WO2014110124A1 - Printed appliqué and method thereof - Google Patents
Printed appliqué and method thereof Download PDFInfo
- Publication number
- WO2014110124A1 WO2014110124A1 PCT/US2014/010667 US2014010667W WO2014110124A1 WO 2014110124 A1 WO2014110124 A1 WO 2014110124A1 US 2014010667 W US2014010667 W US 2014010667W WO 2014110124 A1 WO2014110124 A1 WO 2014110124A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- applique
- electro
- opening
- substrate
- layer
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/15—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect
- G02F1/153—Constructional details
- G02F1/157—Structural association of cells with optical devices, e.g. reflectors or illuminating devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R1/00—Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
- B60R1/02—Rear-view mirror arrangements
- B60R1/08—Rear-view mirror arrangements involving special optical features, e.g. avoiding blind spots, e.g. convex mirrors; Side-by-side associations of rear-view and other mirrors
- B60R1/083—Anti-glare mirrors, e.g. "day-night" mirrors
- B60R1/088—Anti-glare mirrors, e.g. "day-night" mirrors using a cell of electrically changeable optical characteristic, e.g. liquid-crystal or electrochromic mirrors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R1/00—Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
- B60R1/12—Mirror assemblies combined with other articles, e.g. clocks
- B60R1/1207—Mirror assemblies combined with other articles, e.g. clocks with lamps; with turn indicators
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/205—Neutral density filters
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2202/00—Materials and properties
- G02F2202/28—Adhesive materials or arrangements
Definitions
- the disclosure generally relates to an electro-optic assembly, and more
- a rearview mirror assembly includes a mirror element comprising a front substrate having a first surface and a second surface, and a rear substrate spaced from and substantially parallel to said front substrate, the rear substrate having a third surface and a fourth surface.
- the front and rear substrates define a cavity at least partially filled with an electro-optic material.
- the rearview mirror assembly also includes a carrier configured to be connected the mirror element; an applique on at least part of the fourth surface, the applique defining openings where no applique is applied on the fourth surface; and an adhesive in at least part of the opening, the adhesive configured to attach to the mirror element and the carrier.
- the applique and adhesive are configured to substantially have a visual match, and the bond strength and area of the adhesive are adequate to support the mirror element.
- an electro-optic assembly includes a front substrate having a first surface and a second surface substantially parallel to the first surface; a rear substrate spaced from and substantially parallel to the front substrate, the rear substrate having a third surface and a fourth surface substantially parallel to the third surface; and a carrier operably connected to at least one of the front substrate and the rear substrate.
- the electro-optic assembly also includes an applique on at least a first portion of the fourth surface and having an opening over a second portion of the fourth surface, the portions of the fourth surface in a transmissive region of the rear substrate; and an adhesive at least partially in the opening on the second portion of the fourth surface to connect at least one of the front substrate and the rear substrate to the carrier.
- the front and rear substrates define a cavity at least partially filled with an electro-optic material, and the carrier and adhesive provide support to at least one of the front substrate and the rear substrate.
- the applique and the adhesive are configured to substantially match in visual appearance through the front and rear substrates.
- an electro-optic assembly is
- the electro-optic assembly further includes an electrical contact for providing an electrical connection to an electrode in proximity to an electro -optic material, the contact having an extension at least partially over a transmissive portion of the fourth surface in a transmissive region of the rear substrate; and an applique on at least the transmissive portion of the fourth surface, the applique having a contact- obscuring region in proximity to the extension of the electrical contact.
- the front and rear substrates define a cavity at least partially filled with the electro-optic material that is confined within the cavity by a seal substantially between the second surface and the third surface.
- an electro-optic assembly includes a front substrate having a first surface and a second surface substantially parallel to the first surface; and a rear substrate spaced from and substantially parallel to the front substrate, the rear substrate having a third surface and a fourth surface substantially parallel to the third surface.
- the electro-optic assembly further includes an electrical contact for providing an electrical connection to an electrode in proximity to an electro -optic material, the contact having an extension at least partially over a transmissive portion of the fourth surface in a transmissive region of the rear substrate; and an applique on at least the transmissive portion of the fourth surface, the applique having a contact- obscuring region that is located between the extension of the electrical contact and the fourth surface.
- the front and rear substrates define a cavity at least partially filled with the electro -optic material that is confined within the cavity by a seal substantially between the second surface and the third surface.
- the contact-obscuring region of the applique is configured to obscure the visual appearance of the extension of the electrical contact through the front and rear substrates.
- an electro-optic assembly is
- the electro-optic assembly further includes an electrical contact for providing an electrical connection to an electrode in proximity to an electro -optic material, the contact having an extension at least partially over a transmissive portion of the fourth surface in a transmissive region of the rear substrate; an adhesive pad between the extension of the electrical contact and the fourth surface; and an applique on at least the transmissive portion of the fourth surface, the applique having an obscuring region that is located in proximity to at least a portion of the adhesive pad.
- the front and rear substrates define a cavity at least partially filled with the electro-optic material that is confined within the cavity by a seal substantially between the second surface and the third surface.
- the obscuring region of the applique is configured to obscure the visual appearance of one of, or both of, the extension of the electrical contact and the adhesive pad through the front and rear substrates.
- an electro-optic assembly includes a front substrate having a first surface and a second surface substantially parallel to the first surface; and a rear substrate spaced from and substantially parallel to the front substrate, the rear substrate having a third surface and a fourth surface substantially parallel to the third surface.
- the electro-optic assembly further includes an electrical contact for providing an electrical connection to an electrode in proximity to an electro -optic material, the contact having an extension at least partially over a transmissive portion of the fourth surface in a transmissive region of the rear substrate; and an applique on at least the transmissive portion of the fourth surface, the applique having a contact- obscuring region that is located over at least a portion of the extension of the electrical contact.
- the front and rear substrates define a cavity at least partially filled with the electro -optic material that is confined within the cavity by a seal substantially between the second surface and the third surface.
- the contact-obscuring region of the applique and the extension of the electrical contact are configured to substantially match in visual appearance through the front and rear substrates.
- an electro-optic assembly includes a front substrate having a first surface and a second surface substantially parallel to the first surface; a rear substrate spaced from and substantially parallel to the front substrate, the rear substrate having a third surface and a fourth surface substantially parallel to the third surface; and a carrier operably connected to at least one of the front substrate and the rear substrate.
- the electro-optic assembly further includes an applique layer directly on at least a first portion of the fourth surface and having an opening over a second portion of the fourth surface, the portions of the fourth surface in a transmissive region of the rear substrate; and an assembly component that is coupled to the carrier, behind the fourth surface and substantially coincident with the opening.
- the front and rear substrates define a cavity at least partially filled with an electro-optic material.
- an electro-optic assembly includes a front substrate having a first surface and a second surface substantially parallel to the first surface; a rear substrate spaced from and substantially parallel to the front substrate, the rear substrate having a third surface and a fourth surface substantially parallel to the third surface; and an applique layer directly on at least a first portion of the fourth surface and having an opening and a discontinuous element over a second portion of the fourth surface, the portions of the fourth surface in a transmissive region of the rear substrate.
- the front and rear substrates define a cavity at least partially filled with an electro-optic material.
- Figure 1 is a front view diagram of a rearview mirror assembly, in accordance with one exemplary embodiment
- Figure 2 is a cross-sectional view of a rearview mirror assembly, in accordance with an exemplary embodiment
- Figure 2A is a cross-sectional view of a rearview mirror assembly, in accordance with a further exemplary embodiment
- Figure 3 is a cross-sectional view of a rearview mirror assembly, in accordance with an additional exemplary embodiment
- Figure 4 is a cross-sectional view of a rearview mirror assembly, in accordance with an exemplary embodiment
- Figure 4A is a cross-sectional view of rearview mirror assembly, in accordance with an additional exemplary embodiment
- Figure 5 is cross-sectional view of a rearview mirror assembly, in accordance with a further exemplary embodiment
- Figure 6 is cross-sectional view of a rearview mirror assembly, in accordance with an additional exemplary embodiment
- Figure 6A is an enlarged, cross-sectional view of a rearview mirror assembly, in accordance with a further exemplary embodiment
- Figure 6B is an enlarged, cross-sectional view of a rearview mirror assembly, in accordance with an exemplary embodiment
- Figure 6C is an enlarged, cross-sectional view of a rearview mirror assembly, in accordance with an additional exemplary embodiment
- Figure 6D is an enlarged, cross-sectional view of a rearview mirror assembly, in accordance with a further exemplary embodiment.
- Figure 7 is a front-view diagram of a rearview mirror assembly, in accordance with an additional exemplary embodiment.
- the present illustrated embodiments reside primarily in combinations of method steps and apparatus components related to a printed applique and method thereof.
- an electro-optic assembly in the form of a transflective mirror assembly is generally shown at reference identifier 100.
- the mirror assembly 100 can be partially reflective and partially transmissive.
- the mirror assembly 100 can include a mirror assembly edge 102 and an applique 104.
- the applique 104 can define an opening 106.
- the mirror assembly 100 can also include a mirror element generally indicated at 108.
- the mirror assembly edge 102 can be integrated with the mirror element 108 or be a separate component.
- an additional electro-optic assembly in the form of a transflective mirror assembly is generally shown at reference identifier 100.
- the mirror assembly 100 can include a carrier 110 configured to attach to the mirror element 108.
- carrier 110 is a housing element of the mirror assembly 100 that is attached to one or more of the substrates 114, 120 (see, e.g., Figure 2A).
- Carrier 110 may also include other components of the mirror assembly 100 attached to one or more of the substrates 114, 120 including, but not limited to, a circuit board, an electronics board, a mount (e.g., an element that functions to suspend the mirror assembly 100 from a windshield), a board holder, an element mechanically connected to a bezel surrounding the assembly 100, and/or any other component which may provide some structural support to substrates 114 and/or 120.
- an adhesive 112 can be used to attach the carrier 110 and the mirror element 108.
- the applique 104 can be on a surface of the mirror element 108.
- mirror assembly 100 is an electro-optic assembly.
- Figures 2A, 3, 4, 4A, 5, 6, 6A-6D, and 7, each illustrate various embodiments of the mirror assembly 100, each an electro-optic assembly in the form of a transflective mirror assembly, wherein the mirror element 108 is an electro-optic element.
- the mirror element 108 can include a first substrate 114 having a first surface 116 and a second surface 118 and a second substrate 120 having a third surface 122 and a fourth
- first and second substrates 114, 120 define a cavity 126.
- the second surface 118 is substantially parallel to the first surface 116.
- the first substrate 114 and the second substrate 120 are oriented toward the front and the rear of the mirror assembly 100, respectively.
- the second substrate 120 can be spaced from and substantially parallel to the first substrate 114.
- the fourth surface 124 is arranged substantially parallel to the third surface 122.
- the cavity 126 can contain an electro-optic medium 128, such as, but not limited to, an electro chromic medium.
- the cavity 126 may be completely or partially filled with the medium 128.
- the mirror assembly 100 can also include an electrical contact 130, a conductive seal 132, a seal 134, an opaque region 136, a substantially transparent coating 138 on the second surface 118, and a partially reflective, partially transmissive layer 140 (e.g., a transflective coating) on the third surface 122.
- the applique 104 can be on the fourth surface 124 of the second substrate 120, e.g., in an optically transmissive region of the mirror assembly 100.
- the contact 130 may be employed to provide an electrical connection to an electrode located on the first or second substrate, 114 or 120, respectively, that is located in proximity to the electro-optic medium 128.
- electrical contact 130 can be in the form of an electrical contact clip, conductive epoxy, a wire, solder, conductive particles, conductive nanoparticles, conductive adhesive, and combinations of these forms of contact 130, configured as understood by those with ordinary skill in the field to convey electrical current.
- a substantial portion of the mirror element 108 (including substrates 114 and 120 and their surfaces 116, 118, 122, and 124, respectively) is transmissive insofar as it has an optical transmission of 5% or greater.
- one half (e.g., the right half) of the mirror element 108 may be substantially or completely opaque, while the other half (e.g., the left half) is
- the mirror element 108 has a substantial portion with an optical transmission greater than 10%. In at least one embodiment, a substantial portion of the mirror element 108 has an optical transmission of approximately 25% or greater. In an additional embodiment, a substantial portion of the mirror element 108 has an optical transmission from approximately 20 to 50%. Further, a substantial portion of the mirror element 108 can be characterized by approximately 22%, 26%o, or 40%) optical transmission levels.
- mirror elements 108 having a substantial portion with 5% or greater optical transmission it can be desirable to have a substantially uniform backing behind the mirror to prevent the user from seeing inconsistencies in the viewed image under typical, ambient lighting conditions.
- automotive mirrors with greater than 5% optical transmission have used a plastic film for the applique 104 to provide the desired uniform background.
- the applique material will have one or more openings so that light may pass through the material for a sensor or for viewing a display.
- the film employed as the applique 104 can also cover the entire transflective portion of the mirror element 108.
- the plastic film can be either adhered to the back of the second
- the applique 104 typically will extend into this opaque area.
- the applique 104 may extend to the edges of the mirror substrate if the edge area (see, e.g., mirror assembly edge 102 in Figure 1) is substantially or completely opaque.
- the transparent area or areas of the applique 104 may contain a transparent or diffusing film which will still allow light to pass through.
- the applique 104 may be a transparent film where at least a portion is modified with an additive process such as printing or lamination to generate opaque areas while other areas remain transparent.
- the applique 104 can be where the applique is substantially or completely opaque and the openings 106 in the applique can be transparent.
- the applique 104 may have a matte or glossy finish, it typically does not contain or embody, at least in substantial part, specular materials having a reflective or mirror- like appearance.
- the opening 106 may be completely devoid of applique material or it may include a transparent or semitransparent film that allows light to pass through it either specularly or with scattering.
- mirror assemblies 100 where a standard full-surface applique (e.g., a plastic film) is not the best choice for the applique 104.
- Black ink Direct Color
- the mirror assembly 100 is attached to a housing using an adhesive 112 between the printed applique 104 and a support plate (e.g., carrier 110 shown in Figure 2) behind the mirror element 108.
- a support plate e.g., carrier 110 shown in Figure 2
- the adhesion of the applique 104 to the glass surface is deemed insufficient to support the weight of the mirror, such as, but not limited to, for long durations or when exposed to changes in temperature, high humidity, or under other testing procedure typical of the automotive industry.
- the mirror assembly 100 has a substantially or completely opaque area around the perimeter, and that area may be used for the adhesive 112.
- openings can be left in the printed applique 104 that can be later filled with a liquid adhesive for use as adhesive 112.
- Figure 2 illustrates how openings 106 in the printed applique 104 provide areas for the adhesive 112.
- the color, texture, gloss, and/or reflectance of the printed applique 104 are visually similar to that of the adhesive 1 12 so that the user will view a substantially uniform surface in all types of lighting under the lighting conditions of the application for the assembly 100, including bright, off-angle lighting conditions.
- the adhesive 112 may extend into the openings 106 and also past the edges of the openings 106 over and/or under the applique 104.
- a mirror assembly 100 includes a carrier 110 operably connected to the second substrate 120.
- the applique 104 is located on at least a portion of the fourth surface 124. Further, the applique 104 also includes one or more openings 106 over other portions of the fourth surface 124.
- the mirror assembly 100 also includes adhesive 112 that is at least partially in the
- the adhesive 1 12 can improve the mirror appearance since an air pocket in the adhesive may create an area on the back surface of the second substrate 120 that may be visible when viewed in certain lighting conditions.
- the adhesive 112 serves to connect at least one of the first and second substrates 114 and 120 to the carrier 110.
- the applique 104 and adhesive 112 employed in the mirror assembly 100 according to these embodiments are configured, selected, or otherwise modified to substantially match in visual appearance. In some embodiments, the applique 104 and adhesive 112 are matched such that they are substantially indistinguishable as viewed by an observer through the transmissive portions of the substrates 114 and 120.
- Carrier 110 can also be operably connected with adhesive 112 to the first substrate 114, or both the first and second substrates 114 and 120.
- Direct Color Systems ® Direct Jet 1024 printer is used to apply a black ink (Direct Color Systems ® - 1-7102-200) to serve as the applique 104 across the back surface of a transflective mirror element 108 with an optical transmission of approximately 5% or greater. Circular openings 106 in the applique 104 of approximately 1 cm in diameter are created in the printed material. Subsequently, Bostik ® 70-08A black adhesive is used as adhesive 112 to fill the openings 106 and to bond the glass to a plastic carrier, e.g., carrier 110.
- a plastic carrier e.g., carrier 110.
- the mirror assembly 100 When the mirror assembly 100 is viewed from the front (i.e., above the first substrate 114), there can be a very good match between the applique 104 and the openings 106 in the applique 104 that are now filled with adhesive 112.
- the bond strength and cross sectional area of the adhesive bond can be sufficient for supporting the weight of the mirror element 108 even through automotive test procedures.
- opening 106 in the applique 104 can be filled with black adhesive 112 as described herein.
- applique 104 with an adhesive 1 12 may be challenging in some cases.
- adhesive foam (3MTM 4492 black) with openings in the foam (e.g., serving as
- openings 106) can be used as both an applique 104 and as the adhesive 112 to bond a plastic carrier plate 110 to the back of the mirror element 108.
- liquid adhesive or another sealant
- the foam adhesive as applique 104
- the liquid adhesive often do not match.
- the foam appears slightly gray and lower gloss when compared to the black adhesive when viewed through the front of the mirror assembly 100.
- One possible solution is to print a gray ink in the openings 106 to more closely match the color of the foam employed as the applique 104.
- An applique 104 on the back of an electrochromic transflective mirror element 108 may also be used to hide electrical contacts, such as electrical contact 130. If the contact 130 to the mirror element 108 wraps around to the back of the mirror element 108, and if the contact 130 extends beyond the plastic rim or opaque region 136 which hide the seal 134, the contact 130 may be visible from the front of the mirror assembly 100.
- Contacts 130 that extend into the transflective region of the mirror assembly 100 (e.g., a transmissive portion of the assembly 100 and mirror element 108) and do not match the color or gloss of the applique 104 may be visible from the front of the mirror
- Applying the applique 104 under the electrical contact 130 as shown in Figure 3 is one embodiment of a construction which hides the non-matching contact. More specifically, at least a portion of the applique 104 should be configured to obscure or hide the contact 130, as viewed through the first and second substrates 114 and 120. In some embodiments, the applique 104 and at least an extension of the electrical contact 130 over the fourth surface 124 should be configured to match in visual appearance such that applique 104 and the extension of the contact 130 are substantially indistinguishable as viewed through the transmissive portions of the first and second substrates 114 and 120 (located toward the front and rear of the mirror assembly 100, respectively) under the conceivable lighting conditions of the application.
- the applique 104 is placed on at least a portion of the fourth surface 124, extending completely or nearly completely under the electrical contact 130.
- adhesive e.g., the adhesive employed as adhesive 112 shown in Figure 2A
- the applique 104 may flow (e.g., applique 104 as an inkjet layer) or is otherwise (e.g., applique 104 is a plastic film) located under the electrical contact 130 and around any adhesive employed to attach the contact 130 to the substrate 120.
- the mirror assembly 100 includes an opaque region 136 on a portion of the second surface 118 and a seal 134 that is configured substantially between the opaque region 136 and the third surface 122.
- the extension of the electrical contact 130 over the fourth surface 124 extends past the opaque region 136 such that it may be visible by an observer through the first and second substrates 114 and 120.
- the applique 104 configured under the contact 130 substantially obscures and hides the extension of the electrical contact 130 that is visible through the substrates 114 and 120.
- At least one embodiment of a mirror assembly 100 is
- an adhesive pad 112a is located under an extension of the electrical contact 130, and then an applique 104 is located or otherwise applied over the transflective portions of the mirror element 108 (e.g., fourth surface 124 of the second substrate 120). Further, a portion of the applique 104 is located or otherwise applied over at least the edges of the adhesive pad 112a.
- the adhesive pad 112a can serve to attach the electrical contact 130 to the fourth surface 124 of the second substrate 120.
- the adhesive pad 112a is configured as a dark film or dark adhesive pad.
- the applique 104 should substantially match the appearance of the
- the applique 104 when viewed from the front of the mirror assembly 100 depicted in Figure 4.
- the applique 104 also substantially matches the visual appearance of the electrical contact 130.
- the portion of the applique 104 over the adhesive pad 112a should be configured to obscure the visual appearance of the extension of the electrical contact 130 and the adhesive pad 112a that might otherwise be visible through the first and second substrates 114 and 120 of the mirror assembly 100.
- the adhesive pad 112a and the extension of the electrical contact 130 are configured to match in visual appearance such that the applique 104, the adhesive pad 112a and the extension of the electrical contact 130 are substantially indistinguishable as viewed through the first and second substrates 114 and 120.
- the mirror assembly 100 can also be configured such that a portion of the applique 104 is located over at least a portion of the adhesive pad 112a and a portion of the extension of the electrical contact 130.
- a portion of the applique 104 is located over at least a portion of the adhesive pad 112a and a portion of the extension of the electrical contact 130.
- the mirror assembly 100 depicted in Figure 4 includes an opaque region 136 on a portion of the second surface 118 and a seal 134 that is configured substantially between the opaque region 136 and the third surface 122.
- the adhesive pad 112a may extend past the opaque region 136 such that it is visible by an observer through the substrates 114 and 120.
- the applique 104 can be configured over a portion of the adhesive pad 112a to substantially obscure and hide the pad 112a that is visible through the substrates 114 and 120.
- the mirror assembly 100 can be configured such that a portion of the electrical contact 130 extends past the adhesive pad 112a over the fourth surface 124.
- the mirror assembly 100 is also configured such that a portion of the adhesive pad 112a extends past the opaque region 136 such that it is visible by an observer through the substrates 114 and 120.
- the portion of the electrical contact 130 that extends past the pad 112a is also visible through the substrates 114 and 120 as it extends past the opaque region 136.
- applique 104 can be obscured or hidden in the configuration of mirror assembly 100 depicted in Figure 4A by a portion of the applique 104 that is located (e.g., for an applique 104 that comprises a plastic film), or otherwise wicks (e.g., for an applique 104 that comprises an inkjet layer), underneath the extension of the electrical contact 130 and over the fourth surface 124.
- the applique 104 is configured to substantially match the appearance of the adhesive pad 112a and the electrical contact 130, thus ensuring that the portion of the adhesive pad 112a and electrical contact 130 extending past the opaque region 136 are not visible to an observer through the substrates 114 and 120.
- the exemplary embodiment of mirror assembly 100 depicted in Figure 4A can also be modified such that the portion of the adhesive pad 112a that extends past the opaque region 136 also extends completely beneath the electrical contact 130 such that only this portion of the pad 112a is visible through the first and second substrates 114 and 120.
- the adhesive pad 112a resides completely beneath the contact 130 and above the fourth surface 124.
- the applique 104 need only butt up against the adhesive pad 112a to effectively obscure it from view through the substrates 114 and 120.
- the applique 104 can further wick between the adhesive pad 112a and the electrical contact 130, in addition to butting up against the pad 112a.
- ink is used to form the applique 104 on the fourth
- a transflective electrochromic mirror element 108 as shown in, for example, Figure 3.
- the ink is applied directly to the fourth surface 124 of the glass substrate 120.
- a clip used for electrical contact 130 is positioned on top of the applique 104. Using this construction, the contact 130 (e.g., a clip) is hidden from view when the mirror element 108 is viewed from the front (e.g., as viewed through substrates 114 and 120). This construction is particularly useful when the optical transmission level of the mirror element 108 is above 30%.
- a construction of a mirror assembly 100 hides a non- matching contact and includes a contact 130 that comprises a black or dark contact material or a contact material, such as a metal tab, where the side facing the substrate 120 is colored black, for example, with an ink or a sticker.
- FIG. 1 illustrates an embodiment of the mirror assembly 100 with this construction.
- the electrical contact 130 is configured to provide an electrical connection to at least one of the first and second substrates 114 and 120, the contact 130 further possessing an extension over the fourth surface 124 of the second substrate 120.
- the applique 104 is on at least a portion of the fourth surface 124, and has a contact-obscuring region that is located over at least a portion of the extension of the electrical contact 130. Further, the contact-obscuring region of the applique 104 and the extension of the electrical contact 130 are configured to substantially match in visual appearance. Hence, an observer looking through the first and second substrates 114 and 120, respectively, will tend to observe the applique 104 and contact 130 elements as one uniform feature of similar appearance.
- the applique 104 and the extension of the electrical contact 130 are configured to match in visual appearance such that the applique 104 and the extension of the contact 130 are substantially indistinguishable as viewed through the transmissive portions of the first and second substrates 114 and 120, respectively.
- the mirror assembly 100 (see Figure 5) further includes an opaque region 136 on a portion of the second surface 118.
- the extension of the electrical contact 130 is over the fourth surface 124 of the second substrate 120.
- the extension of the contact 130 also extends past the opaque region 136.
- the extension of the contact 130 might be viewable through the first and second substrates 114 and 120, respectively, of the mirror element 108, the presence of the applique 104 over at least a portion of the extension of the electrical contact 130 obscures the interfaces and edges of the contact 130 from view through these substrates.
- the materials employed for the opaque region 136, the applique 104 and the side of the extension of the electrical contact 130 facing the fourth surface 124 of the second substrate 120 are selected to substantially match in visual appearance.
- the applique 104 can closely follow the contour of the material employed for the electrical contact 130. Such contour matching can be done by creating the applique 104 using a liquid material such as an ink that will flow over the edges of the electrical contact 130. If the applique material overlapping the contact 130 does not follow the contact edge closely, an area of discontinuity in the color or gloss is likely to appear adjacent to the contact 130.
- a metal contact clip is employed for the electrical contact 130.
- the clip is then adhered to the fourth surface 124 of the second substrate 120 of the mirror element 108 using a black adhesive layer for the adhesive pad 112a.
- the total thickness of the contact 130 and the adhesive pad 112a is greater than 75 ⁇ .
- At least a portion of the black adhesive layer employed as the pad 112a can be seen through the substrates 114 and 120 when viewed from the front of the mirror element 108.
- a black plastic film is used as an applique 104 over the back of the mirror element 108 (e.g., over the fourth surface 124 of the second substrate 120)
- the applique 104 extends over the contact 130.
- air pockets are created adjacent to the contact 130, configured in the form of metal contact clip. These air pockets create bright areas which reflect more light than either the area where the applique 104 is adhered to the glass (e.g., fourth surface 124 of the second substrate 120) or the area where the black clip adhesive serving as pad 112a is adhered to the glass.
- this mirror assembly 100 embodiment can be modified such that black ink is employed as the applique 104.
- the applique 104 is printed over and adjacent to the black adhesive layer serving as pad 112a, no such air pockets are evident.
- the printed ink of the applique 104 coats the fourth surface 124 of the second substrate 120 right up to the edge of the adhesive pad 112a (e.g., black adhesive) used to attach the electrical contact 130, a metal clip in these embodiments. Since no air pockets are formed, the area adjacent to the black adhesive pad 112a appears the same as the rest of the glass substrate 120 having the applique 104 in the form of printed ink on its fourth surface 124.
- One function of an applique 104 is that it may be used to improve the shatter
- a plastic film laminated to the back of a piece of glass e.g., fourth surface 124 of the second substrate 120
- the material of a printed applique 104 may also improve the shatter resistance of the mirror element 108 if the printed material has some elastic properties and/or if fibers are added to the printed material as a reinforcement for the applique 104.
- first and second substrates 114 and 120 are depicted that include first and second substrates 114 and 120.
- the substrates 114 and 120 are oriented toward the front and rear of the mirror assembly 100, respectively.
- the substrates 114 and 120 also define a cavity 126 that is at least partially filled with an electro-optic medium 128.
- the mirror assembly 100 contains a mirror element 108 that comprises the substrates 114 and 120.
- the substrates 114 and 120 are themselves configured comparably to those same elements employed in the embodiments of mirror assembly 100 depicted in Figures 2A-5.
- the first substrate 1 14 has a first surface 116 and a second surface 118 that is substantially parallel to the first surface 116.
- the mirror assembly 100 also includes a carrier 110 that is operably connected to at least one of the first substrate 114 and the second substrate 120. In the embodiment depicted in Figure 6, the carrier 110 is connected to the second substrate 120 via adhesive 112.
- the mirror assembly 100 also includes an applique 104 in the form of an inkjet applique layer directly applied to at least a first, transmissive portion of the fourth surface 124 of the second substrate 120.
- the applique 104 layer is cured and bonded to the substrate 120 in situ. Accordingly, the applique 104 employed for the mirror assembly 100 requires no adhesive or other bonding material to attach to the second substrate 120; consequently, the applique 104 is substantially in direct contact with the underlying substrate 120.
- the applique layer serving as applique 104 has an opening 106a over a second, transmissive portion of the fourth surface 124.
- the mirror assembly 100 also includes an assembly component 142 that is coupled to the carrier 110. The assembly component 142 is located such that it resides behind the fourth surface 124 of the second substrate 120. In some embodiments, the assembly component 142 is substantially coincident with the opening 106a in the applique 104.
- a substantial portion of the mirror element 108 (including substrates 114 and 120, and their surfaces 116, 118, 122 and 124, respectively) is transmissive insofar as it has an optical transmission of 5% or greater.
- Other portions of the mirror element may be substantially or completely opaque.
- one half of the mirror element 108 may be substantially or completely opaque, while the other half is semitransparent with an optical transmission of 5% or greater.
- the mirror element 108 in some embodiments has a substantial portion with an optical transmission with greater than 10%.
- a substantial portion of the mirror element 108 has an optical transmission of at least approximately 25%.
- a substantial portion of the mirror element has approximately 20 to 50% optical transmission.
- a substantial portion of the mirror element 108 can be characterized by approximately 22%, 26%, or 40% optical transmission levels in certain embodiments.
- Figures 6 and 6A-6D can take on many forms.
- the assembly component 142 can be a light source, sensor, optics, light diffuser, display, or some other internal electronic, mechanical, or electro -mechanical feature associated with the mirror assembly 100.
- the assembly 100 is configured to obscure, block or otherwise minimize the appearance of the assembly component 142 through the transmissive portions of the first and second substrates 114 and 120.
- an applique 104 has at least one backlit opening (e.g., a light source employed as assembly component 142 in front of opening 106a), it is important to avoid bleed-through of the light through the applique 104 adjacent to the opening.
- a backlit opening e.g., a light source employed as assembly component 142 in front of opening 106a
- an ink thickness of 50 to 300 ⁇ may be needed to create a film with an optical density greater than 2.
- opening 106a if small lines or openings are desired for opening 106a (e.g., for an icon opening), it can be difficult to maintain the design widths of the opening 106a, particularly for thicker (e.g., greater than 50 ⁇ ) inkjet-printed applique layers employed as applique 104. This is because the ink employed for the applique 104 may flow on the substrate surface (e.g., fourth surface 124) changing the appearance of the printed image.
- the time between ink-jetting and curing may be over 1 second and the ink can flow, changing the as-printed line widths of the opening 106a.
- Applying the ink in a thin pass, at least partially curing the ink, and then adding to the thickness of the ink layer with a second pass is one way to produce more accurate line widths for the opening 106a within an inkjet-printed applique layer employed as applique 104.
- Another option is to fill the open area of opening 106a with a clear ink which will prevent the optically dense material of the surrounding applique 104 from flowing into the opening 106a.
- a thin clear ink is applied in the transmissive area of the mirror element 108 intended to define the opening 106a, and then the clear ink is UV-cured.
- a black ink is printed as the applique 104 adjacent to the clear ink, thus defining the opening 106a. As a result, the flow of the black ink is limited in the region that defines opening 106a.
- the thickness of an inkjet-printed applique layer employed as applique 104 it is preferred to limit the thickness of an inkjet-printed applique layer employed as applique 104 to about 50 ⁇ or less. In at least one exemplary embodiment, it is preferred that a ratio of the smallest opening dimension of the opening 106a to the ink thickness of the inkjet layer employed as the applique 104 is controlled to be greater than or equal to about 5.
- the smallest opening dimension is the smallest dimension of the opening 106a, contemplating various shapes of the opening itself.
- the smallest opening dimension for a rectangular-shaped opening 106a would be the shortest width dimension of the opening. For triangular-shaped openings 106a, the smallest opening dimension would be the height of the triangle.
- a smallest opening dimension of 300 ⁇ for an opening 106a in the applique 104 can be printed with an ink thickness of 100 ⁇ . But with a smallest opening dimension-to-inkjet layer thickness ratio of only 3, the ink flow is fairly significant across the substrate (e.g., fourth surface 124 of the second substrate 120), making line width control difficult. Conversely, when the thickness of the inkjet layer is dropped to 50 ⁇ , the ratio is now 6, and controlling the size and demarcations of the opening 106a is greatly improved.
- the ratio of the smallest opening dimension-to -the thickness of the inkjet layer employed as the applique 104 is set above 5.
- an inkjet layer of 15 ⁇ can be effectively used for the applique 104 to create an opening 106a with a smallest opening dimension of 100 ⁇ , thus providing a ratio of the smallest opening dimension to the thickness of the inkjet layer of approximately 6.7.
- the ratio of the smallest opening dimension to the thickness of the inkjet layer is controlled to a value above about 15. Accordingly, it is preferable to employ thinner inkjet layers for the applique 104, particularly for applications of mirror assembly 100 having an applique 104 defining an opening 106a requiring significant dimensional control over the opening itself.
- a diffusing material e.g., titanium dioxide
- adding a diffusing material, e.g., titanium dioxide, to the inkjet layer can be used to increase the optical density of the layer, allowing thinner inkjet layers to be employed for the applique 104 in proximity to the opening 106a.
- the diffusing light scattering material within the applique 104 effectively increases the optical path length through the thickness of the ink, thereby reducing the overall transmission for a given thickness.
- narrow lines and openings can be defined as opening 106a in an applique 104 by printing the optically dense material first with any large openings and to follow the ink curing process with an ink removal process for smaller openings 106a.
- a laser is used to remove or ablate a portion of the ink and to create openings of less than approximately 500 ⁇ in width and lines of less than approximately 500 ⁇ in width.
- lines and openings with a dimension less than approximately 300 ⁇ can be generated using the laser ablation method. Using laser ablation to create the openings 106a eliminates concerns of excessive inkjet layer flow associated with narrow line width openings and thick ink layers.
- a light diffusing material 104a can be employed between an assembly component 142 (e.g., a light source) and the viewer to provide more uniform lighting through the opening 106a in the applique 104.
- the light diffusing material 104a can be placed in the opening 106a and over a portion of the inkjet layer employed as the applique 104 in proximity to the opening 106a.
- adding a light diffusing material 104a into an opening 106a, configured in the form of an icon area reduces the lighting hot spot seen when backlighting the mirror element 108 with a point source light such as an LED
- the diffusing material will be a separate piece of light diffusing plastic film added between the applique 104 and the light source serving as the assembly component 142. If the applique 104 is printed directly onto the rear surface of the glass (e.g., fourth surface 124 of the second substrate 120), it is possible to print a light diffusing material which flows both over the applique 104 and into the icon area of opening 106a, thereby improving the lighting uniformity of the backlit icon.
- the light diffusing material 104a is adhered to the fourth surface 124 of the substrate 120 within the opening 106a, and a portion of the applique 104 (e.g., an inkjet layer) in proximity to the opening 106a.
- the portion of the light diffusing material 104a in proximity to the opening 106a is defined by a substantially annular region for a circular- shaped opening 106a that extends at least about 0.2 mm past the opening.
- the portion of the light diffusing material 104a extends at least about 0.1 mm past the opening 106a.
- the portion of the light diffusing material 104a that extends past a noncircular-shaped opening 106a will be substantially shaped to match the shape of the opening 106a.
- the mirror assembly 100 depicted in Figure 6A is configured to ensure adequate light output for a light source serving as the assembly component 142, while at the same time reducing any light hot spots.
- the light diffusing material 104a should be characterized by approximately 25% or greater optical transmission for this purpose.
- the optical transmission of the light diffusing material 104a should be higher than 55% and, even more preferably, higher than 65%.
- the haze value of the light diffusing material 104a should be greater than 85% and, preferably, greater than 89%.
- mirror assembly 100 can be achieved with various loadings by weight of 5% to 95% of metal oxide particles including, but not limited to, Ti0 2 , CaC0 3 , and BaS0 4 .
- Further desired properties associated with the light diffusing material 104a can be achieved by changing the texture of the material 104a to create various lensing effects to increase light scattering.
- mirror assembly 100 is
- a semitransparent inkjet layer 104b employed between an assembly component 142 (e.g., a light source) and the viewer to better obscure the assembly component 142 from view through the substrates 114 and 120.
- assembly component 142 e.g., a light source
- semitransparent layer 104b can be placed in the opening 106a and over a portion of the inkjet layer employed as the applique 104 in proximity to the opening 106a. For example, adding a semitransparent inkjet layer 104b into an opening 106a, configured in the form of an icon area, obscures a light source, acting as the assembly component 142, attached to the carrier 110. In some embodiments, the semitransparent inkjet layer 104b is tinted to produce a coloring effect in the opening 106a, particularly when shaped in the form of an icon.
- components, or features may unintentionally become visible in the opening 106a in the applique 104.
- component 142 residing behind the mirror element 108 may reflect light back through the opening 106a in the applique 104 and become visible. For example, assembly
- component 142 can comprise glare sensor components, a display, a light diffuser, an LED, and/or other electronic components that reflect light and become visible through the substrates 114 and 120 when the optical transmission through the mirror element 108 and through the opening 106a in the applique 104 is above 15%. At levels below 15% optical transmission, the visibility through these openings 106a is decreased, and the assembly component 142 can be concealed.
- assembly component 142 behind the openings is desirable for several reasons. From a design standpoint, it may be aesthetically pleasing to hide any component that breaks the continuity of the reflected image or offsets symmetry. From a safety and driver comfort standpoint, it may be distracting for a visual aberration to be viewable in the mirror element 108 of the mirror assembly 100.
- the optical transmission of the opening 106a can be modified by printing a
- semitransparent inkjet layer 104b in the form of a uniform light filter or one that is selectively graded or patterned to achieve the desired transmission locally where it is needed.
- a printed light filter employed as the layer 104b may use any combination of clear, colored, or black inks to modify the light transmission through the opening 106a.
- the applique 104 when the applique 104 comprises a plastic film, it may be configured with a plurality of openings 106a, each with the modified optical transmission levels indicative of a semitransparent layer 104b that are required to conceal the assembly components 142 configured behind the substrates 114 and 120 of the mirror element 108.
- the assembly component 142 such as a glare light sensor
- the assembly component 142 can be placed in any position on the carrier 110 behind the mirror element 108 - e.g., substantially coincident with or offset from the opening 106a. This allows for the component 142, e.g., a sensor, to be placed in the most desirable location to maximize its function and/or manufacturability as well as to maintain design intentions.
- a mirror element 108 has approximately 22% total visible light transmission.
- a generally opaque applique 104 is printed on the fourth surface 124 of the second substrate 120 of the mirror element 108, and a light diffuser is placed behind an opening 106a in the applique 104.
- the opening 106a with the light diffuser can be easily seen in typical ambient lighting conditions (e.g., within a vehicle) since the light diffuser reflects back a portion of the light that passes through the opening 106a.
- the prior example can be modified according to one exemplary embodiment of mirror assembly 100 depicted in Figure 6B.
- a light diffuser (serving as assembly component 142) can be located behind the opening 106a and the semitransparent inkjet layer 104b, and the mirror element 108 is placed in front of a housing element.
- the opening 106a with the light diffuser, acting as assembly component 142 cannot be easily seen with typical ambient lighting conditions (e.g., within a vehicle).
- a mirror element 108 has an approximately 40% visible light transmission.
- a generally opaque applique 104 is printed on the fourth surface 124 of the second substrate 120 of the mirror element 108, and a glare sensor and associated optics are placed behind an opening 106a in the applique 104.
- the mirror element 108 is placed in front of the carrier 110 or other housing element, the
- opening 106a with the glare sensor optics can be easily seen in typical ambient lighting conditions (e.g., within a vehicle) since the glare sensor optics reflect back a portion of the light that passes through the opening 106a.
- the prior example can be modified according to a further exemplary embodiment of the mirror assembly 100 depicted in Figure 6B.
- a semitransparent inkjet layer 104b with approximately 38% or less visible light transmission is printed over the area of the opening 106a. The area of the opening 106a would then have a total light transmission of 15%.
- a glare sensor and optics can serve as the assembly component 142, and these components can be placed behind the opening 106a and the semitransparent inkjet layer 104b.
- the mirror element 108 can be located in front of the housing element. Consequently, the glare sensor and optics cannot be easily seen with typical ambient lighting conditions (e.g., within a vehicle).
- the assembly component 142 can be configured as a light source or a sensor, for example.
- the mirror element 108 can be characterized, for example, by an approximately 26% or 22% optical transmission, an optical transmission range of approximately 20 to 50%, and other optical transmission levels.
- the semitransparent layer 104b employed in the opening 106a can be configured with an optical transmission of 58% or less, 68%o or less, or other levels, depending on the optical transmission of the mirror element 108.
- the total light transmission through the opening 106a is the product of the transmission levels of the element 108 and the semitransparent layer 104b.
- the applique 104 can be provided with an opacity gradient layer 104c to eliminate a sharp edge that might otherwise be visible if the applique 104 had an essentially opaque area directly adjacent to the opening 106a.
- the edge of the applique 104 may be easily seen, especially when the mirror element 108 employs a transflective layer 140 (e.g., a transflective coating) with high optical transmission.
- the applique 104 is set at a first optical density and the opacity gradient layer 104c is set at a second optical density, preferably below the first optical density associated with the majority of the applique 104.
- the second optical density of the opacity gradient layer 104c is created by the printing of "dots" or the like of the same or similar material as employed in the applique 104 with space between the "dots.” In effect, the second optical density of the layer 104c, with its spaces between "dots," is lower than the first optical density associated with the majority of the applique 104. Creating a gradient in the applique 104 in the form of opacity gradient layer 104c in the opening 106a provides some optical transmission without a sharp transition.
- the opening 106a defines a sensor eyehole for an assembly component 142 in the form of a light sensor.
- the applique 104 can be printed using a Direct Color Systems ® printer. Black ink is used to create a generally opaque coating on the back of a transflective mirror element 108 (e.g., fourth surface 124 of the second substrate 120) with approximately 26% transmission.
- the sensor eyehole area e.g., opening 106a
- the opacity gradient layer 104c is configured such that is characterized by approximately 58% or less optical transmission when the mirror element 108 has approximately 26% transmission. It is also preferable to prepare the gradient layer 104c with an optical transmission of approximately 38% or less when the transmission of the mirror element 108 is approximately 40%. In additional embodiments, it is preferable to set the gradient layer 104c with an optical transmission of 68% or less when the transmission of the mirror element 108 is approximately 22%. Further, in some embodiments, the mirror element 108 can be characterized by an approximately 20 to 50% optical transmission, with adjustments to the gradient layer 104c to achieve the desired total light transmission level through the opening 106a. Other optical transmission levels are also feasible. Ultimately, each of these embodiments of mirror assembly 100, as depicted in Figure 6C, can achieve a total light transmission of 15% or less through the opening 106a of the mirror element 108.
- a color filter 104d can be employed in the opening 106a formed in the applique 104.
- inkjet layers employed as appliques 104 may also contain various colors so that black may be used in the majority of the area, but specific colors may be used in the icon areas (e.g., opening 106a).
- the icon area of opening 106a may contain a printed color filter 104d.
- mirror assembly 100 shown in Figure 6D it is preferable to employ the printed color filter 104d in the opening 106a and over a portion of the inkjet layer as applique 104 in proximity to the opening 106a. In some cases, it is advantageous to lower the transmission of one icon area in comparison to another. Adding a gray semitransparent ink (or CMY gray) as color filter 104d to the icon area of opening 106a may provide the desired transmission. Tinting the icon area and, particularly, the openings 106a, also provides a stealthier, less visible icon when viewed through the mirror assembly 100.
- the color filter 104d can be adhered to the fourth surface 124 of the substrate 120 within the opening 106a, and a portion of the inkjet layer (applique 104) in proximity to the opening 106a.
- the portion of the color filter 104d in proximity to the opening 106a is defined by a substantially annular region for a circular-shaped opening 106a that extends at least 0.2 mm past the opening.
- the portion of the color filter 104d that extends past a noncircular-shaped opening 106a will be substantially shaped to match the shape of the opening 106a.
- 6A-6D is that they can be employed individually or in combination to control the light output of multiple assembly components 142, particularly LED light sources, within the icon area of a mirror element 108 containing one or more openings 106a.
- some icons, indicators, or the like of a given mirror assembly 100 may require a brighter LED source for use in connection with a "warning" icon, and other icons in the same mirror assembly 100 may require a lower light output level.
- a semitransparent layer 104b see Figure 6B and corresponding description
- a color filter 104d see Figure 6D and corresponding description
- components 142 can be adjusted. In doing so, it is possible to tailor the light output of one or more openings 106a to create different light output levels and/or accommodate one or more LED light sources with the same or varying output levels. Further, it is possible to employ teachings associated with the exemplary embodiments depicted in Figures 6A-6D (e.g., color filters, semitransparent layers, light diffusing layers, and/or opacity gradient layers) within the same opening 106a or multiple openings 106a in a given mirror assembly 100, depending on the application. For example, a color filter 104d and a light diffusing material 104a could conceivably be employed within the same opening 106a to create a single icon with varying light output effects.
- teachings associated with the exemplary embodiments depicted in Figures 6A-6D e.g., color filters, semitransparent layers, light diffusing layers, and/or opacity gradient layers
- a color filter 104d and a light diffusing material 104a could conceivably be
- an exemplary embodiment of the mirror assembly 100 is depicted with one or more openings 106a having complex icon features in the transmissive portion of mirror element 108. It is advantageous to employ applique 104 in the form of an inkjet layer for the development of the opening(s) 106a. As depicted in Figure 7, the icon features in the openings 106a possess one or more discontinuous elements 106b. The discontinuous elements 106b, and the remaining portions of the applique 104 within the mirror element 108, can be printed in as little as one pass when the applique 104 is in the form of an inkjet layer. Line widths and the particular dimensions of the openings 106a and discontinuous elements 106b can be controlled according to the parameters outlined earlier in this specification. For example, one can control the smallest dimension of the discontinuous elements 106b within the openings 106a in view of the inkjet layer thickness to a ratio of greater than or equal to 5.
- applique 104 in the form of an inkjet layer can be employed advantageously within the mirror assembly 100 for one or more purposes or functions.
- applique 104 in the form of an inkjet layer can be effectively employed to mask features (e.g., electrical contact 130 as depicted in Figures 2A-5 and described in the foregoing).
- the applique 104 in the form of an inkjet layer can also define openings 106a and the appearance of features substantially coincident with the openings 106a (e.g., assembly component 142 in Figures 6A-6D and described in the foregoing).
- the applique 104 in the form of an inkjet layer can be employed to create complex openings 106a with discontinuous elements 106b (as shown in Figure 7) in the transmissive region of the mirror assembly 100.
- an inkjet layer for applique 104 can be particularly advantageous as an inkjet printer can be employed to deposit the layer(s) for the applique 104 according to various functions with a limited number of passes and manufacturing steps.
- the electro-optic medium 128 can comprise at least one solvent, at least one anodic material, and at least one cathodic material.
- both of the anodic and cathodic materials are electroactive and at least one of them is electrochromic.
- electroactive will be defined herein as a material that undergoes a modification in its oxidation state upon exposure to a particular electrical potential difference.
- electrochromic will be defined herein, regardless of its ordinary meaning, as a material that exhibits a change in its extinction coefficient at one or more wavelengths upon exposure to a particular electrical potential difference.
- the electro-optic medium 128 is preferably chosen from one of the following
- the electro-optic medium 128 may comprise a single-layer of material which may include small non-homogenous regions, and include solution-phase devices where a material may be contained in solution in an ionically conducting electrolyte which remains in solution in the electrolyte when electrochemically oxidized or reduced.
- Solution-phase electroactive materials may be contained in the continuous solution-phase of a gel medium in accordance with the teachings of U.S. Patent No. 5,928,572 entitled “Electrochromic Layer And Devices Comprising Same," and International Patent Application Serial No. PCT/US98/05570 entitled “Electrochromic Polymeric Solid Films, Manufacturing Electrochromic Devices Using Such Solid Films, And Processes For Making Such Solid Films And Devices,” both of which are hereby incorporated herein by reference in their entirety.
- More than one anodic and cathodic material can be combined to give a pre-selected color as described in U.S. Patent No. 5,998,617 entitled “Electrochromic Compounds," U.S. Patent No. 6,020,987 entitled “Electrochromic Medium Capable Of Producing A Preselected Color,” U.S. Patent No. 6,037,471 entitled “Electrochromic Compounds,” and U.S. Patent No. 6,141,137 entitled “Electrochromic Media For Producing A Preselected Color,” all of which are hereby incorporated herein by reference in their entirety including all references incorporated and/or cited therein.
- the anodic and cathodic materials may also be combined or linked by a bridging unit as described in U.S. Patent No. 6,241,916 entitled “Electrochromic System” and/or U.S. Patent Publication No. 2002/0015214 Al entitled “Electrochromic Device,” which are hereby incorporated herein by reference in their entirety including all references incorporated and/or cited therein.
- the electrochromic materials may also include near- infrared (NIR) absorbing compounds as described in U.S. Patent No. 6,193,912 entitled “Near Infrared- Absorbing Electrochromic Compounds And Devices Comprising Same," which is hereby incorporated herein by reference in its entirety including all references incorporated and/or cited therein.
- NIR near- infrared
- the anodic and cathodic electrochromic materials can also include coupled
- concentration of the electrochromic materials can be selected as taught in U.S.
- a single-layer, single-phase medium may include a medium where the anodic and cathodic materials are incorporated into a polymer matrix as is described in International Patent Application Serial No. PCT/EP98/03862 entitled “Electrochromic Polymer System,” and International Patent Application Serial No. PCT/US98/05570 entitled “Electrochromic Polymeric Solid Films, Manufacturing Electrochromic Devices Using Such Solid Films, And Processes For Making Such Solid Films And Devices,” which is hereby incorporated herein by reference in its entirety including all references incorporated and/or cited therein.
- the electro-optic medium 128 may also be prepared in layers and include a material attached directly to an electrically conducting electrode or confined in close proximity thereto which remains attached or confined when electro chemically oxidized or reduced.
- the electro-optic medium 128 may further be prepared using multiple phases where one or more materials in the medium undergoes a change in phase during the operation of the device, for example a material contained in solution in the ionically conducting electrolyte forms a layer on the electrically conducting electrode when electro chemically oxidized or reduced.
- the exemplary embodiments herein may be configured to define a
- the substrate 114 may comprise a hydrophilic or hydrophobic coating to improve the operation.
- the embodiments of the reflective elements may comprise an anti-scratch layer on the exposed surfaces of at least one of the first and second substrates 114 and 120. Examples of various reflective elements are described in U.S. Patent Nos. 5,682,267, 5,689,370, 5,825,527, 5,940,201, 5,998,617, 6,020,987, 6,037,471, 6,057,956, 6,062,920, 6,064,509, 6,111,684, 6,166,848, 6,193,378, 6,195,194, 6,239,898, 6,246,507, 6,268,950, 6,356,376, 6,441,943, and 6,512,624. The disclosure of each of these patents is incorporated herein in its entirety by reference.
- the embodiments disclosed herein may be used with a mounting system such as that described in U.S. Patent Nos. 8,201,800; 8,210,695; U.S. Patent Application Nos. 13/600,496; 13/527,375; 13/431,657; 13/402,701; 12/187,019, and U.S. Provisional Patent Application No s. 61/709,716; 61/707,676; and 61/704,869, which are hereby incorporated herein by reference in their entirety. Further, the embodiments of this disclosure may be used with a rearview packaging assembly such as that described in U.S. Patent No.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Multimedia (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
Abstract
An electro-optic assembly that includes a front substrate having a first surface and a second surface substantially parallel to the first surface; a rear substrate spaced from and substantially parallel to the front substrate, and having a third surface and a fourth surface substantially parallel to the third surface; and a carrier operably connected to at least one of the front substrate and the rear substrate. The assembly includes an appliqué layer directly on at least a first portion of the fourth surface and having an opening over a second portion of the fourth surface; and an assembly component coupled to the carrier, behind the fourth surface and substantially coincident with the opening. The portions of the fourth surface are in a transmissive region of the rear substrate, and the front and rear substrates define a cavity at least partially filled with an electro-optic material.
Description
PRINTED APPLIQUE AND METHOD THEREOF
[0001] This application claims benefit under 35 USC § 119(e) of provisional application
Serial No. 61/750,441, filed January 9, 2013, entitled PRINTED APPLIQUE AND METHOD THEREOF, the entire contents of which are incorporated herein by reference.
FIELD
[0002] The disclosure generally relates to an electro-optic assembly, and more
particularly, to a rearview mirror assembly with a printed applique and method thereof.
SUMMARY
[0003] According to one aspect of the disclosure, a rearview mirror assembly is provided that includes a mirror element comprising a front substrate having a first surface and a second surface, and a rear substrate spaced from and substantially parallel to said front substrate, the rear substrate having a third surface and a fourth surface. The front and rear substrates define a cavity at least partially filled with an electro-optic material. The rearview mirror assembly also includes a carrier configured to be connected the mirror element; an applique on at least part of the fourth surface, the applique defining openings where no applique is applied on the fourth surface; and an adhesive in at least part of the opening, the adhesive configured to attach to the mirror element and the carrier. The applique and adhesive are configured to substantially have a visual match, and the bond strength and area of the adhesive are adequate to support the mirror element.
[0004] According to an aspect of the disclosure, an electro-optic assembly is provided that includes a front substrate having a first surface and a second surface substantially parallel to the first surface; a rear substrate spaced from and substantially parallel to the front substrate, the rear substrate having a third surface and a fourth surface substantially parallel to the third surface; and a carrier operably connected to at least one of the front substrate and the rear substrate. The electro-optic assembly also includes an applique on at least a first portion of the fourth surface and having an opening over a second portion of the fourth surface, the portions of the fourth surface in a transmissive region of the rear substrate; and an adhesive at least partially in the opening on the second portion of the fourth surface to connect at least one of the front substrate and the rear substrate to the carrier. The front and rear substrates define a cavity at least partially filled with an electro-optic material, and the carrier and adhesive provide support to at least one of the
front substrate and the rear substrate. The applique and the adhesive are configured to substantially match in visual appearance through the front and rear substrates.
[0005] According to a further aspect of the disclosure, an electro-optic assembly is
provided that includes a front substrate having a first surface and a second surface substantially parallel to the first surface; and a rear substrate spaced from and substantially parallel to the front substrate, the rear substrate having a third surface and a fourth surface substantially parallel to the third surface. The electro-optic assembly further includes an electrical contact for providing an electrical connection to an electrode in proximity to an electro -optic material, the contact having an extension at least partially over a transmissive portion of the fourth surface in a transmissive region of the rear substrate; and an applique on at least the transmissive portion of the fourth surface, the applique having a contact- obscuring region in proximity to the extension of the electrical contact. The front and rear substrates define a cavity at least partially filled with the electro-optic material that is confined within the cavity by a seal substantially between the second surface and the third surface.
[0006] According to an additional aspect of the disclosure, an electro-optic assembly is provided that includes a front substrate having a first surface and a second surface substantially parallel to the first surface; and a rear substrate spaced from and substantially parallel to the front substrate, the rear substrate having a third surface and a fourth surface substantially parallel to the third surface. The electro-optic assembly further includes an electrical contact for providing an electrical connection to an electrode in proximity to an electro -optic material, the contact having an extension at least partially over a transmissive portion of the fourth surface in a transmissive region of the rear substrate; and an applique on at least the transmissive portion of the fourth surface, the applique having a contact- obscuring region that is located between the extension of the electrical contact and the fourth surface. The front and rear substrates define a cavity at least partially filled with the electro -optic material that is confined within the cavity by a seal substantially between the second surface and the third surface. The contact-obscuring region of the applique is configured to obscure the visual appearance of the extension of the electrical contact through the front and rear substrates.
[0007] According to a further aspect of the disclosure, an electro-optic assembly is
provided that includes a front substrate having a first surface and a second surface substantially parallel to the first surface; and a rear substrate spaced from and substantially parallel to the front substrate, the rear substrate having a third surface and a fourth surface
substantially parallel to the third surface. The electro-optic assembly further includes an electrical contact for providing an electrical connection to an electrode in proximity to an electro -optic material, the contact having an extension at least partially over a transmissive portion of the fourth surface in a transmissive region of the rear substrate; an adhesive pad between the extension of the electrical contact and the fourth surface; and an applique on at least the transmissive portion of the fourth surface, the applique having an obscuring region that is located in proximity to at least a portion of the adhesive pad. The front and rear substrates define a cavity at least partially filled with the electro-optic material that is confined within the cavity by a seal substantially between the second surface and the third surface. The obscuring region of the applique is configured to obscure the visual appearance of one of, or both of, the extension of the electrical contact and the adhesive pad through the front and rear substrates.
[0008] According to an additional aspect of the disclosure, an electro-optic assembly is provided that includes a front substrate having a first surface and a second surface substantially parallel to the first surface; and a rear substrate spaced from and substantially parallel to the front substrate, the rear substrate having a third surface and a fourth surface substantially parallel to the third surface. The electro-optic assembly further includes an electrical contact for providing an electrical connection to an electrode in proximity to an electro -optic material, the contact having an extension at least partially over a transmissive portion of the fourth surface in a transmissive region of the rear substrate; and an applique on at least the transmissive portion of the fourth surface, the applique having a contact- obscuring region that is located over at least a portion of the extension of the electrical contact. The front and rear substrates define a cavity at least partially filled with the electro -optic material that is confined within the cavity by a seal substantially between the second surface and the third surface. The contact-obscuring region of the applique and the extension of the electrical contact are configured to substantially match in visual appearance through the front and rear substrates.
[0009] According to a further aspect of the disclosure, an electro-optic assembly includes a front substrate having a first surface and a second surface substantially parallel to the first surface; a rear substrate spaced from and substantially parallel to the front substrate, the rear substrate having a third surface and a fourth surface substantially parallel to the third surface; and a carrier operably connected to at least one of the front substrate and the rear substrate. The electro-optic assembly further includes an applique layer directly on at least a first portion of the fourth surface and having an opening over a second portion of
the fourth surface, the portions of the fourth surface in a transmissive region of the rear substrate; and an assembly component that is coupled to the carrier, behind the fourth surface and substantially coincident with the opening. The front and rear substrates define a cavity at least partially filled with an electro-optic material.
[0010] According to an additional aspect of the disclosure, an electro-optic assembly is provided that includes a front substrate having a first surface and a second surface substantially parallel to the first surface; a rear substrate spaced from and substantially parallel to the front substrate, the rear substrate having a third surface and a fourth surface substantially parallel to the third surface; and an applique layer directly on at least a first portion of the fourth surface and having an opening and a discontinuous element over a second portion of the fourth surface, the portions of the fourth surface in a transmissive region of the rear substrate. The front and rear substrates define a cavity at least partially filled with an electro-optic material.
[001 1 ] These and other features, advantages, and objects of the present invention will be further understood and appreciated by those with ordinary skill in the art by reference to the following specification, claims, and appended drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
[0012] The present invention will become more fully understood from the detailed
description and the accompanying drawings, wherein:
[0013] Figure 1 is a front view diagram of a rearview mirror assembly, in accordance with one exemplary embodiment;
[0014] Figure 2 is a cross-sectional view of a rearview mirror assembly, in accordance with an exemplary embodiment;
[0015] Figure 2A is a cross-sectional view of a rearview mirror assembly, in accordance with a further exemplary embodiment;
[0016] Figure 3 is a cross-sectional view of a rearview mirror assembly, in accordance with an additional exemplary embodiment;
[0017] Figure 4 is a cross-sectional view of a rearview mirror assembly, in accordance with an exemplary embodiment;
[0018] Figure 4A is a cross-sectional view of rearview mirror assembly, in accordance with an additional exemplary embodiment;
[0019] Figure 5 is cross-sectional view of a rearview mirror assembly, in accordance with a further exemplary embodiment;
[0020] Figure 6 is cross-sectional view of a rearview mirror assembly, in accordance with an additional exemplary embodiment;
[0021 ] Figure 6A is an enlarged, cross-sectional view of a rearview mirror assembly, in accordance with a further exemplary embodiment;
[0022] Figure 6B is an enlarged, cross-sectional view of a rearview mirror assembly, in accordance with an exemplary embodiment;
[0023] Figure 6C is an enlarged, cross-sectional view of a rearview mirror assembly, in accordance with an additional exemplary embodiment;
[0024] Figure 6D is an enlarged, cross-sectional view of a rearview mirror assembly, in accordance with a further exemplary embodiment; and
[0025] Figure 7 is a front-view diagram of a rearview mirror assembly, in accordance with an additional exemplary embodiment.
DETAILED DESCRIPTION
[0026] The present illustrated embodiments reside primarily in combinations of method steps and apparatus components related to a printed applique and method thereof.
Accordingly, the apparatus components and method steps have been represented, where appropriate, by conventional symbols in the drawings, showing only those specific details that are pertinent to understanding the embodiments of the present invention so as not to obscure the disclosure with details that will be readily apparent to those of ordinary skill in the art having the benefit of the description herein. Further, like numerals in the description and drawings represent like elements.
[0027] In this document, relational terms, such as first and second, top and bottom, and the like, are used solely to distinguish one entity or action from another entity or action, without necessarily requiring or implying any actual such relationship or order between such entities or actions. The terms "comprises," "comprising," or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. An element proceeded by "comprises . . . a" does not, without more constraints, preclude the existence of additional identical elements in the process, method, article, or apparatus that comprises the element.
[0028] In reference to Figure 1, an electro-optic assembly in the form of a transflective mirror assembly is generally shown at reference identifier 100. The mirror assembly 100
can be partially reflective and partially transmissive. The mirror assembly 100 can include a mirror assembly edge 102 and an applique 104. According to one embodiment, the applique 104 can define an opening 106. The mirror assembly 100 can also include a mirror element generally indicated at 108. The mirror assembly edge 102 can be integrated with the mirror element 108 or be a separate component.
[0029] With respect to Figure 2, an additional electro-optic assembly in the form of a transflective mirror assembly is generally shown at reference identifier 100. The mirror assembly 100 can include a carrier 110 configured to attach to the mirror element 108. In some embodiments, carrier 110 is a housing element of the mirror assembly 100 that is attached to one or more of the substrates 114, 120 (see, e.g., Figure 2A). Carrier 110 may also include other components of the mirror assembly 100 attached to one or more of the substrates 114, 120 including, but not limited to, a circuit board, an electronics board, a mount (e.g., an element that functions to suspend the mirror assembly 100 from a windshield), a board holder, an element mechanically connected to a bezel surrounding the assembly 100, and/or any other component which may provide some structural support to substrates 114 and/or 120. According to one embodiment, an adhesive 112 can be used to attach the carrier 110 and the mirror element 108. The applique 104 can be on a surface of the mirror element 108. In some embodiments, mirror assembly 100 is an electro-optic assembly.
[0030] Figures 2A, 3, 4, 4A, 5, 6, 6A-6D, and 7, each illustrate various embodiments of the mirror assembly 100, each an electro-optic assembly in the form of a transflective mirror assembly, wherein the mirror element 108 is an electro-optic element. The mirror element 108 can include a first substrate 114 having a first surface 116 and a second surface 118 and a second substrate 120 having a third surface 122 and a fourth
surface 124, wherein the first and second substrates 114, 120 define a cavity 126. In some embodiments, the second surface 118 is substantially parallel to the first surface 116. In further embodiments, the first substrate 114 and the second substrate 120 are oriented toward the front and the rear of the mirror assembly 100, respectively. The second substrate 120 can be spaced from and substantially parallel to the first substrate 114.
According to an exemplary embodiment, the fourth surface 124 is arranged substantially parallel to the third surface 122.
[0031] The cavity 126 can contain an electro-optic medium 128, such as, but not limited to, an electro chromic medium. The cavity 126 may be completely or partially filled with the medium 128. The mirror assembly 100 can also include an electrical contact 130, a
conductive seal 132, a seal 134, an opaque region 136, a substantially transparent coating 138 on the second surface 118, and a partially reflective, partially transmissive layer 140 (e.g., a transflective coating) on the third surface 122. In such embodiments, the applique 104 can be on the fourth surface 124 of the second substrate 120, e.g., in an optically transmissive region of the mirror assembly 100. The contact 130, for example, may be employed to provide an electrical connection to an electrode located on the first or second substrate, 114 or 120, respectively, that is located in proximity to the electro-optic medium 128. According to some embodiments, electrical contact 130 can be in the form of an electrical contact clip, conductive epoxy, a wire, solder, conductive particles, conductive nanoparticles, conductive adhesive, and combinations of these forms of contact 130, configured as understood by those with ordinary skill in the field to convey electrical current.
[0032] According to an embodiment of the mirror assembly 100, a substantial portion of the mirror element 108 (including substrates 114 and 120 and their surfaces 116, 118, 122, and 124, respectively) is transmissive insofar as it has an optical transmission of 5% or greater. For example, one half (e.g., the right half) of the mirror element 108 may be substantially or completely opaque, while the other half (e.g., the left half) is
semitransparent with an optical transmission of 5% or greater. As another example, perimeter portions of the mirror element 108 could be substantially or completely opaque, while the central portion of the mirror element 108 is transmissive with an optical transmission of 5% or greater. In some embodiments, the mirror element 108 has a substantial portion with an optical transmission greater than 10%. In at least one embodiment, a substantial portion of the mirror element 108 has an optical transmission of approximately 25% or greater. In an additional embodiment, a substantial portion of the mirror element 108 has an optical transmission from approximately 20 to 50%. Further, a substantial portion of the mirror element 108 can be characterized by approximately 22%, 26%o, or 40%) optical transmission levels.
[0033] For mirror elements 108 having a substantial portion with 5% or greater optical transmission, it can be desirable to have a substantially uniform backing behind the mirror to prevent the user from seeing inconsistencies in the viewed image under typical, ambient lighting conditions. In some embodiments, automotive mirrors with greater than 5% optical transmission have used a plastic film for the applique 104 to provide the desired uniform background. Typically, the applique material will have one or more openings so that light may pass through the material for a sensor or for viewing a display. The film
employed as the applique 104 can also cover the entire transflective portion of the mirror element 108. The plastic film can be either adhered to the back of the second
substrate 120 or held in a generally fixed position behind the substrate 120 with an air gap between the substrate and the film. If there are areas of the surface of the mirror element 108 hidden behind a perimeter bezel or behind an opaque ring around the periphery of the mirror, the applique 104 typically will extend into this opaque area.
There is no need for the applique 104 to extend to the edges of the mirror substrate if the edge area (see, e.g., mirror assembly edge 102 in Figure 1) is substantially or completely opaque. In some cases, the transparent area or areas of the applique 104 may contain a transparent or diffusing film which will still allow light to pass through. For example, the applique 104 may be a transparent film where at least a portion is modified with an additive process such as printing or lamination to generate opaque areas while other areas remain transparent.
[0034] In reference to the various embodiments illustrated in Figures 1-7, the applique 104 can be where the applique is substantially or completely opaque and the openings 106 in the applique can be transparent. Although the applique 104 may have a matte or glossy finish, it typically does not contain or embody, at least in substantial part, specular materials having a reflective or mirror- like appearance. The opening 106 may be completely devoid of applique material or it may include a transparent or semitransparent film that allows light to pass through it either specularly or with scattering.
[0035] There are mirror assemblies 100 where a standard full-surface applique (e.g., a plastic film) is not the best choice for the applique 104. Black ink (Direct Color
Systems® - 1-7102-200) is a viable substitute and can be applied to the back of a glass mirror substrate (see, e.g., the second substrate 120 shown in Figure 2A) with an inkjet process using the Direct Color Systems® Direct Jet 1024 printer to serve as the
applique 104. Other methods besides inkjet processes could be used to apply the ink for applique 104 including, but not limited to, screen printing techniques. The mirror assembly 100 is attached to a housing using an adhesive 112 between the printed applique 104 and a support plate (e.g., carrier 110 shown in Figure 2) behind the mirror element 108. In these embodiments, since the ink employed as the applique 104 can be peeled off of the glass surface, the adhesion of the applique 104 to the glass surface is deemed insufficient to support the weight of the mirror, such as, but not limited to, for long durations or when exposed to changes in temperature, high humidity, or under other testing procedure typical of the automotive industry.
[0036] According to one embodiment, the mirror assembly 100 has a substantially or completely opaque area around the perimeter, and that area may be used for the adhesive 112. In at least one embodiment, openings (see, e.g., openings 106 shown in Figures 1 and 2A) can be left in the printed applique 104 that can be later filled with a liquid adhesive for use as adhesive 112. Figure 2 illustrates how openings 106 in the printed applique 104 provide areas for the adhesive 112. For a transflective mirror assembly 100, it can be desirable that the color, texture, gloss, and/or reflectance of the printed applique 104 (e.g., applied as a black ink) are visually similar to that of the adhesive 1 12 so that the user will view a substantially uniform surface in all types of lighting under the lighting conditions of the application for the assembly 100, including bright, off-angle lighting conditions. In some embodiments, the adhesive 112 may extend into the openings 106 and also past the edges of the openings 106 over and/or under the applique 104.
[0037] According to one embodiment, as depicted in Figure 2A, a mirror assembly 100 includes a carrier 110 operably connected to the second substrate 120. The applique 104 is located on at least a portion of the fourth surface 124. Further, the applique 104 also includes one or more openings 106 over other portions of the fourth surface 124. The mirror assembly 100 also includes adhesive 112 that is at least partially in the
opening(s) 106 on the other portions of the fourth surface 124.
[0038] According to an embodiment, reducing or eliminating air pockets in the
adhesive 1 12 can improve the mirror appearance since an air pocket in the adhesive may create an area on the back surface of the second substrate 120 that may be visible when viewed in certain lighting conditions. The adhesive 112 serves to connect at least one of the first and second substrates 114 and 120 to the carrier 110. The applique 104 and adhesive 112 employed in the mirror assembly 100 according to these embodiments are configured, selected, or otherwise modified to substantially match in visual appearance. In some embodiments, the applique 104 and adhesive 112 are matched such that they are substantially indistinguishable as viewed by an observer through the transmissive portions of the substrates 114 and 120. Carrier 110 can also be operably connected with adhesive 112 to the first substrate 114, or both the first and second substrates 114 and 120.
[0039] In one exemplary embodiment of the mirror assembly 100 depicted in Figure 2A, a
Direct Color Systems® Direct Jet 1024 printer is used to apply a black ink (Direct Color Systems® - 1-7102-200) to serve as the applique 104 across the back surface of a transflective mirror element 108 with an optical transmission of approximately 5% or
greater. Circular openings 106 in the applique 104 of approximately 1 cm in diameter are created in the printed material. Subsequently, Bostik® 70-08A black adhesive is used as adhesive 112 to fill the openings 106 and to bond the glass to a plastic carrier, e.g., carrier 110. When the mirror assembly 100 is viewed from the front (i.e., above the first substrate 114), there can be a very good match between the applique 104 and the openings 106 in the applique 104 that are now filled with adhesive 112. The bond strength and cross sectional area of the adhesive bond can be sufficient for supporting the weight of the mirror element 108 even through automotive test procedures.
[0040] In an embodiment of mirror assembly 100, a black plastic film can be employed as the applique 104, such as a black polyester film with a clear pressure- sensitive adhesive, and applied to the fourth surface 124 of the second substrate 120. At least one
opening 106 in the applique 104 can be filled with black adhesive 112 as described herein.
[0041] It is found that matching the appearance of plastic films employed as the
applique 104 with an adhesive 1 12 may be challenging in some cases. For example, adhesive foam (3M™ 4492 black) with openings in the foam (e.g., serving as
openings 106) can be used as both an applique 104 and as the adhesive 112 to bond a plastic carrier plate 110 to the back of the mirror element 108. When black, liquid adhesive (or another sealant) is further used to fill the openings 106 in the foam adhesive, the foam adhesive (as applique 104) and the liquid adhesive often do not match. The foam appears slightly gray and lower gloss when compared to the black adhesive when viewed through the front of the mirror assembly 100. One possible solution is to print a gray ink in the openings 106 to more closely match the color of the foam employed as the applique 104.
[0042] An applique 104 on the back of an electrochromic transflective mirror element 108 may also be used to hide electrical contacts, such as electrical contact 130. If the contact 130 to the mirror element 108 wraps around to the back of the mirror element 108, and if the contact 130 extends beyond the plastic rim or opaque region 136 which hide the seal 134, the contact 130 may be visible from the front of the mirror assembly 100.
Contacts 130 that extend into the transflective region of the mirror assembly 100 (e.g., a transmissive portion of the assembly 100 and mirror element 108) and do not match the color or gloss of the applique 104 may be visible from the front of the mirror
assembly 100 unless measures are taken to hide the contact. It is also conceivable that portions of wires and other electrical attachments connected to the contact 130 could also be visible from the front of the mirror assembly 100. As such, measures taken to obscure
the electrical contact 130 from view from the front of the mirror assembly 100 should also be effective in obscuring such other wires and electrical attachments part of or joined to the electrical contact 130.
[0043] Applying the applique 104 under the electrical contact 130 as shown in Figure 3 is one embodiment of a construction which hides the non-matching contact. More specifically, at least a portion of the applique 104 should be configured to obscure or hide the contact 130, as viewed through the first and second substrates 114 and 120. In some embodiments, the applique 104 and at least an extension of the electrical contact 130 over the fourth surface 124 should be configured to match in visual appearance such that applique 104 and the extension of the contact 130 are substantially indistinguishable as viewed through the transmissive portions of the first and second substrates 114 and 120 (located toward the front and rear of the mirror assembly 100, respectively) under the conceivable lighting conditions of the application.
[0044] As shown in Figure 3, the applique 104 is placed on at least a portion of the fourth surface 124, extending completely or nearly completely under the electrical contact 130. In some embodiments, adhesive (e.g., the adhesive employed as adhesive 112 shown in Figure 2A) may be employed on the fourth surface 124 to connect the electrical contact 130 to the second substrate 120. For these embodiments, the applique 104 may flow (e.g., applique 104 as an inkjet layer) or is otherwise (e.g., applique 104 is a plastic film) located under the electrical contact 130 and around any adhesive employed to attach the contact 130 to the substrate 120. In at least one embodiment, the mirror assembly 100 includes an opaque region 136 on a portion of the second surface 118 and a seal 134 that is configured substantially between the opaque region 136 and the third surface 122.
Further, the extension of the electrical contact 130 over the fourth surface 124 extends past the opaque region 136 such that it may be visible by an observer through the first and second substrates 114 and 120. As such, the applique 104 configured under the contact 130 substantially obscures and hides the extension of the electrical contact 130 that is visible through the substrates 114 and 120.
[0045] Referring to Figure 4, at least one embodiment of a mirror assembly 100 is
depicted with a construction that hides an electrical contact 130. Here, an adhesive pad 112a is located under an extension of the electrical contact 130, and then an applique 104 is located or otherwise applied over the transflective portions of the mirror element 108 (e.g., fourth surface 124 of the second substrate 120). Further, a portion of the applique 104 is located or otherwise applied over at least the edges of the adhesive
pad 112a. The adhesive pad 112a can serve to attach the electrical contact 130 to the fourth surface 124 of the second substrate 120. In some embodiments, the adhesive pad 112a is configured as a dark film or dark adhesive pad.
[0046] Further, the applique 104 should substantially match the appearance of the
pad 112a when viewed from the front of the mirror assembly 100 depicted in Figure 4. Preferably, the applique 104 also substantially matches the visual appearance of the electrical contact 130. Accordingly, the portion of the applique 104 over the adhesive pad 112a should be configured to obscure the visual appearance of the extension of the electrical contact 130 and the adhesive pad 112a that might otherwise be visible through the first and second substrates 114 and 120 of the mirror assembly 100. In some embodiments, the adhesive pad 112a and the extension of the electrical contact 130 are configured to match in visual appearance such that the applique 104, the adhesive pad 112a and the extension of the electrical contact 130 are substantially indistinguishable as viewed through the first and second substrates 114 and 120. In at least one exemplary embodiment, the mirror assembly 100 can also be configured such that a portion of the applique 104 is located over at least a portion of the adhesive pad 112a and a portion of the extension of the electrical contact 130. Such a configuration could be advantageous from a manufacturing standpoint in that only rough dimensional control of the
applique 104 past the interface between the applique 104 and the adhesive pad 112a is necessary.
[0047] In some embodiments, the mirror assembly 100 depicted in Figure 4 includes an opaque region 136 on a portion of the second surface 118 and a seal 134 that is configured substantially between the opaque region 136 and the third surface 122. Further, the adhesive pad 112a may extend past the opaque region 136 such that it is visible by an observer through the substrates 114 and 120. As such, the applique 104 can be configured over a portion of the adhesive pad 112a to substantially obscure and hide the pad 112a that is visible through the substrates 114 and 120.
[0048] As depicted in Figure 4A, at least one exemplary embodiment of a mirror
assembly 100 can be configured such that a portion of the electrical contact 130 extends past the adhesive pad 112a over the fourth surface 124. The mirror assembly 100 is also configured such that a portion of the adhesive pad 112a extends past the opaque region 136 such that it is visible by an observer through the substrates 114 and 120. As shown in Figure 4A, the portion of the electrical contact 130 that extends past the pad 112a is also visible through the substrates 114 and 120 as it extends past the opaque
region 136. These features (i.e., the portions of adhesive pad 112a and the electrical contact 130) can be obscured or hidden in the configuration of mirror assembly 100 depicted in Figure 4A by a portion of the applique 104 that is located (e.g., for an applique 104 that comprises a plastic film), or otherwise wicks (e.g., for an applique 104 that comprises an inkjet layer), underneath the extension of the electrical contact 130 and over the fourth surface 124. Here, the applique 104 is configured to substantially match the appearance of the adhesive pad 112a and the electrical contact 130, thus ensuring that the portion of the adhesive pad 112a and electrical contact 130 extending past the opaque region 136 are not visible to an observer through the substrates 114 and 120.
[0049] The exemplary embodiment of mirror assembly 100 depicted in Figure 4A can also be modified such that the portion of the adhesive pad 112a that extends past the opaque region 136 also extends completely beneath the electrical contact 130 such that only this portion of the pad 112a is visible through the first and second substrates 114 and 120. In other words, the adhesive pad 112a resides completely beneath the contact 130 and above the fourth surface 124. In this configuration, the applique 104 need only butt up against the adhesive pad 112a to effectively obscure it from view through the substrates 114 and 120. In some variants of this configuration of mirror assembly 100, the applique 104 can further wick between the adhesive pad 112a and the electrical contact 130, in addition to butting up against the pad 112a.
[0050] In some embodiments, ink is used to form the applique 104 on the fourth
surface 124 of a transflective electrochromic mirror element 108 as shown in, for example, Figure 3. The ink is applied directly to the fourth surface 124 of the glass substrate 120. A clip used for electrical contact 130 is positioned on top of the applique 104. Using this construction, the contact 130 (e.g., a clip) is hidden from view when the mirror element 108 is viewed from the front (e.g., as viewed through substrates 114 and 120). This construction is particularly useful when the optical transmission level of the mirror element 108 is above 30%. For mirror assemblies 100 having mirror elements 108 with particularly high transmission levels, other means of hiding the contact 130, such as applying ink over a clip affixed to the substrate 120 with black adhesive (e.g., as shown in Figure 4A) may be less effective or ineffective. As such, when the optical transmission of the mirror element 108 is above 30%, the need for a very uniform backing is important and a configuration of mirror assembly 100, such as depicted in Figure 3, is particularly advantageous.
[0051] In at least one embodiment, a construction of a mirror assembly 100 hides a non- matching contact and includes a contact 130 that comprises a black or dark contact material or a contact material, such as a metal tab, where the side facing the substrate 120 is colored black, for example, with an ink or a sticker. An applique 104 of similar color and texture to the contact 130 is applied over the top of the contact 130 as well as across the transflective portion of the mirror assembly 100, e.g., over the fourth surface 124 of the second substrate 120. If the contact 130 and the applique 104 are close to the same color and gloss when viewed through the transflective mirror element 108, they will provide a substantially uniform appearance. Figure 5 illustrates an embodiment of the mirror assembly 100 with this construction.
[0052] In some exemplary embodiments of the mirror assembly 100 depicted in Figure 5, the electrical contact 130 is configured to provide an electrical connection to at least one of the first and second substrates 114 and 120, the contact 130 further possessing an extension over the fourth surface 124 of the second substrate 120. The applique 104 is on at least a portion of the fourth surface 124, and has a contact-obscuring region that is located over at least a portion of the extension of the electrical contact 130. Further, the contact-obscuring region of the applique 104 and the extension of the electrical contact 130 are configured to substantially match in visual appearance. Hence, an observer looking through the first and second substrates 114 and 120, respectively, will tend to observe the applique 104 and contact 130 elements as one uniform feature of similar appearance. Preferably, no clear interfaces between the applique 104 and the contact 130 can be observed through the first and second substrates 114 and 120. In some embodiments, the applique 104 and the extension of the electrical contact 130 are configured to match in visual appearance such that the applique 104 and the extension of the contact 130 are substantially indistinguishable as viewed through the transmissive portions of the first and second substrates 114 and 120, respectively.
[0053] In some embodiments, the mirror assembly 100 (see Figure 5) further includes an opaque region 136 on a portion of the second surface 118. In these embodiments, the extension of the electrical contact 130 is over the fourth surface 124 of the second substrate 120. The extension of the contact 130 also extends past the opaque region 136.
Although the extension of the contact 130 might be viewable through the first and second substrates 114 and 120, respectively, of the mirror element 108, the presence of the applique 104 over at least a portion of the extension of the electrical contact 130 obscures the interfaces and edges of the contact 130 from view through these substrates.
Preferably, the materials employed for the opaque region 136, the applique 104 and the side of the extension of the electrical contact 130 facing the fourth surface 124 of the second substrate 120 are selected to substantially match in visual appearance.
[0054] According to an embodiment, the applique 104 can closely follow the contour of the material employed for the electrical contact 130. Such contour matching can be done by creating the applique 104 using a liquid material such as an ink that will flow over the edges of the electrical contact 130. If the applique material overlapping the contact 130 does not follow the contact edge closely, an area of discontinuity in the color or gloss is likely to appear adjacent to the contact 130.
[0055] In an exemplary embodiment of a mirror assembly 100 consistent with the
configuration depicted in Figure 4, a metal contact clip is employed for the electrical contact 130. The clip is then adhered to the fourth surface 124 of the second substrate 120 of the mirror element 108 using a black adhesive layer for the adhesive pad 112a. The total thickness of the contact 130 and the adhesive pad 112a is greater than 75 μιη. At least a portion of the black adhesive layer employed as the pad 112a can be seen through the substrates 114 and 120 when viewed from the front of the mirror element 108. When a black plastic film is used as an applique 104 over the back of the mirror element 108 (e.g., over the fourth surface 124 of the second substrate 120), the applique 104 extends over the contact 130. As the applique 104 is placed over the contact 130, air pockets are created adjacent to the contact 130, configured in the form of metal contact clip. These air pockets create bright areas which reflect more light than either the area where the applique 104 is adhered to the glass (e.g., fourth surface 124 of the second substrate 120) or the area where the black clip adhesive serving as pad 112a is adhered to the glass.
[0056] Alternatively, this mirror assembly 100 embodiment can be modified such that black ink is employed as the applique 104. In this case, the applique 104 is printed over and adjacent to the black adhesive layer serving as pad 112a, no such air pockets are evident. The printed ink of the applique 104 coats the fourth surface 124 of the second substrate 120 right up to the edge of the adhesive pad 112a (e.g., black adhesive) used to attach the electrical contact 130, a metal clip in these embodiments. Since no air pockets are formed, the area adjacent to the black adhesive pad 112a appears the same as the rest of the glass substrate 120 having the applique 104 in the form of printed ink on its fourth surface 124.
[0057] One function of an applique 104 is that it may be used to improve the shatter
resistance of the mirror element 108. For example, a plastic film laminated to the back of
a piece of glass (e.g., fourth surface 124 of the second substrate 120) will help hold the pieces of mirror element 108 together if the glass is broken. The material of a printed applique 104 may also improve the shatter resistance of the mirror element 108 if the printed material has some elastic properties and/or if fibers are added to the printed material as a reinforcement for the applique 104.
[0058] Referring to Figures 6 and 6A-6D, exemplary embodiments of a mirror
assembly 100 are depicted that include first and second substrates 114 and 120. The substrates 114 and 120 are oriented toward the front and rear of the mirror assembly 100, respectively. The substrates 114 and 120 also define a cavity 126 that is at least partially filled with an electro-optic medium 128. In some embodiments, the mirror assembly 100 contains a mirror element 108 that comprises the substrates 114 and 120. In addition, the substrates 114 and 120 are themselves configured comparably to those same elements employed in the embodiments of mirror assembly 100 depicted in Figures 2A-5. For example, the first substrate 1 14 has a first surface 116 and a second surface 118 that is substantially parallel to the first surface 116. The mirror assembly 100 also includes a carrier 110 that is operably connected to at least one of the first substrate 114 and the second substrate 120. In the embodiment depicted in Figure 6, the carrier 110 is connected to the second substrate 120 via adhesive 112.
[0059] Still referring to Figures 6 and 6A-6D, the mirror assembly 100 also includes an applique 104 in the form of an inkjet applique layer directly applied to at least a first, transmissive portion of the fourth surface 124 of the second substrate 120. In some embodiments, the applique 104 layer is cured and bonded to the substrate 120 in situ. Accordingly, the applique 104 employed for the mirror assembly 100 requires no adhesive or other bonding material to attach to the second substrate 120; consequently, the applique 104 is substantially in direct contact with the underlying substrate 120. In addition, the applique layer serving as applique 104 has an opening 106a over a second, transmissive portion of the fourth surface 124. The mirror assembly 100 also includes an assembly component 142 that is coupled to the carrier 110. The assembly component 142 is located such that it resides behind the fourth surface 124 of the second substrate 120. In some embodiments, the assembly component 142 is substantially coincident with the opening 106a in the applique 104.
[0060] According to some embodiments of the mirror assembly 100 depicted in Figures 6 and 6A-6D, a substantial portion of the mirror element 108 (including substrates 114 and 120, and their surfaces 116, 118, 122 and 124, respectively) is transmissive insofar as
it has an optical transmission of 5% or greater. Other portions of the mirror element may be substantially or completely opaque. For example, one half of the mirror element 108 may be substantially or completely opaque, while the other half is semitransparent with an optical transmission of 5% or greater. The mirror element 108 in some embodiments has a substantial portion with an optical transmission with greater than 10%. In at least one embodiment, a substantial portion of the mirror element 108 has an optical transmission of at least approximately 25%. In an additional embodiment, a substantial portion of the mirror element has approximately 20 to 50% optical transmission. Further, a substantial portion of the mirror element 108 can be characterized by approximately 22%, 26%, or 40% optical transmission levels in certain embodiments.
[0061] Assembly component 142 employed in the mirror assembly 100 depicted in
Figures 6 and 6A-6D can take on many forms. For example, the assembly component 142 can be a light source, sensor, optics, light diffuser, display, or some other internal electronic, mechanical, or electro -mechanical feature associated with the mirror assembly 100. In many of the embodiments of the mirror assembly 100 depicted in Figures 6 and 6A-6D, the assembly 100 is configured to obscure, block or otherwise minimize the appearance of the assembly component 142 through the transmissive portions of the first and second substrates 114 and 120.
[0062] In some applications, the applique 104 employed in the mirror assembly 100
depicted in Figures 6 and 6A-6D requires a high optical density. For example, when an applique 104 has at least one backlit opening (e.g., a light source employed as assembly component 142 in front of opening 106a), it is important to avoid bleed-through of the light through the applique 104 adjacent to the opening. For printed appliques employed as applique 104 (e.g., applique layers or films derived from a printing process, such as inkjet printing), an ink thickness of 50 to 300 μιη may be needed to create a film with an optical density greater than 2. In some embodiments, it is preferable to employ an even thicker inkjet-printed applique having an optical density of greater than 3.
[0063] On the other hand, if small lines or openings are desired for opening 106a (e.g., for an icon opening), it can be difficult to maintain the design widths of the opening 106a, particularly for thicker (e.g., greater than 50 μιη) inkjet-printed applique layers employed as applique 104. This is because the ink employed for the applique 104 may flow on the substrate surface (e.g., fourth surface 124) changing the appearance of the printed image.
Even when using a UV-curable ink for the applique 104, the time between ink-jetting and curing may be over 1 second and the ink can flow, changing the as-printed line widths of
the opening 106a. Applying the ink in a thin pass, at least partially curing the ink, and then adding to the thickness of the ink layer with a second pass is one way to produce more accurate line widths for the opening 106a within an inkjet-printed applique layer employed as applique 104. Another option is to fill the open area of opening 106a with a clear ink which will prevent the optically dense material of the surrounding applique 104 from flowing into the opening 106a. In one example, a thin clear ink is applied in the transmissive area of the mirror element 108 intended to define the opening 106a, and then the clear ink is UV-cured. A black ink is printed as the applique 104 adjacent to the clear ink, thus defining the opening 106a. As a result, the flow of the black ink is limited in the region that defines opening 106a.
[0064] To maintain consistent line widths and opening widths in the opening 106a
employed in some embodiments of the mirror assembly 100 depicted in Figures 6 and 6A-6D, it is preferred to limit the thickness of an inkjet-printed applique layer employed as applique 104 to about 50 μιη or less. In at least one exemplary embodiment, it is preferred that a ratio of the smallest opening dimension of the opening 106a to the ink thickness of the inkjet layer employed as the applique 104 is controlled to be greater than or equal to about 5. The smallest opening dimension is the smallest dimension of the opening 106a, contemplating various shapes of the opening itself. The smallest opening dimension for a rectangular-shaped opening 106a would be the shortest width dimension of the opening. For triangular-shaped openings 106a, the smallest opening dimension would be the height of the triangle.
[0065] With regard to those embodiments of mirror assembly 100 employing a controlled ratio of smallest opening dimension-to-inkjet layer thickness, a smallest opening dimension of 300 μιη for an opening 106a in the applique 104 can be printed with an ink thickness of 100 μιη. But with a smallest opening dimension-to-inkjet layer thickness ratio of only 3, the ink flow is fairly significant across the substrate (e.g., fourth surface 124 of the second substrate 120), making line width control difficult. Conversely, when the thickness of the inkjet layer is dropped to 50 μιη, the ratio is now 6, and controlling the size and demarcations of the opening 106a is greatly improved.
[0066] Preferably, the ratio of the smallest opening dimension-to -the thickness of the inkjet layer employed as the applique 104 is set above 5. For example, an inkjet layer of 15 μιη can be effectively used for the applique 104 to create an opening 106a with a smallest opening dimension of 100 μιη, thus providing a ratio of the smallest opening dimension to the thickness of the inkjet layer of approximately 6.7. Even more preferably,
the ratio of the smallest opening dimension to the thickness of the inkjet layer is controlled to a value above about 15. Accordingly, it is preferable to employ thinner inkjet layers for the applique 104, particularly for applications of mirror assembly 100 having an applique 104 defining an opening 106a requiring significant dimensional control over the opening itself.
[0067] On the other hand, it is preferable for backlit applications (e.g., those employing a mirror assembly 100 depicted in Figures 6 and 6A-6D with an assembly component 142 in the form of a light source) to maintain opacity in the applique 104, while employing a thinner inkjet layer. In some cases, adding a diffusing material, e.g., titanium dioxide, to the inkjet layer can be used to increase the optical density of the layer, allowing thinner inkjet layers to be employed for the applique 104 in proximity to the opening 106a. The diffusing light scattering material within the applique 104 effectively increases the optical path length through the thickness of the ink, thereby reducing the overall transmission for a given thickness.
[0068] According to at least one embodiment of mirror assembly 100, narrow lines and openings can be defined as opening 106a in an applique 104 by printing the optically dense material first with any large openings and to follow the ink curing process with an ink removal process for smaller openings 106a. In one example, a laser is used to remove or ablate a portion of the ink and to create openings of less than approximately 500 μιη in width and lines of less than approximately 500 μιη in width. In an additional example, lines and openings with a dimension less than approximately 300 μιη can be generated using the laser ablation method. Using laser ablation to create the openings 106a eliminates concerns of excessive inkjet layer flow associated with narrow line width openings and thick ink layers.
[0069] According to one embodiment of mirror assembly 100, as shown in Figure 6A, a light diffusing material 104a can be employed between an assembly component 142 (e.g., a light source) and the viewer to provide more uniform lighting through the opening 106a in the applique 104. In particular, the light diffusing material 104a can be placed in the opening 106a and over a portion of the inkjet layer employed as the applique 104 in proximity to the opening 106a. For example, adding a light diffusing material 104a into an opening 106a, configured in the form of an icon area, reduces the lighting hot spot seen when backlighting the mirror element 108 with a point source light such as an LED
(serving as the assembly component 142). Often, the diffusing material will be a separate piece of light diffusing plastic film added between the applique 104 and the light source
serving as the assembly component 142. If the applique 104 is printed directly onto the rear surface of the glass (e.g., fourth surface 124 of the second substrate 120), it is possible to print a light diffusing material which flows both over the applique 104 and into the icon area of opening 106a, thereby improving the lighting uniformity of the backlit icon.
[0070] According to some embodiments, the light diffusing material 104a is adhered to the fourth surface 124 of the substrate 120 within the opening 106a, and a portion of the applique 104 (e.g., an inkjet layer) in proximity to the opening 106a. Here, the portion of the light diffusing material 104a in proximity to the opening 106a is defined by a substantially annular region for a circular- shaped opening 106a that extends at least about 0.2 mm past the opening. In some embodiments, the portion of the light diffusing material 104a extends at least about 0.1 mm past the opening 106a. Similarly, the portion of the light diffusing material 104a that extends past a noncircular-shaped opening 106a will be substantially shaped to match the shape of the opening 106a.
[0071] In an exemplary embodiment, the mirror assembly 100 depicted in Figure 6A is configured to ensure adequate light output for a light source serving as the assembly component 142, while at the same time reducing any light hot spots. The light diffusing material 104a should be characterized by approximately 25% or greater optical transmission for this purpose. Preferably, the optical transmission of the light diffusing material 104a should be higher than 55% and, even more preferably, higher than 65%. Furthermore, in order to mask the lighting hot spot, the haze value of the light diffusing material 104a should be greater than 85% and, preferably, greater than 89%. These properties associated with these embodiments of mirror assembly 100 can be achieved with various loadings by weight of 5% to 95% of metal oxide particles including, but not limited to, Ti02, CaC03, and BaS04. Further desired properties associated with the light diffusing material 104a can be achieved by changing the texture of the material 104a to create various lensing effects to increase light scattering.
[0072] Referring to Figure 6B, an exemplary embodiment of mirror assembly 100 is
depicted that includes a semitransparent inkjet layer 104b employed between an assembly component 142 (e.g., a light source) and the viewer to better obscure the assembly component 142 from view through the substrates 114 and 120. In particular,
semitransparent layer 104b can be placed in the opening 106a and over a portion of the inkjet layer employed as the applique 104 in proximity to the opening 106a. For example, adding a semitransparent inkjet layer 104b into an opening 106a, configured in the form of an icon area, obscures a light source, acting as the assembly component 142, attached to
the carrier 110. In some embodiments, the semitransparent inkjet layer 104b is tinted to produce a coloring effect in the opening 106a, particularly when shaped in the form of an icon.
[0073] Still referring to Figure 6B, in scenarios in which the mirror element 108 has
greater than 5% transmission, components, or features may unintentionally become visible in the opening 106a in the applique 104. Some components, such as assembly
component 142, residing behind the mirror element 108 may reflect light back through the opening 106a in the applique 104 and become visible. For example, assembly
component 142 can comprise glare sensor components, a display, a light diffuser, an LED, and/or other electronic components that reflect light and become visible through the substrates 114 and 120 when the optical transmission through the mirror element 108 and through the opening 106a in the applique 104 is above 15%. At levels below 15% optical transmission, the visibility through these openings 106a is decreased, and the assembly component 142 can be concealed.
[0074] Concealing the openings 106a in the applique 104 and concealing components
(e.g., assembly component 142) behind the openings is desirable for several reasons. From a design standpoint, it may be aesthetically pleasing to hide any component that breaks the continuity of the reflected image or offsets symmetry. From a safety and driver comfort standpoint, it may be distracting for a visual aberration to be viewable in the mirror element 108 of the mirror assembly 100.
[0075] To conceal assembly component 142 in the embodiments of mirror assembly 100 depicted in Figure 6B, it is possible to selectively reduce the optical transmission in the opening 106a in an effort to conceal the component 142 behind the mirror element 108.
The optical transmission of the opening 106a can be modified by printing a
semitransparent inkjet layer 104b in the form of a uniform light filter or one that is selectively graded or patterned to achieve the desired transmission locally where it is needed. A printed light filter employed as the layer 104b may use any combination of clear, colored, or black inks to modify the light transmission through the opening 106a.
Alternately, when the applique 104 comprises a plastic film, it may be configured with a plurality of openings 106a, each with the modified optical transmission levels indicative of a semitransparent layer 104b that are required to conceal the assembly components 142 configured behind the substrates 114 and 120 of the mirror element 108. Once the assembly component 142, such as a glare light sensor, is no longer visible to the operator, it can be placed in any position on the carrier 110 behind the mirror element 108 - e.g.,
substantially coincident with or offset from the opening 106a. This allows for the component 142, e.g., a sensor, to be placed in the most desirable location to maximize its function and/or manufacturability as well as to maintain design intentions.
[0076] In one example, a mirror element 108 has approximately 22% total visible light transmission. A generally opaque applique 104 is printed on the fourth surface 124 of the second substrate 120 of the mirror element 108, and a light diffuser is placed behind an opening 106a in the applique 104. When the mirror element 108 is placed in front of a housing element, e.g., carrier 110 the opening 106a with the light diffuser can be easily seen in typical ambient lighting conditions (e.g., within a vehicle) since the light diffuser reflects back a portion of the light that passes through the opening 106a. The prior example can be modified according to one exemplary embodiment of mirror assembly 100 depicted in Figure 6B. In particular, a semitransparent inkjet layer 104b with
approximately 68% visible light transmission is printed over the area of the opening 106a. The area of the opening 106a would effectively have a total light transmission of 15%. In some embodiments, a light diffuser (serving as assembly component 142) can be located behind the opening 106a and the semitransparent inkjet layer 104b, and the mirror element 108 is placed in front of a housing element. Advantageously, the opening 106a with the light diffuser, acting as assembly component 142, cannot be easily seen with typical ambient lighting conditions (e.g., within a vehicle).
[0077] In at least one example, a mirror element 108 has an approximately 40% visible light transmission. A generally opaque applique 104 is printed on the fourth surface 124 of the second substrate 120 of the mirror element 108, and a glare sensor and associated optics are placed behind an opening 106a in the applique 104. When the mirror element 108 is placed in front of the carrier 110 or other housing element, the
opening 106a with the glare sensor optics can be easily seen in typical ambient lighting conditions (e.g., within a vehicle) since the glare sensor optics reflect back a portion of the light that passes through the opening 106a. The prior example can be modified according to a further exemplary embodiment of the mirror assembly 100 depicted in Figure 6B. In particular, a semitransparent inkjet layer 104b with approximately 38% or less visible light transmission is printed over the area of the opening 106a. The area of the opening 106a would then have a total light transmission of 15%. Accordingly, in this exemplary embodiment of mirror assembly 100, a glare sensor and optics can serve as the assembly component 142, and these components can be placed behind the opening 106a and the semitransparent inkjet layer 104b. The mirror element 108 can be located in front of the
housing element. Consequently, the glare sensor and optics cannot be easily seen with typical ambient lighting conditions (e.g., within a vehicle).
[0078] Additional configurations of the mirror assembly 100 depicted in Figure 6B are also available. The assembly component 142 can be configured as a light source or a sensor, for example. Further, the mirror element 108 can be characterized, for example, by an approximately 26% or 22% optical transmission, an optical transmission range of approximately 20 to 50%, and other optical transmission levels. To achieve a total light transmission of 15% or less through the opening 106a, the semitransparent layer 104b employed in the opening 106a can be configured with an optical transmission of 58% or less, 68%o or less, or other levels, depending on the optical transmission of the mirror element 108. In general, the total light transmission through the opening 106a is the product of the transmission levels of the element 108 and the semitransparent layer 104b. These combinations can thus be employed in the mirror assembly 100 to effectively obscure assembly components 142 mounted, for example, to the carrier 110.
[0079] In some exemplary embodiments of mirror assembly 100, as shown in Figure 6C, the applique 104 can be provided with an opacity gradient layer 104c to eliminate a sharp edge that might otherwise be visible if the applique 104 had an essentially opaque area directly adjacent to the opening 106a. When viewed from the front of the mirror element 108 (e.g., through the first and second substrates 114 and 120) the edge of the applique 104 may be easily seen, especially when the mirror element 108 employs a transflective layer 140 (e.g., a transflective coating) with high optical transmission. Here, the applique 104 is set at a first optical density and the opacity gradient layer 104c is set at a second optical density, preferably below the first optical density associated with the majority of the applique 104. In one example, the second optical density of the opacity gradient layer 104c is created by the printing of "dots" or the like of the same or similar material as employed in the applique 104 with space between the "dots." In effect, the second optical density of the layer 104c, with its spaces between "dots," is lower than the first optical density associated with the majority of the applique 104. Creating a gradient in the applique 104 in the form of opacity gradient layer 104c in the opening 106a provides some optical transmission without a sharp transition.
[0080] In one exemplary embodiment, the opening 106a defines a sensor eyehole for an assembly component 142 in the form of a light sensor. The applique 104 can be printed using a Direct Color Systems® printer. Black ink is used to create a generally opaque coating on the back of a transflective mirror element 108 (e.g., fourth surface 124 of the
second substrate 120) with approximately 26% transmission. The sensor eyehole area (e.g., opening 106a) can then be generated using an opacity gradient layer 104c in the form of a varying density of dots in a gradient pattern such that the center of the eyehole in opening 106a is transparent. Preferably, the opacity gradient layer 104c is configured such that is characterized by approximately 58% or less optical transmission when the mirror element 108 has approximately 26% transmission. It is also preferable to prepare the gradient layer 104c with an optical transmission of approximately 38% or less when the transmission of the mirror element 108 is approximately 40%. In additional embodiments, it is preferable to set the gradient layer 104c with an optical transmission of 68% or less when the transmission of the mirror element 108 is approximately 22%. Further, in some embodiments, the mirror element 108 can be characterized by an approximately 20 to 50% optical transmission, with adjustments to the gradient layer 104c to achieve the desired total light transmission level through the opening 106a. Other optical transmission levels are also feasible. Ultimately, each of these embodiments of mirror assembly 100, as depicted in Figure 6C, can achieve a total light transmission of 15% or less through the opening 106a of the mirror element 108.
[0081] In an exemplary embodiment of mirror assembly 100, as shown in Figure 6D, a color filter 104d can be employed in the opening 106a formed in the applique 104. In particular, inkjet layers employed as appliques 104 may also contain various colors so that black may be used in the majority of the area, but specific colors may be used in the icon areas (e.g., opening 106a). For example, if white light LEDs, serving as assembly component 142, are used to illuminate more than one icon, the icon area of opening 106a may contain a printed color filter 104d.
[0082] In some embodiments of mirror assembly 100 shown in Figure 6D, it is preferable to employ the printed color filter 104d in the opening 106a and over a portion of the inkjet layer as applique 104 in proximity to the opening 106a. In some cases, it is advantageous to lower the transmission of one icon area in comparison to another. Adding a gray semitransparent ink (or CMY gray) as color filter 104d to the icon area of opening 106a may provide the desired transmission. Tinting the icon area and, particularly, the openings 106a, also provides a stealthier, less visible icon when viewed through the mirror assembly 100.
[0083] According to additional exemplary embodiments of mirror assembly 100, the color filter 104d can be adhered to the fourth surface 124 of the substrate 120 within the opening 106a, and a portion of the inkjet layer (applique 104) in proximity to the
opening 106a. Here, the portion of the color filter 104d in proximity to the opening 106a is defined by a substantially annular region for a circular-shaped opening 106a that extends at least 0.2 mm past the opening. Similarly, the portion of the color filter 104d that extends past a noncircular-shaped opening 106a will be substantially shaped to match the shape of the opening 106a.
[0084] One advantage of the mirror assembly 100 embodiments depicted in Figures
6A-6D is that they can be employed individually or in combination to control the light output of multiple assembly components 142, particularly LED light sources, within the icon area of a mirror element 108 containing one or more openings 106a. For example, some icons, indicators, or the like of a given mirror assembly 100 may require a brighter LED source for use in connection with a "warning" icon, and other icons in the same mirror assembly 100 may require a lower light output level. By using a semitransparent layer 104b (see Figure 6B and corresponding description) and/or a color filter 104d (see Figure 6D and corresponding description) in one or more openings 106a, the overall light output and/or color associated with these openings and particular assembly
components 142 (e.g., LED light sources) can be adjusted. In doing so, it is possible to tailor the light output of one or more openings 106a to create different light output levels and/or accommodate one or more LED light sources with the same or varying output levels. Further, it is possible to employ teachings associated with the exemplary embodiments depicted in Figures 6A-6D (e.g., color filters, semitransparent layers, light diffusing layers, and/or opacity gradient layers) within the same opening 106a or multiple openings 106a in a given mirror assembly 100, depending on the application. For example, a color filter 104d and a light diffusing material 104a could conceivably be employed within the same opening 106a to create a single icon with varying light output effects.
[0085] Referring to Figure 7, an exemplary embodiment of the mirror assembly 100 is depicted with one or more openings 106a having complex icon features in the transmissive portion of mirror element 108. It is advantageous to employ applique 104 in the form of an inkjet layer for the development of the opening(s) 106a. As depicted in Figure 7, the icon features in the openings 106a possess one or more discontinuous elements 106b. The discontinuous elements 106b, and the remaining portions of the applique 104 within the mirror element 108, can be printed in as little as one pass when the applique 104 is in the form of an inkjet layer. Line widths and the particular dimensions of the openings 106a and discontinuous elements 106b can be controlled according to the parameters outlined
earlier in this specification. For example, one can control the smallest dimension of the discontinuous elements 106b within the openings 106a in view of the inkjet layer thickness to a ratio of greater than or equal to 5.
[0086] It should be understood that applique 104 in the form of an inkjet layer can be employed advantageously within the mirror assembly 100 for one or more purposes or functions. For example, applique 104 in the form of an inkjet layer can be effectively employed to mask features (e.g., electrical contact 130 as depicted in Figures 2A-5 and described in the foregoing). The applique 104 in the form of an inkjet layer can also define openings 106a and the appearance of features substantially coincident with the openings 106a (e.g., assembly component 142 in Figures 6A-6D and described in the foregoing). Still further, the applique 104 in the form of an inkjet layer can be employed to create complex openings 106a with discontinuous elements 106b (as shown in Figure 7) in the transmissive region of the mirror assembly 100. Hence, the use of an inkjet layer for applique 104 can be particularly advantageous as an inkjet printer can be employed to deposit the layer(s) for the applique 104 according to various functions with a limited number of passes and manufacturing steps.
[0087] For purposes of the present disclosure, and as will be explained in greater detail herein below, the electro-optic medium 128 can comprise at least one solvent, at least one anodic material, and at least one cathodic material.
[0088] Typically, both of the anodic and cathodic materials are electroactive and at least one of them is electrochromic. It will be understood that regardless of its ordinary meaning, the term "electroactive" will be defined herein as a material that undergoes a modification in its oxidation state upon exposure to a particular electrical potential difference. Additionally, it will be understood that the term "electrochromic" will be defined herein, regardless of its ordinary meaning, as a material that exhibits a change in its extinction coefficient at one or more wavelengths upon exposure to a particular electrical potential difference.
[0089] The electro-optic medium 128 is preferably chosen from one of the following
categories:
[0090] (I) Single-layer, single-phase - The electro-optic medium 128 may comprise a single-layer of material which may include small non-homogenous regions, and include solution-phase devices where a material may be contained in solution in an ionically conducting electrolyte which remains in solution in the electrolyte when electrochemically oxidized or reduced. Solution-phase electroactive materials may be contained in the
continuous solution-phase of a gel medium in accordance with the teachings of U.S. Patent No. 5,928,572 entitled "Electrochromic Layer And Devices Comprising Same," and International Patent Application Serial No. PCT/US98/05570 entitled "Electrochromic Polymeric Solid Films, Manufacturing Electrochromic Devices Using Such Solid Films, And Processes For Making Such Solid Films And Devices," both of which are hereby incorporated herein by reference in their entirety.
[0091] More than one anodic and cathodic material can be combined to give a pre-selected color as described in U.S. Patent No. 5,998,617 entitled "Electrochromic Compounds," U.S. Patent No. 6,020,987 entitled "Electrochromic Medium Capable Of Producing A Preselected Color," U.S. Patent No. 6,037,471 entitled "Electrochromic Compounds," and U.S. Patent No. 6,141,137 entitled "Electrochromic Media For Producing A Preselected Color," all of which are hereby incorporated herein by reference in their entirety including all references incorporated and/or cited therein.
[0092] The anodic and cathodic materials may also be combined or linked by a bridging unit as described in U.S. Patent No. 6,241,916 entitled "Electrochromic System" and/or U.S. Patent Publication No. 2002/0015214 Al entitled "Electrochromic Device," which are hereby incorporated herein by reference in their entirety including all references incorporated and/or cited therein. The electrochromic materials may also include near- infrared (NIR) absorbing compounds as described in U.S. Patent No. 6,193,912 entitled "Near Infrared- Absorbing Electrochromic Compounds And Devices Comprising Same," which is hereby incorporated herein by reference in its entirety including all references incorporated and/or cited therein.
[0093] It is also possible to link anodic materials or cathodic materials by similar methods.
The concepts described in these patents can further be combined to yield a variety of electro active materials that are linked or coupled, including linking of a redox buffer, such as linking of a color-stabilizing moiety, to an anodic and/or cathodic material.
[0094] The anodic and cathodic electrochromic materials can also include coupled
materials as described in U.S. Patent No. 6,249,369 entitled "Coupled Electrochromic Compounds With Photostable Dication Oxidation States," which is hereby incorporated herein by reference in its entirety including all references incorporated and/or cited therein.
[0095] The concentration of the electrochromic materials can be selected as taught in U.S.
Patent No. 6,137,620 entitled "Electrochromic Media With Concentration-Enhanced
Stability, Process For The Preparation Thereof and Use In Electrochromic Devices,"
which is hereby incorporated herein by reference in its entirety including all references incorporated and/or cited therein.
[0096] Additionally, a single-layer, single-phase medium may include a medium where the anodic and cathodic materials are incorporated into a polymer matrix as is described in International Patent Application Serial No. PCT/EP98/03862 entitled "Electrochromic Polymer System," and International Patent Application Serial No. PCT/US98/05570 entitled "Electrochromic Polymeric Solid Films, Manufacturing Electrochromic Devices Using Such Solid Films, And Processes For Making Such Solid Films And Devices," which is hereby incorporated herein by reference in its entirety including all references incorporated and/or cited therein.
[0097] (II) Multi-layer - The electro-optic medium 128 may also be prepared in layers and include a material attached directly to an electrically conducting electrode or confined in close proximity thereto which remains attached or confined when electro chemically oxidized or reduced.
[0098] (III) Multi-phase - The electro-optic medium 128 may further be prepared using multiple phases where one or more materials in the medium undergoes a change in phase during the operation of the device, for example a material contained in solution in the ionically conducting electrolyte forms a layer on the electrically conducting electrode when electro chemically oxidized or reduced.
[0099] Generally, the exemplary embodiments herein may be configured to define a
convex element, an aspheric element, a planar element, a non-planar element, an element having a wide field of view (FOV), or a combination of these various configurations in different areas to define a mirror element 108 with generally complex shape. In case of an electrochromic rearview mirror assembly 100, the first surface 116 of the first
substrate 114 may comprise a hydrophilic or hydrophobic coating to improve the operation. The embodiments of the reflective elements may comprise an anti-scratch layer on the exposed surfaces of at least one of the first and second substrates 114 and 120. Examples of various reflective elements are described in U.S. Patent Nos. 5,682,267, 5,689,370, 5,825,527, 5,940,201, 5,998,617, 6,020,987, 6,037,471, 6,057,956, 6,062,920, 6,064,509, 6,111,684, 6,166,848, 6,193,378, 6,195,194, 6,239,898, 6,246,507, 6,268,950, 6,356,376, 6,441,943, and 6,512,624. The disclosure of each of these patents is incorporated herein in its entirety by reference.
[00100] The embodiments disclosed herein may be used with a mounting system such as that described in U.S. Patent Nos. 8,201,800; 8,210,695; U.S. Patent Application Nos.
13/600,496; 13/527,375; 13/431,657; 13/402,701; 12/187,019, and U.S. Provisional Patent Application No s. 61/709,716; 61/707,676; and 61/704,869, which are hereby incorporated herein by reference in their entirety. Further, the embodiments of this disclosure may be used with a rearview packaging assembly such as that described in U.S. Patent No.
8,264,761; U.S. Patent Application Nos. 13/567,363; 13/405,697; 13/402,701; and 13/171,950, and U.S. Provisional Patent Application Nos. 61/707,625; and 61/590,259, which are hereby incorporated herein by reference in their entirety. Additionally, it is contemplated that embodiments of this disclosure can include a bezel such as that described in U.S. Patent No. 8,201,800; 8,210,695; and U.S. Patent Application No.
13/271,745, which is hereby incorporated herein by reference in its entirety.
] Modifications of the invention will occur to those skilled in the art and to those who make or use the invention. Therefore, it is understood that the embodiments shown in the drawings and described above are merely for illustrative purposes and not intended to limit the scope of the invention, which is defined by the following claims as interpreted according to the principles of patent law, including the doctrine of equivalents.
Claims
1. An electro-optic assembly, comprising:
a front substrate having a first surface and a second surface substantially parallel to the first surface;
a rear substrate spaced from and substantially parallel to the front substrate, the rear substrate having a third surface and a fourth surface substantially parallel to the third surface;
a carrier operably connected to at least one of the front substrate and the rear substrate;
an applique layer directly on at least a first portion of the fourth surface and having an opening over a second portion of the fourth surface, the portions of the fourth surface in a transmissive region of the rear substrate; and
an assembly component that is coupled to the carrier, behind the fourth surface and substantially coincident with the opening,
wherein the front and rear substrates define a cavity at least partially filled with an electro -optic material.
2. An electro-optic assembly, comprising:
a front substrate having a first surface and a second surface substantially parallel to the first surface;
a rear substrate spaced from and substantially parallel to the front substrate, the rear substrate having a third surface and a fourth surface substantially parallel to the third surface;
a carrier operably connected to at least one of the front substrate and the rear substrate;
an applique on at least a first portion of the fourth surface and having an opening over a second portion of the fourth surface, the portions of the fourth surface in a transmissive region of the rear substrate; and
an adhesive at least partially in the opening on the second portion of the fourth surface to connect at least one of the front substrate and the rear substrate to the carrier,
wherein the front and rear substrates define a cavity at least partially filled with an electro-optic material, and the carrier and adhesive provide support to at least one of the front substrate and the rear substrate, and
further wherein the applique and the adhesive are configured to substantially match in visual appearance through the front and rear substrates.
3. An electro-optic assembly, comprising:
a front substrate having a first surface and a second surface substantially parallel to the first surface;
a rear substrate spaced from and substantially parallel to the front substrate, the rear substrate having a third surface and a fourth surface substantially parallel to the third surface;
an electrical contact for providing an electrical connection to an electrode in proximity to an electro-optic material, the contact having an extension at least partially over a transmissive portion of the fourth surface in a transmissive region of the rear substrate; and
an applique on at least the transmissive portion of the fourth surface, the applique having a contact-obscuring region in proximity to the extension of the electrical contact, wherein the front and rear substrates define a cavity at least partially filled with the electro -optic material that is confined within the cavity by a seal substantially between the second surface and the third surface.
4. An electro-optic assembly, comprising:
a front substrate having a first surface and a second surface substantially parallel to the first surface;
a rear substrate spaced from and substantially parallel to the front substrate, the rear substrate having a third surface and a fourth surface substantially parallel to the third surface;
an electrical contact for providing an electrical connection to an electrode in proximity to an electro-optic material, the contact having an extension at least partially over a transmissive portion of the fourth surface in a transmissive region of the rear substrate; and
an applique on at least the transmissive portion of the fourth surface, the applique having a contact-obscuring region that is located between the extension of the electrical contact and the fourth surface,
wherein the front and rear substrates define a cavity at least partially filled with the electro -optic material that is confined within the cavity by a seal substantially between the second surface and the third surface, and
further wherein the contact-obscuring region of the applique is configured to obscure the visual appearance of the extension of the electrical contact through the front and rear substrates.
5. An electro-optic assembly, comprising:
a front substrate having a first surface and a second surface substantially parallel to the first surface;
a rear substrate spaced from and substantially parallel to the front substrate, the rear substrate having a third surface and a fourth surface substantially parallel to the third surface;
an electrical contact for providing an electrical connection to an electrode in proximity to an electro-optic material, the contact having an extension at least partially over a transmissive portion of the fourth surface in a transmissive region of the rear substrate;
an adhesive pad between the extension of the electrical contact and the fourth surface; and
an applique on at least the transmissive portion of the fourth surface, the applique having an obscuring region that is located in proximity to at least a portion of the adhesive pad,
wherein the front and rear substrates define a cavity at least partially filled with the electro -optic material that is confined within the cavity by a seal substantially between the second surface and the third surface, and
further wherein the obscuring region of the applique is configured to obscure the visual appearance of one of, or both of, the extension of the electrical contact and the adhesive pad through the front and rear substrates,
wherein the obscuring region of the applique is configured to obscure the visual appearance of the adhesive pad and the extension of the electrical contact through the front and rear substrates.
6. An electro-optic assembly, comprising:
a front substrate having a first surface and a second surface substantially parallel to the first surface;
a rear substrate spaced from and substantially parallel to the front substrate, the rear substrate having a third surface and a fourth surface substantially parallel to the third surface;
an electrical contact for providing an electrical connection to an electrode in proximity to an electro-optic material, the contact having an extension at least partially over a transmissive portion of the fourth surface in a transmissive region of the rear substrate; and
an applique on at least the transmissive portion of the fourth surface, the applique having a contact-obscuring region that is located over at least a portion of the extension of the electrical contact,
wherein the front and rear substrates define a cavity at least partially filled with the electro -optic material that is confined within the cavity by a seal substantially between the second surface and the third surface, and
further wherein the contact-obscuring region of the applique and the extension of the electrical contact are configured to substantially match in visual appearance through the front and rear substrates.
7. The electro-optic assembly of claim 1 , wherein the applique layer has a thickness of about 50 μιη or less.
8. The electro-optic assembly of any one of claims 1 and 7, further comprising: a mirror element that includes the front substrate and the rear substrate, the mirror element having a substantial portion with greater than 10% optical transmission.
9. The electro-optic assembly of any one of claims 1 , 7 and 8, further comprising: a transflective layer on the third surface of the rear substrate.
10. The electro-optic assembly of any one of claims 1 and 7-9, further comprising: a light diffusing inkjet layer in the opening and over a portion of the applique layer in proximity to the opening, wherein the assembly component is a light source.
1 1. The electro-optic assembly of any one of claims land 7-10, wherein the light diffusing inkjet layer is adhered to the second portion of the fourth surface and the portion of the applique layer in proximity to the opening, and further wherein the portion of the applique layer in proximity to the opening is defined by a substantially annular region of the applique layer that extends at least 0.2 mm past the opening.
12. The electro-optic assembly of any one of claims 1 and 7-11, wherein the light diffusing inkjet layer is characterized by approximately 25% or greater optical
transmission and comprises 5% to 95% metal oxide particles by weight, the metal oxide particles selected from the group consisting of Ti02, CaC03 and BaS04.
13. The electro-optic assembly of any one of claims 1 and 7-9, further comprising: a semitransparent inkjet layer in the opening and over a portion of the applique layer in proximity to the opening.
14. The electro-optic assembly of any one of claims 1 , 7-9 and 13, wherein the assembly component is a light source, the opening defines an icon and the semitransparent inkjet layer is tinted.
15. The electro-optic assembly of any one of claims 1 , 7-9, 13 and 14, wherein the assembly component is a light source or a sensor, and the total optical transmission through the opening and the semitransparent layer is approximately 15% or less.
16. The electro-optic assembly of any one of claims 1 , 7-9 and 13-15, wherein the assembly component is a light source or a sensor, the mirror element is characterized by approximately 20 to 50% optical transmission and the total optical transmission through the opening and the semitransparent layer is approximately 15% or less.
17. The electro-optic assembly of any one of claims 1 and 7-9, wherein the applique layer is characterized by an optical density of 2 or greater and the assembly component is a light source.
18. The electro-optic assembly of any one of claims 1 , 7-9 and 17, wherein the opening has a smallest opening dimension of about 500 μιη or less and the applique layer has a thickness, and further wherein the ratio of the smallest opening dimension to the thickness of the inkjet applique layer is 5 or greater.
19. The electro-optic assembly of any one of claims 1, 7- 9, 17 and 18, wherein the ratio of the smallest opening dimension to the thickness of the applique layer is 10 or greater.
20. The electro-optic assembly of any one of claims 1 , 7-9 and 17-19, wherein the applique layer is characterized by a first optical density and the opening is defined by a region of the applique layer having a second optical density that is less than the first optical density.
21. The electro-optic assembly of any one of claims 1 , 7-9 and 17-20, wherein the region of the applique layer having the second optical density is a gradient pattern, and the assembly component is a sensor.
22. The electro-optic assembly of any one of claims 1 , 7-9 and 17-21, further wherein the second optical density is set such that the opening is characterized by an approximately 15% or less total optical transmission.
23. The electro-optic assembly of any one of claims 1 and 7-9, further comprising: a color filter layer in the opening and over a portion of the applique layer in proximity to the opening.
24. The electro-optic assembly of any one of claims 1 , 7-9 and 23, wherein the color filter layer is adhered to the second portion of the fourth surface and the portion of the applique layer in proximity to the opening, and further wherein the portion of the applique layer in proximity to the opening is defined by a substantially annular region of the applique layer that extends at least 0.2 mm past the opening.
25. An electro-optic assembly, comprising:
a front substrate having a first surface and a second surface substantially parallel to the first surface;
a rear substrate spaced from and substantially parallel to the front substrate, the rear substrate having a third surface and a fourth surface substantially parallel to the third surface; and
an applique layer directly on at least a first portion of the fourth surface and having an opening and a discontinuous element over a second portion of the fourth surface, the portions of the fourth surface in a transmissive region of the rear substrate, and
wherein the front and rear substrates define a cavity at least partially filled with an electro -optic material.
26. The electro-optic assembly of claim 25, further comprising:
a transflective layer on the third surface of the rear substrate.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361750441P | 2013-01-09 | 2013-01-09 | |
US61/750,441 | 2013-01-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014110124A1 true WO2014110124A1 (en) | 2014-07-17 |
Family
ID=51060754
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2014/010667 WO2014110124A1 (en) | 2013-01-09 | 2014-01-08 | Printed appliqué and method thereof |
Country Status (2)
Country | Link |
---|---|
US (2) | US9488892B2 (en) |
WO (1) | WO2014110124A1 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160051002A1 (en) * | 2014-08-22 | 2016-02-25 | Michelle Frances Thompson | Transparent heel post protecting device and method |
WO2017184450A1 (en) | 2016-04-19 | 2017-10-26 | Gentex Corporation | Diffusing layer for a light emitting apparatus |
US10306442B1 (en) * | 2018-01-16 | 2019-05-28 | Skylo Technologies Inc. | Devices and methods for specialized machine-to-machine communication transmission network modes via edge node capabilities |
US10985219B2 (en) | 2018-01-19 | 2021-04-20 | Kunshan Go-Visionox Opto-Electronics Co., Ltd. | Display device |
CN207924309U (en) * | 2018-01-19 | 2018-09-28 | 昆山国显光电有限公司 | Display device |
CN108944689A (en) * | 2018-07-12 | 2018-12-07 | 信利光电股份有限公司 | A kind of electrochromic rearview and preparation method thereof |
WO2023225194A1 (en) * | 2022-05-18 | 2023-11-23 | Acr Ii Glass America Inc. | Glazing having an area for collection of information |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6870655B1 (en) * | 1998-10-14 | 2005-03-22 | Gentex Corporation | Rearview mirror with display |
US7706046B2 (en) * | 2004-06-08 | 2010-04-27 | Gentex Corporation | Rearview mirror element having a circuit mounted to the rear surface of the element |
US20120224248A1 (en) * | 2003-10-02 | 2012-09-06 | Donnelly Corporation | Rearview mirror assembly for vehicle |
Family Cites Families (187)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3280701A (en) | 1961-09-05 | 1966-10-25 | Donnelly Mirrors Inc | Optically variable one-way mirror |
US3266016A (en) | 1964-08-06 | 1966-08-09 | Maru Sho | Outside signal for automobiles |
SE370754B (en) | 1971-10-29 | 1974-10-28 | Emmaboda Glasverk Ab | |
JPS619464Y2 (en) | 1980-03-31 | 1986-03-25 | ||
JPS56143416A (en) | 1980-04-11 | 1981-11-09 | Nippon Telegr & Teleph Corp <Ntt> | Electrochromic display element |
US4588267A (en) | 1984-01-18 | 1986-05-13 | Ronald Pastore | Combination rear view mirror and digital clock |
US4630904A (en) | 1985-01-22 | 1986-12-23 | Ronald Pastore | Combination rear view mirror and digital displays |
JPS6237247A (en) | 1985-05-08 | 1987-02-18 | Nissan Motor Co Ltd | Nonglaring mirror |
US4902108A (en) | 1986-03-31 | 1990-02-20 | Gentex Corporation | Single-compartment, self-erasing, solution-phase electrochromic devices, solutions for use therein, and uses thereof |
US5128799B1 (en) | 1986-03-31 | 1996-11-05 | Gentex Corp | Variable reflectance motor vehicle mirror |
US5282077A (en) | 1986-03-31 | 1994-01-25 | Gentex Corporation | Variable reflectance mirror |
DE3736075A1 (en) | 1987-10-24 | 1989-05-03 | Schott Glaswerke | ELECTROCHROMIC LAYER PACKAGE |
US5073012A (en) | 1988-02-12 | 1991-12-17 | Donnelly Corporation | Anti-scatter, ultraviolet protected, anti-misting, electro-optical assemblies |
US5115346A (en) | 1988-02-12 | 1992-05-19 | Donnelly Corporation | Anti-scatter, ultraviolet protected, anti-misting, electro-optical rearview mirror |
US4882565A (en) | 1988-03-02 | 1989-11-21 | Donnelly Corporation | Information display for rearview mirrors |
EP0390151B1 (en) | 1989-03-31 | 1995-05-31 | Asahi Glass Company Ltd. | Method of making window glass with a gasket |
US5052163A (en) | 1989-11-27 | 1991-10-01 | Georgia Doors & Plywood Service, Inc. | Framed panel assembly |
US5066112A (en) | 1989-12-21 | 1991-11-19 | Donnelly Corporation | Perimeter coated, electro-optic mirror |
US5014167A (en) | 1990-02-20 | 1991-05-07 | K. W. Muth Company, Inc. | Visual signaling apparatus |
US5355284A (en) | 1990-02-20 | 1994-10-11 | K. W. Muth Company, Inc. | Mirror assembly |
US5361190A (en) | 1990-02-20 | 1994-11-01 | K. W. Muth Co. Inc. | Mirror assembly |
US5481409A (en) | 1990-02-20 | 1996-01-02 | K. W. Muth Company, Inc. | Mirror assembly |
KR920704179A (en) | 1990-03-06 | 1992-12-19 | 리챠드 지. 워터맨 | Sealed electrochromic device |
US5280380A (en) | 1990-04-30 | 1994-01-18 | Gentex Corporation | UV-stabilized compositions and methods |
US5076673A (en) | 1990-08-10 | 1991-12-31 | Donnelly Corporation | Prolonged coloration electrochromic assembly |
US5151824A (en) | 1990-11-26 | 1992-09-29 | Donnelly Corporation | Vehicular outside mirror assembly |
US5446576A (en) | 1990-11-26 | 1995-08-29 | Donnelly Corporation | Electrochromic mirror for vehicles with illumination and heating control |
US5189537A (en) | 1991-01-28 | 1993-02-23 | Donnelly Corporation | Indicia display for electro-optic devices wherein the indicia comprises a dielectric material extending at least partially into the electro-optic medium |
US5294376A (en) | 1991-06-25 | 1994-03-15 | Gentex Corporation | Bipyridinium salt solutions |
US5336448A (en) | 1991-06-25 | 1994-08-09 | Gentex Corporation | Electrochromic devices with bipyridinium salt solutions |
US5649756A (en) | 1991-09-13 | 1997-07-22 | Donnelly Corporation | Rearview mirror with lighting assembly |
US5278693A (en) | 1992-01-13 | 1994-01-11 | Gentex Corporation | Tinted solution-phase electrochromic devices |
US6246507B1 (en) | 1992-04-02 | 2001-06-12 | Gentex Corporation | Non-planar interior electrochromic rearview mirror for a vehicle |
US5253109A (en) | 1992-04-27 | 1993-10-12 | Donnelly Corporation | Electro-optic device with constant light transmitting area |
FR2690536B1 (en) | 1992-04-28 | 1994-06-17 | Saint Gobain Vitrage Int | ELECTROCHROME GLAZING. |
US5313335A (en) | 1992-06-05 | 1994-05-17 | Delco Electronics Corporation | Blindzone signal indicator |
CA2096390C (en) | 1992-07-01 | 1998-01-27 | William L. Tonar | Outside automatic rearview mirror for automotive vehicles |
DE4232554C1 (en) | 1992-09-29 | 1994-01-05 | Ver Glaswerke Gmbh | Method for producing a glass pane provided with a molded frame made of a thermoplastic polymer and device for carrying out the method |
USD363920S (en) | 1992-12-02 | 1995-11-07 | K. W. Muth Company, Inc. | Electrical circuit board |
US5285060A (en) | 1992-12-15 | 1994-02-08 | Donnelly Corporation | Display for automatic rearview mirror |
US6176602B1 (en) | 1993-02-01 | 2001-01-23 | Donnelly Corporation | Vehicle exterior mirror system with signal light |
US5497306A (en) | 1993-02-01 | 1996-03-05 | Donnelly Corporation | Exterior vehicle security light |
US5371659A (en) | 1993-02-01 | 1994-12-06 | Donnelly Corporation | Remote-actuated exterior vehicle security light |
DE59300824D1 (en) | 1992-12-23 | 1995-11-30 | Rheinmetall Ind Gmbh | Voltage-resistant electronics assembly. |
US5550677A (en) | 1993-02-26 | 1996-08-27 | Donnelly Corporation | Automatic rearview mirror system using a photosensor array |
DE69426040T2 (en) | 1993-02-26 | 2001-05-17 | Donnelly Corp., Holland | Electrochromic polymeric solid films, manufacture of electrochromic devices with such films, and processes for the manufacture of such solid films and devices |
US5528422A (en) | 1993-12-07 | 1996-06-18 | K. W. Muth Company, Inc. | Mirror coating |
US5504478A (en) | 1994-01-12 | 1996-04-02 | Gentex Corporation | Radio frequency control system |
US5790298A (en) | 1994-05-03 | 1998-08-04 | Gentex Corporation | Method of forming optically transparent seal and seal formed by said method |
US5668663A (en) | 1994-05-05 | 1997-09-16 | Donnelly Corporation | Electrochromic mirrors and devices |
US5679283A (en) | 1994-07-22 | 1997-10-21 | Gentex Corporation | Electrochromic layer and devices comprising same |
US5587699A (en) | 1994-11-03 | 1996-12-24 | United Technologies Automotive Systems Inc. | Exterior mirror with information display |
EP0728618A3 (en) | 1995-02-22 | 1996-11-06 | Gentex Corp | Dimmable rearview mirror for motor vehicles |
DE29505985U1 (en) | 1995-04-06 | 1995-07-20 | Bestenlehrer, Alexander, 91074 Herzogenaurach | Device for processing, in particular for polishing and structuring any 3D shape surfaces by means of a laser beam |
US5742026A (en) | 1995-06-26 | 1998-04-21 | Corning Incorporated | Processes for polishing glass and glass-ceramic surfaces using excimer laser radiation |
US5682267A (en) | 1995-08-30 | 1997-10-28 | Gentex Corporation | Image/information displays on electrochromic mirrors for motor vehicles |
US5689370A (en) | 1995-08-30 | 1997-11-18 | Gentex Corporation | Image/information displays on electro-optic devices |
EP0769419A3 (en) | 1995-10-20 | 2000-08-16 | Gentex Corporation | Improved electro-optic rearview mirror for automotive vehicles |
US5660457A (en) | 1995-11-07 | 1997-08-26 | Whelen Engineering Company, Inc. | Integrated warning light and rear-view mirror |
US5928572A (en) | 1996-03-15 | 1999-07-27 | Gentex Corporation | Electrochromic layer and devices comprising same |
US5786772A (en) | 1996-03-22 | 1998-07-28 | Donnelly Corporation | Vehicle blind spot detection display system |
US6051956A (en) | 1997-05-30 | 2000-04-18 | Seiko Instruments Inc. | Rechargeable battery pack with pre-end signal output terminal and electronic device containing rechargeable battery pack |
US5803579A (en) | 1996-06-13 | 1998-09-08 | Gentex Corporation | Illuminator assembly incorporating light emitting diodes |
US5798575A (en) | 1996-07-11 | 1998-08-25 | Donnelly Corporation | Vehicle mirror digital network and dynamically interactive mirror system |
US5796176A (en) | 1996-07-11 | 1998-08-18 | Donnelly Corporation | Memory mirror system for vehicles |
US6045243A (en) | 1996-08-28 | 2000-04-04 | K.W. Muth Company, Inc. | Mirror assembly |
US5788357A (en) | 1996-08-28 | 1998-08-04 | K. W. Muth Company, Inc. | Mirror assembly |
DE29620775U1 (en) | 1996-11-29 | 1998-03-26 | Hohe GmbH & Co. KG, 97903 Collenberg | Outside mirrors for a vehicle |
USD394833S (en) | 1996-12-10 | 1998-06-02 | K. W. Muth Company, Inc. | Combined rearview mirror and signalling indicator |
US6064525A (en) | 1997-03-25 | 2000-05-16 | Glaverbel | Optical device including a dichromatic mirror |
US5923457A (en) | 1997-04-02 | 1999-07-13 | Gentex Corporation | Electro-optic device including a low sheet resistance, high transmission transparent electrode |
US6111684A (en) | 1997-04-02 | 2000-08-29 | Gentex Corporation | Electrochromic rearview mirror incorporating a third surface metal reflector and a display/signal light |
US6587573B1 (en) | 2000-03-20 | 2003-07-01 | Gentex Corporation | System for controlling exterior vehicle lights |
US5818625A (en) | 1997-04-02 | 1998-10-06 | Gentex Corporation | Electrochromic rearview mirror incorporating a third surface metal reflector |
US6700692B2 (en) | 1997-04-02 | 2004-03-02 | Gentex Corporation | Electrochromic rearview mirror assembly incorporating a display/signal light |
US6020987A (en) | 1997-04-02 | 2000-02-01 | Gentex Corporation | Electrochromic medium capable of producing a pre-selected color |
US6111683A (en) | 1997-04-02 | 2000-08-29 | Gentex Corporation | Electrochromic mirrors having a signal light |
US5923027A (en) | 1997-09-16 | 1999-07-13 | Gentex Corporation | Moisture sensor and windshield fog detector using an image sensor |
US6774988B2 (en) | 2002-07-30 | 2004-08-10 | Gentex Corporation | Light source detection and categorization system for automatic vehicle exterior light control and method of manufacturing |
US5990469A (en) | 1997-04-02 | 1999-11-23 | Gentex Corporation | Control circuit for image array sensors |
US6130421A (en) | 1998-06-09 | 2000-10-10 | Gentex Corporation | Imaging system for vehicle headlamp control |
US6441943B1 (en) | 1997-04-02 | 2002-08-27 | Gentex Corporation | Indicators and illuminators using a semiconductor radiation emitter package |
US5940201A (en) | 1997-04-02 | 1999-08-17 | Gentex Corporation | Electrochromic mirror with two thin glass elements and a gelled electrochromic medium |
US6356376B1 (en) | 1997-04-02 | 2002-03-12 | Gentex Corporation | Electrochromic rearview mirror incorporating a third surface metal reflector and a display/signal light |
US6545794B2 (en) | 1997-04-02 | 2003-04-08 | Gentex Corporation | Electrochromic device with two thin glass elements and a gelled electrochromic medium |
US5956012A (en) | 1997-04-02 | 1999-09-21 | Gentex Corporation | Series drive circuit |
US5825527A (en) | 1997-04-02 | 1998-10-20 | Gentex Corporation | Information display area on electrochromic mirrors having a third surface metal reflector |
US5998617A (en) | 1997-04-02 | 1999-12-07 | Gentex Corporation | Electrochromic compounds |
US6049171A (en) | 1998-09-18 | 2000-04-11 | Gentex Corporation | Continuously variable headlamp control |
US6166848A (en) | 1997-04-02 | 2000-12-26 | Gentex Corporation | Electrochromic rearview mirror incorporating a third surface metal reflector and a display/signal light |
US5837994C1 (en) | 1997-04-02 | 2001-10-16 | Gentex Corp | Control system to automatically dim vehicle head lamps |
US6861809B2 (en) | 1998-09-18 | 2005-03-01 | Gentex Corporation | Headlamp control to prevent glare |
US6106121A (en) | 1997-07-10 | 2000-08-22 | Chrysler Corporation | Rear view mirror with integrated matrix display |
US6064509A (en) | 1997-08-22 | 2000-05-16 | Gentex Corporation | Clip for use with transparent conductive electrodes in electrochromic devices |
US6247819B1 (en) | 1997-09-16 | 2001-06-19 | Gentex Corporation | Individual mirror control system |
IL121890A (en) | 1997-10-06 | 2000-11-21 | Dov Zahavi | Laser assisted polishing |
US6008486A (en) | 1997-12-31 | 1999-12-28 | Gentex Corporation | Wide dynamic range optical sensor |
US6193912B1 (en) | 1998-03-03 | 2001-02-27 | Gentex Corporation | Near infrared-absorbing electrochromic compounds and devices comprising same |
US6224716B1 (en) | 1998-03-18 | 2001-05-01 | Oilquip, Inc. | Apparatus for dehydrating oil |
US6329925B1 (en) | 1999-11-24 | 2001-12-11 | Donnelly Corporation | Rearview mirror assembly with added feature modular display |
US6084700A (en) | 1998-04-29 | 2000-07-04 | Gentex Corporation | Reflectance control of an electrochromic element using a variable duty cycle drive |
US6317248B1 (en) | 1998-07-02 | 2001-11-13 | Donnelly Corporation | Busbars for electrically powered cells |
USD410607S (en) | 1998-07-09 | 1999-06-08 | Gentex Corporation | Rearview mirror with woodgrain bezel |
US6068380A (en) | 1998-07-28 | 2000-05-30 | Gentex Corporation | Mirror mount having an integral spherical bearing |
US6130448A (en) | 1998-08-21 | 2000-10-10 | Gentex Corporation | Optical sensor package and method of making same |
US6062920A (en) | 1998-08-26 | 2000-05-16 | Gentex Corporation | Custom terminal connector for use in electrochromic devices |
US6335548B1 (en) | 1999-03-15 | 2002-01-01 | Gentex Corporation | Semiconductor radiation emitter package |
US6005724A (en) | 1998-10-05 | 1999-12-21 | K. W. Muth Company, Inc. | Mirror coating, mirror utilizing same, and a mirror assembly |
US6076948A (en) | 1998-10-28 | 2000-06-20 | K. W. Muth Company, Inc. | Electromagnetic radiation emitting or receiving assembly |
US6239898B1 (en) | 1998-11-30 | 2001-05-29 | Gentex Corporation | Electrochromic structures |
USD409540S (en) | 1998-12-01 | 1999-05-11 | K. W. Muth Company, Inc. | Combined rearview mirror and signaling indicator |
US6222177B1 (en) | 1999-01-19 | 2001-04-24 | Gentex Corporation | Electrochromic element driver with negative output resistance |
US6313457B1 (en) | 1999-01-25 | 2001-11-06 | Gentex Corporation | Moisture detecting system using semiconductor light sensor with integral charge collection |
US6402328B1 (en) | 1999-01-25 | 2002-06-11 | Gentex Corporation | Automatic dimming mirror using semiconductor light sensor with integral charge collection |
JP2003524545A (en) | 1999-01-25 | 2003-08-19 | ジェンテクス・コーポレーション | Vehicle device control using semiconductor optical sensor |
US6359274B1 (en) | 1999-01-25 | 2002-03-19 | Gentex Corporation | Photodiode light sensor |
US6166698A (en) | 1999-02-16 | 2000-12-26 | Gentex Corporation | Rearview mirror with integrated microwave receiver |
US6023229A (en) | 1999-03-02 | 2000-02-08 | Gentex Corp | Rearview mirror with internally-mounted compass sensor |
US6229435B1 (en) | 1999-03-04 | 2001-05-08 | Gentex Corporation | Outside mirror communication system |
US6521916B2 (en) | 1999-03-15 | 2003-02-18 | Gentex Corporation | Radiation emitter device having an encapsulant with different zones of thermal conductivity |
US6195194B1 (en) | 1999-03-16 | 2001-02-27 | Gentex Corporation | Lightweight electrochromic mirror |
US6142656A (en) | 1999-03-26 | 2000-11-07 | Kurth; John F. | Multi-functional side rear view mirror for a vehicle |
US6102546A (en) | 1999-04-01 | 2000-08-15 | Gentex Corporation | Rearview mirror bezel having reduced apparent size |
US7009751B2 (en) | 1999-05-14 | 2006-03-07 | Gentex Corporation | Electrochromic rearview mirror incorporating a third surface partially transmissive reflector |
US6244716B1 (en) | 1999-05-17 | 2001-06-12 | Gentex Corporation | Exterior mirror sub-assembly with combined electronic circuitry and mirror element |
US6193378B1 (en) | 1999-06-25 | 2001-02-27 | Gentex Corporation | Electrochromic device having a self-cleaning hydrophilic coating |
US6816297B1 (en) | 1999-06-25 | 2004-11-09 | Gentex Corporation | Electrochromic mirror having a self-cleaning hydrophilic coating |
US6249369B1 (en) | 1999-07-09 | 2001-06-19 | Gentex Corporation | Coupled electrochromic compounds with photostable dication oxidation states |
US7324261B2 (en) | 1999-07-09 | 2008-01-29 | Gentex Corporation | Electrochromic devices with thin bezel-covered edge |
US7064882B2 (en) | 2002-09-30 | 2006-06-20 | Gentex Corporation | Electrochromic devices having no positional offset between substrates |
US6188505B1 (en) | 1999-08-19 | 2001-02-13 | Gentex Corporation | Color-stabilized electrochromic devices |
US6614579B2 (en) | 1999-10-22 | 2003-09-02 | Gentex Corporation | Proximity switch and vehicle rearview mirror assembly incorporating the same and having a transparent housing |
US6262831B1 (en) | 1999-10-22 | 2001-07-17 | Gentex Corporation | Power supply for electrochromic mirrors in high voltage automotive power systems |
USD428842S (en) | 1999-11-01 | 2000-08-01 | K. W. Muth Company, Inc. | Combined rearview mirror and large feature backup assistance indicator |
USD426507S (en) | 1999-11-01 | 2000-06-13 | K. W. Muth Company, Inc. | Combined rearview mirror and seven pixel signalling indicator |
USD428373S (en) | 1999-11-01 | 2000-07-18 | K. W. Muth Company, Inc. | Combined rearview mirror and nine pixel signalling indicator |
USD428372S (en) | 1999-11-01 | 2000-07-18 | K. W. Muth Company, Inc. | Combined rearview mirror and five pixel signalling indicator |
USD430088S (en) | 1999-11-01 | 2000-08-29 | K. W. Muth Company, Inc. | Combined rearview mirror and five pixel signalling indicator |
USD429202S (en) | 1999-11-01 | 2000-08-08 | K. W. Muth Company, Inc. | Combined rearview mirror and seven pixel signalling indicator |
USD427128S (en) | 1999-11-01 | 2000-06-27 | K. W. Muth Company, Inc. | Combined rearview mirror and signalling indicator |
USD426506S (en) | 1999-11-01 | 2000-06-13 | K. W. Muth Company, Inc. | Combined rearview mirror and nine pixel signalling indicator |
US6262832B1 (en) | 1999-12-03 | 2001-07-17 | Gentex Corporation | Anodic electrochromic materials having a solublizing moiety |
US6239899B1 (en) | 1999-12-15 | 2001-05-29 | Gentex Corporation | Mirror with internal support plate |
US6606183B2 (en) | 1999-12-24 | 2003-08-12 | Nippon Oil Corporation | Method for producing a cell for an electrochromic mirror and an electrochromic mirror |
US6392783B1 (en) | 2000-02-24 | 2002-05-21 | Gentex Corporation | Substituted metallocenes for use as anodic electrochromic materials, and electrochromic media and devices comprising the same |
US6403942B1 (en) | 2000-03-20 | 2002-06-11 | Gentex Corporation | Automatic headlamp control system utilizing radar and an optical sensor |
US6420800B1 (en) | 2000-05-25 | 2002-07-16 | Gentex Corporation | Rearview mirror with buttons incorporating display |
US6407468B1 (en) | 2000-05-25 | 2002-06-18 | Gentex Corporation | Rearview mirror with buttons incorporating display |
US6407847B1 (en) | 2000-07-25 | 2002-06-18 | Gentex Corporation | Electrochromic medium having a color stability |
US6471362B1 (en) | 2000-10-13 | 2002-10-29 | Gentex Corporation | Mirror with improved button construction |
US6535126B2 (en) | 2000-12-15 | 2003-03-18 | Ppg Industries Ohio, Inc. | Electrochromic transparency incorporating security system |
US7255451B2 (en) | 2002-09-20 | 2007-08-14 | Donnelly Corporation | Electro-optic mirror cell |
US6650457B2 (en) | 2001-05-21 | 2003-11-18 | Gentex Corporation | Rearview mirror constructed for efficient assembly |
US6657767B2 (en) | 2001-05-21 | 2003-12-02 | Gentex Corporation | Rearview mirror assembly construction |
EP1411386A4 (en) | 2001-07-26 | 2005-02-09 | Murakami Corp | Antiglare anticlouding device and automotive outer mirror |
US6426485B1 (en) | 2001-07-31 | 2002-07-30 | Illinois Tool Works Inc. | Light diffusing signal mirror heater |
US6635194B2 (en) | 2001-08-28 | 2003-10-21 | Gentex Corporation | Electrochromic medium having a self-healing cross-linked polymer gel and associated electrochromic device |
US6968273B2 (en) | 2002-03-01 | 2005-11-22 | Gentex Corporation | Electronic compass system |
WO2003105099A1 (en) | 2002-06-06 | 2003-12-18 | Donnelly Corporation | Interior rearview mirror system with compass |
DE10228743B4 (en) | 2002-06-27 | 2005-05-04 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Method for smoothing and polishing surfaces by machining with laser radiation |
US7310177B2 (en) | 2002-09-20 | 2007-12-18 | Donnelly Corporation | Electro-optic reflective element assembly |
US9134585B2 (en) | 2002-09-30 | 2015-09-15 | Gentex Corporation | Automotive rearview mirror with capacitive switches |
US8169684B2 (en) * | 2002-09-30 | 2012-05-01 | Gentex Corporation | Vehicular rearview mirror elements and assemblies incorporating these elements |
US8004741B2 (en) | 2004-02-27 | 2011-08-23 | Gentex Corporation | Vehicular rearview mirror elements and assemblies incorporating these elements |
US7287868B2 (en) | 2003-04-02 | 2007-10-30 | Gentex Corporation | Rearview mirror with integrated frame |
EP2453304A3 (en) | 2004-02-27 | 2012-11-07 | Gentex Corporation | Vehicular rearview mirror elements and assemblies incorporating these elements |
US8282224B2 (en) | 2004-07-12 | 2012-10-09 | Gentex Corporation | Rearview mirror assemblies with anisotropic polymer laminates |
US8545030B2 (en) | 2004-07-12 | 2013-10-01 | Gentex Corporation | Rearview mirror assemblies with anisotropic polymer laminates |
US20060181419A1 (en) | 2005-01-28 | 2006-08-17 | Wha Yu Industrial Co., Ltd. | RFID tag applicable to metallic environment |
EP1883855B1 (en) * | 2005-05-16 | 2011-07-20 | Donnelly Corporation | Vehicle mirror assembly with indicia at reflective element |
US7417717B2 (en) | 2005-10-05 | 2008-08-26 | Utah State University | System and method for improving lidar data fidelity using pixel-aligned lidar/electro-optic data |
US7688495B2 (en) | 2006-03-03 | 2010-03-30 | Gentex Corporation | Thin-film coatings, electro-optic elements and assemblies incorporating these elements |
US7746534B2 (en) | 2006-12-07 | 2010-06-29 | Gentex Corporation | Thin-film coatings, electro-optic elements and assemblies incorporating these elements |
EP2426552A1 (en) | 2006-03-03 | 2012-03-07 | Gentex Corporation | Electro-optic elements incorporating improved thin-film coatings |
US7817020B2 (en) | 2006-10-17 | 2010-10-19 | Gentex Corporation | Optical user interface system for automotive modules |
US10017847B2 (en) | 2007-03-05 | 2018-07-10 | Gentex Corporation | Method and apparatus for ion milling |
US8035881B2 (en) | 2007-03-05 | 2011-10-11 | Gentex Corporation | Multi-zone mirrors |
US8154418B2 (en) | 2008-03-31 | 2012-04-10 | Magna Mirrors Of America, Inc. | Interior rearview mirror system |
US9254789B2 (en) | 2008-07-10 | 2016-02-09 | Gentex Corporation | Rearview mirror assemblies with anisotropic polymer laminates |
EP2422227B1 (en) | 2009-04-23 | 2014-05-14 | Magna Mirrors Of America, Inc. | Mirror assembly for vehicle |
US9598016B2 (en) | 2010-10-15 | 2017-03-21 | Magna Mirrors Of America, Inc. | Interior rearview mirror assembly |
KR20120099671A (en) | 2009-10-07 | 2012-09-11 | 마그나 미러스 오브 아메리카 인크. | Frameless interior rearview mirror assembly |
US8344288B2 (en) | 2010-01-12 | 2013-01-01 | Gentex Corporation | Heaters for automotive mirrors and rearview assemblies using the same |
US9056584B2 (en) | 2010-07-08 | 2015-06-16 | Gentex Corporation | Rearview assembly for a vehicle |
US8228590B2 (en) * | 2010-08-09 | 2012-07-24 | Gentex Corporation | Electro-optic system configured to reduce a perceived color change |
US8643481B2 (en) | 2010-09-17 | 2014-02-04 | Johnson Controls Technology Company | Interior rearview mirror assembly with integrated indicator symbol |
US20130112679A1 (en) * | 2011-11-06 | 2013-05-09 | Gentex Corporation | Vehicular rearview assembly with indicia |
-
2014
- 2014-01-08 WO PCT/US2014/010667 patent/WO2014110124A1/en active Application Filing
- 2014-01-08 US US14/150,408 patent/US9488892B2/en active Active
-
2016
- 2016-09-20 US US15/270,370 patent/US10126624B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6870655B1 (en) * | 1998-10-14 | 2005-03-22 | Gentex Corporation | Rearview mirror with display |
US20120224248A1 (en) * | 2003-10-02 | 2012-09-06 | Donnelly Corporation | Rearview mirror assembly for vehicle |
US7706046B2 (en) * | 2004-06-08 | 2010-04-27 | Gentex Corporation | Rearview mirror element having a circuit mounted to the rear surface of the element |
Also Published As
Publication number | Publication date |
---|---|
US9488892B2 (en) | 2016-11-08 |
US20140192392A1 (en) | 2014-07-10 |
US10126624B2 (en) | 2018-11-13 |
US20170010513A1 (en) | 2017-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10126624B2 (en) | Printed appliqué and method thereof | |
US11554719B2 (en) | Vehicular rearview mirror assembly | |
US8827517B2 (en) | Clear bezel | |
US10649299B2 (en) | Electro-optic assembly | |
CN101535087B (en) | Interior rearview mirror with display | |
US7910859B2 (en) | Heater pad for a mirror reflective element | |
KR102438097B1 (en) | Vehicle side mirror assembly | |
CN209870250U (en) | 3D curved surface semi-transparent semi-reflective mirror assembly and electronic rearview mirror | |
JP2020140152A (en) | Display device | |
MXPA01003932A (en) | Electrochromic mirror incorporating a third surface reflector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14737587 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14737587 Country of ref document: EP Kind code of ref document: A1 |