WO2014119442A1 - Reactor - Google Patents
Reactor Download PDFInfo
- Publication number
- WO2014119442A1 WO2014119442A1 PCT/JP2014/051215 JP2014051215W WO2014119442A1 WO 2014119442 A1 WO2014119442 A1 WO 2014119442A1 JP 2014051215 W JP2014051215 W JP 2014051215W WO 2014119442 A1 WO2014119442 A1 WO 2014119442A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- reaction
- flow path
- side flow
- heat transfer
- heat medium
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D9/00—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D9/0062—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/0093—Microreactors, e.g. miniaturised or microfabricated reactors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/24—Stationary reactors without moving elements inside
- B01J19/248—Reactors comprising multiple separated flow channels
- B01J19/249—Plate-type reactors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F3/00—Plate-like or laminated elements; Assemblies of plate-like or laminated elements
- F28F3/02—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
- F28F3/04—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00783—Laminate assemblies, i.e. the reactor comprising a stack of plates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00819—Materials of construction
- B01J2219/00822—Metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00819—Materials of construction
- B01J2219/00835—Comprising catalytically active material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00851—Additional features
- B01J2219/00855—Surface features
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00851—Additional features
- B01J2219/00858—Aspects relating to the size of the reactor
- B01J2219/00862—Dimensions of the reaction cavity itself
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00873—Heat exchange
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/24—Stationary reactors without moving elements inside
- B01J2219/2401—Reactors comprising multiple separate flow channels
- B01J2219/245—Plate-type reactors
- B01J2219/2451—Geometry of the reactor
- B01J2219/2453—Plates arranged in parallel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/24—Stationary reactors without moving elements inside
- B01J2219/2401—Reactors comprising multiple separate flow channels
- B01J2219/245—Plate-type reactors
- B01J2219/2451—Geometry of the reactor
- B01J2219/2456—Geometry of the plates
- B01J2219/2459—Corrugated plates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/24—Stationary reactors without moving elements inside
- B01J2219/2401—Reactors comprising multiple separate flow channels
- B01J2219/245—Plate-type reactors
- B01J2219/2461—Heat exchange aspects
- B01J2219/2462—Heat exchange aspects the reactants being in indirect heat exchange with a non reacting heat exchange medium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/24—Stationary reactors without moving elements inside
- B01J2219/2401—Reactors comprising multiple separate flow channels
- B01J2219/245—Plate-type reactors
- B01J2219/2461—Heat exchange aspects
- B01J2219/2465—Two reactions in indirect heat exchange with each other
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/24—Stationary reactors without moving elements inside
- B01J2219/2401—Reactors comprising multiple separate flow channels
- B01J2219/245—Plate-type reactors
- B01J2219/2469—Feeding means
- B01J2219/247—Feeding means for the reactants
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/24—Stationary reactors without moving elements inside
- B01J2219/2401—Reactors comprising multiple separate flow channels
- B01J2219/245—Plate-type reactors
- B01J2219/2476—Construction materials
- B01J2219/2477—Construction materials of the catalysts
- B01J2219/2479—Catalysts coated on the surface of plates or inserts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/24—Stationary reactors without moving elements inside
- B01J2219/2401—Reactors comprising multiple separate flow channels
- B01J2219/245—Plate-type reactors
- B01J2219/2476—Construction materials
- B01J2219/2483—Construction materials of the plates
- B01J2219/2485—Metals or alloys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/24—Stationary reactors without moving elements inside
- B01J2219/2401—Reactors comprising multiple separate flow channels
- B01J2219/245—Plate-type reactors
- B01J2219/2491—Other constructional details
- B01J2219/2498—Additional structures inserted in the channels, e.g. plates, catalyst holding meshes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D2021/0019—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
- F28D2021/0022—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for chemical reactors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2265/00—Safety or protection arrangements; Arrangements for preventing malfunction
- F28F2265/26—Safety or protection arrangements; Arrangements for preventing malfunction for allowing differential expansion between elements
Definitions
- the present invention relates to a heat exchange type reactor.
- the heat exchange type reactor is provided with a reaction side channel as a reaction field and a reaction target channel that is provided in parallel with the reaction side channel with a heat transfer partition therebetween (hereinafter, referred to as a reaction target). Called a reaction fluid) and a heat medium side channel through which a heat medium for heat exchange flows. It is known that a heat exchange type reactor can efficiently cause a reaction in a reaction side channel. This reactor is often made of metal because of its high thermal conductivity, and its outer periphery is joined by welding or the like to prevent leakage of fluid between the channels or from the channels to the outside. ing.
- the corrugated tube (flexible tube) is used to connect the corrugated tube (flexible tube) between the inlet of the reaction side channel and the introduction channel and between the outlet of the reaction side channel and the discharge channel.
- a configuration for absorbing thermal stress by a tube is disclosed.
- an endothermic reaction or an exothermic reaction occurs in the reaction side flow path of the heat exchange type reactor described above.
- a temperature difference temperature gradient in the direction of the channel not only between the inlet of the reaction side channel and the introduction path, between the outlet of the reaction side channel and the discharge path, but also in the reaction side channel itself. More specifically, the temperature on the outlet side (downstream side) is higher than the temperature on the inlet side (upstream side) while the endothermic reaction occurs in the reaction side flow path.
- the temperature difference at this time is about 250 ° C. depending on the reaction. Further, while an exothermic reaction is occurring in the reaction side flow path, the temperature on the inlet side becomes higher than the temperature on the outlet side. The temperature difference at this time is about 250 ° C. depending on the reaction.
- thermal stress acts on the heat transfer partition that divides the reaction side flow path and the heat medium side flow path.
- the outer periphery of the reactor is joined. For this reason, there is a risk that distortion may occur in the heat transfer partition and the joint.
- the present invention has been made in view of such a problem, and an object of the present invention is to provide a reactor capable of absorbing thermal stress generated in the heat transfer partition and suppressing distortion (backlash) of the heat transfer partition.
- An aspect of the present invention is a reactor, which is provided by laminating a reaction side flow channel for circulating a fluid as a reaction target and the reaction side flow channel, and performs heat exchange with the fluid in the reaction side flow channel.
- the heat transfer partition includes one or more stress absorbing portions that are raised or depressed in the stacking direction of the reaction side flow path and the heat medium side flow path.
- the stress absorbing portion may be provided in a relatively high temperature side among the inlet and outlet of the reaction side channel.
- the stress absorbing portion located on the relatively high temperature side may be larger in size than the stress absorbing portion located on the relatively low temperature side.
- the distance between adjacent stress absorbing portions may be shorter on the relatively high temperature side of the inlet and outlet of the reaction side channel than on the relatively low temperature side.
- the shape of the heat transfer partition by devising the shape of the heat transfer partition, it is possible to provide a reactor that can absorb the thermal stress generated in the heat transfer partition and suppress the distortion of the heat transfer partition.
- FIG. 1 (a) and FIG.1 (b) are the figures for demonstrating the reactor which concerns on embodiment of this invention.
- FIG. 2A is a view for explaining a reaction side flow path according to the embodiment of the present invention
- FIG. 2B is a view for explaining a heat medium side flow path according to the embodiment of the present invention.
- FIG. 3 is a diagram for explaining the temperatures of the reaction fluid, the heat medium, and the heat transfer partition when the methane steam reforming reaction is performed in the reactor.
- FIG. 4A and FIG. 4B are diagrams for explaining the heat transfer partition according to the embodiment of the present invention.
- FIGS. 5A and 5B are diagrams for explaining the configuration of the stress absorbing portion and the rib according to the embodiment of the present invention, and FIG.
- FIG. 5A is the vicinity of the stress absorbing portion in FIG.
- FIG. 5B shows an XZ sectional view taken along line AA of FIG. 4A.
- FIG. 6 is a view for explaining a stress absorbing portion according to a modification of the embodiment of the present invention.
- reaction fluid a fluid as a reaction target is referred to as a reaction fluid.
- FIG. 1 is a diagram for explaining a reactor 100 according to the present embodiment
- FIG. 2 is a diagram for explaining a reaction side channel 210 and a heat medium side channel 220. 1 and 2, the X axis, the Y axis, and the Z axis that intersect perpendicularly are defined as illustrated. In FIG. 1, the illustration of the catalyst plate 140 is omitted for easy understanding.
- the reactor 100 of this embodiment is a heat exchange type reactor. As shown in FIG. 1, the reactor 100 includes an upper surface 102, a plurality of heat transfer partition walls 110 (may be indicated by 110 a and 110 b) stacked at a predetermined interval, a reaction fluid introduction unit 120, a reaction fluid. A discharge unit 122, a heat medium introduction unit 130, and a heat medium discharge unit 132 are provided. These are all formed of a metal material (for example, a refractory metal such as stainless steel (SUS310, Haynes (registered trademark) 230)).
- a metal material for example, a refractory metal such as stainless steel (SUS310, Haynes (registered trademark) 230).
- the heat transfer partition walls 110 are stacked and joined together, and the upper surface 102 is joined to the heat transfer partition wall 110. Then, the reaction fluid introduction unit 120, the reaction fluid discharge unit 122, the heat medium introduction unit 130, and the heat medium discharge unit 132 are joined to the stacked heat transfer partition 110, respectively.
- TIG Tungsten Inert Gas
- diffusion joining can be used.
- the reaction-side flow path 210 has a reaction fluid introduction part 120 and a reaction fluid through holes 210a formed on the reaction fluid introduction part 120 side and the reaction fluid discharge part 122 side in the space defined by the heat transfer partition 110.
- a space communicating with the discharge unit 122 is formed.
- the heat medium side flow path 220 is the heat medium introduction part 130 through the hole 220a formed in the heat medium introduction part 130 side and the heat medium discharge
- a space communicating with the heat medium discharge unit 132 is formed.
- reaction side flow path 210 and the heat medium side flow path 220 are partitioned by the heat transfer partition 110 and provided in parallel, and the reaction side flow path 210 and the heat medium side flow path 220 are Are stacked alternately.
- the bottom surface of the heat medium side flow path 220 is constituted by a heat transfer partition 110 (indicated by 110a in FIG. 2A).
- the upper surface of the heat medium side flow path 220 is constituted by the upper surface 102 or a heat transfer partition wall 110 (denoted by 110b in FIG. 2B) described later.
- the heat transfer partition 110 a is provided with a plurality of ribs 112 for maintaining a gap between the heat transfer partitions 110.
- the heat transfer partition 110 a is provided with a side wall portion 114 that constitutes a side wall of the reactor 100 and a side bar 116 for preventing the reaction fluid from being mixed from the reaction fluid introduction portion 120.
- the side wall 114 on the side where the heat medium introduction part 130 and the heat medium discharge part 132 are joined is provided with a notch 114a, and the heat transfer partition 110 is laminated.
- the notch 114a forms a hole 220a.
- the heat medium is introduced from the heat medium introduction unit 130 into the heat medium side flow path 220 through the hole 220a. Further, the heat medium is discharged from the heat medium side flow path 220 to the heat medium discharge unit 132 through the hole 220a.
- the bottom surface of the reaction side channel 210 is constituted by the heat transfer partition 110b.
- the upper surface of the reaction side flow path 210 is comprised by the heat-transfer partition 110a.
- the heat transfer partition 110b is also provided with a plurality of ribs 112 and side walls 114 for maintaining gaps between the heat transfer partitions 110.
- the heat transfer partition 110b is not provided with the side bar 116. Therefore, a gap 114 b is formed between the side wall portions 114. The gap 114b forms a hole 210a when the heat transfer partition 110 is stacked.
- the reaction fluid is introduced into the reaction side flow path 210 from the reaction fluid introduction part 120 through the hole 210a. Further, the reaction fluid is discharged from the reaction side flow path 210 to the reaction fluid discharge portion 122 through the hole 210a. Further, the reaction side channel 210 is provided with a catalyst plate 140 in which a catalyst (active metal) is supported on a corrugated metal plate.
- the catalyst includes a component (material) suitable for the reaction occurring in the reaction side flow path 210.
- the catalyst is one or more metals selected from the group of Ni (nickel), Ru (ruthenium), and Pt (platinum). It is.
- the heat medium is introduced from the heat medium introduction section 130, flows through the heat medium side flow path 220, and is discharged from the heat medium discharge section 132.
- the reaction fluid is introduced from the reaction fluid introduction unit 120, flows through the reaction side flow path 210, and is discharged from the reaction fluid discharge unit 122.
- the reaction fluid and the heat medium in the present embodiment are in a counterflow relationship.
- reaction side channel 210 and the heat medium side channel 220 are partitioned by the heat transfer partition 110 and provided in parallel.
- the heat transfer partition 110 transfers the heat of the heat medium flowing through the heat medium side flow path 220 to the reaction side flow path 210.
- the heat medium flowing through the heat medium side flow path 220 exchanges heat with the reaction fluid flowing through the reaction side flow path 210 via the heat transfer partition 110.
- the dimensions of the reactor 100 according to the present embodiment are, for example, such that the distance in the X-axis direction in FIG. 1 is about 1 m, the distance in the Y-axis direction in FIG. 1 is about 1 m, and the separation distance between the heat transfer partitions 110 is several mm. Degree. In FIG. 1, for easy understanding, the separation distance between the heat transfer partition walls 110 is shown larger than the distance in the X-axis direction and the distance in the Y-axis direction in FIG. 1.
- the flow path cross section of the reaction field in the reactor 100 may be set so that at least one side is about several mm or less than 1 mm.
- a reactor in which the reaction field is formed in such a minute space is called a compact reactor, a microreactor, etc. Since the specific surface area per unit volume is large, the heat transfer efficiency is high, and the reaction rate and yield can be improved. it can. In addition, since the convection and diffusion modes are arbitrarily configured, it is possible to control the quick mixing and the active concentration distribution, so that the reaction can be controlled strictly.
- FIG. 3 is a diagram for explaining the temperature of the reaction fluid, the heat medium, and the heat transfer partition 110 when the methane steam reforming reaction is performed in the reactor 100.
- the steam reforming reaction of methane is represented by the following chemical formula (1). CH 4 + H 2 O ⁇ 3H 2 + CO ... Chemical Formula (1)
- the reaction represented by the chemical formula (1) is an endothermic reaction having an enthalpy change ( ⁇ H 0 298 ) of about ⁇ 206 kJ / mol.
- the temperature transition of the reaction fluid in the reaction side channel 210 is about 450 ° C. on the inlet side of the reaction side channel 210 and about 800 ° C. on the outlet side, as indicated by a broken line in FIG. That is, the temperature of the reaction side channel 210 is lowest on the inlet side and highest on the outlet side. This is because the reaction fluid just introduced into the reaction side flow path 210 contains a relatively large amount of unreacted substances, and thus the reaction frequency increases. This is because the reaction frequency is lowered because the substance is converted into the desired reaction product and relatively less.
- the temperature transition of the heat medium in the heat medium side flow path 220 is about 800 ° C. near the inlet of the heat medium side flow path 220 and about 600 ° C. near the outlet, as shown by a one-dot chain line in FIG. That is, the temperature of the heat medium side flow path 220 is the highest near the inlet and the lowest near the outlet. This is because a relatively high-temperature heat medium is introduced into the heat medium side flow path 220, and the heat adjoins the heat medium side flow path 220 while the heat medium flows through the heat medium side flow path 220. This is because it is transmitted to the side flow path 210.
- the flow directions of the reaction fluid and the heat medium are opposed to each other. Therefore, the inlet side of the heat medium side channel 220 is adjacent to the outlet side of the reaction side channel 210, and the outlet side of the heat medium side channel 220 is adjacent to the inlet side of the reaction side channel 210.
- the inlet side of the heat medium side channel 220 adjacent to the outlet side of the reaction side channel 210 where the reaction frequency is low the heat absorption by the reaction fluid is low and the heat adjacent to the inlet side of the reaction side channel 210 where the reaction frequency is high.
- the outlet side of the medium side channel 220 the heat absorption by the reaction fluid is high. Therefore, the temperature transition of the heat medium is also caused by the degree of heat absorption by the reaction fluid, which changes depending on the position of the heat medium in the heat medium side flow path 220.
- the temperature of the heat transfer partition 110 also increases from about 550 ° C. to about 800 ° C., for example, as it goes from the inlet side to the outlet side of the reaction side channel 210. Therefore, the heat transfer partition 110 has a difference of about 250 ° C. in the flow path direction.
- thermal stress is applied to the heat transfer partition 110 that partitions the reaction side channel 210 and the heat medium side channel 220.
- the side walls 114 and the side bars 116 are joined to the outer periphery of the heat transfer partition 110. Therefore, when thermal stress acts on the heat transfer partition 110, there is a possibility that distortion may occur in the heat transfer partition 110 and the joint (joint portion between the side wall portions 114, joint portion between the side bars 116).
- the coefficient of linear expansion ( ⁇ ) of the heat transfer partition is 16 ⁇ 10 ⁇ 6 (1 / K).
- the thermal expansion of the heat transfer partition wall ( L ⁇ T) is 0.004 m. That is, the heat transfer partition extends about 4 mm in the X-axis direction (flow channel direction) in FIG.
- the shape of the heat transfer partition 110 is devised to absorb the thermal stress generated in the heat transfer partition 110.
- FIG. 4 is a diagram for explaining the heat transfer partition 110 according to the present embodiment
- FIG. 5 is a diagram for explaining the configuration of the stress absorbing portion 150 and the rib 112.
- 5A shows an XZ cross-sectional view in the vicinity of the stress absorbing portion 150 in FIG. 4
- FIG. 5B shows an XZ cross-sectional view along the line AA in FIG. 4A. Show.
- the heat transfer partition walls 110a and 110b have a stress absorbing portion 150 that rises or sinks in the stacking direction of the reaction side flow path 210 and the heat medium side flow path 220.
- the stress absorbing part 150 is formed by pressing the heat transfer partition 110.
- the diameters of the stress absorbing portions 150 are substantially the same, for example, not less than the thickness of the heat transfer partition 110 (the thickness in the Z-axis direction in FIG. 5A). By setting the diameter of the stress absorbing portion 150 to be equal to or greater than the thickness of the heat transfer partition 110, the processing becomes easy.
- the portion surrounded by a broken-line circle in FIG. 5A in the stress absorbing portion 150 absorbs thermal stress generated in the heat transfer partition 110. Therefore, it is possible to avoid the entire heat transfer partition 110 from extending in the flow path direction (X-axis direction in FIG. 4).
- many stress absorbing portions 150 are provided on the relatively high temperature side (here, the inlet) of the inlet and outlet of the heat medium side flow path 220.
- the heat transfer partition 110 a constitutes the bottom surface of the heat medium side channel 220 and the top surface of the reaction side channel 210. From this, it can be said that many stress absorption parts 150 are provided on the relatively high temperature side (here, the outlet) of the inlet and outlet of the reaction side channel 210.
- many stress absorbing portions 150 are provided on the relatively high temperature side (here, on the outlet side) of the inlet and outlet of the reaction side channel 210.
- the heat transfer partition 110 b constitutes the bottom surface of the reaction side channel 210 and the top surface of the heat medium side channel 220. From this, it can be said that many stress absorption parts 150 are provided on the relatively high temperature side (here, the inlet) of the inlet and outlet of the heat medium side flow path 220.
- the rib 112 of the heat transfer partition 110b that constitutes the bottom surface of the reaction side channel 210 is provided with a restricting portion 112a for restricting the movement of the catalyst plate 140.
- the restricting portion 112a restricts the movement of the catalyst plate 140 in the flow direction of the reaction fluid.
- the rib 112 of the present embodiment is partially joined to the heat transfer partition 110a.
- the joint portion of the rib 112 with the heat transfer partition 110 a is disposed on the relatively low temperature side from the inlet to the outlet of the reaction side channel 210. That is, the rib 112 is not joined to the heat transfer partition wall 110a but is in contact with it on the relatively high temperature side from the inlet to the outlet of the reaction side channel 210.
- the thermal stress generated in the heat transfer partition 110 is absorbed, and the heat transfer partition 110 is distorted. Can be suppressed.
- thermal expansion thermal elongation
- thermal expansion thermal expansion
- many stress absorbing portions 150 are provided on the relatively high temperature side of the inlet and outlet of the reaction side flow path 210 described above. It is possible to efficiently absorb the thermal stress of this part.
- the stress absorbing unit 150 will be described.
- FIG. 6 is a diagram for explaining a stress absorbing unit 150 according to a modification of the present embodiment.
- the heat transfer partition 110b will be described, and the description of the heat transfer partition 110a having substantially the same configuration will be omitted.
- the stress absorbing part 150 located on the relatively high temperature side of the inlet and outlet of the reaction side flow path 210 has the stress located on the relatively low temperature side. It is formed larger than the absorption part 150.
- the stress absorbing portions 150 adjacent to each other on the relatively high temperature side of the inlet and outlet of the reaction side flow path 210 are relatively closer than the low temperature side.
- the interval between each other is formed short.
- the rib 112 may be omitted.
- reaction fluid and the heat medium may be in parallel flow. That is, the flow directions of the reaction fluid and the heat medium may be the same.
- the reaction generated in the reactor 100 may be an exothermic reaction.
- the number of the stress absorbing portions 150 of the heat transfer partition 110 is relatively increased on the relatively high temperature side of the inlet and outlet of the reaction side channel 210, or the stress located on the relatively high temperature side.
- the size of the absorber 150 is relatively large, or the interval between the stress absorbers 150 located on the relatively high temperature side is made shorter than the interval between the stress absorbers 150 located on the relatively low temperature side do it.
- the present invention can be used for a heat exchange type reactor.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Micromachines (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
A reactor is provided with: a reaction side flow path (210) through which a fluid flows as a reactant; a heating medium side flow path (220), which is laminated and provided with the reaction side flow path (210) and through which a heating medium for carrying out heat exchange with the fluid inside the reaction side flow path (210) flows; and a heat transferring dividing wall (110) that divides the reaction side flow path (210) and the heating medium side flow path (220) and also transfers heat between the reaction side flow path (210) and the heating medium side flow path (220). The heat transferring dividing wall (110) includes a stress absorbing part (150) that protrudes or is depressed in the direction of lamination of the reaction side flow path (210) and the heating medium side flow path (220).
Description
本発明は、熱交換型のリアクタに関する。
The present invention relates to a heat exchange type reactor.
熱交換型のリアクタは、反応場としての反応側流路と、伝熱隔壁を隔てて反応側流路と並行して設けられ、当該反応側流路を流通する反応対象としての流体(以下、反応流体と称する)と熱交換を行うための熱媒体が流通する熱媒体側流路とを備えている。熱交換型のリアクタは、反応側流路において効率よく反応を起こすことができることが知られている。このリアクタは、熱伝導性の高さから金属で構成されることが多く、流路間または流路から外部への流体の漏出(リーク)を防止するために、外周部を溶接等で接合している。
The heat exchange type reactor is provided with a reaction side channel as a reaction field and a reaction target channel that is provided in parallel with the reaction side channel with a heat transfer partition therebetween (hereinafter, referred to as a reaction target). Called a reaction fluid) and a heat medium side channel through which a heat medium for heat exchange flows. It is known that a heat exchange type reactor can efficiently cause a reaction in a reaction side channel. This reactor is often made of metal because of its high thermal conductivity, and its outer periphery is joined by welding or the like to prevent leakage of fluid between the channels or from the channels to the outside. ing.
熱交換型のリアクタでは、反応側流路において発熱や吸熱が生じる。そのため、反応側流路の入口の温度と反応側流路に反応流体を導入する導入路との温度に差が生じる。また、反応側流路の出口の温度と反応側流路から反応流体を排出する排出路の温度にも差が生じる。そうすると、反応側流路の入口と導入路との接合部や、反応側流路の出口と排出路との接合部に熱応力が生じ、接合部が歪んでしまうおそれがある。
In a heat exchange type reactor, heat generation and heat absorption occur in the reaction side flow path. Therefore, there is a difference between the temperature at the inlet of the reaction side channel and the temperature of the introduction path for introducing the reaction fluid into the reaction side channel. There is also a difference between the temperature at the outlet of the reaction side channel and the temperature of the discharge path for discharging the reaction fluid from the reaction side channel. If it does so, thermal stress will arise in the junction part of the inlet of a reaction side flow path, and an introductory path, and the junction part of the exit of a reaction side flow path, and a discharge path, and there exists a possibility that a junction part may be distorted.
そこで、特許文献1には、反応側流路の入口と導入路との間、および、反応側流路の出口と排出路との間を波形管(フレキシブルチューブ)で接続することで、当該波形管によって熱応力を吸収する構成が開示されている。
Therefore, in Patent Document 1, the corrugated tube (flexible tube) is used to connect the corrugated tube (flexible tube) between the inlet of the reaction side channel and the introduction channel and between the outlet of the reaction side channel and the discharge channel. A configuration for absorbing thermal stress by a tube is disclosed.
上述した熱交換型のリアクタの反応側流路においては、吸熱反応や発熱反応が生じている。反応側流路の入口と導入路との間や、反応側流路の出口と排出路との間のみならず、反応側流路自体にも流路方向に温度差(温度勾配)が生じる。具体的に説明すると、反応側流路において吸熱反応が生じている間、出口側(下流側)の温度が入口側(上流側)の温度より高くなる。このときの温度差は、反応によっては、250℃程度になる。また、反応側流路において発熱反応が発生している間、入口側の温度が出口側の温度より高くなる。このときの温度差は、反応によっては、250℃程度になる。
In the reaction side flow path of the heat exchange type reactor described above, an endothermic reaction or an exothermic reaction occurs. There is a temperature difference (temperature gradient) in the direction of the channel not only between the inlet of the reaction side channel and the introduction path, between the outlet of the reaction side channel and the discharge path, but also in the reaction side channel itself. More specifically, the temperature on the outlet side (downstream side) is higher than the temperature on the inlet side (upstream side) while the endothermic reaction occurs in the reaction side flow path. The temperature difference at this time is about 250 ° C. depending on the reaction. Further, while an exothermic reaction is occurring in the reaction side flow path, the temperature on the inlet side becomes higher than the temperature on the outlet side. The temperature difference at this time is about 250 ° C. depending on the reaction.
この場合、反応側流路と熱媒体側流路とを区画する伝熱隔壁に熱応力が作用する。一方、リアクタの外周部は接合されている。そのため、伝熱隔壁や接合部に歪みが生じるおそれがあった。
In this case, thermal stress acts on the heat transfer partition that divides the reaction side flow path and the heat medium side flow path. On the other hand, the outer periphery of the reactor is joined. For this reason, there is a risk that distortion may occur in the heat transfer partition and the joint.
本発明は、このような課題に鑑み、伝熱隔壁に生じる熱応力を吸収し、伝熱隔壁の歪み(ガタ)を抑制することが可能なリアクタを提供することを目的としている。
The present invention has been made in view of such a problem, and an object of the present invention is to provide a reactor capable of absorbing thermal stress generated in the heat transfer partition and suppressing distortion (backlash) of the heat transfer partition.
本発明の態様はリアクタであって、反応対象としての流体を流通させる反応側流路と、前記反応側流路と積層して設けられ、前記反応側流路内の前記流体と熱交換を行うための熱媒体を流通させる熱媒体側流路と、前記反応側流路と前記熱媒体側流路とを区画し、且つ、前記反応側流路と前記熱媒体側流路との間で熱を伝達する伝熱隔壁と、を備え、前記伝熱隔壁は、前記反応側流路と前記熱媒体側流路との積層方向に隆起または陥没する1以上の応力吸収部を含むことを要旨とする。
An aspect of the present invention is a reactor, which is provided by laminating a reaction side flow channel for circulating a fluid as a reaction target and the reaction side flow channel, and performs heat exchange with the fluid in the reaction side flow channel. A heat medium side flow path through which the heat medium for circulating, a reaction side flow path and the heat medium side flow path are partitioned, and heat is generated between the reaction side flow path and the heat medium side flow path. And the heat transfer partition includes one or more stress absorbing portions that are raised or depressed in the stacking direction of the reaction side flow path and the heat medium side flow path. To do.
前記応力吸収部は、反応側流路の入口および出口のうち相対的に高温側に多く設けられてもよい。
The stress absorbing portion may be provided in a relatively high temperature side among the inlet and outlet of the reaction side channel.
前記反応側流路の入口および出口のうち相対的に高温側に位置する応力吸収部は、相対的に低温側に位置する応力吸収部よりも寸法が大きくてもよい。
Of the inlet and outlet of the reaction side channel, the stress absorbing portion located on the relatively high temperature side may be larger in size than the stress absorbing portion located on the relatively low temperature side.
反応側流路の入口および出口のうち相対的に高温側において、相対的に低温側よりも、隣接する応力吸収部同士の間隔が短くてもよい。
The distance between adjacent stress absorbing portions may be shorter on the relatively high temperature side of the inlet and outlet of the reaction side channel than on the relatively low temperature side.
本発明によれば、伝熱隔壁の形状を工夫することで、伝熱隔壁に生じる熱応力を吸収し、伝熱隔壁の歪みを抑制することが可能なリアクタを提供できる。
According to the present invention, by devising the shape of the heat transfer partition, it is possible to provide a reactor that can absorb the thermal stress generated in the heat transfer partition and suppress the distortion of the heat transfer partition.
以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値等は、発明の理解を容易とするための例示にすぎず、特に断る場合を除き、本発明を限定するものではない。なお、本明細書および図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本発明に直接関係のない要素は図示を省略する。また、説明の便宜上、反応対象としての流体を反応流体と称する。
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The dimensions, materials, and other specific numerical values shown in the embodiments are merely examples for facilitating the understanding of the invention, and do not limit the present invention unless otherwise specified. In the present specification and drawings, elements having substantially the same function and configuration are denoted by the same reference numerals, and redundant description is omitted, and elements not directly related to the present invention are not illustrated. To do. For convenience of explanation, a fluid as a reaction target is referred to as a reaction fluid.
(リアクタ100)
図1は、本実施形態にかかるリアクタ100を説明するための図であり、図2は、反応側流路210および熱媒体側流路220を説明するための図である。図1および図2では、垂直に交わるX軸、Y軸、Z軸を図示の通り定義している。また、図1では、理解を容易にするために触媒板140の記載を省略している。 (Reactor 100)
FIG. 1 is a diagram for explaining areactor 100 according to the present embodiment, and FIG. 2 is a diagram for explaining a reaction side channel 210 and a heat medium side channel 220. 1 and 2, the X axis, the Y axis, and the Z axis that intersect perpendicularly are defined as illustrated. In FIG. 1, the illustration of the catalyst plate 140 is omitted for easy understanding.
図1は、本実施形態にかかるリアクタ100を説明するための図であり、図2は、反応側流路210および熱媒体側流路220を説明するための図である。図1および図2では、垂直に交わるX軸、Y軸、Z軸を図示の通り定義している。また、図1では、理解を容易にするために触媒板140の記載を省略している。 (Reactor 100)
FIG. 1 is a diagram for explaining a
本実施形態のリアクタ100は、熱交換型のリアクタである。図1に示すように、リアクタ100は、上面102、予め定められた間隔をおいて積層された複数の伝熱隔壁110(110a、110bで示す場合もある)、反応流体導入部120、反応流体排出部122、熱媒体導入部130、熱媒体排出部132を備える。これらは全て金属材料(例えば、ステンレス鋼(SUS310、Haynes(登録商標)230)等の耐熱金属)で形成されている。
The reactor 100 of this embodiment is a heat exchange type reactor. As shown in FIG. 1, the reactor 100 includes an upper surface 102, a plurality of heat transfer partition walls 110 (may be indicated by 110 a and 110 b) stacked at a predetermined interval, a reaction fluid introduction unit 120, a reaction fluid. A discharge unit 122, a heat medium introduction unit 130, and a heat medium discharge unit 132 are provided. These are all formed of a metal material (for example, a refractory metal such as stainless steel (SUS310, Haynes (registered trademark) 230)).
リアクタ100を製造する場合、伝熱隔壁110を積層してそれぞれを接合するとともに、上面102を伝熱隔壁110に接合する。そして、反応流体導入部120、反応流体排出部122、熱媒体導入部130、熱媒体排出部132を積層された伝熱隔壁110にそれぞれ接合する。リアクタ100を製造する際に用いる接合方法に限定はないが、例えば、TIG(Tungsten Inert Gas)溶接や拡散接合が利用できる。
When the reactor 100 is manufactured, the heat transfer partition walls 110 are stacked and joined together, and the upper surface 102 is joined to the heat transfer partition wall 110. Then, the reaction fluid introduction unit 120, the reaction fluid discharge unit 122, the heat medium introduction unit 130, and the heat medium discharge unit 132 are joined to the stacked heat transfer partition 110, respectively. Although there is no limitation on the joining method used when manufacturing the reactor 100, for example, TIG (Tungsten Inert Gas) welding or diffusion joining can be used.
反応側流路210は、伝熱隔壁110によって区画される空間のうち、反応流体導入部120側および反応流体排出部122側に形成された孔210aを介して、反応流体導入部120および反応流体排出部122に連通する空間を形成する。また、熱媒体側流路220は、伝熱隔壁110によって区画される空間のうち、熱媒体導入部130側および熱媒体排出部132側に形成された孔220aを介して、熱媒体導入部130および熱媒体排出部132に連通する空間を形成する。本実施形態のリアクタ100では、反応側流路210と熱媒体側流路220とが伝熱隔壁110に区画されて並行して設けられるとともに、反応側流路210と熱媒体側流路220とが交互に積層されている。
The reaction-side flow path 210 has a reaction fluid introduction part 120 and a reaction fluid through holes 210a formed on the reaction fluid introduction part 120 side and the reaction fluid discharge part 122 side in the space defined by the heat transfer partition 110. A space communicating with the discharge unit 122 is formed. Moreover, the heat medium side flow path 220 is the heat medium introduction part 130 through the hole 220a formed in the heat medium introduction part 130 side and the heat medium discharge | emission part 132 side among the space divided by the heat transfer partition 110. A space communicating with the heat medium discharge unit 132 is formed. In the reactor 100 of the present embodiment, the reaction side flow path 210 and the heat medium side flow path 220 are partitioned by the heat transfer partition 110 and provided in parallel, and the reaction side flow path 210 and the heat medium side flow path 220 are Are stacked alternately.
図2(a)に示すように、熱媒体側流路220は、底面が伝熱隔壁110(図2(a)中の110aで示す)で構成される。また、熱媒体側流路220の上面は上面102もしくは後述する伝熱隔壁110(図2(b)中の110bで示す)で構成される。伝熱隔壁110aには、伝熱隔壁110間の間隙を保持するためのリブ112が複数設けられている。さらに、伝熱隔壁110aには、リアクタ100の側壁を構成する側壁部114と、反応流体導入部120からの反応流体の混入を防止するためのサイドバー116とが設けられている。また、側壁部114のうち、熱媒体導入部130および熱媒体排出部132が接合される側の側壁部114には、切り欠き114aが設けられており、伝熱隔壁110が積層されたときに、当該切り欠き114aが孔220aを形成する。熱媒体は、熱媒体導入部130から孔220aを介して熱媒体側流路220内へ導入される。また、熱媒体は、熱媒体側流路220内から孔220aを介して熱媒体排出部132に排出される。
As shown in FIG. 2A, the bottom surface of the heat medium side flow path 220 is constituted by a heat transfer partition 110 (indicated by 110a in FIG. 2A). Further, the upper surface of the heat medium side flow path 220 is constituted by the upper surface 102 or a heat transfer partition wall 110 (denoted by 110b in FIG. 2B) described later. The heat transfer partition 110 a is provided with a plurality of ribs 112 for maintaining a gap between the heat transfer partitions 110. Furthermore, the heat transfer partition 110 a is provided with a side wall portion 114 that constitutes a side wall of the reactor 100 and a side bar 116 for preventing the reaction fluid from being mixed from the reaction fluid introduction portion 120. In addition, the side wall 114 on the side where the heat medium introduction part 130 and the heat medium discharge part 132 are joined is provided with a notch 114a, and the heat transfer partition 110 is laminated. The notch 114a forms a hole 220a. The heat medium is introduced from the heat medium introduction unit 130 into the heat medium side flow path 220 through the hole 220a. Further, the heat medium is discharged from the heat medium side flow path 220 to the heat medium discharge unit 132 through the hole 220a.
図2(b)に示すように、反応側流路210は、底面が伝熱隔壁110bで構成される。また、反応側流路210の上面は、伝熱隔壁110aで構成される。伝熱隔壁110bにも、上記伝熱隔壁110aと同様に伝熱隔壁110間の間隙を保持するための複数のリブ112と、側壁部114とが設けられている。なお、伝熱隔壁110bには、伝熱隔壁110aと異なり、サイドバー116が設けられていない。そのため、両側壁部114間には間隙114bが形成される。間隙114bは、伝熱隔壁110が積層されたときに、孔210aを形成する。反応流体は、反応流体導入部120から孔210aを介して反応側流路210内へ導入される。また、反応流体は、反応側流路210内から孔210aを介して反応流体排出部122に排出される。また、反応側流路210には、波板形状(コルゲート形状)の金属板に触媒(活性金属)が担持された触媒板140が設置される。
As shown in FIG. 2 (b), the bottom surface of the reaction side channel 210 is constituted by the heat transfer partition 110b. Moreover, the upper surface of the reaction side flow path 210 is comprised by the heat-transfer partition 110a. Similarly to the heat transfer partition 110a, the heat transfer partition 110b is also provided with a plurality of ribs 112 and side walls 114 for maintaining gaps between the heat transfer partitions 110. Unlike the heat transfer partition 110a, the heat transfer partition 110b is not provided with the side bar 116. Therefore, a gap 114 b is formed between the side wall portions 114. The gap 114b forms a hole 210a when the heat transfer partition 110 is stacked. The reaction fluid is introduced into the reaction side flow path 210 from the reaction fluid introduction part 120 through the hole 210a. Further, the reaction fluid is discharged from the reaction side flow path 210 to the reaction fluid discharge portion 122 through the hole 210a. Further, the reaction side channel 210 is provided with a catalyst plate 140 in which a catalyst (active metal) is supported on a corrugated metal plate.
触媒は、反応側流路210において生じる反応に適した成分(材料)を含む。例えば、反応側流路210において生じる反応が、メタンの水蒸気改質反応である場合、触媒は、Ni(ニッケル)、Ru(ルテニウム)、Pt(白金)の群から選択される1または複数の金属である。
The catalyst includes a component (material) suitable for the reaction occurring in the reaction side flow path 210. For example, when the reaction occurring in the reaction side channel 210 is a steam reforming reaction of methane, the catalyst is one or more metals selected from the group of Ni (nickel), Ru (ruthenium), and Pt (platinum). It is.
図1(a)中の実線の矢印で示すように、熱媒体は、熱媒体導入部130から導入され、熱媒体側流路220を流通し、熱媒体排出部132から排出される。また、図1(b)中の破線の矢印で示すように、反応流体は、反応流体導入部120から導入され、反応側流路210を流通し、反応流体排出部122から排出される。図1に示すように、本実施形態における反応流体と熱媒体は、対向流の関係にある。
As shown by the solid line arrow in FIG. 1A, the heat medium is introduced from the heat medium introduction section 130, flows through the heat medium side flow path 220, and is discharged from the heat medium discharge section 132. 1B, the reaction fluid is introduced from the reaction fluid introduction unit 120, flows through the reaction side flow path 210, and is discharged from the reaction fluid discharge unit 122. As shown in FIG. 1, the reaction fluid and the heat medium in the present embodiment are in a counterflow relationship.
このように、反応側流路210と熱媒体側流路220は、伝熱隔壁110によって区画され、且つ、並行して設けられている。伝熱隔壁110は、熱媒体側流路220を流れる熱媒体の熱を反応側流路210に伝達する。換言すれば、熱媒体側流路220を流通する熱媒体は、伝熱隔壁110を介して、反応側流路210を流通する反応流体と熱交換を行う。
Thus, the reaction side channel 210 and the heat medium side channel 220 are partitioned by the heat transfer partition 110 and provided in parallel. The heat transfer partition 110 transfers the heat of the heat medium flowing through the heat medium side flow path 220 to the reaction side flow path 210. In other words, the heat medium flowing through the heat medium side flow path 220 exchanges heat with the reaction fluid flowing through the reaction side flow path 210 via the heat transfer partition 110.
また、本実施形態にかかるリアクタ100の寸法は、例えば、図1中X軸方向の距離が1m程度、図1中Y軸方向の距離が1m程度、伝熱隔壁110間の離隔距離が数mm程度である。なお、図1では、理解を容易にするために、図1中X軸方向の距離およびY軸方向の距離と比較して、伝熱隔壁110間の離隔距離を大きく示している。
The dimensions of the reactor 100 according to the present embodiment are, for example, such that the distance in the X-axis direction in FIG. 1 is about 1 m, the distance in the Y-axis direction in FIG. 1 is about 1 m, and the separation distance between the heat transfer partitions 110 is several mm. Degree. In FIG. 1, for easy understanding, the separation distance between the heat transfer partition walls 110 is shown larger than the distance in the X-axis direction and the distance in the Y-axis direction in FIG. 1.
リアクタ100内の反応場の流路断面は、少なくとも1辺が数mm程度あるいは1mm未満に設定されていてもよい。反応場がこのような微小な空間に形成されたリアクタは、コンパクトリアクタ、マイクロリアクタなどと称され、単位体積あたりの比表面積が大きいため、伝熱効率が高く、反応速度や収率を向上させることができる。また、対流や拡散態様を任意に構成することで迅速混合や能動的に濃度分布をつける制御が可能であることから、反応を厳密に制御することができる。
The flow path cross section of the reaction field in the reactor 100 may be set so that at least one side is about several mm or less than 1 mm. A reactor in which the reaction field is formed in such a minute space is called a compact reactor, a microreactor, etc. Since the specific surface area per unit volume is large, the heat transfer efficiency is high, and the reaction rate and yield can be improved. it can. In addition, since the convection and diffusion modes are arbitrarily configured, it is possible to control the quick mixing and the active concentration distribution, so that the reaction can be controlled strictly.
リアクタ100の反応側流路210では吸熱反応や発熱反応が継続的に生じるため、反応側流路210自体や熱媒体側流路220自体に、流路方向に温度差(温度勾配)が生じる。
Since an endothermic reaction and an exothermic reaction occur continuously in the reaction side flow path 210 of the reactor 100, a temperature difference (temperature gradient) occurs in the flow direction in the reaction side flow path 210 itself and the heat medium side flow path 220 itself.
図3は、リアクタ100でメタンの水蒸気改質反応を行ったときの反応流体、熱媒体、伝熱隔壁110の温度を説明するための図である。メタンの水蒸気改質反応は、下記化学式(1)で示される。
CH4 + H2O → 3H2 + CO…化学式(1)
上記化学式(1)の反応は、エンタルピー変化(ΔH0 298)が-206kJ/mol程度の吸熱反応である。 FIG. 3 is a diagram for explaining the temperature of the reaction fluid, the heat medium, and theheat transfer partition 110 when the methane steam reforming reaction is performed in the reactor 100. The steam reforming reaction of methane is represented by the following chemical formula (1).
CH 4 + H 2 O → 3H 2 + CO ... Chemical Formula (1)
The reaction represented by the chemical formula (1) is an endothermic reaction having an enthalpy change (ΔH 0 298 ) of about −206 kJ / mol.
CH4 + H2O → 3H2 + CO…化学式(1)
上記化学式(1)の反応は、エンタルピー変化(ΔH0 298)が-206kJ/mol程度の吸熱反応である。 FIG. 3 is a diagram for explaining the temperature of the reaction fluid, the heat medium, and the
CH 4 + H 2 O → 3H 2 + CO ... Chemical Formula (1)
The reaction represented by the chemical formula (1) is an endothermic reaction having an enthalpy change (ΔH 0 298 ) of about −206 kJ / mol.
したがって、反応側流路210における反応流体の温度推移は、図3に破線で示すように、反応側流路210の入口側で450℃程度、出口側で800℃程度である。即ち、反応側流路210の温度は、入口側で最も低く、出口側で最も高くなる。これは、反応側流路210に導入されたばかりの反応流体には未反応の物質が相対的に多く含まれるため反応頻度が高くなるのに対し、反応側流路210の出口側では、未反応の物質が目的とする反応生成物に変換され相対的に少なくなっているため反応頻度が低くなるからである。
Therefore, the temperature transition of the reaction fluid in the reaction side channel 210 is about 450 ° C. on the inlet side of the reaction side channel 210 and about 800 ° C. on the outlet side, as indicated by a broken line in FIG. That is, the temperature of the reaction side channel 210 is lowest on the inlet side and highest on the outlet side. This is because the reaction fluid just introduced into the reaction side flow path 210 contains a relatively large amount of unreacted substances, and thus the reaction frequency increases. This is because the reaction frequency is lowered because the substance is converted into the desired reaction product and relatively less.
一方、熱媒体側流路220における熱媒体の温度推移は、図3に一点鎖線で示すように、熱媒体側流路220の入口付近で800℃程度、出口付近で600℃程度である。即ち、熱媒体側流路220の温度は、入口付近で最も高く、出口付近で最も低くなる。これは、熱媒体側流路220には相対的に高温の熱媒体が導入され、熱媒体が熱媒体側流路220を流通する間に、その熱が熱媒体側流路220に隣接した反応側流路210に伝わるためである。
On the other hand, the temperature transition of the heat medium in the heat medium side flow path 220 is about 800 ° C. near the inlet of the heat medium side flow path 220 and about 600 ° C. near the outlet, as shown by a one-dot chain line in FIG. That is, the temperature of the heat medium side flow path 220 is the highest near the inlet and the lowest near the outlet. This is because a relatively high-temperature heat medium is introduced into the heat medium side flow path 220, and the heat adjoins the heat medium side flow path 220 while the heat medium flows through the heat medium side flow path 220. This is because it is transmitted to the side flow path 210.
上述したように、本実施形態のリアクタ100では、反応流体と熱媒体との流れ方向が対向している。そのため、熱媒体側流路220の入口側が反応側流路210の出口側に隣接し、熱媒体側流路220の出口側が反応側流路210の入口側に隣接している。反応頻度が低い反応側流路210の出口側に隣接した熱媒体側流路220の入口側では、反応流体による吸熱程度が低く、反応頻度が高い反応側流路210の入口側に隣接した熱媒体側流路220の出口側では、反応流体による吸熱程度が高い。従って、熱媒体の温度推移は、熱媒体側流路220における熱媒体の位置に依存して変化する、反応流体による吸熱の程度にも起因する。
As described above, in the reactor 100 of this embodiment, the flow directions of the reaction fluid and the heat medium are opposed to each other. Therefore, the inlet side of the heat medium side channel 220 is adjacent to the outlet side of the reaction side channel 210, and the outlet side of the heat medium side channel 220 is adjacent to the inlet side of the reaction side channel 210. On the inlet side of the heat medium side channel 220 adjacent to the outlet side of the reaction side channel 210 where the reaction frequency is low, the heat absorption by the reaction fluid is low and the heat adjacent to the inlet side of the reaction side channel 210 where the reaction frequency is high. On the outlet side of the medium side channel 220, the heat absorption by the reaction fluid is high. Therefore, the temperature transition of the heat medium is also caused by the degree of heat absorption by the reaction fluid, which changes depending on the position of the heat medium in the heat medium side flow path 220.
このように反応側流路210と熱媒体側流路220とにおいて流路方向に温度勾配が生じる。そのため、図3に実線で示すように、伝熱隔壁110の温度も反応側流路210の入口側から出口側に向かうに従って、例えば、550℃程度から800℃程度まで上昇する。したがって、伝熱隔壁110は、流路方向に250℃程度の差が生じる。
Thus, a temperature gradient is generated in the direction of the flow path in the reaction side flow path 210 and the heat medium side flow path 220. Therefore, as shown by a solid line in FIG. 3, the temperature of the heat transfer partition 110 also increases from about 550 ° C. to about 800 ° C., for example, as it goes from the inlet side to the outlet side of the reaction side channel 210. Therefore, the heat transfer partition 110 has a difference of about 250 ° C. in the flow path direction.
その結果、反応側流路210と熱媒体側流路220とを区画する伝熱隔壁110に熱応力がかかる。上述したように、伝熱隔壁110の外周は、側壁部114同士やサイドバー116同士が接合されている。そのため、伝熱隔壁110に熱応力が作用すると伝熱隔壁110や接合部(側壁部114同士の接合部、サイドバー116同士の接合部)に歪みが生じるおそれがある。
As a result, thermal stress is applied to the heat transfer partition 110 that partitions the reaction side channel 210 and the heat medium side channel 220. As described above, the side walls 114 and the side bars 116 are joined to the outer periphery of the heat transfer partition 110. Therefore, when thermal stress acts on the heat transfer partition 110, there is a possibility that distortion may occur in the heat transfer partition 110 and the joint (joint portion between the side wall portions 114, joint portion between the side bars 116).
例えば、伝熱隔壁をステンレス鋼で形成する場合、伝熱隔壁の線膨張係数(α)は16×10-6(1/K)である。そして、伝熱隔壁の流路方向の温度差(ΔT)が250(K)であり、伝熱隔壁の図1中X軸方向の幅(L)が1mとすると、伝熱隔壁の熱膨張(LαΔT)は、0.004mである。つまり、伝熱隔壁は、図1中のX軸方向(流路方向)に4mm程度延びしてしまう。
For example, when the heat transfer partition is made of stainless steel, the coefficient of linear expansion (α) of the heat transfer partition is 16 × 10 −6 (1 / K). When the temperature difference (ΔT) in the flow path direction of the heat transfer partition wall is 250 (K) and the width (L) of the heat transfer partition wall in the X-axis direction in FIG. 1 is 1 m, the thermal expansion of the heat transfer partition wall ( LαΔT) is 0.004 m. That is, the heat transfer partition extends about 4 mm in the X-axis direction (flow channel direction) in FIG.
そこで、本実施形態では、伝熱隔壁110の形状を工夫して、伝熱隔壁110に生じる熱応力を吸収する。
Therefore, in this embodiment, the shape of the heat transfer partition 110 is devised to absorb the thermal stress generated in the heat transfer partition 110.
図4は、本実施形態にかかる伝熱隔壁110を説明するための図であり、図5は、応力吸収部150およびリブ112の構成を説明するための図である。また、図5(a)は、図4における応力吸収部150付近のX‐Z断面図を示し、図5(b)は、図4(a)のA‐A線のX‐Z断面図を示す。
FIG. 4 is a diagram for explaining the heat transfer partition 110 according to the present embodiment, and FIG. 5 is a diagram for explaining the configuration of the stress absorbing portion 150 and the rib 112. 5A shows an XZ cross-sectional view in the vicinity of the stress absorbing portion 150 in FIG. 4, and FIG. 5B shows an XZ cross-sectional view along the line AA in FIG. 4A. Show.
図4および図5(a)に示すように、伝熱隔壁110a、110bは、反応側流路210と熱媒体側流路220との積層方向に隆起または陥没する応力吸収部150を有する。応力吸収部150は、伝熱隔壁110にプレス加工を施すことによって形成される。ここで、応力吸収部150の径は、実質的に全て等しく、例えば、伝熱隔壁110の厚み(図5(a)中のZ軸方向の厚み)以上とする。応力吸収部150の径を伝熱隔壁110の厚み以上に設定することによって、加工が容易になる。
As shown in FIG. 4 and FIG. 5A, the heat transfer partition walls 110a and 110b have a stress absorbing portion 150 that rises or sinks in the stacking direction of the reaction side flow path 210 and the heat medium side flow path 220. The stress absorbing part 150 is formed by pressing the heat transfer partition 110. Here, the diameters of the stress absorbing portions 150 are substantially the same, for example, not less than the thickness of the heat transfer partition 110 (the thickness in the Z-axis direction in FIG. 5A). By setting the diameter of the stress absorbing portion 150 to be equal to or greater than the thickness of the heat transfer partition 110, the processing becomes easy.
応力吸収部150における図5(a)中の破線の丸で囲んだ部分は、伝熱隔壁110に生じた熱応力を吸収する。したがって、伝熱隔壁110全体が流路方向(図4中X軸方向)に延伸してしまうことを回避することができる。
The portion surrounded by a broken-line circle in FIG. 5A in the stress absorbing portion 150 absorbs thermal stress generated in the heat transfer partition 110. Therefore, it is possible to avoid the entire heat transfer partition 110 from extending in the flow path direction (X-axis direction in FIG. 4).
図4(a)に示すように、応力吸収部150は、熱媒体側流路220の入口および出口のうち相対的に高温側(ここでは、入口)に多く設けられている。ここで、伝熱隔壁110aは、熱媒体側流路220の底面を構成するとともに反応側流路210の上面を構成している。このことから、応力吸収部150は、反応側流路210の入口および出口のうち相対的に高温側(ここでは、出口)に多く設けられているとも言える。
As shown in FIG. 4 (a), many stress absorbing portions 150 are provided on the relatively high temperature side (here, the inlet) of the inlet and outlet of the heat medium side flow path 220. Here, the heat transfer partition 110 a constitutes the bottom surface of the heat medium side channel 220 and the top surface of the reaction side channel 210. From this, it can be said that many stress absorption parts 150 are provided on the relatively high temperature side (here, the outlet) of the inlet and outlet of the reaction side channel 210.
図4(b)に示すように、応力吸収部150は、反応側流路210の入口および出口のうち相対的に高温側(ここでは、出口側)に多く設けられている。ここで、伝熱隔壁110bは、反応側流路210の底面を構成するとともに熱媒体側流路220の上面を構成している。このことから、応力吸収部150は、熱媒体側流路220の入口および出口のうち相対的に高温側(ここでは、入口)に多く設けられているとも言える。
As shown in FIG. 4 (b), many stress absorbing portions 150 are provided on the relatively high temperature side (here, on the outlet side) of the inlet and outlet of the reaction side channel 210. Here, the heat transfer partition 110 b constitutes the bottom surface of the reaction side channel 210 and the top surface of the heat medium side channel 220. From this, it can be said that many stress absorption parts 150 are provided on the relatively high temperature side (here, the inlet) of the inlet and outlet of the heat medium side flow path 220.
このように、反応側流路210の入口および出口のうち相対的に高温側に、応力吸収部150の数を多く設けることにより、熱膨張(熱延び)が生じやすい相対的に高温の部分の熱応力を効率よく吸収することができる。
In this way, by providing a large number of stress absorbing portions 150 on the relatively high temperature side of the inlet and outlet of the reaction side channel 210, a relatively high temperature portion where thermal expansion (thermal extension) is likely to occur. Thermal stress can be absorbed efficiently.
図4(b)に示すように、反応側流路210の底面を構成する伝熱隔壁110bのリブ112には、触媒板140の移動を規制するための規制部112aが設けられている。規制部112aは、反応流体の流れ方向の触媒板140の移動を規制する。
As shown in FIG. 4B, the rib 112 of the heat transfer partition 110b that constitutes the bottom surface of the reaction side channel 210 is provided with a restricting portion 112a for restricting the movement of the catalyst plate 140. The restricting portion 112a restricts the movement of the catalyst plate 140 in the flow direction of the reaction fluid.
図5(b)に示すように、本実施形態のリブ112は、伝熱隔壁110aと部分的に接合されている。例えば、リブ112は、X軸方向の長さQの1/3程度のみが伝熱隔壁110aに接合されている。また、リブ112における伝熱隔壁110aとの接合部分は、反応側流路210の入口から出口のうち相対的に低温側に配される。つまり、反応側流路210の入口から出口のうち相対的に高温側において、リブ112は、伝熱隔壁110aに接合されておらず、当接しているのみである。
As shown in FIG. 5B, the rib 112 of the present embodiment is partially joined to the heat transfer partition 110a. For example, only about 1/3 of the length 112 in the X-axis direction of the rib 112 is joined to the heat transfer partition 110a. Further, the joint portion of the rib 112 with the heat transfer partition 110 a is disposed on the relatively low temperature side from the inlet to the outlet of the reaction side channel 210. That is, the rib 112 is not joined to the heat transfer partition wall 110a but is in contact with it on the relatively high temperature side from the inlet to the outlet of the reaction side channel 210.
かかる構成により、伝熱隔壁110aにおける相対的に温度が高い部分で発生する熱応力がリブ112にかかってしまう事態を回避することができる。なお、伝熱隔壁110bのリブ112も伝熱隔壁110aのリブ112と実質的に同様の接合しているため、重複説明を省略する。
With such a configuration, it is possible to avoid a situation in which the thermal stress generated at a relatively high temperature portion in the heat transfer partition 110a is applied to the rib 112. In addition, since the rib 112 of the heat transfer partition 110b is joined substantially in the same manner as the rib 112 of the heat transfer partition 110a, duplicate description is omitted.
以上説明したように、本実施形態にかかるリアクタ100によれば、伝熱隔壁110に応力吸収部150を設けることにより、伝熱隔壁110に生じる熱応力を吸収し、伝熱隔壁110の歪みを抑制することができる。
As described above, according to the reactor 100 according to the present embodiment, by providing the heat transfer partition 110 with the stress absorbing portion 150, the thermal stress generated in the heat transfer partition 110 is absorbed, and the heat transfer partition 110 is distorted. Can be suppressed.
なお、上述した、反応側流路210の入口および出口のうち相対的に高温側に、応力吸収部150を多く設ける構成以外の構成でも、熱膨張(熱延び)が生じやすい、相対的に高温の部分の熱応力を効率よく吸収することが可能である。続いて、応力吸収部150の他の例について説明する。
It should be noted that thermal expansion (thermal elongation) is likely to occur even in a configuration other than the configuration in which many stress absorbing portions 150 are provided on the relatively high temperature side of the inlet and outlet of the reaction side flow path 210 described above. It is possible to efficiently absorb the thermal stress of this part. Next, another example of the stress absorbing unit 150 will be described.
(変形例)
図6は、本実施形態の変形例にかかる応力吸収部150を説明するための図である。なお、ここでは、伝熱隔壁110bについて説明し、実質的に構成が等しい伝熱隔壁110aについての説明を省略する。 (Modification)
FIG. 6 is a diagram for explaining astress absorbing unit 150 according to a modification of the present embodiment. Here, the heat transfer partition 110b will be described, and the description of the heat transfer partition 110a having substantially the same configuration will be omitted.
図6は、本実施形態の変形例にかかる応力吸収部150を説明するための図である。なお、ここでは、伝熱隔壁110bについて説明し、実質的に構成が等しい伝熱隔壁110aについての説明を省略する。 (Modification)
FIG. 6 is a diagram for explaining a
図6(a)に示すように、伝熱隔壁110bにおいて、反応側流路210の入口および出口のうち相対的に高温側に位置する応力吸収部150は、相対的に低温側に位置する応力吸収部150よりも大きく形成される。
As shown in FIG. 6 (a), in the heat transfer partition 110b, the stress absorbing part 150 located on the relatively high temperature side of the inlet and outlet of the reaction side flow path 210 has the stress located on the relatively low temperature side. It is formed larger than the absorption part 150.
また、図6(b)に示すように、伝熱隔壁110bにおいて、反応側流路210の入口および出口のうち相対的に高温側において、相対的に低温側よりも、隣接する応力吸収部150同士の間隔を短く形成する。
In addition, as shown in FIG. 6B, in the heat transfer partition 110b, the stress absorbing portions 150 adjacent to each other on the relatively high temperature side of the inlet and outlet of the reaction side flow path 210 are relatively closer than the low temperature side. The interval between each other is formed short.
これらの構成によっても、熱膨張(熱延び)が生じやすい相対的に高温の部分の熱応力を効率よく吸収することができる。
Even with these configurations, it is possible to efficiently absorb the thermal stress in the relatively high temperature portion where thermal expansion (thermal elongation) is likely to occur.
以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明はかかる実施形態に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
The preferred embodiments of the present invention have been described above with reference to the accompanying drawings, but the present invention is not limited to such embodiments. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Is done.
例えば、反応流体と熱媒体との差圧が相対的に小さい場合には、リブ112を省略してもよい。
For example, when the differential pressure between the reaction fluid and the heat medium is relatively small, the rib 112 may be omitted.
例えば、熱交換において、反応流体と熱媒体は平行流でもよい。即ち、反応流体と熱媒体の流れ方向は同一でもよい。
For example, in heat exchange, the reaction fluid and the heat medium may be in parallel flow. That is, the flow directions of the reaction fluid and the heat medium may be the same.
また、リアクタ100において発生する反応は、発熱反応であってもよい。この場合も、反応側流路210の入口および出口のうち相対的に高温側に、伝熱隔壁110の応力吸収部150の数を相対的に多くしたり、相対的に高温側に位置する応力吸収部150の大きさを相対的に大きくしたり、相対的に高温側に位置する応力吸収部150同士の間隔を相対的に低温側に位置する応力吸収部150同士の間隔よりも短くしたりすればよい。
Further, the reaction generated in the reactor 100 may be an exothermic reaction. Also in this case, the number of the stress absorbing portions 150 of the heat transfer partition 110 is relatively increased on the relatively high temperature side of the inlet and outlet of the reaction side channel 210, or the stress located on the relatively high temperature side. The size of the absorber 150 is relatively large, or the interval between the stress absorbers 150 located on the relatively high temperature side is made shorter than the interval between the stress absorbers 150 located on the relatively low temperature side do it.
本発明は、熱交換型のリアクタに利用することができる。
The present invention can be used for a heat exchange type reactor.
Claims (4)
- 反応対象としての流体を流通させる反応側流路と、
前記反応側流路と積層して設けられ、前記反応側流路内の前記流体と熱交換を行うための熱媒体を流通させる熱媒体側流路と、
前記反応側流路と前記熱媒体側流路とを区画し、且つ、前記反応側流路と前記熱媒体側流路との間で熱を伝達する伝熱隔壁と、
を備え、
前記伝熱隔壁は、前記反応側流路と前記熱媒体側流路との積層方向に隆起または陥没する1以上の応力吸収部を含むことを特徴とするリアクタ。 A reaction side flow path for circulating a fluid as a reaction target;
A heat medium side flow path that is provided in a stacked manner with the reaction side flow path and circulates a heat medium for heat exchange with the fluid in the reaction side flow path;
A heat transfer partition that divides the reaction side flow path and the heat medium side flow path, and transfers heat between the reaction side flow path and the heat medium side flow path;
With
The reactor is characterized in that the heat transfer partition includes one or more stress absorbing portions that are raised or depressed in the stacking direction of the reaction side flow path and the heat medium side flow path. - 前記応力吸収部は、前記反応側流路の入口および出口のうち相対的に高温側に多く設けられていることを特徴とする請求項1に記載のリアクタ。 2. The reactor according to claim 1, wherein the stress absorbing portion is provided in a relatively high temperature side among the inlet and outlet of the reaction side flow path.
- 前記反応側流路の入口および出口のうち相対的に高温側に位置する前記応力吸収部は、相対的に低温側に位置する前記応力吸収部よりも寸法が大きいことを特徴とする請求項1または2に記載のリアクタ。 2. The stress absorbing portion located on the relatively high temperature side among the inlet and outlet of the reaction side channel has a size larger than that of the stress absorbing portion located on the relatively low temperature side. Or the reactor according to 2;
- 前記反応側流路の入口および出口のうち相対的に高温側において、相対的に低温側よりも、隣接する前記応力吸収部同士の間隔が短いことを特徴とする請求項1から3のいずれか1項に記載のリアクタ。 The interval between the stress absorbing parts adjacent to each other is shorter on the relatively high temperature side of the inlet and outlet of the reaction side channel than on the relatively low temperature side. The reactor according to item 1.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013014120A JP2014144418A (en) | 2013-01-29 | 2013-01-29 | Reactor |
JP2013-014120 | 2013-01-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014119442A1 true WO2014119442A1 (en) | 2014-08-07 |
Family
ID=51262155
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/051215 WO2014119442A1 (en) | 2013-01-29 | 2014-01-22 | Reactor |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2014144418A (en) |
WO (1) | WO2014119442A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110860263A (en) * | 2019-12-27 | 2020-03-06 | 西部金属材料股份有限公司 | High-efficiency reactor |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6728781B2 (en) | 2016-03-03 | 2020-07-22 | 株式会社Ihi | Reactor |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59180730U (en) * | 1983-05-20 | 1984-12-03 | 三菱重工業株式会社 | tubular reactor |
JPS62172975U (en) * | 1986-03-27 | 1987-11-02 | ||
JPH0194773U (en) * | 1987-12-10 | 1989-06-22 | ||
JPH1080622A (en) * | 1996-09-09 | 1998-03-31 | Ebara Corp | Gas cleaner |
JP2000247137A (en) * | 1998-12-30 | 2000-09-12 | Valeo Climatisation | Heat exchanger, heating or air conditioning system and vehicle comprising this heat exchanger |
JP2001041677A (en) * | 1999-08-03 | 2001-02-16 | Mitsubishi Heavy Ind Ltd | Heat exchanger |
JP2002022374A (en) * | 2000-07-07 | 2002-01-23 | Hitachi Ltd | Plate type heat exchanger and freezing air conditioning apparatus |
JP2007109425A (en) * | 2005-10-11 | 2007-04-26 | Toyota Motor Corp | Gas separator for fuel cell and fuel cell |
JP2008014622A (en) * | 2006-06-06 | 2008-01-24 | Denso Corp | Heat exchanger |
JP2011007412A (en) * | 2009-06-25 | 2011-01-13 | Mahle Filter Systems Japan Corp | Oil cooler |
-
2013
- 2013-01-29 JP JP2013014120A patent/JP2014144418A/en active Pending
-
2014
- 2014-01-22 WO PCT/JP2014/051215 patent/WO2014119442A1/en active Application Filing
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59180730U (en) * | 1983-05-20 | 1984-12-03 | 三菱重工業株式会社 | tubular reactor |
JPS62172975U (en) * | 1986-03-27 | 1987-11-02 | ||
JPH0194773U (en) * | 1987-12-10 | 1989-06-22 | ||
JPH1080622A (en) * | 1996-09-09 | 1998-03-31 | Ebara Corp | Gas cleaner |
JP2000247137A (en) * | 1998-12-30 | 2000-09-12 | Valeo Climatisation | Heat exchanger, heating or air conditioning system and vehicle comprising this heat exchanger |
JP2001041677A (en) * | 1999-08-03 | 2001-02-16 | Mitsubishi Heavy Ind Ltd | Heat exchanger |
JP2002022374A (en) * | 2000-07-07 | 2002-01-23 | Hitachi Ltd | Plate type heat exchanger and freezing air conditioning apparatus |
JP2007109425A (en) * | 2005-10-11 | 2007-04-26 | Toyota Motor Corp | Gas separator for fuel cell and fuel cell |
JP2008014622A (en) * | 2006-06-06 | 2008-01-24 | Denso Corp | Heat exchanger |
JP2011007412A (en) * | 2009-06-25 | 2011-01-13 | Mahle Filter Systems Japan Corp | Oil cooler |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110860263A (en) * | 2019-12-27 | 2020-03-06 | 西部金属材料股份有限公司 | High-efficiency reactor |
Also Published As
Publication number | Publication date |
---|---|
JP2014144418A (en) | 2014-08-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6408754B2 (en) | Reactor | |
US7014835B2 (en) | Multi-stream microchannel device | |
JP5495843B2 (en) | Multipurpose microchannel microcomponent | |
US20100133474A1 (en) | Thermally coupled monolith reactor | |
WO2016031903A1 (en) | Reactor | |
KR102456288B1 (en) | Scalable Heat Exchanger Reformer for Syngas Generation | |
JP2014144453A (en) | Microchannel reactor with temperature control | |
EP2249954B1 (en) | Catalytic reactor | |
JP2011025240A (en) | Chemical reactor | |
US20120210995A1 (en) | Reactor with Channels | |
JP6387585B2 (en) | Reactor | |
US20070280862A1 (en) | Modular Micro-Reactor Architecture And Method For Fluid Processing Devices | |
JP2011062618A (en) | Catalytic reactor | |
WO2013183350A1 (en) | Micro reactor | |
WO2014119442A1 (en) | Reactor | |
US20170030660A1 (en) | Heat-exchanger module with improved heat exchange and compactness, use with liquid metal and gas | |
US20220032253A1 (en) | Catalyst particle shape | |
JP2015223582A (en) | Reactor | |
JP2016019935A (en) | Reactor, reaction apparatus, reaction method and reaction product | |
JP7107387B2 (en) | Reactor | |
KR20240088285A (en) | Reactor with mirror-image cooling system | |
Chen | Designs and operations of heat integrated reactors for thermochemically producing hydrogen from methanol by steam reforming | |
CA2950383C (en) | Systems and methods for constructing engineered packing for heat exchange | |
EP1718911B1 (en) | Apparatus provided with heat-exchanging means | |
KR101319302B1 (en) | Contactless high pressure micro-channel reacting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14746676 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14746676 Country of ref document: EP Kind code of ref document: A1 |