[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014115753A1 - 人工衛星の軌道面制御方法 - Google Patents

人工衛星の軌道面制御方法 Download PDF

Info

Publication number
WO2014115753A1
WO2014115753A1 PCT/JP2014/051228 JP2014051228W WO2014115753A1 WO 2014115753 A1 WO2014115753 A1 WO 2014115753A1 JP 2014051228 W JP2014051228 W JP 2014051228W WO 2014115753 A1 WO2014115753 A1 WO 2014115753A1
Authority
WO
WIPO (PCT)
Prior art keywords
satellite
orbital
artificial
orbit
orbital plane
Prior art date
Application number
PCT/JP2014/051228
Other languages
English (en)
French (fr)
Inventor
宏之 小泉
順一 青山
Original Assignee
国立大学法人 東京大学
次世代宇宙システム技術研究組合
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 東京大学, 次世代宇宙システム技術研究組合 filed Critical 国立大学法人 東京大学
Publication of WO2014115753A1 publication Critical patent/WO2014115753A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • B64G1/242Orbits and trajectories
    • B64G1/2427Transfer orbits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • B64G1/244Spacecraft control systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/002Launch systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/40Arrangements or adaptations of propulsion systems
    • B64G1/411Electric propulsion
    • B64G1/413Ion or plasma engines

Definitions

  • the present invention relates to an orbital plane control method for an artificial satellite, and more particularly to an orbital plane control method for an artificial satellite using a propulsion device having low propulsive force and high propellant efficiency.
  • each artificial satellite on the parking orbit is inserted into each transition orbit, and each artificial satellite on each transition orbit is It is characterized by shifting to each orbit.
  • Patent Document 1 is to introduce a plurality of artificial satellites into a target parking orbit from the beginning.
  • a launch opportunity is provided as long as the mission of the main satellite is not impaired. Therefore, it cannot be expected to enter a parking orbit preferable for the piggyback satellite from the beginning.
  • the propulsion device for small satellites that are required to be extremely compact and lightweight, the propulsion device (thruster) for performing the necessary orbit control has high specific thrust characteristics that enable efficient propellant consumption. It is preferable that it is a propulsion device.
  • the propulsion device with high specific thrust has been considered to be unsuitable for track surface control that requires a high thrust level because the thrust level is extremely low. Therefore, the track surface control has so far been performed using a propulsion device with a high thrust level and a low specific thrust at the expense of propellant consumption.
  • the present invention has been made in view of such problems, and without sacrificing the mission of the main satellite, and further reducing the size and weight of the artificial satellite and providing the artificial satellite with a high thrust level propulsion device It is an object to provide an orbital plane control method for an artificial satellite capable of realizing orbit control substantially equivalent to the above.
  • the invention according to claim 1 is an orbital plane control method for an artificial satellite in which a plurality of small artificial satellites launched together with a main satellite are introduced into respective target orbits. Change the orbital altitude of the small satellite inserted into the target orbit of the main satellite using a propulsion device with a low thrust level, and use the transition of the orbital plane due to the flatness of the earth gravity field at the orbital altitude Then, a plurality of the artificial satellites are thrown into each target orbit.
  • the present invention according to claim 2 is the orbital plane control method for artificial satellite according to claim 1, wherein the change of the orbital height is performed by changing the propulsion device to the orbital traveling direction of the artificial satellite. And a second step of injecting the propulsion device in the direction opposite to the first step for the same amount of time.
  • the present invention according to claim 3 is the orbital plane control method for an artificial satellite according to claim 1 or 2, wherein the propulsion device is an ion engine.
  • the present invention controls the orbital altitude with a thruster with high specific thrust and high propellant efficiency but low thrust level, such as an ion engine. It is characterized in that the artificial satellite is thrown into the desired orbital plane by utilizing the transition of the orbital plane due to the flatness of the earth gravity field.
  • the orbital plane control method for an artificial satellite there is an effect that a small piggyback satellite can be put into a desired target orbit without impairing the mission of the main satellite.
  • propulsion efficiency can be greatly improved by using a propulsion device with a relatively low thrust level such as an ion engine, so that the equipment required for the piggyback satellite can be installed instead of propellant. effective.
  • the piggyback satellite can be further reduced in size, the number of piggyback satellites to be mounted can be increased.
  • FIG. 1 is a diagram showing orbital elements of an artificial satellite.
  • reference numeral 10 denotes an artificial satellite, and the artificial satellite 10 rotates around the earth 1 while drawing an elliptical orbit 11 having a major radius “a” in the opposite direction to the clock.
  • the angle formed by the orbital plane 3 and the equator plane 5 at this time is the orbital inclination angle i, and the orbit passes through the equator plane 5 from the south side (lower side in FIG. 1) to the north side (upper side in FIG. 1).
  • the longitude is the ascending intersection longitude (rising intersection red diameter) ⁇ . Further, ⁇ in FIG. 1 indicates the equinox point direction.
  • the earth is not a perfect sphere, but is shaped like a spheroid that is crushed to the north and south close to the spheroid centered on the earth axis.
  • the orbital angular momentum vector direction of the artificial satellite 10 changes. This change in the angular momentum vector direction represents the rotation of the track surface 3 at a predetermined angular velocity.
  • the rotation of the orbital plane is more easily affected by the lower orbital altitude, and the transition amount is larger. The higher the orbital altitude, the smaller the amount of transition.
  • a low thrust / high propellant efficiency propulsion device such as an ion engine mounted on an artificial satellite is continuously injected in the opposite direction (or the same direction) of the orbital speed for a predetermined time to increase (or lower) the orbital altitude. Then, the orbital altitude is increased (or lowered) by a predetermined value by continuously injecting (maneuvering) in the opposite direction for the same time, and the flatness of the earth's gravitational field due to the change in the orbital altitude at this time The artificial satellite is thrown into the target orbital plane by using the change in the amount of transition of the orbital plane.
  • the increase (or decrease) of the transition angular velocity of the raceway surface is obtained by increasing (or decelerating) the propulsion unit over the orbit N times in the orbital traveling direction (or the opposite direction).
  • the speed is increased (or decelerated)
  • the orbital speed remains increased by N ⁇ V with respect to the initial speed VI.
  • the increase (or decrease) proceeds at the transition speed corresponding to. Therefore, in order to return to the initial orbital surface angular velocity, it is necessary to inject the maneuver in the reverse direction by the same number of orbits (N rounds). Therefore, as a maneuver for controlling the raceway surface, it is necessary to perform both the first half and the second half maneuver with the injection direction reversed. This point will be further described with reference to FIGS.
  • FIG. 2 is an explanatory diagram showing the orbital plane transition when the orbital altitude is once lowered and then raised
  • FIG. 3 is a graph showing the injection of the propulsion device, changes in the orbital altitude and changes in the orbital plane transition.
  • reference numeral 11 denotes one of a plurality of piggyback satellites launched together with a main satellite (not shown) and put into the target orbit of the main satellite.
  • the piggyback satellite is a small satellite having a weight of about 50 kg, and is a satellite that can be launched together with the main satellite by utilizing the surplus capacity of the launch vehicle.
  • a piggyback satellite (hereinafter simply referred to as “satellite”) 11 is equipped with a propulsion device having a high propellant efficiency but a relatively low thrust level, such as an ion engine.
  • the satellite 11 is initially inserted into a target orbit S1 of a main satellite (not shown) and orbits the orbit S1.
  • the orbit S5 is the orbital plane where the satellite 11 is to be finally inserted.
  • the satellite 11 starts to descend its orbital altitude by injecting the propulsion device in the same direction as the orbital traveling direction of the satellite 11 orbiting the orbit S1. Since the thrust of the propulsion device of the satellite 11 is at a low level, the orbital altitude decreases slightly.
  • the amount of transition of the orbital plane due to the flatness of the earth's gravitational field at the orbital altitude of the satellite 11 also changes in a direction that gradually increases.
  • the ascending intersection longitude ⁇ of the satellite 11 changes to the orbit S2 while gradually changing. Further, by continuing the injection in the same direction as the orbital traveling direction, the first-half injection is terminated when the orbit S3 reaches the intermediate position until the satellite 11 reaches the target orbit S5.
  • the latter half of the injection is started.
  • the orbital altitude of the satellite 11 is started to rise by injecting the propulsion device in the direction opposite to the orbital traveling direction of the satellite 11 contrary to the first half. Since the thrust of the propulsion device of the satellite 11 is at a low level, the orbital altitude increases slightly.
  • the orbital altitude of the satellite 11 gradually rises due to the injection opposite to the orbital traveling direction, the amount of transition of the orbital plane due to the flatness of the earth's gravitational field at the orbital altitude of the satellite 11 also changes in a direction that gradually decreases.
  • the ascending intersection longitude ⁇ of the satellite 11 changes to the orbit S4 while gradually changing.
  • the satellite 11 reaches the target orbit S5 by continuing the injection in the direction opposite to the orbital traveling direction. And if the satellite 11 is thrown into the target orbit S5, the injection of the propulsion device is terminated and the orbit S5 is maintained.
  • FIG. 4 is an explanatory diagram showing the orbital plane transition when the orbital altitude is once raised and then lowered
  • FIG. 4 is a graph showing the injection of the propulsion device, changes in orbital altitude and changes in orbital plane transition.
  • reference numeral 12 denotes one of a plurality of piggyback satellites launched together with a main satellite (not shown) and put into the target orbit of the main satellite. Similar to the satellite 11, the satellite 12 is equipped with a propulsion device having a relatively low thrust level such as an ion engine.
  • the satellite 12 is initially put into a target orbit S6 of a main satellite (not shown) and orbits the orbit S6.
  • the orbit S10 is the orbital plane where the satellite 12 is to be finally inserted.
  • the propulsion device injecting the propulsion device in a direction opposite to the orbital traveling direction of the satellite 12 orbiting the orbit S6, the satellite 12 starts to increase the orbital altitude.
  • the thrust of the propulsion device of the satellite 12 is at a low level, the orbital altitude increases slightly.
  • the orbital plane of the satellite 12 changes in the opposite direction to that shown in FIG. Therefore, the ascending intersection longitude ⁇ of the satellite 12 changes to the orbit S7 while gradually changing. Further, by continuing the injection in the direction opposite to the orbit traveling direction, the first-half injection is terminated when the orbit S8 reaches the intermediate position until the satellite 12 reaches the target orbit S10.
  • the satellite 12 When the satellite 12 reaches orbit S8, which is the intermediate position, the latter half of the injection is started. In this case, the orbital altitude of the satellite 12 starts to be lowered by injecting the propulsion device in the same direction as the orbital traveling direction of the satellite 10 contrary to the first half. Since the thrust of the propulsion device of the satellite 12 is at a low level, the orbital altitude decreases slightly.
  • the orbital altitude of the satellite 12 gradually decreases due to the injection in the same direction as the orbital traveling direction, the transition amount of the orbital plane due to the flatness of the earth's gravitational field at the orbital altitude of the satellite 12 also changes in a direction that gradually increases.
  • the ascending intersection longitude ⁇ of the satellite 12 changes to the orbit S9 while gradually changing. Further, the satellite 12 reaches the target orbit S10 by continuing the injection in the same direction as the orbital traveling direction. And if the satellite 12 is thrown into the target orbit S10, the injection of the propulsion device is terminated and the orbit S10 is
  • the orbital plane control as described above is performed in accordance with the respective target orbits, so that they are put into the target orbit of the main satellite.
  • Each of the plurality of piggyback satellites can be introduced into the target orbital plane.
  • the orbital length radius a is expressed as a function of the orbital velocity V as shown in Equation 2.
  • Equation 3 the time change rate is expressed as Equation 3.
  • Equation 4 V, as shown in Equation 4, plus the initial velocity V increases small thrust added continuously during the circumferential track N to I (or decrease) the orbital velocity variation N ⁇ V.
  • Equation 6 the increase (or decrease) ⁇ in the transition angle of the raceway surface by injecting the propulsion device is expressed by Equation 6.
  • the increase (or decrease) in the transition angle of the raceway surface given by Equation 6 increases (or decelerates) the propulsion unit over the orbit N times in the orbital traveling direction (or the opposite direction) as described above.
  • those by obtained in this state is in the state that the track speed increases to an initial velocity V I by N ⁇ V
  • the while standing raceways transition corresponding to the orbital velocity It will increase (or decrease) thereafter at the transition speed. Therefore, in order to return to the initial orbital transition angular velocity, it is necessary to inject in the reverse direction by the same number of orbits following the maneuver. Therefore, as a maneuver for controlling the raceway surface, it is necessary to perform both the first half and the second half maneuver with the injection direction reversed.
  • Propellant Propellant mass ratio Hydrazine 1 / 7.5 Hydrogen peroxide 1 / 16.0 Nitrogen gas 1 / 30.0

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

【課題】主衛星のミッションを損なうことなく、しかも人工衛星の小型化及び軽量化を図った上で高い推力レベルの推進装置を備えた人工衛星と実質的に同等な軌道制御を実現することが可能な人工衛星の軌道面制御方法を提供することを目的とする。 【解決手段】主衛星と共に打ち上げられる複数の小型の人工衛星11,12をそれぞれの目的軌道へ投入する人工衛星の軌道面制御方法であり、主衛星の目的軌道S1に投入された小型の人工衛星11,12を低い推力レベルの推進装置を用いて軌道高度を変更させ、当該軌道高度における地球重力場の扁平性に起因する軌道面の遷移を利用して複数の人工衛星11,12をそれぞれの目的軌道S5,S9へ投入することを特徴とするものである。

Description

人工衛星の軌道面制御方法
 本発明は、人工衛星の軌道面制御方法に関し、さらに詳しくは、低推進力・高推薬効率の推進機による人工衛星の軌道面制御方法に関する。
 人工衛星の打ち上げには技術開発や多大な費用がかかることから近年では主衛星を搭載したロケットの余剰能力を活用して数基の小型の人工衛星を相乗りさせて打ち上げることが行われており、そのような小型(質量約50kg程度)の人工衛星は「ピギーバック衛星」と称されている。このピギーバック衛星は、主衛星のミッションを損なわない範囲で打上げ機会が提供されるものであることから、ピギーバック衛星の本来の目的軌道とは異なる主衛星の軌道に投入されることになるため所望の目的軌道へ軌道変換することが必要となる。ここで、複数の人工衛星を軌道変換して所望の軌道に投入する方法としては、例えば特許文献1がある。
 特許文献1に示された軌道変換は、初めに、目的軌道より軌道長の小さい共通のパーキング軌道又はそれぞれの人工衛星で異なるパーキング軌道に複数の人工衛星を投入し、地球の偏平形状による摂動力によりパーキング軌道の軌道面が複数の各目的軌道への遷移軌道の軌道面に一致したときにパーキング軌道上の各人工衛星を各遷移軌道へそれぞれ投入し、各遷移軌道上の人工衛星を各目的軌道へそれぞれ移行させることを特徴とするものである。
特開平7-187091号公報
 しかしながら、特許文献1の方法は、複数の人工衛星を当初から目的のパーキング軌道に投入するものであり、ピギーバック衛星の場合には、主衛星のミッションを損なわない範囲で打上げ機会が提供されるものであることから、当初からピギーバック衛星にとって好ましいパーキング軌道に投入することは期待できない。
 また、極めて厳しい小型・軽量化が求められる小型の人工衛星にあっては、必要な軌道制御を行うための推進装置(スラスタ)としては効率的な推薬消費が実現される高比推力特性を有する推進装置であることが好ましい。しかしながら、高比推力の推進装置は、推力レベルが極めて低いことから、高い推力レベルを必要とする軌道面制御には適さないと考えられていた。そのため、軌道面制御は、これまで推薬消費量を犠牲にして高推力レベル・低比推力の推進装置を用いて実施されてきた。
 そこで、本発明は、かかる問題点に鑑みなされたもので、主衛星のミッションを損なうことなく、しかも人工衛星の小型化及び軽量化を図った上で高い推力レベルの推進装置を備えた人工衛星と実質的に同等な軌道制御を実現することが可能な人工衛星の軌道面制御方法を提供することを目的とする。
 上記課題を解決するために請求項1に記載の発明は、主衛星と共に打ち上げられる複数の小型の人工衛星をそれぞれの目的軌道へ投入する人工衛星の軌道面制御方法において、
 前記主衛星の目的軌道に投入された小型の前記人工衛星を低い推力レベルの推進装置を用いて軌道高度を変更させ、当該軌道高度における地球重力場の扁平性に起因する軌道面の遷移を利用して複数の前記人工衛星をそれぞれの目的軌道へ投入することを特徴とする。
 上記課題を解決するために請求項2に記載の本発明は、請求項1に記載の人工衛星の軌道面制御方法において、前記軌道高度の変更は、前記推進装置を前記人工衛星の軌道進行方向と同一方向又は反対方向に所定の時間噴射する第1ステップと、その後、前記推進装置を前記第1ステップとは反対の方向に同じ時間だけ噴射する第2ステップとを含み構成されていることを特徴とする。
 上記課題を解決するために請求項3に記載の本発明は、請求項1又は2に記載の人工衛星の軌道面制御方法において、前記推進装置は、イオンエンジンであることを特徴とする。
 本発明は、スラスタによる直接的な軌道面制御力を発生させる代わりに、例えばイオンエンジンなどの高比推力で推薬効率は高いが推力レベルの低いスラスタで軌道高度の制御を行い、その結果生じる地球重力場の扁平性に起因する軌道面の遷移を利用して人工衛星を所望の軌道面に投入させる点を特徴とするものである。
 本発明に係る人工衛星の軌道面制御方法によれば、主衛星のミッションを損なうことなく小型のピギーバック衛星を所望の目的軌道に投入することができるという効果がある。しかも、イオンエンジン等の比較的低い推力レベルの推進装置を利用することで推薬効率を大幅に改善することができるので推薬の代わりにピギーバック衛星に必要な機器を搭載することができるという効果がある。また、ピギーバック衛星をさらに小型にすることができるので搭載するピギーバック衛星の数を増やすことができるという効果がある。
人工衛星の軌道要素を示す図である。 軌道高度を一旦下げてから上げた場合の軌道面遷移を示す説明図である。 図2における推進装置の噴射と軌道高度の変化及び軌道面遷移の変化を示すグラフである。 軌道高度を一旦上げてから下げた場合の軌道面遷移を示す説明図である。 図4における推進装置の噴射と軌道高度の変化及び軌道面遷移の変化を示すグラフである。
 以下、本発明に係る人工衛星の軌道面制御方法の好ましい一実施形態について図面を参照しつつ詳細に説明する。まず、人工衛星の軌道を指定するために使用されるパラメータである軌道要素について説明する。図1は人工衛星の軌道要素を示す図である。
 図1において、符号10は人工衛星であり、人工衛星10は、地球1の周囲を時計と反対方向に長半径aの楕円形の軌道11を描きながら回っている。このときの軌道面3と赤道面5がなす角が軌道傾斜角i、軌道が赤道面5を南側(図1の下側)から北側(図1の上側)に通過する位置(昇交点)の経度が昇交点経度(昇交点赤径)Ωである。また、図1におけるγは春分点方向を示している。
 ここで、地球は完全な球形状ではなく、地軸を中心軸とする回転楕円体に近い南北に押しつぶされたような形状をしている。この扁平性による地球1の赤道付近の膨らみの影響により人工衛星10の軌道面3に垂直な方向の力が摂動として加わった場合人工衛星10の軌道角運動量ベクトル方向が変化する。この角運動量ベクトル方向の変化が軌道面3の所定の角速度での回転を表している。この軌道面の回転は、軌道高度が低いほどその影響を受けやすく遷移量が大きく、軌道高度が高いほど遷移量が少ない。
 本発明では人工衛星に搭載したイオンエンジンなど低推力・高推薬効率の推進機を軌道速度反対方向(又は同一方向)に所定の時間だけ連続的に噴射して軌道高度を上昇(又は降下)させ、その後、反対方向に同時間だけ連続的に噴射(マヌーバ)することにより軌道高度を所定の値だけ上昇(又は降下)させ、このときの軌道高度の変更に起因する地球重力場の扁平性による軌道面の遷移量の変化を利用することにより人工衛星を目的の軌道面に投入するものである。
 ここで、軌道面の遷移角速度の増大(又は減少)は、推進機を軌道進行方向(又はその逆方向)に軌道N周回に亘って増速(又は減速)することにより得られるものであるが、増速(又は減速)した状態のままでは、軌道速度が初期速度VIに対しN△Vだけ増加したままの状態にあるので、これを放置したままにすると、軌道面遷移はこの軌道面角速度に対応した遷移速度で以降増加(又は減少)が進行してしまう。従って、初期の軌道面角速度に戻すためには、上記マヌーバに引き続き同じ軌道周回数(N周回)だけ逆向きに噴射する必要がある。そのため、軌道面制御用のマヌーバとしては、前半と噴射方向を逆向きにした後半マヌーバを併せて行う必要がある。この点について図2及び図3を参照しながらさらに説明する。
 初めに、衛星の軌道高度を一旦下げてから上げた場合の軌道面制御方法について説明する。図2は軌道高度を一旦下げてから上げた場合の軌道面遷移を示す説明図、図3はその推進装置の噴射と軌道高度の変化及び軌道面遷移の変化を示すグラフである。図2において、符号11は、図示しない主衛星と共に打ち上げられて当該主衛星の目的軌道に投入された複数のピギーバック衛星のうちの一つである。ピギーバック衛星は、前述したように、重量約50kg程度の小型の衛星であり、打ち上げ用ロケットの余剰能力を活用して主衛星と共に打ち上げられる衛星である。ピギーバック衛星(以下、単に「衛星」という。)11には、イオンエンジン等の、高い推進剤効率であるが、比較的低い推力レベルの推進装置が搭載されている。
 図2において、衛星11は当初は図示しない主衛星の目的軌道S1に投入されて軌道S1を周回する。尚、軌道S5が最終的に衛星11を投入したい軌道面である。そして、軌道S1を周回している衛星11の軌道進行方向と同じ向きに推進装置を噴射することによって衛星11は軌道高度の降下を開始する。尚、衛星11の推進装置の推力は低レベルであることから軌道高度は僅かずつ降下する。軌道進行方向と同じ向きの噴射によって衛星11の軌道高度が徐々に下がってくると衛星11の軌道高度における地球重力場の扁平性に起因する軌道面の遷移量も徐々に増大する方向に変化し、衛星11の昇交点経度Ωが次第に変化しながら軌道S2に遷移する。さらに軌道進行方向と同じ向きの噴射を続けることにより、衛星11の目的軌道S5へ至るまでの中間位置となる軌道S3に至ったところで前半の噴射を終了する。
 衛星11が軌道S3に至ったところで後半の噴射を開始する。今度は前半とは逆に衛星11の軌道進行方向と逆向きに推進装置を噴射することによって衛星11の軌道高度の上昇を開始させる。衛星11の推進装置の推力は低レベルなので軌道高度は僅かずつ上昇する。軌道進行方向と逆向きの噴射によって衛星11の軌道高度が徐々に上がってくると衛星11の軌道高度における地球重力場の扁平性に起因する軌道面の遷移量も徐々に減少する方向に変化し、衛星11の昇交点経度Ωが次第に変化しながら軌道S4に遷移する。さらに軌道進行方向と逆向きの噴射を続けることにより衛星11は目的軌道S5へ至る。そして、衛星11が目的軌道S5に投入されたら推進装置の噴射を終了し、軌道S5を維持する。
 次に、衛星の軌道高度を一旦上げてから下げた場合の軌道面制御方法について説明する。図4は軌道高度を一旦上げてから下げた場合の軌道面遷移を示す説明図、図4はその推進装置の噴射と軌道高度の変化及び軌道面遷移の変化を示すグラフである。図4において、符号12は、図示しない主衛星と共に打ち上げられて当該主衛星の目的軌道に投入された複数のピギーバック衛星のうちの一つである。衛星12には、衛星11と同様に、イオンエンジン等の比較的低い推力レベルの推進装置が搭載されている。
 図4において、衛星12は当初は図示しない主衛星の目的軌道S6に投入されて軌道S6を周回する。尚、軌道S10が最終的に衛星12を投入したい軌道面である。そして、軌道S6を周回している衛星12の軌道進行方向と逆向きに推進装置を噴射することによって衛星12は軌道高度の上昇を開始する。尚、衛星12の推進装置の推力は低レベルであることから軌道高度は僅かずつ上昇する。ここで、軌道進行方向と逆向きの噴射によって衛星12の軌道高度を上昇させた場合、地球重力場の扁平性に起因する軌道面の遷移は、地球重力が小さくなるため軌道面を遷移させるトルクも小さくなることから地球の太陽周りの公転より遅れるので、衛星12の軌道面は図2の場合とは反対方向に遷移することになる。そのため、衛星12の昇交点経度Ωが次第に変化しながら軌道S7に遷移する。そして、さらに軌道進行方向と逆向きの噴射を続けることにより、衛星12の目的軌道S10へ至るまでの中間位置となる軌道S8に至ったところで前半の噴射を終了する。
 衛星12が中間位置である軌道S8に至ったところで後半の噴射を開始する。今度は前半とは逆に衛星10の軌道進行方向と同じ向きに推進装置を噴射することによって衛星12の軌道高度の降下を開始させる。衛星12の推進装置の推力は低レベルなので軌道高度は僅かずつ降下する。軌道進行方向と同じ向きの噴射によって衛星12の軌道高度が徐々に下がってくると衛星12の軌道高度における地球重力場の扁平性に起因する軌道面の遷移量も徐々に増加する方向に変化し、衛星12の昇交点経度Ωが次第に変化しながら軌道S9に遷移する。さらに軌道進行方向と同じ向きの噴射を続けることにより衛星12は目的軌道S10へ至る。そして、衛星12が目的軌道S10に投入されたら推進装置の噴射を終了し、軌道S10を維持する。
 以上のように、図示しない主衛星の目的軌道に投入された複数のピギーバック衛星について、それぞれの目的軌道に即して上述したような軌道面制御を行うことにより、主衛星の目的軌道に投入された複数のピギーバック衛星をそれぞれ目的の軌道面に投入することができる。
 次に、上述した軌道面制御方法を実施するために必要となる軌道要素と推進装置の動作との関係について説明する。
 初めに、扁平性を有する地球重力場を周回する人工衛星の軌道運動では、その昇降点経度Ωの時間変化率は、以下の数1で表される。
Figure JPOXMLDOC01-appb-M000001
 衛星が円軌道を周回しているとすると、軌道長半径aは軌道速度Vの関数として数2のように表される。
Figure JPOXMLDOC01-appb-M000002
 そして、数2を数1に代入すると、時間変化率は数3のように表される。
Figure JPOXMLDOC01-appb-M000003
 Vは、数4に示すように、初期速度Vに微少推力を軌道N周の間連続的に加えて増加(又は減少)した軌道速度変化分N△Vを加えたものである。
Figure JPOXMLDOC01-appb-M000004
 軌道N周の間連続的推進機を噴射した時の軌道昇降点経度の変化Ωは数3に数4を代入して時間積分することにより数5のように表される。
Figure JPOXMLDOC01-appb-M000005
 従って推進機を噴射することによる軌道面の遷移角の増加(又は、減少)△Ωは、数6で表される。
Figure JPOXMLDOC01-appb-M000006
 数6で与えられる軌道面の遷移角の増大(又は減少)は、上述したように、推進機を軌道進行方向(又はその逆方向)に軌道N周回に亘って増速(又は減速)することにより得られるものであるが、この状態では、軌道速度が初期速度Vに対しN△Vだけ増加したままの状態にあり、これを放置したままでは、軌道面遷移はこの軌道速度に対応した遷移速度で以降増加(又は減少)してしまう。従って、初期の軌道遷移角速度に戻すためには、上記マヌーバに引き続き同じ軌道周回数だけ逆向きに噴射する必要がある。従って、軌道面制御用のマヌーバとしては、前半と噴射方向を逆向きにした後半マヌーバを併せて行う必要がある。後半マヌーバは、前半マヌーバと全く対称となるので、両マヌーバによる軌道面の遷移角は、数6の△Ωの2倍となる。従って、このマヌーバによる軌道面の遷移量(△Ω)とその所要軌道周回数Nは、数7のように与えられる。
Figure JPOXMLDOC01-appb-M000007
 従って、軌道面を所要の角度△Ωだけ遷移させるためには、数7より△Ωを満たすNを求め、次いでこのNよりNを求める、両者により推進機を噴射することにより実施することが出来る。
 発明の実施例として、高度600kmの太陽同期軌道に投入された、質量50kgの超小型衛星に搭載された推力0.25mNのイオンエンジンを用いて軌道面の制御を行う場合への実施について記述する。この衛星の場合の前記数7で軌道面を制御するために必要な諸元を以下に示す。
Figure JPOXMLDOC01-appb-T000008
 以上の諸元を前提として、1.項の制御に基づけば、必要な軌道面制御角度△θは、表2のように実現される。
Figure JPOXMLDOC01-appb-T000009
 従来軌道制御用に使用されている化学系推薬とする推進系と比較すると、以下に示すように必要推薬量が大幅に改善される。
   推  薬       推薬質量比
   ヒドラジン     1/ 7.5
   過酸化水素     1/16.0
   窒素ガス      1/30.0
 以上のように、本発明の好ましい実施形態について詳述したが、本発明は係る特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能であることはいうまでもない。
 1   地球
 3   軌道面
 5   赤道面
10   人工衛星
11   ピギーバック衛星
12   ピギーバック衛星

Claims (3)

  1.  主衛星と共に打ち上げられる複数の小型の人工衛星をそれぞれの目的軌道へ投入する人工衛星の軌道面制御方法において、
     前記主衛星の目的軌道に投入された小型の前記人工衛星を低い推力レベルの推進装置を用いて軌道高度を変更させ、当該軌道高度における地球重力場の扁平性に起因する軌道面の遷移を利用して複数の前記人工衛星をそれぞれの目的軌道へ投入することを特徴とする人工衛星の軌道面制御方法。
  2.  請求項1に記載の人工衛星の軌道面制御方法において、
     前記軌道高度の変更は、
     前記推進装置を前記人工衛星の軌道進行方向と同一方向又は反対方向に所定の時間噴射する第1ステップと、
     その後、前記推進装置を前記第1ステップとは反対の方向に同じ時間だけ噴射する第2ステップと、
     を含み構成されていることを特徴とする人工衛星の軌道面制御方法。
  3.  請求項1又は2に記載の人工衛星の軌道面制御方法において、
     前記推進装置は、イオンエンジンであることを特徴とする人工衛星の軌道面制御方法。
PCT/JP2014/051228 2013-01-22 2014-01-22 人工衛星の軌道面制御方法 WO2014115753A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013008935A JP2014141108A (ja) 2013-01-22 2013-01-22 人工衛星の軌道面制御方法
JP2013-008935 2013-01-22

Publications (1)

Publication Number Publication Date
WO2014115753A1 true WO2014115753A1 (ja) 2014-07-31

Family

ID=51227544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/051228 WO2014115753A1 (ja) 2013-01-22 2014-01-22 人工衛星の軌道面制御方法

Country Status (2)

Country Link
JP (1) JP2014141108A (ja)
WO (1) WO2014115753A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111417576A (zh) * 2017-12-01 2020-07-14 帝奥瑞波特有限公司 在地球轨道中释放人造卫星的方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3020348B1 (fr) * 2014-04-24 2016-05-13 Snecma Procede de deploiement d'une constellation de satellites
CN105512374B (zh) * 2015-11-30 2019-02-01 上海宇航系统工程研究所 一种同轨道面内自然伴飞条件下的卫星观测轨道设计方法
WO2020157802A1 (ja) * 2019-01-28 2020-08-06 三菱電機株式会社 監視制御装置、人工衛星および監視システム
WO2020240826A1 (ja) * 2019-05-31 2020-12-03 三菱電機株式会社 衛星コンステレーション形成システム、衛星コンステレーション形成方法、衛星コンステレーション形成プログラム、および地上装置
WO2020255310A1 (ja) * 2019-06-19 2020-12-24 三菱電機株式会社 衛星コンステレーション形成システム、衛星コンステレーション形成方法、衛星コンステレーション、および地上設備
CN110816896B (zh) * 2019-10-28 2021-06-11 中国空间技术研究院 一种卫星星上简易轨道外推方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07187091A (ja) * 1993-12-28 1995-07-25 Natl Space Dev Agency Japan<Nasda> 複数の人工衛星の打ち上げ方法
JP2002308198A (ja) * 2001-04-17 2002-10-23 Nec Toshiba Space System Kk 衛星航行システム及び衛星の軌道投入方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07187091A (ja) * 1993-12-28 1995-07-25 Natl Space Dev Agency Japan<Nasda> 複数の人工衛星の打ち上げ方法
JP2002308198A (ja) * 2001-04-17 2002-10-23 Nec Toshiba Space System Kk 衛星航行システム及び衛星の軌道投入方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111417576A (zh) * 2017-12-01 2020-07-14 帝奥瑞波特有限公司 在地球轨道中释放人造卫星的方法
CN111417576B (zh) * 2017-12-01 2023-12-19 帝奥瑞波特有限公司 在地球轨道中释放人造卫星的方法

Also Published As

Publication number Publication date
JP2014141108A (ja) 2014-08-07

Similar Documents

Publication Publication Date Title
WO2014115753A1 (ja) 人工衛星の軌道面制御方法
US7900874B2 (en) Device to move an object back and forth
US5716029A (en) Constant sun angle transfer orbit sequence and method using electric propulsion
US8066226B2 (en) Inertial propulsion device to move an object up and down
JP2022027800A (ja) 可変なスラスター制御を用いた軌道上サービスを提供するためのサービス衛星
US8763957B1 (en) Spacecraft transfer orbit techniques
US8457810B1 (en) Compound steering law for efficient low thrust transfer orbit trajectory
US5681011A (en) Method for injecting payloads into orbit
US10046867B2 (en) Maneuvering system for earth orbiting satellites with electric thrusters
McElrath et al. Using gravity assists in the Earth-Moon system as a gateway to the solar system
EP3680182A1 (en) Spin stabilization of a spacecraft for an orbit maneuver
CN105539881B (zh) 一种仅使用一对斜对称推力器的位置保持优化方法
US3940096A (en) Re-orientation of a spacecraft relative to its angular momentum vector
Pakosz et al. ILR-33 AMBER Rocket-Quick, Low Cost and Dedicated Access to Suborbital Flights for Small Experiments
JP6542581B2 (ja) 宇宙機とその軌道面変更方法
JPH0215440B2 (ja)
US11260962B1 (en) Centrifugal-force-propulsion and control system (CFPandCS) and applications
Thomas A comparison of geo satellites using chemical and electric propulsion
Mahajan et al. End-to-End Performance Optimization of a Crewed Lunar Landing Mission Staged from a Near Rectilinear Halo Orbit
CN204184567U (zh) 一种用于航空航天飞行器的动力推进装置
US20240262537A1 (en) Rotational Energy Based Propulsion System
Howe A Tether-Assisted Space Launch System for Super-Earths
CN115180177A (zh) 一种可回收航天飞行器及其弹道
Denny et al. Rocket Propulsion and Guidance
Nelson Effects of Flight Conditions at Booster Separation on Payload Weight in Orbit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14743255

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14743255

Country of ref document: EP

Kind code of ref document: A1