[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014112074A1 - プラント制御装置 - Google Patents

プラント制御装置 Download PDF

Info

Publication number
WO2014112074A1
WO2014112074A1 PCT/JP2013/050811 JP2013050811W WO2014112074A1 WO 2014112074 A1 WO2014112074 A1 WO 2014112074A1 JP 2013050811 W JP2013050811 W JP 2013050811W WO 2014112074 A1 WO2014112074 A1 WO 2014112074A1
Authority
WO
WIPO (PCT)
Prior art keywords
target value
correction target
value
candidate
plant
Prior art date
Application number
PCT/JP2013/050811
Other languages
English (en)
French (fr)
Inventor
真典 嶋田
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2014557242A priority Critical patent/JP5930074B2/ja
Priority to PCT/JP2013/050811 priority patent/WO2014112074A1/ja
Priority to US14/760,847 priority patent/US20150356413A1/en
Priority to DE112013006439.1T priority patent/DE112013006439T5/de
Priority to CN201380070863.XA priority patent/CN104937506A/zh
Publication of WO2014112074A1 publication Critical patent/WO2014112074A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/02Knowledge representation; Symbolic representation
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B11/00Automatic controllers
    • G05B11/01Automatic controllers electric
    • G05B11/36Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B15/00Systems controlled by a computer
    • G05B15/02Systems controlled by a computer electric

Definitions

  • the present invention relates to a plant control device, and more particularly, to a control device that corrects a target value of a plant control output using a reference governor so that a constraint imposed on a state quantity of the plant is satisfied.
  • a general plant control apparatus is configured to determine a control input of a plant by feedback control so that the control output follows the target value when a target value is given with respect to the control output of the plant.
  • various constraints on hardware or control exist regarding the state quantity of the plant. If these restrictions are not satisfied, there is a risk that hardware breakage or control performance will be degraded. Satisfaction of constraints is one of the important performances required in plant control, as is the followability of the control output to the target value.
  • the reference governor is one effective means for satisfying the above requirements.
  • the reference governor includes a prediction model that models a closed loop system (feedback control system) including a plant to be controlled and a feedback controller, and predicts future values of state quantities to which constraints are imposed by the prediction model. Then, the target value of the controlled variable of the plant is corrected based on the predicted value of the state quantity and the constraints imposed thereon.
  • a closed loop system feedback control system
  • Patent Document 1 Examples of the prior art in which the reference governor is applied to plant control include the prior art disclosed in Patent Document 1 below.
  • This prior art relates to tension control of a rolled material in a multistage rolling mill.
  • target trajectory data that defines temporal changes in the tension of the rolled material is calculated in advance by the reference governor, and the rolled material is based on the deviation between the actual tension value of the rolled material and the target trajectory data. The tension is controlled.
  • offline calculation is performed by the reference governor. Since the target value of the tension of the rolled material in the multi-high rolling mill is given in advance, the correction of the target value by the reference governor can be performed offline. However, depending on the type of plant, on-line calculation may be required instead of off-line calculation.
  • An internal combustion engine used as a power unit for automobiles is a kind of such a plant. In an internal combustion engine, the target value changes every moment depending on the operating conditions. Therefore, in order to satisfy the constraints imposed on the state quantity, it is necessary to correct the target value by online calculation. However, since the amount of calculation required for the online calculation of the reference governor is great, when the online calculation by the reference governor is implemented in the control device, a large calculation load is applied to the control device.
  • the present invention has been made in view of the problems as described above, and in correcting the target value of the control output using the reference governor so that the constraints imposed on the state quantity of the plant are satisfied, An object is to reduce such calculation load.
  • the plant control apparatus includes a feedback controller and a reference governor.
  • the feedback controller is configured to determine the control input of the plant by feedback control so that the control output of the plant approaches the target value.
  • the reference governor is configured to modify a target value provided to the feedback controller.
  • the reference governor can execute at least a prediction model calculation process, an evaluation function calculation process, and a corrected target value determination process.
  • the predictive model calculation process a predictive model in which a closed loop system including a plant and a feedback controller is modeled based on a correction target value candidate of a control output is used. The predicted value of the state quantity is sequentially calculated over a finite prediction horizon.
  • the evaluation function calculation process the evaluation value of the correction target value candidate is calculated using a pre-defined evaluation function based on the calculation result obtained by the prediction model calculation.
  • the prediction model calculation process and the evaluation function calculation process are executed for a plurality of correction target value candidates, and the final correction target value is determined based on the evaluation values of the plurality of correction target value candidates. It is done to determine.
  • the reference governor when the predicted value of the specific state quantity predicted by the prediction model calculation process related to a certain corrected target value candidate violates the constraint, finally corrects the corrected target value candidate. Exclude from target value.
  • the reference governor cancels the remaining calculation of the prediction model calculation process related to the correction target value candidate when the prediction value of the specific state quantity violates the constraint during the prediction model calculation process related to a certain correction target value candidate. Can do.
  • unnecessary prediction model calculation processing is interrupted, and the calculation load required for correcting the target value is further reduced accordingly.
  • the prediction model calculation process executed by the reference governor it is possible to calculate the state value prediction values discretely at a preset prediction cycle.
  • an evaluation function that gives a desired evaluation value as the distance between the predicted value of the control output at each discrete time calculated by the prediction model calculation process and the original target value of the control output is smaller Can be used.
  • a correction target value candidate with the most desirable evaluation value can be determined as the final correction target value.
  • the correction target value candidate can be updated according to a predefined update rule.
  • a predefined update rule the direction of change in the evaluation value of the current correction target value candidate relative to the evaluation value of the previous correction target value candidate, and the direction of change in the current correction target value candidate relative to the previous correction target value candidate
  • the next correction target value candidate is determined by the combination.
  • the correction target value candidates are sequentially updated, preferably, if the evaluation value of the current correction target value candidate is a more desirable value than the evaluation value of the previous correction target value candidate, The correction target value candidate is provisionally determined as the final correction target value. If the evaluation value of the current correction target value candidate is not a more desirable value relative to the evaluation value of the previous correction target value candidate, The target correction target value is maintained as it is.
  • FIG. 3 is an equivalent modification of the target value tracking control structure shown in FIG. 2.
  • It is a flowchart which shows the algorithm of the reference governor employ
  • the control device is a control device that uses a diesel engine mounted on an automobile, more specifically, a diesel engine aftertreatment system as a control target plant.
  • FIG. 1 is a schematic view showing the configuration of a diesel engine aftertreatment system.
  • the aftertreatment system includes a DOC (diesel oxidation catalyst) and a DPF (diesel particulate removal device) in the exhaust passage, and a fuel addition valve in the exhaust port of the cylinder head.
  • a temperature sensor for measuring the DPF temperature (specifically, the DPF outlet gas temperature), which is a control output of the post-processing system, is attached downstream of the DPF in the exhaust passage.
  • the control device includes a control structure for causing the DPF temperature to follow the target value while satisfying each constraint imposed on the DPF temperature.
  • the control structure is the target value follow-up control structure shown in FIG.
  • the target value tracking control structure includes a target value map (MAP), a reference governor (RG), and a feedback controller.
  • the target value map outputs the target value r of the DPF temperature, which is a control output, when an exogenous input d indicating the operation condition of the control target plant is given.
  • the exogenous input d includes the exhaust gas mass flow rate, the atmospheric temperature, and the like. These physical quantities included in the exogenous input d may be measured values or estimated values.
  • the reference governor corrects the target value r so that the constraint imposed on the DPF temperature is satisfied, and outputs the corrected target value w of the DPF temperature.
  • z represents a specific state quantity having a restriction on a control input or a control output among the state quantities.
  • the restricted specific state quantity z means the DPF temperature as the control output.
  • An upper limit is set as a constraint on the DPF temperature. If the DPF temperature continues to rise, the DPF may be melted.
  • the upper limit value set as the constraint is a value that can prevent melting damage and ensure the reliability of the DPF.
  • the feedback controller acquires the state quantity x indicating the current value of the DPF temperature, and performs feedback control based on the deviation e between the correction target value w and the state quantity x.
  • the control input u to be given to the controlled plant is determined. Since the control target plant according to the present embodiment is an aftertreatment system, the amount of fuel added to the exhaust gas by the fuel addition valve, that is, the amount of fuel addition is used as the control input u.
  • the specification of the feedback controller is not limited, and a known feedback controller can be used. For example, a proportional-integral feedback controller can be used.
  • FIG. 3 is a diagram showing a feedforward structure obtained by equivalently modifying the target value tracking control structure shown in FIG.
  • the model of the closed loop system is expressed by the following model equation (1).
  • f and g are functions of the model equation.
  • K represents a discrete time corresponding to the sample time of the closed loop system.
  • the reference governor operates according to a programmed algorithm. According to this algorithm, the reference governor determines a candidate for the corrected target value w based on the given target value r. Then, each of the exogenous input d and the corrected target value candidate is input to the prediction model represented by the above formula (1) to calculate the future predicted value of the DPF temperature. The reference governor calculates the predicted value of the DPF temperature over a predetermined predicted horizon, and whether the predicted value of the DPF temperature violates the constraint, that is, whether the predicted value does not exceed the upper limit value of the DPF temperature. Determine for each value candidate. Then, a correction target value candidate closest to the original target value r within a range where the predicted value does not conflict with the constraint is determined as the final correction target value w.
  • the reference governor algorithm can be described in detail with reference to the flowchart of FIG. 4 and the accompanying explanatory diagrams of FIGS. Details of the reference governor algorithm will be described below with reference to the flowchart of FIG.
  • step S1 DPF temperature correction target value candidates are initialized.
  • the correction target value Trg_fin (k-1) output at the previous discrete time k-1 is used.
  • step S1 the number of iterations of the search for the correction target value candidate (the number of iterations) j is initialized to an initial value of 1.
  • the current correction target value candidate that is, the correction target value candidate at the iteration number j is denoted as Trg_mod (j).
  • step S2 the predicted number i of the DPF temperature using the prediction model is initialized to an initial value of 1.
  • step S3 prediction model calculation processing, that is, calculation of the predicted value of the DPF temperature using the prediction model is performed.
  • the predicted value T (j, i) of the DPF temperature at the number of predictions i is calculated using the prediction model based on the current corrected target value candidate Trg_mod (j) of the DPF temperature.
  • the interval of the discrete time of the prediction model, that is, the prediction cycle can be arbitrarily set.
  • FIG. 5 is a diagram illustrating an image of the prediction model calculation process, and illustrates an example in which the calculation of the DPF temperature prediction value is executed up to three times when the prediction cycle is set to 2 seconds.
  • the straight line drawn together with the broken line of the predicted DPF temperature in FIG. 5 is a straight line indicating the original target value (final target value) Treq of the DPF temperature.
  • step S4 the DPF reliability requirement is determined.
  • the reliability requirement is that the DPF temperature is not higher than the upper limit value that is a constraint.
  • the predicted DPF temperature value T (j, i) calculated in step S3 is compared with the upper limit value Tlimit. If the predicted DPF temperature value T (j, i) is smaller than the upper limit value Tlimit, the constraint is not violated. That is, it is determined that the reliability requirement is satisfied.
  • step S5 it is determined whether the number of predictions i has reached the target number of predictions Pend.
  • step S6 the prediction count i is incremented. Then, the process again proceeds to step S3, and the predicted value T (j, i) of the DPF temperature at the current prediction number i is calculated using the prediction model. Then, the processes of steps S3 to S6 are repeatedly executed until the prediction number i reaches the target prediction number Pend.
  • step S7 evaluation function calculation, that is, calculation of the evaluation value J (j) of the current correction target value candidate Trg_mod (j) is performed using a predefined evaluation function.
  • the evaluation value J (j) is most preferably zero.
  • the evaluation function that gives the evaluation value J (j) is specifically expressed by the following equation (2).
  • the map [Treq-T (j, i)] in the equation (2) is a map value determined from a map having a deviation between the final target value Treq and the predicted DPF temperature T (j, i) as an argument.
  • FIG. 6 shows the setting of the map used for calculating the evaluation value J (j). It is desirable that the DPF temperature predicted value T (j, i) is closer to the final target value Treq, and it is preferable that the DPF temperature predicted value T (j, i) does not exceed the final target value Treq. Therefore, in the map shown in FIG. 6, when the DPF temperature predicted value T (j, i) matches the final target value Treq, the map value becomes zero, and the DPF temperature predicted value T (j, i) becomes the final target value.
  • the map value is set to increase as the distance from Treq increases.
  • the distance between the predicted DPF temperature T (j, i) and the final target value Treq is greater when the predicted DPF temperature T (j, i) is larger than the final target value Treq. It is set so that the increment of the map value with respect to the increment of.
  • step S8 the correction target value Trg_fin (k) to be output at the discrete time k is updated.
  • step S8 the evaluation value J (j) of the corrected target value candidate Trg_mod (j) calculated this time and the corrected target value candidate Trg_mod ( A deviation J_dlt of the evaluation value J (j-1) of j-1) is calculated. Then, it is determined whether the deviation J_dlt is equal to or less than zero.
  • FIG. 7 is a diagram showing an image of the evaluation value calculation process, in which an example of changes in the evaluation value depending on the number of iterations is depicted.
  • the deviation J_dlt is greater than zero.
  • the deviation J_dlt being greater than zero means that the previous correction target value candidate Trg_mod (j-1) has a higher evaluation than the current correction target value candidate Trg_mod (j).
  • the deviation J_dlt is smaller than zero.
  • the deviation J_dlt being equal to or less than zero means that the current correction target value candidate Trg_mod (j) has a higher evaluation than the previous correction target value candidate Trg_mod (j-1).
  • step S9 the correction target value candidate Trg_mod (j) set this time is provisionally determined as the final correction target value Trg_fin (k).
  • the correction target value Trg_fin (k) is brought closer to the final target value Treq.
  • step S10 the correction target value Trg_fin (k) to be output is held as the previous provisional decision value. That is, the correction target value candidate closest to the final target value Treq so far is held as the final correction target value Trg_fin (k) as it is.
  • step S4 If it is determined in step S4 that the reliability requirement is not satisfied, the process skips steps S5-S8 and proceeds directly to step S10. That is, when the DPF temperature predicted value T (j, i) reaches the upper limit value Tlimit, the prediction model calculation based on the current corrected target value candidate Trg_mod (j) is immediately terminated. In this case, the calculation of the predicted DPF temperature at the remaining discrete times, that is, the discrete times from the prediction number i + 1 to the target prediction number Pend is cancelled. Then, the current correction target value candidate Trg_mod (j) is excluded from the target of the final correction target value Trg_fin (k), and in step S10, the value of the correction target value Trg_fin (k) remains the previous provisional decision value.
  • a correction target value candidate that causes the DPF temperature to violate the constraint is not suitable as a final correction target value. Therefore, there is no inconvenience even if the prediction model calculation related to the correction target value candidate is interrupted in the middle, but rather, the calculation load of the control device can be reduced.
  • step S11 it is determined whether or not the number of iterations j has reached a preset number of iterations Lend.
  • step S12 the correction target value candidate Trg_mod (j + 1) at the next iteration number j + 1 is determined. That is, the correction target value candidate used in the prediction model calculation is updated.
  • the evaluation value J (j) of the current correction target value candidate Trg_mod (j) with respect to the evaluation value J (j-1) of the previous correction target value candidate Trg_mod (j-1) The next correction target value candidate Trg_mod (j + 1) is determined by a combination of the change direction of the current correction target value candidate Trg_mod (j-1) with respect to the previous correction target value candidate Trg_mod (j-1). It is determined.
  • FIG. 8 is a table specifically showing the update rule for the correction target value candidate.
  • Trg_dlt in the table of FIG. 8 is calculated as a deviation between the current correction target value candidate Trg_mod (j) and the previous correction target value candidate Trg_mod (j ⁇ 1), as shown in the following equation (4). If the corrected target value candidate Trg_mod (j) has been updated to the higher side than the previous time, the deviation Trg_dlt will be greater than zero, and if the corrected target value candidate Trg_mod (j) has been updated to the lower side than the previous time, The deviation Trg_dlt is smaller than zero.
  • the next correction target value candidate Trg_mod (j + 1) is corrected to be further increased from the current value. That is, a value obtained by adding the positive correction amount mod (j + 1) to the current correction target value candidate Trg_mod (j) is set as the next correction target value candidate Trg_mod (j + 1).
  • the next modification amount mod (j + 1) is set to the same size as the current modification amount mod (j).
  • the initial value of the correction amount is a value obtained by multiplying the deviation between the final target value Treq and the initial value Trg_ini of the correction target value candidate by a predetermined coefficient of 1 or less.
  • the deviation Trg_dlt is a positive value and the deviation J_dlt is a positive value, that is, when the evaluation value deteriorates from the previous time by correcting the correction target value candidate Trg_mod (j) to the higher side than the previous time.
  • the next correction target value candidate Trg_mod (j + 1) is corrected to a lower side than the current value. That is, a value obtained by adding the negative correction amount mod (j + 1) to the current correction target value candidate Trg_mod (j) is set as the next correction target value candidate Trg_mod (j + 1).
  • the size of the next modification amount mod (j + 1) is set to a size obtained by multiplying the current modification amount mod (j-1) by a predetermined coefficient less than 1. That is, when the correction direction is the same direction, the magnitude of the correction amount mod (j + 1) is maintained, but when the correction direction is corrected in the reverse direction, the correction amount mod (j + 1) ) Is reduced in size.
  • the next time The correction target value candidate Trg_mod (j + 1) is corrected further to the lower side than the current value. That is, a value obtained by adding the negative correction amount mod (j + 1) to the current correction target value candidate Trg_mod (j) is set as the next correction target value candidate Trg_mod (j + 1).
  • the next modification amount mod (j + 1) is set to the same size as the current modification amount mod (j).
  • the correction target value candidate Trg_mod (j + 1) is corrected to an increase side from the current value. That is, a value obtained by adding the positive correction amount mod (j + 1) to the current correction target value candidate Trg_mod (j) is set as the next correction target value candidate Trg_mod (j + 1).
  • the size of the next modification amount mod (j + 1) is set to a size obtained by multiplying the current modification amount mod (j) by a predetermined coefficient less than 1.
  • Exceptions to the above update rule are cases where the DPF temperature predicted value T (j, i) at a certain number of times of prediction i has reached the upper limit value Tlimit, and thus proceeds directly from step S4 to step S10.
  • the next correction target value candidate Trg_mod (j + 1) is corrected to a lower side than the current value. That is, the next modification amount mod (j + 1) is a negative value, and the magnitude thereof is obtained by multiplying the magnitude of the current modification amount mod (j) by a predetermined coefficient less than 1.
  • the evaluation value J (j) of the current correction target value candidate Trg_mod (j) is set to the maximum value Jmax for the consistency of the calculation in the next update process.
  • step S12 after the correction target value candidate is updated as described above, the number of iterations j is incremented. Then, the process again proceeds to step S2, and the DPF temperature prediction number i using the prediction model is initialized to an initial value of 1. Then, the processes of steps S2-S12 are repeatedly executed until the number of iterations j reaches the scheduled number of iterations Lend.
  • step S13 the correction target value Trg_fin (k) that has been provisionally determined is formally determined as the final correction target value and is output to the feedback controller. Thereby, the correction target value determination process at the current discrete time k is completed. The correction target value Trg_fin (k) output this time is used as the initial value Trg_ini of the correction target value candidate at the next discrete time k + 1.
  • FIG. 9 is a diagram showing an image of the operation of the reference governor achieved by the above algorithm.
  • the upper part of FIG. 9 shows changes due to the number of iterations of the correction target value candidate Trg_mod, the middle part shows changes due to the number of iterations of the modification amount mod, and the lower part shows changes due to the number of iterations of the evaluation value J.
  • the correction target value candidate Trg_mod (1) set by the number of iterations 1 is an initial value, and is the value of the correction target value Trg_fin output last time.
  • the correction amount mod (2) set by the number of iterations 2 is an initial value, and is a value obtained by multiplying the deviation between the final target value Treq and the correction target value candidate Trg_mod (1) by a predetermined coefficient of 1 or less.
  • the correction target value candidate Trg_mod (2) is corrected to the increasing side by adding the positive correction amount mod (2) to the correction target value candidate Trg_mod (1). Is done.
  • the modification amount mod (3) of the number of iterations 3 is set to the same value as the modification amount mod (2), and the modification target value candidate Trg_mod (3) is further It is corrected to the increasing side.
  • the prediction model calculation when the number of iterations is 3 the predicted DPF temperature T (3, 2) exceeds the upper limit value Tlimit when the number of predictions is 2. For this reason, in order to cancel the useless prediction model calculation and reduce the calculation load of the control device, the prediction model calculation after the number of predictions 3 and after for the corrected target value candidate Trg_mod (3) is canceled, and the evaluation value J (3) is the maximum. Set to the value Jmax. In this case, the correction amount mod (4) of the number of iterations 4 is changed to a negative value, and the size thereof is made smaller than the correction amount mod (3).
  • the modification target value candidate Trg_mod (4) at the iteration number 4 is corrected to the decreasing side.
  • the modification amount mod (5) with the number of iterations of 5 is set to the same value as the modification amount mod (4), and the modification target value candidate Trg_mod (5) further Corrected to decrease.
  • the correction amount mod (6) of the number of iterations 6 is changed to a positive value, and the magnitude is larger than the correction amount mod (5). Is also made smaller.
  • the correction target value candidate Trg_mod (6) at the number of iterations 6 is corrected slightly to the increasing side.
  • the magnitude of the correction amount mod is reduced each time the correction direction of the correction target value candidate Trg_mod is changed from the increasing side to the decreasing side or from the decreasing side to the increasing side.
  • the correction target value candidate Trg_mod converges to a certain value.
  • the true DPF temperature may be higher than the DPF temperature predicted by the prediction model. Therefore, a margin for the prediction error may be added to the upper limit value of the DPF temperature predicted value so that the DPF temperature does not exceed the upper limit value due to the prediction error. In other words, the upper limit value may be set lower according to the prediction error so that the restriction becomes stricter by the amount of the prediction error. It is known that the prediction error increases as the number of prediction model calculation loops increases. Therefore, setting the upper limit value of the DPF temperature low according to the number of times of prediction is a preferable method for preventing conflicts with constraints.
  • the update of the corrected target value candidate is terminated.
  • the number of times the correction target value candidate is updated may be increased according to the decrease in the calculation load accompanying the cancellation of the calculation.
  • the correction target value candidates are sequentially updated according to the update rule.
  • a plurality of correction target value candidates may be set at regular temperature intervals based on the original target value.
  • a prediction model calculation process and an evaluation value calculation process are executed based on each of the plurality of correction target value candidates, and a final determination is made from among the plurality of correction target value candidates based on a comparison between the evaluation values.
  • a corrected target value may be selected.
  • a restriction is imposed only on the DPF temperature, but a restriction may also be imposed on the DOC temperature, the fuel addition amount, or other state quantities.
  • prediction over the prediction horizon may be executed for all of the specific state quantities for which restrictions are imposed among the state quantities of the control target plant.
  • step S4 when at least one of the specific state quantities to which the constraint is imposed violates the constraint, the prediction model calculation is stopped and the remaining calculations are canceled.
  • the evaluation function used in the above algorithm is only an example.
  • any evaluation function may be used as long as the distance between the predicted value of the DPF temperature at each discrete time calculated by the prediction model calculation process and the original target value is smaller, and a desired evaluation value is given.
  • the determination of conflict with the constraint is separately performed in step S3, and therefore it is not necessary to design an evaluation function considering the constraint such as the penalty method.
  • the correction target value candidate that may cause a conflict with the constraint is surely excluded from the target of the final correction target value, so that the conflict with the constraint is further reduced compared to the penalty method. It can be surely prevented.
  • the plant control device is applied to the aftertreatment system of a diesel engine.
  • the control target plant can be a diesel engine body.
  • the control input can be a variable nozzle opening, and the control output can be a supercharging pressure. That is, the present invention can be applied to supercharging pressure control of a diesel engine.
  • the control input can be an EGR valve opening, and the control output can be an EGR rate. That is, the present invention can also be applied to EGR control of a diesel engine.
  • control input can be a variable nozzle opening, an EGR valve opening, and a diesel throttle opening
  • control output can be a supercharging pressure and an EGR rate. That is, the present invention can also be applied to cooperative control of the supercharging pressure and the EGR rate in a diesel engine.
  • the plant to which the plant control apparatus according to the present invention is applied is not limited to a diesel engine.
  • the present invention can be applied to other in-vehicle power plants such as gasoline engines and hybrid systems, as well as fuel cell systems.
  • any plant that can be controlled using a reference governor and a feedback controller can be applied to a wide range of plants including stationary plants.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medical Informatics (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Feedback Control In General (AREA)

Abstract

 本発明に係るプラント制御装置によれば、リファレンスガバナは、制御出力の修正目標値候補に基づき、プラントとフィードバックコントローラとを含む閉ループ系がモデル化された予測モデルを用いて、制約が課せられた特定状態量を含むプラントの状態量の予測値を有限の予測ホライズンにわたって順次計算する。その際、ある修正目標値候補に関して特定状態量の予測値が制約に抵触した場合、リファレンスガバナは、当該修正目標値候補を最終的な修正目標値の対象から除外する。これにより、制約の充足性は担保されつつ制御出力の目標値の修正に要する演算負荷は低減される。

Description

プラント制御装置
 本発明は、プラントの制御装置に関し、詳しくは、プラントの状態量に課せられる制約が充足されるようにリファレンスガバナを用いてプラントの制御出力の目標値を修正する制御装置に関する。
 一般的なプラント制御装置は、プラントの制御出力に関して目標値が与えられた場合、同制御出力を目標値に追従させるようにフィードバック制御によってプラントの制御入力を決定するように構成されている。ただし、実際のプラントの制御においては、プラントの状態量に関してハード上或いは制御上の様々な制約が存在している場合が多い。それらの制約が充足されない場合、ハードの破損や制御性能の低下が生じるおそれがある。制約の充足性は、制御出力の目標値に対する追従性と同じく、プラントの制御において求められる重要な性能の1つである。
 リファレンスガバナは上記要求を満たすための1つの有効な手段である。リファレンスガバナは制御対象であるプラントとフィードバックコントローラとを含む閉ループ系(フィードバック制御システム)をモデル化した予測モデルを備え、制約が課せられている状態量の将来値を予測モデルによって予測する。そして、状態量の予測値とそれに課せられた制約とに基づいてプラントの制御量の目標値を修正する。
 リファレンスガバナをプラントの制御に適用した先行技術の例としては、下記の特許文献1に開示された先行技術を挙げることができる。この先行技術は多段圧延装置における圧延材の張力制御に関するものである。特許文献1に開示された先行技術では、圧延材の張力の時間変化を規定した目標軌道データがリファレンスガバナによって予め演算され、圧延材の張力実績値と目標軌道データとの偏差に基づいて圧延材の張力が制御される。
 上記公報に開示された発明では、リファレンスガバナによるオフライン計算が行われている。多段圧延装置における圧延材の張力の目標値は予め与えられているため、リファレンスガバナによる目標値の修正はオフラインで行うことができる。しかし、プラントの種類によっては、オフライン計算ではなくオンライン計算が必要とされる場合がある。自動車の動力装置として用いられる内燃機関はそのようなプラントの一種である。内燃機関では、運転条件によって刻々と目標値が変化することから、状態量に課せられた制約を満たすためにはオンライン計算による目標値の修正が必要となる。ところが、リファレンスガバナのオンライン計算に掛かる演算量は多大であるため、リファレンスガバナによるオンライン計算を制御装置に実装する場合、制御装置には多大な演算負荷がかかってしまう。
特開2010-253501号公報
 本発明は、上述のような課題に鑑みてなされたもので、プラントの状態量に課せられた制約が充足されるようにリファレンスガバナを用いて制御出力の目標値を修正するにあたり、制御装置にかかる演算負荷を低減することを目的とする。
 本発明に係るプラント制御装置はフィードバックコントローラとリファレンスガバナとを備える。フィードバックコントローラは、プラントの制御出力を目標値に近づけるようにフィードバック制御によってプラントの制御入力を決定するように構成される。制御対象であるプラントの種別や構成には限定はない。リファレンスガバナは、フィードバックコントローラに与えられる目標値を修正するように構成される。
 リファレンスガバナは、少なくとも予測モデル演算処理と評価関数演算処理と修正目標値決定処理とを実行することができる。予測モデル演算処理によれば、制御出力の修正目標値候補に基づき、プラントとフィードバックコントローラとを含む閉ループ系がモデル化された予測モデルを用いて、制約が課せられた特定状態量を含むプラントの状態量の予測値を有限の予測ホライズンにわたって順次計算することが行われる。評価関数演算処理によれば、予測モデル演算で得られた計算結果に基づき、予め定義された評価関数を用いて、修正目標値候補の評価値を計算することが行われる。修正目標値決定処理によれば、予測モデル演算処理と評価関数演算処理とを複数の修正目標値候補に関して実行し、複数の修正目標値候補のそれぞれの評価値に基づいて最終的な修正目標値を決定することが行われる。
 本発明に係るプラント制御装置では、リファレンスガバナは、ある修正目標値候補に関する予測モデル演算処理により予測された特定状態量の予測値が制約に抵触した場合、当該修正目標値候補を最終的な修正目標値の対象から除外する。このような機能をリファレンスガバナが備えることにより、リファレンスガバナによる目標値の修正に要する演算負荷は低減される。
 さらに、リファレンスガバナは、ある修正目標値候補に関する予測モデル演算処理の途中で特定状態量の予測値が制約に抵触した場合、当該修正目標値候補に関する予測モデル演算処理の残りの計算をキャンセルすることができる。このような機能をリファレンスガバナがさらに備えることにより、必要のない予測モデル演算処理は途中で打ち切られるようになって、その分、目標値の修正に要する演算負荷はさらに低減される。なお、リファレンスガバナにより実行される予測モデル演算処理では、予め設定された予測周期で離散的に状態量の予測値を計算することができる。この場合、上記機能によれば、ある修正目標値候補に関する予測モデル演算処理において最初の離散時刻から最終の離散時刻までの間の途中の離散時刻で特定状態量の予測値が制約に抵触したとき、残りの離散時刻における状態量の予測値の計算がキャンセルされる。
 リファレンスガバナにより実行される評価関数演算処理では、予測モデル演算処理で計算された各離散時刻における制御出力の予測値と制御出力の本来の目標値との距離が小さいほど望ましい評価値を与える評価関数を使用することができる。また、リファレンスガバナにより実行される修正目標値決定処理では、評価値が最も望ましい値となる修正目標値候補を最終的な修正目標値として決定することができる。
 リファレンスガバナにより実行される修正目標値決定処理では、予め定義された更新規則に従って修正目標値候補を更新することができる。好ましい更新規則によれば、前回の修正目標値候補の評価値に対する今回の修正目標値候補の評価値の変化の方向と、前回の修正目標値候補に対する今回の修正目標値候補の変化の方向との組み合わせによって次回の修正目標値候補が決定される。また、修正目標値候補を順次更新していくのであれば、好ましくは、前回の修正目標値候補の評価値に対して今回の修正目標値候補の評価値がより望ましい値であれば、今回の修正目標値候補を最終的な修正目標値として仮決定し、前回の修正目標値候補の評価値に対して今回の修正目標値候補の評価値がより望ましい値でなければ、前回仮決定した最終的な修正目標値をそのまま保持する。
本発明の実施の形態に係るプラント制御装置が適用されるディーゼルエンジンの後処理システムの構成を示す図である。 本発明の実施の形態に係るプラント制御装置の目標値追従制御構造を示す図である。 図2に示す目標値追従制御構造を等価変形した図である。 本発明の実施の形態で採用されたリファレンスガバナのアルゴリズムを示すフローチャートである。 本発明の実施の形態で採用されたリファレンスガバナによる予測モデル演算処理のイメージを示す図である。 本発明の実施の形態で採用されたリファレンスガバナによる評価値の計算に使用されるマップの設定を示す図である。 本発明の実施の形態で採用されたリファレンスガバナによる評価値演算処理のイメージを示す図である。 本発明の実施の形態で採用されたリファレンスガバナによる修正目標値候補の更新規則を具体的に示した表である。 本発明の実施の形態で採用されたリファレンスガバナの動作イメージを示す図である。
 以下、本発明の実施の形態について図を用いて説明する。
 本実施の形態に係る制御装置は、自動車に搭載されるディーゼルエンジン、より詳しくは、ディーゼルエンジンの後処理システムを制御対象プラントとする制御装置である。図1はディーゼルエンジンの後処理システムの構成を示す概略図である。後処理システムは、排気通路にDOC(ディーゼル酸化触媒)とDPF(ディーゼル微粒子除去装置)とを備え、シリンダヘッドの排気ポートに燃料添加弁を備えている。排気通路におけるDPFの下流には、後処理システムの制御出力であるDPF温度(詳しくは、DPFの出口ガス温度)を計測するための温度センサが取り付けられている。
 本実施の形態に係る制御装置は、DPF温度に課せられた各制約を満足させながら、DPF温度を目標値に追従させるための制御構造を備えている。その制御構造が図2に示す目標値追従制御構造である。本実施の形態に係る目標値追従制御構造は、目標値マップ(MAP)、リファレンスガバナ(RG)、及び、フィードバックコントローラを備える。
 目標値マップは、制御対象プラントの運転条件を示す外生入力dが与えられると、制御出力であるDPF温度の目標値rを出力する。外生入力dには、排気ガスの質量流量や大気温度等が含まれる。外生入力dに含まれるこれらの物理量は計測値でもよいし推定値でもよい。
 リファレンスガバナは、DPF温度の目標値rが与えられると、DPF温度に課せられた制約が満たされるように目標値rを修正し、DPF温度の修正目標値wを出力する。図2中に示すzは制御入力や制御出力を状態量のうち制約のある特定状態量を表現している。ここでは、制約のある特定状態量zは制御出力であるDPF温度を意味するものとする。DPF温度には制約として上限値が設けられている。DPF温度が上昇し続けるとDPFの溶損に至るおそれがある。制約として設定された上限値は、溶損を防いでDPFの信頼性を担保することのできる値とされている。
 フィードバックコントローラは、リファレンスガバナからDPF温度の修正目標値wが与えられると、DPF温度の現在値を示す状態量xを取得し、修正目標値wと状態量xとの偏差eに基づくフィードバック制御によって制御対象プラントに与える制御入力uを決定する。本実施の形態に係る制御対象プラントは後処理システムであるので、制御入力uには、燃料添加弁によって排気ガス中に添加される燃料量、すなわち、燃料添加量が用いられる。フィードバックコントローラの仕様に限定はなく、公知のフィードバックコントローラを用いることができる。例えば、比例積分フィードバックコントローラを用いることが可能である。
 図3は図2に示す目標値追従制御構造を等価変形して得られたフィードフォワード構造を示す図である。図2において破線で囲まれた閉ループ系は既に設計済みであるとして、図3に示すフィードフォワード構造では1つのモデルとされている。閉ループ系のモデルは次のモデル式(1)で表される。式(1)において、f,gはモデル式の関数である。また、kは閉ループ系のサンプル時間に対応した離散時刻を表している。
Figure JPOXMLDOC01-appb-M000001
 リファレンスガバナは、プログラムされたアルゴリズムに従って動作する。このアルゴリズムによれば、リファレンスガバナは、与えられた目標値rに基づいて修正目標値wの候補を決定する。そして、外生入力dと修正目標値候補のそれぞれを上記の式(1)で表される予測モデルに入力してDPF温度の将来の予測値を計算する。リファレンスガバナは予め定められた予測ホライズンにわたってDPF温度の予測値を計算し、DPF温度の予測値が制約に抵触するかどうか、つまり、予測値がDPF温度の上限値を超えていないかどうか修正目標値候補ごとに判定する。そして、予測値が制約に抵触しない範囲で本来の目標値rに最も近い修正目標値候補を最終的な修正目標値wとして決定する。
 リファレンスガバナアルゴリズムは、詳しくは、図4のフローチャートと付随する図5-図9の説明図とによって説明することができる。以下、図4のフローチャートに沿ってリファレンスガバナアルゴリズムの詳細を説明する。
 図4のフローチャートに示すリファレンスガバナアルゴリズムは、閉ループ系のサンプル時間ごとに繰り返し実行される。ステップS1では、DPF温度の修正目標値候補が初期化される。修正目標値候補の初期値Trg_iniには、前回の離散時刻k-1において出力された修正目標値Trg_fin(k-1)が用いられる。また、ステップS1では、修正目標値候補の探索を反復して行った回数(反復回数)jが初期値の1に初期化される。なお、以下では今回の修正目標値候補、すなわち、反復回数jにおける修正目標値候補をTrg_mod(j)と表記する。
 ステップS2では、予測モデルを用いたDPF温度の予測回数iが初期値の1に初期化される。なお、予測回数iはリファレンスガバナの予測周期に対応した離散時刻を意味し、i=1に対応する離散時刻からi=Pendに対応する離散時刻までの期間が予測ホライズンである。Pendは目標予測回数であって、予測ホライズンの最終の離散時刻に対応する。
 ステップS3では、予測モデル演算処理、すなわち、予測モデルを用いたDPF温度の予測値の計算が行われる。予測モデル演算処理によれば、DPF温度の今回の修正目標値候補Trg_mod(j)に基づき、予測モデルを用いて予測回数iにおけるDPF温度の予測値T(j,i)が計算される。なお、予測モデルの離散時刻の間隔、つまり、予測周期は任意に設定することができる。図5は、予測モデル演算処理のイメージを示す図であって、予測周期が2秒に設定されている場合にDPF温度予測値の演算が3回まで実行された例が描かれている。なお、図5においてDPF温度予測値の折線と併せて描かれている直線は、DPF温度の本来の目標値(最終目標値)Treqを示す直線である。
 ステップS4では、DPFの信頼性要件についての判定が行われる。信頼性要件とは、DPF温度が制約である上限値以上になっていないことである。ステップS3で計算されたDPF温度予測値T(j,i)と上限値Tlimitとが比較され、DPF温度予測値T(j,i)が上限値Tlimitよりも小さければ、制約に抵触していない、つまり、信頼性要件が満たされていると判定される。
 信頼性要件が満たされている場合、処理はステップS5に進む。ステップS5では、予測回数iが目標予測回数Pendに達したかどうか判定される。
 予測回数iが目標予測回数Pend未満の場合、処理はステップS6に進む。ステップS6では、予測回数iがインクリメントされる。そして、処理は再びステップS3に進み、予測モデルを用いて今回の予測回数iにおけるDPF温度の予測値T(j,i)が計算される。そして、予測回数iが目標予測回数Pendに達するまで、ステップS3-S6の処理が繰り返し実行される。
 予測回数iが目標予測回数Pendに達した場合、処理はステップS7に進む。ステップS7では、評価関数演算、すなわち、予め定義された評価関数を用いて今回の修正目標値候補Trg_mod(j)の評価値J(j)を計算することが行われる。評価値J(j)はゼロが最も望ましい値であり、評価値J(j)が大きいほど修正目標値候補Trg_mod(j)の評価は低くなる。評価値J(j)を与える評価関数は、具体的には以下の式(2)で表される。式(2)におけるmap[Treq-T(j,i)]は、最終目標値TreqとDPF温度予測値T(j,i)との偏差を引数とするマップから決められるマップ値である。
Figure JPOXMLDOC01-appb-M000002
 図6は、評価値J(j)の計算に使用されるマップの設定を示している。DPF温度予測値T(j,i)は最終目標値Treqに近いほど望ましく、また、最終目標値Treqを超えないほうが望ましい。このため、図6に示すマップでは、DPF温度予測値T(j,i)が最終目標値Treqに一致するときにマップ値はゼロとなり、DPF温度予測値T(j,i)が最終目標値Treqから離れるにつれてマップ値が大きくなるように設定されている。また、このマップでは、DPF温度予測値T(j,i)が最終目標値Treqより大きい場合のほうが、小さい場合よりも、DPF温度予測値T(j,i)と最終目標値Treqとの距離の増分に対するマップ値の増分が大きくなるように設定されている。
 ステップS8-S10では、離散時刻kにおいて出力すべき修正目標値Trg_fin(k)の更新が行われる。まず、ステップS8では、以下の式(3)に示すように、今回計算された修正目標値候補Trg_mod(j)の評価値J(j)と、反復回数j-1における修正目標値候補Trg_mod(j-1)の評価値J(j-1)との偏差J_dltが計算される。そして、偏差J_dltがゼロ以下かどうか判定される。
Figure JPOXMLDOC01-appb-M000003
 図7は、評価値演算処理のイメージを示す図であって、反復回数による評価値の変化の例が描かれている。図7におけるcase1のように前回の評価値J(j-1)よりも今回の評価値J(j)のほうが大きい場合、偏差J_dltはゼロより大きくなる。偏差J_dltがゼロより大きいことは、今回の修正目標値候補Trg_mod(j)よりも前回の修正目標値候補Trg_mod(j-1)の方が評価が高いことを意味する。一方、case2のように前回の評価値J(j-1)よりも今回の評価値J(j)のほうが小さい場合、偏差J_dltはゼロよりも小さくなる。偏差J_dltがゼロ以下であることは、今回の修正目標値候補Trg_mod(j)の方が前回の修正目標値候補Trg_mod(j-1)よりも評価が高いことを意味する。
 偏差J_dltがゼロ以下の場合、処理はステップS9に進む。ステップS9では今回設定された修正目標値候補Trg_mod(j)が最終的な修正目標値Trg_fin(k)として仮決定される。より評価が高い修正目標値候補へと修正目標値Trg_fin(k)の値を更新していくことにより、修正目標値Trg_fin(k)は最終目標値Treqへと近づけられていく。
 偏差J_dltがゼロより大きい場合、処理はステップS10に進む。ステップS10では、出力すべき修正目標値Trg_fin(k)の値は前回の仮決定値のまま保持される。つまり、現在までにおいて最終目標値Treqに最も近い修正目標値候補がそのまま最終的な修正目標値Trg_fin(k)として保持される。
 また、ステップS4において信頼性要件が満たされていないと判定された場合、処理はステップS5-S8をスキップしてステップS10に直接進む。つまり、DPF温度予測値T(j,i)が上限値Tlimitに達したら、今回の修正目標値候補Trg_mod(j)に基づく予測モデル演算は直ちに打ち切られる。この場合、残りの離散時刻、つまり、予測回数i+1から目標予測回数Pendまでの離散時刻におけるDPF温度予測値の計算はキャンセルされる。そして、今回の修正目標値候補Trg_mod(j)は最終的な修正目標値Trg_fin(k)の対象から除外され、ステップS10では、修正目標値Trg_fin(k)の値は前回の仮決定値のまま保持される。DPF温度を制約に抵触させるような修正目標値候補は、最終的な修正目標値としては相応しくない。よって、当該修正目標値候補に係る予測モデル演算を途中で打ち切ったとしても不都合はなく、むしろ、それにより制御装置の演算負荷を低減することができる。
 ステップS9或いはステップS10の後、処理はステップS11に進む。ステップS11では、反復回数jが予め設定された予定反復回数Lendに達したかどうか判定される。
 反復回数jが予定反復回数Lend未満の場合、処理はステップS12に進む。ステップS12では、次回の反復回数j+1における修正目標値候補Trg_mod(j+1)が決定される。つまり、予測モデル演算で使用する修正目標値候補の更新が行われる。本アルゴリズムによれば、基本的には、前回の修正目標値候補Trg_mod(j-1)の評価値J(j-1)に対する今回の修正目標値候補Trg_mod(j)の評価値J(j)の変化の方向と、前回の修正目標値候補Trg_mod(j-1)に対する今回の修正目標値候補Trg_mod(j)の変化の方向との組み合わせによって次回の修正目標値候補Trg_mod(j+1)が決定される。
 図8は、修正目標値候補の更新規則を具体的に示した表である。図8の表におけるTrg_dltは、以下の式(4)に示すように、今回の修正目標値候補Trg_mod(j)と前回の修正目標値候補Trg_mod(j-1)との偏差として算出される。修正目標値候補Trg_mod(j)が前回よりも増側に更新されていれば、偏差Trg_dltはゼロより大きくなり、修正目標値候補Trg_mod(j)が前回よりも減側に更新されていれば、偏差Trg_dltはゼロより小さくなる。
Figure JPOXMLDOC01-appb-M000004
 図8の表によれば、偏差Trg_dltが正の値で偏差J_dltが負の値の場合、つまり、 修正目標値候補Trg_mod(j)を前回よりも増側に補正したことにより評価値が前回よりも好転した場合には、次回の修正目標値候補Trg_mod(j+1)は今回値よりもさらに増側に補正される。つまり、今回の修正目標値候補Trg_mod(j)に正値の修正量mod(j+1)を加算した値が、次回の修正目標値候補Trg_mod(j+1)として設定される。次回の修正量mod(j+1)の大きさは、今回の修正量mod(j)と同じ大きさに設定される。なお、修正量の初期値は、最終目標値Treqと修正目標値候補の初期値Trg_iniとの偏差に1以下の所定の係数を乗じた値とされている。
 一方、偏差Trg_dltが正の値で偏差J_dltが正の値の場合、つまり、修正目標値候補Trg_mod(j)を前回よりも増側に補正したことにより評価値が前回よりも悪化した場合には、次回の修正目標値候補Trg_mod(j+1)は今回値よりも減側に補正される。つまり、今回の修正目標値候補Trg_mod(j)に負値の修正量mod(j+1)を加算した値が、次回の修正目標値候補Trg_mod(j+1)として設定される。次回の修正量mod(j+1)の大きさは、今回の修正量mod(j-1)の大きさに1未満の所定の係数を乗じた大きさとされる。つまり、補正の方向が同方向である場合には修正量mod(j+1)の大きさは維持されるが、補正の方向を逆方向に修正する場合には、修正量mod(j+1)の大きさは小さくされる。
 偏差Trg_dltが負の値で偏差J_dltが負の値の場合、つまり、修正目標値候補Trg_mod(j)を前回よりも減側に補正したことにより評価値が前回よりも好転した場合には、次回の修正目標値候補Trg_mod(j+1)は今回値よりもさらに減側に補正される。つまり、今回の修正目標値候補Trg_mod(j)に負値の修正量mod(j+1)を加算した値が、次回の修正目標値候補Trg_mod(j+1)として設定される。次回の修正量mod(j+1)の大きさは、今回の修正量mod(j)と同じ大きさに設定される。
 偏差Trg_dltが負の値で偏差J_dltが正の値の場合、つまり、修正目標値候補Trg_mod(j)を前回よりも減側に補正したことにより評価値が前回よりも悪化した場合には、次回の修正目標値候補Trg_mod(j+1)は今回値よりも増側に補正される。つまり、今回の修正目標値候補Trg_mod(j)に正値の修正量mod(j+1)を加算した値が、次回の修正目標値候補Trg_mod(j+1)として設定される。次回の修正量mod(j+1)の大きさは、今回の修正量mod(j)の大きさに1未満の所定の係数を乗じた大きさとされる。
 上記更新規則の例外は、ある予測回数iにおけるDPF温度予測値T(j,i)が上限値Tlimitに達したためにステップS4から直接ステップS10に進んだケースである。このケースでは、次回の修正目標値候補Trg_mod(j+1)は今回値よりも減側に補正される。つまり、次回の修正量mod(j+1)は負値であり、その大きさは今回の修正量mod(j)の大きさに1未満の所定の係数を乗じた大きさとされる。また、このケースでは、次回の更新処理における演算の整合性のため、今回の修正目標値候補Trg_mod(j)の評価値J(j)が最大値Jmaxに定められる。
 ステップS12では、上記のように修正目標値候補の更新が行われた後、反復回数jがインクリメントされる。そして、処理は再びステップS2に進み、予測モデルを用いたDPF温度の予測回数iが初期値の1に初期化される。そして、反復回数jが予定反復回数Lendに達するまで、ステップS2-S12の処理が繰り返し実行される。
 反復回数jが予定反復回数Lendに達した場合、処理はステップS13に進む。ステップS13では、仮決定されていた修正目標値Trg_fin(k)が最終的な修正目標値として正式決定され、フィードバックコントローラに出力される。これにより、今回の離散時刻kにおける修正目標値決定処理が完了する。今回出力された修正目標値Trg_fin(k)は次回の離散時刻k+1において修正目標値候補の初期値Trg_iniとして用いられる。
 図9は、上述のアルゴリズムによって達成されるリファレンスガバナの動作のイメージを示す図である。図9の上段は修正目標値候補Trg_modの反復回数による変化を示し、中段は修正量modの反復回数による変化を示し、下段は評価値Jの反復回数による変化を示している。反復回数1で設定される修正目標値候補Trg_mod(1)は初期値であり、前回出力された修正目標値Trg_finの値とされる。反復回数2で設定される修正量mod(2)は初期値であり、最終目標値Treqと修正目標値候補Trg_mod(1)との偏差に1以下の所定の係数を乗じた値とされる。
 図9に示す例では、反復回数2のとき、修正目標値候補Trg_mod(1)に正値の修正量mod(2)が加えられることで、修正目標値候補Trg_mod(2)は増側に補正される。その結果、評価値J(2)が前回値よりも減少した場合、反復回数3の修正量mod(3)は修正量mod(2)と同値とされ、修正目標値候補Trg_mod(3)はさらに増側に補正される。
  図9に示す例では、反復回数3のときの予測モデル演算において、予測回数2のときにDPF温度予測値T(3,2)が上限値Tlimitを超えている。このため、無駄な予測モデル演算は打ち切って制御装置の演算負荷を低減すべく、修正目標値候補Trg_mod(3)に関する予測回数3以降の予測モデル演算はキャンセルされ、評価値J(3)は最大値Jmaxに設定される。この場合、反復回数4の修正量mod(4)は負値に変更されるとともに、その大きさは修正量mod(3)の大きさよりも小さくされる。
 修正量mod(4)が負値とされることで、反復回数4における修正目標値候補Trg_mod(4)は減側に補正される。その結果、評価値J(4)が前回値よりも減少した場合、反復回数5の修正量mod(5)は修正量mod(4)と同値とされ、修正目標値候補Trg_mod(5)はさらに減側に補正される。その補正によって評価値J(5)が前回値よりも増大した場合、反復回数6の修正量mod(6)は正値に変更されるとともに、その大きさは修正量mod(5)の大きさよりも小さくされる。これにより、反復回数6における修正目標値候補Trg_mod(6)は僅かに増側に補正される。このように、修正目標値候補Trg_modの補正の方向が増側から減側へ、或いは減側から増側へ変更されるごとに補正量modの大きさは小さくされる。これにより、修正目標値候補Trg_modはある一定の値に収束していくことになる。
 以上、本発明の実施の形態の1つについて説明した。ただし、本発明は上述の実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形して実施することができる。例えば、以下のような変形例を採ることができる。
 予測モデルには予測誤差が含まれるため、予測モデルで予測されるDPF温度よりも真のDPF温度のほうが高いことはあり得る。よって、予測誤差によってDPF温度が上限値を超えてしまうことのないよう、DPF温度予測値の上限値に予測誤差に対する余裕度を加えても良い。つまり、予測誤差の分だけ制約を厳しくするように、予測誤差に応じて上限値を低く設定しても良い。なお、予測誤差は予測モデル演算のループ回数が進むほど拡大することが分かっている。よって、予測回数に応じてDPF温度の上限値を低く設定することは、制約への抵触を防止する上で好ましい方法である。
 上述のアルゴリズムによれば、反復回数が予定反復回数に達したら修正目標値候補の更新は終了される。しかし、その途中、制約への抵触により予測モデル演算が途中でキャンセルされている場合には、計算のキャンセルに伴う演算負荷の減少分に応じて修正目標値候補の更新回数を増やしてもよい。修正目標値候補の更新回数を増やすことで、より良い修正目標値を探索することが可能になり、DPF温度の制御精度を向上させることができる。
 上述のアルゴリズムによれば、修正目標値候補は更新規則に従って順次更新される。しかし、一度に複数の修正目標値候補を設定することもできる。例えば、本来の目標値を基準にして一定の温度間隔で複数の修正目標値候補を設定してもよい。この場合、それら複数の修正目標値候補のそれぞれに基づいて予測モデル演算処理と評価値演算処理とを実行し、評価値間の比較に基づいてそれら複数の修正目標値候補の中から最終的な修正目標値を選定すればよい。
 上述のアルゴリズムではDPF温度のみに制約が課せられているが、DOC温度や燃料添加量或いはその他の状態量にも制約が課せられていてもよい。この場合、ステップS3では、制御対象プラントの状態量のうち制約が課せられている特定状態量の全てに関して予測ホライズンにわたる予測を実行すればよい。そして、ステップS4では、制約が課せられている特定状態量の少なくとも1つが制約に抵触したら、予測モデル演算を停止して残りの計算をキャンセルすればよい。
 上述のアルゴリズムで用いられている評価関数はあくまでも一例である。好ましくは、予測モデル演算処理で計算された各離散時刻におけるDPF温度の予測値と本来の目標値との距離が小さいほど望ましい評価値を与える評価関数であればよい。上述のアルゴリズムによれば、制約への抵触の判定はステップS3で別途行われるので、例えばペナルティ法のような制約を考慮した評価関数の設計は行わなくてよい。また、上述のアルゴリズムによれば、制約への抵触が起こり得る修正目標値候補は最終的な修正目標値の対象から確実に除外されるので、ペナルティ法などに比較して制約への抵触をより確実に防止することができる。
 上述の実施の形態では、本発明に係るプラント制御装置をディーゼルエンジンの後処理システムに適用した。しかし、本発明に係るプラント制御装置は、制御対象プラントをディーゼルエンジン本体とすることができる。制御対象プラントがディーゼルエンジン本体である場合、制御入力を可変ノズル開度とし、制御出力を過給圧とすることができる。つまり、本発明はディーゼルエンジンの過給圧制御に適用することができる。また、制御入力をEGR弁開度とし、制御出力をEGR率とすることができる。つまり、本発明はディーゼルエンジンのEGR制御に適用することもできる。さらに、制御入力を可変ノズル開度とEGR弁開度とディーゼルスロットル開度とし、制御出力を過給圧とEGR率とすることができる。つまり、本発明はディーゼルエンジンにおける過給圧とEGR率の協調制御に適用することもできる。
 さらに、本発明に係るプラント制御装置が適用されるプラントはディーゼルエンジンのみに限定されない。例えば、ガソリンエンジンやハイブリッドシステム等の他の車載動力プラントの他、燃料電池システムにも適用することができる。さらに、リファレンスガバナとフィードバックコントローラを用いて制御を行うことができるプラントであれば、定置型プラントも含めて広い範囲のプラントに適用することができる。

Claims (8)

  1.  プラントの制御出力を目標値に近づけるようにフィードバック制御によって前記プラントの制御入力を決定するフィードバックコントローラと、
     前記フィードバックコントローラに与えられる目標値を修正するリファレンスガバナとを備え、
     前記リファレンスガバナは、
     前記制御出力の修正目標値候補に基づき、前記プラントと前記フィードバックコントローラとを含む閉ループ系がモデル化された予測モデルを用いて、制約が課せられた特定状態量を含む前記プラントの状態量の予測値を有限の予測ホライズンにわたって順次計算する予測モデル演算処理と、
     前記予測モデル演算処理で得られた計算結果に基づき、予め定義された評価関数を用いて、前記修正目標値候補の評価値を計算する評価関数演算処理と、
     前記予測モデル演算処理と前記評価関数演算処理とを複数の修正目標値候補に関して実行し、前記複数の修正目標値候補のそれぞれの評価値に基づいて最終的な修正目標値を決定する修正目標値決定処理と、を実行するように構成され、
     前記リファレンスガバナは、ある修正目標値候補に関する予測モデル演算処理により予測された前記特定状態量の予測値が制約に抵触した場合には、当該修正目標値候補を最終的な修正目標値の対象から除外することを特徴とするプラント制御装置。
  2.  前記リファレンスガバナは、ある修正目標値候補に関する予測モデル演算処理の途中で前記特定状態量の予測値が制約に抵触した場合には、当該修正目標値候補に関する予測モデル演算処理の残りの計算をキャンセルすることを特徴とする請求項1に記載のプラント制御装置。
  3.  前記リファレンスガバナは、前記予測モデル演算処理では、予め設定された予測周期で離散的に前記状態量の予測値を計算し、
     前記リファレンスガバナは、ある修正目標値候補に関する予測モデル演算処理において最初の離散時刻から最終の離散時刻までの間の途中の離散時刻で前記特定状態量の予測値が制約に抵触した場合には、残りの離散時刻における前記状態量の予測値の計算をキャンセルすることを特徴とする請求項2に記載のプラント制御装置。
  4.  前記リファレンスガバナは、前記予測モデル演算処理に係る離散時刻が進むにつれて、前記特定状態量の予測値が制約に抵触したかどうか判定するための閾値をより厳しい値に変更することを特徴とする請求項3に記載のプラント制御装置。
  5.  前記リファレンスガバナは、前記評価関数演算処理では、前記予測モデル演算処理で計算された各離散時刻における前記制御出力の予測値と前記制御出力の本来の目標値との距離が小さいほど望ましい評価値を与える評価関数を使用し、
     前記リファレンスガバナは、前記修正目標値決定処理では、前記評価値が最も望ましい値となる修正目標値候補を最終的な修正目標値として決定することを特徴とする請求項3又は4に記載のプラント制御装置。
  6.  前記リファレンスガバナは、前記修正目標値決定処理では、予め定義された更新規則に従って前記修正目標値候補を更新し、
     前記更新規則によれば、前回の修正目標値候補の評価値に対する今回の修正目標値候補の評価値の変化の方向と、前回の修正目標値候補に対する今回の修正目標値候補の変化の方向との組み合わせによって次回の修正目標値候補が決定されることを特徴とする請求項1乃至5の何れか1項に記載のプラント制御装置。
  7.  前記リファレンスガバナは、前記修正目標値決定処理では、前回の修正目標値候補の評価値に対して今回の修正目標値候補の評価値がより望ましい値であれば、今回の修正目標値候補を最終的な修正目標値として仮決定し、前回の修正目標値候補の評価値に対して今回の修正目標値候補の評価値がより望ましい値でなければ、前回仮決定した最終的な修正目標値をそのまま保持することを特徴とする請求項6に記載のプラント制御装置。
  8.  前記リファレンスガバナは、制約への抵触により前記予測モデル演算処理の途中で残りの計算のキャンセルした場合、前記修正目標値決定処理では、計算のキャンセルに伴う演算負荷の減少分に応じて前記修正目標値候補の更新回数を増やすことを特徴とする請求項6又は7に記載のプラント制御装置。
PCT/JP2013/050811 2013-01-17 2013-01-17 プラント制御装置 WO2014112074A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014557242A JP5930074B2 (ja) 2013-01-17 2013-01-17 プラント制御装置
PCT/JP2013/050811 WO2014112074A1 (ja) 2013-01-17 2013-01-17 プラント制御装置
US14/760,847 US20150356413A1 (en) 2013-01-17 2013-01-17 Plant control device
DE112013006439.1T DE112013006439T5 (de) 2013-01-17 2013-01-17 Aggregatsteuereinrichtung
CN201380070863.XA CN104937506A (zh) 2013-01-17 2013-01-17 设备控制装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/050811 WO2014112074A1 (ja) 2013-01-17 2013-01-17 プラント制御装置

Publications (1)

Publication Number Publication Date
WO2014112074A1 true WO2014112074A1 (ja) 2014-07-24

Family

ID=51209195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050811 WO2014112074A1 (ja) 2013-01-17 2013-01-17 プラント制御装置

Country Status (5)

Country Link
US (1) US20150356413A1 (ja)
JP (1) JP5930074B2 (ja)
CN (1) CN104937506A (ja)
DE (1) DE112013006439T5 (ja)
WO (1) WO2014112074A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190085470A (ko) * 2018-01-10 2019-07-18 도요타 지도샤(주) 플랜트 제어 장치

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6032253B2 (ja) * 2014-09-17 2016-11-24 トヨタ自動車株式会社 内燃機関の制御装置
JP6443311B2 (ja) * 2015-11-30 2018-12-26 オムロン株式会社 制御装置、制御プログラムおよび記録媒体
JP6508158B2 (ja) * 2016-10-17 2019-05-08 トヨタ自動車株式会社 プラント制御装置
JP6927770B2 (ja) * 2017-07-07 2021-09-01 株式会社日立製作所 プラント操作支援装置、および、プラント操作支援方法
JP6935775B2 (ja) * 2018-03-15 2021-09-15 トヨタ自動車株式会社 プラント制御装置
JP6952018B2 (ja) * 2018-10-03 2021-10-20 株式会社日立製作所 制御装置および制御方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006330847A (ja) * 2005-05-23 2006-12-07 Yamatake Corp アンチワインドアップコントローラ

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2691628B2 (ja) * 1990-02-23 1997-12-17 トヨタ自動車株式会社 減衰力可変式サスペンション制御装置
JPH10225973A (ja) * 1997-02-14 1998-08-25 Toshiba Mach Co Ltd 熱変位式自動tダイの制御方法
JP2003122402A (ja) * 2001-10-09 2003-04-25 Yaskawa Electric Corp サーボ制御装置の制御方法
JP4877285B2 (ja) * 2008-06-18 2012-02-15 トヨタ自動車株式会社 駆動装置およびその制御方法並びにハイブリッド車
GB2479315B (en) * 2009-02-02 2014-12-10 Fisher Rosemount Systems Inc Model predictive controller with tunable integral component to compensate for model mismatch
CN101750964B (zh) * 2009-12-14 2012-09-19 浙江大学 烧成系统基于脉冲响应模型的多变量预测控制方法
US8073556B2 (en) * 2009-12-16 2011-12-06 General Electric Company System and method for controlling a machine
US20120073268A1 (en) * 2010-09-29 2012-03-29 Navin Khadiya Fuel-fired burner for no2 based regeneration

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006330847A (ja) * 2005-05-23 2006-12-07 Yamatake Corp アンチワインドアップコントローラ

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KENJI HIRATA: "An Off-Line Reference Management Technique for Constraint Fulfillment", SYSTEM/ SEIGYO/JOHO, vol. 14, no. 11, 15 November 2001 (2001-11-15), pages 40 - 45 *
TAKESHI HATANAKA: "Computations of Probabilistic Output Admissible Set for Uncertain Constrained Systems", SYSTEM/SEIGYO/ JOHO, vol. 51, no. 11, 15 November 2007 (2007-11-15), pages 19 - 25 *
YUZO OTA: "Control of Constrained Systems Using an Inner Approximation of the Maximal Output Admissible Set", SYSTEM/SEIGYO/JOHO, vol. 24, no. 10, 15 October 2011 (2011-10-15), pages 15 - 17 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190085470A (ko) * 2018-01-10 2019-07-18 도요타 지도샤(주) 플랜트 제어 장치
KR102136517B1 (ko) 2018-01-10 2020-07-22 도요타 지도샤(주) 플랜트 제어 장치

Also Published As

Publication number Publication date
US20150356413A1 (en) 2015-12-10
DE112013006439T5 (de) 2015-10-08
JPWO2014112074A1 (ja) 2017-01-19
JP5930074B2 (ja) 2016-06-08
CN104937506A (zh) 2015-09-23

Similar Documents

Publication Publication Date Title
JP5930074B2 (ja) プラント制御装置
JP5874836B2 (ja) プラント制御装置
JP6967836B2 (ja) 測定された外乱に対する制約を不確実な予見によって処理する手法およびシステム
JP2014127083A (ja) 車両動力プラントの制御装置
JP2017129120A (ja) 内燃機関の空気経路制御のための離散時間レートベースモデル予測制御方法
JP6032253B2 (ja) 内燃機関の制御装置
US11008966B2 (en) Method for determining a position of at least one actuator
JP5621744B2 (ja) 車載動力プラントの制御装置
EP3147488B1 (en) Internal-combustion-engine control device
JP2014048715A (ja) プラント制御装置
JP6065822B2 (ja) 内燃機関の制御装置
JP2014074987A (ja) プラント制御装置
JP2015197087A (ja) 内燃機関の制御装置
JP2016169688A (ja) 内燃機関の制御装置
JP2014127101A (ja) プラント制御装置
JP2016051196A (ja) プラント制御装置
Min et al. Iterative learning control algorithm for feedforward controller of EGR and VGT systems in a CRDI diesel engine
JP2015049577A (ja) プラント制御装置
JP2019160030A (ja) プラント制御装置
JP2014084845A (ja) 内燃機関の制御装置
JP2014047757A (ja) 内燃機関の制御装置
JP2015169178A (ja) 内燃機関の制御装置
JP2014048873A (ja) プラント制御装置
JP2015031245A (ja) 内燃機関の制御装置
JP2014127000A (ja) プラント制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13871375

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014557242

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14760847

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120130064391

Country of ref document: DE

Ref document number: 112013006439

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13871375

Country of ref document: EP

Kind code of ref document: A1