WO2014119569A1 - 作業機械の圧油エネルギ回収装置 - Google Patents
作業機械の圧油エネルギ回収装置 Download PDFInfo
- Publication number
- WO2014119569A1 WO2014119569A1 PCT/JP2014/051836 JP2014051836W WO2014119569A1 WO 2014119569 A1 WO2014119569 A1 WO 2014119569A1 JP 2014051836 W JP2014051836 W JP 2014051836W WO 2014119569 A1 WO2014119569 A1 WO 2014119569A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pressure
- control valve
- recovery
- pressure oil
- energy recovery
- Prior art date
Links
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/22—Hydraulic or pneumatic drives
- E02F9/2217—Hydraulic or pneumatic drives with energy recovery arrangements, e.g. using accumulators, flywheels
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/2058—Electric or electro-mechanical or mechanical control devices of vehicle sub-units
- E02F9/2095—Control of electric, electro-mechanical or mechanical equipment not otherwise provided for, e.g. ventilators, electro-driven fans
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/22—Hydraulic or pneumatic drives
- E02F9/2278—Hydraulic circuits
- E02F9/2285—Pilot-operated systems
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/22—Hydraulic or pneumatic drives
- E02F9/2278—Hydraulic circuits
- E02F9/2292—Systems with two or more pumps
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/22—Hydraulic or pneumatic drives
- E02F9/2278—Hydraulic circuits
- E02F9/2296—Systems with a variable displacement pump
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B21/00—Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
- F15B21/14—Energy-recuperation means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/60—Circuit components or control therefor
- F15B2211/63—Electronic controllers
- F15B2211/6303—Electronic controllers using input signals
- F15B2211/6306—Electronic controllers using input signals representing a pressure
- F15B2211/6313—Electronic controllers using input signals representing a pressure the pressure being a load pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/60—Circuit components or control therefor
- F15B2211/63—Electronic controllers
- F15B2211/6303—Electronic controllers using input signals
- F15B2211/6306—Electronic controllers using input signals representing a pressure
- F15B2211/6316—Electronic controllers using input signals representing a pressure the pressure being a pilot pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/60—Circuit components or control therefor
- F15B2211/63—Electronic controllers
- F15B2211/6303—Electronic controllers using input signals
- F15B2211/6346—Electronic controllers using input signals representing a state of input means, e.g. joystick position
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/60—Circuit components or control therefor
- F15B2211/665—Methods of control using electronic components
Definitions
- the present invention relates to a pressure oil energy recovery device of a working machine.
- An energy recovery device for pressurized oil includes a generator to be generated and a battery for storing electrical energy generated by the generator (see, for example, Patent Document 1).
- the present invention has been made based on the above-mentioned matters, and its object is to exert a high load on the hydraulic cylinder to cause the hydraulic cylinder to flow out from the hydraulic cylinder the pressure oil exceeding the maximum working pressure of the energy recovery device.
- the present invention provides a pressure oil energy recovery device for a working machine that can prevent unnecessary over-rotation of the pressure oil energy recovery device and ensure good operability.
- a hydraulic pump for driving a working device, a control valve for switching hydraulic oil from the hydraulic pump to the hydraulic cylinder, and
- a pressure oil energy recovery device of a working machine comprising: operating means for switching control of a control valve; and a hydraulic motor for recovering the return pressure oil of the hydraulic cylinder, recovery for connecting the hydraulic cylinder and the hydraulic motor
- Pressure detection means for detecting pressure signals of a pipe line, a collection control valve provided in the collection pipe and capable of adjusting the opening area thereof, and an oil chamber on the side connected to the collection pipe of the liquid pressure cylinder
- An operation amount detection unit for detecting an operation amount of the operation unit; a pressure detection value detected by the pressure detection unit; and an operation amount of the operation unit detected by the operation amount detection unit;
- a controller for outputting a command to control the opening area of the recovery control valve in accordance with the amount of operation of the operating means detected by the operation amount detecting means when the value exceeds the
- the controller outputs an opening area maximum control command to the recovery control valve when the pressure detection value is equal to or less than the maximum working pressure of the hydraulic motor. It is characterized by
- control device in the first or second aspect, is configured to recover the pressure of the return pressure oil flowing into the hydraulic motor so that the pressure is below the maximum working pressure of the hydraulic motor.
- a target opening area of the control valve is calculated, and an opening area of the recovery control valve is controlled.
- the control device calculates a target flow rate according to the operation amount of the operation means detected by the operation amount detection means, and maximum use of the hydraulic motor
- the target opening area of the recovery control valve is calculated using the procedure for calculating a target differential pressure from the pressure and the pressure signal of the liquid pressure cylinder detected by the pressure detection means, the target flow rate and the target differential pressure.
- the hydraulic oil energy recovery device does not need to be used. Since it prevents excessive rotation, it is possible to ensure good operability of the working machine.
- FIG. 1 is a perspective view showing a hydraulic shovel provided with an embodiment of a pressure oil energy recovery apparatus for a work machine according to the present invention
- FIG. 2 shows an embodiment of a pressure oil energy recovery apparatus for a work machine according to the present invention
- the hydraulic shovel 1 includes an articulated work apparatus 1A having a boom 1a, an arm 1b and a bucket 1c, and a vehicle body 1B having an upper swing body 1d and a lower traveling body 1e.
- the boom 1a is rotatably supported by the upper swing body 1d and driven by a boom cylinder (hydraulic cylinder) 3a.
- the upper revolving superstructure 1d is provided rotatably on the lower traveling vehicle 1e.
- the arm 1 b is rotatably supported by the boom 1 a and driven by an arm cylinder (hydraulic cylinder) 3 b.
- the bucket 1c is rotatably supported by the arm 1b and driven by a bucket cylinder (hydraulic cylinder) 3c.
- the driving of the boom cylinder 3a, the arm cylinder 3b, and the bucket cylinder 3c is controlled by an operating device 4 (see FIG. 2) which is installed in a cab (cab) of the upper swing body 1d and outputs an oil pressure signal.
- the control system includes a control valve 2, an operating device 4, a pilot check valve 8, a recovery control valve 10, a bottom side oil chamber side pipe line switching valve 11, a solenoid proportional valve 15, and a solenoid switching valve 16.
- the inverter 24, the chopper 25, the power storage device 26, and the pressure sensors 19 and 21 are provided, and the controller 100 is provided as a control device.
- the hydraulic pressure source device includes a hydraulic pressure pump 6, a pilot hydraulic pressure pump 7 that supplies pilot pressure oil, and a tank 6 ⁇ / b> A.
- the hydraulic pump 6 and the pilot hydraulic pump 7 are driven by an engine 50 connected by a drive shaft.
- a four-port three-position control valve 2 for controlling the direction and flow rate of the pressure oil in the pipeline is provided in the pipeline 30 that supplies the hydraulic fluid from the hydraulic pump 6 to the boom cylinder 3a.
- the control valve 2 switches the position of the spool by supplying the pilot pressure oil to the pilot pressure receiving portions 2a and 2b, supplies the pressure oil from the hydraulic pump 6 to the boom cylinder 3a, and drives the boom 1a. There is.
- An inlet port of the control valve 2 to which pressure oil from the hydraulic pump 6 is supplied is connected to the hydraulic pump 6 by a pipe line 30.
- the outlet port of the control valve 2 is connected to the tank 6A by a return line 33.
- One end side of the rod side oil chamber pipe line 31 is connected to one connection port of the control valve 2, and the other end side of the rod side oil chamber pipe line 31 is connected to the rod side oil chamber 3ay of the boom cylinder 3a ing. Further, one end side of the bottom side oil chamber pipe line 32 is connected to the other connection port of the control valve 2, and the other end side of the bottom side oil chamber pipe line 32 is connected to the bottom side oil chamber 3ax of the boom cylinder 3a. It is connected.
- a pipeline switching valve 11 which is a 2 port 2 position switching valve
- a recovery branch portion 32a1 a pilot check valve 8
- a pressure sensor 19 a pressure sensor 19
- Is a pressure sensor 19
- the pipeline switching valve 11 has a spring 11b at one end and a pilot pressure receiving portion 11a at the other end, and switches the spool position depending on the supply of pilot pressure oil to the pilot pressure receiving portion 11a to control the control valve It controls the communication / shutoff of the pressure oil between the pressure chamber 2 and the bottom side oil chamber 3ax of the boom cylinder 3a. Pilot pressure oil is supplied to the pilot pressure receiving unit 11 a from the pilot hydraulic pump 7 via an electromagnetic switching valve 16 described later.
- the pressure sensor 19 functions as a signal conversion means for detecting the pressure of the pressure oil in the bottom side oil chamber 3ax of the boom cylinder 3a and converting it into an electric signal corresponding to the pressure.
- a signal can be output to the controller 100.
- the position of the spool of the control valve 2 is switched by the operation of the operation lever or the like of the operation device 4.
- the pilot valve 5 is provided in the operation device 4, and the pilot valve 5 is operated from a pilot primary pressure oil supplied from the pilot hydraulic pump 7 via a pilot primary side oil passage (not shown), an operation lever, etc.
- the pilot secondary pressure oil of the pilot pressure Pu corresponding to the operation amount of the tilting operation (boom raising direction operation) in the direction of a in FIG.
- the pilot secondary pressure oil is supplied to the pilot pressure receiving portion 2a of the control valve 2 via the pilot secondary side oil passage 40a, and the control valve 2 is switched / controlled in accordance with the pilot pressure Pu.
- the pilot valve 5 generates a pilot secondary pressure oil of a pilot pressure Pd according to the operation amount of the tilting operation (boom lowering direction operation) in the upper direction b of the drawing such as the operation lever.
- the pilot secondary pressure oil is supplied to the pilot pressure receiving portion 2b of the control valve 2 through the pilot secondary oil passage 40b, and the control valve 2 is switched / controlled in accordance with the pilot pressure Pd.
- the spool of the control valve 2 moves in accordance with the pilot pressures Pu and Pd input to these two pilot pressure receiving portions 2a and 2b, and the direction and flow rate of the pressure oil supplied from the hydraulic pump 6 to the boom cylinder 3a Switch
- the pilot secondary pressure oil of the pilot pressure Pd is also supplied to the pilot check valve 8 via the pilot secondary side oil passage 40c.
- the pilot check valve 8 opens when the pilot pressure Pd is pressurized.
- the pilot check valve 8 is for preventing inadvertent pressure oil inflow (boom falling) from the boom cylinder 3a to the bottom side oil chamber pipeline 32, and normally the circuit is shut off and the pilot The circuit is opened by pressurization of pressure oil.
- a pressure sensor 21 (operation amount detection means) is attached to the pilot secondary side oil passage 40b.
- the pressure sensor 21 functions as a signal conversion means for detecting the down side pilot pressure Pd of the pilot valve 5 of the operating device 4 and converting it into an electric signal corresponding to the pressure. It is configured to be able to output.
- the pressure oil energy recovery device 70 includes a recovery line 34, an electromagnetic proportional valve 15, an electromagnetic switching valve 16, a hydraulic motor 22, a generator 23, an inverter 24, a chopper 25, and , And a controller 100.
- the recovery line 34 includes a recovery control valve 10 and a hydraulic motor 22 installed downstream of the recovery control valve 10 and to which a generator 23 is mechanically connected.
- a boom is generated via the hydraulic motor 22.
- the return pressure oil from the bottom side oil chamber 3ax of the cylinder 3a is led to the tank 6A.
- the generator 23 rotates to generate electricity, and the electric energy is generated via the inverter 24 and the chopper 25 for boosting. Is stored in the storage device 26.
- the recovery control valve 10 has a spring 10b at one end and a pilot pressure receiving portion 10a at the other end.
- the pilot pressure oil output from the pilot hydraulic pump 7 through the proportional solenoid valve 15 is input to the pilot pressure receiving unit 10 a. Since the spool of the recovery control valve 10 moves in accordance with the pressure of the pilot pressure oil input to the pilot pressure receiving portion 10a, the opening area through which the pressure oil passes is controlled. As a result, it is possible to control the flow rate of the return pressure oil that flows into the hydraulic motor 22 from the bottom side oil chamber 3ax of the boom cylinder 3a.
- the rotational speed of the hydraulic motor 22 and the generator 23 at the time of the boom lowering operation is controlled by the inverter 24. Since the flow rate of the pressure oil passing through the hydraulic motor 22 can be adjusted by controlling the rotational speed of the hydraulic motor 22 with the inverter 24 in this manner, the flow rate of the return pressure oil flowing from the bottom side oil chamber 3ax into the recovery pipeline 34 is adjusted. can do. That is, the inverter 24 in the present embodiment functions as a flow rate control unit that controls the flow rate of the pressure oil in the recovery pipeline 34.
- the pressure oil output from the pilot hydraulic pump 7 is input to the input port of the solenoid proportional valve 15 in the present embodiment.
- a command signal output from the controller 100 is input to the operation unit of the solenoid proportional valve 15.
- the spool position of the solenoid proportional valve 15 is adjusted according to the command signal, whereby the pressure of the pilot pressure oil supplied from the pilot hydraulic pump 7 to the pilot pressure receiving portion 10 a of the recovery control valve 10 is appropriately adjusted.
- the electromagnetic switching valve 16 controls supply / shutoff of the pilot pressure oil supplied from the pilot hydraulic pump 7 to the pilot operation unit 11 a of the pipeline switching valve 11 in accordance with a command signal from the controller 100.
- the controller 100 inputs the pressure of the bottom side oil chamber 3ax of the boom cylinder 3a from the pressure sensor 19, and the lower side pilot pressure Pd of the pilot valve 5 of the operating device 4 from the pressure sensor 21. Calculation is performed, and a control command is output to the solenoid proportional valve 15, the solenoid switch valve 16, and the inverter 24.
- the boom lowering operation when light load is applied will be described.
- the pilot pressure Pd generated from the pilot valve 5 is detected by the pressure sensor 21 and input to the controller 100. Further, the controller 100 determines whether the load acting on the boom 1 a is a light load or a high load based on the pressure of the bottom side oil chamber 3 ax of the boom cylinder 3 a detected by the pressure sensor 19.
- the controller 100 compares the maximum working pressure Pmax of the hydraulic motor 22 of the pressure oil energy recovery device 70 with the pressure P0 of the bottom side oil chamber 3ax of the boom cylinder 3a detected by the pressure sensor 19, It is judged that the load is high when> Pmax, and the other load is judged to be low.
- the maximum working pressure Pmax is a value determined in advance by the specifications of the hydraulic motor 22 and the generator 23.
- the controller determines that the load acting on the boom 1 a is a low load, the pilot pressure Pd generated from the pilot valve 5 acts on the pilot pressure receiving portion 2 b of the control valve 2 and the pilot check valve 8. As a result, the control valve 2 is switched and the pilot check valve 8 is opened.
- the controller 100 outputs a control command to the solenoid proportional valve 15 and a switching command to the solenoid switching valve 16 respectively.
- the pipeline switching valve 11 is switched, the bottom oil chamber 3ax in the bottom oil chamber side pipeline 32 and the control valve 2 are shut off, the recovery control valve 10 is opened, and the recovery pipeline 34 is opened.
- the hydraulic motor 22 and the bottom side oil chamber 3ax communicate with each other.
- the pressure oil from the hydraulic pump 6 is guided to the rod-side oil chamber channel 31 via the channel switching valve 11, and flows into the rod-side oil chamber 3ay of the boom cylinder 3a.
- the piston rod of the boom cylinder 3a is contracted.
- the return pressure oil discharged from the bottom side oil chamber 3ax of the boom cylinder 3a passes through the pilot check valve 8, the bottom side oil chamber pipe 32, the recovery pipe 34, and the recovery control valve 10 to the hydraulic motor 22.
- the hydraulic motor 22 rotates the generator 23 to generate electric power, and the electric energy is stored in the storage device 26 via the inverter 24 and the chopper 25.
- the controller 100 outputs a control command to the solenoid proportional valve 15 (opening area maximum control) such that the recovery control valve 10 has the maximum opening area.
- the controller 100 calculates the target opening area of the recovery control valve 10, and outputs a control command to the solenoid proportional valve 15 (opening area adjustment control) .
- a pilot pressure is applied to the pilot pressure receiving portion 10a of the recovery control valve 10, and the opening area of the recovery control valve 10 is controlled.
- the opening area of the recovery control valve 10 is controlled to the target opening area.
- a pressure loss can be generated in the recovery control valve 10 by the pressure ⁇ P that exceeds the maximum working pressure Pmax of the hydraulic motor 22 of the pressure oil energy recovery device 70.
- FIG. 3 is a block diagram of a controller constituting an embodiment of a pressure oil energy recovery apparatus of a work machine according to the present invention
- FIG. 4 is a controller constituting an embodiment of a pressure oil energy recovery apparatus of a work machine according to the present invention It is a characteristic view showing an example of the recovery target flow rate of.
- the same reference numerals as those shown in FIG. 1 and FIG. 2 denote the same parts, so the detailed description thereof will be omitted.
- the controller 100 shown in FIG. 3 includes a collection target flow rate calculation unit 101, a generator command value calculation unit 102, a collection control valve opening area calculation unit 103, an electromagnetic proportional valve output value calculation unit 104, and a switching valve sequence control calculation. And a unit 105.
- the recovery target flow rate calculation unit 101 receives the downward pilot pressure Pd of the pilot valve 5 of the operating device 4 detected by the pressure sensor 21, and first calculates the operating amount Ls of the operating device 4. . Next, the collection target flow rate Q0 corresponding to the calculated operation amount Ls is calculated based on the metering diagram previously stored in the storage unit (not shown). An example of a metering diagram is shown in FIG. The collection target flow rate calculation unit 101 outputs the calculated collection target flow rate Q0 to the generator command value calculation unit 102 and the collection control valve opening area calculation unit 103.
- the generator command value calculation unit 102 calculates the number of revolutions of the hydraulic motor 22 necessary for suctioning the recovery target flow rate Q0 calculated by the recovery target flow rate calculation unit 101 by the hydraulic motor 22 of the recovery pipeline 34, 22 is a portion for outputting to the inverter 24 a rotation speed command value for rotating the motor 22 at the calculated rotation speed.
- the inverter 24 which has input the rotation speed command value calculated by the generator command value calculation unit 102 rotates the hydraulic motor 22 and the generator 23 based on the rotation speed command value, and thereby the recovery target in the recovery pipeline 34 Return oil of the flow rate calculated by the flow rate calculation unit 101 flows.
- the generator command value calculation unit 102 outputs a speed command to the inverter 24 so as to achieve the calculated target rotation number.
- the recovery control valve opening area calculation unit 103 calculates the pressure of the bottom side oil chamber 3 ax of the boom cylinder 3 a detected by the pressure sensor 19 and the collection target flow rate Q0 calculated by the collection target flow rate calculation unit 101. Are input, and a first calculation for switching the control mode of the recovery control valve 10, which will be described later, and a second calculation for generating a switching signal for the pipeline switching valve 11 are performed.
- the first calculation relates to the opening area adjustment control of the recovery control valve 10.
- a difference ⁇ P between the maximum working pressure Pmax and the pressure P0 of the bottom side oil chamber 3ax of the boom cylinder 3a detected by the pressure sensor 19 is calculated.
- a command for performing the opening area maximum control is output to the solenoid proportional valve output value calculation unit 104.
- the solenoid proportional valve output value calculation unit 104 On the other hand, when the pressure P0 exceeds the maximum working pressure Pmax, a command for performing the opening area adjustment control is output to the solenoid proportional valve output value calculation unit 104.
- the target opening area A0 of the recovery control valve 10 which is a command signal for performing the opening area adjustment control, is calculated by the following equation (1).
- A0 Q0 / C ⁇ ( ⁇ P) ⁇ (1)
- C is a flow coefficient of hydraulic fluid.
- the solenoid proportional valve 15 is controlled such that the opening area of the recovery control valve 10 becomes the target opening area A0.
- the recovery control valve 10 is controlled from the maximum opening area in the closing direction, and a pressure loss is generated in the recovery control valve 10 by the pressure ⁇ P exceeding the maximum working pressure Pmax of the hydraulic motor 22 of the pressure oil energy recovery device 70 It can be done.
- over rotation of the hydraulic motor 22 can be prevented, it is possible to prevent the occurrence of unexpected dropping of the boom 1a or the like. As a result, good operability of the working machine can be ensured.
- the second calculation relates to the switching control of the duct switching valve 11.
- the boom lowering operation is determined from the above-described first calculation, and the switching valve 16 is controlled to perform pressure oil energy recovery. Specifically, a switching command is output to switching valve sequence control calculation unit 105.
- the solenoid proportional valve output value computing unit 104 computes the output value of the solenoid proportional valve 15 necessary to realize the opening area A0 of the recovery control valve 10 computed by the recovery control valve opening area computing unit 103, and the command thereof This is a part that outputs a value to the solenoid proportional valve 15.
- the solenoid proportional valve 15 that receives the output value calculated by the solenoid proportional valve output value calculation unit 104 outputs an operation signal to the recovery control valve 10 based on the output value, and thereby the recovery control valve 10 of the recovery pipeline 34. Cause pressure loss.
- the switching valve sequence control calculation unit 105 calculates a control command of the electromagnetic switching valve 16 based on the command output from the recovery control valve opening area calculation unit 103.
- a switching command is input from the recovery control valve opening area calculation unit 103, a command to switch the channel switching valve 11 to the closed state is output to the electromagnetic switching valve 16.
- the outflow of return pressure oil from the bottom side oil chamber 3 ax of the boom cylinder 3 a to the control valve 2 side is shut off, and the entire amount flows into the recovery pipeline 34.
- FIG. 5 is a flow chart showing the processing contents of the controller in the embodiment of the pressure oil energy recovery apparatus of the working machine of the present invention.
- the same reference numerals as those shown in FIGS. 1 to 4 denote the same parts, and thus the detailed description thereof will be omitted.
- the controller 100 determines whether a boom lowering operation is in progress (step S1). Specifically, it is determined whether the pilot pressure Pd detected by the pressure sensor 21 is higher than a predetermined set pressure. If the pilot pressure Pd is higher than the set pressure, it is determined that the boom lowering operation is in progress, and the process proceeds to (step S2). Otherwise, the process returns to (step S1).
- the controller 100 performs recovery operation control (step S2). Specifically, the controller 100 outputs a command to switch the channel switching valve 11 to the closed state to the electromagnetic switching valve 16. As a result, the return pressure oil from the bottom side oil chamber 3ax of the boom cylinder 3a does not flow out to the control valve 2 side, and starts flowing into the recovery pipeline.
- the controller 100 determines the pressure P0 of the bottom side oil chamber 3ax of the boom cylinder 3a detected by the pressure sensor 19 to determine whether the load acting on the boom is a high load or not, the hydraulic pressure of the pressure oil energy recovery device 70 It is determined whether the maximum working pressure Pmax of the motor 22 is exceeded (step S3). If the pressure P0 of the bottom side oil chamber 3ax exceeds the maximum working pressure Pmax of the hydraulic motor 22, it is determined that the load is high and the process proceeds to (S4) for opening area adjustment control, otherwise it is low It is determined that the load is on, and the flow proceeds to step S6 for maximum opening area control.
- the controller 100 calculates a target opening area A0 of the recovery control valve 10 (step S4). Specifically, in order to generate a pressure loss in the recovery control valve 10 by an amount corresponding to the pressure ⁇ P exceeding the maximum working pressure Pmax of the hydraulic motor 22 of the pressure oil energy recovery device 70, The target opening area A0 of the recovery control valve 10 is calculated based on the target recovery flow rate Q0 and the hydraulic pressure of the bottom side oil chamber 3ax.
- the controller 100 performs opening area adjustment control of the recovery control valve 10 (step S5). Specifically, a command signal is output to the solenoid proportional valve 15 such that the target opening area A0 calculated in (step S4) is obtained.
- the pilot pressure generated by the proportional solenoid valve 15 controls the opening area of the recovery control valve 10, which can prevent the over-rotation of the hydraulic motor 22, thereby preventing the boom 1a from being accidentally dropped or the like. This makes it possible to secure good operability. After executing this step, return.
- step S6 When it is determined in step (S3) that the pressure P0 of the bottom side oil chamber 3ax does not exceed the maximum working pressure Pmax of the hydraulic motor 22, the controller 100 performs the opening area maximum control of the recovery control valve 10 (step S6). Specifically, a command signal is output to the solenoid proportional valve 15 so that the recovery control valve 10 has the maximum opening area. The pilot pressure generated by the solenoid proportional valve 15 controls the recovery control valve 10 to be fully open. As a result, since unnecessary pressure loss does not occur in the recovery pipeline 34, energy recovery efficiency can be enhanced. After executing this step, return.
- a high load acts on the boom cylinder 3a which is a fluid pressure cylinder, and the pressure oil energy recovery device 70 is Since unnecessary over-rotation of the hydraulic motor 22 of the pressure oil energy recovery device 70 is prevented even if the pressure oil having a pressure P0 exceeding the working pressure Pmax flows out, good operability of the working machine can be ensured. .
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mining & Mineral Resources (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Mechanical Engineering (AREA)
- Operation Control Of Excavators (AREA)
- Fluid-Pressure Circuits (AREA)
Abstract
液体圧シリンダに高い負荷が作用して、液体圧シリンダから圧油エネルギ回収装置の最高使用圧力を上回る圧油が流出しても、不必要な圧油エネルギ回収装置の過回転を防止し、良好な操作性を確保できる作業機械の圧油エネルギ回収装置を提供する。 作業機械の圧油エネルギ回収装置において、液体圧シリンダと油圧モータとを接続する回収管路と、回収管路に設けられ、その開口面積を調整可能な回収制御弁と、液体圧シリンダの回収管路に接続された側の油室の圧力信号を検出する圧力検出手段と、操作手段の操作量を検出する操作量検出手段と、圧力検出手段で検出した圧力検出値と,操作量検出手段が検出した操作手段の操作量とを取込み、圧力検出値が油圧モータの最高使用圧力を超過した場合は、操作量検出手段が検出した操作手段の操作量に応じて回収制御弁の開口面積を制御する指令を出力する制御装置とを備えた。
Description
本発明は、作業機械の圧油エネルギ回収装置に関する。
油圧ショベル等の建設機械に搭載され、液体圧シリンダの油圧アクチュエータから流出された戻り圧油が流入されることによって駆動される油圧モータと、油圧モータの駆動力が入力されることによって電気エネルギを発生する発電機と、発電機によって発生された電気エネルギを貯蓄するバッテリとを備えた圧油のエネルギ回収装置が開示されている(例えば、特許文献1参照)。
上述した従来技術において、例えば、液体圧シリンダを油圧ショベルのブームを駆動するブームシリンダに適用した場合、運転状況により、ブームに作用する負荷が変動するので、ブームシリンダから圧油エネルギ回収装置の油圧モータに最高使用圧力を超える圧力の作動油が流入する場合がある。このことにより、圧油エネルギ回収装置の油圧モータは、過回転状態になると共に、ブームシリンダ内の圧油量が低下するのでブームがオペレータの意図に反して下げ方向に移動するという問題が生じる。この結果、作業機械の操作性が低下してしまう。
本発明は、上述の事柄に基づいてなされたもので、その目的は、液体圧シリンダに高い負荷が作用して、液体圧シリンダから圧油エネルギ回収装置の最高使用圧力を上回る圧油が流出しても、圧油エネルギ回収装置の不必要な過回転を防止し、良好な操作性を確保できる作業機械の圧油エネルギ回収装置を提供するものである。
上記の目的を達成するために、第1の発明は、油圧ポンプと、作業装置を駆動する液体圧シリンダと、前記油圧ポンプからの圧油を前記液体圧シリンダに切換え供給する制御弁と、前記制御弁を切換え制御する操作手段と、前記液体圧シリンダの戻り圧油を回収する油圧モータとを備えた作業機械の圧油エネルギ回収装置において、前記液体圧シリンダと前記油圧モータとを接続する回収管路と、前記回収管路に設けられ、その開口面積を調整可能な回収制御弁と、前記液体圧シリンダの前記回収管路に接続された側の油室の圧力信号を検出する圧力検出手段と、前記操作手段の操作量を検出する操作量検出手段と、前記圧力検出手段で検出した圧力検出値と,前記操作量検出手段が検出した前記操作手段の操作量とを取込み、前記圧力検出値が前記油圧モータの最高使用圧力を超過した場合は、前記操作量検出手段が検出した前記操作手段の操作量に応じて前記回収制御弁の開口面積を制御する指令を出力する制御装置とを備えたものとする。
また、第2の発明は、第1の発明において、前記制御装置は、前記圧力検出値が前記油圧モータの最高使用圧力以下の場合は、前記回収制御弁に開口面積最大制御指令を出力することを特徴とする。
更に、第3の発明は、第1又は第2の発明において、前記制御装置は、前記油圧モータへ流入する戻り圧油の圧力が、前記油圧モータの最高使用圧力以下となるように、前記回収制御弁の目標開口面積を算出し、前記回収制御弁の開口面積を制御することを特徴とする。
また、第4の発明は、第3の発明において、前記制御装置は、前記操作量検出手段が検出した前記操作手段の操作量に応じて目標流量を算出する手順と、前記油圧モータの最高使用圧力と前記圧力検出手段が検出した前記液体圧シリンダの圧力信号とから目標差圧を算出する手順と、前記目標流量と前記目標差圧とを用いて、前記回収制御弁の目標開口面積を算出する手順とを備えたことを特徴とする。
本発明によれば、液体圧シリンダに高い負荷が作用して、液体圧シリンダから圧油エネルギ回収装置の最高使用圧力を上回る圧力の圧油が流出しても、圧油エネルギ回収装置の不必要な過回転を防止するので、作業機械の良好な操作性を確保することができる。
以下、本発明の作業機械の圧油エネルギ回収装置の実施の形態を図面を用いて説明する。図1は本発明の作業機械の圧油エネルギ回収装置の一実施の形態を備えた油圧ショベルを示す斜視図、図2は本発明の作業機械の圧油エネルギ回収装置の一実施の形態を示す制御システムの概略図である。
図1において、油圧ショベル1は、ブーム1a、アーム1b及びバケット1cを有する多関節型の作業装置1Aと、上部旋回体1d及び下部走行体1eを有する車体1Bとを備えている。ブーム1aは、上部旋回体1dに回動可能に支持されていて、ブームシリンダ(油圧シリンダ)3aにより駆動される。上部旋回体1dは下部走行体1e上に旋回可能に設けられている。
図1において、油圧ショベル1は、ブーム1a、アーム1b及びバケット1cを有する多関節型の作業装置1Aと、上部旋回体1d及び下部走行体1eを有する車体1Bとを備えている。ブーム1aは、上部旋回体1dに回動可能に支持されていて、ブームシリンダ(油圧シリンダ)3aにより駆動される。上部旋回体1dは下部走行体1e上に旋回可能に設けられている。
アーム1bは、ブーム1aに回動可能に支持されていて、アームシリンダ(油圧シリンダ)3bにより駆動される。バケット1cは、アーム1bに回動可能に支持されていて、バケットシリンダ(油圧シリンダ)3cにより駆動される。ブームシリンダ3a、アームシリンダ3b、及びバケットシリンダ3cの駆動は、上部旋回体1dの運転室(キャブ)内に設置され油圧信号を出力する操作装置4(図2参照)によって制御されている。
図2に示す実施の形態においては、ブーム1aを操作するブームシリンダ3aに関する制御システムのみを示している。この制御システムは、制御弁2と、操作装置4と、パイロットチェック弁8と、回収制御弁10と、ボトム側油室側管路切換弁11と、電磁比例弁15と、電磁切換弁16と、インバータ24と、チョッパ25と、蓄電装置26と、圧力センサ19,21とを備えており、制御装置としてコントローラ100を備えている。
油圧源装置としては、油圧ポンプ6とパイロット圧油を供給するパイロット油圧ポンプ7とタンク6Aとを備えている。油圧ポンプ6とパイロット油圧ポンプ7とは駆動軸で連結されたエンジン50によって駆動される。
油圧ポンプ6からの圧油をブームシリンダ3aへ供給する管路30には、管路内の圧油の方向と流量を制御する4ポート3位置型の制御弁2が設けられている。制御弁2は、そのパイロット受圧部2a,2bへのパイロット圧油の供給により、スプールの位置を切り換えて、油圧ポンプ6からの圧油をブームシリンダ3aに供給して、ブーム1aを駆動している。
油圧ポンプ6からの圧油が供給される制御弁2の入口ポートは、管路30により油圧ポンプ6と接続されている。制御弁2の出口ポートは、戻り管路33によりタンク6Aと接続されている。
制御弁2の一方の接続ポートには、ロッド側油室管路31の一端側が接続されていて、ロッド側油室管路31の他端側はブームシリンダ3aのロッド側油室3ayに接続されている。また、制御弁2の他方の接続ポートには、ボトム側油室管路32の一端側が接続されていて、ボトム側油室管路32の他端側はブームシリンダ3aのボトム側油室3axに接続されている。
ボトム側油室側管路32には、制御弁2側から順に、2ポート2位置の切換弁である管路切換弁11と、回収分岐部32a1と、パイロットチェック弁8と、圧力センサ19とが設けられている。回収分岐部32a1には回収管路34が接続されている。
管路切換弁11は、一端側にばね11bを、他端側にパイロット受圧部11aを有し、そのパイロット受圧部11aへのパイロット圧油の供給の有無により、スプール位置を切り換えて、制御弁2とブームシリンダ3aのボトム側油室3axとの間における圧油の連通/遮断を制御している。パイロット受圧部11aには、パイロット油圧ポンプ7から後述する電磁切換弁16を介してパイロット圧油が供給される。
圧力センサ19(圧力検出手段)は、ブームシリンダ3aのボトム側油室3axの圧油の圧力を検出してその圧力に対応する電気信号に変換する信号変換手段として機能するもので、変換した電気信号をコントローラ100に出力可能に構成されている。
制御弁2のスプールの位置は、操作装置4の操作レバー等の操作によって切換え操作される。操作装置4には、パイロット弁5が設けられていて、パイロット弁5は、パイロット油圧ポンプ7からの図示しないパイロット1次側油路を介して供給されるパイロット1次圧油から、操作レバー等の図上a方向の傾動操作(ブーム上げ方向操作)の操作量に応じたパイロット圧Puのパイロット2次圧油を発生させる。このパイロット2次圧油は、パイロット2次側油路40aを介して制御弁2のパイロット受圧部2aに供給され、制御弁2はパイロット圧Puに応じて切換/制御される。
同様に、パイロット弁5は、操作レバー等の図上b方向の傾動操作(ブーム下げ方向操作)の操作量に応じたパイロット圧Pdのパイロット2次圧油を発生させる。このパイロット2次圧油は、パイロット2次側油路40bを介して制御弁2のパイロット受圧部2bに供給され、制御弁2はパイロット圧Pdに応じて切換/制御される。
したがって、制御弁2のスプールは、これら2つのパイロット受圧部2a,2bに入力されるパイロット圧Pu、Pdに応じて移動し、油圧ポンプ6からブームシリンダ3aに供給される圧油の方向及び流量を切り換える。
パイロット圧Pdのパイロット2次圧油は、パイロット2次側油路40cを介してパイロットチェック弁8にも供給される。パイロットチェック弁8は、パイロット圧Pdが加圧されることにより、開動作する。このことにより、ブームシリンダ3aのボトム側油室3axの圧油が、ボトム側油室管路32に導かれる。パイロットチェック弁8は、ブームシリンダ3aからボトム側油室管路32への不用意な圧油流入(ブーム落下)を防止するためのものであって、通常は、回路を遮断していて、パイロット圧油の加圧により回路を開くものである。
パイロット2次側油路40bには、圧力センサ21(操作量検出手段)が取り付けられている。この圧力センサ21は、操作装置4のパイロット弁5の下げ側パイロット圧Pdを検出してその圧力に対応する電気信号に変換する信号変換手段として機能するもので、変換した電気信号をコントローラ100に出力可能に構成されている。
次に、圧油エネルギ回収装置70について説明する。圧油エネルギ回収装置70は、図2に示すように、回収管路34と、電磁比例弁15と、電磁切換弁16と、油圧モータ22と、発電機23と、インバータ24と、チョッパ25と、蓄電装置26と、コントローラ100とを備えている。
回収管路34は、回収制御弁10と、この回収制御弁10の下流側に設置され発電機23が機械的に接続された油圧モータ22とを備えており、当該油圧モータ22を介してブームシリンダ3aのボトム側油室3axからの戻り圧油をタンク6Aに導いている。ブーム下げ時における戻り圧油を回収管路34に導入して油圧モータ22を回転させると、発電機23が回転して発電し、その電気エネルギはインバータ24、昇圧をするためのチョッパ25を介して蓄電装置26に蓄電される。
回収制御弁10は、一端側にばね10bを、他端側にパイロット受圧部10aを有している。パイロット受圧部10aには、パイロット油圧ポンプ7から電磁比例弁15を介して出力されるパイロット圧油が入力されている。回収制御弁10のスプールは、パイロット受圧部10aに入力されるパイロット圧油の圧力に応じて移動するので、圧油が通過する開口面積が制御される。このことにより、ブームシリンダ3aのボトム側油室3axから油圧モータ22へ流入する戻り圧油の流量を制御できる。
また、ブーム下げ操作時における油圧モータ22及び発電機23の回転数はインバータ24によって制御されている。このように油圧モータ22の回転数をインバータ24で制御すると油圧モータ22を通過する圧油の流量を調整できるので、ボトム側油室3axから回収管路34に流れこむ戻り圧油の流量を調整することができる。すなわち、本実施の形態におけるインバータ24は、回収管路34の圧油の流量を制御する流量制御手段として機能している。
本実施の形態における電磁比例弁15の入力ポートには、パイロット油圧ポンプ7から出力される圧油が入力されている。一方、電磁比例弁15の操作部には、コントローラ100から出力される指令信号御が入力されている。この指令信号に応じて電磁比例弁15のスプール位置が調整され、これにより、パイロット油圧ポンプ7から回収制御弁10のパイロット受圧部10aに供給されるパイロット圧油の圧力が適宜調整されている。
電磁切換弁16は、コントローラ100からの指令信号に応じて、パイロット油圧ポンプ7から供給されたパイロット圧油の管路切換弁11のパイロット操作部11aへの供給/遮断を制御するものである。
コントローラ100は、圧力センサ19からブームシリンダ3aのボトム側油室3axの圧力を、圧力センサ21から操作装置4のパイロット弁5の下げ側パイロット圧Pdをそれぞれ入力し、これらの入力値に応じた演算を行い、電磁比例弁15、電磁切換弁16、及びインバータ24へ制御指令を出力する。
次に、上述した本発明の作業機械の圧油エネルギ回収装置の一実施の形態の動作を説明する。
まず、図2に示す操作装置4の操作レバーをa方向(ブーム上げ方向)に傾動操作すると、パイロット弁5から生成されるパイロット圧Puが制御弁2のパイロット受圧部2aにかかり、制御弁2が切換操作される。これにより、油圧ポンプ6からの圧油が管路切換弁11を介してボトム側油室側管路32に導かれ、パイロットチェック弁8を介してブームシリンダ3aのボトム側油室3axに流入する。この結果、ブームシリンダ3aは伸長動作する。
まず、図2に示す操作装置4の操作レバーをa方向(ブーム上げ方向)に傾動操作すると、パイロット弁5から生成されるパイロット圧Puが制御弁2のパイロット受圧部2aにかかり、制御弁2が切換操作される。これにより、油圧ポンプ6からの圧油が管路切換弁11を介してボトム側油室側管路32に導かれ、パイロットチェック弁8を介してブームシリンダ3aのボトム側油室3axに流入する。この結果、ブームシリンダ3aは伸長動作する。
これに伴い、ブームシリンダ3aのロッド側油室3ayから排出される戻り圧油は、ロッド側油室管路31と制御弁2とを通ってタンク6Aに導かれる。
次に、軽負荷が作用しているときのブーム下げ操作について説明する。
操作装置4の操作レバーをb方向(ブーム下げ方向)に傾動操作すると、パイロット弁5から生成されるパイロット圧Pdが圧力センサ21で検出されコントローラ100に入力される。また、コントローラ100は、圧力センサ19で検出されたブームシリンダ3aのボトム側油室3axの圧力を基に、ブーム1aに作用する負荷が、軽負荷か高負荷かを判断する。
操作装置4の操作レバーをb方向(ブーム下げ方向)に傾動操作すると、パイロット弁5から生成されるパイロット圧Pdが圧力センサ21で検出されコントローラ100に入力される。また、コントローラ100は、圧力センサ19で検出されたブームシリンダ3aのボトム側油室3axの圧力を基に、ブーム1aに作用する負荷が、軽負荷か高負荷かを判断する。
具体的には、コントローラ100が、圧油エネルギ回収装置70の油圧モータ22の最大使用圧力Pmaxと圧力センサ19で検出されたブームシリンダ3aのボトム側油室3axの圧力P0とを比較し、P0>Pmax のときに高負荷と判断し、それ以外を低負荷と判断する。ここで、最大使用圧力Pmaxは、油圧モータ22及び発電機23の仕様によって予め決められている値である。
コントローラがブーム1aに作用する負荷を低負荷と判断した場合には、パイロット弁5から生成されるパイロット圧Pdが制御弁2のパイロット受圧部2bとパイロットチェック弁8に作用する。これにより、制御弁2が切換操作され、パイロットチェック弁8が開動作する。
また、コントローラ100は、電磁比例弁15へ制御指令を、電磁切換弁16へ切換指令をそれぞれ出力する。このことにより、管路切換弁11が切換り、ボトム側油室側管路32におけるボトム側油室3axと制御弁2とが遮断され、回収制御弁10が開動作して回収管路34において油圧モータ22とボトム側油室3axとが連通する。これにより、油圧ポンプ6からの圧油が管路切換弁11を介してロッド側油室管路31に導かれ、ブームシリンダ3aのロッド側油室3ayに流入する。この結果、ブームシリンダ3aのピストンロッドは縮小動作する。これに伴い、ブームシリンダ3aのボトム側油室3axから排出される戻り圧油は、パイロットチェック弁8、ボトム側油室管路32、回収管路34、回収制御弁10を通って油圧モータ22を回転させる。油圧モータ22は発電機23を回転させて発電し、その電気エネルギはインバータ24、チョッパ25を介して蓄電装置26に蓄電される。
コントローラ100は、回収制御弁10が最大開口面積となるように、電磁比例弁15へ制御指令を出力する(開口面積最大制御)。このことにより、回収管路34において、不必要な圧損が発生しないので、エネルギ回収効率を高めることができる。
一方、ブーム1aに作用する負荷を高負荷と判断した場合には、コントローラ100は、回収制御弁10の目標開口面積を算出し、電磁比例弁15に制御指令を出力する(開口面積調整制御)。この結果、回収制御弁10のパイロット受圧部10aにパイロット圧が加わり、回収制御弁10の開口面積が制御される。これにより、回収制御弁10の開口面積が目標開口面積に制御される。この結果、圧油エネルギ回収装置70の油圧モータ22の最大使用圧力Pmaxを超えた圧力ΔPの分だけ、回収制御弁10において圧損を発生させることができる。このことにより、油圧モータ22の過回転が防止できるので、ブーム1aの不意の落下等の発生を防止できる。この結果、作業機械の良好な操作性を確保できる。
次に、コントローラ100の制御の概要について図3及び図4を用いて説明する。図3は本発明の作業機械の圧油エネルギ回収装置の一実施の形態を構成するコントローラのブロック図、図4は本発明の作業機械の圧油エネルギ回収装置の一実施の形態を構成するコントローラの回収目標流量の一例を示す特性図である。図3及び図4において、図1及び図2に示す符号と同符号のものは同一部分であるので、その詳細な説明は省略する。
図3に示すコントローラ100は、回収目標流量演算部101と、発電機指令値演算部102と、回収制御弁開口面積演算部103と、電磁比例弁出力値演算部104と、切換弁シーケンス制御演算部105とを備えている。
回収目標流量演算部101は、図3に示すように、圧力センサ21で検出した操作装置4のパイロット弁5の下げ側パイロット圧Pdを入力し、まず、操作装置4の操作量Lsを算出する。次に、当該算出した操作量Lsに対応する回収目標流量Q0を、予め記憶部(図示せず)に記憶したメータリング線図に基づいて算出する。図4にメータリング線図の一例を示す。回収目標流量演算部101は、算出した回収目標流量Q0を発電機指令値演算部102と回収制御弁開口面積演算部103とへ出力する。
発電機指令値演算部102は、回収目標流量演算部101で演算された回収目標流量Q0を回収管路34の油圧モータ22で吸い込むために必要な油圧モータ22の回転数を演算し、油圧モータ22を当該演算した回転数で回転させるための回転数指令値をインバータ24に出力する部分である。発電機指令値演算部102で演算された回転数指令値を入力したインバータ24は当該回転数指令値に基づいて油圧モータ22及び発電機23を回転させ、これにより回収管路34には回収目標流量演算部101で演算された流量の戻り油が流れる。発電機指令値演算部102は、演算した目標回転数になるように、インバータ24に速度指令を出力する。
回収制御弁開口面積演算部103は、図3に示すように、圧力センサ19で検出したブームシリンダ3aのボトム側油室3axの圧力と、回収目標流量演算部101で算出した回収目標流量Q0とを入力し、後述する回収制御弁10の制御態様を切換える第1演算と、管路切換弁11の切換信号を生成する第2演算とを行う。
第1演算は、回収制御弁10の開口面積調整制御に係るものである。最大使用圧力Pmaxと、圧力センサ19で検出されたブームシリンダ3aのボトム側油室3axの圧力P0との差ΔPを算出する。圧力P0が最大使用圧力Pmax以下のときには、開口面積最大制御を行うための指令を電磁比例弁出力値演算部104へ出力する。一方、圧力P0が最大使用圧力Pmax超過のときには、開口面積調整制御を行うための指令を電磁比例弁出力値演算部104へ出力する。
ここで、開口面積調整制御を行うための指令信号である回収制御弁10の目標開口面積A0は以下の式(1)で算出される。
A0=Q0/C√(ΔP)・・・・(1)
ここで、Cは作動油の流量係数である。
A0=Q0/C√(ΔP)・・・・(1)
ここで、Cは作動油の流量係数である。
このように、ブーム1aに高負荷が作用している場合には、回収制御弁10の開口面積が目標開口面積A0となるように電磁比例弁15が制御される。この結果、回収制御弁10が最大開口面積から閉方向に制御され、圧油エネルギ回収装置70の油圧モータ22の最大使用圧力Pmaxを超えた圧力ΔPの分だけ、回収制御弁10において圧損を発生させることができる。このことにより、油圧モータ22の過回転が防止できるので、ブーム1aの不意の落下等の発生を防止できる。この結果、作業機械の良好な操作性を確保できる。
第2演算は、管路切換弁11の切換制御に係るものである。上述した第1演算からブーム下げ動作が判断されて、圧油エネルギ回収を行うために切換弁16を制御する。具体的には、切換弁シーケンス制御演算部105へ切換指令を出力する。
電磁比例弁出力値演算部104は、回収制御弁開口面積演算部103で演算された回収制御弁10の開口面積A0を実現するために必要な電磁比例弁15の出力値を演算し、その指令値を電磁比例弁15に出力する部分である。電磁比例弁出力値演算部104で演算された出力値を入力した電磁比例弁15は当該出力値に基づいて操作信号を回収制御弁10に出力し、これにより回収管路34の回収制御弁10において圧損を発生させる。
切換弁シーケンス制御演算部105は、回収制御弁開口面積演算部103から出力された指令に基づいて、電磁切換弁16の制御指令を演算する部分である。
回収制御弁開口面積演算部103から切換指令を入力すると、管路切換弁11を閉止状態に切換える指令を電磁切換弁16に出力する。これにより、ブームシリンダ3aのボトム側油室3axからの戻り圧油の制御弁2側への流出は遮断されて、全量が回収管路34へ流入する。
回収制御弁開口面積演算部103から切換指令を入力すると、管路切換弁11を閉止状態に切換える指令を電磁切換弁16に出力する。これにより、ブームシリンダ3aのボトム側油室3axからの戻り圧油の制御弁2側への流出は遮断されて、全量が回収管路34へ流入する。
次に、本実施の形態におけるコントローラ100の処理内容の手順を図5を用いて説明する。図5は本発明の作業機械の圧油エネルギ回収装置の一実施の形態におけるコントローラの処理内容を示すフローチャート図である。図5において、図1乃至図4に示す符号と同符号のものは同一部分であるので、その詳細な説明は省略する。
まず、コントローラ100は、ブーム下げ操作中か否かを判断する(ステップS1)。具体的には、圧力センサ21で検出されたパイロット圧Pdが予め定めた設定圧より高いか否かの判断を行う。パイロット圧Pdが設定圧より高い場合は、ブーム下げ操作中と判断し、(ステップS2)に進み、それ以外の場合は、(ステップS1)に戻る。
コントローラ100は、回収動作制御を行う(ステップS2)。具体的には、コントローラ100が、管路切換弁11を閉止状態に切換える指令を電磁切換弁16へ出力する。これにより、ブームシリンダ3aのボトム側油室3axからの戻り圧油は、制御弁2側に流出せず、回収管路34に流入開始する。
コントローラ100は、ブームに作用する負荷が高負荷か否かを決定するために、圧力センサ19で検出されたブームシリンダ3aのボトム側油室3axの圧力P0が、圧油エネルギ回収装置70の油圧モータ22の最大使用圧力Pmaxを超過するか否かの判断を行う(ステップS3)。ボトム側油室3axの圧力P0が油圧モータ22の最大使用圧力Pmaxを超過する場合は、高負荷と判断して開口面積調整制御のために(ステップS4)に進み、それ以外の場合は、低負荷と判断して開口面積最大制御のために(ステップS6)に進む。
コントローラ100は、回収制御弁10の目標開口面積A0を算出する(ステップS4)。具体的には、圧油エネルギ回収装置70の油圧モータ22の最大使用圧力Pmaxを超えた圧力ΔPの分だけ、回収制御弁10において圧損を発生させるために、操作装置4の下げ側操作量から求められる目標回収流量Q0、ボトム側油室3axの油圧に基づいて回収制御弁10の目標開口面積A0を算出する。
コントローラ100は、回収制御弁10の開口面積調整制御を行う(ステップS5)。具体的には、(ステップS4)で算出した目標開口面積A0となるように、電磁比例弁15に指令信号を出力する。電磁比例弁15によって生成されたパイロット圧により、回収制御弁10の開口面積が制御され、このことにより、油圧モータ22の過回転が防止できるので、ブーム1aの不意の落下等の発生を防止でき、良好な操作性の確保が可能になる。本ステップを実行後、リターンする。
(ステップS3)において、ボトム側油室3axの圧力P0が油圧モータ22の最大使用圧力Pmaxを超過しないと判断された場合、コントローラ100は、回収制御弁10の開口面積最大制御を行う(ステップS6)。具体的には、回収制御弁10が最大開口面積となるように、電磁比例弁15に指令信号を出力する。電磁比例弁15によって生成されたパイロット圧により、回収制御弁10が開口全開に制御される。このことにより、回収管路34において、不必要な圧損が発生しないので、エネルギ回収効率を高めることができる。本ステップを実行後、リターンする。
上述した本発明の作業機械の圧油エネルギ回収装置の一実施の形態によれば、液体圧シリンダであるブームシリンダ3aに高い負荷が作用して、ブームシリンダ3aから圧油エネルギ回収装置70の最高使用圧力Pmaxを上回る圧力P0の圧油が流出しても、圧油エネルギ回収装置70の油圧モータ22の不必要な過回転を防止するので、作業機械の良好な操作性を確保することができる。
なお、本発明の実施の形態においては、液体圧シリンダとしてブームシリンダ3aに適用した場合を例に説明したが、これに限るものではない。作業機械に配設された液体圧シリンダであれば、どのシリンダにでも適用できる。
また、本実施の形態においては、ブーム1aに作用する負荷を判断するために、ブームシリンダ3aのボトム側油室3axの圧力を用いたが、これに限るものではない。回収管路34と接続される側の液体圧シリンダの油室の圧力を用いれば良い。
1 油圧ショベル
1a ブーム
2 制御弁
2a パイロット受圧部
2b パイロット受圧部
3a ブームシリンダ
3ax ボトム側油室
3ay ロッド側油室
4 操作装置
5 コントロールバルブ
6 油圧ポンプ
6A タンク
7 パイロット油圧ポンプ
8 パイロットチェック弁
10 回収制御弁
11 管路切換弁
15 電磁比例弁
16 電磁切換弁
19 圧力センサ(圧力検出手段)
21 圧力センサ(操作量検出手段)
22 油圧モータ
23 発電機
24 インバータ
25 チョッパ
26 蓄電装置
30 管路
31 ロッド側油室管路
32 ボトム側油室管路
33 戻り管路
34 回収管路
40a パイロット2次側油路
40b パイロット2次側油路
40c パイロット2次側油路
50 エンジン
100 コントローラ(制御装置)
1a ブーム
2 制御弁
2a パイロット受圧部
2b パイロット受圧部
3a ブームシリンダ
3ax ボトム側油室
3ay ロッド側油室
4 操作装置
5 コントロールバルブ
6 油圧ポンプ
6A タンク
7 パイロット油圧ポンプ
8 パイロットチェック弁
10 回収制御弁
11 管路切換弁
15 電磁比例弁
16 電磁切換弁
19 圧力センサ(圧力検出手段)
21 圧力センサ(操作量検出手段)
22 油圧モータ
23 発電機
24 インバータ
25 チョッパ
26 蓄電装置
30 管路
31 ロッド側油室管路
32 ボトム側油室管路
33 戻り管路
34 回収管路
40a パイロット2次側油路
40b パイロット2次側油路
40c パイロット2次側油路
50 エンジン
100 コントローラ(制御装置)
Claims (4)
- 油圧ポンプと、作業装置を駆動する液体圧シリンダと、前記油圧ポンプからの圧油を前記液体圧シリンダに切換え供給する制御弁と、前記制御弁を切換え制御する操作手段と、前記液体圧シリンダの戻り圧油を回収する油圧モータとを備えた作業機械の圧油エネルギ回収装置において、
前記液体圧シリンダと前記油圧モータとを接続する回収管路と、
前記回収管路に設けられ、その開口面積を調整可能な回収制御弁と、
前記液体圧シリンダの前記回収管路に接続された側の油室の圧力信号を検出する圧力検出手段と、
前記操作手段の操作量を検出する操作量検出手段と、
前記圧力検出手段で検出した圧力検出値と,前記操作量検出手段が検出した前記操作手段の操作量とを取込み、前記圧力検出値が前記油圧モータの最高使用圧力を超過した場合は、前記操作量検出手段が検出した前記操作手段の操作量に応じて前記回収制御弁の開口面積を制御する指令を出力する制御装置とを備えた
ことを特徴とする作業機械の圧油エネルギ回収装置。 - 請求項1に記載の作業機械の圧油エネルギ回収装置において、
前記制御装置は、前記圧力検出値が前記油圧モータの最高使用圧力以下の場合は、前記回収制御弁に開口面積最大制御指令を出力する
ことを特徴とする作業機械の圧油エネルギ回収装置。 - 請求項1又は2に記載の作業機械の圧油エネルギ回収装置において、
前記制御装置は、前記油圧モータへ流入する戻り圧油の圧力が、前記油圧モータの最高使用圧力以下となるように、前記回収制御弁の目標開口面積を算出し、前記回収制御弁の開口面積を制御する
ことを特徴とする作業機械の圧油エネルギ回収装置。 - 請求項3に記載の作業機械の圧油エネルギ回収装置において、
前記制御装置は、前記操作量検出手段が検出した前記操作手段の操作量に応じて目標流量を算出する手順と、
前記油圧モータの最高使用圧力と前記圧力検出手段が検出した前記液体圧シリンダの圧力信号とから目標差圧を算出する手順と、
前記目標流量と前記目標差圧とを用いて、前記回収制御弁の目標開口面積を算出する手順とを備えた
ことを特徴とする作業機械の圧油エネルギ回収装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-014740 | 2013-01-29 | ||
JP2013014740A JP2016056808A (ja) | 2013-01-29 | 2013-01-29 | 作業機械の圧油エネルギ回収装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014119569A1 true WO2014119569A1 (ja) | 2014-08-07 |
Family
ID=51262283
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/051836 WO2014119569A1 (ja) | 2013-01-29 | 2014-01-28 | 作業機械の圧油エネルギ回収装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2016056808A (ja) |
WO (1) | WO2014119569A1 (ja) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105864230A (zh) * | 2015-01-23 | 2016-08-17 | 鞍钢股份有限公司 | 一种液压系统能量回收装置及方法 |
CN107013514A (zh) * | 2016-01-27 | 2017-08-04 | 鞍钢股份有限公司 | 一种减少液压系统节流损失的方法 |
CN107013517A (zh) * | 2016-01-27 | 2017-08-04 | 鞍钢股份有限公司 | 一种降低液压系统节流损失的方法 |
US10508568B2 (en) | 2018-03-16 | 2019-12-17 | Uop Llc | Process improvement through the addition of power recovery turbine equipment in existing processes |
US10690010B2 (en) | 2018-03-16 | 2020-06-23 | Uop Llc | Steam reboiler with turbine |
US10745631B2 (en) | 2018-03-16 | 2020-08-18 | Uop Llc | Hydroprocessing unit with power recovery turbines |
US10753235B2 (en) | 2018-03-16 | 2020-08-25 | Uop Llc | Use of recovered power in a process |
US10794225B2 (en) | 2018-03-16 | 2020-10-06 | Uop Llc | Turbine with supersonic separation |
US10811884B2 (en) | 2018-03-16 | 2020-10-20 | Uop Llc | Consolidation and use of power recovered from a turbine in a process unit |
US10829698B2 (en) | 2018-03-16 | 2020-11-10 | Uop Llc | Power recovery from quench and dilution vapor streams |
US10871085B2 (en) | 2018-03-16 | 2020-12-22 | Uop Llc | Energy-recovery turbines for gas streams |
US10920624B2 (en) | 2018-06-27 | 2021-02-16 | Uop Llc | Energy-recovery turbines for gas streams |
US11131218B2 (en) | 2018-03-16 | 2021-09-28 | Uop Llc | Processes for adjusting at least one process condition of a chemical processing unit with a turbine |
US11194301B2 (en) | 2018-03-16 | 2021-12-07 | Uop Llc | System for power recovery from quench and dilution vapor streams |
US11507031B2 (en) | 2018-03-16 | 2022-11-22 | Uop Llc | Recovered electric power measuring system and method for collecting data from a recovered electric power measuring system |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3483453B1 (en) | 2017-11-09 | 2019-10-23 | Danfoss Power Solutions GmbH & Co. OHG | Electro-hydraulic work vehicle with energy recovery |
KR102198830B1 (ko) * | 2019-04-05 | 2021-01-05 | 울산대학교 산학협력단 | 에너지 회생기능을 가지는 pem 연료전지 지게차 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009281525A (ja) * | 2008-05-23 | 2009-12-03 | Kayaba Ind Co Ltd | ハイブリッド建設機械の制御装置 |
JP2012097844A (ja) * | 2010-11-02 | 2012-05-24 | Sumitomo (Shi) Construction Machinery Co Ltd | ハイブリッド油圧ショベル |
JP2012237339A (ja) * | 2011-05-10 | 2012-12-06 | Hitachi Constr Mach Co Ltd | 油圧作業機の油圧システム |
WO2013099710A1 (ja) * | 2011-12-28 | 2013-07-04 | 日立建機株式会社 | 作業機械の動力回生装置および作業機械 |
-
2013
- 2013-01-29 JP JP2013014740A patent/JP2016056808A/ja active Pending
-
2014
- 2014-01-28 WO PCT/JP2014/051836 patent/WO2014119569A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009281525A (ja) * | 2008-05-23 | 2009-12-03 | Kayaba Ind Co Ltd | ハイブリッド建設機械の制御装置 |
JP2012097844A (ja) * | 2010-11-02 | 2012-05-24 | Sumitomo (Shi) Construction Machinery Co Ltd | ハイブリッド油圧ショベル |
JP2012237339A (ja) * | 2011-05-10 | 2012-12-06 | Hitachi Constr Mach Co Ltd | 油圧作業機の油圧システム |
WO2013099710A1 (ja) * | 2011-12-28 | 2013-07-04 | 日立建機株式会社 | 作業機械の動力回生装置および作業機械 |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105864230A (zh) * | 2015-01-23 | 2016-08-17 | 鞍钢股份有限公司 | 一种液压系统能量回收装置及方法 |
CN107013514A (zh) * | 2016-01-27 | 2017-08-04 | 鞍钢股份有限公司 | 一种减少液压系统节流损失的方法 |
CN107013517A (zh) * | 2016-01-27 | 2017-08-04 | 鞍钢股份有限公司 | 一种降低液压系统节流损失的方法 |
US10811884B2 (en) | 2018-03-16 | 2020-10-20 | Uop Llc | Consolidation and use of power recovered from a turbine in a process unit |
US10871085B2 (en) | 2018-03-16 | 2020-12-22 | Uop Llc | Energy-recovery turbines for gas streams |
US10745631B2 (en) | 2018-03-16 | 2020-08-18 | Uop Llc | Hydroprocessing unit with power recovery turbines |
US10753235B2 (en) | 2018-03-16 | 2020-08-25 | Uop Llc | Use of recovered power in a process |
US10794225B2 (en) | 2018-03-16 | 2020-10-06 | Uop Llc | Turbine with supersonic separation |
US10508568B2 (en) | 2018-03-16 | 2019-12-17 | Uop Llc | Process improvement through the addition of power recovery turbine equipment in existing processes |
US10829698B2 (en) | 2018-03-16 | 2020-11-10 | Uop Llc | Power recovery from quench and dilution vapor streams |
US10690010B2 (en) | 2018-03-16 | 2020-06-23 | Uop Llc | Steam reboiler with turbine |
US10876431B2 (en) | 2018-03-16 | 2020-12-29 | Uop Llc | Process improvement through the addition of power recovery turbine equipment in existing processes |
US11713697B2 (en) | 2018-03-16 | 2023-08-01 | Uop Llc | Energy-recovery turbines for gas streams |
US11131218B2 (en) | 2018-03-16 | 2021-09-28 | Uop Llc | Processes for adjusting at least one process condition of a chemical processing unit with a turbine |
US11194301B2 (en) | 2018-03-16 | 2021-12-07 | Uop Llc | System for power recovery from quench and dilution vapor streams |
US11507031B2 (en) | 2018-03-16 | 2022-11-22 | Uop Llc | Recovered electric power measuring system and method for collecting data from a recovered electric power measuring system |
US11667848B2 (en) | 2018-03-16 | 2023-06-06 | Uop Llc | Power recovery from quench and dilution vapor streams |
US10920624B2 (en) | 2018-06-27 | 2021-02-16 | Uop Llc | Energy-recovery turbines for gas streams |
Also Published As
Publication number | Publication date |
---|---|
JP2016056808A (ja) | 2016-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014119569A1 (ja) | 作業機械の圧油エネルギ回収装置 | |
JP6077015B2 (ja) | 作業機械の圧油エネルギ回収装置 | |
JP6205339B2 (ja) | 油圧駆動装置 | |
KR101973872B1 (ko) | 작업 기계의 유압 구동 시스템 | |
JP6291394B2 (ja) | 作業機械の油圧駆動システム | |
KR101991983B1 (ko) | 작업 기계의 동력 회생 장치 및 작업 기계 | |
WO2013121922A1 (ja) | 建設機械 | |
WO2013015022A1 (ja) | 建設機械 | |
JP6072310B2 (ja) | 作業機械の圧油エネルギ回収装置 | |
JP5828481B2 (ja) | 建設機械の制御装置 | |
EP3358201B1 (en) | Pressure oil energy regeneration device of work machine | |
WO2009119705A1 (ja) | ハイブリッド建設機械の制御装置 | |
JP6052980B2 (ja) | ハイブリッド建設機械の制御システム | |
WO2016147283A1 (ja) | 建設機械 | |
JP5078748B2 (ja) | ハイブリッド建設機械の制御装置 | |
WO2019049435A1 (ja) | 建設機械 | |
KR101522061B1 (ko) | 하이브리드 건설기계의 제어장치 | |
JP2013234683A (ja) | 作業機械の旋回装置並びにその作業機械 | |
JP2013160251A (ja) | 作業機械の動力回生装置 | |
JP2018044366A (ja) | 作業機械の挟み処理装置及びこれを備えた作業機械 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14746153 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14746153 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |