[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014114237A1 - 一种毫米波相控阵波束对准方法及通信设备 - Google Patents

一种毫米波相控阵波束对准方法及通信设备 Download PDF

Info

Publication number
WO2014114237A1
WO2014114237A1 PCT/CN2014/071125 CN2014071125W WO2014114237A1 WO 2014114237 A1 WO2014114237 A1 WO 2014114237A1 CN 2014071125 W CN2014071125 W CN 2014071125W WO 2014114237 A1 WO2014114237 A1 WO 2014114237A1
Authority
WO
WIPO (PCT)
Prior art keywords
millimeter wave
wave signal
search
signal
receiving
Prior art date
Application number
PCT/CN2014/071125
Other languages
English (en)
French (fr)
Inventor
刘培
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP14743340.3A priority Critical patent/EP2945411B1/en
Priority to JP2015552999A priority patent/JP6085374B2/ja
Priority to AU2014210248A priority patent/AU2014210248B2/en
Publication of WO2014114237A1 publication Critical patent/WO2014114237A1/zh
Priority to US14/805,248 priority patent/US20150325912A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/125Means for positioning
    • H01Q1/1257Means for positioning using the received signal strength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/086Weighted combining using weights depending on external parameters, e.g. direction of arrival [DOA], predetermined weights or beamforming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering

Definitions

  • Millimeter wave phased array beam alignment method and communication device The present application claims to be submitted to the Chinese Patent Office on January 22, 2013, the application number is CN 201310023438.7, and the invention name is "a millimeter wave phased array beam alignment method" The priority of the Chinese Patent Application for "Communication Equipment”, the entire contents of which are incorporated herein by reference.
  • TECHNICAL FIELD The present invention relates to the field of communications technologies, and in particular, to a millimeter wave phased array beam alignment method and a communication device. BACKGROUND OF THE INVENTION
  • the short-range wireless communication standard currently applied on a large scale mainly works in the 2.4 GHz and 5 GHz frequency bands, and the 60 GHz millimeter wave communication technology is increasingly active.
  • 60 GHz millimeter-wave communication technology enables ultra-high-speed digital wireless transmission of several gigabits per second (Gbps) per second between electronic devices.
  • Future wireless communication devices will operate in the 2.4 GHz/5 GHz/60 GHz band, the 2.4 GHz/5 GHz band will be used for lower speed data transmission, and the 60 GHz band will be used for high speed data transmission.
  • the 60 GHz millimeter wave is located in one of the peaks of the attenuation of the radio spectrum in the atmosphere, and the spatial propagation attenuation is large. Due to factors such as millimeter wave device technology and cost, small millimeter wave transmission power is limited, so the single-radiation unit antenna has a short communication distance of 60 GHz millimeter wave.
  • a phased array directional beam antenna can be used to transmit and receive millimeter wave signals.
  • the size of the antenna is reduced so that a single device can easily configure multiple antennas, and the phased array antenna can be easily configured for beam shaping.
  • the transmitting and receiving antennas are searched by beam scanning.
  • the millimeter wave phased array beam alignment method comprises: transmitting a signal by a transmitting device to perform a beam scanning search, and after receiving the signal transmitted by the transmitting device, the original receiving device becomes a transmitting device, and the original transmitting device After becoming the receiving device and searching by beam scanning, after the original transmitting device receives the signal transmitted by the original receiving device, the two devices can know each other in which direction, complete the entire beam searching process, and realize the phased array between the two devices.
  • Beam alignment is used in the beam search.
  • a millimeter wave phased array beam alignment method and a communication device are provided, which can improve the efficiency of phased array beam alignment.
  • a millimeter wave phased array beam alignment method including: the first device and the second device communicate through a low frequency band communication link Determining a search angle; the first device transmitting a first millimeter wave signal in a direction indicated by the search angle to search the second device; the first millimeter wave signal is a high frequency millimeter wave signal; The first device receives the feedback information sent by the second device, where the second device sends the feedback information after receiving the first millimeter wave signal in a direction indicated by the search angle; After receiving the feedback information, the device determines to implement millimeter wave phased array beam alignment with the second device in the direction indicated by the search angle.
  • the receiving, by the first device, the feedback information sent by the second device includes: the first device receiving, in a direction indicated by the search angle a second millimeter wave signal transmitted by the second device in a direction indicated by the search angle, wherein the second device transmits the first millimeter wave signal after receiving the first millimeter wave signal in a direction indicated by the search angle a second millimeter wave signal; wherein the second millimeter wave signal is a high frequency millimeter wave signal; after receiving the feedback information, the first device determines that the second device is indicated by the search angle Realizing the millimeter wave phased array beam alignment in the direction, the specific device: after receiving the second millimeter wave signal, determining, by the first device, achieving millimeters with the second device in the direction indicated by the search angle Wave phased array beam alignment.
  • the receiving, by the first device, the feedback information sent by the second device includes: And receiving, by the second device, feedback information sent by the low-band communication link, where the feedback information is used to indicate that the second device receives the first millimeter wave signal in a direction indicated by the search angle.
  • the feedback information includes beam direction information of the first millimeter wave signal received by the second device; after receiving the feedback information, the first device determines that the second device is in the The millimeter-wave phased array beam alignment is implemented in the direction indicated by the search angle, and the specific device: after receiving the feedback information, determining, by the first device, the first information in the feedback information with the second device Millimeter wave phased array beam alignment is achieved in the beam direction of a millimeter wave signal.
  • the method further includes: when the distance between the first device and the second device is less than or equal to a distance threshold, The first device transmits a wide beam millimeter wave signal to search for the second device; wherein the wide beam millimeter wave signal is a high frequency millimeter wave signal; the first device receives the signal attribution information sent by the second device
  • the signal attribution information includes an antenna sector of the first device to which the wide beam millimeter wave signal received by the second device belongs; the first device determines an angle range indicated by the antenna sector as a search range; the first device and the second device communicate by using a low-band communication link to determine a search angle, where the first device is connected to the second device.
  • the method before the first device and the second device communicate by using a low-band communication link to determine a search angle, the method further includes: receiving, by the first device, a low-band communication link Determining a height information of the second device; the first device determines a search range according to the height information of the second device and the height information of the second device; the first device and the second device communicate by using a low frequency band communication link, Determining the search angle, specifically: the first device and the second device communicate through a low frequency band communication link, and determine a search angle within the search range.
  • a second aspect provides a millimeter wave phased array beam alignment method, including: a first device transmitting a millimeter wave signal to search a second device; and the first device receiving the second device through a low frequency band communication link
  • the feedback information is used to indicate that the second device receives the millimeter wave signal transmitted by the first device; wherein the millimeter wave signal is a high frequency millimeter wave signal; After receiving the feedback information, it is determined that the millimeter wave phased array beam alignment is implemented with the second device in the emission direction of the millimeter wave signal.
  • the feedback information includes the The beam direction information of the millimeter wave signal received by the second device; after receiving the feedback information, the first device determines that the millimeter wave phase is implemented in the transmitting direction of the millimeter wave signal with the second device
  • the array beam alignment is specifically: the first device determines, after receiving the feedback information, the millimeter wave phase with the second device in the beam direction of the millimeter wave signal in the feedback information. The array beam is aligned.
  • the method before the first device transmits the millimeter wave signal to search the second device, the method further includes: When the distance between the first device and the second device is less than or equal to a distance threshold, the first device transmits a wide beam millimeter wave signal to search the second device; the first device receives the second device Signal attribution information sent by the device, where the signal attribution information includes an antenna sector of the first device to which the wide beam millimeter wave signal received by the second device belongs; the wide beam millimeter wave signal is a high frequency millimeter wave signal The first device determines the range of the angle indicated by the antenna sector as the search range; the first device transmits the millimeter wave signal to search the second device, specifically: the first device is in the search range The inner device transmits a millimeter wave signal to search for the second device.
  • the first device transmits a millimeter wave signal pair Before the second device performs the search, the method further includes: the first device receiving the height information of the second device by using a low frequency band communication link; the first device according to the height information of the second device and the height information of the second device, Determining the search range; the first device transmitting the millimeter wave signal to search the second device, specifically: the first device transmits a millimeter wave signal in the search range to search the second device.
  • a millimeter-wave phased array beam alignment method including: a first device determining to search a search range of a second device; and the first device transmitting a first millimeter wave signal pair in the search range
  • the second device performs a search; the first device receives the second millimeter wave signal transmitted by the second device, where the second device transmits the second millimeter wave signal after receiving the first millimeter wave signal ; After receiving the second millimeter wave signal, the first device determines to implement millimeter wave phased array beam alignment with the second device in a direction of receiving the second millimeter wave signal;
  • the first millimeter wave signal and the second millimeter wave signal are both high frequency millimeter wave signals.
  • the determining, by the first device, the search range of the second device includes: when a distance between the first device and the second device is less than or equal to When the threshold is a threshold, the first device transmits a wide beam millimeter wave signal to search the second device; the wide beam millimeter wave signal is a high frequency millimeter wave signal; the first device receives the second device to send Signal attribution information, where the signal attribution information includes an antenna sector of a first device to which the wide beam millimeter wave signal received by the second device belongs; the first device indicates an angular range of the antenna sector Determined to be the search range.
  • the determining, by the first device, the searching for the search scope of the second device includes: The frequency band communication link receives the height information of the second device; the first device determines the search range according to the height information of the second device and the height information of the second device.
  • a fourth aspect provides a millimeter-wave phased array beam alignment method, including: a second device communicating with a first device through a low frequency band communication link, determining a search angle; the second device indicating the search angle Receiving a first millimeter wave signal transmitted by the first device in a direction; the first millimeter wave signal is a high frequency millimeter wave signal; after receiving the first millimeter wave signal, the second device The first device sends feedback information, so that after receiving the feedback information, the first device determines to implement millimeter wave phased array beam alignment with the second device in the direction indicated by the search angle.
  • the second device after receiving the first millimeter wave signal, sending feedback information to the first device, includes: the second device After receiving the first millimeter wave signal, transmitting a second millimeter wave signal in a direction indicated by the search angle, so that the first device receives the second in a direction indicated by the search angle After the millimeter wave signal, it is determined that the millimeter wave phased array beam alignment is implemented with the second device in the direction indicated by the search angle, and the second millimeter wave signal is a high frequency millimeter wave signal.
  • the second device after receiving the first millimeter wave signal, to the first device Sending the feedback information, including: after receiving the first millimeter wave signal, the second device sends feedback information to the first device by using a low frequency band communication link, where the feedback information is used to indicate the second The device receives the first millimeter wave signal in a direction indicated by the search angle.
  • the feedback information includes beam direction information of the first millimeter wave signal received by the second device, so that after receiving the feedback information, the first device determines that the second device is Millimeter wave phased array beam alignment is implemented in the beam direction of the first millimeter wave signal in the feedback information.
  • the method further includes: when the distance between the second device and the first device is less than or equal to a distance threshold, The second device receives the wide beam millimeter wave signal transmitted by the first device; the wide beam millimeter wave signal is a high frequency millimeter wave signal; after receiving the wide beam millimeter wave signal, the second device The first device sends the signal attribution information, where the signal attribution information includes an antenna sector of the first device to which the wide beam millimeter wave signal received by the second device belongs, so that the first device uses the antenna The range of angles indicated by the sector is determined as the search range; The second device communicates with the first device by using a low-band communication link to determine a search angle, where the second device communicates with the first device through a low-band communication
  • the method before the second device communicates with the first device by using a low-band communication link to determine a search angle, the method further includes: the second device passing the low-band communication link The first device sends the height information of the second device, so that the first device determines the search range according to the height information of the first device and the height information of the second device; The device communicates through the low-band communication link to determine a search angle. Specifically, the second device communicates with the first device through a low-band communication link, and determines a search angle within the search range.
  • a fifth aspect provides a millimeter wave phased array beam alignment method, including: a second device receiving a millimeter wave signal transmitted by a first device; the millimeter wave signal being a high frequency millimeter wave signal; After receiving the millimeter wave signal, transmitting feedback information to the first device by using a low frequency band communication link, where the feedback information is used to indicate that the second device receives the millimeter wave signal transmitted by the first device, After the first device receives the feedback information, it is determined that the millimeter wave phased array beam alignment is implemented with the second device in the emission direction of the millimeter wave signal.
  • the feedback information includes beam direction information of the millimeter wave signal received by the second device, so that the first device receives the After the feedback information, it is determined that the millimeter wave phased array beam alignment is implemented with the second device in the beam direction of the millimeter wave signal in the feedback information.
  • the method before the second device receives the millimeter wave signal transmitted by the first device, the method further includes: when The second device receives the wide beam millimeter wave signal transmitted by the first device when the distance between the second device and the first device is less than or equal to the distance threshold; the wide beam millimeter wave signal is a high frequency millimeter wave After receiving the wide beam millimeter wave signal, the second device sends signal attribution information to the first device, where the signal attribution information includes a wide beam millimeter wave signal received by the second device.
  • the second device receives the Before the millimeter wave signal
  • the method further includes: sending, by the second device, height information of the second device to the first device by using a low frequency band communication link, so that the first device according to the height information of the first device
  • the height information of the second device determines the search range; the second device receives the millimeter wave signal transmitted by the first device, specifically: the second device receives the millimeter wave signal emitted by the first device in the search range .
  • a sixth aspect provides a millimeter wave phased array beam alignment method, including: receiving, by a second device, a first millimeter wave signal transmitted by a first device within a determined search range; Transmitting a second millimeter wave signal after the first millimeter wave signal, so that the first device determines the direction of receiving the second millimeter wave signal with the second device after receiving the second millimeter wave signal
  • the millimeter wave phased array beam alignment is implemented thereon; wherein the first millimeter wave signal and the second millimeter wave signal are both high frequency millimeter wave signals.
  • the method before the second device receives the first millimeter wave signal that is sent by the first device in the determined search range, the method further includes: when the second device The second device receives the wide beam millimeter wave signal transmitted by the first device when the distance between the first device is less than or equal to the distance threshold; the wide beam millimeter wave signal is a high frequency millimeter wave signal; After receiving the wide beam millimeter wave signal, the second device sends signal attribution information to the first device, where the signal attribution information includes a range of the wide beam millimeter wave signal received by the second device An antenna sector of a device such that the first device determines an angular extent indicated by the antenna sector as the search range.
  • the second device receives, by the second device, the first millimeter wave signal that is sent by the first device in the determined search range.
  • the method further includes: sending, by the second device, the height information of the second device to the first device by using a low-band communication link, so that the first device according to the height information of the first device and the second device The height information determines the search range.
  • a communication device including: an angle determining unit, configured to perform communication with a second device by using a low-band communication link to determine a search angle; and a signal transmitting unit, configured to be in a direction indicated by the search angle Transmitting a first millimeter wave signal to search for the second device; the first millimeter wave signal is a high frequency millimeter wave signal; the signal receiving unit is configured to receive feedback information sent by the second device, where The second device sends the feedback information after receiving the first millimeter wave signal in the direction indicated by the search angle; the aligning unit is configured to determine, after the signal receiving unit receives the feedback information, The second device implements millimeter wave phased array beam alignment in a direction indicated by the search angle.
  • the signal receiving unit is configured to receive, in a direction indicated by the search angle, the second device in a direction indicated by the search angle a second millimeter wave signal that is transmitted, wherein the second device transmits the second millimeter wave signal after receiving the first millimeter wave signal in a direction indicated by the search angle; wherein the second millimeter And the aligning unit is configured to determine, after the signal receiving unit receives the Millimeter wave phased array beam alignment is achieved.
  • the signal receiving unit is specifically configured to receive, by the second device, a low frequency band communication link.
  • the feedback information is used to indicate that the second device receives the first millimeter wave signal in a direction indicated by the search angle.
  • the signal receiving unit includes beam direction information of the first millimeter wave signal received by the second device, and the aligning unit is specifically configured to: after the signal receiving unit receives the feedback information, Determining millimeter wave phased array beam alignment with the second device in a beam direction of the first millimeter wave signal in the feedback information.
  • the method includes: a first range determining unit, configured to: when the angle determining unit communicates with the second device by using a low frequency band communication link, before the search angle is determined, when a distance between the communication device and the second device is less than When the distance is equal to the threshold, the wide beam millimeter wave signal is transmitted to search for the second device, where the wide beam millimeter wave signal is a high frequency millimeter wave signal; and the signal attribution information sent by the second device is received,
  • the signal attribution information includes an antenna sector of the communication device to which the wide beam millimeter wave signal received by the second device belongs; and determining an angular range indicated by the antenna sector as a search range; the angle determining unit Specifically, the second device is in communication with the low-band communication link, and the search angle is determined within the search range.
  • the method further includes: a height information receiving unit, configured to: after the angle determining unit communicates with the second device by using a low-band communication link, determine a search angle, and pass the low-band communication link Receiving the height information of the second device; the second range determining unit is configured to determine a search range according to the height information of the second device and the height information of the second device, where the angle determining unit is specifically configured to be used with the first The two devices communicate over a low frequency band communication link to determine a search angle within the search range.
  • the eighth aspect provides a communication device, including: a signal transmitting unit, configured to transmit a millimeter wave signal to search a second device; and a signal receiving unit, configured to receive feedback sent by the second device through a low frequency band communication link Information, the feedback information is used to indicate that the second device receives the millimeter wave signal transmitted by the communication device; wherein the millimeter wave signal is a high frequency millimeter wave signal; an aligning unit, configured to be at the signal After receiving the feedback information, the receiving unit determines to implement millimeter wave phased array beam alignment with the second device in the transmitting direction of the millimeter wave signal.
  • the signal transmitting unit transmits a millimeter wave signal in a plurality of transmitting directions to search the second device
  • the feedback received by the signal receiving unit The information includes beam direction information of the millimeter wave signal received by the second device
  • the aligning unit is configured to determine, after the signal receiving unit receives the feedback information,
  • the device implements millimeter wave phased array beam alignment in a beam direction of the millimeter wave signal in the feedback information.
  • the method further includes: a first range determining unit, configured to transmit a wide beam when a distance between the communication device and the second device is less than or equal to a distance threshold before the signal transmitting unit transmits a millimeter wave signal to search for the second device
  • the millimeter wave signal searches for the second device, the wide beam millimeter wave signal is a high frequency millimeter wave signal; receiving signal attribution information sent by the second device, where the signal attribution information includes the second device
  • the millimeter wave signal searches the second device.
  • the method further includes: a height information receiving unit, configured to Before the signal transmitting unit transmits the millimeter wave signal to search the second device, the height information of the second device is received through the low frequency band communication link; the second range determining unit is configured to use the height information according to the self and the second The height information of the device determines a search range; the signal transmitting unit is specifically configured to perform a search for the second device by transmitting a millimeter wave signal in the search range.
  • a communication device including: a range determining unit, configured to determine a search range of searching for a second device; a signal transmitting unit, configured to transmit a first millimeter wave signal in the search range to perform a second device a signal receiving unit, configured to receive a second millimeter wave signal transmitted by the second device, where the second device transmits the second millimeter wave signal after receiving the first millimeter wave signal; a quasi unit, configured to, after receiving the second millimeter wave signal, determine millimeter wave phased array beam alignment with the second device in a direction of receiving the second millimeter wave signal;
  • the first millimeter wave signal and the second millimeter wave signal are both high frequency millimeter wave signals.
  • the range determining unit is specifically configured to: when the distance between the communication device and the second device is less than or equal to a distance threshold, transmit a wide beam of millimeters Searching for the second device by the wave signal, the wide beam millimeter wave signal is a high frequency millimeter wave signal; receiving signal attribution information sent by the second device, where the signal attribution information includes the second device receiving An antenna sector of the communication device to which the wide beam millimeter wave signal belongs; determining an angular range indicated by the antenna sector as the search range.
  • the range determining unit includes: a receiving subunit, configured to receive, by using a low frequency band communication link, the foregoing The height information of the two devices; the determining subunit, configured to determine the search range according to the height information of the second device and the height information of the second device.
  • a communication device including: an angle determining unit, configured to communicate with a first device by using a low frequency band communication link to determine a search angle; and a signal receiving unit, configured to be in a direction indicated by the search angle Receiving a first millimeter wave signal transmitted by the first device; the first millimeter wave signal is a high frequency millimeter wave signal; and a feedback unit, configured to: after the signal receiving unit receives the first millimeter wave signal Sending feedback information to the first device, so that after receiving the feedback information, the first device determines that the millimeter-wave phased array beam pair is implemented in the direction indicated by the search angle with the communication device.
  • the feedback unit is specifically configured to: after the first millimeter wave signal is received by the signal receiving unit, in a direction indicated by the search angle Transmitting a second millimeter wave signal, so that after the first device receives the second millimeter wave signal in a direction indicated by the search angle, determining that the communication device is implemented in a direction indicated by the search angle
  • the millimeter wave phased array beam is aligned, and the second millimeter wave signal is a high frequency millimeter wave signal.
  • the feedback unit is specifically configured to receive, by the signal receiving unit, the first millimeter wave signal After passing The low frequency band communication link transmits feedback information to the first device, the feedback information being used to indicate that the communication device receives the first millimeter wave signal in a direction indicated by the search angle.
  • the feedback information includes beam direction information of the first millimeter wave signal received by the signal receiving unit, so that the first device determines the location after receiving the feedback information.
  • the communication device implements millimeter wave phased array beam alignment in a beam direction of the first millimeter wave signal in the feedback information.
  • the signal receiving unit is further configured to: when the angle determining unit communicates with the first device by using a low frequency band communication link, before the search angle is determined, when a distance between the communication device and the first device is less than or equal to a distance Receiving a wide beam millimeter wave signal transmitted by the first device; the wide beam millimeter wave signal is a high frequency millimeter wave signal; and the feedback unit is further configured to receive the width at the signal receiving unit After the beam millimeter wave signal, transmitting signal attribution information to the first device, where the signal attribution information includes an antenna sector of the first device to which the wide beam millimeter wave signal received by the communication device belongs, so that the Determining, by the first device, an angle range indicated by
  • the method further includes: a height information sending unit, configured to: after the angle determining unit communicates with the first device by using a low frequency band communication link, determine a search angle, and pass the low frequency band communication link Transmitting the height information of the communication device to the first device, so that the first device determines the search range according to the height information of the first device and the height information of the communication device; The search angle is determined within the search range by communicating with the first device over a low frequency band communication link.
  • a communication device including: a signal receiving unit, configured to receive a millimeter wave signal transmitted by a first device; the millimeter wave signal is a high frequency millimeter wave signal; and a feedback unit, configured to be at the signal After receiving the millimeter wave signal, the receiving unit sends feedback information to the first device by using a low frequency band communication link, where the feedback information is used to indicate that the communication device receives the millimeter wave signal transmitted by the first device. After the first device receives the feedback information, determining that the communication device implements millimeter wave phased array beam alignment in a transmission direction of the millimeter wave signal.
  • the feedback information includes beam direction information of the millimeter wave signal received by the communications device, so that the first device receives the After the feedback information, it is determined that millimeter wave phased array beam alignment is implemented with the communication device in the beam direction of the millimeter wave signal in the feedback information.
  • the signal receiving unit is further configured to: before receiving the millimeter wave signal transmitted by the first device, Receiving a wide beam millimeter wave signal transmitted by the first device when the distance between the communication device and the first device is less than or equal to a distance threshold; the wide beam millimeter wave signal is a high frequency millimeter wave signal;
  • the feedback unit is further configured to: after the signal receiving unit receives the wide beam millimeter wave signal, send signal attribution information to the first device, where the signal attribution information includes a wide beam received by the communication device An antenna sector of the first device to which the millimeter wave signal belongs, so that the first device determines an angular range indicated by the antenna sector as a search range; and the signal receiving unit is specifically configured to receive in the search range a millimeter wave signal transmitted by the first device.
  • the method further includes: a height information sending unit, configured to Before receiving the millimeter wave signal transmitted by the first device, the signal receiving unit transmits the height information of the communication device to the first device through the low frequency band communication link, so that the first device according to its own height information and The height information of the communication device determines a search range;
  • the signal receiving unit is specifically configured to receive the millimeter wave signal transmitted by the first device in the search range.
  • a communication device including: a signal receiving unit, configured to receive a first millimeter wave signal transmitted by a first device within a determined search range; and a signal transmitting unit, configured to receive at the signal receiving unit Transmitting a second millimeter wave signal after the first millimeter wave signal, so that the first device determines to receive the second millimeter wave signal with the communication device after receiving the second millimeter wave signal Millimeter wave phased array beam alignment is implemented in the direction; wherein the first millimeter wave signal and the second millimeter wave signal are both high frequency millimeter wave signals.
  • the signal receiving unit is further configured to: before receiving the first millimeter wave signal transmitted by the first device in the determined search range, when the communication Receiving a wide beam millimeter wave signal transmitted by the first device when the distance between the device and the first device is less than or equal to a distance threshold; the wide beam millimeter wave signal is a high frequency millimeter wave signal; the signal transmitting unit And after the signal receiving unit receives the wide beam millimeter wave signal, sending signal attribution information to the first device, where the signal attribution information includes a wide beam millimeter wave received by the communication device.
  • the method further includes: a height information sending unit, configured to receive, by the signal receiving unit, the first device Before the first millimeter wave signal transmitted in the search range, the height information of the communication device is sent to the first device through the low frequency band communication link, so that the first device according to its own height information and the communication The height information of the device determines the search range.
  • a millimeter-wave phased array beam alignment system comprising the communication device according to the above seventh aspect, and the communication device according to the above tenth aspect.
  • a millimeter wave phased array beam alignment system is provided, comprising the communication device according to the above eighth aspect, and the communication device according to the eleventh aspect.
  • a millimeter wave phased array beam alignment system is provided, comprising the communication device according to the above ninth aspect, and the communication device according to the twelfth aspect.
  • the embodiment of the present invention determines the search angle by using the low frequency band of 2.4 GHz or 5 GHz in the device as the auxiliary communication link, so that the first device and the second device perform the cooperative beam-sending and searching process according to the search angle, and realize the millimeter wave phase.
  • the array beam is aligned.
  • the method reduces the blindness of the beam search, greatly reduces the number of beam scans, improves the efficiency of the phased array beam alignment, shortens the setup time of the communication link of the millimeter wave band such as 60 GHz, saves the power consumption of the device, and improves the power consumption. user experience.
  • FIG. 1 is a flowchart of a millimeter wave phased array beam alignment method according to an embodiment of the present invention
  • FIG. 2a is a schematic diagram of determining a search angle according to an embodiment of the present invention
  • 2b is a search according to a method for transmitting and receiving collaboration according to an embodiment of the present invention
  • 2c is a schematic diagram of determining a search range by coarse positioning in an embodiment of the present invention
  • FIG. 2d is a schematic diagram of searching using a combination method of coarse positioning and receiving and receiving cooperation and response according to an embodiment of the present invention
  • FIG. 4 is a flow chart of another method for millimeter wave phased array beam alignment according to an embodiment of the present invention
  • FIG. 5a is another millimeter wave phased array beam pair according to an embodiment of the present invention
  • Figure 5b is a schematic diagram of searching using coarse positioning in the embodiment of the present invention
  • 6 is a flow chart of another millimeter wave phased array beam alignment method according to an embodiment of the present invention
  • FIG. 7 is a flow chart of another millimeter wave phased array beam alignment method according to an embodiment of the present invention
  • FIG. 9 is a schematic structural diagram of a communication device according to an embodiment of the present invention
  • FIG. 10 is a schematic structural diagram of another communication device according to an embodiment of the present invention
  • 11 is a schematic structural diagram of another communication device according to an embodiment of the present invention
  • FIG. 12 is a schematic structural diagram of another communication device according to an embodiment of the present invention
  • FIG. 13 is a schematic structural diagram of another communication device according to an embodiment of the present invention
  • Step 101 The first device and the second device communicate by using a low frequency band communication link to determine a search angle.
  • the first device may be a phased array antenna device
  • the second device is another phased array antenna device that needs to be aligned with the first device, and the two devices first pass a low frequency band communication link, for example, a 2.4 GHz/5 GHz band.
  • Etc. communicating to determine a search angle for performing search alignment, which may be an angle formed by clockwise or counterclockwise rotation with respect to the horizontal or vertical direction.
  • the first device is a notebook 21, and the second device is a projector 22.
  • the two devices communicate through a low-band communication link, and the search angle is determined as Z1 as shown in Fig. 2a.
  • Step 102 The first device transmits the first direction in the direction indicated by the search angle determined in step 101.
  • the millimeter wave signal searches for the second device.
  • the first device transmits the first millimeter wave signal according to the search angle determined in the previous step, Z l in Fig. 2a.
  • the direction indicated by the search angle is the direction in which one side of the search angle is located. If the search angle is relative to the horizontal direction, the direction indicated by the search angle may be the direction in which the edge formed at an angle with the horizontal direction is located.
  • the millimeter wave in the embodiment of the present invention may be a narrow beam, and the frequency of the millimeter wave may be but not limited to the 60 GHz millimeter wave signal in the embodiment of the present invention (including the first millimeter wave signal, the second millimeter wave signal, and the wide beam millimeter wave)
  • the signals are all high frequency millimeter wave signals, wherein the first millimeter wave signal and the second millimeter wave signal may be signals of the same frequency, and the wide beam millimeter wave signal may be a signal of the same frequency as the first millimeter wave signal.
  • the "first” and “second” are different from each other to distinguish the millimeter wave signals transmitted by different devices. According to the symmetry of the angle between the connection between the two devices and the horizontal direction, when the first device transmits a signal according to Z1, the second device also starts receiving the first millimeter wave signal according to the search angle, wherein, whether the second device is located at Z or not The direction of 1 should receive the signal from the Z 1 direction. If the second device is located in the transmitting direction of the first millimeter wave signal, the second device can receive the first millimeter wave signal, and at this time, the second device sends the feedback information to the first device.
  • the second device If the second device is not in the transmitting direction of the first millimeter wave signal, the second device cannot receive the first millimeter wave signal at the determined search angle, and the second device does not send the feedback information to the first device.
  • the angle between the line connecting the projector 22 and the notebook 21 and the horizontal direction is exactly Z l , the projector 22 can receive the first millimeter emitted by the notebook 21 in the direction of Z 1 .
  • the wave signal at this time, the projector 22 transmits feedback information to the notebook 21.
  • the projector 22 cannot receive the first millimeter wave signal emitted by the notebook 21 in the direction of its Z1, at this time, the projector 22 will not send feedback information to the notebook 21.
  • the planes of the phased array antennas of the two devices are parallel to determine the search angle. If not parallel, the angle of the antenna plane can be compensated by the internal vertical angle sensor of the device. In the process of searching for the second device by the first device, if the first device sends the first millimeter wave signal, If the feedback information of the second device is not received, the second device is not searched.
  • step 101 may be performed again to determine another search angle, and then step 102 is performed until the feedback of the second device is received.
  • Information, searching for the second device another way is that in the previous step 101, the first device and the second device determine a plurality of search angles, and then in step 102, the first device transmits one by one according to a certain angular order The millimeter wave signal, until receiving the feedback information of the second device, searches for the second device.
  • Step 103 The first device receives the feedback information sent by the second device, where the second device sends the feedback information after receiving the first millimeter wave signal in the direction indicated by the search angle.
  • the second device sends the feedback information to the first device after receiving the first millimeter wave signal sent by the first device in the direction indicated by the determined search angle.
  • the first device receives the feedback information sent by the second device, where the first device: the first device receives the second millimeter wave signal that is sent by the second device at the search angle according to the search angle, where The second device transmits the second millimeter wave signal after receiving the first millimeter wave signal at the search angle.
  • the first device exchanges the role with the second device, and the second device transmits the second millimeter wave signal to the first device, and the search process is repeated to determine the first device.
  • this process is similar to the search method in the prior art blind search process.
  • the beam coverage is > ⁇ sub-area
  • the total number is 1 Sub-area.
  • a scan search for each layer may take up to M ⁇ times, and the M layer requires a maximum of 1 ⁇ searches, which is M times less than a one-way blind search.
  • the first device receives the feedback message sent by the second device.
  • the information may be: the first device receives the feedback information sent by the second device through the low-band communication link, such as the 2.4 GHz/5 GHz frequency band, and the feedback information is used to indicate that the second device receives the first at the determined search angle.
  • Millimeter wave signal In this mode, after receiving the first millimeter wave signal sent by the first device, the second device immediately passes
  • the 2.4 GHz or 5 GHz low frequency band sends a response signal to the first device, informing the first device to terminate the search process to avoid the subsequent invalid beam search process.
  • the feedback information that is, the response signal
  • the feedback information may include a beam direction number of the first millimeter wave signal sent by the first device received by the second device, such as the number of Z 1 , so that the first The device knows which beam direction the second device is in the transmit antenna. If the second device does not perform response feedback to return the information to the first device in the foregoing manner, the second device and the first device need to exchange the transmitting and receiving roles, and then perform beam scanning to exchange beam pointing information to complete beam scanning search. process.
  • Step 104 After receiving the feedback information, the first device determines to implement millimeter wave phased array beam alignment with the second device in the direction indicated by the search angle. In this step, if the first device receives the second millimeter wave signal transmitted by the second device in the direction indicated by the search angle, the first device may determine that the second device may be in the direction indicated by the search angle. The millimeter wave phased array beam alignment is achieved, that is, aligned with the second device in the receiving direction in which the second millimeter wave signal is received.
  • the first device may also know that the millimeter wave phased array beam alignment can be implemented with the second device in the direction indicated by the search angle. If the feedback information received by the first device includes beam direction information of the first millimeter wave signal received by the second device, the first device determines, after receiving the feedback information, the first information in the feedback information with the second device. Millimeter wave phased array beam alignment is achieved in the beam direction of the millimeter wave signal.
  • the embodiment of the present invention determines the search angle by using the low frequency band of 2.4 GHz or 5 GHz in the device as the auxiliary communication link, so that the first device and the second device perform the cooperative beam-sending and searching process according to the search angle, and realize the millimeter wave phase.
  • the array beam is aligned.
  • the method reduces the blindness of the beam search, greatly reduces the number of beam scans, improves the efficiency of the phased array beam alignment, shortens the setup time of the communication link of the millimeter wave band such as 60 GHz, saves the power consumption of the device, and improves the power consumption. user experience.
  • the first device before the first device and the second device communicate through the low-band communication link to determine the search angle, the first device may further perform coarse positioning on the location of the second device to determine the search. Range, where the search range refers to the range of angles to which the search angle belongs.
  • the process of determining the search range may be performed in multiple manners, for example: mode 1, when the distance between the first device and the second device is less than or equal to the distance threshold, the first device transmits the wide beam millimeter wave signal to search the second device.
  • the frequency of the wide beam millimeter wave in the embodiment of the present invention may be, but not limited to, 60 GHz.
  • the first device Receiving, by the first device, signal attribution information sent by the second device, where the signal attribution information includes an antenna sector of the first device to which the wide beam millimeter wave signal received by the second device belongs;
  • the range of angles indicated by the zone is determined as the search range.
  • the first device divides its antenna coverage into a number of coverage areas (sectors), and then it transmits a wide-beam millimeter-wave signal to these areas (sectors), which contains the number of these areas (sectors), for example 1, 2, 3...
  • the second device naturally knows which signal it is transmitting in which sector the first device is transmitting, and then passes the sector number through the low-band communication link feedback. To the first device, then the first device knows which sector coverage the second device is within.
  • the distance between the first device and the second device is less than or equal to the distance threshold, that is, the distance between the first device and the second device is within a wide beam effective communication distance, and the two devices use a wider beam scan search. You can find each other's rough position to determine the search range. This process is similar to the existing technology and will not be repeated here.
  • the second method as shown in FIG. 3, the method for determining the search range may include: Step 301: The first device receives the height information of the second device by using the low-band communication link. The first device and the second device can both sense the height of the device and/or the vertical angle with the ground by setting a height sensor and/or a vertical angle sensor, or can be a built-in height information register, a device type register, or the like.
  • the height information storage register is used to store the height of the device relative to the indoor floor during normal operation. This height can be a fixed value and can be a height range. It can be the factory default or it can be changed by the user.
  • the device type register is used to indicate the device type by number, such as a notebook, a television, a mobile phone, a projector, and the like.
  • the second device can obtain the height information of the second device by reading the information in the height information storage register, etc., and then transmitting the height information to the first device through a low frequency band such as 2.4 GHz or 5 GHz.
  • Step 302 The first device determines the search range according to the height information of the second device and the height information of the second device.
  • the first device obtains its own height information by reading information in the height information storage register, and then according to its own height information and the received height information of the second device, it can be determined that the connection between the two devices is relative to The approximate angle of the horizontal direction or the vertical direction, so that the search range can be determined.
  • the first device and the second device can mutually exchange information such as the device type, the antenna type, and the like, so that the master-slave search device can be determined.
  • the first device is the primary search device
  • the second device is the slave search device.
  • it can be equal between the two devices, and it is not necessary to distinguish the master-slave search device.
  • the first device and the second device communicate through the low frequency band communication link, and the search angle is determined within the search range.
  • the search range is determined by the coarse positioning, the beam scanning search range is further reduced, and the number of beam scanning searches is reduced, so that the communication link can be established more quickly, the power consumption of the device is reduced, and the user experience is improved.
  • the full search angle of the first device is, and the second device is located by the coarse positioning. ⁇ Within the range of angles. In this way, the first device only needs to perform narrow beam scanning. &1 This is done in a small range, which narrows the search and reduces the number of scans.
  • the manner of determining the first and second devices for transmitting and receiving cooperation in the search angle, the manner in which the second device responds through the low-band communication link, the manner in which the search range is determined by the coarse positioning, and the blind search in the prior art are determined.
  • the method can be arbitrarily combined according to requirements, for example, the combination of the transmission and reception cooperation, the combination of the transmission and reception coordination and the response, the combination of the coarse positioning and the transmission and reception, the combination of the coarse positioning and the transmission and reception coordination and the response, etc., which are not described in detail herein. Description of the embodiments.
  • a preferred embodiment as shown in FIG.
  • FIG. 4 a flow chart of another millimeter wave phased array beam alignment method according to an embodiment of the present invention is shown.
  • the difference between the embodiment of the present invention and the foregoing embodiment is as follows: The foregoing embodiment is described for the combination of the transmission and reception cooperation, the transmission and reception cooperation, and the coarse positioning and/or the response. In the embodiment of the present invention, the combination of the response and other modes is mainly described. .
  • the method may include: Step 401: The first device transmits a millimeter wave signal to search for the second device.
  • the first device is a phased array antenna device and the second device is another phased array antenna device that needs to be aligned with the first device.
  • the first device may transmit the millimeter wave signal to the second device by using a blind search manner in multiple directions, and the frequency of the millimeter wave signal may be 60 GHz.
  • Step 402 The first device receives feedback information sent by the second device by using the low-band communication link, where the feedback information is used to indicate that the second device receives the millimeter wave signal transmitted by the first device.
  • the second device After receiving the millimeter wave signal transmitted by the first device in a certain direction, the second device sends a feedback message to the first device through a low frequency band such as 2.4 GHz or 5 GHz, and the feedback information is used to indicate the first
  • the second device receives the millimeter wave signal transmitted by the first device. Specifically, after receiving the first millimeter wave signal sent by the first device, the second device immediately sends a response signal to the first device through the 2.4 GHz or 5 GHz low frequency band, informing the first device to terminate the search process, to avoid subsequent invalid beam search. process.
  • the response signal may include a beam direction number sent by the first device received by the second device, such as the number of Z 1 as shown in FIG.
  • Step 403 After receiving the feedback information, the first device determines to implement millimeter wave phased array beam alignment with the second device in the transmitting direction of the millimeter wave signal. After receiving the feedback information, that is, the response signal, the first device can know at which angle the millimeter wave phased array beam alignment can be implemented with the second device.
  • the feedback information includes beam direction information of the millimeter wave signal received by the second device.
  • the first device determines to perform millimeter wave phased array beam alignment with the second device in the beam direction of the millimeter wave signal in the feedback information.
  • the second device sends feedback information to the first device to return the related information of the millimeter wave signal to the first device, thereby eliminating the second device and the first device, and performing the beam scanning function.
  • the beam is directed to the information to complete the beam scanning search process. Therefore, the response method of the second device in the method can save up to half of the scanning search times, further improve the efficiency of phased array beam alignment, shorten the establishment time of the communication link of the millimeter wave band such as 60 GHz, and save power consumption of the device. Improved user experience.
  • the first device may further perform coarse positioning on the location of the second device to determine the search range.
  • the process of determining the search range may be performed in multiple manners, for example: mode 1, when the distance between the first device and the second device is less than or equal to the distance threshold, the first device transmits the wide beam millimeter wave signal to search the second device.
  • the first device receives the signal attribution information sent by the second device, where the signal attribution information includes The antenna sector of the first device to which the wide beam millimeter wave signal received by the second device belongs; the first device determines the angular range indicated by the antenna sector as the search range.
  • the second method, the method for determining the search range may include: the first device receiving the height information of the second device by using a low frequency band communication link; the first device according to the height information of the second device and the second device Height information, determine the scope of the search.
  • the specific processes of the above two methods are the same as those of the first mode and the second mode in the foregoing embodiments, and are not described herein again.
  • the first device After determining the search range by the above manner, the first device transmits a millimeter wave signal within the determined search range to search for the second device.
  • the search range is determined by the coarse positioning, the beam scanning search range is further reduced, and the number of beam scanning searches is reduced, so that the communication link can be established more quickly, the power consumption of the device is reduced, and the user experience is improved.
  • FIG. 5a a flow chart of another millimeter wave phased array beam alignment method according to an embodiment of the present invention is shown. The difference between the embodiment of the present invention and the foregoing embodiment is as follows: The foregoing embodiment is described in combination with the combination of the transmission and reception, the transmission and reception, and the coarse positioning and/or the response, and the combination of the response and the other manners. A combination of coarse positioning and blind search is described.
  • the method may include: Step 501: The first device determines to search for a search range of the second device.
  • the process of determining the search range may be performed in multiple manners, for example: mode 1, when the distance between the first device and the second device is less than or equal to the distance threshold, the first device transmits the wide beam millimeter wave signal to search the second device.
  • the first device receives the signal attribution information sent by the second device, where the signal attribution information includes An antenna sector of the first device to which the wide beam millimeter wave signal received by the second device belongs; the first device determines an angular range indicated by the antenna sector as a search range.
  • the second method, the method for determining the search range may include: the first device receiving the height information of the second device by using a low frequency band communication link; the first device according to the height information of the second device and the second device Height information, determine the scope of the search.
  • the specific processes of the above two methods are the same as those of the first mode and the second mode in the foregoing embodiments, and are not described herein again.
  • Step 502 The first device searches for the second device by transmitting the first millimeter wave signal in the search range.
  • Step 504 After receiving the second millimeter wave signal, the first device determines to implement millimeter wave phased array beam alignment with the second device in a direction of receiving the second millimeter wave signal.
  • the above steps 502 to 504 are that the first device is a signal transmitting party, the second device is a signal receiving party, and the second device is searched. After the second device receives the signal, the first device exchanges a role with the second device, and the second device The process of the device transmitting a signal to search the first device, the process is the same as the search process in the prior art, and details are not described herein again.
  • the first device transmits a signal to search within the search range.
  • the search range is determined by the coarse positioning, the beam scanning search range is reduced, and the number of beam scanning searches is reduced, so that the communication link can be established more quickly, the power consumption of the device is reduced, and the user experience is improved.
  • the beam coverage is assumed to be > ⁇ Sub-area composition, total quantity 2 Sub-area. If blind search is used, the receiver can receive the maximum signal. The number of searches can be .
  • the transmit direction transmits a beam search sequence once per sub-area, which is required, and the receiver receives each direction. : 1
  • the total number of searches is required to be secondary, and after the upper search is used to determine the search range, the maximum number of possible one-way searches can be reduced to , e Times.
  • the first device is explained as the execution subject, and the second embodiment will be described below as the execution subject.
  • 6 is a flow chart of another millimeter wave phased array beam alignment method according to an embodiment of the present invention.
  • the method may include: Step 601: The second device communicates with the first device by using a low frequency band communication link to determine a search angle.
  • Step 602 The second device receives the first millimeter wave signal transmitted by the first device in a direction indicated by the search angle.
  • Step 603 After receiving the first millimeter wave signal, the second device sends feedback information to the first device, so that the first device determines, after receiving the feedback information, the second The device implements millimeter wave phased array beam alignment in the direction indicated by the search angle.
  • the embodiment of the present invention determines the search angle by using the low frequency band of 2.4 GHz or 5 GHz in the device as the auxiliary communication link, so that the first device and the second device perform the cooperative beam-sending and searching process according to the search angle, and realize the millimeter wave phase.
  • the array beam is aligned.
  • the method reduces the blindness of the beam search, greatly reduces the number of beam scans, improves the efficiency of the phased array beam alignment, shortens the setup time of the communication link of the millimeter wave band such as 60 GHz, saves the power consumption of the device, and improves the power consumption. user experience.
  • the second device after receiving the first millimeter wave signal, the second device sends feedback information to the first device, where: the second device after receiving the first millimeter wave signal Transmitting a second millimeter wave signal in a direction indicated by the search angle, so that the first device determines the second millimeter wave signal after receiving the second millimeter wave signal in a direction indicated by the search angle
  • the device implements millimeter wave phased array beam alignment in the direction indicated by the search angle.
  • the second device after receiving the first millimeter wave signal, sends feedback information to the first device, where: the second device receives the first millimeter wave After the signal, the feedback information is sent to the first device through the low-band communication link, and the feedback information is used to indicate that the second device receives the first millimeter wave signal in a direction indicated by the search angle.
  • the feedback information includes beam direction information of the first millimeter wave signal received by the second device, so that the first device receives the After the feedback information, it is determined that the millimeter wave phased array beam alignment is implemented with the second device in the beam direction of the first millimeter wave signal in the feedback information.
  • the method before the second device communicates with the first device by using a low-band communication link to determine a search angle, the method further includes: between the second device and the first device The second device receives the wide beam millimeter wave signal transmitted by the first device when the distance is less than or equal to the distance threshold; the second device sends the wide beam millimeter wave signal to the first device after receiving the wide beam millimeter wave signal Sending signal attribution information, where the signal attribution information includes an antenna sector of the first device to which the wide beam millimeter wave signal received by the second device belongs, so that the first device indicates the antenna sector
  • the angle range is determined as the search range; the second device communicates with the first device through the low-band communication link, and determines the search angle, specifically: the second device communicates with the first device through the low-band communication link, A search angle is determined within the search range.
  • the method before the second device communicates with the first device by using a low-band communication link to determine a search angle, the method further includes: the second device transmitting the The first device sends the height information of the second device, so that the first device determines the search range according to the height information of the first device and the height information of the second device; The second device communicates with the first device by using a low-band communication link to determine a search angle. Specifically, the second device communicates with the first device by using a low-band communication link, and is determined within the search range. Search angle.
  • FIG. 7 a flow chart of another millimeter wave phased array beam alignment method according to an embodiment of the present invention is shown.
  • the method may include: Step 701: The second device receives the millimeter wave signal transmitted by the first device.
  • the feedback information may include beam direction information of the millimeter wave signal received by the second device, so that after receiving the feedback information, the first device determines that the second device is in the The millimeter wave phased array beam alignment is implemented in the beam direction of the millimeter wave signal in the feedback information.
  • the second device sends feedback information to the first device to return the related information of the millimeter wave signal to the first device, thereby eliminating the second device and the first device, and performing the beam scanning function.
  • the beam is directed to the information to complete the beam scanning search process.
  • the response method of the second device in the method can save up to half of the scanning search times, further improve the efficiency of phased array beam alignment, shorten the establishment time of the communication link of the millimeter wave band such as 60 GHz, and save power consumption of the device. Improved user experience.
  • the method before the receiving, by the second device, the millimeter wave signal transmitted by the first device, the method further includes: when a distance between the second device and the first device is less than or equal to a distance threshold The second device receives the wide beam millimeter wave signal transmitted by the first device; After receiving the wide beam millimeter wave signal, the second device sends signal attribution information to the first device, where the signal attribution information includes a wide beam millimeter wave signal received by the second device.
  • An antenna sector of the first device so that the first device determines an angular range indicated by the antenna sector as a search range; and the second device receives the millimeter wave signal transmitted by the first device, specifically: the second The device receives the millimeter wave signal transmitted by the first device in the search range.
  • the method before the receiving, by the second device, the millimeter wave signal transmitted by the first device, the method further includes: sending, by the second device, the first device to the first device by using a low frequency band communication link Level information of the device, so that the first device determines the search range according to the height information of the device and the height information of the second device; the second device receives the millimeter wave signal transmitted by the first device, specifically: The second device receives the millimeter wave signal transmitted by the first device in the search range.
  • FIG. 8 is a flowchart of another method for millimeter wave phased array beam alignment according to an embodiment of the present invention.
  • the method may include: Step 801: The second device receives a first millimeter wave signal transmitted by the first device in the determined search range; Step 802, the second device transmits the first millimeter wave signal after receiving the first millimeter wave signal a millimeter wave signal, such that after receiving the second millimeter wave signal, the first device determines to implement a millimeter wave phased array beam with the second device in a direction of receiving the second millimeter wave signal alignment.
  • the search range is determined by the coarse positioning, the beam scanning search range is reduced, and the number of beam scanning searches is reduced, so that the communication link can be established more quickly, the power consumption of the device is reduced, and the user experience is improved.
  • the method before the receiving, by the second device, the first millimeter wave signal transmitted by the first device in the determined search range, the method further includes: When the distance between the second device and the first device is less than or equal to a distance threshold, the second device receives a wide beam millimeter wave signal transmitted by the first device; the second device receives the location After the wide-beam millimeter-wave signal is described, the signal attribution information is sent to the first device, where the signal attribution information includes an antenna sector of the first device to which the wide-beam millimeter-wave signal received by the second device belongs, And causing the first device to determine an angular range indicated by the antenna sector as a search range.
  • the method before the receiving, by the second device, the first millimeter wave signal transmitted by the first device in the determined search range, the method further includes: the second device transmitting to the device through the low frequency band communication link The first device sends the height information of the second device, so that the first device determines the search range according to the height information of the first device and the height information of the second device.
  • the millimeter wave band frequency is not limited to the vicinity of 60 GHz, and may be a millimeter wave band covering the entire 20 GHz to 100 GHz band.
  • the low-band frequency is not limited to the 2.4GHz/5GHz band, and can be any authorized use frequency from 30MHz to 10GHz.
  • the millimeter wave signal transmitted between the first device and the second device may specifically be a narrow beam millimeter wave signal.
  • Embodiments of the present invention are not limited to the 802.11 family of standards, the 802.15 family of standards (802.15.3c), WiGig, WirelessHD, ISO/IEC 13156, etc., or a combination of these standards. The above is a description of the embodiment of the method of the present invention, and the apparatus for implementing the above method will be described below.
  • FIG. 9 is a schematic structural diagram of a communication device according to an embodiment of the present invention.
  • the communication device 900 may include: an angle determining unit 901, configured to communicate with the second device by using a low-band communication link to determine a search angle; and a signal transmitting unit 902, configured to transmit the first direction in a direction indicated by the search angle
  • the millimeter wave signal searches the second device; the first millimeter wave signal is a high frequency millimeter wave signal;
  • the signal receiving unit 903 is configured to receive the feedback information sent by the second device, where the second device sends the feedback information after receiving the first millimeter wave signal in a direction indicated by the search angle;
  • the aligning unit 904 is configured to, after the signal receiving unit 903 receives the feedback information, determine to implement millimeter wave phased array beam alignment with the second device in a direction indicated by the search angle.
  • the communication device uses a low frequency band such as 2.4 GHz or 5 GHz as an auxiliary communication link to determine a search angle, so that the communication device and the second device perform cooperative transmit and receive beam search process according to the search angle, and realize a millimeter wave phased array beam pair. quasi.
  • the device reduces the blindness of the beam search, greatly reduces the number of beam scanning, improves the efficiency of phased array beam alignment, shortens the setup time of the communication link of the millimeter wave band such as 60 GHz, saves the power consumption of the device, and improves the power consumption. user experience.
  • the signal receiving unit is configured to receive, in a direction indicated by the search angle, a second millimeter wave signal transmitted by the second device in a direction indicated by the search angle, where The second device transmits the second millimeter wave signal after receiving the first millimeter wave signal in a direction indicated by the search angle; wherein the second millimeter wave signal is a high frequency millimeter wave signal; Specifically, after the signal receiving unit receives the second millimeter wave signal, determining to implement millimeter wave phased array beam alignment with the second device in a direction indicated by the search angle.
  • the signal receiving unit is configured to receive feedback information that is sent by the second device by using a low-band communication link, where the feedback information is used to indicate that the second device is received at the search angle.
  • the first millimeter wave signal When the search angle determined by the angle determining unit is multiple, the feedback information received by the signal receiving unit includes beam direction information of the first millimeter wave signal received by the second device;
  • the aligning unit is configured to: after the signal receiving unit receives the feedback information, determine to implement a millimeter wave with the second device in a beam direction of the first millimeter wave signal in the feedback information. Phased array beam alignment.
  • the communication device may further include: a first range determining unit, configured to pass the low frequency band communication chain between the angle determining unit and the second device
  • the second device searches for a wide beam millimeter wave signal to search the second device, where the distance is greater than or equal to a distance threshold before the communication is determined, wherein the width is
  • the beam millimeter wave signal is a high frequency millimeter wave signal
  • receiving signal attribution information sent by the second device where the signal attribution information includes the communication device to which the wide beam millimeter wave signal received by the second device belongs An antenna sector; and determining an angular range indicated by the antenna sector as a search range
  • the angle determining unit is specifically configured to communicate with the second device by using a low frequency band communication link, within the search range Determine the search angle.
  • the communication device may further include: a height information receiving unit, configured to: after the angle determining unit communicates with the second device by using a low-band communication link, determine a search angle, and pass the low-band communication chain Receiving, by the road, the height information of the second device; the second range determining unit, configured to determine a search range according to the height information of the second device and the height information of the second device; The second device communicates over the low band communication link to determine a search angle within the search range.
  • FIG. 10 is a schematic structural diagram of another communication device according to an embodiment of the present invention.
  • the communication device 1000 may include: a signal transmitting unit 1001, configured to transmit a millimeter wave signal to search for a second device; and a signal receiving unit 1002, configured to receive feedback information sent by the second device through a low frequency band communication link, where The feedback information is used to indicate that the second device receives the millimeter wave signal transmitted by the communication device; wherein the millimeter wave signal is a high frequency millimeter wave signal; and the aligning unit 1003 is configured to be at the signal receiving unit After receiving the feedback information, it is determined that the millimeter wave phased array beam alignment is implemented with the second device in the emission direction of the millimeter wave signal.
  • the feedback information received by the signal receiving unit includes beam direction information of the millimeter wave signal received by the second device; the aligning unit is specifically configured to receive at the signal receiving unit After the feedback information, it is determined that the millimeter wave phased array beam alignment is implemented with the second device in the beam direction of the millimeter wave signal in the feedback information.
  • the device receives the response feedback from the second device to the communication device, saves the second device and the communication device from switching the receiving and receiving roles, and performs beam scanning to exchange the beam pointing information to complete the beam scanning search process.
  • the device can save up to half of the number of scan searches, further improve the efficiency of phased array beam alignment, shorten the establishment time of the communication link of the millimeter wave band such as 60 GHz, save the power consumption of the device, and improve the user experience.
  • the communication device may further include: a first range determining unit, configured to: before the signal transmitting unit transmits a millimeter wave signal to search for the second device, when the communication device and the second device When the distance between the devices is less than or equal to the distance threshold, the wide beam millimeter wave signal is transmitted to search the second device, and the wide beam millimeter wave signal is a high frequency millimeter wave signal; receiving the signal sent by the second device Information, the signal attribution information includes an antenna sector of the communication device to which the wide beam millimeter wave signal received by the second device belongs; determining an angular range indicated by the antenna sector as a search range; The signal transmitting unit is specifically configured to perform a search for the second device by transmitting a millimeter wave signal within the search
  • the communication device may further include: a height information receiving unit, configured to receive the second through the low frequency band communication link before the signal transmitting unit transmits the millimeter wave signal to search the second device a height information of the device, a second range determining unit, configured to determine a search range according to the height information of the second device and the height information of the second device, where the signal transmitting unit is specifically configured to emit a millimeter wave in the search range The signal searches the second device.
  • FIG. 11 is a schematic structural diagram of another communication device according to an embodiment of the present invention.
  • the communication device 1100 may include: a range determining unit 1101, configured to determine a search range of searching for the second device; a signal transmitting unit 1102, configured to transmit a first millimeter wave signal in the search range to search for the second device;
  • the receiving unit 1103 is configured to receive a second millimeter wave signal transmitted by the second device, where the second device transmits the second millimeter wave signal after receiving the first millimeter wave signal; 1104, configured to determine, after receiving the second millimeter wave signal, performing millimeter wave phased array beam alignment with the second device in a direction of receiving the second millimeter wave signal;
  • the first millimeter wave signal and the second millimeter wave signal are both high frequency millimeter wave signals.
  • the device determines the search range by coarse positioning, reduces the beam scan search range, and reduces the number of beam scan searches, thereby establishing a communication link more quickly, reducing device power consumption, and improving user experience.
  • the range determining unit is configured to: when the distance between the communication device and the second device is less than or equal to a distance threshold, transmit a wide beam millimeter wave signal to search the second device, The wide beam millimeter wave signal is a high frequency millimeter wave signal; receiving signal attribution information sent by the second device, where the signal attribution information includes the to-before the wide beam millimeter wave signal received by the second device An antenna sector of the communication device; determining an angular range indicated by the antenna sector as the search range.
  • the range determining unit includes: a receiving subunit, configured to receive the height information of the second device by using a low frequency band communication link; and determining a subunit, configured to use the height information according to the self and the second The height information of the device determines the search range.
  • FIG. 12 it is a schematic structural diagram of another communication device according to an embodiment of the present invention.
  • the communication device 1200 can include: an angle determining unit 1201, configured to communicate with the first device by using a low-band communication link to determine a search angle; and a signal receiving unit 1202, configured to receive the direction in a direction indicated by the search angle a first millimeter wave signal transmitted by the first device; the first millimeter wave signal is a high frequency millimeter wave signal; and a feedback unit 1203, configured to: after the signal receiving unit receives the first millimeter wave signal, The first device sends feedback information, so that after receiving the feedback information, the first device determines to implement millimeter wave phased array beam alignment with the communication device in the direction indicated by the search angle.
  • the feedback unit is configured to: after the signal receiving unit receives the first millimeter wave signal, transmit a second millimeter wave signal in a direction indicated by the search angle, so that the After receiving the second millimeter wave signal in the direction indicated by the search angle, the first device determines to implement millimeter wave phased array beam alignment with the communication device in the direction indicated by the search angle, The second millimeter wave signal is a high frequency millimeter wave signal.
  • the feedback unit is specifically configured to: after the signal receiving unit receives the first millimeter wave signal, send feedback information to the first device by using a low frequency band communication link, where The feedback information is used to indicate that the communication device receives the first millimeter wave signal in a direction indicated by the search angle.
  • the feedback information includes beam direction information of the first millimeter wave signal received by the signal receiving unit, so that the first device After receiving the feedback information, determining to implement millimeter wave phased array beam alignment with the communication device in a beam direction of the first millimeter wave signal in the feedback information.
  • the signal receiving unit is further configured to: when the angle determining unit communicates with the first device by using a low frequency band communication link, before determining the search angle, when the communication device and the first device Receiving a wide beam millimeter wave signal transmitted by the first device when the distance between the distance is less than or equal to the distance threshold; the wide beam millimeter wave signal is a high frequency millimeter wave signal; and the feedback unit is further configured to receive the signal The unit receives the wide beam millimeter wave signal And transmitting signal attribution information to the first device, where the signal attribution information includes an antenna sector of the first device to which the wide beam millimeter wave signal received by the communication device belongs, so that the first device The angle range indicated by the antenna sector is determined as a search range; the angle determining unit is specifically configured to communicate with the first device by using a low frequency band communication link, and determine a search angle within the search range.
  • the communication device further includes: a height information transmitting unit, configured to: after the angle determining unit communicates with the first device by using a low frequency band communication link, determine a search angle, and pass the low frequency band communication link Transmitting the height information of the communication device to the first device, so that the first device determines the search range according to the height information of the first device and the height information of the communication device; The search angle is determined within the search range by communicating with the first device over a low frequency band communication link.
  • FIG. 13 is a schematic structural diagram of another communication device according to an embodiment of the present invention.
  • the communication device 1300 may include: a signal receiving unit 1301, configured to receive a millimeter wave signal transmitted by the first device; the millimeter wave signal is a high frequency millimeter wave signal; and a feedback unit 1302, configured to receive at the signal receiving unit After the millimeter wave signal, the feedback information is sent to the first device by using a low frequency band communication link, where the feedback information is used to indicate that the communication device receives the millimeter wave signal transmitted by the first device, so that the After receiving the feedback information, the first device determines to implement millimeter wave phased array beam alignment with the communication device in the transmitting direction of the millimeter wave signal.
  • the feedback information may include beam direction information of the millimeter wave signal received by the communication device, to enable the first device to determine the feedback with the communication device after receiving the feedback information.
  • Millimeter wave phased array beam alignment is achieved in the beam direction of the millimeter wave signal in the information.
  • the signal receiving unit is further configured to: before receiving the millimeter wave signal transmitted by the first device, when the distance between the communication device and the first device is less than or equal to a distance threshold, receive a wide beam millimeter wave signal transmitted by the first device; the wide beam millimeter wave signal is a high frequency millimeter wave signal; the feedback unit is further configured to receive the wide beam millimeter wave signal at the signal receiving unit And transmitting signal attribution information to the first device, where the signal attribution information includes an antenna sector of the first device to which the wide beam millimeter wave signal received by the communication device belongs, so that the first device The angle range indicated by the antenna sector is determined as a search range; and the signal receiving unit is specifically configured to receive the millimeter wave signal transmitted by the first device in the search range.
  • the communication device further includes: a height information transmitting unit, configured to send, to the first device, the low frequency band communication link before the signal receiving unit receives the millimeter wave signal transmitted by the first device a height information of the communication device, so that the first device determines a search range according to the height information of the device and the height information of the communication device; the signal receiving unit is specifically configured to receive the The millimeter wave signal emitted by the first device.
  • FIG. 14 is a schematic structural diagram of another communication device according to an embodiment of the present invention.
  • the communication device 1400 can include: a signal receiving unit 1401, configured to receive a first millimeter wave signal transmitted by the first device within the determined search range; a signal transmitting unit 1402, configured to receive the at the signal receiving unit Transmitting a second millimeter wave signal after the first millimeter wave signal, so that the first device determines, after receiving the second millimeter wave signal, a direction with the communication device in receiving the second millimeter wave signal A millimeter wave phased array beam alignment is implemented; wherein the first millimeter wave signal and the second millimeter wave signal are high frequency millimeter wave signals.
  • the signal receiving unit is further configured to: before receiving the first millimeter wave signal transmitted by the first device within the determined search range, between the communication device and the first device Receiving a wide beam millimeter wave signal transmitted by the first device when the distance is less than or equal to the distance threshold; the wide beam millimeter wave signal is a high frequency millimeter wave signal; the signal transmitting unit is further used in the signal receiving unit After receiving the wide-beam millimeter wave signal, transmitting signal attribution information to the first device, where the signal attribution information includes an antenna sector of the first device to which the wide beam millimeter wave signal received by the communication device belongs And causing the first device to determine an angular range indicated by the antenna sector as the search range.
  • the communication device further includes: a height information transmitting unit, configured to pass the low frequency band communication chain before the signal receiving unit receives the first millimeter wave signal transmitted by the first device within the determined search range
  • the road sends the height information of the communication device to the first device, so that the first device determines the search range according to the height information of the first device and the height information of the communication device.
  • the embodiment of the present invention further provides a millimeter wave phased array beam alignment system which may include the communication device as described in the foregoing embodiment shown in FIG. 9 and the communication device described in the foregoing embodiment shown in FIG.
  • the embodiment of the present invention further provides a millimeter wave phased array beam alignment system which may include the communication device as described in the foregoing embodiment shown in FIG.
  • Embodiments of the present invention also provide a communication device, which may include a transceiver, a memory, and a processor.
  • a transceiver configured to: search for a second device by transmitting a first millimeter wave signal according to a search angle; and receive feedback information sent by the second device, where the second device receives the first Transmitting the feedback information after a millimeter wave signal; storing a set of program codes in the memory, and the processor is configured to call the program code stored in the memory, to perform the following operations:: communicating with the second device through the low frequency communication chain The road communicates to determine a search angle; after receiving the feedback information, determining to achieve millimeter wave phased array beam alignment with the second device at the search angle.
  • a communication device which may include a transceiver, a memory, and a processor.
  • a transceiver for transmitting a millimeter wave signal to search for a second device; receiving feedback information sent by the second device through a low frequency band communication link, where the feedback information is used to indicate that the second device receives the a millimeter wave signal transmitted by a device; a set of program codes stored in the memory, and the processor is configured to call the program code stored in the memory, to perform the following operations: after receiving the feedback information, determining to transmit The emission angle of the millimeter wave signal is aligned with the millimeter wave phased array beam of the second device.
  • a communication device which may include a transceiver, a memory, and a processor.
  • Embodiments of the present invention also provide a communication device, which may include a transceiver, a memory, and a processor.
  • a transceiver configured to receive, by the search angle, a first millimeter wave signal transmitted by the first device; after receiving the first millimeter wave signal, send feedback information to the first device, to enable the first After receiving the feedback information, the device determines to implement millimeter wave phased array beam alignment with the second device at the search angle.
  • a set of program code is stored in the memory, and the processor is configured to invoke program code stored in the memory for performing the following operations: communicating with the first device through a low frequency communication link to determine a search angle.
  • the embodiment of the invention further provides a communication device, which can include a transceiver.
  • a transceiver configured to receive a millimeter wave signal transmitted by the first device; after receiving the millimeter wave signal, send feedback information to the first device by using a low frequency band communication link, where the feedback information is used to indicate the
  • the second device receives the millimeter wave signal transmitted by the first device, so that after receiving the feedback information, the first device determines that the transmission angle of transmitting the millimeter wave signal is implemented by the second device Millimeter wave phased array beam alignment.
  • the embodiment of the invention further provides a communication device, which can include a transceiver.
  • a transceiver configured to receive a first millimeter wave signal transmitted by the first device within a determined search range; transmitting a second millimeter wave signal after receiving the first millimeter wave signal, so that the first device is receiving After the second millimeter wave signal, it is determined that the emission angle of the first millimeter wave signal is transmitted and the millimeter wave phased array beam alignment is achieved with the second device.
  • the coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical, mechanical or otherwise.
  • the units described as separate components may or may not be physically separate, and the components displayed as the units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as separate products, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a removable hard disk, a Read-Only Memory (ROM), a random access memory (RAM) disk, or an optical disk, and the like, which can store program codes.
  • ROM Read-Only Memory
  • RAM random access memory
  • optical disk and the like, which can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种毫米波相控阵波束对准方法及通信设备。该方法包括:第一设备与第二设备通过低频段通信链路进行通信,确定搜索角度;所述第一设备在所述搜索角度指示的方向上发射第一毫米波信号对所述第二设备进行搜索;所述第一毫米波信号为高频毫米波信号;所述第一设备接收所述第二设备发送的反馈信息,其中,所述第二设备在所述搜索角度指示的方向上接收到所述第一毫米波信号后发送所述反馈信息;所述第一设备在接收到所述反馈信息后,确定与所述第二设备在所述搜索角度指示的方向上实现毫米波相控阵波束对准。该方法减少了波束搜索的盲目性,大大减小了波束扫描次数,提高了相控阵波束对准的效率。

Description

一种毫米波相控阵波束对准方法及通信设备 本申请要求于 2013年 1月 22日提交中国专利局、 申请号为 CN 201310023438.7、 发明名称为"一种毫米波相控阵波束对准方法及通信设备"的中国专利申请的优先权, 其全部内容通过弓 I用结合在本申请中。 技术领域 本发明涉及通信技术领域, 特别是涉及一种毫米波相控阵波束对准方法及通信 设备。 背景技术 目前大规模应用的近距无线通信标准主要工作在 2.4GHz、 5GHz频段, 而 60GHz 毫米波通信技术正日益活跃起来。 和现有频段相比, 60GHz毫米波通信技术能够实 现电子设备间每秒数个吉比特 (Gbps ) 级的超高速数字无线传输。 未来无线通信设 备将可工作在 2.4GHz/5GHz/60GHz三个频段, 2.4GHz/5GHz频段用来实现较低速数 据传输, 60GHz频段用来实现高速数据传输。
60GHz毫米波位于无线电频谱在大气传输衰减峰值之一, 在空间传播衰耗大。 受限制于毫米波器件技术和成本等因素, 小型毫米波发射功率受限, 因此单辐射单 元天线的 60GHz毫米波通信距离较短。要增加毫米波通信距离, 实现高速数据传输, 可以采用相控阵定向波束天线来收发毫米波信号。 在 60GHz系统中, 天线尺寸的縮 小使得单个设备可以方便的配置多个天线, 而相控阵天线的配置可以方便的进行波 束成形。 收发天线经过波束扫描搜索, 当发射设备的相控阵波束与接收设备的相控阵波 束相互对准时, 发射设备与接收设备之间才能实现相通信。 现有技术中, 该毫米波相控阵波束对准的方法包括: 由发射设备发射信号进行 波束扫描搜索, 接收设备收到发射设备发射的信号后, 原接收设备变为发射设备, 原发射设备变为接收设备, 再经过波束扫描搜索, 原发射设备在接收到原接收设备 发射的信号后, 两设备才能互相知道对方在哪个方向, 完成整个波束搜索过程, 实 现两设备之间的相控阵波束对准。 其中, 在进行波束搜索时采用的是穷举法, 由于 搜索时没有明确搜索目标和停止算法, 发射设备只能通过穷尽搜索, 遍历所有可能 的波束指向方向后, 才能发现接收设备所在的通信波束指向角度。 因此, 现有技术 中该相控阵波束对准方法时间冗长, 效率低下。 发明内容 本发明实施例中提供了一种毫米波相控阵波束对准方法及通信设备, 能够提高 相控阵波束对准的效率。 为了解决上述技术问题, 本发明实施例公开了如下技术方案: 第一方面, 提供一种毫米波相控阵波束对准方法, 包括: 第一设备与第二设备通过低频段通信链路进行通信, 确定搜索角度; 所述第一设备在所述搜索角度指示的方向上发射第一毫米波信号对所述第二 设备进行搜索; 所述第一毫米波信号为高频毫米波信号; 所述第一设备接收所述第二设备发送的反馈信息, 其中, 所述第二设备在所述 搜索角度指示的方向上接收到所述第一毫米波信号后发送所述反馈信息; 所述第一设备在接收到所述反馈信息后, 确定与所述第二设备在所述搜索角度 指示的方向上实现毫米波相控阵波束对准。 结合上述第一方面, 在第一种可能的实现方式中, 所述第一设备接收所述第二 设备发送的反馈信息, 包括: 所述第一设备在所述搜索角度指示的方向上接收所述第二设备在所述搜索角 度指示的方向上发射的第二毫米波信号, 其中, 所述第二设备在所述搜索角度指示 的方向上接收到所述第一毫米波信号后发射所述第二毫米波信号; 其中, 所述第二 毫米波信号为高频毫米波信号; 所述第一设备在接收到所述反馈信息后, 确定与所述第二设备在所述搜索角度 指示的方向上实现毫米波相控阵波束对准, 具体为: 所述第一设备在接收到所述第二毫米波信号后, 确定与所述第二设备在所述搜 索角度指示的方向上实现毫米波相控阵波束对准。 结合上述第一方面,和 /或第一种可能的实现方式,在第二种可能的实现方式中, 所述第一设备接收所述第二设备发送的反馈信息, 包括: 所述第一设备接收所述第二设备通过低频段通信链路发送的反馈信息, 所述反 馈信息用于表明所述第二设备在所述搜索角度指示的方向上接收到所述第一毫米 波信号。 结合上述第一方面, 和 /或第一种可能的实现方式, 和 /或第二种可能的实现方 式, 在第三种可能的实现方式中, 当确定的所述搜索角度为多个时, 所述反馈信息 中包括所述第二设备接收到的所述第一毫米波信号的波束方向信息; 所述第一设备在接收到所述反馈信息后, 确定与所述第二设备在所述搜索角度 指示的方向上实现毫米波相控阵波束对准, 具体为: 所述第一设备在接收到所述反馈信息后, 确定与所述第二设备在所述反馈信息 中的所述第一毫米波信号的波束方向上实现毫米波相控阵波束对准。 结合上述第一方面, 和 /或第一种可能的实现方式, 和 /或第二种可能的实现方 式, 和 /或第三种可能的实现方式, 在第四种可能的实现方式中, 在所述第一设备与 第二设备通过低频段通信链路进行通信, 确定搜索角度之前, 还包括: 当所述第一设备与所述第二设备之间的距离小于等于距离阈值时, 所述第一设 备发射宽波束毫米波信号对所述第二设备进行搜索; 其中, 所述宽波束毫米波信号 为高频毫米波信号; 所述第一设备接收所述第二设备发送的信号归属信息, 所述信号归属信息中包 含所述第二设备接收到的所述宽波束毫米波信号所属的第一设备的天线扇区; 所述第一设备将所述天线扇区指示的角度范围确定为搜索范围; 所述第一设备与第二设备通过低频段通信链路进行通信, 确定搜索角度, 具体 为: 所述第一设备与第二设备通过低频段通信链路进行通信, 在所述搜索范围内确 定搜索角度。 结合上述第一方面, 和 /或第一种可能的实现方式, 和 /或第二种可能的实现方 式, 和 /或第三种可能的实现方式, 和 /或第四种可能的实现方式, 在第五种可能的 实现方式中, 在所述第一设备与第二设备通过低频段通信链路进行通信, 确定搜索 角度之前, 还包括: 所述第一设备通过低频段通信链路接收所述第二设备的高度信息; 所述第一设备根据自身的高度信息及所述第二设备的高度信息, 确定搜索范 围; 所述第一设备与第二设备通过低频段通信链路进行通信, 确定搜索角度, 具体 为: 所述第一设备与第二设备通过低频段通信链路进行通信, 在所述搜索范围内确 定搜索角度。 第二方面, 提供一种毫米波相控阵波束对准方法, 包括: 第一设备发射毫米波信号对第二设备进行搜索; 所述第一设备接收所述第二设备通过低频段通信链路发送的反馈信息, 所述反 馈信息用于表明所述第二设备接收到所述第一设备发射的毫米波信号; 其中, 所述 毫米波信号为高频毫米波信号; 所述第一设备在接收到所述反馈信息后, 确定与所述第二设备在所述毫米波信 号的发射方向上实现毫米波相控阵波束对准。 结合上述第二方面, 在第一种可能的实现方式中, 当所述第一设备在多个发射 方向发射毫米波信号对所述第二设备进行搜索时, 所述反馈信息中包括所述第二设 备接收到的所述毫米波信号的波束方向信息; 所述第一设备在接收到所述反馈信息后, 确定与所述第二设备在所述毫米波信 号的发射方向上实现毫米波相控阵波束对准, 具体为: 所述第一设备在接收到所述反馈信息后, 确定与所述第二设备在所述反馈信息 中的所述毫米波信号的波束方向上实现毫米波相控阵波束对准。 结合上述第二方面,和 /或第一种可能的实现方式,在第二种可能的实现方式中, 在所述第一设备发射毫米波信号对第二设备进行搜索之前, 还包括: 当所述第一设备与所述第二设备之间的距离小于等于距离阈值时, 所述第一设 备发射宽波束毫米波信号对所述第二设备进行搜索; 所述第一设备接收所述第二设备发送的信号归属信息, 所述信号归属信息中包 含所述第二设备接收到的宽波束毫米波信号所属的第一设备的天线扇区; 所述宽波 束毫米波信号为高频毫米波信号; 所述第一设备将所述天线扇区指示的角度范围确定为搜索范围; 所述第一设备发射毫米波信号对第二设备进行搜索, 具体为: 所述第一设备在所述搜索范围内发射毫米波信号对第二设备进行搜索。 结合上述第二方面, 和 /或第一种可能的实现方式, 和 /或第二种可能的实现方 式, 在第三种可能的实现方式中, 在所述第一设备发射毫米波信号对第二设备进行 搜索之前, 还包括: 所述第一设备通过低频段通信链路接收所述第二设备的高度信息; 所述第一设备根据自身的高度信息及所述第二设备的高度信息, 确定搜索范 围; 所述第一设备发射毫米波信号对第二设备进行搜索, 具体为: 所述第一设备在所述搜索范围内发射毫米波信号对第二设备进行搜索。 第三方面, 提供一种毫米波相控阵波束对准方法, 包括: 第一设备确定搜索第二设备的搜索范围; 所述第一设备在所述搜索范围内发射第一毫米波信号对第二设备进行搜索; 所述第一设备接收所述第二设备发射的第二毫米波信号, 其中, 所述第二设备 在接收到所述第一毫米波信号后发射所述第二毫米波信号; 所述第一设备在接收到所述第二毫米波信号后, 确定与所述第二设备在接收所 述第二毫米波信号的方向上实现毫米波相控阵波束对准; 其中, 所述第一毫米波信号及所述第二毫米波信号均为高频毫米波信号。 结合上述第三方面, 在第一种可能的实现方式中, 所述第一设备确定搜索第二 设备的搜索范围, 包括: 当所述第一设备与所述第二设备之间的距离小于等于距离阈值时, 所述第一设 备发射宽波束毫米波信号对所述第二设备进行搜索; 所述宽波束毫米波信号为高频 毫米波信号; 所述第一设备接收所述第二设备发送的信号归属信息, 所述信号归属信息中包 含所述第二设备接收到的宽波束毫米波信号所属的第一设备的天线扇区; 所述第一设备将所述天线扇区指示的角度范围确定为所述搜索范围。 结合上述第三方面,和 /或第一种可能的实现方式,在第二种可能的实现方式中, 所述第一设备确定搜索第二设备的搜索范围, 包括: 所述第一设备通过低频段通信链路接收所述第二设备的高度信息; 所述第一设备根据自身的高度信息及所述第二设备的高度信息, 确定所述搜索 范围。 第四方面, 提供一种毫米波相控阵波束对准方法, 包括: 第二设备与第一设备通过低频段通信链路进行通信, 确定搜索角度; 所述第二设备在所述搜索角度指示的方向上接收所述第一设备发射的第一毫 米波信号; 所述第一毫米波信号为高频毫米波信号; 所述第二设备在接收到所述第一毫米波信号后, 向所述第一设备发送反馈信 息, 以使所述第一设备在接收到所述反馈信息后, 确定与所述第二设备在所述搜索 角度指示的方向上实现毫米波相控阵波束对准。 结合上述第四方面, 在第一种可能的实现方式中, 所述第二设备在接收到所述 第一毫米波信号后, 向所述第一设备发送反馈信息, 包括: 所述第二设备在接收到所述第一毫米波信号后, 在所述搜索角度指示的方向上 发射第二毫米波信号, 以使所述第一设备在所述搜索角度指示的方向上接收到所述 第二毫米波信号后, 确定与所述第二设备在所述搜索角度指示的方向上实现毫米波 相控阵波束对准, 所述第二毫米波信号为高频毫米波信号。 结合上述第四方面,和 /或第一种可能的实现方式,在第二种可能的实现方式中, 所述第二设备在接收到所述第一毫米波信号后, 向所述第一设备发送反馈信息, 包 括: 所述第二设备在接收到所述第一毫米波信号后, 通过低频段通信链路向所述第 一设备发送反馈信息, 所述反馈信息用于表明所述第二设备在所述搜索角度指示的 方向上接收到所述第一毫米波信号。 结合上述第四方面, 和 /或第一种可能的实现方式, 和 /或第二种可能的实现方 式, 在第三种可能的实现方式中, 当确定的所述搜索角度为多个时, 所述反馈信息 中包括所述第二设备接收到的所述第一毫米波信号的波束方向信息, 以使所述第一 设备在接收到所述反馈信息后, 确定与所述第二设备在所述反馈信息中的所述第一 毫米波信号的波束方向上实现毫米波相控阵波束对准。 结合上述第四方面, 和 /或第一种可能的实现方式, 和 /或第二种可能的实现方 式, 和 /或第三种可能的实现方式, 在第四种可能的实现方式中, 在所述第二设备与 第一设备通过低频段通信链路进行通信, 确定搜索角度之前, 还包括: 当所述第二设备与所述第一设备之间的距离小于等于距离阈值时, 所述第二设 备接收所述第一设备发射的宽波束毫米波信号; 所述宽波束毫米波信号为高频毫米 波信号; 所述第二设备在接收到所述宽波束毫米波信号后, 向所述第一设备发送信号归 属信息, 所述信号归属信息中包含所述第二设备接收到的宽波束毫米波信号所属的 第一设备的天线扇区, 以使所述第一设备将所述天线扇区指示的角度范围确定为搜 索范围; 所述第二设备与第一设备通过低频段通信链路进行通信, 确定搜索角度, 具体 为: 所述第二设备与第一设备通过低频段通信链路进行通信, 在所述搜索范围内确 定搜索角度。 结合上述第四方面, 和 /或第一种可能的实现方式, 和 /或第二种可能的实现方 式, 和 /或第三种可能的实现方式, 和 /或第四种可能的实现方式, 在第五种可能的 实现方式中, 在所述第二设备与第一设备通过低频段通信链路进行通信, 确定搜索 角度之前, 还包括: 所述第二设备通过低频段通信链路向所述第一设备发送所述第二设备的高度 信息, 以使所述第一设备根据自身的高度信息及所述第二设备的高度信息, 确定所 述搜索范围; 所述第二设备与第一设备通过低频段通信链路进行通信, 确定搜索角度, 具体 为: 所述第二设备与第一设备通过低频段通信链路进行通信, 在所述搜索范围内确 定搜索角度。 第五方面, 提供一种毫米波相控阵波束对准方法, 包括: 第二设备接收第一设备发射的毫米波信号; 所述毫米波信号为高频毫米波信 号; 所述第二设备在接收到所述毫米波信号后, 通过低频段通信链路向所述第一设 备发送反馈信息, 所述反馈信息用于表明所述第二设备接收到所述第一设备发射的 毫米波信号, 以使所述第一设备在接收到所述反馈信息后, 确定与所述第二设备在 所述毫米波信号的发射方向上实现毫米波相控阵波束对准。 结合上述第五方面, 在第一种可能的实现方式中, 所述反馈信息中包括所述第 二设备接收到的所述毫米波信号的波束方向信息, 以使所述第一设备在接收到所述 反馈信息后, 确定与所述第二设备在所述反馈信息中的所述毫米波信号的波束方向 上实现毫米波相控阵波束对准。 结合上述第五方面,和 /或第一种可能的实现方式,在第二种可能的实现方式中, 在所述第二设备接收第一设备发射的毫米波信号之前, 还包括: 当所述第二设备与所述第一设备之间的距离小于等于距离阈值时, 所述第二设 备接收所述第一设备发射的宽波束毫米波信号; 所述宽波束毫米波信号为高频毫米 波信号; 所述第二设备在接收到所述宽波束毫米波信号后, 向所述第一设备发送信号归 属信息, 所述信号归属信息中包含所述第二设备接收到的宽波束毫米波信号所属的 第一设备的天线扇区, 以使所述第一设备将所述天线扇区指示的角度范围确定为搜 索范围; 所述第二设备接收第一设备发射的毫米波信号, 具体为: 所述第二设备在所述搜索范围接收所述第一设备发射的毫米波信号。 结合上述第一方面, 和 /或第一种可能的实现方式, 和 /或第二种可能的实现方 式, 在第三种可能的实现方式中, 在所述第二设备接收第一设备发射的毫米波信号 之前, 还包括: 所述第二设备通过低频段通信链路向所述第一设备发送所述第二设备的高度 信息, 以使所述第一设备根据自身的高度信息及所述第二设备的高度信息, 确定搜 索范围; 所述第二设备接收第一设备发射的毫米波信号, 具体为: 所述第二设备在所述搜索范围接收所述第一设备发射的毫米波信号。 第六方面, 提供一种毫米波相控阵波束对准方法, 包括: 第二设备接收第一设备在确定的搜索范围内发射的第一毫米波信号; 所述第二设备在接收到所述第一毫米波信号后发射第二毫米波信号, 以使所述 第一设备在接收到所述第二毫米波信号后, 确定与所述第二设备在接收所述第二毫 米波信号的方向上实现毫米波相控阵波束对准; 其中, 所述第一毫米波信号及所述 第二毫米波信号均为高频毫米波信号。 结合上述第六方面, 在第一种可能的实现方式中, 在所述第二设备接收第一设 备在确定的搜索范围内发射的第一毫米波信号之前, 还包括: 当所述第二设备与所述第一设备之间的距离小于等于距离阈值时, 所述第二设 备接收所述第一设备发射的宽波束毫米波信号; 所述宽波束毫米波信号为高频毫米 波信号; 所述第二设备在接收到所述宽波束毫米波信号后, 向所述第一设备发送信号归 属信息, 所述信号归属信息中包含所述第二设备接收到的宽波束毫米波信号所属的 第一设备的天线扇区, 以使所述第一设备将所述天线扇区指示的角度范围确定为所 述搜索范围。 结合上述第六方面,和 /或第一种可能的实现方式,在第二种可能的实现方式中, 在所述第二设备接收第一设备在确定的搜索范围内发射的第一毫米波信号之前, 还 包括: 所述第二设备通过低频段通信链路向所述第一设备发送所述第二设备的高度 信息, 以使所述第一设备根据自身的高度信息及所述第二设备的高度信息, 确定所 述搜索范围。 第七方面, 提供一种通信设备, 包括: 角度确定单元,用于与第二设备通过低频段通信链路进行通信,确定搜索角度; 信号发射单元, 用于在所述搜索角度指示的方向上发射第一毫米波信号对所述 第二设备进行搜索; 所述第一毫米波信号为高频毫米波信号; 信号接收单元, 用于接收所述第二设备发送的反馈信息, 其中, 所述第二设备 在所述搜索角度指示的方向上接收到所述第一毫米波信号后发送所述反馈信息; 对准单元, 用于在所述信号接收单元接收到所述反馈信息后, 确定与所述第二 设备在所述搜索角度指示的方向上实现毫米波相控阵波束对准。 结合上述第七方面, 在第一种可能的实现方式中, 所述信号接收单元, 具体用 于在所述搜索角度指示的方向上接收所述第二设备在所述搜索角度指示的方向上 发射的第二毫米波信号, 其中, 所述第二设备在所述搜索角度指示的方向上接收到 所述第一毫米波信号后发射所述第二毫米波信号; 其中, 所述第二毫米波信号为高 频毫米波信号; 所述对准单元, 具体用于在所述信号接收单元接收到所述第二毫米波信号后, 确定与所述第二设备在所述搜索角度指示的方向上实现毫米波相控阵波束对准。 结合上述第七方面,和 /或第一种可能的实现方式,在第二种可能的实现方式中, 所述信号接收单元, 具体用于接收所述第二设备通过低频段通信链路发送的反馈信 息, 所述反馈信息用于表明所述第二设备在所述搜索角度指示的方向上接收到所述 第一毫米波信号。 结合上述第七方面, 和 /或第一种可能的实现方式, 和 /或第二种可能的实现方 式, 当所述角度确定单元确定的所述搜索角度为多个时, 所述信号接收单元接收到 的反馈信息中包括所述第二设备接收到的所述第一毫米波信号的波束方向信息; 所述对准单元, 具体用于在所述信号接收单元接收到所述反馈信息后, 确定与 所述第二设备在所述反馈信息中的所述第一毫米波信号的波束方向上实现毫米波 相控阵波束对准。 结合上述第七方面, 和 /或第一种可能的实现方式, 和 /或第二种可能的实现方 式, 和 /或第三种可能的实现方式, 在第四种可能的实现方式中, 还包括: 第一范围确定单元, 用于在所述角度确定单元与第二设备通过低频段通信链路 进行通信, 确定搜索角度之前, 当所述通信设备与所述第二设备之间的距离小于等 于距离阈值时, 发射宽波束毫米波信号对所述第二设备进行搜索, 其中, 所述宽波 束毫米波信号为高频毫米波信号; 接收所述第二设备发送的信号归属信息, 所述信 号归属信息中包含所述第二设备接收到的宽波束毫米波信号所属的所述通信设备 的天线扇区; 并将所述天线扇区指示的角度范围确定为搜索范围; 所述角度确定单元, 具体用于与所述第二设备通过低频段通信链路进行通信, 在所述搜索范围内确定搜索角度。 结合上述第七方面, 和 /或第一种可能的实现方式, 和 /或第二种可能的实现方 式, 和 /或第三种可能的实现方式, 和 /或第四种可能的实现方式, 在第五种可能的 实现方式中, 还包括: 高度信息接收单元, 用于在所述角度确定单元与第二设备通过低频段通信链路 进行通信,确定搜索角度之前,通过低频段通信链路接收所述第二设备的高度信息; 第二范围确定单元, 用于根据自身的高度信息及所述第二设备的高度信息, 确 定搜索范围; 所述角度确定单元, 具体用于与所述第二设备通过低频段通信链路进行通信, 在所述搜索范围内确定搜索角度。 第八方面, 提供一种通信设备, 包括: 信号发射单元, 用于发射毫米波信号对第二设备进行搜索; 信号接收单元, 用于接收所述第二设备通过低频段通信链路发送的反馈信息, 所述反馈信息用于表明所述第二设备接收到所述通信设备发射的毫米波信号; 其 中, 所述毫米波信号为高频毫米波信号; 对准单元, 用于在所述信号接收单元接收到所述反馈信息后, 确定与所述第二 设备在所述毫米波信号的发射方向上实现毫米波相控阵波束对准。 结合上述第八方面, 在第一种可能的实现方式中, 当所述信号发射单元在多个 发射方向发射毫米波信号对所述第二设备进行搜索时, 所述信号接收单元接收到的 反馈信息中包括所述第二设备接收到的所述毫米波信号的波束方向信息; 所述对准单元, 具体用于在所述信号接收单元接收到所述反馈信息后, 确定与 所述第二设备在所述反馈信息中的所述毫米波信号的波束方向上实现毫米波相控 阵波束对准。 结合上述第八方面,和 /或第一种可能的实现方式,在第二种可能的实现方式中, 还包括: 第一范围确定单元, 用于在所述信号发射单元发射毫米波信号对第二设备进行 搜索之前, 当所述通信设备与所述第二设备之间的距离小于等于距离阈值时, 发射 宽波束毫米波信号对所述第二设备进行搜索, 所述宽波束毫米波信号为高频毫米波 信号; 接收所述第二设备发送的信号归属信息, 所述信号归属信息中包含所述第二 设备接收到的宽波束毫米波信号所属的所述通信设备的天线扇区; 将所述天线扇区 指示的角度范围确定为搜索范围; 所述信号发射单元, 具体用于在所述搜索范围内发射毫米波信号对所述第二设 备进行搜索。 结合上述第八方面, 和 /或第一种可能的实现方式, 和 /或第二种可能的实现方 式, 在第三种可能的实现方式中, 还包括: 高度信息接收单元, 用于在所述信号发射单元发射毫米波信号对第二设备进行 搜索之前, 通过低频段通信链路接收所述第二设备的高度信息; 第二范围确定单元, 用于根据自身的高度信息及所述第二设备的高度信息, 确 定搜索范围; 所述信号发射单元, 具体用于在所述搜索范围内发射毫米波信号对所述第二设 备进行搜索。 第九方面, 提供一种通信设备, 包括: 范围确定单元, 用于确定搜索第二设备的搜索范围; 信号发射单元, 用于在所述搜索范围内发射第一毫米波信号对第二设备进行搜 索; 信号接收单元, 用于接收所述第二设备发射的第二毫米波信号, 其中, 所述第 二设备在接收到所述第一毫米波信号后发射所述第二毫米波信号; 对准单元, 用于在接收到所述第二毫米波信号后, 确定与所述第二设备在接收 所述第二毫米波信号的方向上实现毫米波相控阵波束对准; 其中, 所述第一毫米波信号及所述第二毫米波信号均为高频毫米波信号。 结合上述第九方面, 在第一种可能的实现方式中, 所述范围确定单元, 具体用 于当所述通信设备与所述第二设备之间的距离小于等于距离阈值时, 发射宽波束毫 米波信号对所述第二设备进行搜索, 所述宽波束毫米波信号为高频毫米波信号; 接 收所述第二设备发送的信号归属信息, 所述信号归属信息中包含所述第二设备接收 到的宽波束毫米波信号所属的所述通信设备的天线扇区; 将所述天线扇区指示的角 度范围确定为所述搜索范围。 结合上述第九方面,和 /或第一种可能的实现方式,在第二种可能的实现方式中, 所述范围确定单元包括: 接收子单元, 用于通过低频段通信链路接收所述第二设备的高度信息; 确定子单元, 用于根据自身的高度信息及所述第二设备的高度信息, 确定所述 搜索范围。 第十方面, 提供一种通信设备, 包括: 角度确定单元,用于与第一设备通过低频段通信链路进行通信,确定搜索角度; 信号接收单元, 用于在在所述搜索角度指示的方向上接收所述第一设备发射的 第一毫米波信号; 所述第一毫米波信号为高频毫米波信号; 反馈单元, 用于在所述信号接收单元接收到所述第一毫米波信号后, 向所述第 一设备发送反馈信息, 以使所述第一设备在接收到所述反馈信息后, 确定与所述通 信设备在所述搜索角度指示的方向上实现毫米波相控阵波束对准。 结合上述第十方面, 在第一种可能的实现方式中, 所述反馈单元, 具体用于在 所述信号接收单元接收到所述第一毫米波信号后, 在所述搜索角度指示的方向上发 射第二毫米波信号, 以使所述第一设备在所述搜索角度指示的方向上接收到所述第 二毫米波信号后, 确定与所述通信设备在所述搜索角度指示的方向上实现毫米波相 控阵波束对准, 所述第二毫米波信号为高频毫米波信号。 结合上述第十方面,和 /或第一种可能的实现方式,在第二种可能的实现方式中, 所述反馈单元, 具体用于在所述信号接收单元接收到所述第一毫米波信号后, 通过 低频段通信链路向所述第一设备发送反馈信息, 所述反馈信息用于表明所述通信设 备在所述搜索角度指示的方向上接收到所述第一毫米波信号。 结合上述第十方面, 和 /或第一种可能的实现方式, 和 /或第二种可能的实现方 式, 在第三种可能的实现方式中, 当所述角度确定单元确定的所述搜索角度为多个 时, 所述反馈信息中包括所述信号接收单元接收到的所述第一毫米波信号的波束方 向信息, 以使所述第一设备在接收到所述反馈信息后, 确定与所述通信设备在所述 反馈信息中的所述第一毫米波信号的波束方向上实现毫米波相控阵波束对准。 结合上述第十方面, 和 /或第一种可能的实现方式, 和 /或第二种可能的实现方 式,和 /或第三种可能的实现方式,在第四种可能的实现方式中,所述信号接收单元, 还用于在所述角度确定单元与第一设备通过低频段通信链路进行通信, 确定搜索角 度之前, 当所述通信设备与所述第一设备之间的距离小于等于距离阈值时, 接收所 述第一设备发射的宽波束毫米波信号; 所述宽波束毫米波信号为高频毫米波信号; 所述反馈单元, 还用于在所述信号接收单元接收到所述宽波束毫米波信号后, 向所述第一设备发送信号归属信息, 所述信号归属信息中包含所述通信设备接收到 的宽波束毫米波信号所属的第一设备的天线扇区, 以使所述第一设备将所述天线扇 区指示的角度范围确定为搜索范围; 所述角度确定单元, 具体用于与第一设备通过低频段通信链路进行通信, 在所 述搜索范围内确定搜索角度。 结合上述第十方面, 和 /或第一种可能的实现方式, 和 /或第二种可能的实现方 式, 和 /或第三种可能的实现方式, 和 /或第四种可能的实现方式, 在第五种可能的 实现方式中, 还包括: 高度信息发送单元, 用于在所述角度确定单元与第一设备通过低频段通信链路 进行通信, 确定搜索角度之前, 通过低频段通信链路向所述第一设备发送所述通信 设备的高度信息, 以使所述第一设备根据自身的高度信息及所述通信设备的高度信 息, 确定所述搜索范围; 所述角度确定单元, 具体用于与第一设备通过低频段通信链路进行通信, 在所 述搜索范围内确定搜索角度。 第十一方面, 提供一种通信设备, 包括: 信号接收单元, 用于接收第一设备发射的毫米波信号; 所述毫米波信号为高频 毫米波信号; 反馈单元, 用于在所述信号接收单元接收到所述毫米波信号后, 通过低频段通 信链路向所述第一设备发送反馈信息, 所述反馈信息用于表明所述通信设备接收到 所述第一设备发射的毫米波信号, 以使所述第一设备在接收到所述反馈信息后, 确 定与所述通信设备在所述毫米波信号的发射方向上实现毫米波相控阵波束对准。 结合上述第十一方面, 在第一种可能的实现方式中, 所述反馈信息中包括所述 通信设备接收到的所述毫米波信号的波束方向信息, 以使所述第一设备在接收到所 述反馈信息后, 确定与所述通信设备在所述反馈信息中的所述毫米波信号的波束方 向上实现毫米波相控阵波束对准。 结合上述第十一方面, 和 /或第一种可能的实现方式, 在第二种可能的实现方式 中, 所述信号接收单元, 还用于在接收第一设备发射的毫米波信号之前, 当所述通 信设备与所述第一设备之间的距离小于等于距离阈值时, 接收所述第一设备发射的 宽波束毫米波信号; 所述宽波束毫米波信号为高频毫米波信号; 所述反馈单元, 还用于在所述信号接收单元接收到所述宽波束毫米波信号后, 向所述第一设备发送信号归属信息, 所述信号归属信息中包含所述通信设备接收到 的宽波束毫米波信号所属的第一设备的天线扇区, 以使所述第一设备将所述天线扇 区指示的角度范围确定为搜索范围; 所述信号接收单元, 具体用于在所述搜索范围接收所述第一设备发射的毫米波 信号。 结合上述第十一方面, 和 /或第一种可能的实现方式, 和 /或第二种可能的实现 方式, 在第三种可能的实现方式中, 还包括: 高度信息发送单元, 用于在所述信号接收单元接收第一设备发射的毫米波信号 之前, 通过低频段通信链路向所述第一设备发送所述通信设备的高度信息, 以使所 述第一设备根据自身的高度信息及所述通信设备的高度信息, 确定搜索范围; 所述信号接收单元, 具体用于在所述搜索范围接收所述第一设备发射的毫米波 信号。 第十二方面, 提供一种通信设备, 包括: 信号接收单元, 用于接收第一设备在确定的搜索范围内发射的第一毫米波信 号; 信号发射单元, 用于在所述信号接收单元接收到所述第一毫米波信号后发射第 二毫米波信号, 以使所述第一设备在接收到所述第二毫米波信号后, 确定与所述通 信设备在接收所述第二毫米波信号的方向上实现毫米波相控阵波束对准; 其中, 所 述第一毫米波信号及所述第二毫米波信号均为高频毫米波信号。 结合上述第十二方面, 在第一种可能的实现方式中, 所述信号接收单元, 还 用于在接收第一设备在确定的搜索范围内发射的第一毫米波信号之前, 当所述通信 设备与所述第一设备之间的距离小于等于距离阈值时, 接收所述第一设备发射的宽 波束毫米波信号; 所述宽波束毫米波信号为高频毫米波信号; 所述信号发射单元, 还用于在所述信号接收单元接收到所述宽波束毫米波信号 后, 向所述第一设备发送信号归属信息, 所述信号归属信息中包含所述通信设备接 收到的宽波束毫米波信号所属的第一设备的天线扇区, 以使所述第一设备将所述天 线扇区指示的角度范围确定为所述搜索范围。 结合上述第十二方面, 和 /或第一种可能的实现方式, 在第二种可能的实现方式 中, 还包括: 高度信息发送单元, 用于在所述信号接收单元接收第一设备在确定的搜索范围 内发射的第一毫米波信号之前, 通过低频段通信链路向所述第一设备发送所述通信 设备的高度信息, 以使所述第一设备根据自身的高度信息及所述通信设备的高度信 息, 确定所述搜索范围。 第十三方面, 提供一种毫米波相控阵波束对准系统, 包括上述第七方面所述的 通信设备, 以及上述第十方面所述的通信设备。 第十四方面, 提供一种毫米波相控阵波束对准系统, 包括上述第八方面所述的 通信设备, 以及上述第十一方面所述的通信设备。 第十五方面, 提供一种毫米波相控阵波束对准系统, 包括上述第九方面所述的 通信设备, 以及上述第十二方面所述的通信设备。 本发明实施例通过利用设备中 2.4GHz或 5GHz等低频段作为辅助通信链路, 确 定搜索角度, 使得第一设备与第二设备按照该搜索角度进行协同收发同波束搜索过 程, 实现了毫米波相控阵波束对准。 该方法减少了波束搜索的盲目性, 大大减小了 波束扫描次数, 提高了相控阵波束对准的效率, 縮短了 60GHz等毫米波频段通信链 路建立时间, 节省了设备功耗, 提升了用户体验。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实施例或 现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 对于本领域普通技 术人员而言, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附 图。 图 1为本发明实施例一种毫米波相控阵波束对准方法的流程图; 图 2a为本发明实施例中确定搜索角度的示意图; 图 2b为本发明实施例中按照收发协同方法进行搜索的示意图; 图 2c为本发明实施例中通过粗定位确定搜索范围的示意图; 图 2d为本发明实施例中采用粗定位与收发协同及应答的组合方法进行搜索的 示意图; 图 3为本发明实施例中确定搜索范围的方法流程图; 图 4为本发明实施例另一种毫米波相控阵波束对准的方法流程图; 图 5a为本发明实施例另一种毫米波相控阵波束对准的方法流程图; 图 5b为本发明实施例中采用粗定位进行搜索的示意图; 图 6为本发明实施例另一种毫米波相控阵波束对准的方法流程图; 图 7为本发明实施例另一种毫米波相控阵波束对准的方法流程图; 图 8为本发明实施例另一种毫米波相控阵波束对准的方法流程图; 图 9为本发明实施例一种通信设备的结构示意图; 图 10为本发明实施例另一种通信设备的结构示意图; 图 11为本发明实施例另一种通信设备的结构示意图; 图 12为本发明实施例另一种通信设备的结构示意图; 图 13为本发明实施例另一种通信设备的结构示意图; 图 14为本发明实施例另一种通信设备的结构示意图。 具体实肺式 为了使本技术领域的人员更好地理解本发明实施例中的技术方案, 并使本 发明实施例的上述目的、 特征和优点能够更加明显易懂, 下面结合附图对本发 明实施例中技术方案作进一步详细的说明。 参见图 1, 为本发明实施例一种毫米波相控阵波束对准方法的流程图。 步骤 101, 第一设备与第二设备通过低频段通信链路进行通信, 确定搜索 角度。 该第一设备可以为相控阵天线设备, 第二设备为需要与第一设备对准的另 一相控阵天线设备, 两设备之间首先通过低频段通信链路, 例如 2.4GHz/5GHz 频段等, 进行通信, 以确定进行搜索对准的搜索角度, 该搜索角度可以是相对 于水平方向或垂直方向顺时针或逆时针旋转形成的夹角。 例如图 2a所示, 第一设备为笔记本 21, 第二设备为投影仪 22, 两设备之 间通过低频段通信链路进行通信, 确定搜索角度为如图 2a中所示的 Z l。 步骤 102, 第一设备在步骤 101 中确定的搜索角度指示的方向上发射第一 毫米波信号对第二设备进行搜索。 第一设备按照上步骤确定的搜索角度, 如图 2a中的 Z l, 发射第一毫米波 信号。 其中, 搜索角度指示的方向也就是搜索角度的一条边所在的方向, 如果 搜索角度相对于水平方向而言, 则该搜索角度指示的方向可以是与水平方向形 成夹角的边所在的方向。 本发明实施例中的毫米波可以为窄波束, 毫米波的频率可以是但不仅限于 60GHz 本发明实施例中的毫米波信号 (包括第一毫米波信号、 第二毫米波信 号、 宽波束毫米波信号在内) 均为高频毫米波信号, 其中, 第一毫米波信号和 第二毫米波信号可以为相同频率的信号, 宽波束毫米波信号可以是与第一毫米 波信号相同频率的信号。 "第一" 和 "第二" 为区分不同设备发射的毫米波信 号, 并非特指。 根据两设备连线与水平方向夹角的对称性, 当第一设备按照 Z 1 发射信号 时, 第二设备同样按照该搜索角度开始接收第一毫米波信号, 其中, 无论第二 设备是否位于 Z 1 的方向, 都应该从 Z 1 方向接收信号。 若该第二设备恰好位 于第一毫米波信号的发射方向上, 则该第二设备即可接收到该第一毫米波信 号, 此时, 第二设备向第一设备发送反馈信息。 若第二设备不在第一毫米波信 号的发射方向上, 则该第二设备在确定的搜索角度上就无法接收到该第一毫米 波信号, 该第二设备不向第一设备发送反馈信息。 如图 2a所示,若投影仪 22与笔记本 21之间的连线与水平方向的夹角恰好 为 Z l, 则投影仪 22在 Z 1的方向上就可以接收到笔记本 21发射的第一毫米波 信号, 此时, 投影仪 22向笔记本 21发送反馈信息。 若投影仪 22与笔记本 21 之间的连线与水平方向的夹角为 Z2, 则投影仪 22在其 Z 1 的方向上无法接收 到笔记本 21发射的第一毫米波信号, 此时, 投影仪 22不会向笔记本 21发送 反馈信息。 其中, 两设备相控阵天线平面之间平行, 以确定搜索角度, 如果不平行, 可通过设备内部垂直角度感应器补偿天线平面夹角。 在第一设备搜索第二设备的过程中, 若第一设备发送第一毫米波信号后接 收不到第二设备的反馈信息, 则说明没有搜索到第二设备, 则一种方式是可以 再次执行步骤 101,确定另一搜索角度, 然后再执行步骤 102, 直至接收到第二 设备的反馈信息, 搜索到第二设备; 另一种方式是可以在上一步骤 101中, 第 一设备与第二设备确定多个搜索角度, 然后在步骤 102中, 第一设备按照一定 的角度顺序逐一发射毫米波信号, 直至接收到第二设备的反馈信息, 搜索到第 二设备。 步骤 103, 第一设备接收第二设备发送的反馈信息, 其中, 第二设备在所 述搜索角度指示的方向上接收到第一毫米波信号后发送反馈信息。 第二设备在确定的搜索角度指示的方向上接收到第一设备发送的第一毫 米波信号后向第一设备发送反馈信息。 在本发明的一实施例中, 第一设备接收第二设备发送的反馈信息, 具体可 以是: 第一设备按照搜索角度接收第二设备在该搜索角度发射的第二毫米波信 号, 其中, 第二设备在该搜索角度接收到第一毫米波信号后发射第二毫米波信 号。 该方式即第二设备接收到第一毫米波信号后, 第一设备与第二设备互换角 色, 由第二设备向第一设备发射第二毫米波信号, 重复搜索过程, 以确定第一 设备的位置, 该过程与现有技术中盲搜索过程中的搜索方式类似。 在一具体实例中, 如图 2b所示, 为便于计算, 假设波束覆盖范围由 >^个 子区域组成, 总数量为1 个子区域。 收发双方按照 1、 2、 3、 4 顺序同步扫描 搜索水平子区域, 根据水平 (或垂直) 方向可把扫描区域划分为 M (例图中 M=4 ) 个角度按照上述方法进行收发协同。 以水平角度为例, 1 到 4层每层有
M个扫描区域, 每层进行一次扫描搜索最多可能需要 M^次, M层最多需要1 ^次 搜索, 比单向盲搜索减少了 M倍。 优选的, 在本发明的另一实施例中, 第一设备接收第二设备发送的反馈信 息, 具体可以是: 第一设备接收第二设备通过低频段通信链路, 如 2.4GHz/5GHz频段, 发送 的反馈信息, 该反馈信息用于表明第二设备在确定的搜索角度接收到第一毫米 波信号。 该方式中, 第二设备收到第一设备发送的第一毫米波信号后, 立即通过
2.4GHz或 5GHz低频段向第一设备发送应答信号,告知第一设备终止搜索过程, 以避免后续无效波束搜索过程。 当确定的搜索角度为多个时, 该反馈信息也即 应答信号中可以包括第二设备收到的第一设备发出的第一毫米波信号的波束 方向编号, 如 Z 1 的编号, 这样第一设备就知道了第二设备位于发射天线哪个 波束方向上。 若如上一方式中第二设备不进行应答反馈将这一信息返回给第一设备, 则 第二设备和第一设备要调换收发角色, 再进行一次波束扫描才能交换波束指向 信息, 完成波束扫描搜索过程。 因此, 本方式中第二设备的应答方法最多可节 省一半扫描搜索次数, 更加提高了相控阵波束对准的效率。 步骤 104, 第一设备在接收到反馈信息后, 确定与第二设备在该搜索角度 指示的方向上实现毫米波相控阵波束对准。 在本步骤中, 若第一设备在该搜索角度指示的方向上接收到第二设备发射 的第二毫米波信号, 则第一设备即可确定在该搜索角度指示的方向上可以与第 二设备实现毫米波相控阵波束对准, 也即在接收到第二毫米波信号的接收方向 上与第二设备对准。 若第一设备接收到的是第二设备通过低频段通信链路发送的反馈信息, 也 即应答信号, 该应答信号中包含用于表明所述第二设备在所述搜索角度接收到 所述第一毫米波信号的信息, 则第一设备也可以知道在该搜索角度指示的方向 上可以与第二设备实现毫米波相控阵波束对准。 若第一设备接收到的反馈信息 中包括第二设备接收到的第一毫米波信号的波束方向信息, 则第一设备在接收 到反馈信息后, 确定与第二设备在反馈信息中的第一毫米波信号的波束方向上 实现毫米波相控阵波束对准。 本发明实施例通过利用设备中 2.4GHz或 5GHz等低频段作为辅助通信链 路, 确定搜索角度, 使得第一设备与第二设备按照该搜索角度进行协同收发同 波束搜索过程, 实现了毫米波相控阵波束对准。 该方法减少了波束搜索的盲目 性, 大大减小了波束扫描次数, 提高了相控阵波束对准的效率, 縮短了 60GHz 等毫米波频段通信链路建立时间, 节省了设备功耗, 提升了用户体验。 在本发明的另一实施例中, 在第一设备与第二设备通过低频段通信链路进行 通信, 确定搜索角度之前, 第一设备还可以预先对第二设备的位置进行粗定位, 确 定搜索范围, 其中, 该搜索范围是指搜索角度所属的角度范围。该确定搜索范围的 过程可以有多种方式, 例如: 方式一, 当第一设备与第二设备之间的距离小于等于距离阈值时, 第一设 备发射宽波束毫米波信号对第二设备进行搜索; 本发明实施例中的宽波束毫米 波的频率可以是但不仅限于 60GHz。 第一设备接收第二设备发送的信号归属信息, 所述信号归属信息中包含所 述第二设备接收到的宽波束毫米波信号所属的第一设备的天线扇区; 第一设备将该天线扇区指示的角度范围确定为搜索范围。 第一设备将自己天线覆盖范围分为若干覆盖区域 (扇区), 那么它向这些 区域(扇区)分别发送宽波束毫米波信号, 这个信号里包含了这些区域(扇区) 的编号, 例如 1,2,3...这样第二设备接收到这个信号后, 自然就知道它接收到的 是第一设备在哪个扇区发送的信号, 然后把这个扇区编号通过低频段通信链路 反馈给第一设备, 那么第一设备就知道第二设备在哪个扇区覆盖范围内。 其中, 第一设备与第二设备之间的距离小于等于距离阈值即第一设备与第 二设备之间的距离在宽波束有效通信距离范围内, 两设备之间通过采用较宽波 束扫描搜索, 可以互相找到对方的粗略位置, 从而确定搜索范围。 该过程与现 有技术类似, 此次不再赘述。 方式二, 如图 3所示, 该确定搜索范围的方法可以包括: 步骤 301, 第一设备通过低频段通信链路接收第二设备的高度信息。 第一设备和第二设备内部均可通过设置高度传感器和 /或垂直角度传感器 等感知设备高度和 /或与地面的垂直角度, 还可以是内置高度信息寄存器, 设备 类型寄存器等。 高度信息存储寄存器, 用于存储设备一般工作时相对室内地面所处高度。 此高度可以是一个固定值, 可以是一个高度范围。 可以是出厂默认值, 也可由 用户改变设定。 设备类型寄存器用于用编号表示设备类型, 比如笔记本, 电视机, 手机, 投影仪等等。 第二设备可以通过读取高度信息存储寄存器中的信息等方式获得第二设 备的高度信息, 然后将该高度信息通过 2.4GHz或 5GHz等低频段发送至第一 设备。 步骤 302, 第一设备根据自身的高度信息及第二设备的高度信息, 确定搜 索范围。 第一设备通过读取高度信息存储寄存器中的信息等方式获得自身的高度 信息, 然后根据自身的高度信息及接收到的第二设备的高度信息, 即可确定两 设备之间的连线相对于水平方向或垂直方向的大致角度, 从而可以确定搜索范 围。 另外, 第一设备和第二设备可以相互交换设备类型, 天线类型等信息, 从 而可以确定主从搜索设备, 例如以上实施例中, 以第一设备为主搜索设备, 第 二设备为从搜索设备, 当然在两设备之间也可以是对等的, 不必区分主从搜索 设备。 在通过上述方式确定搜索范围后, 第一设备与第二设备通过低频段通信链路 进行通信, 在该搜索范围内确定搜索角度。 本发明实施例通过粗定位确定搜索范围, 进一步縮小了波束扫描搜索范 围, 减少了波束扫描搜索次数, 从而可以更加快速的建立通信链路, 减少设备 功耗, 提升用户体验。 在一具体实例中, 如图 2c所示, 第一设备的全搜索角度为 , 通过粗定位 得知第二设备位于 θι角度范围内。 这样第一设备进行窄波束扫描时只需在 &1这 一小范围内进行, 从而縮小了搜索范围, 减少了扫描次数。 本发明实施例中, 以上确定搜索角度第一、 二设备进行收发协同的方式, 第二设备通过低频段通信链路进行应答的方式, 粗定位确定搜索范围的方式以 及现有技术中的盲搜索方式可以根据需要进行任意组合, 例如, 收发协同、 收 发协同与应答的组合、 粗定位与收发协同的组合、 粗定位与收发协同及应答的 组合等, 此处不再详细说明, 具体请参见上述实施例的描述。 其中, 在一优选实施例中, 如图 2d 所示, 若双方通信设备具备相应硬件 条件, 采用粗定位与收发协同及应答的组合, 则可达到本发明最佳优选实施实 例, 最大可能扫描搜索次数为 次。 参见图 4, 为本发明实施例另一种毫米波相控阵波束对准的方法流程图。 本发明实施例与前述实施例的区别在于: 前述实施例是针对收发协同、 收 发协同与粗定位和 /或应答的组合进行的描述,本发明实施例中主要针对应答与 其他方式的组合进行说明。 该方法可以包括: 步骤 401, 第一设备发射毫米波信号对第二设备进行搜索。 该第一设备为相控阵天线设备, 第二设备为需要与第一设备对准的另一相 控阵天线设备。 在本步骤中, 第一设备可以采用盲搜索的方式向多个方向发射 毫米波信号搜索第二设备, 该毫米波信号的频率可以为 60GHz。 步骤 402, 第一设备接收第二设备通过低频段通信链路发送的反馈信息, 该反馈信息用于表明第二设备接收到第一设备发射的毫米波信号。 第二设备在接收到第一设备在某个方向发射的毫米波信号后,通过 2.4GHz 或 5GHz等低频段向第一设备发送反馈信息进行应答, 该反馈信息用于表明第 二设备接收到第一设备发射的毫米波信号。 具体的, 第二设备收到第一设备发送的第一毫米波信号后, 立即通过 2.4GHz或 5GHz低频段向第一设备发送应答信号,告知第一设备终止搜索过程, 以避免后续无效波束搜索过程。 该应答信号可以包括第二设备收到的第一设备 发出的波束方向编号, 如图 2a所示的 Z 1的编号, 这样第一设备就知道了第二 设备位于发射天线哪个波束方向上。 步骤 403, 第一设备在接收到反馈信息后, 确定与第二设备在毫米波信号 的发射方向实现毫米波相控阵波束对准。 第一设备在接收到上述反馈信息也即应答信号后, 即可获知在哪个角度可 以与第二设备实现毫米波相控阵波束对准。 当第一设备在多个发射方向发射毫米波信号对所述第二设备进行搜索时, 该反馈信息中包括第二设备接收到的毫米波信号的波束方向信息。 第一设备在 接收到反馈信息后, 确定与第二设备在反馈信息中的毫米波信号的波束方向上 实现毫米波相控阵波束对准。 本发明实施例通过第二设备对第一设备进行应答反馈将接收到毫米波信 号的相关信息返回给第一设备, 省去了第二设备和第一设备调换收发角色, 再 进行一次波束扫描才能交换波束指向信息, 完成波束扫描搜索的过程。 因此, 本方式中第二设备的应答方法最多可节省一半扫描搜索次数, 更加提高了相控 阵波束对准的效率, 縮短了 60GHz等毫米波频段通信链路建立时间, 节省了设 备功耗, 提升了用户体验。 在本发明的另一实施例中, 在第一设备发射毫米波信号对第二设备进行盲 搜索之前, 第一设备还可以预先对第二设备的位置进行粗定位, 确定搜索范围。该 确定搜索范围的过程可以有多种方式, 例如: 方式一, 当第一设备与第二设备之间的距离小于等于距离阈值时, 第一设 备发射宽波束毫米波信号对第二设备进行搜索; 第一设备接收第二设备发送的信号归属信息, 所述信号归属信息中包含所 述第二设备接收到的宽波束毫米波信号所属的第一设备的天线扇区; 第一设备将天线扇区指示的角度范围确定为搜索范围。 方式二, 该确定搜索范围的方法可以包括: 所述第一设备通过低频段通信链路接收所述第二设备的高度信息; 所述第一设备根据自身的高度信息及所述第二设备的高度信息, 确定搜索范 围。 以上两种方式的具体过程与前述实施例中的方式一、 方式二相同, 此处不再赘 述。 在通过上述方式确定搜索范围后,第一设备在确定的搜索范围内发射毫米波信 号对第二设备进行搜索。 本发明实施例通过粗定位确定搜索范围, 进一步縮小了波束扫描搜索范围, 减 少了波束扫描搜索次数, 从而可以更加快速的建立通信链路, 减少设备功耗, 提升 用户体验。 参见图 5a, 为本发明实施例另一种毫米波相控阵波束对准的方法流程图。 本发明实施例与前述实施例的区别在于: 前述实施例是针对收发协同、 收 发协同与粗定位和 /或应答的组合, 以及针对应答与其他方式的组合进行描述, 本发明实施例中主要针对粗定位与盲搜索的组合方法进行描述。 该方法可以包括: 步骤 501, 第一设备确定搜索第二设备的搜索范围。 该确定搜索范围的过程可以有多种方式, 例如: 方式一, 当第一设备与第二设备之间的距离小于等于距离阈值时, 第一设 备发射宽波束毫米波信号对第二设备进行搜索; 第一设备接收第二设备发送的信号归属信息, 所述信号归属信息中包含所 述第二设备接收到的宽波束毫米波信号所属的第一设备的天线扇区; 第一设备将所述天线扇区指示的角度范围确定为搜索范围。 方式二, 该确定搜索范围的方法可以包括: 所述第一设备通过低频段通信链路接收所述第二设备的高度信息; 所述第一设备根据自身的高度信息及所述第二设备的高度信息, 确定搜索范 围。 以上两种方式的具体过程与前述实施例中的方式一、 方式二相同, 此处不再赘 述。 步骤 502, 第一设备在该搜索范围内发射第一毫米波信号对第二设备进行 搜索。 步骤 503, 第一设备接收第二设备发射的第二毫米波信号, 其中, 第二设 备在接收到第一毫米波信号后发射第二毫米波信号。 步骤 504, 第一设备在接收到第二毫米波信号后, 确定与第二设备在接收所 述第二毫米波信号的方向上实现毫米波相控阵波束对准。 以上步骤 502〜504为第一设备为信号发射方, 第二设备为信号接收方, 对 第二设备进行搜索, 第二设备接收到信号后, 第一设备与第二设备互换角色, 第二设备发射信号对第一设备进行搜索的过程, 该过程与现有技术中的搜索过 程相同, 此处不再赘述。 其与现有技术的区别仅在于, 在本实施例中, 首先通 过粗定位确定搜索范围后, 第一设备在该搜索范围内发射信号进行搜索。 本发明实施例通过粗定位确定搜索范围, 縮小了波束扫描搜索范围, 减少了波 束扫描搜索次数, 从而可以更加快速的建立通信链路, 减少设备功耗, 提升用户体 验。 在一具体实例中, 如图 5b 所示, 为便于计算, 假设波束覆盖范围由 >^个 子区域组成, 总数量为旨2个子区域。 如果采用盲搜索, 接收方接收到信号最大可 能搜索次数为 。 发射方向每个子区域发射一遍波束搜索序列, 需要 次, 而接 收方要对每个方向接收: 1 次, 最差情况下, 需要总搜索次数为 次, 而采用上粗 定位确定搜索范围后, 单向最大可能搜索次数可降低为 、e 次。 以上各实施例中均以第一设备作为执行主体进行说明, 下面以第二实施例 作为执行主体进行说明。 参见图 6, 为本发明实施例另一种毫米波相控阵波束对准的方法流程图。 该方法可以包括: 步骤 601,第二设备与第一设备通过低频段通信链路进行通信,确定搜索角度。 步骤 602, 第二设备在所述搜索角度指示的方向上接收所述第一设备发射的第 一毫米波信号。 步骤 603, 第二设备在接收到所述第一毫米波信号后, 向所述第一设备发送反 馈信息, 以使所述第一设备在接收到所述反馈信息后, 确定与所述第二设备在所述 搜索角度指示的方向上实现毫米波相控阵波束对准。 本发明实施例通过利用设备中 2.4GHz或 5GHz等低频段作为辅助通信链 路, 确定搜索角度, 使得第一设备与第二设备按照该搜索角度进行协同收发同 波束搜索过程, 实现了毫米波相控阵波束对准。 该方法减少了波束搜索的盲目 性, 大大减小了波束扫描次数, 提高了相控阵波束对准的效率, 縮短了 60GHz 等毫米波频段通信链路建立时间, 节省了设备功耗, 提升了用户体验。 在本发明另一实施例中, 第二设备在接收到所述第一毫米波信号后, 向所述第 一设备发送反馈信息, 包括: 第二设备在接收到所述第一毫米波信号后,在所述搜索角度指示的方向上发 射第二毫米波信号, 以使所述第一设备在所述搜索角度指示的方向上接收到所述 第二毫米波信号后,确定与所述第二设备在所述搜索角度指示的方向上实现毫米波 相控阵波束对准。 在本发明另一实施例中, 第二设备在接收到所述第一毫米波信号后, 向所述第 一设备发送反馈信息, 包括: 所述第二设备在接收到所述第一毫米波信号后,通过低频段通信链路向所述第 一设备发送反馈信息,所述反馈信息用于表明所述第二设备在所述搜索角度指示的 方向上接收到所述第一毫米波信号。 当确定的所述搜索角度为多个时, 所述反馈信息中包括所述第二设备接收 到的所述第一毫米波信号的波束方向信息, 以使所述第一设备在接收到所述反 馈信息后,确定与所述第二设备在所述反馈信息中的所述第一毫米波信号的波束 方向上实现毫米波相控阵波束对准。 在本发明另一实施例中,在所述第二设备与第一设备通过低频段通信链路进行 通信, 确定搜索角度之前, 还包括: 当所述第二设备与所述第一设备之间的距离小于等于距离阈值时,所述第二设 备接收所述第一设备发射的宽波束毫米波信号; 所述第二设备在接收到所述宽波束毫米波信号后,向所述第一设备发送信号归 属信息, 所述信号归属信息中包含所述第二设备接收到的宽波束毫米波信号所 属的第一设备的天线扇区, 以使所述第一设备将所述天线扇区指示的角度范围 确定为搜索范围; 所述第二设备与第一设备通过低频段通信链路进行通信, 确定搜索角度, 具体 为: 所述第二设备与第一设备通过低频段通信链路进行通信,在所述搜索范围内确 定搜索角度。 在本发明另一实施例中,在所述第二设备与第一设备通过低频段通信链路进行 通信, 确定搜索角度之前, 还包括: 所述第二设备通过低频段通信链路向所述第一设备发送所述第二设备的高度 信息, 以使所述第一设备根据自身的高度信息及所述第二设备的高度信息, 确定所 述搜索范围; 所述第二设备与第一设备通过低频段通信链路进行通信, 确定搜索角度, 具体 为: 所述第二设备与第一设备通过低频段通信链路进行通信,在所述搜索范围内确 定搜索角度。 参见图 7, 为本发明实施例另一种毫米波相控阵波束对准的方法流程图。 该方法可以包括: 步骤 701, 第二设备接收第一设备发射的毫米波信号; 步骤 702, 所述第二设备在接收到所述毫米波信号后, 通过低频段通信链路向 所述第一设备发送反馈信息,所述反馈信息用于表明所述第二设备接收到所述第一 设备发射的毫米波信号, 以使所述第一设备在接收到所述反馈信息后, 确定与所述 第二设备在所述毫米波信号的发射方向上实现毫米波相控阵波束对准。 所述反馈信息中可以包括所述第二设备接收到的所述毫米波信号的波束 方向信息, 以使所述第一设备在接收到所述反馈信息后, 确定与所述第二设备 在所述反馈信息中的所述毫米波信号的波束方向上实现毫米波相控阵波束对 准。 本发明实施例通过第二设备对第一设备进行应答反馈将接收到毫米波信 号的相关信息返回给第一设备, 省去了第二设备和第一设备调换收发角色, 再 进行一次波束扫描才能交换波束指向信息, 完成波束扫描搜索的过程。 因此, 本方式中第二设备的应答方法最多可节省一半扫描搜索次数, 更加提高了相控 阵波束对准的效率, 縮短了 60GHz等毫米波频段通信链路建立时间, 节省了设 备功耗, 提升了用户体验。 在本发明另一实施例中, 在所述第二设备接收第一设备发射的毫米波信号之 前, 还包括: 当所述第二设备与所述第一设备之间的距离小于等于距离阈值时,所述第二设 备接收所述第一设备发射的宽波束毫米波信号; 所述第二设备在接收到所述宽波束毫米波信号后,向所述第一设备发送信号归 属信息, 所述信号归属信息中包含所述第二设备接收到的宽波束毫米波信号所 属的第一设备的天线扇区, 以使所述第一设备将天线扇区指示的角度范围确定 为搜索范围; 所述第二设备接收第一设备发射的毫米波信号, 具体为: 所述第二设备在所述搜索范围接收所述第一设备发射的毫米波信号。 在本发明另一实施例中, 在所述第二设备接收第一设备发射的毫米波信号之 前, 还包括: 所述第二设备通过低频段通信链路向所述第一设备发送所述第二设备的高度 信息, 以使所述第一设备根据自身的高度信息及所述第二设备的高度信息, 确定搜 索范围; 所述第二设备接收第一设备发射的毫米波信号, 具体为: 所述第二设备在所述搜索范围接收所述第一设备发射的毫米波信号。 参见图 8, 为本发明实施例另一种毫米波相控阵波束对准的方法流程图。 该方法可以包括: 步骤 801,第二设备接收第一设备在确定的搜索范围内发射的第一毫米波信号; 步骤 802,所述第二设备在接收到所述第一毫米波信号后发射第二毫米波信号, 以使所述第一设备在接收到所述第二毫米波信号后,确定与所述第二设备在接收所 述第二毫米波信号的方向上实现毫米波相控阵波束对准。 本发明实施例通过粗定位确定搜索范围, 縮小了波束扫描搜索范围, 减少了波 束扫描搜索次数, 从而可以更加快速的建立通信链路, 减少设备功耗, 提升用户体 验。 在本发明另一实施例中,在所述第二设备接收第一设备在确定的搜索范围内发 射的第一毫米波信号之前, 还包括: 当所述第二设备与所述第一设备之间的距离小于等于距离阈值时,所述第二设 备接收所述第一设备发射的宽波束毫米波信号; 所述第二设备在接收到所述宽波束毫米波信号后,向所述第一设备发送信号归 属信息, 所述信号归属信息中包含所述第二设备接收到的宽波束毫米波信号所 属的第一设备的天线扇区, 以使所述第一设备将所述天线扇区指示的角度范围 确定为搜索范围。 在本发明另一实施例中,在所述第二设备接收第一设备在确定的搜索范围内发 射的第一毫米波信号之前, 还包括: 所述第二设备通过低频段通信链路向所述第一设备发送所述第二设备的高度 信息, 以使所述第一设备根据自身的高度信息及所述第二设备的高度信息, 确定所 述搜索范围。 本发明实施例中毫米波波段频率不局限于 60GHz附近,可以是覆盖整个 20GHz 到 100GHz频段的毫米波波段。 低频段频率不限于 2.4GHz/5GHz频段, 也可以是 30MHz到 10GHz任意授权可使用频率。 第一设备与第二设备之间发射的毫米波信 号具体可以是窄波束的毫米波信号。 本发明实施例不仅限应用于 802.11标准族, 802.15标准族(802.15.3c), WiGig, WirelessHD,ISO/IEC 13156等毫米波标准, 或这些标准组合使用。 以上是对本发明方法实施例的描述, 下面对实现上述方法的装置进行介 绍。 参见图 9, 为本发明实施例一种通信设备的结构示意图。 该通信设备 900可以包括: 角度确定单元 901, 用于与第二设备通过低频段通信链路进行通信, 确定 搜索角度; 信号发射单元 902, 用于在所述搜索角度指示的方向上发射第一毫米波信号 对所述第二设备进行搜索; 所述第一毫米波信号为高频毫米波信号; 信号接收单元 903, 用于接收所述第二设备发送的反馈信息, 其中, 所述 第二设备在所述搜索角度指示的方向上接收到所述第一毫米波信号后发送所述 反馈信息; 对准单元 904, 用于在所述信号接收单元 903接收到所述反馈信息后, 确 定与所述第二设备在所述搜索角度指示的方向上实现毫米波相控阵波束对准。 该通信设备通过 2.4GHz或 5GHz等低频段作为辅助通信链路, 确定搜索 角度, 使得该通信设备与第二设备按照该搜索角度进行协同收发同波束搜索过 程, 实现了毫米波相控阵波束对准。 该设备减少了波束搜索的盲目性, 大大减 小了波束扫描次数, 提高了相控阵波束对准的效率, 縮短了 60GHz等毫米波频 段通信链路建立时间, 节省了设备功耗, 提升了用户体验。 在另一实施例中, 信号接收单元, 具体用于在所述搜索角度指示的方向上接 收所述第二设备在所述搜索角度指示的方向上发射的第二毫米波信号, 其中, 所述 第二设备在所述搜索角度指示的方向上接收到所述第一毫米波信号后发射所述第 二毫米波信号; 其中, 所述第二毫米波信号为高频毫米波信号; 对准单元, 具体用于在所述信号接收单元接收到所述第二毫米波信号后, 确 定与所述第二设备在所述搜索角度指示的方向上实现毫米波相控阵波束对准。 在另一实施例中, 信号接收单元, 具体用于接收所述第二设备通过低频段 通信链路发送的反馈信息, 所述反馈信息用于表明所述第二设备在所述搜索角 度接收到所述第一毫米波信号。 当所述角度确定单元确定的所述搜索角度为多个时,所述信号接收单元接收到 的反馈信息中包括所述第二设备接收到的所述第一毫米波信号的波束方向信息; 所述对准单元, 具体用于在所述信号接收单元接收到所述反馈信息后, 确定与 所述第二设备在所述反馈信息中的所述第一毫米波信号的波束方向上实现毫米 波相控阵波束对准。 在另一实施例中, 该通信设备还可以包括: 第一范围确定单元,用于在所述角度确定单元与第二设备通过低频段通信链 路进行通信, 确定搜索角度之前, 当所述通信设备与所述第二设备之间的距离小 于等于距离阈值时, 发射宽波束毫米波信号对所述第二设备进行搜索, 其中, 所述宽波束毫米波信号为高频毫米波信号; 接收所述第二设备发送的信号归属信 息, 所述信号归属信息中包含所述第二设备接收到的宽波束毫米波信号所属的 所述通信设备的天线扇区; 并将所述天线扇区指示的角度范围确定为搜索范 围; 所述角度确定单元, 具体用于与所述第二设备通过低频段通信链路进行通 信, 在所述搜索范围内确定搜索角度。 在另一实施例中, 该通信设备还可以包括: 高度信息接收单元, 用于在所述角度确定单元与第二设备通过低频段通信 链路进行通信, 确定搜索角度之前, 通过低频段通信链路接收所述第二设备的 高度信息; 第二范围确定单元, 用于根据自身的高度信息及所述第二设备的高度信 息, 确定搜索范围; 所述角度确定单元, 具体用于与所述第二设备通过低频段通信链路进行通 信, 在所述搜索范围内确定搜索角度。 参见图 10, 为本发明实施例另一种通信设备的结构示意图。 该通信设备 1000可以包括: 信号发射单元 1001, 用于发射毫米波信号对第二设备进行搜索; 信号接收单元 1002,用于接收所述第二设备通过低频段通信链路发送的反 馈信息, 所述反馈信息用于表明所述第二设备接收到所述通信设备发射的毫米 波信号; 其中, 所述毫米波信号为高频毫米波信号; 对准单元 1003, 用于在所述信号接收单元接收到所述反馈信息后, 确定与 所述第二设备在所述毫米波信号的发射方向上实现毫米波相控阵波束对准。 当所述信号发射单元在多个发射方向发射毫米波信号对所述第二设备进 行搜索时, 所述信号接收单元接收到的反馈信息中包括所述第二设备接收到的 所述毫米波信号的波束方向信息; 所述对准单元, 具体用于在所述信号接收单元接收到所述反馈信息后, 确定 与所述第二设备在所述反馈信息中的所述毫米波信号的波束方向上实现毫米波 相控阵波束对准。 本发明实施例该设备通过接收第二设备对通信设备的应答反馈, 省去了第 二设备和通信设备调换收发角色, 再进行一次波束扫描才能交换波束指向信 息, 完成波束扫描搜索的过程。 因此, 该设备最多可节省一半扫描搜索次数, 更加提高了相控阵波束对准的效率,縮短了 60GHz等毫米波频段通信链路建立 时间, 节省了设备功耗, 提升了用户体验。 在另一实施例中, 该通信设备还可以包括: 第一范围确定单元, 用于在所述信号发射单元发射毫米波信号对第二设备进 行搜索之前, 当所述通信设备与所述第二设备之间的距离小于等于距离阈值时, 发射宽波束毫米波信号对所述第二设备进行搜索, 所述宽波束毫米波信号为高 频毫米波信号; 接收所述第二设备发送的信号归属信息, 所述信号归属信息中 包含所述第二设备接收到的宽波束毫米波信号所属的所述通信设备的天线扇 区; 将所述天线扇区指示的角度范围确定为搜索范围; 所述信号发射单元, 具体用于在所述搜索范围内发射毫米波信号对所述第 二设备进行搜索。 在另一实施例中, 该通信设备还可以包括: 高度信息接收单元, 用于在所述信号发射单元发射毫米波信号对第二设备 进行搜索之前, 通过低频段通信链路接收所述第二设备的高度信息; 第二范围确定单元, 用于根据自身的高度信息及所述第二设备的高度信 息, 确定搜索范围; 所述信号发射单元, 具体用于在所述搜索范围内发射毫米波信号对所述第 二设备进行搜索。 参见图 11, 为本发明实施例另一种通信设备的结构示意图。 该通信设备 1100可以包括: 范围确定单元 1101, 用于确定搜索第二设备的搜索范围; 信号发射单元 1102, 用于在所述搜索范围内发射第一毫米波信号对第二设 备进行搜索; 信号接收单元 1103,用于接收所述第二设备发射的第二毫米波信号,其中, 所述第二设备在接收到所述第一毫米波信号后发射所述第二毫米波信号; 对准单元 1104, 用于用于在接收到所述第二毫米波信号后, 确定与所述第 二设备在接收所述第二毫米波信号的方向上实现毫米波相控阵波束对准; 其中, 所述第一毫米波信号及所述第二毫米波信号均为高频毫米波信号。 本发明实施例中该设备通过粗定位确定搜索范围, 縮小了波束扫描搜索范围, 减少了波束扫描搜索次数, 从而可以更加快速的建立通信链路, 减少设备功耗, 提 升用户体验。 在另一实施例中, 范围确定单元, 具体用于当所述通信设备与所述第二设 备之间的距离小于等于距离阈值时, 发射宽波束毫米波信号对所述第二设备进 行搜索, 所述宽波束毫米波信号为高频毫米波信号; 接收所述第二设备发送的 信号归属信息, 所述信号归属信息中包含所述第二设备接收到的宽波束毫米波 信号所属的所述通信设备的天线扇区; 将所述天线扇区指示的角度范围确定为 所述搜索范围。 在另一实施例中, 范围确定单元包括: 接收子单元, 用于通过低频段通信链路接收所述第二设备的高度信息; 确定子单元, 用于根据自身的高度信息及所述第二设备的高度信息, 确定 所述搜索范围。 参见图 12, 为本发明实施例另一种通信设备的结构示意图。 该通信设备 1200可以包括: 角度确定单元 1201, 用于与第一设备通过低频段通信链路进行通信, 确定 搜索角度; 信号接收单元 1202,用于在在所述搜索角度指示的方向上接收所述第一设 备发射的第一毫米波信号; 所述第一毫米波信号为高频毫米波信号; 反馈单元 1203, 用于在所述信号接收单元接收到所述第一毫米波信号后, 向所述第一设备发送反馈信息, 以使所述第一设备在接收到所述反馈信息后, 确 定与所述通信设备在所述搜索角度指示的方向上实现毫米波相控阵波束对准。 在另一实施例中, 反馈单元, 具体用于在所述信号接收单元接收到所述第 一毫米波信号后, 在所述搜索角度指示的方向上发射第二毫米波信号, 以使所述 第一设备在所述搜索角度指示的方向上接收到所述第二毫米波信号后,确定与所述 通信设备在所述搜索角度指示的方向上实现毫米波相控阵波束对准, 所述第二毫 米波信号为高频毫米波信号。 在另一实施例中, 所述反馈单元, 具体用于在所述信号接收单元接收到所 述第一毫米波信号后, 通过低频段通信链路向所述第一设备发送反馈信息, 所 述反馈信息用于表明所述通信设备在所述搜索角度指示的方向上接收到所述 第一毫米波信号。 当所述角度确定单元确定的所述搜索角度为多个时, 所述反馈信息中包括 所述信号接收单元接收到的所述第一毫米波信号的波束方向信息, 以使所述第 一设备在接收到所述反馈信息后,确定与所述通信设备在所述反馈信息中的所述 第一毫米波信号的波束方向上实现毫米波相控阵波束对准。 在另一实施例中, 信号接收单元, 还用于在所述角度确定单元与第一设备 通过低频段通信链路进行通信, 确定搜索角度之前, 当所述通信设备与所述第 一设备之间的距离小于等于距离阈值时, 接收所述第一设备发射的宽波束毫米 波信号; 所述宽波束毫米波信号为高频毫米波信号; 所述反馈单元, 还用于在所述信号接收单元接收到所述宽波束毫米波信号 后, 向所述第一设备发送信号归属信息, 所述信号归属信息中包含所述通信设 备接收到的宽波束毫米波信号所属的第一设备的天线扇区, 以使所述第一设备 将所述天线扇区指示的角度范围确定为搜索范围; 所述角度确定单元, 具体用于与第一设备通过低频段通信链路进行通信, 在所述搜索范围内确定搜索角度。 在另一实施例中, 该通信设备还包括: 高度信息发送单元, 用于在所述角度确定单元与第一设备通过低频段通信 链路进行通信, 确定搜索角度之前, 通过低频段通信链路向所述第一设备发送 所述通信设备的高度信息, 以使所述第一设备根据自身的高度信息及所述通信 设备的高度信息, 确定所述搜索范围; 所述角度确定单元, 具体用于与第一设备通过低频段通信链路进行通信, 在所述搜索范围内确定搜索角度。 参见图 13, 为本发明实施例另一种通信设备的结构示意图。 该通信设备 1300可以包括: 信号接收单元 1301, 用于接收第一设备发射的毫米波信号; 所述毫米波信 号为高频毫米波信号; 反馈单元 1302, 用于在所述信号接收单元接收到所述毫米波信号后, 通过 低频段通信链路向所述第一设备发送反馈信息, 所述反馈信息用于表明所述通 信设备接收到所述第一设备发射的毫米波信号, 以使所述第一设备在接收到所 述反馈信息后, 确定与所述通信设备在所述毫米波信号的发射方向上实现毫米波 相控阵波束对准。 所述反馈信息中可以包括所述通信设备接收到的所述毫米波信号的波束 方向信息, 以使所述第一设备在接收到所述反馈信息后, 确定与所述通信设备 在所述反馈信息中的所述毫米波信号的波束方向上实现毫米波相控阵波束对 准。 在另一实施例中, 所述信号接收单元, 还用于在接收第一设备发射的毫米 波信号之前, 当所述通信设备与所述第一设备之间的距离小于等于距离阈值 时, 接收所述第一设备发射的宽波束毫米波信号; 所述宽波束毫米波信号为高 频毫米波信号; 所述反馈单元, 还用于在所述信号接收单元接收到所述宽波束毫米波信号 后, 向所述第一设备发送信号归属信息, 所述信号归属信息中包含所述通信设 备接收到的宽波束毫米波信号所属的第一设备的天线扇区, 以使所述第一设备 将所述天线扇区指示的角度范围确定为搜索范围; 所述信号接收单元, 具体用于在所述搜索范围接收所述第一设备发射的毫 米波信号。 在另一实施例中, 该通信设备还包括: 高度信息发送单元, 用于在所述信号接收单元接收第一设备发射的毫米波 信号之前, 通过低频段通信链路向所述第一设备发送所述通信设备的高度信 息, 以使所述第一设备根据自身的高度信息及所述通信设备的高度信息, 确定 搜索范围; 所述信号接收单元, 具体用于在所述搜索范围接收所述第一设备发射的毫 米波信号。 参见图 14, 为本发明实施例另一种通信设备的结构示意图。 该通信设备 1400可以包括: 信号接收单元 1401,用于接收第一设备在确定的搜索范围内发射的第一毫 米波信号; 信号发射单元 1402,用于在在所述信号接收单元接收到所述第一毫米波信 号后发射第二毫米波信号, 以使所述第一设备在接收到所述第二毫米波信号 后, 确定与所述通信设备在接收所述第二毫米波信号的方向上实现毫米波相控阵 波束对准; 其中, 所述第一毫米波信号及所述第二毫米波信号均为高频毫米波信 号。 在另一实施例中, 所述信号接收单元, 还用于在接收第一设备在确定的搜 索范围内发射的第一毫米波信号之前, 当所述通信设备与所述第一设备之间的 距离小于等于距离阈值时, 接收所述第一设备发射的宽波束毫米波信号; 所述 宽波束毫米波信号为高频毫米波信号; 所述信号发射单元, 还用于在所述信号接收单元接收到所述宽波束毫米波 信号后, 向所述第一设备发送信号归属信息, 所述信号归属信息中包含所述通 信设备接收到的宽波束毫米波信号所属的第一设备的天线扇区, 以使所述第一 设备将所述天线扇区指示的角度范围确定为所述搜索范围。 在另一实施例中, 该通信设备还包括: 高度信息发送单元, 用于在所述信号接收单元接收第一设备在确定的搜索 范围内发射的第一毫米波信号之前, 通过低频段通信链路向所述第一设备发送 所述通信设备的高度信息, 以使所述第一设备根据自身的高度信息及所述通信 设备的高度信息, 确定所述搜索范围。 本发明实施例还提供了一种毫米波相控阵波束对准系统可以包括如前述 图 9所示实施例中所述的通信设备和前述图 12所示实施例中所述的通信设备。 本发明实施例还提供了一种毫米波相控阵波束对准系统可以包括如前述 图 10 所示实施例中所述的通信设备和前述图 13 所示实施例中所述的通信设 备。 本发明实施例还提供了一种毫米波相控阵波束对准系统可以包括如前述 图 11所示实施例中所述的通信设备和前述图 14所示实施例中所述的通信设备。 以上系统中涉及的设备的具体实现可以参考前述实施例所述, 在此不再赘 述。 本发明实施例还提供了一种通信设备, 该通信设备可以包括收发器、 存储 器和处理器。 收发器, 用于按照搜索角度发射第一毫米波信号对第二设备进行搜索; 接收 所述第二设备发送的反馈信息, 其中, 所述第二设备在所述搜索角度接收到所述第 一毫米波信号后发送所述反馈信息; 存储器中存储一组程序代码, 且所述处理器用于调用所述存储器中存储的程序 代码, 用于执行以下操作: 与第二设备通过低频段通信链路进行通信, 确定搜索角度; 在接收到所述反馈信息后,确定在所述搜索角度与所述第二设备实现毫米波相 控阵波束对准。 本发明实施例还提供了一种通信设备, 该通信设备可以包括收发器、 存储 器和处理器。 收发器, 用于发射毫米波信号对第二设备进行搜索; 接收所述第二设备通过 低频段通信链路发送的反馈信息, 所述反馈信息用于表明所述第二设备接收到 所述第一设备发射的毫米波信号; 存储器中存储一组程序代码, 且所述处理器用于调用所述存储器中存储的程序 代码, 用于执行以下操作: 在接收到所述反馈信息后,确定在发射所述毫米波信号的发射角度与所述第二 设备实现毫米波相控阵波束对准。 本发明实施例还提供了一种通信设备, 该通信设备可以包括收发器、 存储 器和处理器。 收发器, 在接收所述第二设备发射的第二毫米波信号, 其中, 所述第二设备 在接收到所述第一毫米波信号后发射所述第二毫米波信号; 搜索范围内发射第一 毫米波信号对第二设备进行搜索; 存储器中存储一组程序代码, 且所述处理器用于调用所述存储器中存储的程序 代码, 用于执行以下操作: 确定搜索第二设备的搜索范围; 在接收到所述第二毫米波信号后, 确定在发 射所述第一毫米波信号的发射角度与所述第二设备实现毫米波相控阵波束对准。 本发明实施例还提供了一种通信设备, 该通信设备可以包括收发器、 存储 器和处理器。 收发器, 用于在搜索角度接收所述第一设备发射的第一毫米波信号; 在接 收到所述第一毫米波信号后, 向所述第一设备发送反馈信息, 以使所述第一设 备在接收到所述反馈信息后, 确定在所述搜索角度与所述第二设备实现毫米波相 控阵波束对准。 存储器中存储一组程序代码, 且所述处理器用于调用所述存储器中存储的程序 代码, 用于执行以下操作: 与第一设备通过低频段通信链路进行通信, 确定搜索角度。 本发明实施例还提供了一种通信设备, 该通信设备可以包括收发器。 收发器, 用于接收第一设备发射的毫米波信号; 在接收到所述毫米波信号 后, 通过低频段通信链路向所述第一设备发送反馈信息, 所述反馈信息用于表 明所述第二设备接收到所述第一设备发射的毫米波信号, 以使所述第一设备在 接收到所述反馈信息后,确定在发射所述毫米波信号的发射角度与所述第二设备实 现毫米波相控阵波束对准。 本发明实施例还提供了一种通信设备, 该通信设备可以包括收发器。 收发器, 用于接收第一设备在确定的搜索范围内发射的第一毫米波信号; 在接收到所述第一毫米波信号后发射第二毫米波信号, 以使所述第一设备在接收到 所述第二毫米波信号后,确定在发射所述第一毫米波信号的发射角度与所述第二设 备实现毫米波相控阵波束对准。 本领域普通技术人员可以意识到, 结合本文中所公开的实施例描述的各示 例的单元及算法步骤, 能够以电子硬件、 或者计算机软件和电子硬件的结合来 实现。 这些功能究竟以硬件还是软件方式来执行, 取决于技术方案的特定应用 和设计约束条件。 专业技术人员可以对每个特定的应用来使用不同方法来实现 所描述的功能, 但是这种实现不应认为超出本发明的范围。 所属领域的技术人员可以清楚地了解到, 为描述的方便和简洁, 上述描述 的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程, 在此不再赘述。 在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统、 装置和方 法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示意性 的, 例如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可以有另 外的划分方式, 例如多个单元或组件可以结合或者可以集成到另一个系统, 或 一些特征可以忽略, 或不执行。 另一点, 所显示或讨论的相互之间的耦合或直 接耦合或通信连接可以是通过一些接口, 装置或单元的间接耦合或通信连接, 可以是电性, 机械或其它的形式。 所述作为分离部件说明的单元可以是或者也可以不是物理上分开的, 作为 单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者 也可以分布到多个网络单元上。 可以根据实际的需要选择其中的部分或者全部 单元来实现本实施例方案的目的。 另外, 在本发明各个实施例中的各功能单元可以集成在一个处理单元中, 也可以是各个单元单独物理存在, 也可以两个或两个以上单元集成在一个单元 中。 所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用 时, 可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本发明的技 术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以 以软件产品的形式体现出来, 该计算机软件产品存储在一个存储介质中, 包括 若干指令用以使得一台计算机设备 (可以是个人计算机, 服务器, 或者网络设 备等) 或处理器 (processor) 执行本发明各个实施例所述方法的全部或部分步 骤。 而前述的存储介质包括: U盘、 移动硬盘、 只读存储器(ROM, Read-Only Memory) 随机存取存储器 (RAM, Random Access Memory ) 磁碟或者光盘 等各种可以存储程序代码的介质。 以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限于 此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易想到 变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护范围应 所述以权利要求的保护范围为准。

Claims

权利要求
1、 一种毫米波相控阵波束对准方法, 其特征在于, 包括: 第一设备与第二设备通过低频段通信链路进行通信, 确定搜索角度; 所述第一设备在所述搜索角度指示的方向上发射第一毫米波信号对所述第二设备 进行搜索, 所述第一毫米波信号为高频毫米波信号; 所述第一设备接收所述第二设备发送的反馈信息, 其中, 所述第二设备在所述搜索 角度指示的方向上接收到所述第一毫米波信号后发送所述反馈信息; 所述第一设备在接收到所述反馈信息后,确定与所述第二设备在所述搜索角度指示 的方向上实现毫米波相控阵波束对准。
2、 根据权利要求 1所述的方法, 其特征在于, 所述第一设备接收所述第二设备发 送的反馈信息, 包括: 所述第一设备在所述搜索角度指示的方向上接收所述第二设备在所述搜索角度指 示的方向上发射的第二毫米波信号, 其中, 所述第二设备在所述搜索角度指示的方向上 接收到所述第一毫米波信号后发射所述第二毫米波信号; 其中, 所述第二毫米波信号为 高频毫米波信号; 所述第一设备在接收到所述反馈信息后,确定与所述第二设备在所述搜索角度指示 的方向上实现毫米波相控阵波束对准, 具体为: 所述第一设备在接收到所述第二毫米波信号后,确定与所述第二设备在所述搜索角 度指示的方向上实现毫米波相控阵波束对准。
3、 根据权利要求 1所述的方法, 其特征在于, 所述第一设备接收所述第二设备 发送的反馈信息, 包括: 所述第一设备接收所述第二设备通过低频段通信链路发送的反馈信息, 所述反 馈信息用于表明所述第二设备在所述搜索角度指示的方向上接收到所述第一毫米波 信号。
4、 根据权利要求 3 所述的方法, 其特征在于, 当确定的所述搜索角度为多个 时, 所述反馈信息中包括所述第二设备接收到的所述第一毫米波信号的波束方向信 息; 所述第一设备在接收到所述反馈信息后,确定与所述第二设备在所述搜索角度指示 的方向上实现毫米波相控阵波束对准, 具体为: 所述第一设备在接收到所述反馈信息后,确定与所述第二设备在所述反馈信息中 的所述第一毫米波信号的波束方向上实现毫米波相控阵波束对准。
5、 根据权利要求 1至 4中任意一项所述的方法, 其特征在于, 在所述第一设备 与第二设备通过低频段通信链路进行通信, 确定搜索角度之前, 还包括: 当所述第一设备与所述第二设备之间的距离小于等于距离阈值时, 所述第一设 备发射宽波束毫米波信号对所述第二设备进行搜索; 其中, 所述宽波束毫米波信号为 高频毫米波信号; 所述第一设备接收所述第二设备发送的信号归属信息, 所述信号归属信息中包 含所述第二设备接收到的所述宽波束毫米波信号所属的第一设备的天线扇区; 所述第一设备确定所述天线扇区指示的角度范围为搜索范围; 所述第一设备与第二设备通过低频段通信链路进行通信, 确定搜索角度, 具体为: 所述第一设备与第二设备通过低频段通信链路进行通信,在所述搜索范围内确定搜 索角度。
6、 根据权利要求 1至 4中任意一项所述的方法, 其特征在于, 在所述第一设备 与第二设备通过低频段通信链路进行通信, 确定搜索角度之前, 还包括: 所述第一设备通过低频段通信链路接收所述第二设备的高度信息; 所述第一设备根据自身的高度信息及所述第二设备的高度信息, 确定搜索范围; 所述第一设备与第二设备通过低频段通信链路进行通信, 确定搜索角度, 具体为: 所述第一设备与第二设备通过低频段通信链路进行通信,在所述搜索范围内确定搜 索角度。
7、 一种毫米波相控阵波束对准方法, 其特征在于, 包括: 第一设备发射毫米波信号对第二设备进行搜索; 所述第一设备接收所述第二设备通过低频段通信链路发送的反馈信息, 所述反 馈信息用于表明所述第二设备接收到所述第一设备发射的毫米波信号; 其中, 所述 毫米波信号为高频毫米波信号; 所述第一设备在接收到所述反馈信息后,确定与所述第二设备在所述毫米波信号的 发射方向上实现毫米波相控阵波束对准。
8、 根据权利要求 7 所述的方法, 其特征在于, 当所述第一设备在多个发射方 向发射毫米波信号对所述第二设备进行搜索时, 所述反馈信息中包括所述第二设备 接收到的所述毫米波信号的波束方向信息; 所述第一设备在接收到所述反馈信息后,确定与所述第二设备在所述毫米波信号的 发射方向上实现毫米波相控阵波束对准, 具体为: 所述第一设备在接收到所述反馈信息后,确定与所述第二设备在所述反馈信息中 的所述毫米波信号的波束方向上实现毫米波相控阵波束对准。
9、 根据权利要求 7或 8所述的方法, 其特征在于, 在所述第一设备发射毫米波 信号对第二设备进行搜索之前, 还包括: 当所述第一设备与所述第二设备之间的距离小于等于距离阈值时, 所述第一设 备发射宽波束毫米波信号对所述第二设备进行搜索; 所述第一设备接收所述第二设备发送的信号归属信息, 所述信号归属信息中包 含所述第二设备接收到的宽波束毫米波信号所属的第一设备的天线扇区; 所述宽波 束毫米波信号为高频毫米波信号; 所述第一设备将所述天线扇区指示的角度范围确定为搜索范围; 所述第一设备发射毫米波信号对第二设备进行搜索, 具体为: 所述第一设备在所述搜索范围内发射毫米波信号对第二设备进行搜索。
10、根据权利要求 7或 8所述的方法, 其特征在于, 在所述第一设备发射毫米波 信号对第二设备进行搜索之前, 还包括: 所述第一设备通过低频段通信链路接收所述第二设备的高度信息; 所述第一设备根据自身的高度信息及所述第二设备的高度信息, 确定搜索范围; 所述第一设备发射毫米波信号对第二设备进行搜索, 具体为: 所述第一设备在所述搜索范围内发射毫米波信号对第二设备进行搜索。
11、 一种毫米波相控阵波束对准方法, 其特征在于, 包括: 第一设备确定搜索第二设备的搜索范围; 所述第一设备在所述搜索范围内发射第一毫米波信号对第二设备进行搜索; 所述第一设备接收所述第二设备发射的第二毫米波信号, 其中, 所述第二设备在接 收到所述第一毫米波信号后发射所述第二毫米波信号; 所述第一设备在接收到所述第二毫米波信号后,确定与所述第二设备在接收所述第 二毫米波信号的方向上实现毫米波相控阵波束对准; 其中, 所述第一毫米波信号及所述第二毫米波信号均为高频毫米波信号。
12、根据权利要求 11所述的方法, 其特征在于, 所述第一设备确定搜索第二设 备的搜索范围, 包括: 当所述第一设备与所述第二设备之间的距离小于等于距离阈值时, 所述第一设 备发射宽波束毫米波信号对所述第二设备进行搜索; 所述宽波束毫米波信号为高频 毫米波信号; 所述第一设备接收所述第二设备发送的信号归属信息, 所述信号归属信息中包 含所述第二设备接收到的宽波束毫米波信号所属的第一设备的天线扇区; 所述第一设备将所述天线扇区指示的角度范围确定为所述搜索范围。
13、根据权利要求 11所述的方法, 其特征在于, 所述第一设备确定搜索第二设 备的搜索范围, 包括: 所述第一设备通过低频段通信链路接收所述第二设备的高度信息; 所述第一设备根据自身的高度信息及所述第二设备的高度信息, 确定所述搜索范 围。
14、 一种毫米波相控阵波束对准方法, 其特征在于, 包括: 第二设备与第一设备通过低频段通信链路进行通信, 确定搜索角度; 所述第二设备在所述搜索角度指示的方向上接收所述第一设备发射的第一毫 米波信号; 所述第一毫米波信号为高频毫米波信号; 所述第二设备在接收到所述第一毫米波信号后, 向所述第一设备发送反馈信 息, 以使所述第一设备在接收到所述反馈信息后, 确定与所述第二设备在所述搜索角 度指示的方向上实现毫米波相控阵波束对准。
15、 根据权利要求 14 所述的方法, 其特征在于, 所述第二设备在接收到所述 第一毫米波信号后, 向所述第一设备发送反馈信息, 包括: 所述第二设备在接收到所述第一毫米波信号后,在所述搜索角度指示的方向上发 射第二毫米波信号,以使所述第一设备在所述搜索角度指示的方向上接收到所述第二毫 米波信号后, 确定与所述第二设备在所述搜索角度指示的方向上实现毫米波相控阵波 束对准, 所述第二毫米波信号为高频毫米波信号。
16、 根据权利要求 14 所述的方法, 其特征在于, 所述第二设备在接收到所述 第一毫米波信号后, 向所述第一设备发送反馈信息, 包括: 所述第二设备在接收到所述第一毫米波信号后, 通过低频段通信链路向所述第 一设备发送反馈信息, 所述反馈信息用于表明所述第二设备在所述搜索角度指示的 方向上接收到所述第一毫米波信号。
17、 根据权利要求 16 所述的方法, 其特征在于, 当确定的所述搜索角度为多 个时, 所述反馈信息中包括所述第二设备接收到的所述第一毫米波信号的波束方向 信息, 以使所述第一设备在接收到所述反馈信息后, 确定与所述第二设备在所述反馈 信息中的所述第一毫米波信号的波束方向上实现毫米波相控阵波束对准。
18、 根据权利要求 14至 17中任意一项所述的方法, 其特征在于, 在所述第二 设备与第一设备通过低频段通信链路进行通信, 确定搜索角度之前, 还包括: 当所述第二设备与所述第一设备之间的距离小于等于距离阈值时, 所述第二设 备接收所述第一设备发射的宽波束毫米波信号; 所述宽波束毫米波信号为高频毫米 波信号; 所述第二设备在接收到所述宽波束毫米波信号后, 向所述第一设备发送信号归 属信息,所述信号归属信息中包含所述第二设备接收到的宽波束毫米波信号所属的 第一设备的天线扇区, 以使所述第一设备将所述天线扇区指示的角度范围确定为搜 索范围; 所述第二设备与第一设备通过低频段通信链路进行通信, 确定搜索角度, 具体为: 所述第二设备与第一设备通过低频段通信链路进行通信,在所述搜索范围内确定搜 索角度。
19、 根据权利要求 14至 17中任意一项所述的方法, 其特征在于, 在所述第二 设备与第一设备通过低频段通信链路进行通信, 确定搜索角度之前, 还包括: 所述第二设备通过低频段通信链路向所述第一设备发送所述第二设备的高度信息, 以使所述第一设备根据自身的高度信息及所述第二设备的高度信息, 确定所述搜索范 围; 所述第二设备与第一设备通过低频段通信链路进行通信, 确定搜索角度, 具体为: 所述第二设备与第一设备通过低频段通信链路进行通信,在所述搜索范围内确定搜 索角度。
20、 一种毫米波相控阵波束对准方法, 其特征在于, 包括: 第二设备接收第一设备发射的毫米波信号; 所述毫米波信号为高频毫米波信号; 所述第二设备在接收到所述毫米波信号后, 通过低频段通信链路向所述第一设 备发送反馈信息, 所述反馈信息用于表明所述第二设备接收到所述第一设备发射的 毫米波信号, 以使所述第一设备在接收到所述反馈信息后, 确定与所述第二设备在所 述毫米波信号的发射方向上实现毫米波相控阵波束对准。
21、 根据权利要求 20 所述的方法, 其特征在于, 所述反馈信息中包括所述第 二设备接收到的所述毫米波信号的波束方向信息, 以使所述第一设备在接收到所述 反馈信息后,确定与所述第二设备在所述反馈信息中的所述毫米波信号的波束方向上 实现毫米波相控阵波束对准。
22、 根据权利要求 20或 21所述的方法, 其特征在于, 在所述第二设备接收第 一设备发射的毫米波信号之前, 还包括: 当所述第二设备与所述第一设备之间的距离小于等于距离阈值时, 所述第二设 备接收所述第一设备发射的宽波束毫米波信号; 所述宽波束毫米波信号为高频毫米 波信号; 所述第二设备在接收到所述宽波束毫米波信号后, 向所述第一设备发送信号归 属信息, 所述信号归属信息中包含所述第二设备接收到的宽波束毫米波信号所属的 第一设备的天线扇区, 以使所述第一设备将所述天线扇区指示的角度范围确定为搜 索范围; 所述第二设备接收第一设备发射的毫米波信号, 具体为: 所述第二设备在所述搜索范围接收所述第一设备发射的毫米波信号。
23、 根据权利要求 20或 21所述的方法, 其特征在于, 在所述第二设备接收第 一设备发射的毫米波信号之前, 还包括: 所述第二设备通过低频段通信链路向所述第一设备发送所述第二设备的高度信息, 以使所述第一设备根据自身的高度信息及所述第二设备的高度信息, 确定搜索范围; 所述第二设备接收第一设备发射的毫米波信号, 具体为: 所述第二设备在所述搜索范围接收所述第一设备发射的毫米波信号。
24、 一种毫米波相控阵波束对准方法, 其特征在于, 包括: 第二设备接收第一设备在确定的搜索范围内发射的第一毫米波信号; 所述第二设备在接收到所述第一毫米波信号后发射第二毫米波信号, 以使所述第一 设备在接收到所述第二毫米波信号后,确定与所述第二设备在接收所述第二毫米波信号 的方向上实现毫米波相控阵波束对准; 其中, 所述第一毫米波信号及所述第二毫米波 信号均为高频毫米波信号。
25、 根据权利要求 24 所述的方法, 其特征在于, 在所述第二设备接收第一设 备在确定的搜索范围内发射的第一毫米波信号之前, 还包括: 当所述第二设备与所述第一设备之间的距离小于等于距离阈值时, 所述第二设 备接收所述第一设备发射的宽波束毫米波信号; 所述宽波束毫米波信号为高频毫米 波信号; 所述第二设备在接收到所述宽波束毫米波信号后, 向所述第一设备发送信号归 属信息, 所述信号归属信息中包含所述第二设备接收到的宽波束毫米波信号所属的 第一设备的天线扇区, 以使所述第一设备将所述天线扇区指示的角度范围确定为所 述搜索范围。
26、 根据权利要求 24 所述的方法, 其特征在于, 在所述第二设备接收第一设 备在确定的搜索范围内发射的第一毫米波信号之前, 还包括: 所述第二设备通过低频段通信链路向所述第一设备发送所述第二设备的高度信息, 以使所述第一设备根据自身的高度信息及所述第二设备的高度信息, 确定所述搜索范 围。
27、 一种通信设备, 其特征在于, 包括: 角度确定单元, 用于与第二设备通过低频段通信链路进行通信, 确定搜索角度; 信号发射单元, 用于在所述搜索角度指示的方向上发射第一毫米波信号对所述第 二设备进行搜索; 所述第一毫米波信号为高频毫米波信号; 信号接收单元, 用于接收所述第二设备发送的反馈信息, 其中, 所述第二设备在 所述搜索角度指示的方向上接收到所述第一毫米波信号后发送所述反馈信息; 对准单元, 用于在所述信号接收单元接收到所述反馈信息后, 确定与所述第二设 备在所述搜索角度指示的方向上实现毫米波相控阵波束对准。
28、 根据权利要求 27所述的通信设备, 其特征在于, 所述信号接收单元, 具体用于在所述搜索角度指示的方向上接收所述第二设备在 所述搜索角度指示的方向上发射的第二毫米波信号, 其中, 所述第二设备在所述搜索角 度指示的方向上接收到所述第一毫米波信号后发射所述第二毫米波信号; 其中, 所述第 二毫米波信号为高频毫米波信号; 所述对准单元, 具体用于在所述信号接收单元接收到所述第二毫米波信号后, 确 定与所述第二设备在所述搜索角度指示的方向上实现毫米波相控阵波束对准。
29、 根据权利要求 27所述的通信设备, 其特征在于, 所述信号接收单元, 具体用于接收所述第二设备通过低频段通信链路发送的反 馈信息, 所述反馈信息用于表明所述第二设备在所述搜索角度指示的方向上接收到 所述第一毫米波信号。
30、 根据权利要求 29 所述的通信设备, 其特征在于, 当所述角度确定单元确 定的所述搜索角度为多个时, 所述信号接收单元接收到的反馈信息中包括所述第二 设备接收到的所述第一毫米波信号的波束方向信息; 所述对准单元, 具体用于在所述信号接收单元接收到所述反馈信息后, 确定与 所述第二设备在所述反馈信息中的所述第一毫米波信号的波束方向上实现毫米波相 控阵波束对准。
31、根据权利要求 27至 30中任意一项所述的通信设备, 其特征在于, 还包括: 第一范围确定单元,用于在所述角度确定单元与第二设备通过低频段通信链路进 行通信,确定搜索角度之前, 当所述通信设备与所述第二设备之间的距离小于等于距 离阈值时, 发射宽波束毫米波信号对所述第二设备进行搜索, 其中, 所述宽波束毫 米波信号为高频毫米波信号; 接收所述第二设备发送的信号归属信息, 所述信号归属 信息中包含所述第二设备接收到的宽波束毫米波信号所属的所述通信设备的天线 扇区; 并将所述天线扇区指示的角度范围确定为搜索范围; 所述角度确定单元, 具体用于与所述第二设备通过低频段通信链路进行通信, 在 所述搜索范围内确定搜索角度。
32、根据权利要求 27至 30中任意一项所述的通信设备, 其特征在于, 还包括: 高度信息接收单元,用于在所述角度确定单元与第二设备通过低频段通信链路进 行通信, 确定搜索角度之前, 通过低频段通信链路接收所述第二设备的高度信息; 第二范围确定单元, 用于根据自身的高度信息及所述第二设备的高度信息, 确定 搜索范围; 所述角度确定单元, 具体用于与所述第二设备通过低频段通信链路进行通信, 在 所述搜索范围内确定搜索角度。
33、 一种通信设备, 其特征在于, 包括: 信号发射单元, 用于发射毫米波信号对第二设备进行搜索; 信号接收单元, 用于接收所述第二设备通过低频段通信链路发送的反馈信息, 所 述反馈信息用于表明所述第二设备接收到所述通信设备发射的毫米波信号; 其中, 所述毫米波信号为高频毫米波信号; 对准单元, 用于在所述信号接收单元接收到所述反馈信息后, 确定与所述第二设备 在所述毫米波信号的发射方向上实现毫米波相控阵波束对准。
34、 根据权利要求 33所述的通信设备, 其特征在于, 当所述信号发射单元在多 个发射方向发射毫米波信号对所述第二设备进行搜索时, 所述信号接收单元接收到 的反馈信息中包括所述第二设备接收到的所述毫米波信号的波束方向信息; 所述对准单元, 具体用于在所述信号接收单元接收到所述反馈信息后, 确定与所 述第二设备在所述反馈信息中的所述毫米波信号的波束方向上实现毫米波相控阵波 束对准。
35、 根据权利要求 33或 34所述的通信设备, 其特征在于, 还包括: 第一范围确定单元, 用于在所述信号发射单元发射毫米波信号对第二设备进行搜 索之前, 当所述通信设备与所述第二设备之间的距离小于等于距离阈值时, 发射宽 波束毫米波信号对所述第二设备进行搜索, 所述宽波束毫米波信号为高频毫米波信 号; 接收所述第二设备发送的信号归属信息, 所述信号归属信息中包含所述第二设 备接收到的宽波束毫米波信号所属的所述通信设备的天线扇区; 将所述天线扇区指 示的角度范围确定为搜索范围; 所述信号发射单元,具体用于在所述搜索范围内发射毫米波信号对所述第二设备进 行搜索。
36、 根据权利要求 33或 34所述的通信设备, 其特征在于, 还包括: 高度信息接收单元, 用于在所述信号发射单元发射毫米波信号对第二设备进行搜 索之前, 通过低频段通信链路接收所述第二设备的高度信息; 第二范围确定单元, 用于根据自身的高度信息及所述第二设备的高度信息, 确定 搜索范围; 所述信号发射单元,具体用于在所述搜索范围内发射毫米波信号对所述第二设备进 行搜索。
37、 一种通信设备, 其特征在于, 包括: 范围确定单元, 用于确定搜索第二设备的搜索范围; 信号发射单元, 用于在所述搜索范围内发射第一毫米波信号对第二设备进行搜 索; 信号接收单元, 用于接收所述第二设备发射的第二毫米波信号, 其中, 所述第二设 备在接收到所述第一毫米波信号后发射所述第二毫米波信号; 对准单元, 用于在接收到所述第二毫米波信号后, 确定与所述第二设备在接收所述 第二毫米波信号的方向上实现毫米波相控阵波束对准; 其中, 所述第一毫米波信号及所述第二毫米波信号均为高频毫米波信号。
38、 根据权利要求 37所述的通信设备, 其特征在于, 所述范围确定单元, 具体用于当所述通信设备与所述第二设备之间的距离小于 等于距离阈值时, 发射宽波束毫米波信号对所述第二设备进行搜索, 所述宽波束毫 米波信号为高频毫米波信号; 接收所述第二设备发送的信号归属信息, 所述信号归 属信息中包含所述第二设备接收到的宽波束毫米波信号所属的所述通信设备的天 线扇区; 将所述天线扇区指示的角度范围确定为所述搜索范围。
39、 根据权利要求 37所述的通信设备, 其特征在于, 所述范围确定单元包括: 接收子单元, 用于通过低频段通信链路接收所述第二设备的高度信息; 确定子单元, 用于根据自身的高度信息及所述第二设备的高度信息, 确定所述搜索 范围。
40、 一种通信设备, 其特征在于, 包括: 角度确定单元,用于与第一设备通过低频段通信链路进行通信,确定搜索角度; 信号接收单元, 用于在在所述搜索角度指示的方向上接收所述第一设备发射的 第一毫米波信号; 所述第一毫米波信号为高频毫米波信号; 反馈单元, 用于在所述信号接收单元接收到所述第一毫米波信号后, 向所述第 一设备发送反馈信息, 以使所述第一设备在接收到所述反馈信息后, 确定与所述通信 设备在所述搜索角度指示的方向上实现毫米波相控阵波束对。
41、 根据权利要求 40所述的通信设备, 其特征在于, 所述反馈单元, 具体用于在所述信号接收单元接收到所述第一毫米波信号后, 在所述搜索角度指示的方向上发射第二毫米波信号,以使所述第一设备在所述搜索角度 指示的方向上接收到所述第二毫米波信号后,确定与所述通信设备在所述搜索角度指示 的方向上实现毫米波相控阵波束对准, 所述第二毫米波信号为高频毫米波信号。
42、 根据权利要求 40所述的通信设备, 其特征在于, 所述反馈单元, 具体用于在所述信号接收单元接收到所述第一毫米波信号后, 通过低频段通信链路向所述第一设备发送反馈信息, 所述反馈信息用于表明所述通 信设备在所述搜索角度指示的方向上接收到所述第一毫米波信号。
43、 根据权利要求 42 所述的通信设备, 其特征在于, 当所述角度确定单元确 定的所述搜索角度为多个时, 所述反馈信息中包括所述信号接收单元接收到的所述 第一毫米波信号的波束方向信息, 以使所述第一设备在接收到所述反馈信息后, 确 定与所述通信设备在所述反馈信息中的所述第一毫米波信号的波束方向上实现毫米 波相控阵波束对准。
44、 根据权利要求 40至 43中任意一项所述的通信设备, 其特征在于, 所述信号接收单元, 还用于在所述角度确定单元与第一设备通过低频段通信链 路进行通信, 确定搜索角度之前, 当所述通信设备与所述第一设备之间的距离小于 等于距离阈值时, 接收所述第一设备发射的宽波束毫米波信号; 所述宽波束毫米波 信号为高频毫米波信号; 所述反馈单元, 还用于在所述信号接收单元接收到所述宽波束毫米波信号后, 向所述第一设备发送信号归属信息,所述信号归属信息中包含所述通信设备接收到 的宽波束毫米波信号所属的第一设备的天线扇区, 以使所述第一设备将所述天线扇 区指示的角度范围确定为搜索范围; 所述角度确定单元, 具体用于与第一设备通过低频段通信链路进行通信,在所述搜 索范围内确定搜索角度。
45、 根据权利要求 40至 43中任意一项所述的通信设备, 其特征在于, 还包括: 高度信息发送单元,用于在所述角度确定单元与第一设备通过低频段通信链路进 行通信, 确定搜索角度之前, 通过低频段通信链路向所述第一设备发送所述通信设备 的高度信息, 以使所述第一设备根据自身的高度信息及所述通信设备的高度信息, 确定 所述搜索范围; 所述角度确定单元, 具体用于与第一设备通过低频段通信链路进行通信,在所述搜 索范围内确定搜索角度。
46、 一种通信设备, 其特征在于, 包括: 信号接收单元, 用于接收第一设备发射的毫米波信号; 所述毫米波信号为高频 毫米波信号; 反馈单元, 用于在所述信号接收单元接收到所述毫米波信号后, 通过低频段通 信链路向所述第一设备发送反馈信息, 所述反馈信息用于表明所述通信设备接收到 所述第一设备发射的毫米波信号, 以使所述第一设备在接收到所述反馈信息后, 确定 与所述通信设备在所述毫米波信号的发射方向上实现毫米波相控阵波束对准。
47、 根据权利要求 46 所述的通信设备, 其特征在于, 所述反馈信息中包括所 述通信设备接收到的所述毫米波信号的波束方向信息, 以使所述第一设备在接收到 所述反馈信息后,确定与所述通信设备在所述反馈信息中的所述毫米波信号的波束方 向上实现毫米波相控阵波束对准。
48、 根据权利要求 46或 47所述的通信设备, 其特征在于, 所述信号接收单元, 还用于在接收第一设备发射的毫米波信号之前, 当所述通 信设备与所述第一设备之间的距离小于等于距离阈值时, 接收所述第一设备发射的 宽波束毫米波信号; 所述宽波束毫米波信号为高频毫米波信号; 所述反馈单元, 还用于在所述信号接收单元接收到所述宽波束毫米波信号后, 向所述第一设备发送信号归属信息, 所述信号归属信息中包含所述通信设备接收到 的宽波束毫米波信号所属的第一设备的天线扇区, 以使所述第一设备将所述天线扇 区指示的角度范围确定为搜索范围; 所述信号接收单元, 具体用于在所述搜索范围接收所述第一设备发射的毫米波 信号。
49、 根据权利要求 46或 47所述的通信设备, 其特征在于, 还包括: 高度信息发送单元, 用于在所述信号接收单元接收第一设备发射的毫米波信号之 前, 通过低频段通信链路向所述第一设备发送所述通信设备的高度信息, 以使所述第一 设备根据自身的高度信息及所述通信设备的高度信息, 确定搜索范围; 所述信号接收单元, 具体用于在所述搜索范围接收所述第一设备发射的毫米波 信号。
50、 一种通信设备, 其特征在于, 包括: 信号接收单元,用于接收第一设备在确定的搜索范围内发射的第一毫米波信号; 信号发射单元,用于在所述信号接收单元接收到所述第一毫米波信号后发射第二毫 米波信号, 以使所述第一设备在接收到所述第二毫米波信号后, 确定与所述通信设备在 接收所述第二毫米波信号的方向上实现毫米波相控阵波束对准; 其中, 所述第一毫米 波信号及所述第二毫米波信号均为高频毫米波信号。
51、 根据权利要求 50所述的通信设备, 其特征在于, 所述信号接收单元, 还用于在接收第一设备在确定的搜索范围内发射的第一毫 米波信号之前, 当所述通信设备与所述第一设备之间的距离小于等于距离阈值时, 接收所述第一设备发射的宽波束毫米波信号; 所述宽波束毫米波信号为高频毫米波 信号; 所述信号发射单元, 还用于在所述信号接收单元接收到所述宽波束毫米波信号 后, 向所述第一设备发送信号归属信息, 所述信号归属信息中包含所述通信设备接 收到的宽波束毫米波信号所属的第一设备的天线扇区, 以使所述第一设备将所述天 线扇区指示的角度范围确定为所述搜索范围。
52、 根据权利要求 50所述的通信设备, 其特征在于, 还包括: 高度信息发送单元, 用于在所述信号接收单元接收第一设备在确定的搜索范围内 发射的第一毫米波信号之前,通过低频段通信链路向所述第一设备发送所述通信设备的 高度信息, 以使所述第一设备根据自身的高度信息及所述通信设备的高度信息, 确定所 述搜索范围。
53、 一种毫米波相控阵波束对准系统, 其特征在于, 包括如权利要求 27至 32 中任意一项所述的通信设备,以及如权利要求 40至 45中任意一项所述的通信设备。
54、 一种毫米波相控阵波束对准系统, 其特征在于, 包括如权利要求 33 至 36 中任意一项所述的通信设备,以及如权利要求 46至 49中任意一项所述的通信设备。
55、 一种毫米波相控阵波束对准系统, 其特征在于, 包括如权利要求 37至 39中 任意一项所述的通信设备, 以及如权利要求 50至 52中任意一项所述的通信设备。
PCT/CN2014/071125 2013-01-22 2014-01-22 一种毫米波相控阵波束对准方法及通信设备 WO2014114237A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14743340.3A EP2945411B1 (en) 2013-01-22 2014-01-22 Millimeter wave phased-array wave beam alignment method and communication device
JP2015552999A JP6085374B2 (ja) 2013-01-22 2014-01-22 ミリ波フェーズドアレイ・ビームアライメント方法および通信装置
AU2014210248A AU2014210248B2 (en) 2013-01-22 2014-01-22 Millimeter wave phased-array wave beam alignment method and communication device
US14/805,248 US20150325912A1 (en) 2013-01-22 2015-07-21 Millimeter wave phased-array beam alignment method and communications device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310023438.7 2013-01-22
CN201310023438.7A CN103052086B (zh) 2013-01-22 2013-01-22 一种毫米波相控阵波束对准方法及通信设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/805,248 Continuation US20150325912A1 (en) 2013-01-22 2015-07-21 Millimeter wave phased-array beam alignment method and communications device

Publications (1)

Publication Number Publication Date
WO2014114237A1 true WO2014114237A1 (zh) 2014-07-31

Family

ID=48064558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/071125 WO2014114237A1 (zh) 2013-01-22 2014-01-22 一种毫米波相控阵波束对准方法及通信设备

Country Status (6)

Country Link
US (1) US20150325912A1 (zh)
EP (1) EP2945411B1 (zh)
JP (1) JP6085374B2 (zh)
CN (1) CN103052086B (zh)
AU (1) AU2014210248B2 (zh)
WO (1) WO2014114237A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106341873A (zh) * 2015-07-08 2017-01-18 中兴通讯股份有限公司 一种数据通信方法和装置
EP3217737A4 (en) * 2014-12-29 2017-12-27 Huawei Technologies Co., Ltd. Method and apparatus for aligning beams of antennae of high-low frequency co-station network

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104184504B (zh) * 2013-05-27 2019-01-25 中兴通讯股份有限公司 一种毫米波通信空间复用传输方法及毫米波通信设备
CN104661321A (zh) * 2013-11-15 2015-05-27 中兴通讯股份有限公司 通信链路管理方法、设备和系统
CN106575984B (zh) 2014-12-31 2021-03-30 华为技术有限公司 一种天线对准方法和系统
CN104935366B (zh) * 2015-04-21 2018-01-02 北京航空航天大学 毫米波通信中的波束搜索方法
CN106454871A (zh) * 2015-08-06 2017-02-22 中兴通讯股份有限公司 一种波束使用方法及装置
US9787538B2 (en) * 2015-10-15 2017-10-10 Intel IP Corporation Wireless gigabit-enabled device configuration
CN107181517B (zh) * 2016-03-09 2021-06-15 中兴通讯股份有限公司 波束搜索方法及装置
CN108781104B (zh) * 2016-03-24 2021-12-14 瑞典爱立信有限公司 适于辐射不同类型的天线波束的无线通信节点
KR101881166B1 (ko) * 2016-05-17 2018-07-23 한국전자통신연구원 이동무선백홀 네트워크의 빔 포밍 통신 장치 및 방법
US10313070B2 (en) 2016-11-03 2019-06-04 Futurewei Technologies, Inc. Fast millimeter-wave cell acquisition
KR102713992B1 (ko) * 2016-12-21 2024-10-07 삼성전자 주식회사 무선 통신 시스템에서 단말의 빔 결정 방법 및 이를 위한 단말
CN106851560B (zh) * 2016-12-30 2020-05-05 上海无线通信研究中心 一种高频通信链路的建立方法、系统和电子设备
CN108282215B (zh) * 2017-01-06 2019-07-09 华为技术有限公司 一种波束匹配方法及装置
CN108667550B (zh) 2017-03-28 2020-02-14 华为技术有限公司 一种干扰协调方法及装置
CN108736929B (zh) * 2017-04-18 2020-03-17 大唐移动通信设备有限公司 一种波束检测方法及装置
US10172018B2 (en) * 2017-06-06 2019-01-01 Phazr, Inc. Wireless systems and methods using millimeter wave band signals with asymmetric directivity
US10165426B1 (en) 2017-06-22 2018-12-25 Apple Inc. Methods for maintaining line-of-sight communications
CN107172630B (zh) * 2017-06-29 2019-11-19 电子科技大学 用于高铁的基于分布式波束成形毫米波覆盖方法
CN111742572B (zh) * 2018-02-23 2022-05-24 华为技术有限公司 用于调整接收波束的方法及装置
CN110212312B (zh) 2018-02-28 2021-02-23 华为技术有限公司 一种天线装置及相关设备
US10432798B1 (en) 2018-05-25 2019-10-01 At&T Intellectual Property I, L.P. System, method, and apparatus for service grouping of users to different speed tiers for wireless communication
US10419943B1 (en) 2018-06-15 2019-09-17 At&T Intellectual Property I, L.P. Overlay of millimeter wave (mmWave) on citizens broadband radio service (CBRS) for next generation fixed wireless (NGFW) deployment
US10798537B2 (en) 2018-07-09 2020-10-06 At&T Intellectual Property I, L.P. Next generation fixed wireless qualification tool for speed-tier based subscription
CN110858781B (zh) * 2018-08-22 2022-02-11 深圳富泰宏精密工业有限公司 毫米波信号的测量方法及装置
WO2020107347A1 (zh) * 2018-11-29 2020-06-04 北京小米移动软件有限公司 波束扫描范围确定方法、装置、设备及存储介质
KR102399317B1 (ko) 2019-07-30 2022-05-18 한양대학교 산학협력단 무선 통신 시스템에서 위치 정보에 기반한 빔 정렬 장치 및 방법
CN112367672B (zh) * 2020-09-29 2022-04-15 北京邮电大学 一种室内波束搜索与追踪方法、装置和电子设备
US11476909B2 (en) * 2020-11-23 2022-10-18 Hewlett Packard Enterprise Development Lp Automatic antenna beam alignment
CN113613349A (zh) * 2021-08-16 2021-11-05 深圳市九洲电器有限公司 基于毫米波的智能终端组网装置和方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101075837A (zh) * 2007-06-28 2007-11-21 中国电子科技集团公司第五十四研究所 散射通信天线快速对准方法
CN101616472A (zh) * 2009-07-28 2009-12-30 深圳大学 一种发射波束跟踪方法、系统及发射端设备
WO2010085092A2 (en) * 2009-01-22 2010-07-29 Lg Electronics Inc. Method and apparatus of transmitting data in coordinated multi-cell wireless communication system
CN102164374A (zh) * 2011-05-10 2011-08-24 华为技术有限公司 波束搜索处理方法、装置和系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7710319B2 (en) * 2006-02-14 2010-05-04 Sibeam, Inc. Adaptive beam-steering methods to maximize wireless link budget and reduce delay-spread using multiple transmit and receive antennas
CN101926104B (zh) * 2008-01-25 2015-10-07 皇家飞利浦电子股份有限公司 用于使用模拟波束控制来传送信号的方法、发射站、接收站和前同步码结构
US9100068B2 (en) * 2008-03-17 2015-08-04 Qualcomm, Incorporated Multi-resolution beamforming in MIMO systems
CN106535123A (zh) * 2009-06-30 2017-03-22 诺基亚技术有限公司 装置和方法
JP2012191281A (ja) * 2011-03-09 2012-10-04 Hitachi Consumer Electronics Co Ltd 無線通信装置
CN103378892A (zh) * 2012-04-28 2013-10-30 中兴通讯股份有限公司 一种毫米波通信系统波束对准方法、装置及系统
CN102801455B (zh) * 2012-07-31 2015-12-16 华为技术有限公司 波束码本生成方法、波束搜索方法及相关装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101075837A (zh) * 2007-06-28 2007-11-21 中国电子科技集团公司第五十四研究所 散射通信天线快速对准方法
WO2010085092A2 (en) * 2009-01-22 2010-07-29 Lg Electronics Inc. Method and apparatus of transmitting data in coordinated multi-cell wireless communication system
CN101616472A (zh) * 2009-07-28 2009-12-30 深圳大学 一种发射波束跟踪方法、系统及发射端设备
CN102164374A (zh) * 2011-05-10 2011-08-24 华为技术有限公司 波束搜索处理方法、装置和系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2945411A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3217737A4 (en) * 2014-12-29 2017-12-27 Huawei Technologies Co., Ltd. Method and apparatus for aligning beams of antennae of high-low frequency co-station network
US10098125B2 (en) 2014-12-29 2018-10-09 Huawei Technologies Co., Ltd. Method and apparatus for aligning antenna beams in high-low frequency co-site network
US10506606B2 (en) 2014-12-29 2019-12-10 Huawei Technologies Co., Ltd. Method and apparatus for aligning antenna beams in high-low frequency co-site network
CN106341873A (zh) * 2015-07-08 2017-01-18 中兴通讯股份有限公司 一种数据通信方法和装置

Also Published As

Publication number Publication date
JP2016507980A (ja) 2016-03-10
EP2945411A4 (en) 2015-12-16
EP2945411A1 (en) 2015-11-18
EP2945411B1 (en) 2016-12-21
AU2014210248B2 (en) 2016-12-08
AU2014210248A1 (en) 2015-09-10
JP6085374B2 (ja) 2017-02-22
CN103052086B (zh) 2016-09-07
US20150325912A1 (en) 2015-11-12
CN103052086A (zh) 2013-04-17

Similar Documents

Publication Publication Date Title
WO2014114237A1 (zh) 一种毫米波相控阵波束对准方法及通信设备
WO2021239067A1 (zh) 一种协作通信方法及通信装置
JP7263396B2 (ja) データ伝送方法、アクセスポイント、及びデータ伝送システム
US9577699B2 (en) Dual antenna topology for bluetooth and IEEE 802.11 wireless local area network devices
US9408164B2 (en) Multiplexing transmission method for millimeter-wave communication space, and millimeter-wave communication device
CN103476043B (zh) 一种智能天线扫描覆盖和接入的无线局域网接入点
KR20160118584A (ko) 무선 통신 시스템에서 링크 설정을 위한 장치 및 방법
US20190052346A1 (en) Millimeter wave booster, millimeter wave transmission system, and millimeter wave transmission method
CN106159461B (zh) 天线阵列系统及控制方法
JP2022539974A (ja) ビーム構成方法および装置
KR20220120683A (ko) 안테나 라우팅 방법 및 관련 장치
CN102545972A (zh) 一种近距离无线通信设备及近距离无线通信方法
CN104639289A (zh) 一种wlan中空闲节点辅助的定向接入控制方法
TW200843193A (en) Antenna module and apparatus using the same
CN116368889A (zh) 一种反射设备波束管理方法、装置及相关设备
CN103179588A (zh) 无线接入点的数据处理装置及方法
WO2020038412A1 (zh) 一种天线调谐方法及无线终端
US20190191365A1 (en) Heterogeneous Network Optimization Utilizing Modal Antenna Techniques
JP2024522315A (ja) スマートサーフェス機器の識別方法、通信機器及びスマートサーフェス機器
JP2006203541A (ja) 交差偏波通信システム
US20230370134A1 (en) Network-Independent Intelligent Reflecting Surface
US20240097744A1 (en) Systems and Methods for Controlling Reconfigurable Intelligent Surfaces
CN110719636B (zh) 一种波束管理方法及终端设备
US20230421241A1 (en) Reflective Devices for Conveying Radio-Frequency Signals
WO2023232040A1 (zh) 通信方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14743340

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015552999

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014743340

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014743340

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014210248

Country of ref document: AU

Date of ref document: 20140122

Kind code of ref document: A