect ratio (long side / short side) of the inorganic particles is preferably from 1 to 5, more preferably from 1 to 4.5, still more preferably from 1 to 4, and from 1 to 3 It is particularly preferred.
The average aspect ratio is measured by the following method. That is, an average value obtained by measuring 300 aspect ratios (long side / short side) of a particle image captured with a transmission electron microscope (TEM) was defined as an average aspect ratio.
 金属酸化物粒子の屈折率としては、特に制限はないが、高屈折率を得る観点から、1.70~2.70であることが好ましく、1.90~2.70であることが更に好ましい。
 また、金属酸化物粒子の比表面積は、10~400m2/gであることが好ましく、20~200m2/gであることが更に好ましく、30~150m2/gであることが最も好ましい。
The refractive index of the metal oxide particles is not particularly limited, but is preferably 1.70 to 2.70, more preferably 1.90 to 2.70 from the viewpoint of obtaining a high refractive index. .
The specific surface area of the metal oxide particles is preferably 10 ~ 400m 2 / g, more preferably from 20 ~ 200m 2 / g, and most preferably 30 ~ 150m 2 / g.
 金属酸化物粒子は、有機化合物により表面処理されたものであってもよい。表面処理に用いる有機化合物の例には、ポリオール、アルカノールアミン、ステアリン酸、シランカップリング剤及びチタネートカップリング剤が含まれる。中でも、ステアリン酸が好ましい。
 表面処理は、1種単独の表面処理剤でも、2種類以上の表面処理剤を組み合わせて実施してもよい。
 また、金属酸化物粒子の表面が、アルミニウム、ケイ素、ジルコニアなどの酸化物により覆われていることもまた好ましい。これにより、より耐候性が向上する。
The metal oxide particles may have been surface-treated with an organic compound. Examples of the organic compound used for the surface treatment include polyols, alkanolamines, stearic acid, silane coupling agents, and titanate coupling agents. Of these, stearic acid is preferred.
The surface treatment may be carried out by using a single surface treatment agent or a combination of two or more surface treatment agents.
Moreover, it is also preferable that the surface of the metal oxide particles is covered with an oxide such as aluminum, silicon, or zirconia. Thereby, a weather resistance improves more.
 本発明における金属酸化物粒子としては、市販されているものを好ましく用いることができる。具体的には、例えば、酸化チタン粒子として石原産業(株)製TTOシリーズ(TTO-51(A)、TTO-51(C)など)、TTO-S、Vシリーズ(TTO-S-1、TTO-S-2、TTO-V-3など)、テイカ(株)製MTシリーズ(MT-01、MT-05など)、酸化スズ-酸化チタン複合粒子としてオプトレイクTR-502、オプトレイクTR-504、酸化ケイ素-酸化チタン複合粒子としてオプトレイクTR-503、オプトレイクTR-513、オプトレイクTR-520、オプトレイクTR-521、オプトレイクTR-527、酸化ジルコニウム粒子((株)高純度化学研究所製)、酸化スズ-酸化ジルコニウム複合粒子(日揮触媒化成工業(株)製)、酸化ニオブ粒子としてバイラールNb-X10(多木化学(株)製)などが挙げられる。 As the metal oxide particles in the present invention, commercially available particles can be preferably used. Specifically, for example, TTO series (TTO-51 (A), TTO-51 (C), etc.), TTO-S, V series (TTO-S-1, TTO) manufactured by Ishihara Sangyo Co., Ltd. are used as titanium oxide particles. -S-2, TTO-V-3, etc.), MT series (MT-01, MT-05, etc.) manufactured by Teika Co., Ltd., OPTRAIK TR-502, OPTRAIK TR-504 as tin oxide-titanium oxide composite particles , Op-tlake TR-503, Op-tray TR-513, Op-tlake TR-520, Op-tlake TR-521, Op-tlake TR-527, Zirconium oxide particles (Co) ), Tin oxide-zirconium oxide composite particles (manufactured by JGC Catalysts & Chemicals Co., Ltd.), and niobium oxide particles such as viral Nb-X10 Chemical Co., Ltd.), and the like.
 また、成分Aは、1種単独で使用してもよいし、2種以上を併用することもできる。
 上記感光性樹脂組成物における無機粒子の含有量は、感光性樹脂組成物により得られる光学部材に要求される屈折率や、光透過性等を考慮して、適宜決定すればよいが、感光性樹脂組成物の全固形分に対して、10質量%以上であることが好ましく、30質量%以上であることがより好ましく、40質量%以上であることが更に好ましい。また、80質量%以下であることが好ましく、70質量%以下であることがより好ましい。なお、感光性樹脂組成物の固形分量とは、溶剤などの揮発性成分を除いた量を表す。
Moreover, the component A may be used individually by 1 type, and can also use 2 or more types together.
The content of the inorganic particles in the photosensitive resin composition may be appropriately determined in consideration of the refractive index required for the optical member obtained from the photosensitive resin composition, light transmittance, and the like. The total solid content of the resin composition is preferably 10% by mass or more, more preferably 30% by mass or more, and still more preferably 40% by mass or more. Moreover, it is preferable that it is 80 mass% or less, and it is more preferable that it is 70 mass% or less. In addition, the solid content amount of the photosensitive resin composition represents an amount excluding volatile components such as a solvent.
(成分B)酸基が酸分解性基で保護された基を有する構成単位を含む重合体
 本発明に用いることができる感光性樹脂組成物は、(成分B)酸基が酸分解性基で保護された基を有する構成単位を含む重合体を含有する。
 なお、本発明において、「酸基が酸分解性基で保護された基を有する構成単位」を「(a1)酸基が酸分解性基で保護された基を有する構成単位」ともいう。
(Component B) A polymer containing a structural unit having a group in which an acid group is protected with an acid-decomposable group The photosensitive resin composition that can be used in the present invention has (Component B) an acid group having an acid-decomposable group A polymer containing a structural unit having a protected group is contained.
In the present invention, the “structural unit having a group in which an acid group is protected by an acid-decomposable group” is also referred to as “(a1) a structural unit having a group in which an acid group is protected by an acid-decomposable group”.
 上記感光性樹脂組成物は、更に、酸基が酸分解性基で保護された基を有する構成単位を含む重合体以外の重合体を含んでいてもよい。
 上記感光性樹脂組成物は、下記(1)及び(2)の少なくとも一方を満たす重合体を含む重合体成分を含有することが好ましい。
 (1)(a1)酸基が酸分解性基で保護された基を有する構成単位及び(a2)架橋性基を有する構成単位を含む重合体
 (2)(a1)酸基が酸分解性基で保護された基を有する構成単位を含む重合体、及び、(a2)架橋性基を有する構成単位を有する重合体
 上記感光性樹脂組成物は、更に、これら以外の重合体を含んでいてもよい。本発明における成分Bは、特に述べない限り、上記(1)及び/又は(2)に加え、必要に応じて添加される他の重合体を含めたものを意味するものとする。
 上記感光性樹脂組成物は、硬化後における透明性(ヘイズ)及び未露光部の残膜率の観点からは、成分Bとして、上記(1)を満たす成分を含むことが好ましい。
 一方、分子設計の自由度の観点からは、上記感光性樹脂組成物は、成分Bとして、上記(2)を満たす成分を含むことが好ましい。
 なお、上記(1)を満たす成分を含有する場合であっても、更に、(a1)酸基が酸分解性基で保護された基を有する構成単位を含むアクリル樹脂及び/又は(a2)架橋性基を有する構成単位を有するアクリル樹脂を含有していてもよい。
 また、上記(2)を満たす成分を含有する場合であっても、(a1)酸基が酸分解性基で保護された基を有する構成単位及び(a2)架橋性基を有する構成単位を有するポリマーに該当するものを少なくとも含有する場合は、上記(1)を満たす成分を含有する場合に該当するものとする。
 また、成分Bが上記(2)を満たす成分である場合、(a1)酸基が酸分解性基で保護された基を有する構成単位を含む重合体と(a2)架橋性基を有する構成単位を有する重合体との含有比は、質量比で、95:5~60:40であることが好ましく、95:5~70:30であることがより好ましく、95:5~75:25であることが更に好ましく、90:10~80:20であることが特に好ましい。上記範囲であると、得られる硬化膜の屈折率及びテーパー形状に優れる。
The photosensitive resin composition may further contain a polymer other than a polymer containing a structural unit having a group in which an acid group is protected with an acid-decomposable group.
The photosensitive resin composition preferably contains a polymer component including a polymer that satisfies at least one of the following (1) and (2).
(1) (a1) a polymer comprising a structural unit having an acid group protected by an acid-decomposable group and (a2) a structural unit having a crosslinkable group (2) (a1) an acid group having an acid-decomposable group And a polymer having a structural unit having a group protected with (a2) a polymer having a structural unit having a crosslinkable group. The photosensitive resin composition may further contain a polymer other than these. Good. Unless otherwise stated, component B in the present invention means one including other polymers added as necessary in addition to the above (1) and / or (2).
It is preferable that the said photosensitive resin composition contains the component which satisfy | fills said (1) as a component B from a viewpoint of the transparency (haze) after hardening, and the remaining film rate of an unexposed part.
On the other hand, from the viewpoint of the degree of freedom in molecular design, the photosensitive resin composition preferably contains a component satisfying the above (2) as the component B.
In addition, even when it contains a component satisfying the above (1), (a1) an acrylic resin and / or (a2) a crosslink containing a structural unit having a group in which an acid group is protected by an acid-decomposable group You may contain the acrylic resin which has a structural unit which has a sex group.
Moreover, even when it contains a component satisfying the above (2), it has (a1) a structural unit having a group in which an acid group is protected by an acid-decomposable group and (a2) a structural unit having a crosslinkable group. When it contains at least what corresponds to a polymer, it corresponds when it contains the component which satisfy | fills said (1).
In addition, when Component B is a component satisfying the above (2), (a1) a polymer containing a structural unit having a group in which an acid group is protected by an acid-decomposable group and (a2) a structural unit having a crosslinkable group The content ratio with respect to the polymer having is preferably 95: 5 to 60:40, more preferably 95: 5 to 70:30, and 95: 5 to 75:25 by mass ratio. More preferably, it is particularly preferably 90:10 to 80:20. It is excellent in the refractive index and taper shape of the cured film obtained as it is the said range.
 成分Bは、付加重合型の樹脂であることが好ましく、(メタ)アクリル酸及び/又はそのエステルに由来する構成単位を含む重合体であることがより好ましい。なお、(メタ)アクリル酸及び/又はそのエステルに由来する構成単位以外の構成単位、例えば、スチレンに由来する構成単位や、ビニル化合物に由来する構成単位等を有していてもよい。
 なお、「(メタ)アクリル酸及び/又はそのエステルに由来する構成単位」を「アクリル系構成単位」ともいう。また、「(メタ)アクリル酸」は、「メタクリル酸及び/又はアクリル酸」を意味するものとする。
Component B is preferably an addition polymerization type resin, and more preferably a polymer containing structural units derived from (meth) acrylic acid and / or its ester. In addition, you may have structural units other than the structural unit derived from (meth) acrylic acid and / or its ester, for example, the structural unit derived from styrene, the structural unit derived from a vinyl compound, etc.
The “structural unit derived from (meth) acrylic acid and / or its ester” is also referred to as “acrylic structural unit”. Further, “(meth) acrylic acid” means “methacrylic acid and / or acrylic acid”.
<構成単位(a1)>
 成分Bは、(a1)酸基が酸分解性基で保護された基を有する構成単位を少なくとも有する重合体を含む。成分Bが構成単位(a1)を有する重合体を含むことにより、極めて高感度な感光性樹脂組成物とすることができる。
 本発明における「酸基が酸分解性基で保護された基」は、酸基及び酸分解性基として公知のものを使用でき、特に限定されない。具体的な酸基としては、カルボキシル基、及び、フェノール性水酸基が好ましく挙げられる。また、酸分解性基としては、酸により比較的分解しやすい基(例えば、後述する式(A1)で表される基のエステル構造、テトラヒドロピラニルエステル基、又は、テトラヒドロフラニルエステル基等のアセタール系官能基)や酸により比較的分解しにくい基(例えば、tert-ブチルエステル基等の第三級アルキル基、tert-ブチルカーボネート基等の第三級アルキルカーボネート基)を用いることができる。
<Structural unit (a1)>
Component B includes (a1) a polymer having at least a structural unit having a group in which an acid group is protected with an acid-decomposable group. When Component B contains a polymer having the structural unit (a1), a highly sensitive photosensitive resin composition can be obtained.
As the “group in which the acid group is protected with an acid-decomposable group” in the present invention, those known as an acid group and an acid-decomposable group can be used, and are not particularly limited. Specific examples of the acid group preferably include a carboxyl group and a phenolic hydroxyl group. The acid-decomposable group is a group that is relatively easily decomposed by an acid (for example, an acetal group such as an ester structure of a group represented by the formula (A1) described later, a tetrahydropyranyl ester group, or a tetrahydrofuranyl ester group). A functional group) or a group that is relatively difficult to decompose by an acid (for example, a tertiary alkyl group such as a tert-butyl ester group or a tertiary alkyl carbonate group such as a tert-butyl carbonate group) can be used.
 (a1)酸基が酸分解性基で保護された基を有する構成単位は、カルボキシル基が酸分解性基で保護された保護カルボキシル基を有する構成単位(「酸分解性基で保護された保護カルボキシル基を有する構成単位」ともいう。)、又は、フェノール性水酸基が酸分解性基で保護された保護フェノール性水酸基を有する構成単位(「酸分解性基で保護された保護フェノール性水酸基を有する構成単位」ともいう。)であることが好ましい。
 以下、酸分解性基で保護された保護カルボキシル基を有する構成単位(a1-1)と、酸分解性基で保護された保護フェノール性水酸基を有する構成単位(a1-2)について、順にそれぞれ説明する。
(A1) A structural unit having a group in which an acid group is protected with an acid-decomposable group is a structural unit having a protected carboxyl group in which a carboxyl group is protected with an acid-decomposable group (“protection protected with an acid-decomposable group” Or a structural unit having a protected phenolic hydroxyl group in which the phenolic hydroxyl group is protected by an acid-decomposable group (having a protected phenolic hydroxyl group protected by an acid-decomposable group). It is also preferably referred to as a “structural unit”.
Hereinafter, the structural unit (a1-1) having a protected carboxyl group protected with an acid-decomposable group and the structural unit (a1-2) having a protected phenolic hydroxyl group protected with an acid-decomposable group will be described in order. To do.
<<(a1-1)酸分解性基で保護された保護カルボキシル基を有する構成単位>>
 上記酸分解性基で保護された保護カルボキシル基を有する構成単位(a1-1)は、カルボキシル基を有する構成単位のカルボキシル基が、以下で詳細に説明する酸分解性基によって保護された保護カルボキシル基を有する構成単位である。
 上記酸分解性基で保護された保護カルボキシル基を有する構成単位(a1-1)に用いることができる上記カルボキシル基を有する構成単位としては、特に制限はなく公知の構成単位を用いることができる。例えば、不飽和モノカルボン酸、不飽和ジカルボン酸、不飽和トリカルボン酸などの、分子中に少なくとも1個のカルボキシル基を有する不飽和カルボン酸等に由来する構成単位(a1-1-1)や、エチレン性不飽和基と酸無水物由来の構造とを共に有する構成単位(a1-1-2)が挙げられる。
 以下、上記カルボキシル基を有する構成単位として用いられる(a1-1-1)分子中に少なくとも1個のカルボキシル基を有する不飽和カルボン酸等に由来する構成単位と、(a1-1-2)エチレン性不飽和基と酸無水物由来の構造とを共に有する構成単位について、それぞれ順に説明する。
<< (a1-1) Structural unit having a protected carboxyl group protected with an acid-decomposable group >>
The structural unit (a1-1) having a protected carboxyl group protected with an acid-decomposable group is a protected carboxyl in which the carboxyl group of the structural unit having a carboxyl group is protected by an acid-decomposable group described in detail below. A structural unit having a group.
The structural unit having a carboxyl group that can be used for the structural unit (a1-1) having a protected carboxyl group protected by the acid-decomposable group is not particularly limited, and a known structural unit can be used. For example, a structural unit (a1-1-1) derived from an unsaturated carboxylic acid having at least one carboxyl group in the molecule, such as an unsaturated monocarboxylic acid, an unsaturated dicarboxylic acid, or an unsaturated tricarboxylic acid, And a structural unit (a1-1-2) having both an ethylenically unsaturated group and a structure derived from an acid anhydride.
Hereinafter, (a1-1-1) used as a structural unit having a carboxyl group, a structural unit derived from an unsaturated carboxylic acid having at least one carboxyl group in the molecule, and (a1-1-2) ethylene The structural units having both the unsaturated group and the structure derived from the acid anhydride will be described in order.
<<<(a1-1-1)分子中に少なくとも1個のカルボキシル基を有する不飽和カルボン酸等に由来する構成単位>>>
 上記分子中に少なくとも1個のカルボキシル基を有する不飽和カルボン酸等に由来する構成単位(a1-1-1)として本発明で用いられる不飽和カルボン酸としては以下に挙げるようなものが用いられる。すなわち、不飽和モノカルボン酸としては、例えば、アクリル酸、メタクリル酸、クロトン酸、α-クロロアクリル酸、けい皮酸、2-(メタ)アクリロイロキシエチルコハク酸、2-(メタ)アクリロイロキシエチルヘキサヒドロフタル酸、2-(メタ)アクリロイロキシエチルフタル酸などが挙げられる。また、不飽和ジカルボン酸としては、例えば、マレイン酸、フマル酸、イタコン酸、シトラコン酸、メサコン酸などが挙げられる。また、カルボキシル基を有する構成単位を得るために用いられる不飽和多価カルボン酸は、その酸無水物であってもよい。具体的には、無水マレイン酸、無水イタコン酸、無水シトラコン酸などが挙げられる。また、不飽和多価カルボン酸は、多価カルボン酸のモノ(2-メタクリロイロキシアルキル)エステルであってもよく、例えば、コハク酸モノ(2-アクリロイロキシエチル)、コハク酸モノ(2-メタクリロイロキシエチル)、フタル酸モノ(2-アクリロイロキシエチル)、フタル酸モノ(2-メタクリロイロキシエチル)などが挙げられる。更に、不飽和多価カルボン酸は、その両末端ジカルボキシポリマーのモノ(メタ)アクリレートであってもよく、例えば、ω-カルボキシポリカプロラクトンモノアクリレート、ω-カルボキシポリカプロラクトンモノメタクリレートなどが挙げられる。また、不飽和カルボン酸としては、アクリル酸-2-カルボキシエチルエステル、メタクリル酸-2-カルボキシエチルエステル、マレイン酸モノアルキルエステル、フマル酸モノアルキルエステル、4-カルボキシスチレン等も用いることができる。
 中でも、現像性の観点から、上記分子中に少なくとも1個のカルボキシル基を有する不飽和カルボン酸等に由来する構成単位(a1-1-1)を形成するためには、アクリル酸、メタクリル酸、2-(メタ)アクリロイロキシエチルコハク酸、2-(メタ)アクリロイロキシエチルヘキサヒドロフタル酸、2-(メタ)アクリロイロキシエチルフタル酸、又は、不飽和多価カルボン酸の無水物等を用いることが好ましく、アクリル酸、メタクリル酸、2-(メタ)アクリロイロキシエチルヘキサヒドロフタル酸、を用いることがより好ましい。
 上記分子中に少なくとも1個のカルボキシル基を有する不飽和カルボン酸等に由来する構成単位(a1-1-1)は、1種単独で構成されていてもよいし、2種以上で構成されていてもよい。
<<< (a1-1-1) Structural Unit Derived from Unsaturated Carboxylic Acid etc. Having at least One Carboxyl Group in the Molecule >>>
Examples of the unsaturated carboxylic acid used in the present invention as the structural unit (a1-1-1) derived from an unsaturated carboxylic acid having at least one carboxyl group in the molecule include those listed below. . That is, examples of the unsaturated monocarboxylic acid include acrylic acid, methacrylic acid, crotonic acid, α-chloroacrylic acid, cinnamic acid, 2- (meth) acryloyloxyethyl succinic acid, and 2- (meth) acryloyl. Examples include loxyethyl hexahydrophthalic acid and 2- (meth) acryloyloxyethyl phthalic acid. Examples of the unsaturated dicarboxylic acid include maleic acid, fumaric acid, itaconic acid, citraconic acid, and mesaconic acid. Moreover, the acid anhydride may be sufficient as unsaturated polyhydric carboxylic acid used in order to obtain the structural unit which has a carboxyl group. Specific examples include maleic anhydride, itaconic anhydride, citraconic anhydride, and the like. Further, the unsaturated polyvalent carboxylic acid may be a mono (2-methacryloyloxyalkyl) ester of a polyvalent carboxylic acid, such as succinic acid mono (2-acryloyloxyethyl), succinic acid mono (2 -Methacryloyloxyethyl), mono (2-acryloyloxyethyl) phthalate, mono (2-methacryloyloxyethyl) phthalate and the like. Further, the unsaturated polyvalent carboxylic acid may be a mono (meth) acrylate of a dicarboxy polymer at both ends, and examples thereof include ω-carboxypolycaprolactone monoacrylate and ω-carboxypolycaprolactone monomethacrylate. As the unsaturated carboxylic acid, acrylic acid-2-carboxyethyl ester, methacrylic acid-2-carboxyethyl ester, maleic acid monoalkyl ester, fumaric acid monoalkyl ester, 4-carboxystyrene and the like can also be used.
Among them, from the viewpoint of developability, in order to form the structural unit (a1-1-1) derived from an unsaturated carboxylic acid having at least one carboxyl group in the molecule, acrylic acid, methacrylic acid, 2- (meth) acryloyloxyethyl succinic acid, 2- (meth) acryloyloxyethyl hexahydrophthalic acid, 2- (meth) acryloyloxyethyl phthalic acid, anhydride of unsaturated polyvalent carboxylic acid, etc. It is preferable to use acrylic acid, methacrylic acid, and 2- (meth) acryloyloxyethyl hexahydrophthalic acid.
The structural unit (a1-1-1) derived from an unsaturated carboxylic acid or the like having at least one carboxyl group in the molecule may be composed of one kind alone or two or more kinds. May be.
<<<(a1-1-2)エチレン性不飽和基と酸無水物由来の構造とを共に有する構成単位>>>
 エチレン性不飽和基と酸無水物由来の構造とを共に有する構成単位(a1-1-2)は、エチレン性不飽和基を有する構成単位中に存在する水酸基と酸無水物とを反応させて得られたモノマーに由来する単位であることが好ましい。
 上記酸無水物としては、公知のものが使用でき、具体的には、無水マレイン酸、無水コハク酸、無水イタコン酸、無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、無水クロレンド酸等の二塩基酸無水物;無水トリメリット酸、無水ピロメリット酸、ベンゾフェノンテトラカルボン酸無水物、ビフェニルテトラカルボン酸無水物などの酸無水物が挙げられる。これらの中では、現像性の観点から、無水フタル酸、テトラヒドロ無水フタル酸、又は、無水コハク酸が好ましい。
 上記酸無水物の水酸基に対する反応率は、現像性の観点から、好ましくは10~100モル%、より好ましくは30~100モル%である。
<<< (a1-1-2) a structural unit having both an ethylenically unsaturated group and a structure derived from an acid anhydride >>>
The structural unit (a1-1-2) having both an ethylenically unsaturated group and a structure derived from an acid anhydride is obtained by reacting a hydroxyl group present in the structural unit having an ethylenically unsaturated group with an acid anhydride. A unit derived from the obtained monomer is preferred.
As the acid anhydride, known ones can be used, and specifically, maleic anhydride, succinic anhydride, itaconic anhydride, phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, chlorendic anhydride, etc. Dibasic acid anhydrides; acid anhydrides such as trimellitic anhydride, pyromellitic anhydride, benzophenonetetracarboxylic anhydride, biphenyltetracarboxylic anhydride, and the like. Among these, phthalic anhydride, tetrahydrophthalic anhydride, or succinic anhydride is preferable from the viewpoint of developability.
The reaction rate of the acid anhydride with respect to the hydroxyl group is preferably 10 to 100 mol%, more preferably 30 to 100 mol% from the viewpoint of developability.
-構成単位(a1-1)に用いることができる酸分解性基-
 上記酸分解性基で保護された保護カルボキシル基を有する構成単位(a1-1)に用いることができる上記酸分解性基としては上述の酸分解性基を用いることができる。
 これらの酸分解性基の中でもカルボキシル基がアセタールの形で保護された保護カルボキシル基であることが、感光性樹脂組成物の基本物性、特に感度やパターン形状、コンタクトホールの形成性、感光性樹脂組成物の保存安定性の観点から好ましい。更に酸分解性基の中でもカルボキシル基が下記式(a1-10)で表されるアセタールの形で保護された保護カルボキシル基であることが、感度の観点からより好ましい。なお、カルボキシル基が下記式(a1-10)で表されるアセタールの形で保護された保護カルボキシル基である場合、保護カルボキシル基の全体としては、-(C=O)-O-CR101102(OR103)の構造となっている。
-Acid-decomposable group that can be used for the structural unit (a1-1)-
As the acid-decomposable group that can be used for the structural unit (a1-1) having a protected carboxyl group protected by the acid-decomposable group, the above-mentioned acid-decomposable groups can be used.
Among these acid-decomposable groups, it is a protected carboxyl group in which the carboxyl group is protected in the form of an acetal. It is preferable from the viewpoint of the storage stability of the composition. Furthermore, among the acid-decomposable groups, the carboxyl group is more preferably a protected carboxyl group protected in the form of an acetal represented by the following formula (a1-10) from the viewpoint of sensitivity. When the carboxyl group is a protected carboxyl group protected in the form of an acetal represented by the following formula (a1-10), the entire protected carboxyl group is — (C═O) —O—CR 101 R The structure is 102 (OR 103 ).
Figure JPOXMLDOC01-appb-C000003
(式(a1-10)中、R101及びR102はそれぞれ独立に、水素原子又はアルキル基を表し、ただし、R101とR102とが共に水素原子の場合を除く。R103は、アルキル基を表す。R101又はR102と、R103とが連結して環状エーテルを形成してもよい。)
Figure JPOXMLDOC01-appb-C000003
(In formula (a1-10), R 101 and R 102 each independently represents a hydrogen atom or an alkyl group, except that R 101 and R 102 are both hydrogen atoms, and R 103 represents an alkyl group. R 101 or R 102 and R 103 may be linked to form a cyclic ether.)
 上記式(a1-10)中、R101~R103はそれぞれ独立に、水素原子又はアルキル基を表し、上記アルキル基は直鎖状、分岐鎖状、環状のいずれでもよい。ここで、R101及びR102の双方が水素原子を表すことはなく、R101及びR102の少なくとも一方はアルキル基を表す。 In the above formula (a1-10), R 101 to R 103 each independently represents a hydrogen atom or an alkyl group, and the alkyl group may be linear, branched or cyclic. Here, both R 101 and R 102 do not represent a hydrogen atom, and at least one of R 101 and R 102 represents an alkyl group.
 上記式(a1-10)において、R101、R102及びR103がアルキル基を表す場合、上記アルキル基は直鎖状、分岐鎖状又は環状のいずれであってもよい。
 上記直鎖状又は分岐鎖状のアルキル基としては、炭素数1~12であることが好ましく、炭素数1~6であることがより好ましく、炭素数1~4であることが更に好ましい。具体的には、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、ネオペンチル基、n-ヘキシル基、テキシル基(2,3-ジメチル-2-ブチル基)、n-ヘプチル基、n-オクチル基、2-エチルヘキシル基、n-ノニル基、n-デシル基等を挙げることができる。
In the above formula (a1-10), when R 101 , R 102 and R 103 represent an alkyl group, the alkyl group may be linear, branched or cyclic.
The linear or branched alkyl group preferably has 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, and still more preferably 1 to 4 carbon atoms. Specifically, methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, neopentyl group, n Examples include -hexyl group, texyl group (2,3-dimethyl-2-butyl group), n-heptyl group, n-octyl group, 2-ethylhexyl group, n-nonyl group, n-decyl group and the like.
 上記環状アルキル基としては、炭素数3~12であることが好ましく、炭素数4~8であることがより好ましく、炭素数4~6であることが更に好ましい。上記環状アルキル基としては、例えばシクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、ノルボルニル基、イソボルニル基等を挙げることができる。 The cyclic alkyl group preferably has 3 to 12 carbon atoms, more preferably 4 to 8 carbon atoms, and still more preferably 4 to 6 carbon atoms. Examples of the cyclic alkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a norbornyl group, and an isobornyl group.
 上記アルキル基は、置換基を有していてもよく、置換基としては、ハロゲン原子、アリール基、アルコキシ基が例示できる。置換基としてハロゲン原子を有する場合、R101、R102、R103はハロアルキル基となり、置換基としてアリール基を有する場合、R101、R102、R103はアラルキル基となる。
 上記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が例示され、これらの中でも、フッ素原子又は塩素原子が好ましい。
 また、上記アリール基としては、炭素数6~20のアリール基が好ましく、炭素数6~12のアリール基がより好ましい。具体的には、フェニル基、α-メチルフェニル基、ナフチル基等が例示でき、アリール基で置換されたアルキル基全体、すなわち、アラルキル基としては、ベンジル基、α-メチルベンジル基、フェネチル基、ナフチルメチル基等が例示できる。
 上記アルコキシ基としては、炭素数1~6のアルコキシ基が好ましく、炭素数1~4のアルコキシ基がより好ましく、メトキシ基又はエトキシ基が更に好ましい。
 また、上記アルキル基がシクロアルキル基である場合、上記シクロアルキル基は置換基として炭素数1~10の直鎖状又は分岐鎖状のアルキル基を有していてもよく、アルキル基が直鎖状又は分岐鎖状のアルキル基である場合には、置換基として炭素数3~12のシクロアルキル基を有していてもよい。
 これらの置換基は、上記置換基で更に置換されていてもよい。
The alkyl group may have a substituent, and examples of the substituent include a halogen atom, an aryl group, and an alkoxy group. When it has a halogen atom as a substituent, R 101 , R 102 and R 103 become a haloalkyl group, and when it has an aryl group as a substituent, R 101 , R 102 and R 103 become an aralkyl group.
Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and among these, a fluorine atom or a chlorine atom is preferable.
Further, the aryl group is preferably an aryl group having 6 to 20 carbon atoms, and more preferably an aryl group having 6 to 12 carbon atoms. Specific examples include a phenyl group, an α-methylphenyl group, a naphthyl group, and the like, and examples of the entire alkyl group substituted with an aryl group, that is, an aralkyl group include a benzyl group, an α-methylbenzyl group, a phenethyl group, A naphthylmethyl group etc. can be illustrated.
The alkoxy group is preferably an alkoxy group having 1 to 6 carbon atoms, more preferably an alkoxy group having 1 to 4 carbon atoms, and still more preferably a methoxy group or an ethoxy group.
Further, when the alkyl group is a cycloalkyl group, the cycloalkyl group may have a linear or branched alkyl group having 1 to 10 carbon atoms as a substituent, and the alkyl group is a linear chain. Or a branched alkyl group, it may have a cycloalkyl group having 3 to 12 carbon atoms as a substituent.
These substituents may be further substituted with the above substituents.
 上記式(a1-10)において、R101、R102及びR103がアリール基を表す場合、上記アリール基は炭素数6~12であることが好ましく、炭素数6~10であることがより好ましい。上記アリール基は置換基を有していてもよく、上記置換基としては炭素数1~6のアルキル基が好ましく例示できる。アリール基としては、例えば、フェニル基、トリル基、キシリル基、クメニル基、1-ナフチル基等が例示できる。 In the above formula (a1-10), when R 101 , R 102 and R 103 represent an aryl group, the aryl group preferably has 6 to 12 carbon atoms, and more preferably 6 to 10 carbon atoms. . The aryl group may have a substituent, and preferred examples of the substituent include an alkyl group having 1 to 6 carbon atoms. Examples of the aryl group include a phenyl group, a tolyl group, a xylyl group, a cumenyl group, and a 1-naphthyl group.
 また、R101、R102及びR103は互いに結合して、それらが結合している炭素原子と一緒になって環を形成することができる。R101とR102、R101とR103又はR102とR103が結合した場合の環構造としては、例えばシクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、テトラヒドロフラニル基、アダマンチル基及びテトラヒドロピラニル基等を挙げることができる。 R 101 , R 102 and R 103 can be bonded together to form a ring together with the carbon atom to which they are bonded. Examples of the ring structure when R 101 and R 102 , R 101 and R 103 or R 102 and R 103 are bonded include, for example, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a tetrahydrofuranyl group, an adamantyl group, and a tetrahydropyrani group. And the like.
 なお、上記式(a1-10)において、R101及びR102のいずれか一方が、水素原子又はメチル基であることが好ましい。 Note that in the above formula (a1-10), any one of R 101 and R 102 is preferably a hydrogen atom or a methyl group.
 上記式(a1-10)で表される保護カルボキシル基を有する構成単位を形成するために用いられるラジカル重合性単量体は、市販のものを用いてもよいし、公知の方法で合成したものを用いることもできる。例えば、特開2011-221494号公報の段落0037~0040に記載の合成方法などで合成することができる。 As the radical polymerizable monomer used for forming the structural unit having a protected carboxyl group represented by the above formula (a1-10), a commercially available one may be used, or one synthesized by a known method Can also be used. For example, it can be synthesized by the synthesis method described in paragraphs 0037 to 0040 of JP2011-212494A.
 上記酸分解性基で保護された保護カルボキシル基を有する構成単位(a1-1)の第一の好ましい態様は、下記式で表される構成単位である。 A first preferred embodiment of the structural unit (a1-1) having a protected carboxyl group protected by the acid-decomposable group is a structural unit represented by the following formula.
Figure JPOXMLDOC01-appb-C000004
(式中、R1及びR2はそれぞれ独立に、水素原子、アルキル基又はアリール基を表し、少なくともR1及びR2のいずれか一方がアルキル基又はアリール基であり、R3は、アルキル基又はアリール基を表し、R1又はR2と、R3とが連結して環状エーテルを形成してもよく、R4は、水素原子又はメチル基を表し、Xは単結合又はアリーレン基を表す。)
Figure JPOXMLDOC01-appb-C000004
(In the formula, R 1 and R 2 each independently represent a hydrogen atom, an alkyl group or an aryl group, at least one of R 1 and R 2 is an alkyl group or an aryl group, and R 3 is an alkyl group. Or R 1 or R 2 and R 3 may be linked to form a cyclic ether, R 4 represents a hydrogen atom or a methyl group, and X represents a single bond or an arylene group. .)
 R1及びR2がアルキル基の場合、炭素数は1~10のアルキル基が好ましい。R1及びR2がアリール基の場合、フェニル基が好ましい。R1及びR2はそれぞれ独立に、水素原子又は炭素数1~4のアルキル基が好ましい。
 R3は、アルキル基又はアリール基を表し、炭素数1~10のアルキル基が好ましく、1~6のアルキル基がより好ましい。
 Xは、単結合又はアリーレン基を表し、単結合が好ましい。
When R 1 and R 2 are alkyl groups, alkyl groups having 1 to 10 carbon atoms are preferred. When R 1 and R 2 are aryl groups, a phenyl group is preferred. R 1 and R 2 are preferably each independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
R 3 represents an alkyl group or an aryl group, preferably an alkyl group having 1 to 10 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms.
X represents a single bond or an arylene group, and a single bond is preferable.
 上記酸分解性基で保護された保護カルボキシル基を有する構成単位(a1-1)の第二の好ましい態様は、下記式で表される構成単位である。 A second preferred embodiment of the structural unit (a1-1) having a protected carboxyl group protected by the acid-decomposable group is a structural unit represented by the following formula.
Figure JPOXMLDOC01-appb-C000005
(式中、R121は水素原子又は炭素数1~4のアルキル基を表し、L1はカルボニル基又はフェニレン基を表し、R122~R128はそれぞれ独立に、水素原子又は炭素数1~4のアルキル基を表す。)
Figure JPOXMLDOC01-appb-C000005
Wherein R 121 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, L 1 represents a carbonyl group or a phenylene group, and R 122 to R 128 each independently represents a hydrogen atom or 1 to 4 carbon atoms. Represents an alkyl group of
 R121は水素原子又はメチル基が好ましい。
 L1はカルボニル基が好ましい。
 R122~R128は、水素原子が好ましい。
R 121 is preferably a hydrogen atom or a methyl group.
L 1 is preferably a carbonyl group.
R 122 to R 128 are preferably hydrogen atoms.
 上記酸分解性基で保護された保護カルボキシル基を有する構成単位(a1-1)の好ましい具体例としては、下記の構成単位が例示できる。なお、Rは水素原子又はメチル基を表す。 As preferred specific examples of the structural unit (a1-1) having a protected carboxyl group protected by the acid-decomposable group, the following structural units can be exemplified. R represents a hydrogen atom or a methyl group.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
<<(a1-2)酸分解性基で保護された保護フェノール性水酸基を有する構成単位>>
 上記酸分解性基で保護された保護フェノール性水酸基を有する構成単位(a1-2)は、フェノール性水酸基を有する構成単位が、以下で詳細に説明する酸分解性基によって保護された保護フェノール性水酸基を有する構成単位である。
<< (a1-2) Structural Unit Having Protected Phenolic Hydroxyl Group Protected with Acid-Decomposable Group >>
The structural unit (a1-2) having a protected phenolic hydroxyl group protected with an acid-decomposable group is a protected phenolic group in which the structural unit having a phenolic hydroxyl group is protected by an acid-decomposable group described in detail below. A structural unit having a hydroxyl group.
<<<(a1-2-1)フェノール性水酸基を有する構成単位>>>
 上記フェノール性水酸基を有する構成単位としては、ヒドロキシスチレン系構成単位やノボラック系の樹脂における構成単位が挙げられるが、これらの中では、ヒドロキシスチレン又はα-メチルヒドロキシスチレンに由来する構成単位が、感度の観点から好ましい。また、フェノール性水酸基を有する構成単位として、下記式(a1-20)で表される構成単位も、感度の観点から好ましい。
<<< (a1-2-1) Structural unit having phenolic hydroxyl group >>>
Examples of the structural unit having a phenolic hydroxyl group include a hydroxystyrene-based structural unit and a structural unit in a novolac-based resin. Among these, a structural unit derived from hydroxystyrene or α-methylhydroxystyrene is sensitive. From the viewpoint of In addition, as a structural unit having a phenolic hydroxyl group, a structural unit represented by the following formula (a1-20) is also preferable from the viewpoint of sensitivity.
Figure JPOXMLDOC01-appb-C000007
(式(a1-20)中、R220は水素原子又はメチル基を表し、R221は単結合又は二価の連結基を表し、R222はハロゲン原子又は炭素数1~5の直鎖若しくは分岐鎖状のアルキル基を表し、aは1~5の整数を表し、bは0~4の整数を表し、a+bは5以下である。なお、R222が2以上存在する場合、これらのR222は相互に異なっていてもよいし同じでもよい。)
Figure JPOXMLDOC01-appb-C000007
(In the formula (a1-20), R 220 represents a hydrogen atom or a methyl group, R 221 represents a single bond or a divalent linking group, and R 222 represents a halogen atom or a linear or branched group having 1 to 5 carbon atoms. Represents a chain alkyl group, a represents an integer of 1 to 5, b represents an integer of 0 to 4, and a + b is 5 or less, and when R 222 is 2 or more, these R 222 May be different from each other or the same.)
 上記式(a1-20)中、R220は水素原子又はメチル基を表し、メチル基であることが好ましい。
 また、R221は単結合又は二価の連結基を表す。単結合である場合には、感度を向上させることができ、更に硬化膜の透明性を向上させることができるので好ましい。R221の二価の連結基としてはアルキレン基が例示でき、R221がアルキレン基である具体例としては、メチレン基、エチレン基、プロピレン基、イソプロピレン基、n-ブチレン基、イソブチレン基、tert-ブチレン基、ペンチレン基、イソペンチレン基、ネオペンチレン基、ヘキシレン基等が挙げられる。中でも、R221が単結合、メチレン基、又は、エチレン基であることが好ましい。また、上記二価の連結基は、置換基を有していてもよく、置換基としては、ハロゲン原子、水酸基、アルコキシ基等が挙げられる。また、aは1~5の整数を表すが、本発明の効果の観点や、製造が容易であるという点から、aは1又は2であることが好ましく、aが1であることがより好ましい。
 また、ベンゼン環における水酸基の結合位置は、R221と結合している炭素原子を基準(1位)としたとき、4位に結合していることが好ましい。
 R222はそれぞれ独立に、ハロゲン原子又は炭素数1~5の直鎖若しくは分岐鎖状のアルキル基を表す。具体的には、フッ素原子、塩素原子、臭素原子、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基等が挙げられる。中でも製造が容易であるという点から、塩素原子、臭素原子、メチル基又はエチル基であることが好ましい。
 また、bは0又は1~4の整数を表す。
In the above formula (a1-20), R 220 represents a hydrogen atom or a methyl group, and is preferably a methyl group.
R 221 represents a single bond or a divalent linking group. A single bond is preferable because the sensitivity can be improved and the transparency of the cured film can be further improved. The divalent linking group of R 221 may be exemplified alkylene groups, specific examples R 221 is an alkylene group, a methylene group, an ethylene group, a propylene group, isopropylene group, n- butylene group, isobutylene group, tert -Butylene group, pentylene group, isopentylene group, neopentylene group, hexylene group and the like. Among these, R 221 is preferably a single bond, a methylene group, or an ethylene group. The divalent linking group may have a substituent, and examples of the substituent include a halogen atom, a hydroxyl group, and an alkoxy group. A represents an integer of 1 to 5, but a is preferably 1 or 2 and more preferably 1 from the viewpoint of the effects of the present invention and the ease of production. .
Further, the bonding position of the hydroxyl group in the benzene ring is preferably bonded to the 4-position when the carbon atom bonded to R 221 is defined as the reference (first position).
R 222 each independently represents a halogen atom or a linear or branched alkyl group having 1 to 5 carbon atoms. Specifically, fluorine atom, chlorine atom, bromine atom, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, pentyl group, isopentyl group, neopentyl group, etc. It is done. Among these, a chlorine atom, a bromine atom, a methyl group, or an ethyl group is preferable from the viewpoint of easy production.
B represents 0 or an integer of 1 to 4;
-構成単位(a1-2)に用いることができる酸分解性基-
 上記酸分解性基で保護された保護フェノール性水酸基を有する構成単位(a1-2)に用いることができる上記酸分解性基としては、上記酸分解性基で保護された保護カルボキシル基を有する構成単位(a1-1)に用いることができる上記酸分解性基と同様に、公知のものを使用でき、特に限定されない。酸分解性基の中でもアセタールで保護された保護フェノール性水酸基を有する構成単位であることが、感光性樹脂組成物の基本物性、特に感度やパターン形状、感光性樹脂組成物の保存安定性、コンタクトホールの形成性の観点から好ましい。更に、酸分解性基の中でもフェノール性水酸基が上記式(a1-10)で表されるアセタールの形で保護された保護フェノール性水酸基であることが、感度の観点からより好ましい。なお、フェノール性水酸基が上記式(a1-10)で表されるアセタールの形で保護された保護フェノール性水酸基である場合、保護フェノール性水酸基の全体としては、-Ar-O-CR101102(OR103)の構造となっている。なお、Arはアリーレン基を表す。
-Acid-decomposable group that can be used for the structural unit (a1-2)-
The acid-decomposable group that can be used in the structural unit (a1-2) having a protected phenolic hydroxyl group protected by the acid-decomposable group includes a structure having a protected carboxyl group protected by the acid-decomposable group Similar to the acid-decomposable group that can be used for the unit (a1-1), known ones can be used and are not particularly limited. Among the acid-decomposable groups, a structural unit having a protected phenolic hydroxyl group protected with acetal is a basic physical property of the photosensitive resin composition, particularly sensitivity and pattern shape, storage stability of the photosensitive resin composition, contact This is preferable from the viewpoint of hole formability. Furthermore, among the acid-decomposable groups, the phenolic hydroxyl group is more preferably a protected phenolic hydroxyl group protected in the form of an acetal represented by the above formula (a1-10) from the viewpoint of sensitivity. When the phenolic hydroxyl group is a protected phenolic hydroxyl group protected in the form of an acetal represented by the above formula (a1-10), the entire protected phenolic hydroxyl group is —Ar—O—CR 101 R 102. The structure is (OR 103 ). Ar represents an arylene group.
 フェノール性水酸基のアセタールエステル構造の好ましい例は、R101=R102=R103=メチル基の組み合わせやR101=R102=メチル基でR103=ベンジル基の組み合わせが例示できる。 Preferred examples of the acetal ester structure of the phenolic hydroxyl group include a combination of R 101 = R 102 = R 103 = methyl group and a combination of R 101 = R 102 = methyl group and R 103 = benzyl group.
 また、フェノール性水酸基がアセタールの形で保護された保護フェノール性水酸基を有する構成単位を形成するために用いられるラジカル重合性単量体としては、例えば、特開2011-215590号公報の段落0042に記載のものなどが挙げられる。
 これらの中で、4-ヒドロキシフェニルメタクリレートの1-アルコキシアルキル保護体、4-ヒドロキシフェニルメタクリレートのテトラヒドロピラニル保護体が透明性の観点から好ましい。
Examples of the radical polymerizable monomer used to form a structural unit having a protected phenolic hydroxyl group in which the phenolic hydroxyl group is protected in the form of an acetal include, for example, paragraph 0042 of JP2011-215590A And the like.
Among these, a 1-alkoxyalkyl protector of 4-hydroxyphenyl methacrylate and a tetrahydropyranyl protector of 4-hydroxyphenyl methacrylate are preferable from the viewpoint of transparency.
 フェノール性水酸基のアセタール保護基の具体例としては、1-アルコキシアルキル基が挙げられ、例えば、1-エトキシエチル基、1-メトキシエチル基、1-n-ブトキシエチル基、1-イソブトキシエチル基、1-(2-クロロエトキシ)エチル基、1-(2-エチルヘキシルオキシ)エチル基、1-n-プロポキシエチル基、1-シクロヘキシルオキシエチル基、1-(2-シクロヘキシルエトキシ)エチル基、1-ベンジルオキシエチル基などを挙げることができ、これらは1種単独又は2種類以上を組み合わせて使用することができる。 Specific examples of the acetal protecting group for the phenolic hydroxyl group include a 1-alkoxyalkyl group, such as a 1-ethoxyethyl group, a 1-methoxyethyl group, a 1-n-butoxyethyl group, and a 1-isobutoxyethyl group. 1- (2-chloroethoxy) ethyl group, 1- (2-ethylhexyloxy) ethyl group, 1-n-propoxyethyl group, 1-cyclohexyloxyethyl group, 1- (2-cyclohexylethoxy) ethyl group, 1 -A benzyloxyethyl group etc. can be mentioned, These can be used individually by 1 type or in combination of 2 or more types.
 上記酸分解性基で保護された保護フェノール性水酸基を有する構成単位(a1-2)を形成するために用いられるラジカル重合性単量体は、市販のものを用いてもよいし、公知の方法で合成したものを用いることもできる。例えば、フェノール性水酸基を有する化合物を酸触媒の存在下でビニルエーテルと反応させることにより合成することができる。上記の合成はフェノール性水酸基を有するモノマーをその他のモノマーと予め共重合させておき、その後に酸触媒の存在下でビニルエーテルと反応させてもよい。 As the radical polymerizable monomer used for forming the structural unit (a1-2) having a protected phenolic hydroxyl group protected by the acid-decomposable group, a commercially available one may be used, or a known method may be used. What was synthesize | combined by can also be used. For example, it can be synthesized by reacting a compound having a phenolic hydroxyl group with vinyl ether in the presence of an acid catalyst. In the above synthesis, a monomer having a phenolic hydroxyl group may be previously copolymerized with another monomer, and then reacted with vinyl ether in the presence of an acid catalyst.
 上記酸分解性基で保護された保護フェノール性水酸基を有する構成単位(a1-2)の好ましい具体例としては、下記の構成単位が例示できるが、本発明はこれらに限定されるものではない。下記具体例中、Rは水素原子又はメチル基を表す。 As preferred specific examples of the structural unit (a1-2) having a protected phenolic hydroxyl group protected with an acid-decomposable group, the following structural units can be exemplified, but the present invention is not limited thereto. In the following specific examples, R represents a hydrogen atom or a methyl group.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
-構成単位(a1)の好ましい態様-
 上記構成単位(a1)を有する重合体は、構成単位(a1)の含有量が多いほうが、収縮率をより大きくすることができ、また、テーパー形状に優れるので、好ましい。
 上記構成単位(a1)を有する重合体が、実質的に、構成単位(a2)を有しない場合、構成単位(a1)の含有量は、構成単位(a1)を有する重合体中、50~100モル%が好ましく、55~90モル%がより好ましく、60~85モル%が更に好ましく、65~85モル%が特に好ましく、70~80モル%が最も好ましい。上記範囲であると、得られる硬化膜の屈折率及びテーパー形状に優れる。
 上記構成単位(a1)を有する重合体が、下記構成単位(a2)を有する場合、構成単位(a1)の含有量は、構成単位(a1)と構成単位(a2)とを有する重合体中、感度の観点から、50~95モル%が好ましく、55~90モル%がより好ましく、60~85モル%が更に好ましく、65~85モル%が特に好ましく、70~80モル%が最も好ましい。上記範囲であると、得られる硬化膜の屈折率及びテーパー形状に優れる。
 本発明では、更に、いずれの態様にかかわらず、成分Bの全構成単位中、上記構成単位(a1)を、50~95モル%含むことが好ましく、55~90モル%含むことがより好ましく、60~85モル%含むことが更に好ましく、65~85モル%含むことが特に好ましく、70~80モル%含むことが最も好ましい。
 なお、本発明において、「構成単位」の含有量をモル比で規定する場合、上記「構成単位」は「モノマー単位」と同義であるものとする。また、本発明において「モノマー単位」は、高分子反応等により重合後に修飾されていてもよい。以下においても同様である。
-Preferred embodiment of the structural unit (a1)-
In the polymer having the structural unit (a1), it is preferable that the content of the structural unit (a1) is large because the shrinkage rate can be further increased and the taper shape is excellent.
When the polymer having the structural unit (a1) does not substantially have the structural unit (a2), the content of the structural unit (a1) is 50 to 100 in the polymer having the structural unit (a1). Mol% is preferable, 55 to 90 mol% is more preferable, 60 to 85 mol% is further preferable, 65 to 85 mol% is particularly preferable, and 70 to 80 mol% is most preferable. It is excellent in the refractive index and taper shape of the cured film obtained as it is the said range.
When the polymer having the structural unit (a1) has the following structural unit (a2), the content of the structural unit (a1) is in the polymer having the structural unit (a1) and the structural unit (a2). From the viewpoint of sensitivity, it is preferably 50 to 95 mol%, more preferably 55 to 90 mol%, still more preferably 60 to 85 mol%, particularly preferably 65 to 85 mol%, and most preferably 70 to 80 mol%. It is excellent in the refractive index and taper shape of the cured film obtained as it is the said range.
In the present invention, the structural unit (a1) is preferably contained in an amount of 50 to 95 mol%, more preferably 55 to 90 mol% in all the structural units of Component B, regardless of any embodiment. It is more preferably 60 to 85 mol%, particularly preferably 65 to 85 mol%, and most preferably 70 to 80 mol%.
In the present invention, when the content of the “structural unit” is defined in terms of molar ratio, the “structural unit” is synonymous with the “monomer unit”. In the present invention, the “monomer unit” may be modified after polymerization by a polymer reaction or the like. The same applies to the following.
 上記酸分解性基で保護された保護カルボキシル基を有する構成単位(a1-1)は、上記酸分解性基で保護された保護フェノール性水酸基を有する構成単位(a1-2)に比べると、現像が速いという特徴がある。よって、速く現像したい場合には酸分解性基で保護された保護カルボキシル基を有する構成単位(a1-1)が好ましい。逆に現像を遅くしたい場合には酸分解性基で保護された保護フェノール性水酸基を有する構成単位(a1-2)を用いることが好ましい。
 また、酸基が酸分解性基で保護された基を有する構成単位は、解像力及び屈折率の観点から、下記式(a1-1-1)~式(a1-1-3)で表される構成単位であることが特に好ましく、下記式(a1-1-1)で表される構成単位であることが最も好ましい。
The structural unit (a1-1) having a protected carboxyl group protected with an acid-decomposable group is more developed than the structural unit (a1-2) having a protected phenolic hydroxyl group protected with the acid-decomposable group. Is characterized by being fast. Therefore, when it is desired to develop quickly, the structural unit (a1-1) having a protected carboxyl group protected with an acid-decomposable group is preferred. Conversely, when it is desired to delay the development, it is preferable to use the structural unit (a1-2) having a protected phenolic hydroxyl group protected with an acid-decomposable group.
In addition, the structural unit having an acid group protected by an acid-decomposable group is represented by the following formulas (a1-1-1) to (a1-1-3) from the viewpoint of resolving power and refractive index. A structural unit is particularly preferable, and a structural unit represented by the following formula (a1-1-1) is most preferable.
Figure JPOXMLDOC01-appb-C000009
(式中、Rは水素原子又はメチル基を表す。)
Figure JPOXMLDOC01-appb-C000009
(In the formula, R represents a hydrogen atom or a methyl group.)
<(a2)架橋性基を有する構成単位>
 成分Bは、架橋性基を有する構成単位(a2)を有する重合体を含有する。上記架橋性基は、加熱処理で硬化反応を起こす基であれば特に限定はされない。好ましい架橋性基を有する構成単位の態様としては、エポキシ基、オキセタニル基、-NH-CH2-O-R(Rは水素原子又は炭素数1~20のアルキル基を表す。)で表される基及びエチレン性不飽和基よりなる群から選ばれた少なくとも1つを含む構成単位が挙げられ、エポキシ基、オキセタニル基、及び、-NH-CH2-O-R(Rは水素原子又は炭素数1~20のアルキル基を表す。)で表される基よりなる群から選ばれた少なくとも1種であることが好ましい。その中でも、上記感光性樹脂組成物は、成分Bが、エポキシ基及びオキセタニル基のうち少なくとも1つを含む構成単位を含むことがより好ましい。より詳細には、以下のものが挙げられる。
<(A2) Structural unit having a crosslinkable group>
Component B contains a polymer having a structural unit (a2) having a crosslinkable group. The crosslinkable group is not particularly limited as long as it is a group that causes a curing reaction by heat treatment. Preferred embodiments of the structural unit having a crosslinkable group are represented by an epoxy group, an oxetanyl group, and —NH—CH 2 —O—R (R represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms). And a structural unit containing at least one selected from the group consisting of an ethylenically unsaturated group, an epoxy group, an oxetanyl group, and —NH—CH 2 —O—R (R represents a hydrogen atom or a carbon number) It is preferably at least one selected from the group consisting of groups represented by 1 to 20 alkyl groups). Among these, it is more preferable that the photosensitive resin composition includes a structural unit in which Component B includes at least one of an epoxy group and an oxetanyl group. In more detail, the following are mentioned.
<<(a2-1)エポキシ基及び/又はオキセタニル基を有する構成単位>>
 成分Bは、エポキシ基及び/又はオキセタニル基を有する構成単位(構成単位(a2-1))を有する重合体を含有することが好ましい。上記3員環の環状エーテル基はエポキシ基とも呼ばれ、4員環の環状エーテル基はオキセタニル基とも呼ばれる。
 上記エポキシ基及び/又はオキセタニル基を有する構成単位(a2-1)は、1つの構成単位中にエポキシ基又はオキセタニル基を少なくとも1つ有していればよく、1つ以上のエポキシ基及び1つ以上オキセタニル基、2つ以上のエポキシ基、又は、2つ以上のオキセタニル基を有していてもよく、特に限定されないが、エポキシ基及び/又はオキセタニル基を合計1~3つ有することが好ましく、エポキシ基及び/又はオキセタニル基を合計1又は2つ有することがより好ましく、エポキシ基又はオキセタニル基を1つ有することが更に好ましい。
<< (a2-1) Structural Unit Having Epoxy Group and / or Oxetanyl Group >>
Component B preferably contains a polymer having a structural unit (structural unit (a2-1)) having an epoxy group and / or an oxetanyl group. The 3-membered cyclic ether group is also called an epoxy group, and the 4-membered cyclic ether group is also called an oxetanyl group.
The structural unit (a2-1) having an epoxy group and / or oxetanyl group may have at least one epoxy group or oxetanyl group in one structural unit, one or more epoxy groups and one It may have an oxetanyl group, two or more epoxy groups, or two or more oxetanyl groups, and is not particularly limited, but preferably has a total of 1 to 3 epoxy groups and / or oxetanyl groups, It is more preferable to have one or two epoxy groups and / or oxetanyl groups in total, and it is even more preferable to have one epoxy group or oxetanyl group.
 エポキシ基を有する構成単位を形成するために用いられるラジカル重合性単量体の具体例としては、例えば、アクリル酸グリシジル、メタクリル酸グリシジル、α-エチルアクリル酸グリシジル、α-n-プロピルアクリル酸グリシジル、α-n-ブチルアクリル酸グリシジル、アクリル酸-3,4-エポキシブチル、メタクリル酸-3,4-エポキシブチル、アクリル酸-3,4-エポキシシクロヘキシルメチル、メタクリル酸-3,4-エポキシシクロヘキシルメチル、α-エチルアクリル酸-3,4-エポキシシクロヘキシルメチル、o-ビニルベンジルグリシジルエーテル、m-ビニルベンジルグリシジルエーテル、p-ビニルベンジルグリシジルエーテル、特許第4168443号公報の段落0031~0035に記載の脂環式エポキシ骨格を含有する化合物などが挙げられる。
 オキセタニル基を有する構成単位を形成するために用いられるラジカル重合性単量体の具体例としては、例えば、特開2001-330953号公報の段落0011~0016に記載のオキセタニル基を有する(メタ)アクリル酸エステルなどが挙げられる。
 上記エポキシ基及び/又はオキセタニル基を有する構成単位(a2-1)を形成するために用いられるラジカル重合性単量体の具体例としては、メタクリル酸エステル構造を含有するモノマー、アクリル酸エステル構造を含有するモノマーであることが好ましい。
Specific examples of the radical polymerizable monomer used for forming the structural unit having an epoxy group include, for example, glycidyl acrylate, glycidyl methacrylate, glycidyl α-ethyl acrylate, and glycidyl α-n-propyl acrylate. Glycidyl α-n-butyl acrylate, 3,4-epoxybutyl acrylate, 3,4-epoxybutyl methacrylate, 3,4-epoxycyclohexylmethyl acrylate, 3,4-epoxycyclohexyl methacrylate Methyl, α-ethylacrylic acid-3,4-epoxycyclohexylmethyl, o-vinylbenzyl glycidyl ether, m-vinylbenzyl glycidyl ether, p-vinylbenzyl glycidyl ether, described in paragraphs 0031 to 0035 of Japanese Patent No. 4168443 Alicyclic epoch Compounds containing shea skeleton, and the like.
Specific examples of the radical polymerizable monomer used for forming the structural unit having an oxetanyl group include, for example, a (meth) acryl having an oxetanyl group described in paragraphs 0011 to 0016 of JP-A No. 2001-330953. Examples include acid esters.
Specific examples of the radical polymerizable monomer used for forming the structural unit (a2-1) having the epoxy group and / or oxetanyl group include a monomer having a methacrylic ester structure and an acrylic ester structure. It is preferable that it is a monomer to contain.
 これらの中でも好ましいものは、メタクリル酸グリシジル、アクリル酸3,4-エポキシシクロヘキシルメチル、メタクリル酸3,4-エポキシシクロヘキシルメチル、アクリル酸(3-エチルオキセタン-3-イル)メチル、及び、メタクリル酸(3-エチルオキセタン-3-イル)メチルである。これらの構成単位は、1種単独又は2種類以上を組み合わせて使用することができる。 Among these, glycidyl methacrylate, 3,4-epoxycyclohexylmethyl acrylate, 3,4-epoxycyclohexylmethyl methacrylate, (3-ethyloxetane-3-yl) methyl acrylate, and methacrylic acid ( 3-ethyloxetane-3-yl) methyl. These structural units can be used individually by 1 type or in combination of 2 or more types.
 エポキシ基及び/又はオキセタニル基を有する構成単位(a2-1)の好ましい具体例としては、下記の構成単位が例示できる。なお、Rは、水素原子又はメチル基を表す。 As preferred specific examples of the structural unit (a2-1) having an epoxy group and / or oxetanyl group, the following structural units can be exemplified. R represents a hydrogen atom or a methyl group.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
<<(a2-3)-NH-CH2-O-R(Rは水素原子又は炭素数1~20のアルキル基を表す。)で表される基を有する構成単位>>
 本発明で用いる共重合体は、-NH-CH2-O-R(Rは水素原子又は炭素数1~20のアルキル基を表す。)で表される基を有する構成単位(a2-3)を有することも好ましい。構成単位(a2-3)を有することで、緩やかな加熱処理で硬化反応を起こすことができ、諸特性に優れた硬化膜を得ることができる。ここで、Rは炭素数1~20のアルキル基が好ましく、炭素数1~9のアルキル基がより好ましく、炭素数1~4のアルキル基が更に好ましい。また、アルキル基は、直鎖、分岐又は環状のアルキル基のいずれであってもよいが、直鎖又は分岐のアルキル基であることが好ましい。構成単位(a2)は、下記式(a2-30)で表される基を有する構成単位であることがより好ましい。
<< (a2-3) -NH-CH 2 —O—R (R represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms)}
The copolymer used in the present invention is a structural unit (a2-3) having a group represented by —NH—CH 2 —O—R (R represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms). It is also preferable to have By having the structural unit (a2-3), a curing reaction can be caused by a mild heat treatment, and a cured film having excellent characteristics can be obtained. Here, R is preferably an alkyl group having 1 to 20 carbon atoms, more preferably an alkyl group having 1 to 9 carbon atoms, and still more preferably an alkyl group having 1 to 4 carbon atoms. The alkyl group may be a linear, branched or cyclic alkyl group, but is preferably a linear or branched alkyl group. The structural unit (a2) is more preferably a structural unit having a group represented by the following formula (a2-30).
Figure JPOXMLDOC01-appb-C000011
(式(a2-30)中、R31は水素原子又はメチル基を表し、R32は炭素数1~20のアルキル基を表す。)
Figure JPOXMLDOC01-appb-C000011
(In the formula (a2-30), R 31 represents a hydrogen atom or a methyl group, and R 32 represents an alkyl group having 1 to 20 carbon atoms.)
 R32は、炭素数1~9のアルキル基が好ましく、炭素数1~4のアルキル基が更に好ましい。また、アルキル基は、直鎖、分岐又は環状のアルキル基のいずれであってもよいが、好ましくは、直鎖又は分岐のアルキル基である。
 R32の具体例としては、メチル基、エチル基、n-ブチル基、i-ブチル基、シクロヘキシル基、及び、n-ヘキシル基を挙げることができる。中でも、i-ブチル基、n-ブチル基、メチル基が好ましい。
R 32 is preferably an alkyl group having 1 to 9 carbon atoms, and more preferably an alkyl group having 1 to 4 carbon atoms. The alkyl group may be a linear, branched or cyclic alkyl group, but is preferably a linear or branched alkyl group.
Specific examples of R 32 include methyl group, ethyl group, n-butyl group, i-butyl group, cyclohexyl group, and n-hexyl group. Of these, i-butyl group, n-butyl group and methyl group are preferable.
-構成単位(a2)の好ましい態様-
 上記構成単位(a2)を有する重合体が、実質的に、構成単位(a1)を有しない場合、構成単位(a2)の含有量は、構成単位(a2)を有する重合体中、5~90モル%が好ましく、20~80モル%がより好ましい。
 上記構成単位(a2)を有する重合体が、上記構成単位(a1)を有する場合、単構成単位(a2)は、構成単位(a1)と構成単位(a2)を有する重合体中、薬品耐性の観点から3~70モル%が好ましく、10~60モル%がより好ましい。
 本発明では、更に、いずれの態様にかかわらず、成分Bの全構成単位中、構成単位(a2)を3~70モル%含有することが好ましく、10~60モル%含有することがより好ましい。
 上記の数値の範囲内であると、感光性樹脂組成物から得られる硬化膜の透明性及び薬品耐性が良好となる。
-Preferred embodiment of the structural unit (a2)-
When the polymer having the structural unit (a2) does not substantially have the structural unit (a1), the content of the structural unit (a2) is 5 to 90 in the polymer having the structural unit (a2). The mol% is preferable, and 20 to 80 mol% is more preferable.
When the polymer having the structural unit (a2) has the structural unit (a1), the single structural unit (a2) has chemical resistance in the polymer having the structural unit (a1) and the structural unit (a2). From the viewpoint, it is preferably 3 to 70 mol%, more preferably 10 to 60 mol%.
In the present invention, the structural unit (a2) is preferably contained in an amount of 3 to 70 mol%, more preferably 10 to 60 mol%, in all the structural units of Component B, regardless of any embodiment.
Within the above numerical range, the cured film obtained from the photosensitive resin composition has good transparency and chemical resistance.
<(a3)その他の構成単位>
 本発明において、成分Bは、上記構成単位(a1)及び/又は(a2)に加えて、これら以外の他の構成単位(a3)を有していてもよい。これらの構成単位は、上記(1)及び/又は(2)を満たす重合体成分が含んでいてもよい。また、上記(1)又は(2)を満たす重合体成分とは別に、実質的に構成単位(a1)及び構成単位(a2)を含まずに他の構成単位(a3)を有する重合体成分を有していてもよい。上記(1)又は(2)を満たす重合体成分とは別に、実質的に構成単位(a1)及び構成単位(a2)を有さずに他の構成単位(a3)を有する重合体成分を含む場合、重合体成分の配合量は、全重合体成分中、60質量%以下であることが好ましく、40質量%以下であることがより好ましく、20質量%以下であることが更に好ましい。
 このような重合体成分としては、後述する成分D、成分F、成分Iに該当する化合物は含まないものとする。
<(A3) Other structural units>
In the present invention, component B may have other structural units (a3) in addition to the structural units (a1) and / or (a2). These structural units may contain a polymer component that satisfies the above (1) and / or (2). In addition to the polymer component satisfying the above (1) or (2), a polymer component having another structural unit (a3) substantially not including the structural unit (a1) and the structural unit (a2). You may have. In addition to the polymer component satisfying the above (1) or (2), a polymer component having substantially no structural unit (a1) and other structural unit (a3) without the structural unit (a2) is included. In this case, the blending amount of the polymer component is preferably 60% by mass or less, more preferably 40% by mass or less, and still more preferably 20% by mass or less in all polymer components.
Such a polymer component does not include compounds corresponding to Component D, Component F, and Component I described later.
 その他の構成単位(a3)となるモノマーとしては、特に制限はなく、例えば、スチレン類、(メタ)アクリル酸アルキルエステル、(メタ)アクリル酸環状アルキルエステル、(メタ)アクリル酸アリールエステル、不飽和ジカルボン酸ジエステル、ビシクロ不飽和化合物類、マレイミド化合物類、不飽和芳香族化合物、共役ジエン系化合物、不飽和モノカルボン酸、不飽和ジカルボン酸、不飽和ジカルボン酸無水物、その他の不飽和化合物を挙げることができる。また、後述する通り、酸基を有する構成単位を有していてもよい。その他の構成単位(a3)となるモノマーは、1種単独又は2種類以上を組み合わせて使用することができる。 There is no restriction | limiting in particular as a monomer used as another structural unit (a3), For example, styrenes, (meth) acrylic acid alkyl ester, (meth) acrylic acid cyclic alkyl ester, (meth) acrylic acid aryl ester, unsaturated Dicarboxylic acid diesters, bicyclounsaturated compounds, maleimide compounds, unsaturated aromatic compounds, conjugated diene compounds, unsaturated monocarboxylic acids, unsaturated dicarboxylic acids, unsaturated dicarboxylic acid anhydrides, and other unsaturated compounds be able to. Moreover, you may have the structural unit which has an acid group so that it may mention later. The monomer which becomes another structural unit (a3) can be used individually by 1 type or in combination of 2 or more types.
 以下に、本発明における重合体成分の好ましい実施形態を挙げるが、本発明はこれらに限定されるものではない。
-第1の実施形態-
 (1)を満たす重合体成分が、更に、1種又は2種以上のその他の構成単位(a3)を有する態様。
-第2の実施形態-
 (2)を満たす重合体成分の(a1)酸基が酸分解性基で保護された基を有する構成単位を含む重合体が、更に、1種又は2種以上のその他の構成単位(a3)を有する態様。
-第3の実施形態-
 (2)を満たす重合体成分の(a2)架橋性基を有する構成単位を有する重合体が、更に、1種又は2種以上のその他の構成単位(a3)を有する態様。
Hereinafter, preferred embodiments of the polymer component in the present invention will be described, but the present invention is not limited thereto.
-First embodiment-
The aspect in which the polymer component satisfying (1) further includes one or more other structural units (a3).
-Second Embodiment-
(A1) The polymer component satisfying (2) is a polymer containing a structural unit having a group in which an acid group is protected by an acid-decomposable group, and one or more other structural units (a3) The aspect which has.
-Third embodiment-
The aspect which the polymer which has the structural unit which has (a2) crosslinkable group of the polymer component which satisfy | fills (2) further has 1 type, or 2 or more types of other structural units (a3).
-第4の実施形態-
 上記第1~第3の実施形態のいずれかにおいて、その他の構成単位(a3)として、少なくとも酸基を含む構成単位をいずれかの重合体に有する態様。
-第5の実施形態-
 (1)又は(2)を満たす重合体成分とは別に、更に、実質的に構成単位(a1)及び構成単位(a2)を有さずに他の構成単位(a3)を有する重合体を有する態様。
-第6の実施形態-
 上記第1~第5の実施形態の2以上の組み合わせからなる態様。
-Fourth Embodiment-
In any one of the first to third embodiments, any polymer includes a structural unit containing at least an acid group as the other structural unit (a3).
-Fifth embodiment-
In addition to the polymer component satisfying (1) or (2), the polymer further has a polymer having another structural unit (a3) without substantially including the structural unit (a1) and the structural unit (a2). Aspect.
-Sixth embodiment-
A mode comprising a combination of two or more of the first to fifth embodiments.
 構成単位(a3)は、具体的には、スチレン、tert-ブトキシスチレン、メチルスチレン、ヒドロキシスチレン、α-メチルスチレン、アセトキシスチレン、メトキシスチレン、エトキシスチレン、クロロスチレン、ビニル安息香酸メチル、ビニル安息香酸エチル、4-ヒドロキシ安息香酸(3-メタクリロイルオキシプロピル)エステル、(メタ)アクリル酸、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸イソボルニル、アクリロニトリル、エチレングリコールモノアセトアセテートモノ(メタ)アクリレートなどによる構成単位を挙げることができる。この他、特開2004-264623号公報の段落0021~0024に記載の化合物を挙げることができる。 The structural unit (a3) specifically includes styrene, tert-butoxystyrene, methylstyrene, hydroxystyrene, α-methylstyrene, acetoxystyrene, methoxystyrene, ethoxystyrene, chlorostyrene, methyl vinylbenzoate, vinylbenzoic acid. Ethyl, 4-hydroxybenzoic acid (3-methacryloyloxypropyl) ester, (meth) acrylic acid, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, (meth) acrylic acid Isopropyl, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, benzyl (meth) acrylate, isobornyl (meth) acrylate, acrylonitrile, ethylene glycol monoacetoacetate mono (meth) acrylate Mention may be made of a structural unit due to theft. In addition, compounds described in paragraphs 0021 to 0024 of JP-A No. 2004-264623 can be exemplified.
 また、その他の構成単位(a3)としては、スチレン類、又は、脂肪族環式骨格を有するモノマー由来の構成単位が、電気特性の観点で好ましい。具体的にはスチレン、tert-ブトキシスチレン、メチルスチレン、ヒドロキシスチレン、α-メチルスチレン、ジシクロペンタニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ベンジル(メタ)アクリレート等が挙げられる。 As the other structural unit (a3), a structural unit derived from a monomer having a styrene or an aliphatic cyclic skeleton is preferable from the viewpoint of electrical characteristics. Specifically, styrene, tert-butoxystyrene, methylstyrene, hydroxystyrene, α-methylstyrene, dicyclopentanyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, benzyl (meth) acrylate, etc. Can be mentioned.
 更にまた、その他の構成単位(a3)としては、(メタ)アクリル酸アルキルエステル由来の構成単位が、密着性の観点で好ましい。具体的には(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸n-ブチル等が挙げられ、(メタ)アクリル酸メチルがより好ましい。重合体を構成する構成単位中、上記の構成単位(a3)の含有率は、60モル%以下が好ましく、50モル%以下がより好ましく、40モル%以下が更に好ましい。下限値としては、0モル%でもよいが、例えば、1モル%以上とすることが好ましく、5モル%以上とすることがより好ましい。上記の数値の範囲内であると、感光性樹脂組成物から得られる硬化膜の諸特性が良好となる。 Furthermore, as the other structural unit (a3), a structural unit derived from (meth) acrylic acid alkyl ester is preferable from the viewpoint of adhesion. Specific examples include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, and n-butyl (meth) acrylate, and methyl (meth) acrylate is more preferable. In the structural unit constituting the polymer, the content of the structural unit (a3) is preferably 60 mol% or less, more preferably 50 mol% or less, and still more preferably 40 mol% or less. As a lower limit, although 0 mol% may be sufficient, it is preferable to set it as 1 mol% or more, for example, and it is more preferable to set it as 5 mol% or more. When it is within the above numerical range, various properties of the cured film obtained from the photosensitive resin composition are improved.
 成分Bに含まれる重合体は、その他の構成単位(a3)として、酸基を有する構成単位を有することが好ましい。重合体が酸基を有することにより、アルカリ性の現像液に溶けやすくなり、本発明の効果がより効果的に発揮される。本発明における酸基とは、pKaが10.5より小さいプロトン解離性基を意味する。酸基は、通常、酸基を形成しうるモノマーを用いて、酸基を有する構成単位として、重合体に組み込まれる。このような酸基を有する構成単位を重合体中に含めることにより、アルカリ性の現像液に対して溶けやすくなる傾向にある。
 本発明で用いられる酸基としては、カルボン酸基、ホスホン酸基、スルホン酸基、フェノール性水酸基、スルホンアミド基、スルホニルイミド基、並びに、これらの酸基の酸無水物基、及び、これらの酸基を中和し塩構造とした基等が例示され、カルボン酸基及び/又はフェノール性水酸基が好ましい。上記塩としては、特に制限はないが、アルカリ金属塩、アルカリ土類金属塩、及び、有機アンモニウム塩が好ましく例示できる。
 本発明で用いられる酸基を有する構成単位は、スチレン化合物に由来する構成単位や、ビニル化合物に由来する構成単位、(メタ)アクリル酸及び/又はそのエステルに由来する構成単位であることがより好ましい。
 本発明では、特に、カルボキシル基を有する構成単位、又は、フェノール性水酸基を有する構成単位を含有することが、感度の観点で好ましい。
The polymer contained in Component B preferably has a structural unit having an acid group as the other structural unit (a3). When the polymer has an acid group, the polymer easily dissolves in an alkaline developer, and the effects of the present invention are more effectively exhibited. The acid group in the present invention means a proton dissociable group having a pKa of less than 10.5. The acid group is usually incorporated into the polymer as a structural unit having an acid group using a monomer capable of forming an acid group. By including such a structural unit having an acid group in the polymer, the polymer tends to be easily dissolved in an alkaline developer.
Examples of the acid group used in the present invention include a carboxylic acid group, a phosphonic acid group, a sulfonic acid group, a phenolic hydroxyl group, a sulfonamide group, a sulfonylimide group, and acid anhydride groups of these acid groups, and these Examples include a group obtained by neutralizing an acid group to form a salt structure, and a carboxylic acid group and / or a phenolic hydroxyl group is preferable. Although there is no restriction | limiting in particular as said salt, An alkali metal salt, alkaline-earth metal salt, and organic ammonium salt can illustrate preferably.
The structural unit having an acid group used in the present invention is more preferably a structural unit derived from a styrene compound, a structural unit derived from a vinyl compound, (meth) acrylic acid and / or an ester thereof. preferable.
In the present invention, it is particularly preferable from the viewpoint of sensitivity to contain a structural unit having a carboxyl group or a structural unit having a phenolic hydroxyl group.
 酸基を含む構成単位は、全重合体成分の構成単位の1~80モル%が好ましく、1~50モル%がより好ましく、5~40モル%が更に好ましく、5~30モル%が特に好ましく、5~20モル%が最も好ましい。 The structural unit containing an acid group is preferably from 1 to 80 mol%, more preferably from 1 to 50 mol%, still more preferably from 5 to 40 mol%, particularly preferably from 5 to 30 mol%, based on the structural units of all polymer components. Most preferred is 5 to 20 mol%.
 本発明では、上記重合体成分(1)又は(2)とは別に、実質的に構成単位(a1)及び構成単位(a2)を含まずに他の構成単位(a3)を有する重合体を含んでいてもよい。
 このような重合体としては、側鎖にカルボキシル基を有する樹脂が好ましい。例えば、特開昭59-44615号、特公昭54-34327号、特公昭58-12577号、特公昭54-25957号、特開昭59-53836号、特開昭59-71048号の各公報に記載されているような、メタクリル酸共重合体、アクリル酸共重合体、イタコン酸共重合体、クロトン酸共重合体、マレイン酸共重合体、部分エステル化マレイン酸共重合体等、並びに側鎖にカルボキシル基を有する酸性セルロース誘導体、水酸基を有するポリマーに酸無水物を付加させたもの等が挙げられ、更に側鎖に(メタ)アクリロイル基を有する高分子重合体も好ましいものとして挙げられる。
In the present invention, apart from the polymer component (1) or (2), a polymer having another structural unit (a3) substantially not including the structural unit (a1) and the structural unit (a2) is included. You may go out.
As such a polymer, a resin having a carboxyl group in the side chain is preferable. For example, JP-A-59-44615, JP-B-54-34327, JP-B-58-12777, JP-B-54-25957, JP-A-59-53836, JP-A-59-71048 As described, methacrylic acid copolymer, acrylic acid copolymer, itaconic acid copolymer, crotonic acid copolymer, maleic acid copolymer, partially esterified maleic acid copolymer, etc., and side chain Examples thereof include acidic cellulose derivatives having a carboxyl group, those obtained by adding an acid anhydride to a polymer having a hydroxyl group, and high molecular polymers having a (meth) acryloyl group in the side chain.
 例えば、ベンジル(メタ)アクリレート/(メタ)アクリル酸共重合体、2-ヒドロキシエチル(メタ)アクリレート/ベンジル(メタ)アクリレート/(メタ)アクリル酸共重合体、特開平7-140654号公報に記載の、2-ヒドロキシプロピル(メタ)アクリレート/ポリスチレンマクロモノマー/ベンジルメタクリレート/メタクリル酸共重合体、2-ヒドロキシ-3-フェノキシプロピルアクリレート/ポリメチルメタクリレートマクロモノマー/ベンジルメタクリレート/メタクリル酸共重合体、2-ヒドロキシエチルメタクリレート/ポリスチレンマクロモノマー/メチルメタクリレート/メタクリル酸共重合体、2-ヒドロキシエチルメタクリレート/ポリスチレンマクロモノマー/ベンジルメタクリレート/メタクリル酸共重合体などが挙げられる。
 その他にも、特開平7-207211号公報、特開平8-259876号公報、特開平10-300922号公報、特開平11-140144号公報、特開平11-174224号公報、特開2000-56118号公報、特開2003-233179号公報、特開2009-52020号公報等に記載の公知の高分子化合物を使用することができる。
 これらの重合体は、1種類のみ含んでいてもよいし、2種類以上含んでいてもよい。
For example, benzyl (meth) acrylate / (meth) acrylic acid copolymer, 2-hydroxyethyl (meth) acrylate / benzyl (meth) acrylate / (meth) acrylic acid copolymer, described in JP-A-7-140654 2-hydroxypropyl (meth) acrylate / polystyrene macromonomer / benzyl methacrylate / methacrylic acid copolymer, 2-hydroxy-3-phenoxypropyl acrylate / polymethyl methacrylate macromonomer / benzyl methacrylate / methacrylic acid copolymer, 2 -Hydroxyethyl methacrylate / polystyrene macromonomer / methyl methacrylate / methacrylic acid copolymer, 2-hydroxyethyl methacrylate / polystyrene macromonomer / benzyl methacrylate / methacrylic acid Copolymer and the like.
In addition, JP-A-7-207211, JP-A-8-259876, JP-A-10-300922, JP-A-11-140144, JP-A-11-174224, JP-A-2000-56118 Known polymer compounds described in JP-A-2003-233179, JP-A-2009-52020, and the like can be used.
These polymers may contain only 1 type and may contain 2 or more types.
 これらの重合体として、市販されている、SMA 1000P、SMA 2000P、SMA 3000P、SMA 1440F、SMA 17352P、SMA 2625P、SMA 3840F(以上、サートマー社製)、ARUFON UC-3000、ARUFON UC-3510、ARUFON UC-3900、ARUFON UC-3910、ARUFON UC-3920、ARUFON UC-3080(以上、東亞合成(株)製)、JONCRYL 690、JONCRYL 678、JONCRYL 67、JONCRYL 586(以上、BASF社製)等を用いることもできる。 As these polymers, commercially available SMA 1000P, SMA 2000P, SMA 3000P, SMA 1440F, SMA 17352P, SMA 2625P, SMA 3840F (above, manufactured by Sartomer), ARUFON UC-3000, ARUFON UC-3510, ARUFON UC-3900, ARUFON UC-3910, ARUFON UC-3920, ARUFON UC-3080 (above, manufactured by Toagosei Co., Ltd.), JONCRYL 690, JONCRYL 678, JONCRYL 67, JONCRYL 586 (above, manufactured by BASF), etc. are used. You can also.
-成分Bにおける重合体の分子量-
 成分Bにおける重合体の分子量は、ポリスチレン換算重量平均分子量で、1,000~200,000であることが好ましく、2,000~50,000であることがより好ましい。上記の数値の範囲内であると、諸特性が良好である。数平均分子量Mnと重量平均分子量Mwとの比(分散度、Mw/Mn)は1.0~5.0が好ましく、1.5~3.5がより好ましい。
 なお、本発明における重量平均分子量や数平均分子量の測定は、ゲル浸透クロマトグラフィ法(GPC)により測定した。本発明におけるゲル浸透クロマトグラフィ法による測定は、HLC-8020GPC(東ソー(株)製)を用い、カラムとしてTSKgel Super HZ M-H、TSK gel Super HZ4000、TSKgel SuperHZ200(東ソー(株)製、4.6mmID×15cm)を、溶離液としてTHF(テトラヒドロフラン)を用いた。
-Molecular weight of polymer in component B-
The molecular weight of the polymer in Component B is preferably from 1,000 to 200,000, more preferably from 2,000 to 50,000 in terms of polystyrene-equivalent weight average molecular weight. Various characteristics are favorable in the range of said numerical value. The ratio (dispersity, Mw / Mn) between the number average molecular weight Mn and the weight average molecular weight Mw is preferably 1.0 to 5.0, more preferably 1.5 to 3.5.
In addition, the measurement of the weight average molecular weight in this invention and a number average molecular weight was measured by the gel permeation chromatography method (GPC). In the measurement by gel permeation chromatography in the present invention, HLC-8020GPC (manufactured by Tosoh Corporation) is used, and TSKgel Super HZ MH, TSK gel Super HZ4000, TSKgel SuperHZ200 (manufactured by Tosoh Corporation, 4.6 mm ID × 15 cm) are used as columns. ) Was used as the eluent in THF (tetrahydrofuran).
-成分Bにおける重合体の製造方法-
 また、成分Bにおける重合体の合成法についても、様々な方法が知られているが、一例を挙げると、少なくとも上記構成単位(a1)及び上記構成単位(a3)を形成するために用いられるラジカル重合性単量体を含むラジカル重合性単量体混合物を有機溶剤中、ラジカル重合開始剤を用いて重合することにより合成することができる。また、いわゆる高分子反応で合成することもできる。
-Production Method of Polymer in Component B-
Various methods for synthesizing the polymer in Component B are also known. To give an example, radicals used to form at least the structural unit (a1) and the structural unit (a3). It can be synthesized by polymerizing a radical polymerizable monomer mixture containing a polymerizable monomer in an organic solvent using a radical polymerization initiator. It can also be synthesized by a so-called polymer reaction.
 感光性樹脂組成物中における成分Bの含有量は、感光性樹脂組成物の全固形分に対して、20~99.9質量%であることが好ましく、50~98質量%であることがより好ましく、70~95質量%であることが更に好ましい。含有量がこの範囲であると、現像した際のパターン形成性が良好となり、また、より高屈折率の硬化物が得られる。 The content of Component B in the photosensitive resin composition is preferably 20 to 99.9% by mass and more preferably 50 to 98% by mass with respect to the total solid content of the photosensitive resin composition. It is preferably 70 to 95% by mass. When the content is within this range, the pattern formability during development is good, and a cured product having a higher refractive index can be obtained.
(成分C)光酸発生剤
 本発明に用いることができる感光性樹脂組成物は、(成分C)光酸発生剤を含有する。
 本発明で使用される光酸発生剤としては、波長300nm以上、好ましくは波長300~450nmの活性光線に感応し、酸を発生する化合物が好ましいが、その化学構造に制限されるものではない。また、波長300nm以上の活性光線に直接感応しない光酸発生剤についても、増感剤と併用することによって波長300nm以上の活性光線に感応し、酸を発生する化合物であれば、増感剤と組み合わせて好ましく用いることができる。
 本発明で使用される光酸発生剤としては、pKaが4以下の酸を発生する光酸発生剤が好ましく、pKaが3以下の酸を発生する光酸発生剤がより好ましく、pKaが2以下の酸を発生する光酸発生剤が最も好ましい。また、pKaの下限は特に限定されないが、入手容易性の観点から-15以上であることが好ましい。
(Component C) Photoacid Generator The photosensitive resin composition that can be used in the present invention contains (Component C) a photoacid generator.
The photoacid generator used in the present invention is preferably a compound that reacts with actinic rays having a wavelength of 300 nm or more, preferably 300 to 450 nm, and generates an acid, but is not limited to its chemical structure. Further, a photoacid generator that is not directly sensitive to an actinic ray having a wavelength of 300 nm or more can also be used as a sensitizer if it is a compound that reacts with an actinic ray having a wavelength of 300 nm or more and generates an acid when used in combination with a sensitizer. It can be preferably used in combination.
The photoacid generator used in the present invention is preferably a photoacid generator that generates an acid having a pKa of 4 or less, more preferably a photoacid generator that generates an acid having a pKa of 3 or less, and a pKa of 2 or less. Most preferred is a photoacid generator that generates an acid. The lower limit of pKa is not particularly limited, but is preferably −15 or more from the viewpoint of availability.
 光酸発生剤の例として、トリクロロメチル-s-トリアジン類、スルホニウム塩やヨードニウム塩、第四級アンモニウム塩類、ジアゾメタン化合物、イミドスルホネート化合物、及び、オキシムスルホネート化合物などを挙げることができる。これらの中でも、絶縁性、感度の観点から、オキシムスルホネート化合物を用いることが好ましい。これら光酸発生剤は、1種単独又は2種類以上を組み合わせて使用することができる。トリクロロメチル-s-トリアジン類、ジアリールヨードニウム塩類、トリアリールスルホニウム塩類、第四級アンモニウム塩類、及び、ジアゾメタン誘導体の具体例としては、特開2011-221494号公報の段落0083~0088に記載の化合物が例示できる。 Examples of the photoacid generator include trichloromethyl-s-triazines, sulfonium salts and iodonium salts, quaternary ammonium salts, diazomethane compounds, imide sulfonate compounds, and oxime sulfonate compounds. Among these, it is preferable to use an oxime sulfonate compound from the viewpoint of insulation and sensitivity. These photoacid generators can be used singly or in combination of two or more. Specific examples of trichloromethyl-s-triazines, diaryliodonium salts, triarylsulfonium salts, quaternary ammonium salts, and diazomethane derivatives include the compounds described in paragraphs 0083 to 0088 of JP2011-212494A. It can be illustrated.
 オキシムスルホネート化合物、すなわち、オキシムスルホネート構造を有する化合物としては、下記式(C1)で表されるオキシムスルホネート構造を含有する化合物が好ましく例示できる。 Preferred examples of the oxime sulfonate compound, that is, a compound having an oxime sulfonate structure include compounds having an oxime sulfonate structure represented by the following formula (C1).
Figure JPOXMLDOC01-appb-C000012
(式(C1)中、R21は、アルキル基又はアリール基を表し、波線部分は他の基との結合箇所を表す。)
Figure JPOXMLDOC01-appb-C000012
(In the formula (C1), R 21 represents an alkyl group or an aryl group, and a wavy line represents a bonding site with another group.)
 いずれの基も置換されてもよく、R21におけるアルキル基は直鎖状でも分岐状でも環状でもよい。許容される置換基は以下に説明する。
 R21のアルキル基としては、炭素数1~10の、直鎖状又は分岐状アルキル基が好ましい。R21のアルキル基は、炭素数6~11のアリール基、炭素数1~10のアルコキシ基、又は、シクロアルキル基(7,7-ジメチル-2-オキソノルボルニル基などの有橋式脂環基を含む、好ましくはビシクロアルキル基等)で置換されてもよい。
 R21のアリール基としては、炭素数6~11のアリール基が好ましく、フェニル基又はナフチル基がより好ましい。R21のアリール基は、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基又はハロゲン原子で置換されてもよい。
 オキシムスルホネート構造を有する化合物としては、特開2011-221494号公報の段落0092~0171に記載の化合物が好ましく例示されるが、本発明は、これらに限定されるものではない。
Any group may be substituted, and the alkyl group in R 21 may be linear, branched or cyclic. Acceptable substituents are described below.
The alkyl group for R 21 is preferably a linear or branched alkyl group having 1 to 10 carbon atoms. The alkyl group represented by R 21 is an aryl group having 6 to 11 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, or a cycloalkyl group (7,7-dimethyl-2-oxonorbornyl group or the like). It may be substituted with a cyclic group, preferably a bicycloalkyl group or the like.
As the aryl group for R 21, an aryl group having 6 to 11 carbon atoms is preferable, and a phenyl group or a naphthyl group is more preferable. The aryl group of R 21 may be substituted with an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, or a halogen atom.
Preferred examples of the compound having an oxime sulfonate structure include the compounds described in paragraphs 0092 to 0171 of JP2011-221494A, but the present invention is not limited thereto.
 上記感光性樹脂組成物における(成分C)光酸発生剤の含有量は、感光性樹脂組成物中の成分B100質量部に対して、0.1~10質量部であることが好ましく、0.5~10質量部であることがより好ましい。
 また、成分Cは、1種単独で使用してもよいし、2種以上を併用することもできる。
The content of the (Component C) photoacid generator in the photosensitive resin composition is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of Component B in the photosensitive resin composition. More preferably, it is 5 to 10 parts by mass.
In addition, Component C may be used alone or in combination of two or more.
(成分D)熱架橋剤
 本発明に用いることができる感光性樹脂組成物は、必要に応じ、熱架橋剤を含有することが好ましい。熱架橋剤を添加することにより、本発明の硬化膜の製造方法により得られる硬化膜をより強固な膜とすることができる。
 熱架橋剤としては、熱によって架橋反応が起こるものであれば制限はない(ただし、成分Bを除く。)。例えば、特開2011-221494号公報の段落0188~0191に記載の分子内に2個以上のエポキシ基若しくはオキセタニル基を有する化合物、特開2011-221494号公報の段落0192~0194に記載のアルコキシメチル基含有架橋剤、特開2011-221494号公報の段落0195~0199に記載の少なくとも1個のエチレン性不飽和二重結合を有する化合物、又は、特開2012-208200号公報の段落0147~0149に記載のブロックイソシアネート化合物等を添加することができるが、本発明はこれらに限定されるものではない。
(Component D) Thermal crosslinking agent It is preferable that the photosensitive resin composition which can be used for this invention contains a thermal crosslinking agent as needed. By adding a thermal crosslinking agent, the cured film obtained by the method for producing a cured film of the present invention can be made stronger.
The thermal crosslinking agent is not limited as long as it causes a crosslinking reaction by heat (excluding component B). For example, compounds having two or more epoxy groups or oxetanyl groups in the molecule described in paragraphs 0188 to 0191 of JP2011-221494A, alkoxymethyls described in paragraphs 0192 to 0194 of JP2011-221494A A group-containing crosslinking agent, a compound having at least one ethylenically unsaturated double bond described in paragraphs 0195 to 0199 of JP2011-221494A, or paragraphs 0147 to 0149 of JP2012-208200A Although the described blocked isocyanate compounds and the like can be added, the present invention is not limited to these.
 上記感光性樹脂組成物は、成分Dとして、分子内に2個以上のエポキシ基又はオキセタニル基を有する化合物を含有することが好ましく、分子内に2個以上のエポキシ基を有する化合物を含有することがより好ましく、エポキシ樹脂が更に好ましい。
 分子内に2個以上のエポキシ基を有する化合物の具体例としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、脂肪族エポキシ化合物等を挙げることができる。上記脂肪族エポキシ化合物は、直鎖及び/又は分岐の炭素鎖とエポキシ基とを有する樹脂であって、炭素鎖に、水素原子以外に、酸素原子、窒素原子、硫黄原子、塩素原子などが結合していてもよい。上記脂肪族エポキシ化合物は、直鎖及び/若しくは分岐の炭素鎖と、水素原子と、エポキシ基とからなる樹脂、又は、上記樹脂に水酸基が置換している樹脂が特に好ましい。
The photosensitive resin composition preferably contains, as component D, a compound having two or more epoxy groups or oxetanyl groups in the molecule, and contains a compound having two or more epoxy groups in the molecule. Is more preferable, and an epoxy resin is still more preferable.
Specific examples of compounds having two or more epoxy groups in the molecule include bisphenol A type epoxy resins, bisphenol F type epoxy resins, phenol novolac type epoxy resins, cresol novolac type epoxy resins, aliphatic epoxy compounds, and the like. Can do. The aliphatic epoxy compound is a resin having a linear and / or branched carbon chain and an epoxy group, and an oxygen atom, a nitrogen atom, a sulfur atom, a chlorine atom, and the like are bonded to the carbon chain in addition to a hydrogen atom. You may do it. The aliphatic epoxy compound is particularly preferably a resin comprising a linear and / or branched carbon chain, a hydrogen atom, and an epoxy group, or a resin in which a hydroxyl group is substituted on the resin.
 これらは市販品として入手できる。例えば、ビスフェノールA型エポキシ樹脂としては、JER827、JER828、JER834、JER1001、JER1002、JER1003、JER1055、JER1007、JER1009、JER1010(以上、ジャパンエポキシレジン(株)製)、EPICLON860、EPICLON1050、EPICLON1051、EPICLON1055(以上、DIC(株)製)等であり、ビスフェノールF型エポキシ樹脂としては、JER806、JER807、JER4004、JER4005、JER4007、JER4010(以上、ジャパンエポキシレジン(株)製)、EPICLON830、EPICLON835(以上、DIC(株)製)、LCE-21、RE-602S(以上、日本化薬(株)製)等であり、フェノールノボラック型エポキシ樹脂としては、JER152、JER154、JER157S70、JER157S65(以上、ジャパンエポキシレジン(株)製)、EPICLON N-740、EPICLON N-740、EPICLON N-770、EPICLON N-775(以上、DIC(株)製)等であり、クレゾールノボラック型エポキシ樹脂としては、EPICLON N-660、EPICLON N-665、EPICLON N-670、EPICLON N-673、EPICLON N-680、EPICLON N-690、EPICLON N-695(以上、DIC(株)製)、EOCN-1020(以上、日本化薬(株)製)等であり、脂肪族エポキシ樹脂としては、ADEKA RESIN EP-4080S、同EP-4085S、同EP-4088S(以上、(株)ADEKA製)、脂肪族エポキシ化合物としては、セロキサイド2021P、セロキサイド2081、セロキサイド2083、セロキサイド2085、EHPE3150、EPOLEAD PB 3600、同PB 4700(以上、ダイセル化学工業(株)製)等である。その他にも、ADEKA RESIN EP-4000S、同EP-4003S、同EP-4010S、同EP-4011S(以上、(株)ADEKA製)、NC-2000、NC-3000、NC-7300、XD-1000、EPPN-501、EPPN-502(以上、(株)ADEKA製)等が挙げられる。 These are available as commercial products. For example, as bisphenol A type epoxy resin, JER827, JER828, JER834, JER1001, JER1002, JER1003, JER1055, JER1007, JER1009, JER1010 (above, manufactured by Japan Epoxy Resin Co., Ltd.), EPICLON860, EPICLON1050, EPICLON1051, EPICLON1051, EPICLON1051 And bisphenol F type epoxy resins such as JER806, JER807, JER4004, JER4005, JER4007, JER4010 (above, Japan Epoxy Resin Co., Ltd.), EPICLON830, EPICLON835 (above, DIC Co., Ltd.), LCE-21, RE-602S (above, Nippon Kayaku Co., Ltd.) As phenol novolac type epoxy resins, JER152, JER154, JER157S70, JER157S65 (above, Japan Epoxy Resin Co., Ltd.), EPICLON N-740, EPICLON N-740, EPICLON N-770, EPICLON N-775 (above The cresol novolac type epoxy resin is EPICLON N-660, EPICLON N-665, EPICLON N-670, EPICLON N-673, EPICLON N-680, EPICLON N-690, EPICLON N-695 (above, manufactured by DIC Corporation), EOCN-1020 (above, made by Nippon Kayaku Co., Ltd.), etc., and ADEKA RES as the aliphatic epoxy resin N EP-4080S, EP-4085S, EP-4088S (manufactured by ADEKA Co., Ltd.) and aliphatic epoxy compounds include Celoxide 2021P, Celoxide 2081, Celoxide 2083, Celoxide 2085, EHPE3150, EPOLEAD PB 3600, PB 4700 (manufactured by Daicel Chemical Industries, Ltd.). In addition, ADEKA RESIN EP-4000S, EP-4003S, EP-4010S, EP-4010S, EP-4011S (above, manufactured by ADEKA Corporation), NC-2000, NC-3000, NC-7300, XD-1000, EPPN-501, EPPN-502 (above, manufactured by ADEKA Corporation) and the like.
 感光性樹脂組成物中における熱架橋剤の添加量は、感光性樹脂組成物の全固形分100質量部に対し、0.01~50質量部であることが好ましく、0.1~30質量部であることがより好ましく、0.5~20質量部であることが更に好ましい。この範囲で添加することにより、機械的強度及び耐溶剤性に優れた硬化膜が得られる。熱架橋剤は複数を併用することもでき、その場合は熱架橋剤を全て合算して含有量を計算する。 The addition amount of the thermal crosslinking agent in the photosensitive resin composition is preferably 0.01 to 50 parts by mass, preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the total solid content of the photosensitive resin composition. More preferred is 0.5 to 20 parts by mass. By adding in this range, a cured film excellent in mechanical strength and solvent resistance can be obtained. A plurality of thermal crosslinking agents can be used in combination, and in that case, the content is calculated by adding all the thermal crosslinking agents.
(成分E)酸化防止剤
 本発明に用いることができる感光性樹脂組成物は、(成分E)酸化防止剤を含有することが好ましい。
 酸化防止剤としては、公知の酸化防止剤を含有することができる。酸化防止剤を添加することにより、硬化膜の着色を防止できる、又は、分解による膜厚減少を低減でき、また、耐熱透明性に優れるという利点がある。
 このような酸化防止剤としては、例えば、リン系酸化防止剤、アミド類、ヒドラジド類、ヒンダードアミン系酸化防止剤、イオウ系酸化防止剤、フェノール系酸化防止剤、アスコルビン酸類、硫酸亜鉛、糖類、亜硝酸塩、亜硫酸塩、チオ硫酸塩、ヒドロキシルアミン誘導体などを挙げることができる。これらの中では、硬化膜の着色、膜厚減少の観点から特にフェノール系酸化防止剤、アミド系酸化防止剤、ヒドラジド系酸化防止剤、イオウ系酸化防止剤が好ましく、フェノール系酸化防止剤がより好ましい。これらは1種単独で用いてもよいし、2種以上を混合して用いてもよい。
 フェノール系酸化防止剤の市販品としては、例えば、アデカスタブAO-15、アデカスタブAO-18、アデカスタブAO-20、アデカスタブAO-23、アデカスタブAO-30、アデカスタブAO-37、アデカスタブAO-40、アデカスタブAO-50、アデカスタブAO-51、アデカスタブAO-60、アデカスタブAO-70、アデカスタブAO-80、アデカスタブAO-330、アデカスタブAO-412S、アデカスタブAO-503、アデカスタブA-611、アデカスタブA-612、アデカスタブA-613、アデカスタブPEP-4C、アデカスタブPEP-8、アデカスタブPEP-8W、アデカスタブPEP-24G、アデカスタブPEP-36、アデカスタブPEP-36Z、アデカスタブHP-10、アデカスタブ2112、アデカスタブ260、アデカスタブ522A、アデカスタブ1178、アデカスタブ1500、アデカスタブC、アデカスタブ135A、アデカスタブ3010、アデカスタブTPP、アデカスタブCDA-1、アデカスタブCDA-6、アデカスタブZS-27、アデカスタブZS-90、アデカスタブZS-91(以上、(株)ADEKA製)、イルガノックス245FF、イルガノックス1010FF、イルガノックスMD1024、イルガノックス1035FF、イルガノックス1098、イルガノックス1330、イルガノックス1520L、イルガノックス3114、イルガノックス1726、イルガフォス168、イルガモッド295(BASF(株)製)などが挙げられる。中でも、アデカスタブAO-60、アデカスタブAO-80、イルガノックス1726、イルガノックス1035FF、イルガノックス1098を好適に使用することができる。
(Component E) Antioxidant The photosensitive resin composition that can be used in the present invention preferably contains (Component E) an antioxidant.
As an antioxidant, a well-known antioxidant can be contained. By adding an antioxidant, there is an advantage that coloring of the cured film can be prevented, or a decrease in film thickness due to decomposition can be reduced, and heat resistant transparency is excellent.
Examples of such antioxidants include phosphorus antioxidants, amides, hydrazides, hindered amine antioxidants, sulfur antioxidants, phenol antioxidants, ascorbic acids, zinc sulfate, sugars, Examples thereof include nitrates, sulfites, thiosulfates, and hydroxylamine derivatives. Of these, phenolic antioxidants, amide antioxidants, hydrazide antioxidants and sulfur antioxidants are particularly preferable from the viewpoint of coloring the cured film and reducing the film thickness, and phenolic antioxidants are more preferred. preferable. These may be used alone or in combination of two or more.
Examples of commercially available phenolic antioxidants include ADK STAB AO-15, ADK STAB AO-18, ADK STAB AO-20, ADK STAB AO-23, ADK STAB AO-30, ADK STAB AO-37, ADK STAB AO-40 and ADK STAB AO. -50, ADK STAB AO-51, ADK STAB AO-60, ADK STAB AO-70, ADK STAB AO-80, ADK STAB AO-330, ADK STAB AO-412S, ADK STAB AO-503, ADK STAB A-611, ADK STAB A-612, ADK STAB A -613, ADK STAB PEP-4C, ADK STAB PEP-8, ADK STAB PEP-8W, ADK STAB PEP-24G, ADK STAB PEP-36, ADK STAB PEP-36Z, ADK STAB HP-1 ADK STAB 2112, ADK STAB 260, ADK STAB 1522, ADK STAB 1178, ADK STAB 1500, ADK STAB C, ADK STAB 13510, ADK STAB 3010, ADK STAB CDA-1, ADK STAB CDA-6, ADK STAB ZS-27, ADK STAB ZS-90 -91 (above, manufactured by ADEKA Corporation), Irganox 245FF, Irganox 1010FF, Irganox MD1024, Irganox 1035FF, Irganox 1098, Irganox 1330, Irganox 1520L, Irganox 3114, Irganox 1726, Irgafoss 168 Irgamod 295 (manufactured by BASF Corporation). Among them, ADK STAB AO-60, ADK STAB AO-80, Irganox 1726, Irganox 1035FF, and Irganox 1098 can be preferably used.
 酸化防止剤の含有量は、感光性樹脂組成物の全固形分に対して、0.1~6質量%であることが好ましく、0.2~5質量%であることがより好ましく、0.5~4質量%であることが特に好ましい。この範囲にすることで、形成された膜の十分な透明性が得られ、且つ、パターン形成時の感度も良好となる。 The content of the antioxidant is preferably 0.1 to 6% by mass, more preferably 0.2 to 5% by mass, based on the total solid content of the photosensitive resin composition. It is particularly preferably 5 to 4% by mass. By setting it within this range, sufficient transparency of the formed film can be obtained, and the sensitivity at the time of pattern formation becomes good.
(成分F)分散剤
 本発明の分散組成物は、(成分F)分散剤を含有することが好ましい。分散剤を含有することにより、成分Aの組成物中での分散性をより向上させることができる。
 分散剤としては、例えば、公知の顔料分散剤を適宜選択して用いることができる。
 分散剤としては、高分子分散剤を好ましく用いることができる。なお、高分子分散剤とは、分子量(重量平均分子量)が1,000以上の分散剤である。
(Component F) Dispersant The dispersion composition of the present invention preferably contains (Component F) a dispersant. By containing the dispersant, the dispersibility of the component A in the composition can be further improved.
As the dispersant, for example, a known pigment dispersant can be appropriately selected and used.
As the dispersant, a polymer dispersant can be preferably used. The polymer dispersant is a dispersant having a molecular weight (weight average molecular weight) of 1,000 or more.
 分散剤としては、多くの種類の化合物を使用可能であり、具体的には、例えば、オルガノシロキサンポリマーKP341(信越化学工業(株)製)、(メタ)アクリル酸系(共)重合体ポリフローNo.75、No.90、No.95(共栄社化学(株)製)、W001(裕商(株)製)等のカチオン系界面活性剤;ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリエチレングリコールジラウレート、ポリエチレングリコールジステアレート、ソルビタン脂肪酸エステル等のノニオン系界面活性剤;W004、W005、W017(裕商(株)製)等のアニオン系界面活性剤;EFKA-46、EFKA-47、EFKA-47EA、EFKAポリマー100、EFKAポリマー400、EFKAポリマー401、EFKAポリマー450(いずれもチバ・スペシャルティ・ケミカルズ社製)、ディスパースエイド6、ディスパースエイド8、ディスパースエイド15、ディスパースエイド9100(いずれもサンノプコ(株)製)等の高分子分散剤;ソルスパース3000、5000、9000、12000、13240、13940、17000、24000、26000、28000などの各種ソルスパース分散剤(アストラゼネカ(株)製);アデカプルロニックL31,F38,L42,L44,L61,L64,F68,L72,P95,F77,P84,F87、P94,L101,P103,F108、L121、P-123(ADEKA(株)製)及びイオネットS-20(三洋化成工業(株)製)、DISPERBYK 101,103,106,108,109,111,112,116,130,140,142,162,163,164,166,167,170,171,174,176,180,182,2000,2001,2050,2150(ビックケミー社製)が挙げられる。その他、アクリル系共重合体など、分子末端又は側鎖に極性基を有するオリゴマー又はポリマーが挙げられる。 As the dispersant, many types of compounds can be used. Specifically, for example, organosiloxane polymer KP341 (manufactured by Shin-Etsu Chemical Co., Ltd.), (meth) acrylic acid (co) polymer polyflow No. . 75, no. 90, no. Cationic surfactants such as 95 (manufactured by Kyoeisha Chemical Co., Ltd.), W001 (manufactured by Yusho Co., Ltd.); polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene octylphenyl Nonionic surfactants such as ether, polyoxyethylene nonylphenyl ether, polyethylene glycol dilaurate, polyethylene glycol distearate, and sorbitan fatty acid ester; anionic surfactants such as W004, W005, and W017 (manufactured by Yusho Co., Ltd.) EFKA-46, EFKA-47, EFKA-47EA, EFKA polymer 100, EFKA polymer 400, EFKA polymer 401, EFKA polymer 450 (all manufactured by Ciba Specialty Chemicals), DE Polymer dispersing agents such as Sparse Aid 6, Disperse Aid 8, Disperse Aid 15, Disperse Aid 9100 (all manufactured by San Nopco); Solsperse 3000, 5000, 9000, 12000, 13240, 13940, 17000, 24000 , 26000, 28000, etc. (AstraZeneca Co., Ltd.); Adeka Pluronic L31, F38, L42, L44, L61, L64, F68, L72, P95, F77, P84, F87, P94, L101, P103 , F108, L121, P-123 (manufactured by ADEKA) and Ionette S-20 (manufactured by Sanyo Chemical Industries), DISPERBYK 101, 103, 106, 108, 109, 111, 112, 116, 130, 140 , 14 , It includes the 162,163,164,166,167,170,171,174,176,180,182,2000,2001,2050,2150 (manufactured by BYK-Chemie GmbH). In addition, an oligomer or polymer having a polar group at the molecular end or side chain, such as an acrylic copolymer, may be mentioned.
 本発明において、分散剤は酸基を有する分散剤であることが好ましい。酸基を有すると、成分Aの分散性に優れるので好ましい。
 酸基を有する分散剤としては、BYK Chemie社製「DISPERBYK101(ポリアミドアミン燐酸塩)、107(カルボン酸エステル)、110、111、180(酸基を含む共重合物)、130(ポリアミド)、161、162、163、164、165、166、168、170(高分子共重合物)」、「BYK-2001(アクリル系ブロック共重合体)」、「BYK-P104、P105(高分子量不飽和ポリカルボン酸)、EFKA社製「EFKA4047、4050、4010、4165(ポリウレタン系)、EFKA4330、4340(ブロック共重合体)、4400、4402(変性ポリアクリレート)、5010(ポリエステルアミド)、5765(高分子量ポリカルボン酸塩)、6220(脂肪酸ポリエステル)、味の素ファィンテクノ(株)製「アジスパーPB821、PB822」、共栄社化学(株)製「フローレンTG-710(ウレタンオリゴマー)」、「ポリフローNo.50E、No.300(アクリル系共重合体)」、楠本化成(株)製「ディスパロンKS-860、873SN、874、#2150(脂肪族多価カルボン酸)、#7004(ポリエーテルエステル)、DA-703-50、DA-705、DA-725」、花王(株)製「デモールRN、N(ナフタレンスルホン酸ホルマリン重縮合物)、MS、C、SN-B(芳香族スルホン酸ホルマリン重縮合物)」、「ホモゲノールL-18(高分子ポリカルボン酸)」、「エマルゲン920、930、935、985(ポリオキシエチレンノニルフェニルエーテル)」、ルーブリゾール社製24000、28000、32000、32500、35200、38500(グラフト型高分子)」等が挙げられる。
In the present invention, the dispersant is preferably a dispersant having an acid group. Having an acid group is preferable because the dispersibility of Component A is excellent.
Examples of the dispersant having an acid group include “DISPERBYK101 (polyamideamine phosphate), 107 (carboxylic acid ester), 110, 111, 180 (copolymer containing an acid group), 130 (polyamide), manufactured by BYK Chemie. , 162, 163, 164, 165, 166, 168, 170 (polymer copolymer) ”,“ BYK-2001 (acrylic block copolymer) ”,“ BYK-P104, P105 (high molecular weight unsaturated polycarboxylic acid) Acid), "EFKA 4047, 4050, 4010, 4165 (polyurethane type), EFKA 4330, 4340 (block copolymer), 4400, 4402 (modified polyacrylate), 5010 (polyesteramide), 5765 (high molecular weight polycarboxylic acid) manufactured by EFKA Acid salt), 6220 (fatty acid polyester) Teru), “Ajisper PB821, PB822” manufactured by Ajinomoto Fintechno Co., Ltd., “Floren TG-710 (urethane oligomer)” manufactured by Kyoeisha Chemical Co., Ltd., “Polyflow No. 50E, No. 300 (acrylic copolymer)” “Disparon KS-860, 873SN, 874, # 2150 (aliphatic polycarboxylic acid), # 7004 (polyetherester), DA-703-50, DA-705, DA-725” manufactured by Enomoto Kasei Co., Ltd. "Demol RN, N (naphthalene sulfonic acid formalin polycondensate), MS, C, SN-B (aromatic sulfonic acid formalin polycondensate)", "Homogenol L-18 (polymer polycarboxylic acid), manufactured by Kao Corporation Acid) "," Emulgen 920, 930, 935, 985 (polyoxyethylene nonylphenyl ether) ", Burizoru Co. 24000,28000,32000,32500,35200,38500 (graft polymer) ", and the like.
 分散剤は、1種単独で使用しても、2種以上併用してもよい。
 感光性樹脂組成物における分散剤の含有量は、感光性樹脂組成物の全固形分に対して、5~70質量%の範囲が好ましく、10~50質量%の範囲がより好ましい。
A dispersing agent may be used individually by 1 type, or may be used together 2 or more types.
The content of the dispersant in the photosensitive resin composition is preferably in the range of 5 to 70% by mass and more preferably in the range of 10 to 50% by mass with respect to the total solid content of the photosensitive resin composition.
(成分G)溶剤
 本発明に用いることができる感光性樹脂組成物は、(成分G)溶剤を含有することが好ましいが、上記層形成工程においては、感光性樹脂組成物層から溶剤を除去し感光性樹脂組成物の固形分からなる層を形成する。また、本発明に用いることができる感光性樹脂組成物は、成分A~成分Cの必須成分と、更に後述の任意の成分とを溶剤に溶解及び/又は分散した溶液として調製されることが好ましい。
 感光性樹脂組成物に使用される溶剤としては、公知の溶剤を用いることができ、エチレングリコールモノアルキルエーテル類、エチレングリコールジアルキルエーテル類、エチレングリコールモノアルキルエーテルアセテート類、プロピレングリコールモノアルキルエーテル類、プロピレングリコールジアルキルエーテル類、プロピレングリコールモノアルキルエーテルアセテート類、ジエチレングリコールジアルキルエーテル類、ジエチレングリコールモノアルキルエーテルアセテート類、ジプロピレングリコールモノアルキルエーテル類、ジプロピレングリコールジアルキルエーテル類、ジプロピレングリコールモノアルキルエーテルアセテート類、エステル類、ケトン類、アミド類、ラクトン類等が例示できる。また、特開2011-221494号公報の段落0174~0178に記載の溶剤も挙げられる。
(Component G) Solvent The photosensitive resin composition that can be used in the present invention preferably contains (Component G) a solvent. In the layer forming step, the solvent is removed from the photosensitive resin composition layer. A layer composed of the solid content of the photosensitive resin composition is formed. The photosensitive resin composition that can be used in the present invention is preferably prepared as a solution obtained by dissolving and / or dispersing an essential component of components A to C and an optional component described later in a solvent. .
As the solvent used in the photosensitive resin composition, known solvents can be used, such as ethylene glycol monoalkyl ethers, ethylene glycol dialkyl ethers, ethylene glycol monoalkyl ether acetates, propylene glycol monoalkyl ethers, Propylene glycol dialkyl ethers, propylene glycol monoalkyl ether acetates, diethylene glycol dialkyl ethers, diethylene glycol monoalkyl ether acetates, dipropylene glycol monoalkyl ethers, dipropylene glycol dialkyl ethers, dipropylene glycol monoalkyl ether acetates, Examples thereof include esters, ketones, amides, and lactones. In addition, the solvents described in paragraphs 0174 to 0178 of JP2011-221494A can also be mentioned.
 また、これらの溶剤に更に必要に応じて、ベンジルエチルエーテル、ジヘキシルエーテル、エチレングリコールモノフェニルエーテルアセテート、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、イソホロン、カプロン酸、カプリル酸、1-オクタノール、1-ノナール、ベンジルアルコール、アニソール、酢酸ベンジル、安息香酸エチル、シュウ酸ジエチル、マレイン酸ジエチル、炭酸エチレン、炭酸プロピレン等の溶剤を添加することもできる。
 これら溶剤は、1種単独で又は2種以上を混合して使用することができる。本発明に用いることができる溶剤は、1種単独、又は、2種を併用することが好ましい。
In addition, benzyl ethyl ether, dihexyl ether, ethylene glycol monophenyl ether acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, isophorone, caproic acid, caprylic acid, 1-octanol, 1-nonal as necessary for these solvents , Benzyl alcohol, anisole, benzyl acetate, ethyl benzoate, diethyl oxalate, diethyl maleate, ethylene carbonate, propylene carbonate and the like can also be added.
These solvents can be used alone or in combination of two or more. It is preferable that the solvent which can be used for this invention is single 1 type, or uses 2 types together.
 また、感光性樹脂組成物を調製する前に、無機粒子、分散剤及び溶剤等を混合した分散液を調製してもよい。例えば、上記成分をビーズミル、ボールミル、ロッドミル等の混合装置を用いて混合・分散することにより調製される。
 また、分散液の調製に使用される溶剤としては、例えば、上述した溶剤のほか、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、2-メチル-2-プロパノール、1-ペンタノール、2-ペンタノール、3-ペンタノール、3-メチル-1-ブタノール、2-メチル-2-ブタノール、ネオペンタノール、シクロペンタノール、1-ヘキサノール、シクロヘキサノール等のアルコール類等を挙げることができる。
 これらの溶剤は、1種単独又は2種以上を混合して使用することができる。
Moreover, you may prepare the dispersion liquid which mixed the inorganic particle, the dispersing agent, the solvent, etc. before preparing the photosensitive resin composition. For example, it is prepared by mixing and dispersing the above components using a mixing apparatus such as a bead mill, a ball mill, or a rod mill.
Examples of the solvent used for preparing the dispersion include 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-2-propanol, and 1-pentanol in addition to the solvents described above. Alcohols such as 2-pentanol, 3-pentanol, 3-methyl-1-butanol, 2-methyl-2-butanol, neopentanol, cyclopentanol, 1-hexanol and cyclohexanol; it can.
These solvents can be used singly or in combination of two or more.
 また、成分Gとしては、沸点130℃以上160℃未満の溶剤、沸点160℃以上の溶剤、又は、これらの混合物であることが好ましい。
 沸点130℃以上160℃未満の溶剤としては、プロピレングリコールモノメチルエーテルアセテート(沸点146℃)、プロピレングリコールモノエチルエーテルアセテート(沸点158℃)、プロピレングリコールメチル-n-ブチルエーテル(沸点155℃)、プロピレングリコールメチル-n-プロピルエーテル(沸点131℃)が例示できる。
 沸点160℃以上の溶剤としては、3-エトキシプロピオン酸エチル(沸点170℃)、ジエチレングリコールメチルエチルエーテル(沸点176℃)、プロピレングリコールモノメチルエーテルプロピオネート(沸点160℃)、ジプロピレングリコールメチルエーテルアセテート(沸点213℃)、3-メトキシブチルエーテルアセテート(沸点171℃)、ジエチレングリコールジエチルエーテル(沸点189℃)、ジエチレングリコールジメチルエーテル(沸点162℃)、プロピレングリコールジアセテート(沸点190℃)、ジエチレングリコールモノエチルエーテルアセテート(沸点220℃)、ジプロピレングリコールジメチルエーテル(沸点175℃)、1,3-ブチレングリコールジアセテート(沸点232℃)が例示できる。
 これらの中でも、溶剤としては、プロピレングリコールモノアルキルエーテルアセテート類が好ましく、プロピレングリコールモノメチルエーテルアセテートが特に好ましい。
Component G is preferably a solvent having a boiling point of 130 ° C. or higher and lower than 160 ° C., a solvent having a boiling point of 160 ° C. or higher, or a mixture thereof.
Solvents having a boiling point of 130 ° C. or higher and lower than 160 ° C. include propylene glycol monomethyl ether acetate (boiling point 146 ° C.), propylene glycol monoethyl ether acetate (boiling point 158 ° C.), propylene glycol methyl-n-butyl ether (boiling point 155 ° C.), propylene glycol An example is methyl-n-propyl ether (boiling point 131 ° C.).
Solvents having a boiling point of 160 ° C or higher include ethyl 3-ethoxypropionate (boiling point 170 ° C), diethylene glycol methyl ethyl ether (boiling point 176 ° C), propylene glycol monomethyl ether propionate (boiling point 160 ° C), dipropylene glycol methyl ether acetate. (Bp 213 ° C.), 3-methoxybutyl ether acetate (bp 171 ° C.), diethylene glycol diethyl ether (bp 189 ° C.), diethylene glycol dimethyl ether (bp 162 ° C.), propylene glycol diacetate (bp 190 ° C.), diethylene glycol monoethyl ether acetate ( Examples include boiling point 220 ° C, dipropylene glycol dimethyl ether (boiling point 175 ° C), and 1,3-butylene glycol diacetate (boiling point 232 ° C). Kill.
Among these, as the solvent, propylene glycol monoalkyl ether acetates are preferable, and propylene glycol monomethyl ether acetate is particularly preferable.
 感光性樹脂組成物における溶剤の含有量は、成分B100質量部当たり、50~3,000質量部であることが好ましく、100~2,000質量部であることがより好ましく、150~1,500質量部であることが更に好ましい。 The content of the solvent in the photosensitive resin composition is preferably 50 to 3,000 parts by weight, more preferably 100 to 2,000 parts by weight, and more preferably 150 to 1,500 parts per 100 parts by weight of Component B. More preferably, it is part by mass.
(成分H)塩基性化合物
 本発明に用いることができる感光性樹脂組成物は、液保存安定性の観点から、(成分H)塩基性化合物を含有することが好ましい。
 塩基性化合物としては、化学増幅レジストで用いられるものの中から任意に選択して使用することができる。例えば、脂肪族アミン、芳香族アミン、複素環式アミン、第四級アンモニウムヒドロキシド、及び、カルボン酸の第四級アンモニウム塩等が挙げられる。
(Component H) Basic Compound The photosensitive resin composition that can be used in the present invention preferably contains (Component H) a basic compound from the viewpoint of liquid storage stability.
The basic compound can be arbitrarily selected from those used in chemically amplified resists. Examples thereof include aliphatic amines, aromatic amines, heterocyclic amines, quaternary ammonium hydroxides, and quaternary ammonium salts of carboxylic acids.
 脂肪族アミンとしては、例えば、トリメチルアミン、ジエチルアミン、トリエチルアミン、ジ-n-プロピルアミン、トリ-n-プロピルアミン、ジ-n-ペンチルアミン、トリ-n-ペンチルアミン、ジエタノールアミン、トリエタノールアミン、ジシクロヘキシルアミン、ジシクロヘキシルメチルアミンなどが挙げられる。
 芳香族アミンとしては、例えば、アニリン、ベンジルアミン、N,N-ジメチルアニリン、ジフェニルアミンなどが挙げられる。
 複素環式アミンとしては、例えば、ピリジン、2-メチルピリジン、4-メチルピリジン、2-エチルピリジン、4-エチルピリジン、2-フェニルピリジン、4-フェニルピリジン、N-メチル-4-フェニルピリジン、4-ジメチルアミノピリジン、イミダゾール、ベンズイミダゾール、4-メチルイミダゾール、2-フェニルベンズイミダゾール、2,4,5-トリフェニルイミダゾール、ニコチン、ニコチン酸、ニコチン酸アミド、キノリン、8-オキシキノリン、ピラジン、ピラゾール、ピリダジン、プリン、ピロリジン、ピペリジン、ピペラジン、モルホリン、4-メチルモルホリン、N-シクロヘキシル-N’-[2-(4-モルホリニル)エチル]チオ尿素、1,5-ジアザビシクロ[4.3.0]-5-ノネン、1,8-ジアザビシクロ[5.3.0]-7-ウンデセンなどが挙げられる。
 第四級アンモニウムヒドロキシドとしては、例えば、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラ-n-ブチルアンモニウムヒドロキシド、テトラ-n-ヘキシルアンモニウムヒドロキシドなどが挙げられる。
 カルボン酸の第四級アンモニウム塩としては、例えば、テトラメチルアンモニウムアセテート、テトラメチルアンモニウムベンゾエート、テトラ-n-ブチルアンモニウムアセテート、テトラ-n-ブチルアンモニウムベンゾエートなどが挙げられる。
 これらの中でも、N-シクロヘキシル-N’-[2-(4-モルホリニル)エチル]チオ尿素が好ましい。
Examples of aliphatic amines include trimethylamine, diethylamine, triethylamine, di-n-propylamine, tri-n-propylamine, di-n-pentylamine, tri-n-pentylamine, diethanolamine, triethanolamine, dicyclohexylamine. , Dicyclohexylmethylamine and the like.
Examples of the aromatic amine include aniline, benzylamine, N, N-dimethylaniline, diphenylamine and the like.
Examples of the heterocyclic amine include pyridine, 2-methylpyridine, 4-methylpyridine, 2-ethylpyridine, 4-ethylpyridine, 2-phenylpyridine, 4-phenylpyridine, N-methyl-4-phenylpyridine, 4-dimethylaminopyridine, imidazole, benzimidazole, 4-methylimidazole, 2-phenylbenzimidazole, 2,4,5-triphenylimidazole, nicotine, nicotinic acid, nicotinamide, quinoline, 8-oxyquinoline, pyrazine, Pyrazole, pyridazine, purine, pyrrolidine, piperidine, piperazine, morpholine, 4-methylmorpholine, N-cyclohexyl-N ′-[2- (4-morpholinyl) ethyl] thiourea, 1,5-diazabicyclo [4.3.0 ] -5-Nonene, 1,8-di And azabicyclo [5.3.0] -7-undecene.
Examples of the quaternary ammonium hydroxide include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetra-n-butylammonium hydroxide, tetra-n-hexylammonium hydroxide, and the like.
Examples of the quaternary ammonium salt of carboxylic acid include tetramethylammonium acetate, tetramethylammonium benzoate, tetra-n-butylammonium acetate, tetra-n-butylammonium benzoate and the like.
Among these, N-cyclohexyl-N ′-[2- (4-morpholinyl) ethyl] thiourea is preferable.
 本発明に用いることができる塩基性化合物は、1種単独で使用しても、2種以上を併用してもよい。
 感光性樹脂組成物における塩基性化合物の含有量は、成分B100質量部に対して、0.001~1質量部であることが好ましく、0.002~0.2質量部であることがより好ましい。
The basic compounds that can be used in the present invention may be used singly or in combination of two or more.
The content of the basic compound in the photosensitive resin composition is preferably 0.001 to 1 part by mass, more preferably 0.002 to 0.2 part by mass with respect to 100 parts by mass of Component B. .
(成分I)界面活性剤
 本発明に用いることができる感光性樹脂組成物は、界面活性剤を含有してもよい。
 界面活性剤としては、アニオン系、カチオン系、ノニオン系又は両性のいずれでも使用することができるが、好ましい界面活性剤は、ノニオン界面活性剤である。
 ノニオン系界面活性剤の例としては、ポリオキシエチレン高級アルキルエーテル類、ポリオキシエチレン高級アルキルフェニルエーテル類、ポリオキシエチレングリコールの高級脂肪酸ジエステル類、シリコーン系、フッ素系界面活性剤を挙げることができる。フッ素系界面活性剤、シリコーン系界面活性剤の例として具体的には、特開昭62-36663号、特開昭61-226746号、特開昭61-226745号、特開昭62-170950号、特開昭63-34540号、特開平7-230165号、特開平8-62834号、特開平9-54432号、特開平9-5988号、特開2001-330953号等の各公報記載の界面活性剤を挙げることができ、市販の界面活性剤を用いることもできる。また、以下商品名で、KP(信越化学工業(株)製)、ポリフロー(共栄社化学(株)製)、エフトップ(三菱マテリアル電子化成(株)製)、メガファック(DIC(株)製)、フロラード(住友スリーエム(株)製)、アサヒガード(旭硝子(株)製)、サーフロン(AGCセイミケミカル(株)製)、PolyFox(OMNOVA社製)、SH-8400(東レ・ダウコーニング(株)製)等の各シリーズを挙げることができる。
 これらの中でも、フッ素系界面活性剤又はシリコーン系界面活性剤が好ましく、フッ素系界面活性剤がより好ましく、フッ素系ノニオン界面活性剤が更に好ましく、パーフルオロ基含有ノニオン界面活性剤が特に好ましい。
 また、界面活性剤として、下記式(I-1)で表される構成単位A及び構成単位Bを含み、テトラヒドロフラン(THF)を溶媒とした場合のゲルパーミエーションクロマトグラフィで測定されるポリスチレン換算の重量平均分子量(Mw)が1,000以上10,000以下である共重合体を好ましい例として挙げることができる。
(Component I) Surfactant The photosensitive resin composition that can be used in the present invention may contain a surfactant.
As the surfactant, any of anionic, cationic, nonionic or amphoteric can be used, but a preferred surfactant is a nonionic surfactant.
Examples of nonionic surfactants include polyoxyethylene higher alkyl ethers, polyoxyethylene higher alkyl phenyl ethers, higher fatty acid diesters of polyoxyethylene glycol, silicone-based and fluorine-based surfactants. . Specific examples of fluorine surfactants and silicone surfactants include JP-A Nos. 62-36663, 61-226746, 61-226745, and 62-170950. The interfaces described in JP-A-63-34540, JP-A-7-230165, JP-A-8-62834, JP-A-9-54432, JP-A-9-5988, JP-A-2001-330953, etc. An activator can be mentioned and a commercially available surfactant can also be used. In addition, the following trade names are KP (manufactured by Shin-Etsu Chemical Co., Ltd.), Polyflow (manufactured by Kyoeisha Chemical Co., Ltd.), F-Top (manufactured by Mitsubishi Materials Denka Kasei Co., Ltd.), and Megafuck (manufactured by DIC Corporation). Fluorard (manufactured by Sumitomo 3M Co., Ltd.), Asahi Guard (manufactured by Asahi Glass Co., Ltd.), Surflon (manufactured by AGC Seimi Chemical Co., Ltd.), PolyFox (manufactured by OMNOVA), SH-8400 (Toray Dow Corning Co., Ltd.) And other series).
Among these, a fluorine-based surfactant or a silicone-based surfactant is preferable, a fluorine-based surfactant is more preferable, a fluorine-based nonionic surfactant is further preferable, and a perfluoro group-containing nonionic surfactant is particularly preferable.
Further, the surfactant includes a structural unit A and a structural unit B represented by the following formula (I-1), and is a weight in terms of polystyrene measured by gel permeation chromatography using tetrahydrofuran (THF) as a solvent. Preferred examples include copolymers having an average molecular weight (Mw) of 1,000 or more and 10,000 or less.
Figure JPOXMLDOC01-appb-C000013
(式(I-1)中、R401及びR403はそれぞれ独立に、水素原子又はメチル基を表し、R402は炭素数1以上4以下の直鎖アルキレン基を表し、R404は水素原子又は炭素数1以上4以下のアルキル基を表し、Lは炭素数3以上6以下のアルキレン基を表し、p及びqは重合比を表す質量百分率であり、pは10質量%以上80質量%以下の数値を表し、qは20質量%以上90質量%以下の数値を表し、rは1以上18以下の整数を表し、sは1以上10以下の整数を表す。)
Figure JPOXMLDOC01-appb-C000013
(In Formula (I-1), R 401 and R 403 each independently represent a hydrogen atom or a methyl group, R 402 represents a linear alkylene group having 1 to 4 carbon atoms, and R 404 represents a hydrogen atom or Represents an alkyl group having 1 to 4 carbon atoms, L represents an alkylene group having 3 to 6 carbon atoms, p and q are mass percentages representing a polymerization ratio, and p is 10 mass% to 80 mass%. A numerical value is represented, q represents a numerical value of 20 mass% or more and 90 mass% or less, r represents an integer of 1 or more and 18 or less, and s represents an integer of 1 or more and 10 or less.)
 上記Lは、下記式(I-2)で表される分岐アルキレン基であることが好ましい。式(I-2)におけるR405は、炭素数1以上4以下のアルキル基を表し、相溶性と被塗布面に対する濡れ性の点で、炭素数1以上3以下のアルキル基が好ましく、炭素数2又は3のアルキル基がより好ましい。pとqとの和(p+q)は、p+q=100、すなわち、100質量%であることが好ましい。 L is preferably a branched alkylene group represented by the following formula (I-2). R 405 in formula (I-2) represents an alkyl group having 1 to 4 carbon atoms, and is preferably an alkyl group having 1 to 3 carbon atoms in terms of compatibility and wettability to the coated surface. Two or three alkyl groups are more preferred. The sum (p + q) of p and q is preferably p + q = 100, that is, 100% by mass.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 上記共重合体の重量平均分子量(Mw)は、1,500以上5,000以下がより好ましい。 The weight average molecular weight (Mw) of the copolymer is more preferably from 1,500 to 5,000.
 これらの界面活性剤は、1種単独で又は2種以上を混合して使用することができる。
 感光性樹脂組成物における界面活性剤の添加量は、感光性樹脂組成物中の全固形分100質量部に対して、10質量部以下であることが好ましく、0.001~10質量部であることがより好ましく、0.01~3質量部であることが更に好ましい。
These surfactants can be used individually by 1 type or in mixture of 2 or more types.
The addition amount of the surfactant in the photosensitive resin composition is preferably 10 parts by mass or less, and preferably 0.001 to 10 parts by mass with respect to 100 parts by mass of the total solid content in the photosensitive resin composition. More preferred is 0.01 to 3 parts by mass.
(成分J)密着改良剤
 本発明に用いることができる感光性樹脂組成物は、密着改良剤を含有してもよい。
 感光性樹脂組成物に用いることができる密着改良剤は、基材となる無機物、例えば、シリコン、酸化シリコン、窒化シリコン等のシリコン化合物、金、銅、アルミニウム等の金属と絶縁膜との密着性を向上させる化合物である。具体的には、シランカップリング剤、チオール系化合物等が挙げられる。これらの中でも、シランカップリング剤が好ましい。
 本発明で使用される密着改良剤としてのシランカップリング剤は、界面の改質を目的とするものであり、特に限定することなく、公知のものを使用することができる。
(Component J) Adhesion improving agent The photosensitive resin composition that can be used in the present invention may contain an adhesion improving agent.
The adhesion improver that can be used for the photosensitive resin composition is an inorganic substance as a base material, for example, a silicon compound such as silicon, silicon oxide, or silicon nitride, adhesion between a metal such as gold, copper, or aluminum and an insulating film. It is a compound that improves Specific examples include silane coupling agents and thiol compounds. Among these, a silane coupling agent is preferable.
The silane coupling agent as an adhesion improving agent used in the present invention is for the purpose of modifying the interface, and any known silane coupling agent can be used without any particular limitation.
 好ましいシランカップリング剤としては、例えば、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-グリシドキシプロピルトリアルコキシシラン、γ-グリシドキシプロピルアルキルジアルコキシシラン、γ-メタクリロキシプロピルトリアルコキシシラン、γ-メタクリロキシプロピルアルキルジアルコキシシラン、γ-クロロプロピルトリアルコキシシラン、γ-メルカプトプロピルトリアルコキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリアルコキシシラン、ビニルトリアルコキシシランが挙げられる。
 これらのうち、γ-グリシドキシプロピルトリアルコキシシランやγ-メタクリロキシプロピルトリアルコキシシランがより好ましく、γ-グリシドキシプロピルトリアルコキシシランが更に好ましい。
Preferred silane coupling agents include, for example, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-glycidoxypropyltrialkoxysilane, γ-glycidoxypropylalkyldialkoxysilane, γ-methacrylate. Roxypropyltrialkoxysilane, γ-methacryloxypropylalkyldialkoxysilane, γ-chloropropyltrialkoxysilane, γ-mercaptopropyltrialkoxysilane, β- (3,4-epoxycyclohexyl) ethyltrialkoxysilane, vinyltrialkoxy Examples include silane.
Of these, γ-glycidoxypropyltrialkoxysilane and γ-methacryloxypropyltrialkoxysilane are more preferable, and γ-glycidoxypropyltrialkoxysilane is more preferable.
 これらは1種単独又は2種以上を組み合わせて使用することができる。これらは基板との密着性の向上に有効であると共に、基板とのテーパー角の調整にも有効である。
 感光性樹脂組成物における密着改良剤の含有量は、成分B100質量部に対して、0.1~20質量部が好ましく、0.5~10質量部がより好ましい。
These can be used alone or in combination of two or more. These are effective for improving the adhesion to the substrate and also for adjusting the taper angle with the substrate.
The content of the adhesion improving agent in the photosensitive resin composition is preferably 0.1 to 20 parts by mass, more preferably 0.5 to 10 parts by mass with respect to 100 parts by mass of Component B.
-その他の成分-
 本発明に用いることができる感光性樹脂組成物には、上記成分に加えて、必要に応じて、増感剤、紫外線吸収剤、金属不活性化剤や、酸増殖剤、現像促進剤、可塑剤、熱ラジカル発生剤、熱酸発生剤、増粘剤、及び、有機又は無機の沈殿防止剤などの公知の添加剤を加えることができる。
 また、その他の添加剤としては、特開2012-8223号公報の段落0120~0121に記載の熱ラジカル発生剤、国際公開第2011/136074号に記載の窒素含有化合物及び熱酸発生剤も用いることができる。
-Other ingredients-
In addition to the above-described components, the photosensitive resin composition that can be used in the present invention includes a sensitizer, an ultraviolet absorber, a metal deactivator, an acid proliferator, a development accelerator, a plasticizer, as necessary. Known additives such as an agent, a thermal radical generator, a thermal acid generator, a thickener, and an organic or inorganic suspending agent can be added.
As other additives, a thermal radical generator described in paragraphs 0120 to 0121 of JP2012-8223A, a nitrogen-containing compound and a thermal acid generator described in International Publication No. 2011-133604 are also used. Can do.
(硬化膜)
 本発明の硬化膜は、本発明の硬化膜の製造方法により得られた硬化膜である。
 本発明の硬化膜は、層間絶縁膜として好適に用いることができる。また、本発明の硬化膜は、本発明の硬化膜の形成方法により得られた硬化膜であることが好ましい。
 本発明の硬化膜の製造方法により、絶縁性に優れ、高温でベークされた場合においても高い透明性を有する層間絶縁膜が得られる。本発明の硬化膜の製造方法により得られた層間絶縁膜は、高い透明性を有し、硬化膜物性に優れるため、有機EL表示装置や液晶表示装置の用途に有用である。
(Cured film)
The cured film of the present invention is a cured film obtained by the method for producing a cured film of the present invention.
The cured film of the present invention can be suitably used as an interlayer insulating film. Moreover, it is preferable that the cured film of this invention is a cured film obtained by the formation method of the cured film of this invention.
According to the method for producing a cured film of the present invention, an interlayer insulating film having excellent transparency and high transparency even when baked at a high temperature can be obtained. Since the interlayer insulating film obtained by the method for producing a cured film of the present invention has high transparency and excellent cured film properties, it is useful for organic EL display devices and liquid crystal display devices.
(液晶表示装置)
 本発明の液晶表示装置は、本発明の硬化膜を具備することを特徴とする。
 本発明の液晶表示装置としては、本発明の硬化膜の製造方法により得られた平坦化膜や層間絶縁膜等の硬化膜を有すること以外は特に制限されず、様々な構造をとる公知の液晶表示装置を挙げることができる。
 例えば、本発明の液晶表示装置が具備するTFT(Thin-Film Transistor)の具体例としては、アモルファスシリコン-TFT、低温ポリシリコン-TFT、酸化物半導体TFT等が挙げられる。本発明の硬化膜は電気特性に優れるため、これらのTFTに組み合わせて好ましく用いることができる。
 また、本発明の液晶表示装置が取りうる液晶駆動方式としてはTN(Twisted Nematic)方式、VA(Vertical Alignment)方式、IPS(In-Plane-Switching)方式、FFS(Fringe Field Switching)方式、OCB(Optical Compensated Bend)方式などが挙げられる。
 パネル構成においては、COA(Color Filter on Array)方式の液晶表示装置でも本発明の硬化膜を用いることができ、例えば、特開2005-284291号公報に記載の有機絶縁膜(115)や、特開2005-346054号公報に記載の有機絶縁膜(212)として用いることができる。
 また、本発明の液晶表示装置が取りうる液晶配向膜の具体的な配向方式としてはラビング配向法、光配向法などが挙げられる。また、特開2003-149647号公報や特開2011-257734号公報に記載のPSA(Polymer Sustained Alignment)技術によってポリマー配向支持されていてもよい。
 また、本発明の感光性樹脂組成物及び本発明の硬化膜は、上記用途に限定されず種々の用途に使用することができる。例えば、平坦化膜や層間絶縁膜以外にも、カラーフィルターの保護膜や、液晶表示装置における液晶層の厚みを一定に保持するためのスペーサーや固体撮像素子においてカラーフィルター上に設けられるマイクロレンズ等に好適に用いることができる。
(Liquid crystal display device)
The liquid crystal display device of the present invention comprises the cured film of the present invention.
The liquid crystal display device of the present invention is not particularly limited except that it has a cured film such as a flattened film or an interlayer insulating film obtained by the method for producing a cured film of the present invention, and known liquid crystals having various structures. A display device can be mentioned.
For example, specific examples of TFT (Thin-Film Transistor) included in the liquid crystal display device of the present invention include amorphous silicon-TFT, low-temperature polysilicon-TFT, oxide semiconductor TFT, and the like. Since the cured film of the present invention is excellent in electrical characteristics, it can be preferably used in combination with these TFTs.
Further, liquid crystal driving methods that can be taken by the liquid crystal display device of the present invention include TN (Twisted Nematic) method, VA (Vertical Alignment) method, IPS (In-Plane-Switching) method, FFS (Fringe Field Switching) method, OCB (OCB) method. Optical Compensated Bend) method.
In the panel configuration, the cured film of the present invention can also be used in a COA (Color Filter on Array) type liquid crystal display device. For example, the organic insulating film (115) described in JP-A-2005-284291, It can be used as the organic insulating film (212) described in Japanese Unexamined Patent Publication No. 2005-346054.
Specific examples of the alignment method of the liquid crystal alignment film that can be taken by the liquid crystal display device of the present invention include a rubbing alignment method and a photo alignment method. Further, the polymer orientation may be supported by a PSA (Polymer Sustained Alignment) technique described in Japanese Patent Application Laid-Open Nos. 2003-149647 and 2011-257734.
Moreover, the photosensitive resin composition of this invention and the cured film of this invention are not limited to the said use, It can be used for various uses. For example, in addition to the planarization film and interlayer insulating film, a protective film for the color filter, a spacer for keeping the thickness of the liquid crystal layer in the liquid crystal display device constant, a microlens provided on the color filter in the solid-state imaging device, etc. Can be suitably used.
 図1は、アクティブマトリックス方式の液晶表示装置10の一例を示す概念的断面図である。このカラー液晶表示装置10は、背面にバックライトユニット12を有する液晶パネルであって、液晶パネルは、偏光フィルムが貼り付けられた2枚のガラス基板14,15の間に配置されたすべての画素に対応するTFT16の素子が配置されている。ガラス基板上に形成された各素子には、硬化膜17中に形成されたコンタクトホール18を通して、画素電極を形成するITO透明電極19が配線されている。ITO透明電極19の上には、液晶20の層とブラックマトリックスを配置したRGBカラーフィルター22が設けられている。
 バックライトの光源としては、特に限定されず公知の光源を用いることができる。例えば白色LED、青色・赤色・緑色などの多色LED、蛍光灯(冷陰極管)、有機ELなどを挙げることができる。
 また、液晶表示装置は、3D(立体視)型のものとしたり、タッチパネル型のものとしたりすることも可能である。更にフレキシブル型にすることも可能であり、特開2011-145686号公報に記載の第2層間絶縁膜(48)や、特開2009-258758号公報に記載の層間絶縁膜(520)として用いることができる。
FIG. 1 is a conceptual cross-sectional view showing an example of an active matrix liquid crystal display device 10. The color liquid crystal display device 10 is a liquid crystal panel having a backlight unit 12 on the back surface, and the liquid crystal panel includes all pixels disposed between two glass substrates 14 and 15 having a polarizing film attached thereto. The elements of the TFT 16 corresponding to are arranged. Each element formed on the glass substrate is wired with an ITO transparent electrode 19 that forms a pixel electrode through a contact hole 18 formed in the cured film 17. On the ITO transparent electrode 19, an RGB color filter 22 in which a liquid crystal 20 layer and a black matrix are arranged is provided.
The light source of the backlight is not particularly limited, and a known light source can be used. For example, a white LED, a multicolor LED such as blue, red, and green, a fluorescent lamp (cold cathode tube), and an organic EL can be used.
Further, the liquid crystal display device can be a 3D (stereoscopic) type or a touch panel type. Further, it can be made flexible, and used as the second interlayer insulating film (48) described in JP2011-145686A and the interlayer insulating film (520) described in JP2009-258758A. Can do.
(有機EL表示装置)
 本発明の有機EL表示装置は、本発明の硬化膜を具備することを特徴とする。
 本発明の有機EL表示装置としては、本発明の硬化膜の製造方法により得られた平坦化膜や層間絶縁膜等の硬化膜を有すること以外は特に制限されず、様々な構造をとる公知の各種有機EL表示装置や液晶表示装置を挙げることができる。
 例えば、本発明の有機EL表示装置が具備するTFT(Thin-Film Transistor)の具体例としては、アモルファスシリコン-TFT、低温ポリシリコン-TFT、酸化物半導体TFT等が挙げられる。本発明の硬化膜は電気特性に優れるため、これらのTFTに組み合わせて好ましく用いることができる。
 図2は、有機EL表示装置の一例の構成概念図である。ボトムエミッション型の有機EL表示装置における基板の模式的断面図を示し、平坦化膜4を有している。
 ガラス基板6上にボトムゲート型のTFT1を形成し、このTFT1を覆う状態でSi34からなる絶縁膜3が形成されている。絶縁膜3に、ここでは図示を省略したコンタクトホールを形成した後、このコンタクトホールを介してTFT1に接続される配線2(高さ1.0μm)が絶縁膜3上に形成されている。配線2は、TFT1間、又は、後の工程で形成される有機EL素子とTFT1とを接続するためのものである。
 更に、配線2の形成による凹凸を平坦化するために、配線2による凹凸を埋め込む状態で絶縁膜3上に平坦化膜4が形成されている。
 平坦化膜4上には、ボトムエミッション型の有機EL素子が形成されている。すなわち、平坦化膜4上に、ITOからなる第一電極5が、コンタクトホール7を介して配線2に接続させて形成されている。また、第一電極5は、有機EL素子の陽極に相当する。
 第一電極5の周縁を覆う形状の絶縁膜8が形成されており、この絶縁膜8を設けることによって、第一電極5とこの後の工程で形成する第二電極との間のショートを防止することができる。
 更に、図2には図示していないが、所望のパターンマスクを介して、正孔輸送層、有機発光層、電子輸送層を順次蒸着して設け、次いで、基板上方の全面にAlからなる第二電極を形成し、封止用ガラス板と紫外線硬化型エポキシ樹脂を用いて貼り合わせることで封止し、各有機EL素子にこれを駆動するためのTFT1が接続されてなるアクティブマトリックス型の有機EL表示装置が得られる。
(Organic EL display device)
The organic EL display device of the present invention comprises the cured film of the present invention.
The organic EL display device of the present invention is not particularly limited except that it has a cured film such as a flattened film or an interlayer insulating film obtained by the method for producing a cured film of the present invention, and is known in various structures. Examples include various organic EL display devices and liquid crystal display devices.
For example, specific examples of TFT (Thin-Film Transistor) included in the organic EL display device of the present invention include amorphous silicon-TFT, low-temperature polysilicon-TFT, oxide semiconductor TFT, and the like. Since the cured film of the present invention is excellent in electrical characteristics, it can be preferably used in combination with these TFTs.
FIG. 2 is a conceptual diagram of an example of an organic EL display device. A schematic cross-sectional view of a substrate in a bottom emission type organic EL display device is shown, and a planarizing film 4 is provided.
A bottom gate type TFT 1 is formed on a glass substrate 6, and an insulating film 3 made of Si 3 N 4 is formed so as to cover the TFT 1. A contact hole (not shown) is formed in the insulating film 3, and then a wiring 2 (height: 1.0 μm) connected to the TFT 1 through the contact hole is formed on the insulating film 3. The wiring 2 is used to connect the TFT 1 with an organic EL element formed between the TFTs 1 or in a later process.
Further, in order to flatten the unevenness due to the formation of the wiring 2, a planarizing film 4 is formed on the insulating film 3 in a state where the unevenness due to the wiring 2 is embedded.
On the planarizing film 4, a bottom emission type organic EL element is formed. That is, the first electrode 5 made of ITO is formed on the planarizing film 4 so as to be connected to the wiring 2 through the contact hole 7. The first electrode 5 corresponds to the anode of the organic EL element.
An insulating film 8 having a shape covering the periphery of the first electrode 5 is formed. By providing the insulating film 8, a short circuit between the first electrode 5 and the second electrode formed in the subsequent process is prevented. can do.
Further, although not shown in FIG. 2, a hole transport layer, an organic light emitting layer, and an electron transport layer are sequentially deposited through a desired pattern mask, and then a second layer made of Al is formed on the entire surface above the substrate. An active matrix organic material in which two electrodes are formed and sealed by bonding using a sealing glass plate and an ultraviolet curable epoxy resin, and each organic EL element is connected to a TFT 1 for driving it. An EL display device is obtained.
 本発明の硬化膜の製造方法により得られた硬化膜は、硬化膜特性に優れるため、MEMSデバイスの構造部材として、上記硬化膜を用いて形成されたレジストパターンを隔壁としたり、機械駆動部品の一部として組み込んで使用される。このようなMEMS用デバイスとしては、例えば、SAW(surface acoustic wave)フィルター、BAW(bulk acoustic wave)フィルター、ジャイロセンサー、ディスプレイ用マイクロシャッター、イメージセンサー、電子ペーパー、インクジェットヘッド、バイオチップ、封止剤等の部品が挙げられる。より具体的な例は、特表2007-522531号公報、特開2008-250200号公報、特開2009-263544号公報等に例示されている。 Since the cured film obtained by the method for producing a cured film of the present invention has excellent cured film characteristics, a resist pattern formed using the cured film as a structural member of a MEMS device can be used as a partition wall or a mechanical drive component. Used as part of it. Such MEMS devices include, for example, SAW (surface acoustic wave) filters, BAW (bulk acoustic wave) filters, gyro sensors, micro shutters for displays, image sensors, electronic paper, inkjet heads, biochips, sealants. And the like. More specific examples are exemplified in JP-T-2007-522531, JP-A-2008-250200, JP-A-2009-263544, and the like.
 本発明の硬化膜の製造方法により得られた硬化膜は、平坦性や透明性に優れるため、例えば、特開2011-107476号公報の図2に記載のバンク層(16)及び平坦化膜(57)、特開2010-9793号公報の図4(a)に記載の隔壁(12)及び平坦化膜(102)、特開2010-27591号公報の図10に記載のバンク層(221)及び第3層間絶縁膜(216b)、特開2009-128577号公報の図4(a)に記載の第2層間絶縁膜(125)及び第3層間絶縁膜(126)、特開2010-182638号公報の図3に記載の平坦化膜(12)及び画素分離絶縁膜(14)などの形成に用いることもできる。 Since the cured film obtained by the method for producing a cured film of the present invention is excellent in flatness and transparency, for example, the bank layer (16) and the planarizing film (see FIG. 2 of JP2011-107476A) 57), the partition wall (12) and the planarization film (102) described in FIG. 4A of JP 2010-9793 A, the bank layer (221) described in FIG. 10 of JP 2010-27591 A, and Third interlayer insulating film (216b), second interlayer insulating film (125) and third interlayer insulating film (126) described in FIG. 4A of JP-A-2009-128577, JP-A 2010-182638 3 can be used to form the planarization film (12) and the pixel isolation insulating film (14) shown in FIG.
(タッチパネル表示装置)
 本発明のタッチパネル表示装置は、本発明の硬化膜を有する静電容量型入力装置を具備する。また、本発明の静電容量型入力装置は、本発明の硬化膜を有することを特徴とする。
 本発明の静電容量型入力装置は、前面板と、上記前面板の非接触側に、少なくとも下記(1)~(5)の要素を有し、上記(4)が本発明の硬化物であることが好ましい。
 (1)マスク層
 (2)複数のパッド部分が接続部分を介して第一の方向(X)に延在して形成された複数の第一の透明電極パターン
 (3)上記第一の透明電極パターンと電気的に絶縁され、上記第一の方向(X)に交差する方向に延在して形成された複数のパッド部分からなる複数の第二の透明電極パターン
 (4)上記第一の透明電極パターンと上記第二の透明電極パターンとを電気的に絶縁する絶縁層
 (5)上記第一の透明電極パターン及び上記第二の透明電極パターンの少なくとも一方に電気的に接続され、上記第一の透明電極パターン及び上記第二の透明電極パターンとは別の導電性要素
 本発明の静電容量型入力装置は、更に上記(1)~(5)の要素の全て又は一部を覆うように透明保護層を設置することが好ましく、上記透明保護層が本発明の硬化膜であることがより好ましい。
(Touch panel display)
The touch panel display device of the present invention includes a capacitive input device having the cured film of the present invention. Moreover, the capacitance-type input device of the present invention has the cured film of the present invention.
The capacitance-type input device of the present invention has at least the following elements (1) to (5) on the front plate and the non-contact side of the front plate, and the above (4) is the cured product of the present invention. Preferably there is.
(1) Mask layer (2) A plurality of first transparent electrode patterns formed by extending a plurality of pad portions in the first direction (X) via connecting portions (3) The first transparent electrode A plurality of second transparent electrode patterns comprising a plurality of pad portions which are electrically insulated from the pattern and extend in a direction intersecting the first direction (X). (4) The first transparent An insulating layer for electrically insulating the electrode pattern and the second transparent electrode pattern. (5) electrically connected to at least one of the first transparent electrode pattern and the second transparent electrode pattern; Conductive element different from the transparent electrode pattern and the second transparent electrode pattern of the present invention The capacitive input device of the present invention further covers all or part of the elements (1) to (5). It is preferable to install a transparent protective layer, the above transparent More preferably Mamoruso is cured film of the present invention.
 まず、静電容量型入力装置の構成について説明する。図3は、静電容量型入力装置の構成を示す断面図である。図3において静電容量型入力装置30は、前面板31と、マスク層32と、第一の透明電極パターン33と、第二の透明電極パターン34と、絶縁層35と、導電性要素36と、透明保護層37と、から構成されている。 First, the configuration of the capacitive input device will be described. FIG. 3 is a cross-sectional view showing the configuration of the capacitive input device. In FIG. 3, the capacitive input device 30 includes a front plate 31, a mask layer 32, a first transparent electrode pattern 33, a second transparent electrode pattern 34, an insulating layer 35, and a conductive element 36. And a transparent protective layer 37.
 前面板31は、ガラス基板等の透光性基板で構成されており、コーニング社のゴリラガラスに代表される強化ガラスなどを用いることができる。また、図3において、前面板31の各要素が設けられている側を非接触面と称する。本発明の静電容量型入力装置30においては、前面板31の接触面(非接触面の反対の面)に指などを接触などさせて入力が行われる。以下、前面板を、「基材」と称する場合がある。 The front plate 31 is composed of a light-transmitting substrate such as a glass substrate, and tempered glass represented by gorilla glass manufactured by Corning Inc. can be used. Moreover, in FIG. 3, the side in which each element of the front plate 31 is provided is called a non-contact surface. In the capacitive input device 30 of the present invention, input is performed by bringing a finger or the like into contact with the contact surface (the surface opposite to the non-contact surface) of the front plate 31. Hereinafter, the front plate may be referred to as a “base material”.
 また、前面板31の非接触面上にはマスク層32が設けられている。マスク層32は、タッチパネル前面板の非接触側に形成された表示領域周囲の額縁状のパターンであり、引回し配線等が見えないようにするために形成される。
 本発明の静電容量型入力装置には、図4に示すように、前面板31の一部の領域(図4においては入力面以外の領域)を覆うようにマスク層32が設けられている。更に、前面板31には、図2に示すように一部に開口部38を設けることができる。開口部38には、押圧によるメカニカルなスイッチを設置することができる。
A mask layer 32 is provided on the non-contact surface of the front plate 31. The mask layer 32 is a frame-like pattern around the display area formed on the non-contact side of the touch panel front plate, and is formed so as not to show the lead wiring and the like.
In the capacitive input device of the present invention, as shown in FIG. 4, a mask layer 32 is provided so as to cover a part of the front plate 31 (a region other than the input surface in FIG. 4). . Further, the front plate 31 may be provided with an opening 38 in part as shown in FIG. A mechanical switch by pressing can be installed in the opening 38.
 図5に示すように、前面板31の接触面には、複数のパッド部分が接続部分を介して第一の方向(X)に延在して形成された複数の第一の透明電極パターン33と、第一の透明電極パターン33と電気的に絶縁され、第一の方向(X)に交差する方向に延在して形成された複数のパッド部分からなる複数の第二の透明電極パターン34と、第一の透明電極パターン33と第二の透明電極パターン34を電気的に絶縁する絶縁層35とが形成されている。上記第一の透明電極パターン33と、第二の透明電極パターン34と、後述する導電性要素36とは、例えば、ITO(Indium Tin Oxide)やIZO(Indium Zinc Oxide)などの透光性の導電性金属酸化膜で作製することができる。このような金属膜としては、ITO膜;Al、Zn、Cu、Fe、Ni、Cr、Mo等の金属膜;SiO2等の金属酸化膜などが挙げられる。この際、各要素の、膜厚は10~200nmとすることができる。また、焼成により、アモルファスのITO膜を多結晶のITO膜とするため、電気的抵抗を低減することもできる。また、上記第一の透明電極パターン33と、第二の透明電極パターン34と、後述する導電性要素36とは、上記導電性繊維を用いた感光性樹脂組成物を有する光硬化性転写材料を用いて製造することもできる。その他、ITO等によって第一の導電性パターン等を形成する場合には、特許第4506785号公報の段落0014~0016等を参考にすることができる。 As shown in FIG. 5, a plurality of first transparent electrode patterns 33 are formed on the contact surface of the front plate 31 by a plurality of pad portions extending in the first direction (X) via the connection portions. And a plurality of second transparent electrode patterns 34 each including a plurality of pad portions that are electrically insulated from the first transparent electrode pattern 33 and extend in a direction intersecting the first direction (X). And the insulating layer 35 which electrically insulates the 1st transparent electrode pattern 33 and the 2nd transparent electrode pattern 34 is formed. The first transparent electrode pattern 33, the second transparent electrode pattern 34, and the conductive element 36 to be described later are translucent conductive materials such as ITO (Indium Tin Oxide) and IZO (Indium Zinc Oxide). It can be made of a conductive metal oxide film. Examples of such metal films include ITO films; metal films such as Al, Zn, Cu, Fe, Ni, Cr, and Mo; metal oxide films such as SiO 2 . At this time, the film thickness of each element can be set to 10 to 200 nm. Further, since the amorphous ITO film is made into a polycrystalline ITO film by firing, the electrical resistance can be reduced. In addition, the first transparent electrode pattern 33, the second transparent electrode pattern 34, and the conductive element 36 described later are a photocurable transfer material having a photosensitive resin composition using the conductive fibers. It can also be manufactured. In addition, when the first conductive pattern or the like is formed of ITO or the like, paragraphs 0014 to 0016 of Japanese Patent No. 4506785 can be referred to.
 また、第一の透明電極パターン33及び第二の透明電極パターン34の少なくとも一方は、前面板31の非接触面及びマスク層32の前面板31とは逆側の面の両方の領域にまたがって設置することができる。図3においては、第二の透明電極パターンが、前面板31の非接触面及びマスク層32の前面板31とは逆側の面の両方の領域にまたがって設置されている図が示されている。 In addition, at least one of the first transparent electrode pattern 33 and the second transparent electrode pattern 34 extends over both the non-contact surface of the front plate 31 and the region opposite to the front plate 31 of the mask layer 32. Can be installed. In FIG. 3, a diagram is shown in which the second transparent electrode pattern is installed across both areas of the non-contact surface of the front plate 31 and the surface opposite to the front plate 31 of the mask layer 32. Yes.
 図5を用いて第一の透明電極パターン33及び第二の透明電極パターン34について説明する。図5は、本発明における第一の透明電極パターン及び第二の透明電極パターンの一例を示す説明図である。図5に示すように、第一の透明電極パターン33は、パッド部分33aが接続部分33bを介して第一の方向(X)に延在して形成されている。また、第二の透明電極パターン34は、第一の透明電極パターン33と絶縁層35によって電気的に絶縁されており、第一の方向(X)に交差する方向(図5における第二の方向(Y))に延在して形成された複数のパッド部分によって構成されている。ここで、第一の透明電極パターン33を形成する場合、上記パッド部分33aと接続部分33bとを一体として作製してもよいし、接続部分33bのみを作製して、パッド部分33aと第二の透明電極パターン34とを一体として作製(パターニング)してもよい。パッド部分33aと第二の透明電極パターン34とを一体として作製(パターニング)する場合、図5に示すように接続部分33bの一部とパッド部分33aの一部とが連結され、かつ、絶縁層35によって第一の透明電極パターン33と第二の透明電極パターン34とが電気的に絶縁されるように各層が形成される。 The first transparent electrode pattern 33 and the second transparent electrode pattern 34 will be described with reference to FIG. FIG. 5 is an explanatory diagram showing an example of the first transparent electrode pattern and the second transparent electrode pattern in the present invention. As shown in FIG. 5, the first transparent electrode pattern 33 is formed such that the pad portion 33a extends in the first direction (X) via the connection portion 33b. The second transparent electrode pattern 34 is electrically insulated by the first transparent electrode pattern 33 and the insulating layer 35, and intersects the first direction (X) (second direction in FIG. 5). (Y)) is constituted by a plurality of pad portions formed to extend. Here, when the first transparent electrode pattern 33 is formed, the pad portion 33a and the connection portion 33b may be manufactured as one body, or only the connection portion 33b is manufactured, and the pad portion 33a and the second portion 33b are formed. The transparent electrode pattern 34 may be integrally formed (patterned). When the pad portion 33a and the second transparent electrode pattern 34 are integrally formed (patterned), as shown in FIG. 5, a part of the connection part 33b and a part of the pad part 33a are connected, and an insulating layer is formed. Each layer is formed so that the first transparent electrode pattern 33 and the second transparent electrode pattern 34 are electrically insulated by 35.
 図3において、マスク層32の前面板31とは逆側の面側には導電性要素36が設置されている。導電性要素36は、第一の透明電極パターン33及び第二の透明電極パターン34の少なくとも一方に電気的に接続され、かつ、第一の透明電極パターン33及び第二の透明電極パターン34とは別の要素である。図3においては、導電性要素36が第二の透明電極パターン34に接続されている図が示されている。 In FIG. 3, a conductive element 36 is provided on the surface of the mask layer 32 opposite to the front plate 31. The conductive element 36 is electrically connected to at least one of the first transparent electrode pattern 33 and the second transparent electrode pattern 34, and is different from the first transparent electrode pattern 33 and the second transparent electrode pattern 34. Is another element. In FIG. 3, a view in which the conductive element 36 is connected to the second transparent electrode pattern 34 is shown.
 また、図3においては、各構成要素の全てを覆うように透明保護層37が設置されている。透明保護層37は、各構成要素の一部のみを覆うように構成されていてもよい。絶縁層35と透明保護層37とは、同一材料であってもよいし、異なる材料であってもよい。 Moreover, in FIG. 3, the transparent protective layer 37 is installed so that all of each component may be covered. The transparent protective layer 37 may be configured to cover only a part of each component. The insulating layer 35 and the transparent protective layer 37 may be made of the same material or different materials.
<静電容量型入力装置、及び、静電容量型入力装置を具備したタッチパネル表示装置>
 本発明の静電容量型入力装置、及び、上記静電容量型入力装置を構成要素として備えたタッチパネル表示装置は、『最新タッチパネル技術』(2009年7月6日発行(株)テクノタイムズ)、三谷雄二監修、“タッチパネルの技術と開発”、シーエムシー出版(2004,12)、FPD International 2009 Forum T-11講演テキストブック、Cypress Semiconductor Corporation アプリケーションノートAN2292等に開示されている構成を適用することができる。
<Capacitance type input device and touch panel display device provided with capacitance type input device>
The capacitive input device of the present invention and the touch panel display device including the capacitive input device as a constituent element are “latest touch panel technology” (issued July 6, 2009, Techno Times), Supervised by Yuji Mitani, “Touch Panel Technology and Development,” CM Publishing (2004, 12), FPD International 2009 Forum T-11 Lecture Textbook, Cypress Semiconductor Corporation Application Note AN2292, etc. it can.
 以下に実施例を挙げて本発明を更に具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。したがって、本発明の範囲は以下に示す具体例に限定されるものではない。なお、特に断りのない限り、「部」、「%」は質量基準である。 Hereinafter, the present invention will be described more specifically with reference to examples. The materials, amounts used, ratios, processing details, processing procedures, and the like shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention is not limited to the specific examples shown below. Unless otherwise specified, “part” and “%” are based on mass.
 以下の実施例において、以下の符号はそれぞれ以下の化合物を表す。
 MATHF:メタクリル酸テトラヒドロフラン-2-イル(合成品)
 GMA:グリシジルメタクリレート(和光純薬工業(株)製)
 MAA:メタクリル酸(和光純薬工業(株)製)
 MMA:メチルメタクリレート(和光純薬工業(株)製)
 St:スチレン(和光純薬工業(株)製)
 DCPM:ジシクロペンタニルメタクリレート(日立化成工業(株)製)
 V-601:ジメチル 2,2’-アゾビス(2-メチルプロピオネート)(和光純薬工業(株)製)
 PGMEA:プロピレングリコールモノメチルエーテルアセテート
In the following examples, the following symbols represent the following compounds, respectively.
MATHF: tetrahydrofuran-2-yl methacrylate (synthetic product)
GMA: Glycidyl methacrylate (manufactured by Wako Pure Chemical Industries, Ltd.)
MAA: Methacrylic acid (manufactured by Wako Pure Chemical Industries, Ltd.)
MMA: Methyl methacrylate (Wako Pure Chemical Industries, Ltd.)
St: Styrene (Wako Pure Chemical Industries, Ltd.)
DCPM: Dicyclopentanyl methacrylate (manufactured by Hitachi Chemical Co., Ltd.)
V-601: Dimethyl 2,2′-azobis (2-methylpropionate) (manufactured by Wako Pure Chemical Industries, Ltd.)
PGMEA: Propylene glycol monomethyl ether acetate
 MAEVE:メタクリル酸1-エトキシエチル(合成品)
 MACHOE:1-(シクロヘキシルオキシ)エチルメタクリレート(合成品)
 MATHP:メタクリル酸テトラヒドロ-2H-ピラン-2-イル(新中村化学工業(株)製)
 OXE-30:メタクリル酸(3-エチルオキセタン-3-イル)メチル(大阪有機化学工業(株)製)
MAEVE: 1-ethoxyethyl methacrylate (synthetic product)
MACHOE: 1- (cyclohexyloxy) ethyl methacrylate (synthetic product)
MATHP: Tetrahydro-2H-pyran-2-yl methacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd.)
OXE-30: Methacrylic acid (3-ethyloxetane-3-yl) methyl (Osaka Organic Chemical Industry Co., Ltd.)
<MATHFの合成>
 メタクリル酸(86g、1mol)を15℃に冷却しておき、カンファースルホン酸(4.6g,0.02mol)添加した。その溶液に、2-ジヒドロフラン(71g、1mol、1.0当量)を滴下した。1時間撹拌した後に、飽和炭酸水素ナトリウム(500mL)を加え、酢酸エチル(500mL)で抽出し、硫酸マグネシウムで乾燥後、不溶物をろ過後40℃以下で減圧濃縮し、残渣の黄色油状物を減圧蒸留して沸点(bp.)54~56℃/3.5mmHg留分のメタクリル酸テトラヒドロフラン-2-イル(MATHF)125gを無色油状物として得た(収率80%)。
<Synthesis of MATHF>
Methacrylic acid (86 g, 1 mol) was cooled to 15 ° C., and camphorsulfonic acid (4.6 g, 0.02 mol) was added. To the solution, 2-dihydrofuran (71 g, 1 mol, 1.0 equivalent) was added dropwise. After stirring for 1 hour, saturated sodium hydrogen carbonate (500 mL) was added, extracted with ethyl acetate (500 mL), dried over magnesium sulfate, filtered to insoluble matter and concentrated under reduced pressure at 40 ° C. or lower to give a yellow oily residue. Distillation under reduced pressure gave 125 g of tetrahydrofuran-2-yl methacrylate (MATHF) as a colorless oily substance (yield 80%) at a boiling point (bp.) Of 54 to 56 ° C./3.5 mmHg.
<酸価の測定方法>
 重合体の酸価は、水酸化カリウムを用いた滴定により測定した。
<Method for measuring acid value>
The acid value of the polymer was measured by titration using potassium hydroxide.
<体積平均粒子径の測定>
 日機装(株)製、レーザー回折・散乱式粒度分布計MT3000IIにより測定した。なお、分散液をPGMEAにて100倍に希釈して測定した。
<Measurement of volume average particle diameter>
Measurement was performed with a laser diffraction / scattering particle size distribution analyzer MT3000II manufactured by Nikkiso Co., Ltd. The dispersion was measured by diluting 100 times with PGMEA.
<分散液D1の調製>
 下記組成の分散液を調合し、これをジルコニアビーズ(0.3mmφ)17,000部と混合し、ペイントシェーカーを用いて12時間分散を行った。ジルコニアビ-ズ(0.3mmφ)をろ別し、分散液D1を得た。
・二酸化チタン(石原産業(株)製、商品名:TTO-51(C)、平均一次粒径:10~30nm):1,875部
・分散剤(DISPERBYK-111、30質量%PGMEA溶液):2,200部
・溶剤 PGMEA(プロピレングリコールモノメチルエーテルアセテート):3,425部
<Preparation of dispersion D1>
A dispersion having the following composition was prepared, mixed with 17,000 parts of zirconia beads (0.3 mmφ), and dispersed for 12 hours using a paint shaker. Zirconia beads (0.3 mmφ) were filtered off to obtain dispersion D1.
Titanium dioxide (manufactured by Ishihara Sangyo Co., Ltd., trade name: TTO-51 (C), average primary particle size: 10 to 30 nm): 1,875 parts Dispersant (DISPERBYK-111, 30% by mass PGMEA solution): 2,200 parts, solvent PGMEA (propylene glycol monomethyl ether acetate): 3,425 parts
<分散液D2及びD3の調製>
 TTO-51(C)及び分散剤を、表1に記載のものにそれぞれ変更した以外は、分散液D1の調製と同様にして、分散液D2及びD3をそれぞれ得た。
<Preparation of dispersions D2 and D3>
Dispersions D2 and D3 were obtained in the same manner as in the preparation of Dispersion D1, except that TTO-51 (C) and the dispersant were changed to those shown in Table 1, respectively.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 なお、表1に記載の分散液に使用した上述した以外の略号は、以下に示す通りである。
-無機粒子-
 TTO-51(C):二酸化チタン、石原産業(株)製、平均一次粒径10~30nm、表面処理種:Al(OH)3/ステアリン酸
 TTO-51(A):二酸化チタン、石原産業(株)製、平均一次粒径10~30nm、表面処理種:Al(OH)3
 UEP-100:二酸化ジルコニウム、第一希元素化学工業(株)製、平均一次粒径10~15nm
In addition, abbreviations other than those described above used for the dispersions described in Table 1 are as shown below.
-Inorganic particles-
TTO-51 (C): Titanium dioxide, manufactured by Ishihara Sangyo Co., Ltd., average primary particle size 10-30 nm, surface treatment species: Al (OH) 3 / stearic acid TTO-51 (A): Titanium dioxide, Ishihara Sangyo ( Co., Ltd., average primary particle size 10-30 nm, surface treatment species: Al (OH) 3
UEP-100: Zirconium dioxide, manufactured by Daiichi Elemental Chemical Co., Ltd., average primary particle size 10 to 15 nm
-分散剤-
 DISPERBYK-111:リン酸エステル構造を1以上有する高分子分散剤、ビックケミー社製
-Dispersant-
DISPERBYK-111: Polymer dispersant having one or more phosphate ester structures, manufactured by BYK Chemie
-重合体-
<重合体P1-1の合成>
 メタクリル酸テトラヒドロフラン-2-イル(0.40モル当量)、
 メタクリル酸(0.10モル当量)、
 メタクリル酸(3-エチルオキセタン-3-イル)メチル(0.50モル当量)を合計で100部、及び、
 プロピレングリコールモノメチルエーテルアセテート(PGMEA)(120部)の混合溶液を窒素気流下、70℃に加熱した。この混合溶液を撹拌しながら、ラジカル重合開始剤V-601(ジメチル-2,2’-アゾビス(2-メチルプロピオネート))、和光純薬工業(株)製、12.0部)及びPGMEA(80部)の混合溶液を3.5時間かけて滴下した。滴下が終了してから、70℃で2時間反応させることにより重合体P1-1のPGMEA溶液を得た。更にPGMEAを添加して固形分濃度30質量%に調整した。
 得られた重合体P1-1のゲルパーミエーションクロマトグラフィ(GPC)により測定した重量平均分子量(Mw)は、15,000であった。酸価は、45mgKOH/gであった。なお、得られた重合体P1-1において、使用した各モノマーのモル比と対応する各モノマー単位とのモル比とは同じであった。また、後述の重合体においても同様であった。
-Polymer-
<Synthesis of Polymer P1-1>
Tetrahydrofuran-2-yl methacrylate (0.40 molar equivalent),
Methacrylic acid (0.10 molar equivalent),
100 parts total of (3-ethyloxetane-3-yl) methyl methacrylate (0.50 molar equivalent), and
A mixed solution of propylene glycol monomethyl ether acetate (PGMEA) (120 parts) was heated to 70 ° C. under a nitrogen stream. While stirring this mixed solution, radical polymerization initiator V-601 (dimethyl-2,2′-azobis (2-methylpropionate)), manufactured by Wako Pure Chemical Industries, Ltd., 12.0 parts) and PGMEA (80 parts) of the mixed solution was added dropwise over 3.5 hours. After completion of the dropwise addition, a PGMEA solution of polymer P1-1 was obtained by reacting at 70 ° C. for 2 hours. Further, PGMEA was added to adjust the solid content concentration to 30% by mass.
The obtained polymer P1-1 had a weight average molecular weight (Mw) of 15,000 as measured by gel permeation chromatography (GPC). The acid value was 45 mg KOH / g. In the obtained polymer P1-1, the molar ratio of each monomer used and the molar ratio of each corresponding monomer unit were the same. The same was true for the polymer described later.
<P1-2の合成>
 メタクリル酸テトラヒドロフラン-2-イル(0.40モル当量)及びメタクリル酸(3-エチルオキセタン-3-イル)メチル(0.50モル当量)をメタクリル酸テトラヒドロフラン-2-イル(0.50モル当量)及びメタクリル酸(3-エチルオキセタン-3-イル)メチル(0.40モル当量)に変更した以外は、重合体P1-1の合成と同様にして、重合体P1-2のPGMEA溶液を得た。更にPGMEAを添加して固形分濃度30質量%に調整した。
 得られた重合体P1-2のゲル浸透クロマトグラフィ(GPC)により測定した重量平均分子量(Mw)は、15,000であった。酸価は、45mgKOH/gであった。
<Synthesis of P1-2>
Tetrahydrofuran-2-yl methacrylate (0.40 molar equivalent) and (3-ethyloxetan-3-yl) methyl methacrylate (0.50 molar equivalent) were added to tetrahydrofuran-2-yl methacrylate (0.50 molar equivalent). And a PGMEA solution of the polymer P1-2 was obtained in the same manner as the synthesis of the polymer P1-1 except that it was changed to (3-ethyloxetane-3-yl) methyl methacrylate (0.40 molar equivalent). . Further, PGMEA was added to adjust the solid content concentration to 30% by mass.
The weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) of the obtained polymer P1-2 was 15,000. The acid value was 45 mg KOH / g.
<P1-3の合成>
 メタクリル酸テトラヒドロフラン-2-イル(0.40モル当量)及びメタクリル酸(3-エチルオキセタン-3-イル)メチル(0.50モル当量)をメタクリル酸テトラヒドロフラン-2-イル(0.55モル当量)及びメタクリル酸(3-エチルオキセタン-3-イル)メチル(0.35モル当量)に変更した以外は、重合体P1-1の合成と同様にして、重合体P1-3のPGMEA溶液を得た。更にPGMEAを添加して固形分濃度30質量%に調整した。
 得られた重合体P1-3のゲルパーミエーションクロマトグラフィ(GPC)により測定した重量平均分子量(Mw)は、15,000であった。酸価は、45mgKOH/gであった。
<Synthesis of P1-3>
Tetrahydrofuran-2-yl methacrylate (0.40 molar equivalent) and methyl methacrylate (3-ethyloxetan-3-yl) methyl (0.50 molar equivalent) were added to tetrahydrofuran-2-yl methacrylate (0.55 molar equivalent). A PGMEA solution of polymer P1-3 was obtained in the same manner as the synthesis of polymer P1-1, except that it was changed to (3-ethyloxetane-3-yl) methyl methacrylate (0.35 molar equivalent). . Further, PGMEA was added to adjust the solid content concentration to 30% by mass.
The obtained polymer P1-3 had a weight average molecular weight (Mw) of 15,000 as measured by gel permeation chromatography (GPC). The acid value was 45 mg KOH / g.
<P1-4の合成>
 メタクリル酸テトラヒドロフラン-2-イル(0.40モル当量)及びメタクリル酸(3-エチルオキセタン-3-イル)メチル(0.50モル当量)をメタクリル酸テトラヒドロフラン-2-イル(0.65モル当量)及びメタクリル酸(3-エチルオキセタン-3-イル)メチル(0.25モル当量)に変更した以外は、重合体P1-1の合成と同様にして、重合体P1-4のPGMEA溶液を得た。更にPGMEAを添加して固形分濃度30質量%に調整した。
 得られた重合体P1-4のゲルパーミエーションクロマトグラフィ(GPC)により測定した重量平均分子量(Mw)は、15,000であった。酸価は、45mgKOH/gであった。
<Synthesis of P1-4>
Tetrahydrofuran-2-yl methacrylate (0.40 molar equivalent) and methyl methacrylate (3-ethyloxetan-3-yl) methyl (0.50 molar equivalent) were added to tetrahydrofuran-2-yl methacrylate (0.65 molar equivalent). A PGMEA solution of polymer P1-4 was obtained in the same manner as the synthesis of polymer P1-1, except that it was changed to (3-ethyloxetane-3-yl) methyl methacrylate (0.25 molar equivalent). . Further, PGMEA was added to adjust the solid content concentration to 30% by mass.
The obtained polymer P1-4 had a weight average molecular weight (Mw) of 15,000 measured by gel permeation chromatography (GPC). The acid value was 45 mg KOH / g.
<P1-5の合成>
 メタクリル酸テトラヒドロフラン-2-イル(0.40モル当量)及びメタクリル酸(3-エチルオキセタン-3-イル)メチル(0.50モル当量)をメタクリル酸テトラヒドロフラン-2-イル(0.75モル当量)及びメタクリル酸(3-エチルオキセタン-3-イル)メチル(0.15モル当量)に変更した以外は、重合体P1-1の合成と同様にして、重合体P1-5のPGMEA溶液を得た。更にPGMEAを添加して固形分濃度30質量%に調整した。
 得られた重合体P1-5のゲルパーミエーションクロマトグラフィ(GPC)により測定した重量平均分子量(Mw)は、15,000であった。酸価は、45mgKOH/gであった。
<Synthesis of P1-5>
Tetrahydrofuran-2-yl methacrylate (0.40 molar equivalent) and methyl methacrylate (3-ethyloxetan-3-yl) methyl (0.50 molar equivalent) were added to tetrahydrofuran-2-yl methacrylate (0.75 molar equivalent). A PGMEA solution of polymer P1-5 was obtained in the same manner as the synthesis of polymer P1-1, except that it was changed to (3-ethyloxetane-3-yl) methyl methacrylate (0.15 molar equivalent). . Further, PGMEA was added to adjust the solid content concentration to 30% by mass.
The obtained polymer P1-5 had a weight average molecular weight (Mw) of 15,000 as measured by gel permeation chromatography (GPC). The acid value was 45 mg KOH / g.
<P1-6の合成>
 メタクリル酸テトラヒドロフラン-2-イル(0.40モル当量)及びメタクリル酸(3-エチルオキセタン-3-イル)メチル(0.50モル当量)をメタクリル酸テトラヒドロフラン-2-イル(0.20モル当量)及びメタクリル酸(3-エチルオキセタン-3-イル)メチル(0.70モル当量)に変更した以外は、重合体P1-1の合成と同様にして、重合体P1-6のPGMEA溶液を得た。更にPGMEAを添加して固形分濃度30質量%に調整した。
 得られた重合体P1-6のゲルパーミエーションクロマトグラフィ(GPC)により測定した重量平均分子量(Mw)は、15,000であった。酸価は、45mgKOH/gであった。
<Synthesis of P1-6>
Tetrahydrofuran-2-yl methacrylate (0.40 molar equivalent) and methyl methacrylate (3-ethyloxetan-3-yl) methyl (0.50 molar equivalent) were added to tetrahydrofuran-2-yl methacrylate (0.20 molar equivalent). A PGMEA solution of polymer P1-6 was obtained in the same manner as the synthesis of polymer P1-1, except that it was changed to (3-ethyloxetane-3-yl) methyl methacrylate (0.70 molar equivalent). . Further, PGMEA was added to adjust the solid content concentration to 30% by mass.
The weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) of the obtained polymer P1-6 was 15,000. The acid value was 45 mg KOH / g.
<重合体P2-1の合成>
 モノマー組成を以下に変更した以外は、重合体P1と同様の方法により、重合体P2-1のPGMEA溶液を得た。更にPGMEAを添加して固形分濃度30質量%に調整した。
 メタクリル酸テトラヒドロフラン-2-イル(0.65モル当量)、
 メタクリル酸(0.15モル当量)、
 メチルメタクリレート(0.20モル当量)
 得られた重合体P2-1のゲルパーミエーションクロマトグラフィ(GPC)により測定した重量平均分子量(Mw)は、15,000であった。酸価は、60mgKOH/gであった。
<Synthesis of Polymer P2-1>
A PGMEA solution of polymer P2-1 was obtained in the same manner as for polymer P1, except that the monomer composition was changed as follows. Further, PGMEA was added to adjust the solid content concentration to 30% by mass.
Tetrahydrofuran-2-yl methacrylate (0.65 molar equivalent),
Methacrylic acid (0.15 molar equivalent),
Methyl methacrylate (0.20 molar equivalent)
The obtained polymer P2-1 had a weight average molecular weight (Mw) of 15,000 measured by gel permeation chromatography (GPC). The acid value was 60 mgKOH / g.
<重合体P2-2の合成>
 メタクリル酸テトラヒドロフラン-2-イル(0.65モル当量)、メタクリル酸(0.15モル当量)及びメチルメタクリレート(0.20モル当量)をメタクリル酸テトラヒドロフラン-2-イル(0.80モル当量)、メタクリル酸(0.10モル当量)及びメチルメタクリレート(0.10モル当量)に変更した以外は、重合体P2-1の合成と同様にして、重合体P2-2のPGMEA溶液を得た。更にPGMEAを添加して固形分濃度30質量%に調整した。
 得られた重合体P2-2のゲルパーミエーションクロマトグラフィ(GPC)により測定した重量平均分子量(Mw)は、15,000であった。酸価は、60mgKOH/gであった。
<Synthesis of Polymer P2-2>
Tetrahydrofuran-2-yl methacrylate (0.65 molar equivalent), methacrylic acid (0.15 molar equivalent) and methyl methacrylate (0.20 molar equivalent) were added to tetrahydrofuran-2-yl methacrylate (0.80 molar equivalent), A PGMEA solution of polymer P2-2 was obtained in the same manner as in the synthesis of polymer P2-1 except that methacrylic acid (0.10 molar equivalent) and methyl methacrylate (0.10 molar equivalent) were used. Further, PGMEA was added to adjust the solid content concentration to 30% by mass.
The obtained polymer P2-2 had a weight average molecular weight (Mw) of 15,000 measured by gel permeation chromatography (GPC). The acid value was 60 mgKOH / g.
<重合体P2-3の合成>
 メタクリル酸テトラヒドロフラン-2-イル(0.65モル当量)、メタクリル酸(0.15モル当量)及びメチルメタクリレート(0.20モル当量)をメタクリル酸テトラヒドロフラン-2-イル(0.55モル当量)、メタクリル酸(0.20モル当量)及びメチルメタクリレート(0.25モル当量)に変更した以外は、重合体P2-1の合成と同様にして、重合体P2-3のPGMEA溶液を得た。更にPGMEAを添加して固形分濃度30質量%に調整した。
 得られた重合体P2-3のゲルパーミエーションクロマトグラフィ(GPC)により測定した重量平均分子量(Mw)は、15,000であった。酸価は、60mgKOH/gであった。
<Synthesis of Polymer P2-3>
Tetrahydrofuran-2-yl methacrylate (0.65 molar equivalent), methacrylic acid (0.15 molar equivalent) and methyl methacrylate (0.20 molar equivalent) were added to tetrahydrofuran-2-yl methacrylate (0.55 molar equivalent), A PGMEA solution of polymer P2-3 was obtained in the same manner as in the synthesis of polymer P2-1 except that methacrylic acid (0.20 molar equivalent) and methyl methacrylate (0.25 molar equivalent) were used. Further, PGMEA was added to adjust the solid content concentration to 30% by mass.
The weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) of the obtained polymer P2-3 was 15,000. The acid value was 60 mgKOH / g.
<重合体P3の合成>
 モノマー組成を以下に変更した以外は、重合体P1-1と同様の方法により、重合体P3のPGMEA溶液を得た。更にPGMEAを添加して固形分濃度30質量%に調整した。
 グリシジルメタクリレート(0.70モル当量)、
 メタクリル酸(0.10モル当量)、
 スチレン(0.15モル当量)、
 ジシクロペンタニルメタクリレート(0.05モル当量)
 得られた重合体P3のゲルパーミエーションクロマトグラフィ(GPC)により測定した重量平均分子量(Mw)は、12,000であった。酸価は、45mgKOH/gであった。
<Synthesis of Polymer P3>
A PGMEA solution of polymer P3 was obtained in the same manner as polymer P1-1, except that the monomer composition was changed as follows. Further, PGMEA was added to adjust the solid content concentration to 30% by mass.
Glycidyl methacrylate (0.70 molar equivalent),
Methacrylic acid (0.10 molar equivalent),
Styrene (0.15 molar equivalent),
Dicyclopentanyl methacrylate (0.05 molar equivalent)
The obtained polymer P3 had a weight average molecular weight (Mw) of 12,000 as measured by gel permeation chromatography (GPC). The acid value was 45 mg KOH / g.
<重合体P4の合成>
 メタクリル酸テトラヒドロフラン-2-イルをメタクリル酸1-エトキシエチル(MAEVE)に変更した以外は、重合体P1-1の合成と同様にして、重合体P4のPGMEA溶液を得た。更にPGMEAを添加して固形分濃度30質量%に調整した。
 得られた重合体P4のゲルパーミエーションクロマトグラフィ(GPC)により測定した重量平均分子量(Mw)は、15,000であった。酸価は、45mgKOH/gであった。
<Synthesis of Polymer P4>
A PGMEA solution of polymer P4 was obtained in the same manner as the synthesis of polymer P1-1 except that tetrahydrofuran-2-yl methacrylate was changed to 1-ethoxyethyl methacrylate (MAEVE). Further, PGMEA was added to adjust the solid content concentration to 30% by mass.
The weight average molecular weight (Mw) measured by the gel permeation chromatography (GPC) of the obtained polymer P4 was 15,000. The acid value was 45 mg KOH / g.
<重合体P5の合成>
 メタクリル酸テトラヒドロフラン-2-イルを1-(シクロヘキシルオキシ)エチルメタクリレート(MACHOE)に変更した以外は、重合体P1-1の合成と同様にして、重合体P5のPGMEA溶液を得た。更にPGMEAを添加して固形分濃度30質量%に調整した。
 得られた重合体P5のゲルパーミエーションクロマトグラフィ(GPC)により測定した重量平均分子量(Mw)は、15,000であった。酸価は、45mgKOH/gであった。
<Synthesis of Polymer P5>
A PGMEA solution of polymer P5 was obtained in the same manner as the synthesis of polymer P1-1 except that tetrahydrofuran-2-yl methacrylate was changed to 1- (cyclohexyloxy) ethyl methacrylate (MACHOE). Further, PGMEA was added to adjust the solid content concentration to 30% by mass.
The weight average molecular weight (Mw) measured by the gel permeation chromatography (GPC) of the obtained polymer P5 was 15,000. The acid value was 45 mg KOH / g.
<重合体P6の合成>
 メタクリル酸テトラヒドロフラン-2-イルをメタクリル酸テトラヒドロ-2H-ピラン-2-イル(MATHP)に変更した以外は、重合体P1-1の合成と同様にして、重合体P6のPGMEA溶液を得た。更にPGMEAを添加して固形分濃度30質量%に調整した。
 得られた重合体P6のゲルパーミエーションクロマトグラフィ(GPC)により測定した重量平均分子量(Mw)は、15,000であった。酸価は、45mgKOH/gであった。
<Synthesis of Polymer P6>
A PGMEA solution of polymer P6 was obtained in the same manner as the synthesis of polymer P1-1 except that tetrahydrofuran-2-yl methacrylate was changed to tetrahydro-2H-pyran-2-yl methacrylate (MATHP). Further, PGMEA was added to adjust the solid content concentration to 30% by mass.
The weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) of the obtained polymer P6 was 15,000. The acid value was 45 mg KOH / g.
 なお、MAEVEは、2-ジヒドロフランを対応する化合物に変更した以外、上記MATHFと同様の方法で合成した。
 また、MACHOEは、2-ジヒドロフランを対応する化合物に変更した以外、上記MATHFと同様の方法で合成した。
Note that MAEVE was synthesized in the same manner as MATH, except that 2-dihydrofuran was changed to the corresponding compound.
MACHOE was synthesized in the same manner as MATH, except that 2-dihydrofuran was changed to the corresponding compound.
<重合体P7の合成>
 グリシジルメタクリレートをメタクリル酸(3-エチルオキセタン-3-イル)メチル(OXE-30)に変更した以外は、重合体P3の合成と同様にして、重合体P7のPGMEA溶液を得た。更にPGMEAを添加して固形分濃度30質量%に調整した。
 得られた重合体P7のゲルパーミエーションクロマトグラフィ(GPC)により測定した重量平均分子量(Mw)は、12,000であった。酸価は、45mgKOH/gであった。
<Synthesis of Polymer P7>
A PGMEA solution of polymer P7 was obtained in the same manner as the synthesis of polymer P3 except that glycidyl methacrylate was changed to (3-ethyloxetane-3-yl) methyl methacrylate (OXE-30). Further, PGMEA was added to adjust the solid content concentration to 30% by mass.
The obtained polymer P7 had a weight average molecular weight (Mw) of 12,000 as measured by gel permeation chromatography (GPC). The acid value was 45 mg KOH / g.
<光酸発生剤>
 B1:下記構造の化合物(合成品)
 B2:下記構造の化合物(合成品)
 B3:下記構造の化合物(合成品)
 B4:CGI-1397(下記構造の化合物、BASF社製)
 B5:下記構造の化合物(特表2002-528451号公報の段落0108に記載の方法に従って合成した。)
<Photo acid generator>
B1: Compound having the following structure (synthetic product)
B2: Compound having the following structure (synthetic product)
B3: Compound having the following structure (synthetic product)
B4: CGI-1397 (compound with the following structure, manufactured by BASF)
B5: Compound having the following structure (synthesized according to the method described in paragraph 0108 of JP-T-2002-528451)
<B1の合成>
 2-ナフトール(10g)、クロロベンゼン(30mL)の懸濁溶液に塩化アルミニウム(10.6g)、2-クロロプロピオニルクロリド(10.1g)を添加し、混合液を40℃に加熱して2時間反応させた。氷冷下、反応液に4N HCl水溶液(60mL)を滴下し、酢酸エチル(50mL)を添加して分液した。有機層に炭酸カリウム(19.2g)を加え、40℃で1時間反応させた後、2N HCl水溶液(60mL)を添加して分液し、有機層を濃縮後、結晶をジイソプロピルエーテル(10mL)でリスラリーし、ろ過、乾燥してケトン化合物(6.5g)を得た。
 得られたケトン化合物(3.0g)、メタノール(18mL)の懸濁溶液に酢酸(7.3g)、50重量%ヒドロキシルアミン水溶液(8.0g)を添加し、10時間加熱還流した。放冷後、水(50mL)を加え、析出した結晶をろ過、冷メタノール洗浄後、乾燥してオキシム化合物(2.4g)を得た。
 得られたオキシム化合物(1.8g)をアセトン(20mL)に溶解させ、氷冷下トリエチルアミン(1.5g)、p-トルエンスルホニルクロリド(2.4g)を添加し、室温に昇温して1時間反応させた。反応液に水(50mL)を添加し、析出した結晶をろ過後、メタノール(20mL)でリスラリーし、ろ過、乾燥してB1(2.3g)を得た。
 なお、B1の1H-NMRスペクトル(300MHz、CDCl3)は、δ=8.3(d,1H),8.0(d,2H),7.9(d,1H),7.8(d,1H),7.6(dd,1H),7.4(dd,1H)7.3(d,2H),7.1(d,1H),5.6(q,1H),2.4(s,3H),1.7(d,3H)であった。
<Synthesis of B1>
Aluminum chloride (10.6 g) and 2-chloropropionyl chloride (10.1 g) were added to a suspension of 2-naphthol (10 g) and chlorobenzene (30 mL), and the mixture was heated to 40 ° C. for 2 hours. I let you. Under ice-cooling, 4N HCl aqueous solution (60 mL) was added dropwise to the reaction solution, and ethyl acetate (50 mL) was added for liquid separation. Potassium carbonate (19.2 g) was added to the organic layer, reacted at 40 ° C. for 1 hour, 2N HCl aqueous solution (60 mL) was added and separated, and the organic layer was concentrated, and the crystal was converted to diisopropyl ether (10 mL). The slurry was then reslurried, filtered and dried to obtain a ketone compound (6.5 g).
Acetic acid (7.3 g) and 50% by weight hydroxylamine aqueous solution (8.0 g) were added to a suspension of the obtained ketone compound (3.0 g) and methanol (18 mL), and the mixture was heated to reflux for 10 hours. After allowing to cool, water (50 mL) was added, and the precipitated crystals were filtered, washed with cold methanol, and dried to obtain an oxime compound (2.4 g).
The obtained oxime compound (1.8 g) was dissolved in acetone (20 mL), triethylamine (1.5 g) and p-toluenesulfonyl chloride (2.4 g) were added under ice cooling, and the temperature was raised to room temperature. Reacted for hours. Water (50 mL) was added to the reaction solution, and the precipitated crystals were filtered, reslurried with methanol (20 mL), filtered and dried to obtain B1 (2.3 g).
The 1 H-NMR spectrum (300 MHz, CDCl 3 ) of B1 is δ = 8.3 (d, 1H), 8.0 (d, 2H), 7.9 (d, 1H), 7.8 ( d, 1H), 7.6 (dd, 1H), 7.4 (dd, 1H) 7.3 (d, 2H), 7.1 (d, 1H), 5.6 (q, 1H), 2 .4 (s, 3H), 1.7 (d, 3H).
<B2の合成>
 1-アミノ-2-ナフトール塩酸塩(東京化成工業(株)製)4.0gをN-メチルピロリドン(和光純薬工業(株)製)16gに懸濁させ、炭酸水素ナトリウム(和光純薬工業(株)製)3.4gを添加後、4,4-ジメチル-3-オキソ吉草酸メチル(和光純薬工業(株)製)4.9gを滴下し、窒素雰囲気下120℃で2時間加熱した。放冷後、反応混合液に水、酢酸エチルを添加して分液し、有機相を硫酸マグネシウムで乾燥し、ろ過、濃縮して粗B2Aを得た。粗B2Aをシリカゲルカラムクロマトグラフィー精製して、中間体B2Aを1.7g得た。
 B2A(1.7g)とp-キシレン(6mL)を混合し、p-トルエンスルホン酸一水和物(和光純薬工業(株)製)0.23gを添加して140℃で2時間加熱した。放冷後、反応混合液に水、酢酸エチルを添加して分液し、有機相を硫酸マグネシウムで乾燥後、ろ過、濃縮して粗B2Bを得た。
 THF(2mL)と粗B2B全量を混合し、氷冷下2M塩酸/THF溶液6.0mL、次いで亜硝酸イソペンチル(和光純薬工業(株)製)(0.84g)を滴下し、室温まで昇温後2時間撹拌した。得られた反応混合物に水、酢酸エチルを添加して分液し、有機層を水で洗浄後、硫酸マグネシウムで乾燥し、ろ過、濃縮して中間体粗B2Cを得た。
 中間体粗B2C全量をアセトン(10mL)と混合し、氷冷下でトリエチルアミン(和光純薬工業(株)製)(1.2g)、p-トルエンスルホニルクロリド(東京化成工業(株)製)(1.4g)を添加後、室温まで昇温して1時間撹拌した。得られた反応混合液に水、酢酸エチルを添加して分液し、有機相を硫酸マグネシウムで乾燥後、ろ過、濃縮して粗B2を得た。粗B2を冷メタノールでリスラリー後、ろ過、乾燥してB2(1.2g)を得た。
<Synthesis of B2>
4.0 g of 1-amino-2-naphthol hydrochloride (manufactured by Tokyo Chemical Industry Co., Ltd.) is suspended in 16 g of N-methylpyrrolidone (manufactured by Wako Pure Chemical Industries, Ltd.), and sodium hydrogen carbonate (Wako Pure Chemical Industries, Ltd.). After adding 3.4 g), methyl 4,4-dimethyl-3-oxovalerate (Wako Pure Chemical Industries, Ltd.) 4.9 g was added dropwise and heated at 120 ° C. for 2 hours in a nitrogen atmosphere. did. After allowing to cool, water and ethyl acetate were added to the reaction mixture and the phases were separated, and the organic phase was dried over magnesium sulfate, filtered and concentrated to obtain crude B2A. Crude B2A was purified by silica gel column chromatography to obtain 1.7 g of intermediate B2A.
B2A (1.7 g) and p-xylene (6 mL) were mixed, 0.23 g of p-toluenesulfonic acid monohydrate (manufactured by Wako Pure Chemical Industries, Ltd.) was added, and the mixture was heated at 140 ° C. for 2 hours. . After allowing to cool, water and ethyl acetate were added to the reaction mixture and the phases were separated. The organic phase was dried over magnesium sulfate, filtered and concentrated to obtain crude B2B.
THF (2 mL) and the whole amount of crude B2B were mixed, and 6.0 mL of 2M hydrochloric acid / THF solution was added under ice cooling, followed by isopentyl nitrite (manufactured by Wako Pure Chemical Industries, Ltd.) (0.84 g), and the mixture was allowed to rise to room temperature. The mixture was stirred for 2 hours after warming. Water and ethyl acetate were added to the obtained reaction mixture for liquid separation, and the organic layer was washed with water, dried over magnesium sulfate, filtered and concentrated to obtain intermediate crude B2C.
The total amount of the intermediate crude B2C was mixed with acetone (10 mL), and triethylamine (Wako Pure Chemical Industries, Ltd.) (1.2 g) and p-toluenesulfonyl chloride (Tokyo Chemical Industry Co., Ltd.) under ice cooling ( After adding 1.4 g), the mixture was warmed to room temperature and stirred for 1 hour. Water and ethyl acetate were added to the resulting reaction mixture to separate it, and the organic phase was dried over magnesium sulfate, filtered and concentrated to obtain crude B2. Crude B2 was reslurried with cold methanol, filtered and dried to obtain B2 (1.2 g).
 なお、B2の1H-NMRスペクトル(300MHz、CDCl3)は、δ=8.5-8.4(m,1H),8.0-7.9(m,4H),7.7-7.6(m,2H),7.6-7.5(m,1H),7.4(d,2H),2.4(s,3H),1.4(s,9H)であった。 The 1 H-NMR spectrum (300 MHz, CDCl 3 ) of B2 is δ = 8.5-8.4 (m, 1H), 8.0-7.9 (m, 4H), 7.7-7. .6 (m, 2H), 7.6-7.5 (m, 1H), 7.4 (d, 2H), 2.4 (s, 3H), 1.4 (s, 9H) .
<B3の合成>
 B1におけるp-トルエンスルホニルクロリドの代わりにベンゼンスルホニルクロリドを用いた以外は、B1と同様にしてB3を合成した。
 なお、B3の1H-NMRスペクトル(300MHz、CDCl3)は、δ=8.3(d,1H),8.1(d,2H),7.9(d,1H),7.8(d,1H),7.7-7.5(m,4H),7.4(dd,1H),7.1(d,1H),5.6(q,1H),1.7(d,3H)であった。
<Synthesis of B3>
B3 was synthesized in the same manner as B1 except that benzenesulfonyl chloride was used instead of p-toluenesulfonyl chloride in B1.
The 1 H-NMR spectrum (300 MHz, CDCl 3 ) of B3 is δ = 8.3 (d, 1H), 8.1 (d, 2H), 7.9 (d, 1H), 7.8 ( d, 1H), 7.7-7.5 (m, 4H), 7.4 (dd, 1H), 7.1 (d, 1H), 5.6 (q, 1H), 1.7 (d , 3H).
(実施例1)
<感光性樹脂組成物の調製>
 下記組成にて、配合し混合して均一な溶液とした後、0.2μmのポアサイズを有するポリエチレン製フィルターを用いてろ過して、実施例1の感光性樹脂組成物を調製した。得られた感光性樹脂組成物を用い、後述する各種評価を行った。評価結果を後述の表3及び表4に示す。
・プロピレングリコールモノメチルエーテルアセテート:191.1部
・下記化合物(東洋化成工業(株)製、CMTU)の0.2%PGMEA溶液:25.7部
・重合体P1の30%PGMEA溶液:263.3部
・光酸発生剤B1:5.1部
・JER157S65(エポキシ樹脂、三菱化学(株)製、エポキシ当量:200~220g/eq):17.9部
・3-グリシドキシプロピルトリメトキシシラン(KBM-403、信越化学工業(株)製):4.5部
・イルガノックス1726(酸化防止剤、2,4-ビス(ドデシルチオメチル)-6-メチルフェノール、BASF社製):3.0部
・パーフルオロアルキル基含有ノニオン界面活性剤(F-554、DIC(株)製)の2.0%PGMEA溶液:11.0部
・分散液D1:478.4部
(Example 1)
<Preparation of photosensitive resin composition>
After mixing and mixing with the following composition to make a uniform solution, the mixture was filtered using a polyethylene filter having a pore size of 0.2 μm to prepare a photosensitive resin composition of Example 1. Various evaluations described later were performed using the obtained photosensitive resin composition. The evaluation results are shown in Tables 3 and 4 below.
-Propylene glycol monomethyl ether acetate: 191.1 parts-0.2% PGMEA solution of the following compound (Toyo Kasei Kogyo Co., Ltd., CMTU): 25.7 parts-30% PGMEA solution of polymer P1: 263.3 Parts / photo acid generator B1: 5.1 parts / JER157S65 (epoxy resin, manufactured by Mitsubishi Chemical Corporation, epoxy equivalent: 200 to 220 g / eq): 17.9 parts / 3-glycidoxypropyltrimethoxysilane ( KBM-403, manufactured by Shin-Etsu Chemical Co., Ltd.): 4.5 parts Irganox 1726 (antioxidant, 2,4-bis (dodecylthiomethyl) -6-methylphenol, manufactured by BASF): 3.0 Part: Perfluoroalkyl group-containing nonionic surfactant (F-554, manufactured by DIC Corporation) 2.0% PGMEA solution: 11.0 parts Dispersion D1: 4 8.4 parts
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
<シュリンク率の測定>
 ヘキサメチルジシラザン(HMDS)を用いて、3分処理した100mm×100mmのガラス基板(商品名:XG、コーニング社製)上に、得られた感光性樹脂組成物を膜厚2.0μmとなるようにスピンコーターにて塗布し、80℃のホットプレート上で120秒乾燥(プリベーク)し、溶剤を除去した。続いて(株)堀場製作所製、クリーンオーブンPVC-211(設定温度200℃、5分で熱電対を用い膜面温度195℃以上に到達を確認した。)を用い、200℃20分での加熱後の膜厚を測定した。なお、膜厚の測定は、触針式表面形状測定器Dektak((株)アルバック製)により、膜の中央部分の3箇所(N=3)を測定して平均値をとり、算出した。実施例1ではシュリンク率(=r2×100(%))が28.9%となった。
 また、上記溶剤を除去した感光性樹脂組成物層、0.5%の水酸化カリウム(KOH)水溶液により23℃で30秒間液盛り法にて現像し、更に超純水で10秒間リンスし、膜厚を測定した。リンス後の層に対し、上記と同様な方法で200℃20分加熱し、その後、膜厚を測定した。現像及びリンス後の膜厚と、現像、リンス及び加熱後の膜厚とを測定したが、実施例1では上記と同様のシュリンク率であった。
<Measurement of shrink rate>
The resulting photosensitive resin composition has a thickness of 2.0 μm on a 100 mm × 100 mm glass substrate (trade name: XG, manufactured by Corning) treated with hexamethyldisilazane (HMDS) for 3 minutes. As described above, the solution was applied with a spin coater and dried (prebaked) for 120 seconds on a hot plate at 80 ° C. to remove the solvent. Subsequently, using a clean oven PVC-211 (manufactured by HORIBA, Ltd.) (heating temperature at 200 ° C. for 20 minutes was confirmed using a thermocouple at a preset temperature of 200 ° C. for 5 minutes). The subsequent film thickness was measured. In addition, the measurement of the film thickness was calculated by measuring three locations (N = 3) in the central portion of the film with a stylus type surface shape measuring device Dektak (manufactured by ULVAC, Inc.) and taking an average value. In Example 1, the shrink rate (= r 2 × 100 (%)) was 28.9%.
The photosensitive resin composition layer from which the solvent was removed, developed with a 0.5% aqueous potassium hydroxide (KOH) solution at 23 ° C. for 30 seconds, and rinsed with ultrapure water for 10 seconds, The film thickness was measured. The layer after rinsing was heated at 200 ° C. for 20 minutes in the same manner as described above, and then the film thickness was measured. The film thickness after development and rinsing and the film thickness after development, rinsing and heating were measured. In Example 1, the shrink rate was the same as above.
<屈折率の測定>
 得られた感光性樹脂組成物を、シリコンウエハ基板上に塗布し、80℃で120秒乾燥することによって厚さ0.5μmの膜を形成した。この基板を、超高圧水銀灯を用いて200mJ/cm2(i線で測定)で露光し、その後オーブンにて150℃で60分加熱した。
 エリプソメーターVUV-VASE(ジェー・エー・ウーラム・ジャパン(株)製)を用いて、589nmでの硬化膜の屈折率を測定した。屈折率が高いほうが好ましく、1.70以上がより好ましい。
<Measurement of refractive index>
The obtained photosensitive resin composition was applied on a silicon wafer substrate and dried at 80 ° C. for 120 seconds to form a film having a thickness of 0.5 μm. This substrate was exposed at 200 mJ / cm 2 (measured with i-line) using an ultrahigh pressure mercury lamp, and then heated in an oven at 150 ° C. for 60 minutes.
The refractive index of the cured film at 589 nm was measured using an ellipsometer VUV-VASE (manufactured by JA Woollam Japan Co., Ltd.). A higher refractive index is preferable, and 1.70 or more is more preferable.
<解像力評価>
 ヘキサメチルジシラザン(HMDS)を用いて、3分処理した100mm×100mmのガラス基板(商品名:XG、コーニング社製)上に、得られた感光性樹脂組成物を膜厚2.0μmとなるようにスピンコーターにて塗布し、80℃のホットプレート上で120秒乾燥(プリベーク)した。
 次に、ghi線高圧水銀灯露光機を用いて、照度20mW/cm2、200mJ/cm2にて、ラインアンドスペース1:1の1%~60%グラデーション付きマスクを介して露光した。
 次に、0.5%のKOH水溶液により23℃で30秒間液盛り法にて現像し、更に超純水で10秒間リンスした。続いて150℃60分加熱してパターンを得た。このパターンを光学顕微鏡で観察した。
 この操作をマスクのラインアンドスペースの幅50μmから開始し、10μmまでは、5μmずつ、10μm以下は、幅を1μmずつ狭めていき、最適露光量部分のきれいにパターン作製できた最小幅を解像度とした。4又は3が実用範囲である。
  4:解像度が5μm以下であった。
  3:解像度が5μmを超え10μm以下であった。
  2:解像度が10μmを超え50μm以下であった。
  1:マスクのラインアンドスペースの幅50μmでパターンを形成できなかった。
<Resolution evaluation>
The resulting photosensitive resin composition has a thickness of 2.0 μm on a 100 mm × 100 mm glass substrate (trade name: XG, manufactured by Corning) treated with hexamethyldisilazane (HMDS) for 3 minutes. Thus, it was applied with a spin coater and dried (prebaked) for 120 seconds on an 80 ° C. hot plate.
Next, using a ghi-line high pressure mercury lamp exposure machine, exposure was performed through a 1% to 60% gradation mask with a line and space of 1: 1 at an illuminance of 20 mW / cm 2 and 200 mJ / cm 2 .
Next, the film was developed with a 0.5% KOH aqueous solution at 23 ° C. for 30 seconds and rinsed with ultrapure water for 10 seconds. Subsequently, a pattern was obtained by heating at 150 ° C. for 60 minutes. This pattern was observed with an optical microscope.
This operation is started from the width of the mask line and space of 50 μm, and until 10 μm, the width is reduced by 5 μm by 10 μm, and the width is reduced by 1 μm. . 4 or 3 is a practical range.
4: The resolution was 5 μm or less.
3: The resolution was more than 5 μm and 10 μm or less.
2: The resolution was more than 10 μm and 50 μm or less.
1: A pattern could not be formed with a line and space width of 50 μm of the mask.
<テーパー形状評価>
 上記で形成された、ラインアンドスペースの幅50μmの断面を走査型電子顕微鏡(SEM)にてテーパー形状を観察した。ghi線高圧水銀灯露光機を用いて、照度20mW/cm2、200mJ/cm2でマスクと基板のギャップを100μmで露光した。コリメーションアングルは2度であった。なお、上記露光機は、超高圧水銀灯を有するプロキシミティー型露光機(日立ハイテク電子エンジニアリング(株)製)を使用した。
 上記テーパー形状のテーパー角に基づく、評価基準を以下に示す。
  5:20°以上30°以下
  4:30°を超え40°以下
  3:40°を超え50°以下
  2:50°を超え75°以下であるか、又は、15°を超え20°未満
  1:75°を超えるか、又は、15°以下
<Taper shape evaluation>
The taper shape of the section of the line-and-space width 50 μm formed above was observed with a scanning electron microscope (SEM). Using a ghi-line high pressure mercury lamp exposure machine, the gap between the mask and the substrate was exposed to 100 μm at an illuminance of 20 mW / cm 2 and 200 mJ / cm 2 . The collimation angle was 2 degrees. Note that a proximity type exposure machine (manufactured by Hitachi High-Tech Electronics Engineering Co., Ltd.) having an ultrahigh pressure mercury lamp was used as the exposure machine.
Evaluation criteria based on the taper angle of the tapered shape are shown below.
5: 20 ° or more and 30 ° or less 4: 30 ° or more and 40 ° or less 3: 40 ° or more and 50 ° or less 2: 50 ° or more and 75 ° or less, or 15 ° or more and less than 20 ° 1: Over 75 ° or below 15 °
 上記「テーパー角」とは、ライン幅方向のパターンの断面形状において、パターンの側面と、パターンが形成されている基板平面とのなす角である。なお、パターンの断面形状が半円や弓形等であり、側面の断面が曲線の場合も、パターンの最上部と基板との中点、すなわち膜厚1/2の点における接線と板基板平面とのなす角とする。
 テーパー角の具体例としては、図6~図9に示す各パターン断面形状におけるθがテーパー角である。
 図6に示すテーパー形状は、テーパー角が20°以上30°以下の場合の一例である。テーパー角が20°以上30°以下であると、硬化膜の高さが十分得られると共に、ITO等の配線を蒸着した場合に断線の発生を抑制することができる。
 図7に示すテーパー形状は、テーパー角が20°未満の場合の一例である。テーパー角が20°未満であると、硬化膜の高さが十分得られず、また、露光パターンの再現性に劣る。
 図8に示すテーパー形状は、テーパー角が75°を超え90°以下の場合の一例である。テーパー角が75°を超えると、ITO等の配線を蒸着した場合に断線が生じやすくなる。
 図9に示すテーパー形状は、テーパー角が90°を超える場合の一例である。テーパー角が90°を超えると、エッチングにおけるサイドエッチと同じような形状となり、ITO等の配線を蒸着した場合に断線が非常に生じやすい。
The “taper angle” is an angle formed by the side surface of the pattern and the substrate plane on which the pattern is formed in the cross-sectional shape of the pattern in the line width direction. In addition, even when the cross-sectional shape of the pattern is a semicircle or an arcuate shape and the cross-section of the side surface is a curve, the tangent line at the midpoint between the uppermost part of the pattern and the substrate, that is, the point of the film thickness 1/2 and the plate substrate plane The angle formed by
As a specific example of the taper angle, θ in each pattern cross-sectional shape shown in FIGS. 6 to 9 is the taper angle.
The taper shape shown in FIG. 6 is an example when the taper angle is 20 ° or more and 30 ° or less. When the taper angle is 20 ° or more and 30 ° or less, the height of the cured film can be sufficiently obtained, and the occurrence of disconnection can be suppressed when a wiring such as ITO is deposited.
The taper shape shown in FIG. 7 is an example when the taper angle is less than 20 °. If the taper angle is less than 20 °, the height of the cured film cannot be obtained sufficiently, and the reproducibility of the exposure pattern is poor.
The taper shape shown in FIG. 8 is an example when the taper angle is more than 75 ° and not more than 90 °. When the taper angle exceeds 75 °, disconnection is likely to occur when wiring such as ITO is deposited.
The taper shape shown in FIG. 9 is an example when the taper angle exceeds 90 °. When the taper angle exceeds 90 °, the shape is similar to that of side etching in etching, and disconnection is very likely to occur when a wiring such as ITO is deposited.
(実施例2~22及び比較例5)
 各成分を表2に記載のものに変更した以外は、実施例1と同様に、実施例2~22及び比較例5の感光性樹脂組成物を調製し、更に得られた感光性樹脂組成物を用い、各種評価を行った。評価結果を後述の表3及び表4に示す。
(Examples 2 to 22 and Comparative Example 5)
The photosensitive resin compositions of Examples 2 to 22 and Comparative Example 5 were prepared in the same manner as in Example 1 except that the components were changed to those shown in Table 2, and the resulting photosensitive resin composition was obtained. Various evaluations were performed using The evaluation results are shown in Tables 3 and 4 below.
(比較例1~4)
 上記分散液D1を用い、酸化チタン濃度が50質量%になるように、バインダーとモノマーとの質量比は1.0とし、表2に示す開始剤は3質量%とし、界面活性剤メガファックF-554は0.1質量%とし、全固形分14質量%のPGMEA溶液として、それぞれ調製した。更に得られた感光性樹脂組成物を用い、各種評価を行った。評価結果を後述の表3及び表4に示す。
・上記バインダー:公知の方法に従って下記樹脂を合成した(Mw=30,000)。
(Comparative Examples 1 to 4)
Using the above dispersion D1, the mass ratio of the binder to the monomer is 1.0 so that the titanium oxide concentration is 50% by mass, the initiator shown in Table 2 is 3% by mass, and the surfactant Megafac F is used. -554 was 0.1% by mass, and each PGMEA solution having a total solid content of 14% by mass was prepared. Furthermore, various evaluation was performed using the obtained photosensitive resin composition. The evaluation results are shown in Tables 3 and 4 below.
-Binder: The following resin was synthesized according to a known method (Mw = 30,000).
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
・上記モノマー:DPHA(ジペンタエリスリトールヘキサアクリレート70質量%とジペンタエリスリトールペンタアクリレート30質量%との混合物)
・OXE-02:開始剤、下記化合物、BASF社製、IRGACURE OXE 02
・OXE-01:開始剤、下記化合物、BASF社製、IRGACURE OXE 01
-Monomer: DPHA (mixture of 70% by mass of dipentaerythritol hexaacrylate and 30% by mass of dipentaerythritol pentaacrylate)
OXE-02: initiator, the following compound, manufactured by BASF, IRGACURE OXE 02
OXE-01: initiator, the following compound, manufactured by BASF, IRGACURE OXE 01
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
 なお、比較例4では、現像による膜べりが見られた。
 また、比較例1~3の解像力評価においては、解像力が2のランクであり、かつ、一部にラインアンドスペースパターンのつぶれた箇所が見られた。
In Comparative Example 4, film slippage due to development was observed.
Further, in the resolving power evaluation of Comparative Examples 1 to 3, the resolving power was rank 2, and a portion where the line and space pattern was crushed was partially observed.
(実施例23)
 特許第3321003号公報の図1に記載のアクティブマトリクス型液晶表示装置において、層間絶縁膜として硬化膜17を以下のようにして形成し、実施例の液晶表示装置を得た。すなわち、実施例1の感光性樹脂組成物を基板上にスピン塗布し、ホットプレート上でプリベーク(80℃/120秒)した後、マスク上から高圧水銀灯を用いてi線(365nm)を200mJ/cm2(エネルギー強度20mW/cm2)照射した後、アルカリ水溶液にて現像してパターンを形成し、150℃/60分間の加熱処理を行い、層間絶縁膜として硬化膜を形成した。
(Example 23)
In the active matrix liquid crystal display device shown in FIG. 1 of Japanese Patent No. 3321003, a cured film 17 was formed as an interlayer insulating film as follows, and a liquid crystal display device of an example was obtained. That is, the photosensitive resin composition of Example 1 was spin-coated on a substrate, pre-baked (80 ° C./120 seconds) on a hot plate, and then i-line (365 nm) was 200 mJ / mm from the mask using a high-pressure mercury lamp. After irradiation with cm 2 (energy intensity 20 mW / cm 2 ), development was performed with an alkaline aqueous solution to form a pattern, and heat treatment was performed at 150 ° C./60 minutes to form a cured film as an interlayer insulating film.
 得られた液晶表示装置に対して、駆動電圧を印加したところ、良好な表示特性を示し、信頼性の高い液晶表示装置であることが分かった。 When a driving voltage was applied to the obtained liquid crystal display device, it was found that the liquid crystal display device showed good display characteristics and high reliability.
(実施例24)
 薄膜トランジスター(TFT)を用いた有機EL表示装置を以下の方法で作製した(図2参照)。
 ガラス基板6上にボトムゲート型のTFT1を形成し、このTFT1を覆う状態でSi34から成る絶縁膜3を形成した。次に、この絶縁膜3に、ここでは図示を省略したコンタクトホールを形成した後、このコンタクトホールを介してTFT1に接続される配線2(高さ1.0μm)を絶縁膜3上に形成した。この配線2は、TFT1間、又は、後の工程で形成される有機EL素子とTFT1とを接続するためのCu配線である。
(Example 24)
An organic EL display device using a thin film transistor (TFT) was produced by the following method (see FIG. 2).
A bottom gate type TFT 1 was formed on a glass substrate 6, and an insulating film 3 made of Si 3 N 4 was formed so as to cover the TFT 1. Next, a contact hole (not shown) is formed in the insulating film 3, and then a wiring 2 (height 1.0 μm) connected to the TFT 1 through the contact hole is formed on the insulating film 3. . This wiring 2 is a Cu wiring for connecting the TFT 1 to an organic EL element formed between TFTs 1 or in a later process.
 更に、配線2の形成による凹凸を平坦化するために、配線2による凹凸を埋め込む状態で絶縁膜3上へ平坦化膜4を形成した。絶縁膜3上への平坦化膜4の形成は、実施例1の感光性樹脂組成物を基板上にスピン塗布し、ホットプレート上でプリベーク(80℃/120秒)した後、マスク上から高圧水銀灯を用いてi線(365nm)を200mJ/cm2(エネルギー強度20mW/cm2)照射した後、アルカリ水溶液にて現像してパターンを形成し、150℃/60分間の加熱処理を行った。
 感光性樹脂組成物を塗布する際の塗布性は良好で、露光、現像、焼成の後に得られた硬化膜には、しわやクラックの発生は認められなかった。更に、配線2の平均段差は500nm、作製した平坦化膜4の膜厚は2,000nmであった。
Further, in order to flatten the unevenness due to the formation of the wiring 2, the flattening film 4 was formed on the insulating film 3 in a state where the unevenness due to the wiring 2 was embedded. The planarization film 4 is formed on the insulating film 3 by spin-coating the photosensitive resin composition of Example 1 on a substrate, pre-baking (80 ° C./120 seconds) on a hot plate, and then applying high pressure from above the mask. After irradiating i-line (365 nm) with 200 mJ / cm 2 (energy intensity 20 mW / cm 2 ) using a mercury lamp, a pattern was formed by developing with an alkaline aqueous solution, and heat treatment was performed at 150 ° C./60 minutes.
The applicability when applying the photosensitive resin composition was good, and no wrinkles or cracks were observed in the cured film obtained after exposure, development and baking. Furthermore, the average step of the wiring 2 was 500 nm, and the thickness of the prepared planarizing film 4 was 2,000 nm.
 次に、得られた平坦化膜4上に、ボトムエミッション型の有機EL素子を形成した。まず、平坦化膜4上に、ITOからなる第一電極5を、コンタクトホール7を介して配線2に接続させて形成した。その後、レジストを塗布、プリベークし、所望のパターンのマスクを介して露光し、現像した。このレジストパターンをマスクとして、ITOエッチャント用いたウエットエッチングによりパターン加工を行った。その後、レジスト剥離液(リムーバ100、AZエレクトロニックマテリアルズ社製)を用いて上記レジストパターンを50℃で剥離した。こうして得られた第一電極5は、有機EL素子の陽極に相当する。 Next, a bottom emission type organic EL element was formed on the obtained flattening film 4. First, a first electrode 5 made of ITO was formed on the planarizing film 4 so as to be connected to the wiring 2 through the contact hole 7. Thereafter, a resist was applied, prebaked, exposed through a mask having a desired pattern, and developed. Using this resist pattern as a mask, pattern processing was performed by wet etching using an ITO etchant. Thereafter, the resist pattern was stripped at 50 ° C. using a resist stripper (remover 100, manufactured by AZ Electronic Materials). The first electrode 5 thus obtained corresponds to the anode of the organic EL element.
 次に、第一電極5の周縁を覆う形状の絶縁膜8を形成した。絶縁膜8には、実施例1の感光性樹脂組成物を用い、上記と同様の方法で絶縁膜8を形成した。この絶縁膜8を設けることによって、第一電極5とこの後の工程で形成する第二電極との間のショートを防止することができる。 Next, an insulating film 8 having a shape covering the periphery of the first electrode 5 was formed. As the insulating film 8, the photosensitive resin composition of Example 1 was used, and the insulating film 8 was formed by the same method as described above. By providing this insulating film 8, it is possible to prevent a short circuit between the first electrode 5 and the second electrode formed in the subsequent process.
 更に、真空蒸着装置内で所望のパターンマスクを介して、正孔輸送層、有機発光層、電子輸送層を順次蒸着して設けた。次いで、基板上方の全面にAlから成る第二電極を形成した。得られた上記基板を蒸着機から取り出し、封止用ガラス板と紫外線硬化型エポキシ樹脂を用いて貼り合わせることで封止した。 Further, a hole transport layer, an organic light emitting layer, and an electron transport layer were sequentially deposited through a desired pattern mask in a vacuum deposition apparatus. Next, a second electrode made of Al was formed on the entire surface above the substrate. The obtained board | substrate was taken out from the vapor deposition machine, and it sealed by bonding together using the glass plate for sealing, and an ultraviolet curable epoxy resin.
 以上のようにして、各有機EL素子にこれを駆動するためのTFT1が接続してなるアクティブマトリックス型の有機EL表示装置が得られた。駆動回路を介して電圧を印加したところ、良好な表示特性を示し、信頼性の高い有機EL表示装置であることが分かった。 As described above, an active matrix type organic EL display device in which each organic EL element is connected to the TFT 1 for driving it was obtained. When a voltage was applied via the drive circuit, it was found that the organic EL display device showed good display characteristics and high reliability.
(実施例25)
 以下に述べる方法により本発明の高屈折率の硬化性樹脂材料を用いてタッチパネル表示装置を作製した。
<第一の透明電極パターンの形成>
[透明電極層の形成]
 あらかじめマスク層が形成された強化処理ガラス(300mm×400mm×0.7mm)の前面板を、真空チャンバー内に導入し、SnO2含有率が10質量%のITOターゲット(インジウム:錫=95:5(モル比))を用いて、DCマグネトロンスパッタリング(条件:基材の温度250℃、アルゴン圧0.13Pa、酸素圧0.01Pa)により、厚さ40nmのITO薄膜を形成し、透明電極層を形成した前面板を得た。ITO薄膜の表面抵抗は80Ω/□であった。
(Example 25)
A touch panel display device was produced using the high refractive index curable resin material of the present invention by the method described below.
<Formation of first transparent electrode pattern>
[Formation of transparent electrode layer]
A front plate of tempered glass (300 mm × 400 mm × 0.7 mm) with a mask layer formed in advance is introduced into a vacuum chamber, and an ITO target (indium: tin = 95: 5) with a SnO 2 content of 10% by mass. (Molar ratio)) was used to form an ITO thin film having a thickness of 40 nm by DC magnetron sputtering (conditions: substrate temperature 250 ° C., argon pressure 0.13 Pa, oxygen pressure 0.01 Pa), and a transparent electrode layer was formed. A formed front plate was obtained. The surface resistance of the ITO thin film was 80Ω / □.
 次いで、市販のエッチングレジストをITO上に塗布・乾燥し、エッチングレジスト層を形成した。露光マスク(透明電極パターンを有す石英露光マスク)面と上記エッチングレジスト層との間の距離を100μmに設定し、露光量50mJ/cm2(i線)でパターン露光したのち、専用の現像液で現像を行い、更に130℃30分間のポストベーク処理を行って、透明電極層とエッチングレジスト層パターンとを形成した前面板を得た。 Next, a commercially available etching resist was applied onto ITO and dried to form an etching resist layer. The distance between the surface of the exposure mask (quartz exposure mask having a transparent electrode pattern) and the etching resist layer is set to 100 μm, pattern exposure is performed at an exposure amount of 50 mJ / cm 2 (i-line), and then a dedicated developer. And a post-baking treatment at 130 ° C. for 30 minutes to obtain a front plate on which a transparent electrode layer and an etching resist layer pattern were formed.
 透明電極層とエッチングレジスト層パターンとを形成した前面板を、ITOエッチャント(塩酸、塩化カリウム水溶液。液温30℃)を入れたエッチング槽に浸漬し、100秒処理し、エッチングレジスト層で覆われていない露出した領域の透明電極層を溶解除去し、エッチングレジスト層パターンのついた透明電極層パターン付の前面板を得た。
 次に、エッチングレジスト層パターンのついた透明電極層パターン付の前面板を、専用のレジスト剥離液に浸漬し、エッチングレジスト層を除去し、マスク層と第一の透明電極パターンとを形成した前面板を得た。
The front plate on which the transparent electrode layer and the etching resist layer pattern are formed is immersed in an etching bath containing ITO etchant (hydrochloric acid, potassium chloride aqueous solution, liquid temperature 30 ° C.), treated for 100 seconds, and covered with the etching resist layer. The exposed transparent electrode layer was removed by dissolution to obtain a front plate with a transparent electrode layer pattern with an etching resist layer pattern.
Next, the front plate with the transparent electrode layer pattern with the etching resist layer pattern is immersed in a dedicated resist stripping solution, the etching resist layer is removed, and the mask layer and the first transparent electrode pattern are formed. A face plate was obtained.
[絶縁層の形成]
 マスク層と第一の透明電極パターンとを形成した前面板の上に、実施例1の感光性樹脂組成物を塗布・乾燥(膜厚1μm、80℃120秒)し、感光性樹脂組成物層を得た。露光マスク(絶縁層用パターンを有す石英露光マスク)面と上記感光性樹脂組成物層との間の距離を30μmに設定し、露光量200mJ/cm2(i線)でパターン露光した。
 次に、2.38質量%のテトラメチルアンモニウムヒドロキシド水溶液により23℃で15秒間液盛り法にて現像し、更に超純水で10秒間リンスした。続いて220℃45分のポストベーク処理を行って、マスク層、第一の透明電極パターン、絶縁層パターンを形成した前面板を得た。
[Formation of insulating layer]
On the front plate on which the mask layer and the first transparent electrode pattern were formed, the photosensitive resin composition of Example 1 was applied and dried (film thickness: 1 μm, 80 ° C., 120 seconds) to form a photosensitive resin composition layer. Got. The distance between the exposure mask (quartz exposure mask having an insulating layer pattern) surface and the photosensitive resin composition layer was set to 30 μm, and pattern exposure was performed at an exposure amount of 200 mJ / cm 2 (i-line).
Next, the film was developed with a 2.38 mass% tetramethylammonium hydroxide aqueous solution at 23 ° C. for 15 seconds and rinsed with ultrapure water for 10 seconds. Subsequently, a post-bake treatment at 220 ° C. for 45 minutes was performed to obtain a front plate on which a mask layer, a first transparent electrode pattern, and an insulating layer pattern were formed.
<第二の透明電極パターンの形成>
[透明電極層の形成]
 上記第一の透明電極パターンの形成と同様にして、絶縁層パターンまで形成した前面板をDCマグネトロンスパッタリング処理し(条件:基材の温度50℃、アルゴン圧0.13Pa、酸素圧0.01Pa)、厚さ80nmのITO薄膜を形成し、透明電極層を形成した前面板を得た。ITO薄膜の表面抵抗は110Ω/□であった。
 第一の透明電極パターンの形成と同様にして、市販のエッチングレジストを用いて、第一の透明電極パターン、実施例1の感光性樹脂組成物を用いて形成した絶縁層パターン、透明電極層、エッチングレジストパターンを形成した前面板を得た(ポストベーク処理;130℃30分間)。
 更に、第一の透明電極パターンの形成と同様にして、エッチングし、エッチングレジスト層を除去することにより、マスク層、第一の透明電極パターン、実施例1の感光性樹脂組成物用いて形成した絶縁層パターン、第二の透明電極パターンを形成した前面板を得た。
<Formation of second transparent electrode pattern>
[Formation of transparent electrode layer]
In the same manner as the formation of the first transparent electrode pattern, the front plate formed up to the insulating layer pattern was subjected to DC magnetron sputtering treatment (conditions: substrate temperature 50 ° C., argon pressure 0.13 Pa, oxygen pressure 0.01 Pa). An ITO thin film having a thickness of 80 nm was formed to obtain a front plate on which a transparent electrode layer was formed. The surface resistance of the ITO thin film was 110Ω / □.
Similarly to the formation of the first transparent electrode pattern, using a commercially available etching resist, the first transparent electrode pattern, an insulating layer pattern formed using the photosensitive resin composition of Example 1, a transparent electrode layer, A front plate on which an etching resist pattern was formed was obtained (post-baking treatment; 130 ° C. for 30 minutes).
Further, etching was performed in the same manner as the formation of the first transparent electrode pattern, and the etching resist layer was removed to form the mask layer, the first transparent electrode pattern, and the photosensitive resin composition of Example 1. A front plate on which an insulating layer pattern and a second transparent electrode pattern were formed was obtained.
<第一及び第二の透明電極パターンとは別の導電性要素の形成>
 上記第一、及び、第二の透明電極パターンの形成と同様にして、第一の透明電極パターン、実施例1の感光性樹脂組成物を用いて形成した絶縁層パターン、第二の透明電極パターンを形成した前面板をDCマグネトロンスパッタリング処理し、厚さ200nmのアルミニウム(Al)薄膜を形成した前面板を得た。
 上記第一、及び、第二の透明電極パターンの形成と同様にして、市販のエッチングレジストを用いて、第一の透明電極パターン、実施例1の感光性樹脂組成物を用いて形成した絶縁層パターン、第二の透明電極パターン、エッチングレジストパターンを形成した前面板を得た(ポストベーク処理;130℃30分間)。
 更に、第一の透明電極パターンの形成と同様にして、エッチング(30℃50秒間)し、エッチングレジスト層を除去(45℃200秒間)することにより、マスク層、第一の透明電極パターン、実施例1の感光性樹脂組成物を用いて形成した絶縁層パターン、第二の透明電極パターン、第一及び第二の透明電極パターンとは別の導電性要素を形成した前面板を得た。
<Formation of Conductive Element Different from First and Second Transparent Electrode Pattern>
Similar to the formation of the first and second transparent electrode patterns, the first transparent electrode pattern, the insulating layer pattern formed using the photosensitive resin composition of Example 1, and the second transparent electrode pattern The front plate on which was formed was subjected to DC magnetron sputtering to obtain a front plate on which an aluminum (Al) thin film having a thickness of 200 nm was formed.
Insulating layer formed using the first transparent electrode pattern, the photosensitive resin composition of Example 1, using a commercially available etching resist in the same manner as the formation of the first and second transparent electrode patterns. A front plate on which a pattern, a second transparent electrode pattern, and an etching resist pattern were formed was obtained (post-bake treatment; 130 ° C. for 30 minutes).
Further, in the same manner as the formation of the first transparent electrode pattern, etching (30 ° C. for 50 seconds) is performed, and the etching resist layer is removed (45 ° C. for 200 seconds). A front plate on which a conductive element different from the insulating layer pattern, the second transparent electrode pattern, and the first and second transparent electrode patterns formed using the photosensitive resin composition of Example 1 was obtained was obtained.
<透明保護層の形成>
 絶縁層の形成と同様にして、上記第一及び第二の透明電極パターンとは別の導電性要素まで形成した前面板に、実施例1の感光性樹脂組成物を塗布・乾燥(膜厚1μm、90℃120秒)し、感光性樹脂組成物膜を得た。更に、露光マスクを介さずに露光量50mJ/cm2(i線)で前面露光し、現像、ポスト露光(1,000mJ/cm2)、ポストベーク処理を行って、マスク層、第一の透明電極パターン、実施例1の感光性樹脂組成物を用いて形成した絶縁層パターン、第二の透明電極パターン、第一及び第二の透明電極パターンとは別の導電性要素の全てを覆うように実施例1の感光性樹脂組成物を用いて形成した絶縁層(透明保護層)を積層した前面板を得た。
<Formation of transparent protective layer>
In the same manner as the formation of the insulating layer, the photosensitive resin composition of Example 1 was applied and dried (film thickness: 1 μm) on the front plate formed up to the conductive element different from the first and second transparent electrode patterns. , 90 ° C. for 120 seconds) to obtain a photosensitive resin composition film. Furthermore, the front exposure is performed with an exposure amount of 50 mJ / cm 2 (i-line) without using an exposure mask, development, post-exposure (1,000 mJ / cm 2 ), and post-bake treatment are performed to obtain a mask layer and a first transparent The electrode pattern, the insulating layer pattern formed using the photosensitive resin composition of Example 1, the second transparent electrode pattern, and all the conductive elements different from the first and second transparent electrode patterns are covered. The front board which laminated | stacked the insulating layer (transparent protective layer) formed using the photosensitive resin composition of Example 1 was obtained.
<画像表示装置(タッチパネル)の作製>
 特開2009-47936号公報に記載の方法で製造した液晶表示素子に、先に製造した前面板を貼り合わせ、公知の方法で静電容量型入力装置を構成要素として備えた画像表示装置を作製した。
<Production of image display device (touch panel)>
A liquid crystal display device manufactured by the method described in Japanese Patent Application Laid-Open No. 2009-47936 is bonded to the previously manufactured front plate, and an image display device including a capacitive input device as a constituent element is manufactured by a known method. did.
<前面板、及び、画像表示装置の評価>
 第一の透明電極パターン、第二の透明電極パターン、及び、これらとは別の導電性要素の、各々の導電性には問題がなく、一方で、第一の透明電極パターンと第二の透明電極パターンの間では絶縁性を有しており、タッチパネルとして良好な表示特性が得られた。更に、第一及び第二の透明電極パターンは視認されにくく、表示特性に優れた画像表示装置が得られた。
<Evaluation of front plate and image display device>
There is no problem in the conductivity of each of the first transparent electrode pattern, the second transparent electrode pattern, and other conductive elements, while the first transparent electrode pattern and the second transparent electrode pattern Between the electrode patterns, there was insulation, and good display characteristics as a touch panel were obtained. Furthermore, the first and second transparent electrode patterns were hardly visible and an image display device having excellent display characteristics was obtained.
 1:TFT(薄膜トランジスター)、2:配線、3:絶縁膜、4:平坦化膜、5:第一電極、6:ガラス基板、7:コンタクトホール、8:絶縁膜、10:液晶表示装置、12:バックライトユニット、14,15:ガラス基板、16:TFT、17:硬化膜、18:コンタクトホール、19:ITO透明電極、20:液晶、22:カラーフィルター、30:静電容量型入力装置、31:前面板、32:マスク層、33:第一の透明電極パターン、33a:パッド部分、33b:接続部分、34:第二の透明電極パターン、35:絶縁層、36:導電性要素、37:透明保護層、38:開口部、100:基板、102:基板表面、104:硬化膜、X:第一の方向、Y:第二の方向、θ:テーパー角 1: TFT (thin film transistor), 2: wiring, 3: insulating film, 4: planarization film, 5: first electrode, 6: glass substrate, 7: contact hole, 8: insulating film, 10: liquid crystal display device, 12: Backlight unit, 14, 15: Glass substrate, 16: TFT, 17: Cured film, 18: Contact hole, 19: ITO transparent electrode, 20: Liquid crystal, 22: Color filter, 30: Capacitive input device 31: front plate, 32: mask layer, 33: first transparent electrode pattern, 33a: pad portion, 33b: connection portion, 34: second transparent electrode pattern, 35: insulating layer, 36: conductive element, 37: transparent protective layer, 38: opening, 100: substrate, 102: substrate surface, 104: cured film, X: first direction, Y: second direction, θ: taper angle

Claims (16)

  1.  工程(a)及び(b)をこの順に含むことを特徴とする硬化膜の製造方法。
     (a)(成分A)無機粒子、(成分B)酸基が酸分解性基で保護された基を有する構成単位を含む重合体、及び、(成分C)光酸発生剤を含有する感光性樹脂組成物を使用し、下記式(2)を満たし、かつ前記感光性樹脂組成物の固形分からなる層を基板上に形成する層形成工程
     (b)前記感光性樹脂組成物の固形分からなる層を熱処理する熱処理工程
       収縮率r2=(t20-t21)/t20≧0.15   (2)
    式中、t20は感光性樹脂組成物の固形分からなる層の厚みを表し、t21は前記層を200℃で20分間加熱した後の厚みを表す。
    The manufacturing method of the cured film characterized by including process (a) and (b) in this order.
    (A) (Component A) inorganic particles, (Component B) a polymer containing a structural unit having a group in which an acid group is protected by an acid-decomposable group, and (Component C) a photosensitizer containing a photoacid generator A layer forming step of forming a layer composed of the solid content of the photosensitive resin composition on the substrate using the resin composition and satisfying the following formula (2): (b) a layer composed of the solid content of the photosensitive resin composition Heat treatment step for heat treating Shrinkage ratio r 2 = (t 20 −t 21 ) / t 20 ≧ 0.15 (2)
    In the formula, t 20 represents the thickness of the layer made of the solid content of the photosensitive resin composition, and t 21 represents the thickness after heating the layer at 200 ° C. for 20 minutes.
  2.  前記熱処理の温度が、120℃以上200℃以下である、請求項1に記載の硬化膜の製造方法。 The method for producing a cured film according to claim 1, wherein the temperature of the heat treatment is 120 ° C or higher and 200 ° C or lower.
  3.  前記熱処理の温度が、120℃以上175℃以下である、請求項1又は2に記載の硬化膜の製造方法。 The manufacturing method of the cured film of Claim 1 or 2 whose temperature of the said heat processing is 120 to 175 degreeC.
  4.  前記熱処理が、120℃以上175℃以下の温度で30~180分間行われる、請求項1~3のいずれか1項に記載の硬化膜の製造方法。 The method for producing a cured film according to any one of claims 1 to 3, wherein the heat treatment is performed at a temperature of 120 ° C to 175 ° C for 30 to 180 minutes.
  5.  前記酸基が酸分解性基で保護された基を有する構成単位を含む重合体の全構成単位に対し、前記酸基が酸分解性基で保護された基を有する構成単位の割合が、50~95モル%である、請求項1~4のいずれか1項に記載の硬化膜の製造方法。 The ratio of the structural unit having a group in which the acid group is protected with an acid-decomposable group to the total structural unit of the polymer including the structural unit having a group in which the acid group is protected with an acid-decomposable group is 50 The method for producing a cured film according to any one of claims 1 to 4, which is -95 mol%.
  6.  前記酸基が酸分解性基で保護された基を有する構成単位を含む重合体の全構成単位に対し、前記酸基が酸分解性基で保護された基を有する構成単位の割合が、65~85モル%である、請求項1~5のいずれか1項に記載の硬化膜の製造方法。 The ratio of the structural unit having a group in which the acid group is protected by an acid-decomposable group to the total structural unit of the polymer including the structural unit having a group in which the acid group is protected by an acid-decomposable group is 65 The method for producing a cured film according to any one of claims 1 to 5, wherein the content is -85 mol%.
  7.  前記酸基が酸分解性基で保護された基を有する構成単位が、下記式(a1-1-1)で表される構成単位である、請求項1~6のいずれか1項に記載の硬化膜の製造方法。
    Figure JPOXMLDOC01-appb-C000001
    式中、Rは水素原子又はメチル基を表す。
    The structural unit having a group in which the acid group is protected with an acid-decomposable group is a structural unit represented by the following formula (a1-1-1). A method for producing a cured film.
    Figure JPOXMLDOC01-appb-C000001
    In the formula, R represents a hydrogen atom or a methyl group.
  8.  成分Aが、金属酸化物粒子である、請求項1~7のいずれか1項に記載の硬化膜の製造方法。 The method for producing a cured film according to any one of claims 1 to 7, wherein Component A is metal oxide particles.
  9.  成分Aが、酸化チタン粒子又は酸化ジルコニウム粒子である、請求項1~8のいずれか1項に記載の硬化膜の製造方法。 The method for producing a cured film according to any one of claims 1 to 8, wherein the component A is titanium oxide particles or zirconium oxide particles.
  10.  (成分D)熱架橋剤を更に含む、請求項1~9のいずれか1項に記載の硬化膜の製造方法。 10. The method for producing a cured film according to claim 1, further comprising (Component D) a thermal crosslinking agent.
  11.  (成分E)酸化防止剤を更に含む、請求項1~10のいずれか1項に記載の硬化膜の製造方法。 The method for producing a cured film according to any one of claims 1 to 10, further comprising (Component E) an antioxidant.
  12.  請求項1~11のいずれか1項に記載の硬化膜の製造方法により得られた硬化膜。 A cured film obtained by the method for producing a cured film according to any one of claims 1 to 11.
  13.  層間絶縁膜である、請求項12に記載の硬化膜。 The cured film according to claim 12, which is an interlayer insulating film.
  14.  請求項12又は13に記載の硬化膜を有する液晶表示装置。 A liquid crystal display device having the cured film according to claim 12 or 13.
  15.  請求項12又は13に記載の硬化膜を有する有機EL表示装置。 An organic EL display device having the cured film according to claim 12 or 13.
  16.  請求項12又は13に記載の硬化膜を有するタッチパネル表示装置。 A touch panel display device having the cured film according to claim 12 or 13.
PCT/JP2014/053023 2013-02-12 2014-02-10 Method for producing cured film, cured film, liquid crystal display device, organic el display device, and touch panel display device WO2014126033A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015500221A JPWO2014126033A1 (en) 2013-02-12 2014-02-10 Manufacturing method of cured film, cured film, liquid crystal display device, organic EL display device, and touch panel display device
CN201480007791.9A CN104981739A (en) 2013-02-12 2014-02-10 Method for producing cured film, cured film, liquid crystal display device, organic el display device, and touch panel display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-024563 2013-02-12
JP2013024563 2013-02-12

Publications (1)

Publication Number Publication Date
WO2014126033A1 true WO2014126033A1 (en) 2014-08-21

Family

ID=51354036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053023 WO2014126033A1 (en) 2013-02-12 2014-02-10 Method for producing cured film, cured film, liquid crystal display device, organic el display device, and touch panel display device

Country Status (4)

Country Link
JP (1) JPWO2014126033A1 (en)
CN (1) CN104981739A (en)
TW (1) TW201439669A (en)
WO (1) WO2014126033A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016029610A1 (en) * 2014-08-25 2016-03-03 京东方科技集团股份有限公司 Mask plate, mask plate assembly, method for manufacturing pixel and pixel structure
JP2016071243A (en) * 2014-09-30 2016-05-09 富士フイルム株式会社 Method for forming resin pattern, method for forming pattern, cured film, liquid crystal display device, organic el display device, and touch panel display device
US9349922B2 (en) 2014-08-25 2016-05-24 Boe Technology Group Co., Ltd. Mask, mask group, manufacturing method of pixels and pixel structure
WO2016154843A1 (en) * 2015-03-30 2016-10-06 Rohm And Haas Electronic Materials Llc Composite transparent pressure sensing film
WO2016154842A1 (en) * 2015-03-30 2016-10-06 Rohm And Haas Electronic Materials Llc A transparent pressure sensing film with hybrid particles
KR20170132199A (en) * 2015-03-30 2017-12-01 롬 앤드 하스 일렉트로닉 머트어리얼즈 엘엘씨 Transparent pressure sensitive film composition
WO2018021497A1 (en) * 2016-07-29 2018-02-01 三菱ケミカル株式会社 Photosensitive resin composition, cured product, interlayer insulating film, tft active matrix substrate, and image display device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160116409A1 (en) * 2014-10-28 2016-04-28 Omnivision Technologies, Inc. Color-Sensitive Image Sensor With Embedded Microfluidics And Associated Methods
CN107924081B (en) * 2015-08-31 2021-12-10 富士胶片株式会社 Liquid crystal cell and three-dimensional liquid crystal cell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005292613A (en) * 2004-04-02 2005-10-20 Matsushita Electric Ind Co Ltd Resist material and pattern forming method using the same
JP2012098557A (en) * 2010-11-02 2012-05-24 Fujifilm Corp Photosensitive resin composition for mems structure component, pattern manufacturing method, and mems structure and manufacturing method thereof
CN102759859A (en) * 2011-04-27 2012-10-31 富士胶片株式会社 Method for making resin composition, hardening composition, and resin pattern, hardening composition, and optical component

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005292613A (en) * 2004-04-02 2005-10-20 Matsushita Electric Ind Co Ltd Resist material and pattern forming method using the same
JP2012098557A (en) * 2010-11-02 2012-05-24 Fujifilm Corp Photosensitive resin composition for mems structure component, pattern manufacturing method, and mems structure and manufacturing method thereof
CN102759859A (en) * 2011-04-27 2012-10-31 富士胶片株式会社 Method for making resin composition, hardening composition, and resin pattern, hardening composition, and optical component

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016029610A1 (en) * 2014-08-25 2016-03-03 京东方科技集团股份有限公司 Mask plate, mask plate assembly, method for manufacturing pixel and pixel structure
US9349922B2 (en) 2014-08-25 2016-05-24 Boe Technology Group Co., Ltd. Mask, mask group, manufacturing method of pixels and pixel structure
JP2016071243A (en) * 2014-09-30 2016-05-09 富士フイルム株式会社 Method for forming resin pattern, method for forming pattern, cured film, liquid crystal display device, organic el display device, and touch panel display device
WO2016154843A1 (en) * 2015-03-30 2016-10-06 Rohm And Haas Electronic Materials Llc Composite transparent pressure sensing film
WO2016154842A1 (en) * 2015-03-30 2016-10-06 Rohm And Haas Electronic Materials Llc A transparent pressure sensing film with hybrid particles
KR20170132199A (en) * 2015-03-30 2017-12-01 롬 앤드 하스 일렉트로닉 머트어리얼즈 엘엘씨 Transparent pressure sensitive film composition
US20180066126A1 (en) * 2015-03-30 2018-03-08 Rohm And Haas Electronic Materials Llc Transparent pressure sensing film with hybrid particles
JP2018517231A (en) * 2015-03-30 2018-06-28 ローム アンド ハース エレクトロニック マテリアルズ エルエルシーRohm and Haas Electronic Materials LLC Transparent pressure-sensitive membrane containing hybrid particles
KR102026628B1 (en) 2015-03-30 2019-09-30 롬 앤드 하스 일렉트로닉 머트어리얼즈 엘엘씨 Transparent pressure sensitive film composition
WO2018021497A1 (en) * 2016-07-29 2018-02-01 三菱ケミカル株式会社 Photosensitive resin composition, cured product, interlayer insulating film, tft active matrix substrate, and image display device
KR20190034209A (en) * 2016-07-29 2019-04-01 미쯔비시 케미컬 주식회사 A photosensitive resin composition, a cured product, an interlayer insulating film, a TFT active matrix substrate, and an image display device
KR102351163B1 (en) 2016-07-29 2022-01-14 미쯔비시 케미컬 주식회사 Photosensitive resin composition, cured product, interlayer insulating film, TFT active matrix substrate, and image display device

Also Published As

Publication number Publication date
TW201439669A (en) 2014-10-16
CN104981739A (en) 2015-10-14
JPWO2014126033A1 (en) 2017-02-02

Similar Documents

Publication Publication Date Title
WO2014126033A1 (en) Method for producing cured film, cured film, liquid crystal display device, organic el display device, and touch panel display device
JP6224725B2 (en) Photosensitive resin composition, method for producing cured film, cured film, liquid crystal display device, and organic EL display device
JP5873450B2 (en) Photosensitive resin composition, method for producing cured film, cured film, liquid crystal display device, and organic EL display device
JP5904890B2 (en) Photosensitive transfer material, method for producing cured film, method for producing organic EL display device, method for producing liquid crystal display device, and method for producing capacitive input device
WO2014126034A1 (en) Photosensitive resin composition for inkjet application, heat-treated substance, manufacturing method therefor, resin-pattern manufacturing method, liquid-crystal display, organic electroluminescent display, touch panel, manufacturing method therefor, and touch-panel display
JP6016918B2 (en) Photosensitive resin composition, method for producing cured product, method for producing resin pattern, cured film, liquid crystal display device, organic EL display device, and touch panel display device
WO2014199967A1 (en) Photosensitive resin composition, cured product, method for producing cured product, method for producing resin pattern, cured film, liquid crystal display device, organic el display device, and touch panel display device
JP6041883B2 (en) Photosensitive resin composition, cured product and production method thereof, resin pattern production method, cured film, liquid crystal display device, organic EL display device, and touch panel display device
WO2014136922A1 (en) Photosensitive resin composition, cured article, method for producing same, method for producing resin pattern, cured film, liquid crystal display device, organic el display device, and touch panel display device
JP2015207284A (en) Pattern forming method, cured product, method for manufacturing touch panel or display panel, and display device
JP2013171101A (en) Positive photosensitive resin composition, production method of cured film, cured film, organic el display device and liquid crystal display device
JP5528230B2 (en) Positive photosensitive resin composition, method for forming cured film, cured film, organic EL display device, and liquid crystal display device
JP6012750B2 (en) Photosensitive resin composition, method for producing cured product, method for producing resin pattern, cured film, organic EL display device, liquid crystal display device, and touch panel display device
JP5883928B2 (en) Photosensitive resin composition, method for forming cured film, cured film, organic EL display device, and liquid crystal display device
JP5871706B2 (en) Chemical amplification type positive photosensitive resin composition and interlayer insulating film
WO2014065351A1 (en) Photosensitive resin composition, cured product and method for producing same, method for producing resin pattern, cured film, organic el display device, liquid crystal display device, and touch panel display device
JP2014102391A (en) Photosensitive resin composition, cured product and production method of the same, method for producing resin pattern, cured film, organic electroluminescence (el) display device, liquid crystal display device, and touch panel display device
JP2015102756A (en) Method for manufacturing touch panel or display panel, touch panel, display panel, and display device
JP2014085612A (en) Photosensitive resin composition, cured product and method for producing the same, method for producing resin pattern, cured film, organic el display apparatus, liquid crystal display apparatus and touch panel display apparatus
JP2014238438A (en) Photosensitive resin composition, production method of resin pattern, cured product, cured film, liquid crystal display device, organic electroluminescence (el) display device, and touch panel display device
WO2014126036A1 (en) Photosensitive resin composition, cured product, method for producing cured product, method for producing resin pattern, cured film, liquid crystal display device, organic el display device, and touch panel display device
JP6333753B2 (en) Photosensitive composition, method for producing cured product, cured product, cured film, touch panel, and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14751389

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015500221

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14751389

Country of ref document: EP

Kind code of ref document: A1