WO2014111012A1 - 一种溴化锂机组与冷库结合使用的冷热内平衡系统 - Google Patents
一种溴化锂机组与冷库结合使用的冷热内平衡系统 Download PDFInfo
- Publication number
- WO2014111012A1 WO2014111012A1 PCT/CN2014/070637 CN2014070637W WO2014111012A1 WO 2014111012 A1 WO2014111012 A1 WO 2014111012A1 CN 2014070637 W CN2014070637 W CN 2014070637W WO 2014111012 A1 WO2014111012 A1 WO 2014111012A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat
- cold
- source side
- heat exchanger
- water
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B25/00—Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
- F25B25/02—Compression-sorption machines, plants, or systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B25/00—Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
- F25B25/005—Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2339/00—Details of evaporators; Details of condensers
- F25B2339/04—Details of condensers
- F25B2339/047—Water-cooled condensers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/04—Refrigeration circuit bypassing means
- F25B2400/0403—Refrigeration circuit bypassing means for the condenser
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/04—Refrigeration circuit bypassing means
- F25B2400/0409—Refrigeration circuit bypassing means for the evaporator
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B5/00—Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
- F25B5/04—Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B6/00—Compression machines, plants or systems, with several condenser circuits
- F25B6/04—Compression machines, plants or systems, with several condenser circuits arranged in series
Definitions
- the invention belongs to the field of new energy and energy conservation and environmental protection, and provides a cold and heat internal balance system used in combination with a cold storage unit, and relates to a method for separating and balancing the cooling amount and heat in the system, and combining the lithium bromide refrigeration.
- the unit and the cold storage of the cold storage are used, balanced by the balancer in the system, synchronously outputting the balance of the cooling capacity and heat, and the operation of the cold and heat balance system without energy waste.
- the object of the present invention is to provide a cold-heat internal balance system used in combination with a cold storage unit, in which the heat on the heat source side may be in the air or through a heat exchanger such as a finned radiator or a water circulation heat exchanger.
- a heat exchanger such as a finned radiator or a water circulation heat exchanger.
- the lithium bromide unit, the internal heat balancer or other hot terminals are effectively utilized; when heating, the cold side of the cold source may pass through the finned radiator, water circuit, heat dissipation, etc. in the air or Transfer to cold storage, internal cold balancer or other cold terminals in water or refrigerant for efficient use.
- the aim is to solve: 1.
- the heat and cold demand of the system that needs heat and the amount of cooling at the same time; 2.
- the system requires only the heat and cooling capacity, but the adjacent other systems need the demand of cold heat; 3. Recycling in any hot and cold end Cold heat to the unit, to achieve reciprocal use of cold and heat cycles.
- the invention can double the efficiency of cold and heat use of the unit, realize zero emission and save investment cost, and can be widely applied to various industries, and has far-reaching wide social value and economic value.
- the present invention is achieved in this way.
- a cold-hot internal balance system used in combination with a cold storage unit and a cold storage characterized in that: the compressor 1 is sequentially connected with a heat source side heat exchanger 2, a heat source side heat balancer 3, a thermal expansion valve 4, and a cold source side.
- the heat exchanger 5, the cold storage 6, and the gas-liquid separator 7 are connected in series, and the water side inlet of the heat source side heat exchanger 2 is connected in series with the first circulating water pump 11, and the heat source side heat exchanger 2 and the second electromagnetic valve 9 are connected in series.
- the first check valve 10 is connected in series, and the water side inlet of the heat source side heat balancer 3 is connected in series with the second circulating water pump 15, the lithium bromide unit 23, and the ninth electromagnetic valve 24, and the heat source side heat balancer 3 is exchanged with the heat source side.
- the heat exchanger 2 is connected by a tenth solenoid valve 25, and the water side inlet of the cold source side heat exchanger 5 is connected in series with the third circulating water pump 19, the cold source side heat exchanger 5 and the fifth electromagnetic valve 16,
- the third check valve 18 is connected in series
- the cold storage 6 is connected in series with the seventh electromagnetic valve 20 and the fourth check valve 22
- the first electromagnetic valve 8 is connected in parallel with the heat source side heat exchanger 2
- the third Solenoid valve 12 and heat source side heat balancer 3 Connected in the sixth solenoid valve 17 and the cold source side heat exchanger 5 is connected in parallel with said eighth solenoid valve 21 is connected in parallel with cold 6.
- the heat source side heat exchanger 2 uses a plate heat exchanger for cold water heat exchange, a tube type heat exchanger, and a shell and tube heat exchanger.
- the heat source side heat balancer 3 adopts a plate heat exchanger for cold water heat exchange, a sleeve heat exchanger, and a shell Tubular heat exchanger.
- the above-mentioned cold source side heat exchanger 5 employs a plate heat exchanger for cold water heat exchange, a tube type heat exchanger, and a shell and tube heat exchanger.
- the above-mentioned cold storage 6 employs a fin type cooling fan, a copper tube heat exchanger, an endless steel tube heat exchanger, and a titanium tube heat exchanger.
- the heat source side heat exchanger 2 is connected to the heat source side water supply pipe, the heat source side first circulating water pump, the heat source side return water main pipe, and the corresponding heat source side application heat balance device.
- the heat source side heat balancer 3 is connected to a heat source side heat balancer water supply pipe, a heat source side heat balancer second circulation water pump, a heat source side heat balancer return water main pipe, a lithium bromide unit, and a solenoid valve.
- the above-mentioned cold source side heat exchanger 5 is connected to a cold source side water supply pipe, a cold source side third circulating water pump, a cold source side return water main pipe, and a corresponding cold source side application heat balance device.
- the cold storage 6 is connected to the cold source side fluorine path system piping.
- the circulating water source used in the heat source side heat exchanger 2 includes water in a common pipeline, water extracted from a well, a lake or a river, or water circulating in an underground coil, and may be other suitable heating. Refrigeration working fluid.
- the circulating water source used in the heat source side heat balancer 3 includes water in a common pipeline, water extracted from a well, a lake or a river, or water circulating in an underground coil, and may be other suitable heating and cooling. Working quality.
- the present invention places the cold source side and the heat source side heat exchanger in the same system, the heat source side heat exchanger and the heat source side heat balancer are connected in series, and the cold source side heat exchanger and the cold storage end are connected in series.
- the connection that is, the cold source side and the heat source side heat exchanger are connected with the end device for connecting the corresponding heat or cooling, and the heat source side heat balancer is connected in series with the waste heat recovery terminal of the lithium bromide unit, and the cold source side cold balancer is the cold storage end and the heat source side.
- the heat exchangers are connected in series. When the system is running, the cold source side cooling capacity is used for cooling end refrigeration.
- the heat source side heat balancer is used for cooling or secondary utilization of the heating and lithium bromide unit.
- the cooling capacity and heat are fully utilized, no cold heat is wasted, the optimal state of system utilization can be achieved, and the energy efficiency ratio can be maximized. Reduce initial investment costs, and be efficient and environmentally friendly.
- FIG. 1 is a schematic diagram of a system according to an embodiment of the present invention.
- the compressor 1 is sequentially connected with the heat source side heat exchanger 2, the heat source side heat balancer 3, the thermal expansion valve 4, the cold source side heat exchanger 5, the cold storage 6, and the gas.
- the liquid separator 7 is connected in series, and the water side inlet of the heat source side heat exchanger 2 is connected in series with the first circulating water pump 11, and the heat source side heat exchanger 2 is connected in series with the second solenoid valve 9 and the first check valve 10.
- the water source side inlet of the heat source side heat balancer 3 is connected in series with the second circulating water pump 15, the lithium bromide unit 23, and the ninth electromagnetic valve 24, and the heat source side heat balancer 3 and the heat source side heat exchanger 2 pass through the tenth solenoid valve 25.
- a bypass connection the water side inlet of the cold source side heat exchanger 5 is connected in series with the third circulating water pump 19, and the cold source side heat exchanger 5 is connected in series with the fifth electromagnetic valve 16 and the third one-way valve 18,
- the cold storage 6 is connected in series with the seventh electromagnetic valve 20 and the fourth one-way valve 22, the first electromagnetic valve 8 is connected in parallel with the heat source side heat exchanger 2, and the third electromagnetic valve 12 and the heat source side heat balancer 3 are connected in parallel.
- the sixth solenoid valve 17 is cold Side heat exchanger 5 are connected in parallel, said eighth solenoid valve 21 is connected in parallel with the cold storage 6, the heating and cooling system to be completed and the system can be used by an amount of cold balanced terminal apparatus.
- the heat source side heat exchanger 2 adopts a plate heat exchanger, a casing heat exchanger and a shell and tube heat exchanger for cold water heat exchange.
- the heat source side heat exchanger 2 exchanges heat with the heat source side water supply pipe and the heat source side first component waterway system.
- the heat source side heat balancer 3 adopts a plate heat exchanger for cold water heat exchange, a tube type heat exchanger, and a shell and tube heat exchanger.
- the heat source side heat balancer 3 the heat source side heat balancer water supply pipe, the heat source side heat balancer second circulating water pump 15, the heat source side heat balancer return water main pipe, the lithium bromide unit and the electromagnetic valve.
- the cold source side heat exchanger 5 adopts a plate heat exchanger, a casing heat exchanger and a shell and tube heat exchanger for cold water heat exchange.
- the cold source side heat exchanger 5 is connected to the cold source side water supply pipe, the cold source side third circulating water pump 19, the cold source side return water main pipe and the corresponding cold source side application heat balance device to the air conditioning system to form a waterway system. Heat exchange.
- the cold storage 6 adopts a fin type cooling fan, a copper tube heat exchanger, an endless steel tube heat exchanger, and a titanium tube heat exchanger.
- the cold storage 6 is connected to the cold source side fluorine road system pipeline.
- the circulating water source used by the heat source side heat exchanger 2 includes water in a shared pipeline, water extracted from a well, a lake or a river, or water circulating in an underground coil. It is another suitable heating and cooling refrigerant.
- the circulating water source used by the heat source side heat balancer 3 includes water in a common pipeline, water extracted from a water well, a lake or a river, or water circulating in an underground coil, or may be Other suitable heating and cooling refrigerants.
- This embodiment has the following four operating conditions.
- the heat source side heat exchanger 2 is a plate heat exchanger
- the heat source side heat balancer 3 is a plate heat exchanger
- the cold source side heat exchanger 5 is a plate heat exchanger.
- the cold storage 6 heat exchanger is a fin type cooling fan.
- the compressor 1 compresses the refrigerant into the heat source side heat exchanger 2.
- the second solenoid valve 9 and the first circulating water pump 11 are opened, and the refrigerant enters the heat source side heat exchanger 2 and is circulated water. Heat exchange, cooling water temperature rises, refrigerant temperature condensation decreases, after the refrigerant passes through the first check valve 10, the third electromagnetic valve 12 is opened, the refrigerant enters the thermal expansion valve 4 to throttle, after throttling, the fifth electromagnetic valve 16,
- the third circulating water pump 19 is turned on, and the refrigerant enters the cold source side heat exchanger 5 to exchange heat with the chilled water, and the refrigerant evaporates at the endothermic temperature.
- the chilled water exothermic temperature is lowered, after evaporation, the eighth electromagnetic valve 21 is opened, the refrigerant enters the gas-liquid separator 7 through the eighth electromagnetic valve 21, and the refrigerant returns to the compressor 1 through the gas-liquid separator 7, the system Go to the next cycle.
- the compressor 1 compresses the refrigerant into the heat source side heat exchanger 2.
- the second solenoid valve 9 and the first circulating water pump 11 are opened, and the refrigerant enters the heat source side heat exchanger 2 and is circulated water. Heat exchange, the temperature of the cooling water rises, and the condensation temperature of the refrigerant decreases.
- the third electromagnetic valve 12 is closed, the fourth electromagnetic valve 13 is opened, and the refrigerant enters the heat source side heat balancer 3, second
- the circulating water pump 15 is turned on, the refrigerant exchanges heat with the circulating water, the temperature of the cooling water rises, and the temperature of the refrigerant decreases again.
- the cooling water passes through the connection pipe with the lithium bromide unit 23 into the lithium bromide unit 23 for cooling or secondary utilization, and the refrigerant passes through the second.
- the heat expansion valve 4 is throttled, and after the throttle, the fifth electromagnetic valve 16 and the third circulating water pump 19 are opened, and the refrigerant enters the cold source side heat exchanger 5 to exchange heat with the chilled water, the refrigerant
- the eighth electromagnetic valve 21 is opened, and the refrigerant enters the gas-liquid separator 7 through the eighth electromagnetic valve 21, Refrigerant gas-liquid separator 7 to the compressor 1, the system proceeds to the next cycle.
- the compressor 1 compresses the refrigerant into the heat source side heat exchanger 2.
- the second solenoid valve 9 and the first circulating water pump 11 are opened, and the refrigerant enters the heat source side heat exchanger 2 and is circulated water. Heat exchange, cooling water temperature rises, refrigerant temperature condensation decreases, after the refrigerant passes through the first check valve 10, the third electromagnetic valve 12 is opened, the refrigerant enters the thermal expansion valve 4 to throttle, after throttling, the fifth electromagnetic valve 16, The third circulating water pump 19 is turned on, and the refrigerant enters the cold source side heat exchanger 5 to exchange heat with the chilled water.
- the second electromagnetic valve 9, the third electromagnetic valve 12, the fifth electromagnetic valve 16, and the seventh electromagnetic valve 20 are opened, the first electromagnetic valve 8, the fourth electromagnetic valve 13, and the sixth electromagnetic The valve 17 and the eighth solenoid valve 21 are closed.
- the compressor 1 compresses the refrigerant into the heat source side heat exchanger 2.
- the second solenoid valve 9 and the first circulating water pump 11 are opened, and the refrigerant enters the heat source side heat exchanger 2 and is circulated water. Heat exchange, the temperature of the cooling water rises, and the condensation temperature of the refrigerant decreases.
- the third electromagnetic valve 12 is closed, the fourth electromagnetic valve 13 is opened, and the refrigerant enters the heat source side heat balancer 3, second
- the circulating water pump 15 is turned on, the refrigerant exchanges heat with the circulating water, the temperature of the cooling water rises, and the temperature of the refrigerant decreases again.
- the cooling water passes through the connection pipe with the lithium bromide unit 23 into the lithium bromide unit 23 for cooling or secondary utilization, and the refrigerant passes through the second.
- the heat expansion valve 4 is throttled, and after the throttle, the fifth electromagnetic valve 16 and the third circulating water pump 19 are opened, and the refrigerant enters the cold source side heat exchanger 5 to exchange heat with the chilled water, the refrigerant Steaming
- the heat absorption temperature rises, and the chilled water heat release temperature decreases.
- the seventh electromagnetic valve 20 is opened, the eighth electromagnetic valve 21 is closed, and the refrigerant enters the cold storage 6 to continue evaporation, after evaporation
- the refrigerant After passing through the fourth check valve 22, the refrigerant enters the gas-liquid separator 7, and after passing through the gas-liquid separator 7, the refrigerant returns to the compressor 1, and the system proceeds to the next cycle.
- the second electromagnetic valve 9, the fourth electromagnetic valve 13, the fifth electromagnetic valve 16, and the seventh electromagnetic valve 20 are opened, the first electromagnetic valve 8, the third electromagnetic valve 12, and the sixth electromagnetic The valve 17 and the eighth solenoid valve 21 are closed.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Other Air-Conditioning Systems (AREA)
Abstract
一种溴化锂机组与冷库结合使用的冷热内平衡系统,包括用管道串联连接的压缩机(1)、热源侧换热器(2)、热源侧热平衡器(3)、热力膨胀阀(4)、冷源侧换热器(5)、冷库(6)、汽液分离器(7)。热源侧热平衡器(3)与溴化锂机组(8)串联连接。在制冷时,热源侧的热量通过换热装置、经空气或水等冷媒传递到用热终端,即溴化锂机组(8)或其它内热平衡器,从而得到有效利用;在制热时,冷源测的冷量通过换热装置、经空气或水等冷媒传递到用冷终端,即冷库(11)或其它内冷平衡器,从而得到有效利用。冷热内平衡系统中的冷量和热量分离并平衡循环,结合溴化锂制冷机组和冷库使用冷热量,通过系统内平衡器的平衡,同步输出循环平衡的冷量和热量,因此运行中无能量浪费。
Description
一种溴化锂机组与冷库结合使用的冷热内平衡系统 技术领域
[0001] 本发明属于新能源与节能环保领域, 提供了一种溴化锂机组与冷库结合 使用的冷热内平衡系统, 是一种涉及将系统中的冷量和热量分离并平衡循环, 结合溴化锂制冷机组和冷库冷热量使用, 通过系统内平衡器平衡, 同步输出循 环平衡的冷量和热量, 运行中无能量浪费的冷热平衡系统。
[0002] 背景技术
[0003] 《"十二五" 国家战略性新兴产业发展规划》 中指出, 加快发展技术成 熟、 市场竟争力强的核电、 风电、 太阳能光伏和热利用、 页岩石、 生物质发电、 地热和地温能、 沼气等新能源、 积极推进技术基本成熟、 开发潜力大的新型太 阳能光伏和热发电、 生物质气化、 生物燃料、 海洋能等可再生能源技术的产业 化, 实施新能源集成利用示范重大工程。 到 2015年, 新能源占能源消费总量的 比例提高到 4. 5%, 减少二氧化碳年排放量 4亿吨以上。 到 2015年, 我国节能潜 力超过 4亿吨标准煤, 可带动上万亿元投资, 节能服务业总产值可突破 3000亿 元。 但是, 新能源应用也面临节约成本和保护环境的问题。 因此, 认清能源的 本质是解决如何最有效地用物理或化学的方式供应冷热电三种基本物质, 已成 为新能源和节能环保技术和产业发展的关键。
[0004] 传统热力和空调系统在供热或制冷时,都只单向制热或制冷。在制热时, 置换出的冷量不但未得到有效利用还需要配置多种装置和适宜环境来排放; 在 制冷时, 置换出的冷量不但未得到有效利用还需要配置多种装置和适宜环境来 排放。 这样就出现了在工业、 商业、 国防、种植养殖业和居民生活中普遍现象: 一方面在制热热时流失大量的废冷冷需要耗资处置, 另一方面同时还需要耗费 能源制冷热。 如能有效利用流失的冷热能量, 量应用于工业生产及日常生活, 可以成倍提高能源使用效率, 大大降低能源使用成本和生态环境损害。
[0005]发明内容
[0006] 本发明的目的在于提供一种溴化锂机组与冷库结合使用的冷热内平衡 系统, 在制冷时, 热源侧的热量可能通过翅片散热器、 水路循环换热等换热装 置在空气或水中或冷媒中传递到溴化锂机组、 内热平衡器或其他用热的终端得 到有效利用; 在制热时, 冷源侧的冷量可能通过翅片散热器、 水路循环散热等 换热装置在空气或水中或冷媒中传递到冷库、 内冷平衡器或其他用冷的终端得 到有效利用。 旨在解决: 1、 需要热量亦同时需要冷量的系统冷热需求; 2、 只 需要热冷量的系统, 但相邻其他系统需要冷热量的需求; 3、 在任意用热冷端回 收冷热量至本机组, 实现冷热循环往复利用。 本发明可以成倍提高机组冷热量 使用效率, 实现零排放, 节省投资成本, 可广泛应用于各行各业, 具有深远广 泛社会价值和经济价值
[0007] 本发明是这样实现的。
[0008] 一种溴化锂机组与冷库结合使用的冷热内平衡系统, 其特征在于: 压缩 机 1用管道依次与热源侧换热器 2、 热源侧热平衡器 3、 热力膨胀阀 4、 冷源侧 换热器 5、 冷库 6、 气液分离器 7串联连接, 所述热源侧换热器 2水侧进口与第 一循环水泵 11 串联连接, 所述热源侧换热器 2与第二电磁阀 9、 第一单向阀 10 串联连接,所述热源侧热平衡器 3水侧进口与第二循环水泵 15、溴化锂机组 23、 第九电磁阀 24串联连接, 所述热源侧热平衡器 3与热源侧换热器 2通过第十电 磁阀 25旁通连接,所述冷源侧换热器 5水侧进口与第三循环水泵 19串联连接, 所述冷源侧换热器 5与第五电磁阀 16、 第三单向阀 18串联连接, 所述冷库 6与 第七电磁阀 20、 第四单向阀 22串联连接, 所述第一电磁阀 8与热源侧换热器 2 并联连接, 所述第三电磁阀 12与热源侧热平衡器 3并联连接, 所述第六电磁阀 17与冷源侧换热器 5并联连接, 所述第八电磁阀 21与冷库 6并联连接。
[0009] 上述热源侧换热器 2采用冷水换热的板式换热器、 套管式换热器、 壳管 式换热器 。
[0010] 上述热源侧热平衡器 3采用冷水换热的板式换热器、 套管式换热器、 壳
管式换热器。
[0011 ] 上述冷源侧换热器 5采用冷水换热的板式换热器、 套管式换热器、 壳管 式换热器。
[0012] 上述冷库 6采用翅片式冷风机、 铜管换热器、 不休钢管换热器、 钛管换 热器。
[0013] 上述热源侧换热器 2连接连接热源侧供水管、 热源侧第一循环水泵、 热 源侧回水干管和相应热源侧应用热平衡设备。
[0014] 上述热源侧热平衡器 3连接热源侧热平衡器供水管、 热源侧热平衡器第 二循环水泵、 热源侧热平衡器回水干管、 溴化锂机组和电磁阀。
[0015] 上述冷源侧换热器 5连接冷源侧供水管、 冷源侧第三循环水泵、 冷源侧 回水干管和相应冷源侧应用热平衡设备。
[0016] 上述冷库 6连接冷源侧氟路系统管路。
[0017] 上述热源侧换热器 2使用的循环水源包含共用管路中的水、 从水井、 湖 泊或河流中抽取的水或地下盘管中循环流动的水, 也可以是其他合适的制热制 冷工质。
[0018] 上述热源侧热平衡器 3使用的循环水源包含共用管路中的水、 从水井、 湖泊或河流中抽取的水或地下盘管中循环流动的水, 也可以是其他合适的制热 制冷工质。
[0019] 采用上述技术方案,本发明将冷源侧和热源侧换热器置于同一个系统中, 热源侧换热器和热源侧热平衡器串联连接, 冷源侧换热器和冷库末端串联连接, 即冷源侧和热源侧换热器需与连接相应使用热量或冷量的末端设备, 热源侧热 平衡器与溴化锂机组余热回收终端串联连接, 冷源侧冷平衡器即冷库末端与热 源侧换热器串联连接, 系统运行时, 冷源侧冷量用于制冷末端制冷使用, 当有 多余冷量时, 将冷量输入冷库中用于冷冻冷藏, 同时热源侧的热量通过热源侧 换热器和热源侧热平衡器利用在供暖及溴化锂机组制冷或二次利用, 上述系统 运行过程时, 当制冷冷量负荷不够或多余或者热量负荷不够多余时, 通过开启
或关闭氟侧冷库或热源侧热平衡器以达到整个系统的冷热平衡, 冷量和热量都 得到充分利用, 无冷热量浪费, 可达到系统利用的最佳状态, 最大程度的提高 能效比, 降低初期投资成本, 高效环保。
[0020] 附图说明
[0021 ] 图 1是本发明实施例提供的系统原理图。
[0022] 具体实施方式
[0023] 为了使本发明的目的、 技术方案及优点更加清楚明白, 以下结合附图及 实施例, 对本发明进行进一步详细说明。 应当理解, 此处所描述的具体实施例 仅仅用以解释本发明, 并不用于限定本发明。
[0024] 请参照图 1 , 电源线通电后其压缩机 1用管道依次与热源侧换热器 2、 热源侧热平衡器 3、 热力膨胀阀 4、 冷源侧换热器 5、 冷库 6、 气液分离器 7 串 联连接, 所述热源侧换热器 2水侧进口与第一循环水泵 11 串联连接, 所述热源 侧换热器 2与第二电磁阀 9、 第一单向阀 10 串联连接, 所述热源侧热平衡器 3 水侧进口与第二循环水泵 15、 溴化锂机组 23、 第九电磁阀 24 串联连接, 所述 热源侧热平衡器 3与热源侧换热器 2通过第十电磁阀 25旁通连接, 所述冷源侧 换热器 5水侧进口与第三循环水泵 19串联连接, 所述冷源侧换热器 5与第五电 磁阀 16、 第三单向阀 18 串联连接, 所述冷库 6与第七电磁阀 20、 第四单向阀 22串联连接, 所述第一电磁阀 8与热源侧换热器 2并联连接, 所述第三电磁阀 12与热源侧热平衡器 3并联连接,所述第六电磁阀 17与冷源侧换热器 5并联连 接, 所述第八电磁阀 21与冷库 6并联连接, 所述系统可完成制冷制热并且冷热 量都可通过末端设备平衡使用的系统。
[0025] 请参阅图 1 , 所述热源侧换热器 2采用冷水换热的板式换热器、 套管式 换热器、 壳管式换热器。 所述热源侧换热器 2 , 其与热源侧供水管、 热源侧第一 组成水路系统进行热量交换。
[0026] 请参阅图 1 , 所述热源侧热平衡器 3采用冷水换热的板式换热器、 套管 式换热器、壳管式换热器。所述热源侧热平衡器 3 ,其与热源侧热平衡器供水管、 热源侧热平衡器第二循环水泵 15、 热源侧热平衡器回水干管、 溴化锂机组和电 磁阀。
[0027] 请参阅图 1 , 所述冷源侧换热器 5采用冷水换热的板式换热器、 套管式 换热器、 壳管式换热器。 所述冷源侧换热器 5 , 其与冷源侧供水管、 冷源侧第三 循环水泵 19、 冷源侧回水干管和相应冷源侧应用热平衡设备连接到空调系统中 组成水路系统进行热量交换。
[0028 ] 请参阅图 1 , 所述冷库 6采用翅片式冷风机、 铜管换热器、 不休钢管换 热器、 钛管换热器。 所述冷库 6 , 其连接冷源侧氟路系统管路。
[0029] 请参阅图 1 ,所述热源侧换热器 2使用的循环水源包含共用管路中的水、 从水井、 湖泊或河流中抽取的水或地下盘管中循环流动的水, 也可以是其他合 适的制热制冷工质。
[0030] 请参阅图 1 , 所述热源侧热平衡器 3使用的循环水源包含共用管路中的 水、 从水井、 湖泊或河流中抽取的水或地下盘管中循环流动的水, 也可以是其 他合适的制热制冷工质。
[0031 ] 本实施例具有以下四种工况, 在这四种工作状态中, 所述热源侧换热器 2为板式换热器, 所述热源侧热平衡器 3为板式换热器, 所述冷源侧换热器 5为 板式换热器。 所述冷库 6换热器为翅片式冷风机。
[0032]
1内热平衡器未开启工况:
请参阅图 1 ,压缩机 1压缩冷媒进入到热源侧换热器 2中,此时,第二电磁阀 9、 第一循环水泵 11开启, 冷媒进入到热源侧换热器 2中与循环水进行热交换, 冷 却水温度上升, 冷媒温度冷凝降低, 冷媒通过第一单向阀 10后, 第三电磁阀 12 开启, 冷媒进入热力膨胀阀 4中节流, 节流后, 第五电磁阀 16、 第三循环水泵 19开启, 冷媒进入到冷源侧换热器 5中与冷冻水热交换, 冷媒蒸发吸热温度上
升, 冷冻水放热温度降低, 蒸发后, 第八电磁阀 21开启, 冷媒通过第八电磁阀 21进入气液分离器 7中, 通过气液分离器 7后冷媒回到压缩机 1中, 系统进入 到下一个循环。
[0033] 所述工况中, 第二电磁阀 9、 第三电磁阀 12、 第五电磁阀 16、 第八电 磁阀 21开启, 第一电磁阀 8、 第四电磁阀 1 3、 第六电磁阀 17、 第七电磁阀 20 关闭。
[0034] 所述工况中, 第一循环水泵 1 1、 第三循环水泵 19开启, 第二循环水泵
15关闭。
[0035 ]
2热源侧内热平衡器开启工况:
请参阅图 1 ,压缩机 1压缩冷媒进入到热源侧换热器 2中,此时,第二电磁阀 9、 第一循环水泵 11开启, 冷媒进入到热源侧换热器 2中与循环水进行热交换, 冷 却水温度上升, 冷媒温度冷凝降低, 冷媒通过第一单向阀 10后, 第三电磁阀 12 关闭、 第四电磁阀 1 3开启, 冷媒进入到热源侧热平衡器 3中, 第二循环水泵 15 开启, 冷媒与循环水进行热交换, 冷却水温度上升, 冷媒温度再次冷凝降低, 冷却水通过与溴化锂机组 23连接管进入溴化锂机组 23中用于制冷或二次利用, 冷媒通过第二单向阀 14后,进入热力膨胀阀 4中节流,节流后,第五电磁阀 16、 第三循环水泵 19开启, 冷媒进入到冷源侧换热器 5中与冷冻水热交换, 冷媒蒸 发吸热温度上升, 冷冻水放热温度降低, 蒸发后, 第八电磁阀 21开启, 冷媒通 过第八电磁阀 21进入气液分离器 7中, 通过气液分离器 7后冷媒回到压缩机 1 中, 系统进入到下一个循环。
[0036] 所述工况中, 第二电磁阀 9、 第四电磁阀 1 3、 第五电磁阀 16、 第八电 磁阀 21开启, 第一电磁阀 8、 第三电磁阀 12、 第六电磁阀 17、 第七电磁阀 20 关闭。
[0037] 所述工况中, 第一循环水泵 11、 第二循环水泵 15、 第三循环水泵 19开 启。
[0038]
3冷源侧冷库开启工况:
请参阅图 1 ,压缩机 1压缩冷媒进入到热源侧换热器 2中,此时,第二电磁阀 9、 第一循环水泵 11开启, 冷媒进入到热源侧换热器 2中与循环水进行热交换, 冷 却水温度上升, 冷媒温度冷凝降低, 冷媒通过第一单向阀 10后, 第三电磁阀 12 开启, 冷媒进入热力膨胀阀 4中节流, 节流后, 第五电磁阀 16、 第三循环水泵 19开启, 冷媒进入到冷源侧换热器 5中与冷冻水热交换, 冷媒蒸发吸热温度上 升, 冷冻水放热温度降低, 蒸发后, 冷媒通过第三单向阀 18 后第七电磁阀 20 开启、 第八电磁阀 21关闭, 冷媒进入冷源侧冷库 6中继续蒸发, 蒸发完后冷媒 通过第四单向阀 22后进入气液分离器 7中, 通过气液分离器 7后冷媒回到压缩 机 1中, 系统进入到下一个循环。
[0039] 所述工况中, 第二电磁阀 9、 第三电磁阀 12、 第五电磁阀 16、 第七电磁 阀 20开启, 第一电磁阀 8、 第四电磁阀 1 3、 第六电磁阀 17、 第八电磁阀 21关 闭。
[0040] 所述工况中, 第一循环水泵 1 1、 第三循环水泵 19开启, 第二循环水泵
15关闭。
[0041 ]
4热源侧内热平衡器及冷源侧内冷平衡器开启工况:
请参阅图 1 ,压缩机 1压缩冷媒进入到热源侧换热器 2中,此时,第二电磁阀 9、 第一循环水泵 11开启, 冷媒进入到热源侧换热器 2中与循环水进行热交换, 冷 却水温度上升, 冷媒温度冷凝降低, 冷媒通过第一单向阀 10后, 第三电磁阀 12 关闭、 第四电磁阀 1 3开启, 冷媒进入到热源侧热平衡器 3中, 第二循环水泵 15 开启, 冷媒与循环水进行热交换, 冷却水温度上升, 冷媒温度再次冷凝降低, 冷却水通过与溴化锂机组 23连接管进入溴化锂机组 23中用于制冷或二次利用, 冷媒通过第二单向阀 14后,进入热力膨胀阀 4中节流,节流后,第五电磁阀 16、 第三循环水泵 19开启, 冷媒进入到冷源侧换热器 5中与冷冻水热交换, 冷媒蒸
发吸热温度上升, 冷冻水放热温度降低, 蒸发后, 冷媒通过第三单向阀 18后第 七电磁阀 20开启、 第八电磁阀 21关闭, 冷媒进入冷库 6中继续蒸发, 蒸发完 后冷媒通过第四单向阀 22后进入气液分离器 7中, 通过气液分离器 7后冷媒回 到压缩机 1中, 系统进入到下一个循环。
[0042] 所述工况中, 第二电磁阀 9、 第四电磁阀 1 3、 第五电磁阀 16、 第七电磁 阀 20开启, 第一电磁阀 8、 第三电磁阀 12、 第六电磁阀 17、 第八电磁阀 21关 闭。
[0043] 所述工况中, 第一循环水泵 11、 第二循环水泵 15、 第三循环水泵 19开 启。
[0044]以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡在本 发明的精神和原则之内所作的任何修改、 等同替换和改进等, 均应包含在本发 明的保护范围之内。
Claims
1. 一种溴化锂机组与冷库结合使用的冷热内平衡系统,其特征在于:压缩机( 1 ) 用管道依次与热源侧换热器(2)、 热源侧热平衡器(3)、 热力膨胀阀 (4)、 冷 源侧换热器( 5 )、冷库( 6 )、 气液分离器( 7 )串联连接, 所述热源侧换热器( 2 ) 水侧进口与第一循环水泵(11 ) 串联连接, 所述热源侧换热器(2)与第二电磁 阀 (9)、 第一单向阀 (10) 串联连接, 所述热源侧热平衡器(3)水侧进口与第 二循环水泵(15)、 溴化锂机组(23)、 第九电磁阀 (24) 串联连接, 所述热源 侧热平衡器(3) 与热源侧换热器(2)通过第十电磁阀 (25 ) 旁通连接, 所述 冷源侧换热器(5)水侧进口与第三循环水泵(19) 串联连接, 所述冷源侧换热 器(5)与第五电磁阀 (16)、 第三单向阀 (I8) 串联连接, 所述冷库(6)与第 七电磁阀 (20)、 第四单向阀 (22) 串联连接, 所述第一电磁阀 (8 ) 与热源侧 换热器(2) 并联连接, 所述第三电磁阀 (U) 与热源侧热平衡器(3) 并联连 接,所述第六电磁阀( 17 )与冷源侧换热器( 5 )并联连接,所述第八电磁阀( ) 与冷库(6)并联连接。
2. 如权利要求 1所述的一种溴化锂机组与冷库结合使用的冷热内平衡系统, 其 特征在于: 所述热源侧换热器采用冷水换热的板式换热器、 套管式换热器、 壳 管式换热器。
3. 如权利要求 1所述的一种溴化锂机组与冷库结合使用的冷热内平衡系统, 其 特征在于: 所述热源侧热平衡器采用冷水换热的板式换热器、 套管式换热器、 壳管式换热器。
4. 如权利要求 1所述的一种溴化锂机组与冷库结合使用的冷热内平衡系统, 其 特征在于: 所述冷源侧换热器采用冷水换热的板式换热器、 套管式换热器、 壳 管式换热器。
5. 如权利要求 1所述的一种溴化锂机组与冷库结合使用的冷热内平衡系统, 其 特征在于: 所述冷库采用翅片式冷风机、 铜管换热器、 不休钢管换热器、 钛管
换热器。
6. 如权利要求 2所述的一种溴化锂机组与冷库结合使用的冷热内平衡系统, 其 特征在于: 所述热源侧换热器连接热源侧供水管、 热源侧第一循环水泵、 热源 侧回水干管和相应热源侧应用热平衡设备。
7.如权利要求 3所述的一种溴化锂机组与冷库结合使用的冷热内平衡系统, 其 特征在于: 所述热源侧热平衡器连接热源侧热平衡器供水管、 热源侧热平衡器 第二循环水泵、 热源侧热平衡器回水干管、 溴化锂机组和电磁阀。
8. 如权利要求 4所述的一种溴化锂机组与冷库结合使用的冷热内平衡系统, 其 特征在于: 所述冷源侧换热器连接冷源侧供水管、 冷源侧第三循环水泵、 冷源 侧回水干管和相应冷源侧应用热平衡设备。
9. 如权利要求 5所述的一种溴化锂机组与冷库结合使用的冷热内平衡系统, 其 特征在于: 所述冷库连接冷源侧氟路系统管路。
10. 如权利要求 2 所述的一种溴化锂机组与冷库结合使用的冷热内平衡系统, 其特征在于:所述热源侧换热器使用的循环水源包含共用管路中的水、从水井、 湖泊或河流中抽取的水或地下盘管中循环流动的水; 也可以是其他制冷制热工
1 1. 如权利要求 3 所述的一种溴化锂机组与冷库结合使用的冷热内平衡系统, 其特征在于: 所述溴化锂机组使用的循环水源包含共用管路中的水、 从水井、 湖泊或河流中抽取的水或地下盘管中循环流动的水; 也可以是其他制冷制热工
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2013100254412A CN103090591A (zh) | 2013-01-21 | 2013-01-21 | 一种溴化锂机组与冷库结合使用的冷热内平衡系统 |
CN201310025441.2 | 2013-01-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014111012A1 true WO2014111012A1 (zh) | 2014-07-24 |
Family
ID=48203483
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2014/070637 WO2014111012A1 (zh) | 2013-01-21 | 2014-01-15 | 一种溴化锂机组与冷库结合使用的冷热内平衡系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN103090591A (zh) |
WO (1) | WO2014111012A1 (zh) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3199891A4 (en) * | 2014-09-22 | 2018-04-25 | Mitsubishi Electric Corporation | Refrigeration cycle device |
EP3601903A4 (en) * | 2017-03-27 | 2020-12-16 | Rebound Technologies, Inc. | CYCLE IMPROVEMENT PROCEDURES, SYSTEMS AND DEVICES |
EP3786545A1 (en) * | 2019-08-30 | 2021-03-03 | SAB Engineers GmbH | Integrated cold storage system |
WO2021037979A1 (en) * | 2019-08-30 | 2021-03-04 | Sab Engineers Gmbh | Integrated cold storage system and a method for performing cold storage |
US10995993B2 (en) | 2014-09-27 | 2021-05-04 | Rebound Technologies, Inc. | Thermal recuperation methods, systems, and devices |
US11079184B2 (en) | 2012-02-07 | 2021-08-03 | Rebound Technologies, Inc. | Methods, systems, and devices for thermal enhancement |
US11460226B2 (en) | 2018-02-23 | 2022-10-04 | Rebound Technologies, Inc. | Freeze point suppression cycle control systems, devices, and methods |
US11530863B2 (en) | 2018-12-20 | 2022-12-20 | Rebound Technologies, Inc. | Thermo-chemical recuperation systems, devices, and methods |
FR3139187A1 (fr) * | 2022-08-31 | 2024-03-01 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Dispositif de production de chaleur |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103090587A (zh) * | 2013-01-21 | 2013-05-08 | 深圳市庄合地能产业科技有限公司 | 一种溴化锂机组与冷库结合使用的冷热外平衡系统 |
CN103090592A (zh) * | 2013-01-21 | 2013-05-08 | 深圳市庄合地能产业科技有限公司 | 一种冷热外平衡机组 |
CN103075848A (zh) * | 2013-01-21 | 2013-05-01 | 深圳市庄合地能产业科技有限公司 | 一种溴化锂机组与冷库结合使用的冷热平衡系统 |
CN103075842A (zh) * | 2013-01-21 | 2013-05-01 | 深圳市庄合地能产业科技有限公司 | 一种冷热平衡机组 |
CN103075843A (zh) * | 2013-01-21 | 2013-05-01 | 深圳市庄合地能产业科技有限公司 | 一种冷热内平衡机组 |
CN103090591A (zh) * | 2013-01-21 | 2013-05-08 | 深圳市庄合地能产业科技有限公司 | 一种溴化锂机组与冷库结合使用的冷热内平衡系统 |
CN105135742B (zh) * | 2015-09-06 | 2018-07-03 | 哈尔滨工业大学 | 一种具有双蒸发器的溴化锂吸收式制冷循环系统 |
EP3594589B1 (en) * | 2017-04-19 | 2021-06-30 | Mitsubishi Electric Corporation | Heat pump device |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4745768A (en) * | 1987-08-27 | 1988-05-24 | The Brooklyn Union Gas Company | Combustion-powered refrigeration with decreased fuel consumption |
JP2010243001A (ja) * | 2009-04-02 | 2010-10-28 | Green Seiju:Kk | 自律平衡型ヒートポンプユニット |
US20110173998A1 (en) * | 2008-10-03 | 2011-07-21 | Tony Coleman | Process and apparatus for cooling |
CN102239372A (zh) * | 2008-12-02 | 2011-11-09 | 瓦尔梅帕姆朋公司 | 使用顺序操作的热泵/空调装置 |
JP2012145309A (ja) * | 2011-01-14 | 2012-08-02 | Mitsubishi Heavy Ind Ltd | 熱源システム |
CN103090591A (zh) * | 2013-01-21 | 2013-05-08 | 深圳市庄合地能产业科技有限公司 | 一种溴化锂机组与冷库结合使用的冷热内平衡系统 |
-
2013
- 2013-01-21 CN CN2013100254412A patent/CN103090591A/zh active Pending
-
2014
- 2014-01-15 WO PCT/CN2014/070637 patent/WO2014111012A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4745768A (en) * | 1987-08-27 | 1988-05-24 | The Brooklyn Union Gas Company | Combustion-powered refrigeration with decreased fuel consumption |
US20110173998A1 (en) * | 2008-10-03 | 2011-07-21 | Tony Coleman | Process and apparatus for cooling |
CN102239372A (zh) * | 2008-12-02 | 2011-11-09 | 瓦尔梅帕姆朋公司 | 使用顺序操作的热泵/空调装置 |
JP2010243001A (ja) * | 2009-04-02 | 2010-10-28 | Green Seiju:Kk | 自律平衡型ヒートポンプユニット |
JP2012145309A (ja) * | 2011-01-14 | 2012-08-02 | Mitsubishi Heavy Ind Ltd | 熱源システム |
CN103090591A (zh) * | 2013-01-21 | 2013-05-08 | 深圳市庄合地能产业科技有限公司 | 一种溴化锂机组与冷库结合使用的冷热内平衡系统 |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11079184B2 (en) | 2012-02-07 | 2021-08-03 | Rebound Technologies, Inc. | Methods, systems, and devices for thermal enhancement |
EP3199891A4 (en) * | 2014-09-22 | 2018-04-25 | Mitsubishi Electric Corporation | Refrigeration cycle device |
US10995993B2 (en) | 2014-09-27 | 2021-05-04 | Rebound Technologies, Inc. | Thermal recuperation methods, systems, and devices |
EP3601903A4 (en) * | 2017-03-27 | 2020-12-16 | Rebound Technologies, Inc. | CYCLE IMPROVEMENT PROCEDURES, SYSTEMS AND DEVICES |
US11473818B2 (en) | 2017-03-27 | 2022-10-18 | Rebound Technologies, Inc. | Cycle enhancement methods, systems, and devices |
US11460226B2 (en) | 2018-02-23 | 2022-10-04 | Rebound Technologies, Inc. | Freeze point suppression cycle control systems, devices, and methods |
US11530863B2 (en) | 2018-12-20 | 2022-12-20 | Rebound Technologies, Inc. | Thermo-chemical recuperation systems, devices, and methods |
EP3786545A1 (en) * | 2019-08-30 | 2021-03-03 | SAB Engineers GmbH | Integrated cold storage system |
WO2021037979A1 (en) * | 2019-08-30 | 2021-03-04 | Sab Engineers Gmbh | Integrated cold storage system and a method for performing cold storage |
FR3139187A1 (fr) * | 2022-08-31 | 2024-03-01 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Dispositif de production de chaleur |
EP4332463A1 (fr) * | 2022-08-31 | 2024-03-06 | Commissariat à l'énergie atomique et aux énergies alternatives | Dispositif de production de chaleur |
Also Published As
Publication number | Publication date |
---|---|
CN103090591A (zh) | 2013-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014111012A1 (zh) | 一种溴化锂机组与冷库结合使用的冷热内平衡系统 | |
WO2014111061A1 (zh) | 一种冷热内平衡机组 | |
WO2014111017A1 (zh) | 一种冷热外平衡机组 | |
WO2014111011A1 (zh) | 一种溴化锂机组与冷库结合使用的冷热平衡系统 | |
WO2014111014A1 (zh) | 一种溴化锂机组与冷库结合使用的冷热外平衡系统 | |
CN111023623B (zh) | 一种低温热源吸收式热泵循环系统 | |
WO2014111020A1 (zh) | 一种冷热平衡机组 | |
CN102927718B (zh) | 一种新型双效双温高温热泵装置 | |
CN102721131B (zh) | 高效节能的水电空调冷热水系统 | |
CN104633977A (zh) | 一种多用途能量平衡机组 | |
CN103090486A (zh) | 一种热平衡一体机 | |
CN102095234A (zh) | 太阳能热泵与动力热管复合系统 | |
CN203837330U (zh) | Co2热泵热交换增焓装置 | |
CN203286757U (zh) | 水源热泵余热回收装置 | |
CN202660808U (zh) | 一种新型的热管热泵组合型制冷装置 | |
CN204963288U (zh) | 一种使用太阳能和水源的溴化锂吸收式制热、制冷装置 | |
CN203231585U (zh) | 一种直热式空气源热泵 | |
CN103196225A (zh) | 水源热泵余热回收装置 | |
CN203024403U (zh) | 能回收污水余热的热泵热水器 | |
CN210663445U (zh) | 一种耦合地源热泵和吸收式制冷功能的实验台 | |
CN2632589Y (zh) | 烟气废热驱动的热管型双效溴化锂吸收式冷热水机 | |
CN103411346B (zh) | 超高温吸收式溴化锂热泵 | |
CN201983518U (zh) | 太阳能热泵与动力热管复合系统 | |
CN206320879U (zh) | 一种新型的地源空气源一体化空调机组 | |
CN202675730U (zh) | 一种具有双热源的热泵热水空调机组 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14740736 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14740736 Country of ref document: EP Kind code of ref document: A1 |