[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014109384A1 - Method for producing cross-linked nucleic acid derivative - Google Patents

Method for producing cross-linked nucleic acid derivative Download PDF

Info

Publication number
WO2014109384A1
WO2014109384A1 PCT/JP2014/050325 JP2014050325W WO2014109384A1 WO 2014109384 A1 WO2014109384 A1 WO 2014109384A1 JP 2014050325 W JP2014050325 W JP 2014050325W WO 2014109384 A1 WO2014109384 A1 WO 2014109384A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
general formula
compound represented
added
Prior art date
Application number
PCT/JP2014/050325
Other languages
French (fr)
Japanese (ja)
Inventor
聡 小比賀
秀勲 三神山
庸 足立
直樹 三宅
昌浩 阪上
哲也 谷野
浩輔 阿南
関口 光明
典一 黒田
Original Assignee
塩野義製薬株式会社
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 塩野義製薬株式会社, 国立大学法人大阪大学 filed Critical 塩野義製薬株式会社
Priority to JP2014556449A priority Critical patent/JP6270742B2/en
Publication of WO2014109384A1 publication Critical patent/WO2014109384A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/06Pyrimidine radicals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the present invention relates to a method for producing an intermediate useful for the efficient production of amide-bridged nucleic acid derivatives.
  • the antisense method is known as one of the methods for treating diseases with nucleic acid drugs.
  • Antisense method introduces oligonucleotide (antisense strand) complementary to disease-related mRNA from the outside to form a double strand, thereby inhibiting the translation process of pathogenic RNA and treating or preventing disease. It is a technique to do.
  • Non-patent document 1 phosphorothioate in which an oxygen atom on a phosphorus atom is substituted with a sulfur atom
  • methylphosphonate non-patent document 2 in which a methyl group is substituted
  • BNA bridged nucleic acid
  • LNA locked nucleic acid
  • Obiga et al. are less susceptible to degradation by nucleases in vivo than conventional cross-linked types, have high binding affinity for target mRNA, and efficiently control the expression of specific genes.
  • Patent Document 4 a novel nucleic acid derivative in which an amide bond is introduced into a 2 ′, 4′-BNA cross-linked structure has been found (Patent Document 4).
  • An object of the present invention is to provide a method for efficiently producing an amide-bridged nucleic acid derivative useful as a molecule used in an antisense method.
  • the present inventors have found that an important intermediate for synthesizing an amide-bridged nucleic acid derivative can be efficiently synthesized by carrying out an aldol reaction under a specific condition, thereby completing the present invention. Further, the present invention was completed by finding a method for efficiently removing a ring by removing the protecting group of the intermediate.
  • the present invention (1) The following steps for subjecting a compound represented by the general formula (I) to an aldol reaction in the presence of a base:
  • R 1 and R 2 are the same or different and each represents a hydrogen atom, an amino group protecting group for nucleic acid synthesis, an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, an aralkyl group, an acyl group, a silyl group, Phosphate group, phosphate group protected with a protecting group for nucleic acid synthesis, -P (R 7 ) R 8 [wherein R 7 and R 8 are the same or different and protected with a hydroxyl group, a protecting group for nucleic acid synthesis A hydroxyl group, a mercapto group, a mercapto group protected with a protecting group for nucleic acid synthesis, an amino group, an alkoxy group having 1 to 5 carbon atoms, an alkylthio group
  • R 9 and R 10 are the same or different and are a hydroxyl group, a hydroxyl group protected with a protecting group for nucleic acid synthesis, a mercapto group, or a protecting group for nucleic acid synthesis.
  • Y 7 and Y 8 are hydroxyl-protecting groups for nucleic acid synthesis
  • R 5 ′ is an alkyl group, a hydrogen atom, an optionally substituted benzyl group, or an optionally substituted group.
  • An aromatic ring, R 6 ′ , R 7 ′ , R 8 ′ and R 9 ′ are a hydrogen atom or an alkyl group), and a method for producing a compound represented by the general formula (XIII), About.
  • numerator used for an antisense method can be manufactured efficiently. More specifically, an important intermediate can be produced with a minimum of raw material residues and by-products. Further, by using this intermediate, it has become possible to produce an amide-bridged nucleic acid derivative useful as an antisense molecule more efficiently than the conventional method. Furthermore, it has become possible to obtain an intermediate in a high yield by finding a method for removing the protecting group of the intermediate and efficiently cyclizing the intermediate.
  • nucleobase moiety of B is a structure in which, in addition to a hydrocarbon cyclic group, a carbon atom which is a constituent atom of the hydrocarbon ring is replaced with one or more hetero atoms such as a nitrogen atom, a sulfur atom or an oxygen atom Any heterocyclic group having a 5- to 20-membered ring and having aromaticity, including monocyclic and condensed rings.
  • the hydrocarbon ring include benzene, naphthalene, anthracene, phenanthrene, indane, indene, tetrahydronaphthylene, biphenylene and the like.
  • heterocyclic ring examples include pyrimidine nucleobase or purine nucleobase. Any ring may have one or more substituents selected from the following ⁇ group.
  • the pyrimidine nucleobase or purine nucleobase acts or substitutes for a base generally known as a constituent component of a nucleic acid (eg, guanine, adenine, cytosine, thymine, uracil) and other similar nucleic acid components. Includes every chemical structure you get.
  • a pyrimidine nucleobase or a purine nucleobase or a pyrimidine nucleobase or a purine nucleobase, which may have one or more substituents selected from the following ⁇ group.
  • a -yl group, a 2-oxo-pyrimidin-1-yl group, or a purin-9-yl group or a 2-oxo-pyrimidin-1-yl group having a substituent selected from the following group ⁇ is preferred.
  • ⁇ group hydroxyl group, hydroxyl group protected with a protecting group for nucleic acid synthesis, alkoxy group having 1 to 5 carbon atoms, mercapto group, mercapto group protected with a protecting group for nucleic acid synthesis, alkylthio group having 1 to 5 carbon atoms, amino An amino group protected with a protecting group for nucleic acid synthesis, an amino group substituted with an alkyl group having 1 to 5 carbon atoms, an alkyl group having 1 to 5 carbon atoms, and a halogen atom.
  • a group suitable as “optionally substituted purine nucleobase” is 6-aminopurin-9-yl (that is, adeninyl), 6 in which the amino group is protected with a protecting group for nucleic acid synthesis.
  • a group suitable as “an optionally substituted pyrimidine nucleobase” is 2-oxo-4-amino-1,2-dihydropyrimidin-1-yl (ie, cytosynyl), and the amino group is a nucleic acid.
  • purine nucleobases or pyrimidine nucleobases more preferably, 6-aminopurin-9-yl (ie, adeninyl), wherein the amino group is a protecting group for nucleic acid synthesis.
  • 6-aminopurin-9-yl, 2,6-diaminopurin-9-yl, 2-amino-6-chloropurin-9-yl, 2-amino protected with a protecting group for nucleic acid synthesis Amino-6-chloropurin-9-yl, 2-amino-6-fluoropurin-9-yl, 2-amino-6-fluoropurin-9-yl having an amino group protected with a protecting group for nucleic acid synthesis, 2 -Amino-6-bromopurin-9-yl, 2-amino-6-bromopurin-9-yl, 2-amino-6-hydroxypurin-9-yl in which the amino group is protected with a protecting group for nucleic acid synthesis ( That is, Guaninyl), Ami 2-amino-6-hydroxypurin-9-yl, 6-amino-2-methoxypurin-9-yl, 6-amino-2-chloropurin-9-yl, the group of which is,
  • Protecting group for amino group for nucleic acid synthesis and “protecting group for hydroxyl group for nucleic acid synthesis” and “hydroxyl group protected by protecting group for nucleic acid synthesis” are an amino group or a stable group during nucleic acid synthesis. Although it is not particularly limited as long as it can protect a hydroxyl group, specifically, it is stable under acidic or neutral conditions, and is obtained by a chemical method such as hydrogenolysis, hydrolysis, electrolysis and photolysis.
  • Examples of the protecting group that can be cleaved include formyl, acetyl, propionyl, butyryl, isobutyryl, pentanoyl, pivaloyl, valeryl, isovaleryl, octanoyl, nonanoyl, decanoyl, 3-methylnonanoyl, 8- Methylnonanoyl, 3-ethyloctanoyl, 3,7-dimethyloctanoyl, undecanoyl, dodecanoyl, tridecanoyl, te Radecanoyl, pentadecanoyl, hexadecanoyl, 1-methylpentadecanoyl, 14-methylpentadecanoyl, 13,13-dimethyltetradecanoyl, heptadecanoyl, 15-methylhexadecanoyl, octadecanoyl, 1-methylhepta De
  • Aryl group substituted by halogen atom, lower alkoxy group or nitro group includes “lower group substituted by halogen or tri-lower alkylsilyl group” such as 2,2,2-trichloroethoxycarbonyl, 2-trimethylsilylethoxycarbonyl “Alkoxycarbonyl group”; “alkenyloxycarbonyl group” such as vinyloxycarbonyl and aryloxycarbonyl; benzyloxycarbonyl, 4-methoxybenzyloxycarbonyl, 3,4-dimethoxybenzyloxycarbonyl, 2 Examples include 1 to 2 “aralkyloxycarbonyl groups in which the aryl ring may be substituted with a lower alkoxy or nitro group”, such as nitrobenzyloxycarbonyl and 4-nitrobenzyloxycarbonyl.
  • the “protecting group for hydroxyl group” is preferably “aliphatic acyl group”, “aromatic acyl group”, “methyl group substituted with 1 to 3 aryl groups”, “lower alkyl, lower alkoxy, halogen”.
  • the protective group of “hydroxy group protected with a protective group for nucleic acid synthesis preferably an “aliphatic acyl group”, “aromatic acyl group”, 4-oxopentanoyl (levulinoyl
  • Alkyl group means a linear or branched alkyl group having 1 to 20 carbon atoms, and includes methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, tert-butyl, n -Pentyl, isopentyl, 2-methylbutyl, neopentyl, 1-ethylpropyl, n-hexyl, isohexyl, 4-methylpentyl, 3-methylpentyl, 2-methylpentyl, 1-methylpentyl, 3,3-dimethylbutyl, 2 Linear or branched having 1 to 6 carbon atoms such as 1,2-dimethylbutyl, 1,1-dimethylbutyl, 1,2-dimethylbutyl, 1,3-dimethylbutyl, 2,3-dimethylbutyl, 2-ethylbutyl In addition to chain alkyl groups (in the alky
  • alkenyl group refers to a straight or branched alkenyl group having 2 to 20 carbon atoms, and includes ethenyl, 1-propenyl, 2-propenyl, 1-methyl-2-propenyl, 1-methyl-1-propenyl.
  • cycloalkyl group refers to a cycloalkyl group having 3 to 10 carbon atoms, and examples thereof include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, norbornyl, adamantyl, and the like, preferably cyclopropyl, A cycloalkyl group having 3 to 8 carbon atoms such as cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl and the like.
  • cycloalkyl group includes a heterocyclic group in which one or more methylenes on the ring of the cycloalkyl group are substituted with an oxygen atom, a sulfur atom, or a nitrogen atom substituted with an alkyl group, Examples thereof include a tetrahydropyranyl group.
  • aryl group means a monovalent substituent having 6 to 14 carbon atoms in which one hydrogen atom is removed from an aromatic hydrocarbon group, and examples thereof include phenyl, indenyl, naphthyl, phenanthrenyl, anthracenyl and the like. .
  • the aryl ring may be substituted with one or more groups such as a halogen atom, a lower alkyl group, a hydroxyl group, an alkoxy group, an aryloxy group, an amino group, a nitro group, trifluoromethyl, a phenyl group,
  • groups such as a halogen atom, a lower alkyl group, a hydroxyl group, an alkoxy group, an aryloxy group, an amino group, a nitro group, trifluoromethyl, a phenyl group
  • the optionally substituted aryl group include 2-methylphenyl, 2,6-dimethylphenyl, 2-chlorophenyl, 4-chlorophenyl, 2,4-dichlorophenyl, 2,5-dichlorophenyl, and 2-bromo.
  • Examples include phenyl, 4-methoxyphenyl, 4-chloro-2-nitrophenyl, 4-nitrophenyl, 2,4-dinitrophenyl, biphenyl and the like.
  • Preferable examples include a halogen atom, a phenyl group substituted with a lower alkoxy group nitro group, and a phenyl group.
  • the “aralkyl group” means an alkyl group having 1 to 6 carbon atoms substituted with an aryl group, and includes benzyl, ⁇ -naphthylmethyl, ⁇ -naphthylmethyl, indenylmethyl, phenanthrenylmethyl, anthracenyl “Methyl group substituted with 1 to 3 aryl groups” such as methyl, diphenylmethyl, triphenylmethyl, ⁇ -naphthyldiphenylmethyl, 9-anthrylmethyl, 4-methylbenzyl, 2,4,6 -Trimethylbenzyl, 3,4,5-trimethylbenzyl, 4-methoxybenzyl, 4-methoxyphenyldiphenylmethyl, 4,4'-dimethoxytriphenylmethyl, 2-nitrobenzyl, 4-nitrobenzyl, 4-chlorobenzyl, 4-bromobenzyl, “lower alkyl, lower alkoxy, halogen, such as 4-cyanobenzyl, In
  • methyl group substituted with 1 to 3 aryl groups “methyl substituted with 1 to 3 aryl groups with aryl ring substituted with lower alkyl, lower alkoxy, halogen, cyano group” Group, more preferably 4-methoxyphenyldiphenylmethyl, 4,4′-dimethoxytriphenylmethyl.
  • acyl group examples include formyl, acetyl, propionyl, butyryl, isobutyryl, pentanoyl, pivaloyl, valeryl, isovaleryl, octanoyl, nonanoyl, decanoyl, 3-methylnonanoyl, 8-methylnonanoyl, 3-ethyloctanoyl, 3,7-dimethyl Octanoyl, undecanoyl, dodecanoyl, tridecanoyl, tetradecanoyl, pentadecanoyl, hexadecanoyl, 1-methylpentadecanoyl, 14-methylpentadecanoyl, 13,13-dimethyltetradecanoyl, heptadecanoyl, 15-methylhexayl Alkylcarbonyl groups such as decanoyl, octadecanoyl, 1-methylheptadecanoy
  • Halogenoarylcarbonyl group 2,4,6-trimethylbenzoyl, lower alkylated arylcarbonyl group such as 4-toluoyl, lower alkoxylated arylcarbonyl group such as 4-anisoyl, 2-carboxybenzoyl, 3-carb Carboxylated arylcarbonyl groups such as xylbenzoyl, 4-carboxybenzoyl, nitrated arylcarbonyl groups such as 4-nitrobenzoyl, 2-nitrobenzoyl; lower alkoxycarbonylated arylcarbonyl groups such as 2- (methoxycarbonyl) benzoyl
  • an “aromatic acyl group” such as an arylated arylcarbonyl group such as 4-phenylbenzoyl, preferably a formyl, acetyl, propionyl, butyryl, isobutyryl, pentanoyl, pivaloyl, benzoyl group.
  • sil group examples include “tri-lower alkylsilyl group” such as trimethylsilyl, triethylsilyl, isopropyldimethylsilyl, t-butyldimethylsilyl, methyldiisopropylsilyl, methyldi-t-butylsilyl, triisopropylsilyl, diphenylmethylsilyl, “Tri-lower alkylsilyl group substituted with 1 to 2 aryl groups” such as butyldiphenylbutylsilyl, diphenylisopropylsilyl, phenyldiisopropylsilyl, and the like, preferably trimethylsilyl, triethylsilyl, triisopropylsilyl , T-butyldimethylsilyl, t-butyldiphenylsilyl, and more preferably trimethylsilyl.
  • tri-lower alkylsilyl group
  • the “protecting group” of the “phosphate group protected with a protecting group for nucleic acid synthesis” is not particularly limited as long as it can stably protect the phosphate group during nucleic acid synthesis, but is not specifically limited. Refers to a protecting group that is stable under acidic or neutral conditions and can be cleaved by chemical methods such as hydrogenolysis, hydrolysis, electrolysis and photolysis.
  • the protecting group of the “mercapto group protected with a protecting group for nucleic acid synthesis” is not particularly limited as long as it can stably protect the mercapto group during nucleic acid synthesis. Or a protecting group that is stable under neutral conditions and can be cleaved by a chemical method such as hydrogenolysis, hydrolysis, electrolysis and photolysis. , An alkylthio group such as ethylthio and tert-butylthio, an arylthio group such as benzylthio, and the like, and a “aliphatic acyl group” or “aromatic acyl group” are preferred. And more preferably a benzoyl group.
  • C 1-5 alkoxy group examples include methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, s-butoxy, tert-butoxy and n-pentoxy. Is a methoxy or ethoxy group.
  • alkylthio group having 1 to 5 carbon atoms examples include methylthio, ethylthio, propylthio, isopropylthio, butylthio, isobutylthio, s-butylthio, tert-butylthio, and n-pentylthio.
  • C 1-6 cyanoalkoxy group refers to a group substituted by the cyano group of the above “C 1-5 alkoxy group”. Examples of such a group include cyanomethoxy, 2-cyano Examples thereof include ethoxy, 3-cyanopropoxy, 4-cyanobutoxy, 3-cyano-2-methylpropoxy, and 1-cyanomethyl-1,1-dimethylmethoxy, and a 2-cyanoethoxy group is preferable.
  • amino group substituted with an alkyl group having 1 to 5 carbon atoms examples include, for example, methylamino, ethylamino, propylamino, isopropylamino, butylamino, isobutylamino, s-butylamino, tert-butylamino, dimethyl Amino, diethylamino, dipropylamino, diisopropylamino, dibutylamino, diisobutylamino, di (s-butyl) amino, di (tert-butyl) amino can be mentioned, preferably methylamino, ethylamino, dimethylamino , Diethylamino or diisopropylamino group.
  • C 1-5 alkyl group examples include methyl, ethyl, propyl, isopropyl, isopropyl, butyl, isobutyl, s-butyl, tert-butyl, n-pentyl, etc. , Methyl or ethyl group.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom or an iodine atom, and preferably a fluorine atom or a chlorine atom.
  • the protecting group of the “amino group protected with a protecting group for nucleic acid synthesis” is not particularly limited as long as it can stably protect an amino group during nucleic acid synthesis.
  • a protecting group that is stable under neutral conditions and can be cleaved by chemical methods such as hydrogenolysis, hydrolysis, electrolysis and photolysis, such as formyl, acetyl, propionyl, butyryl, isobutyryl, pentanoyl, Pivaloyl, valeryl, isovaleryl, octanoyl, nonanoyl, decanoyl, 3-methylnonanoyl, 8-methylnonanoyl, 3-ethyloctanoyl, 3,7-dimethyloctanoyl, undecanoyl, dodecanoyl, tridecanoyl, tetradecanoyl, pentadecanoyl, hexadecana Noyl, 1-methylpenta
  • arylcarbonyl group such as lower alkoxycarbonylated arylcarbonyl group such as 2- (methoxycarbonyl) benzoyl, arylated arylcarbonyl group such as 4-phenylbenzoyl; “Lower alkoxycarbonyl groups” such as xoxycarbonyl, ethoxycarbonyl, t-butoxycarbonyl, isobutoxycarbonyl; “halogen or tri-lower alkylsilyl groups such as 2,2,2-trichloroethoxycarbonyl, 2-trimethylsilylethoxycarbonyl” A lower alkoxycarbonyl group substituted with a “alkenyloxycarbonyl group” such as vinyloxycarbonyl or aryloxycarbonyl; benzyloxycarbonyl, 4-methoxybenzyloxycarbonyl, 2-nitrobenzyloxycarbonyl, 4-nitrobenzyloxy Examples thereof include 1 to 2 “aralkyloxycarbon
  • Nucleoside analog means a non-natural type of “nucleoside” in which a purine base or a pyrimidine base and a sugar are bonded, and a purine base or an aromatic heterocycle other than purine and pyrimidine and an aromatic hydrocarbon ring. A substance that can be substituted with a pyrimidine base is combined with a sugar.
  • the “salt” refers to a salt of the compound (III) of the present invention, and is preferably a salt such as sodium salt, potassium salt or lithium salt.
  • Alkali earth metal salts such as alkali metal salts, calcium salts and magnesium salts, metal salts such as aluminum salts, iron salts, zinc salts, copper salts, nickel salts and cobalt salts; inorganic salts such as ammonium salts, t- Octylamine salt, dibenzylamine salt, morpholine salt, glucosamine salt, phenylglycine alkyl ester salt, ethylenediamine salt, N-methylglucamine salt, guanidine salt, diethylamine salt, triethylamine salt, dicyclohexylamine salt, N, N'-di Benzylethylenediamine salt, chloroprocaine salt, procaine salt, diethanolamine salt, N-benzyl -Amine salts such as organic salts such as phene
  • the “reagent used for protecting a hydroxyl group for nucleic acid synthesis” refers to a reagent used for introducing the “protecting group for a hydroxyl group for nucleic acid synthesis” into a sugar hydroxyl group constituting a nucleic acid.
  • tert-butyldiphenylsilyl group In the case of tert-butyldiphenylsilyl group; tert-butyldimethylsilyl chloride or tert-butyldiphenylsilyl trifluoromethanesulfonate 5) in the presence of a base such as imidazole, N-methylimidazole, 4,4-dimethylaminopyridine, triethylamine, etc.
  • a base such as imidazole, N-methylimidazole, 4,4-dimethylaminopyridine, triethylamine, etc.
  • a benzoyl group in the presence of a base such as pyridine, triethylamine or potassium carbonate, benzoyl chloride, benzoic anhydride ii) a base such as triethylamine or N-methylmorpholine and EDC (1-ethyl-3- (3 In the presence of a condensing agent such as -dimethylaminopropyl) carbodiimide) hydrochloride, DCC (N, N'-dicyclohexylcarbodiimide), in the case of benzoic acid 6) levonoyl group; In the presence of a condensing agent such as DCC, levulinic acid 7) In the case of 2-ethoxyethyl group: ethoxy vinyl ether is applicable in the presence of an acid catalyst such as pyridium paratoluenesulfonic acid or toluenesulfonic acid.
  • an acid catalyst such as pyridium paratoluenesulf
  • aldol reaction represented by the following formula:
  • Aldol reaction is also referred to as aldol condensation or aldol addition. This is a reaction in which a carbonyl compound having a hydrogen atom at the ⁇ -position is reacted with another carbonyl compound to form a ⁇ -hydroxycarbonyl compound. An equilibrium reaction that occurs with either an acid or base catalyst.
  • Examples of the carbonyl compound to be reacted with the starting material in the present invention include ketone compounds such as acetone and aldehyde compounds such as formaldehyde, preferably formalin or paraformaldehyde.
  • a base usually, it is carried out in the presence of a base.
  • the base used at this time include inorganic bases such as sodium hydroxide and sodium carbonate, and organic bases such as N-methylmorpholine, DBU, triethylamine and pyridine.
  • organic bases such as N-methylmorpholine, DBU, triethylamine and pyridine.
  • An organic base having a pKa of a conjugate acid of 6 to 10 is preferable, and examples thereof include triethylamine and N-methylmorpholine.
  • a water-soluble solvent such as alcohol, acetonitrile or N, N′-dimethylformamide (DMF) is preferable.
  • a suitable combination is 1 to 3 volumes of an aqueous formalin solution, 1 to 3 volumes of N-methylmorpholine as a base, and 2 to 6 volumes of acetonitrile as a solvent. This is because as a result of carrying out the aldol reaction on the compound of the general formula (I) in this combination, it was possible to minimize the residual amount of the raw material (I) and the amount of by-products after the reaction.
  • reaction temperature and reaction time are not particularly limited, but preferably the reaction temperature is 50 ° C. to 100 ° C., and the reaction time is 1 to 24 hours.
  • Further embodiments of the present invention also include a condensation reaction represented by the following formula: More specifically, the starting material compound and the desilylating agent are reacted, and the condensing agent is reacted with the reaction solution.
  • the “desilylating agent” is a reaction aid added to cause the elimination reaction of the silyl group.
  • various acids such as hydrochloric acid, acetic acid, paratoluenesulfonic acid, fluorination Fluoride ions such as tetrabutylammonium, hydrofluoric acid and cesium fluoride can be mentioned.
  • a “condensation agent” is a reaction aid added to cause an amino group and a carboxyl group to undergo dehydration condensation.
  • EDC hydrochloride (1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride)
  • DCC dicyclohexylcarbodiimide
  • DIC diisopropylcarbodiimide
  • CDI carbonyldiimidazole
  • PyBop [(benzotriazole- 1-yloxy) tripyrrolidinophosphonium hexafluorophosphate]
  • HATU [O- (7-azabenzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium hexafluorophosphate]
  • DMT- Reagents used for peptide synthesis such as MM [4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methyl
  • a further aspect of the invention also includes a transglycosylation reaction represented by the following formula:
  • transglycosylation reaction refers to a reaction for substituting the base moiety of a nucleic acid derivative.
  • the general formula in the present invention includes both a cis form and a trans form.
  • a trans form is preferable.
  • the solid in the reaction process in this invention, the solid can be maintained and it is an industrially very useful method.
  • the compound represented by the above general formula (I) (corresponding to A-5 below) can be obtained, for example, by the following method.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 and B in the formula are as defined above.
  • P 1 has the same meaning as the above-mentioned “protecting group for hydroxyl group in nucleic acid synthesis”.
  • a trityl group and a benzyl group which may be substituted with a methoxy group are preferable.
  • the compound represented by the general formula (A-1) in the formula can be synthesized by the method described in Organic Letters, 7, 1569-1572 (2005).
  • the compound represented by the general formula A-1 is converted into 1.0 equivalent to 10.0 equivalents, preferably 3.0 equivalents to 6.0 equivalents of R 3 -Hal (in a solvent such as DMF, acetonitrile, dichloromethane, etc.).
  • Hal is halogen
  • an organic base eg, N-methylimidazole
  • an inorganic base eg, sodium
  • Step 2 the compound represented by formula (A-2) is reacted with a strong acid such as hydrochloric acid to obtain a compound A-3 in which the hydroxyl protecting group P 1 bonded to the 4′-position is deprotected. It is a process.
  • This step can be performed according to the method described in Protective Groups in Organic Synthesis, Theodora W Green (John Wiley & Sons) and the like.
  • the compound represented by the general formula A-2 is converted into a strong acid (1.0 equivalent to 10.0 equivalents, preferably 2.0 equivalents to 4.0 equivalents) in a solvent such as methanol, ethanol, ethyl acetate, or dioxane.
  • An aqueous solution such as hydrochloric acid and sulfuric acid, an organic acid such as paratoluenesulfonic acid, etc.) at 0 ° C. to 100 ° C., preferably 20 ° C. to 30 ° C., for 0.5 to 24 hours to react with the general formula (A-3) Can be obtained.
  • the compound represented by the general formula A-3 is 1.0 equivalent to 5.0 equivalents in a solvent such as tetrahydrofuran, dichloromethane, acetonitrile, DMF, or a mixed solvent such as water-tetrahydrofuran and water-toluene, preferably Is 2.0 equivalents to 4.0 equivalents of (R 2 ) 2 O and 1.0 equivalents to 5.0 equivalents, preferably 2.0 equivalents to 4.0 equivalents of an organic base (such as pyridine) or inorganic Reaction with a base (for example, sodium hydride, sodium hydroxide, sodium carbonate, potassium carbonate, cesium carbonate, sodium bicarbonate, etc.) at -20 ° C to 50 ° C, preferably 0 ° C to 30 ° C for 0.5 to 24 hours To obtain a compound represented by the general formula (A-4).
  • a solvent such as tetrahydrofuran, dichloromethane, acetonitrile, DMF, or a mixed solvent such as
  • This step is a step of obtaining a compound (A-5) having a carbonyl group by oxidizing the hydroxyl group bonded to the 4′-position of the compound represented by the general formula (A-4).
  • This step can be performed according to the method described in Experimental Chemistry Course 5th edition Volume 17 (Yamazen) and the like.
  • the compound represented by the general formula A-4 is added in an amount of 1.0 equivalent to 5.0 equivalent, preferably 2.0 equivalent to 4.0 equivalent of EDC and 1.0 equivalent to 3. equivalent in a solvent such as DMSO.
  • an organic acid eg, pyridinium paratoluenesulfonate
  • This step is a step of obtaining the compound represented by the general formula (A-6) by subjecting the compound represented by the general formula (A-5) to the aldol reaction shown in claim 1 of the present invention.
  • the compound represented by the general formula (A-5) is 1.0 to 20.0 times volume or 1.0 equivalent to 20.
  • a carbonyl compound represented by 0 equivalent of R 5 C ( ⁇ O) R 6 preferably a 1.0- to 3.0-fold volume formalin aqueous solution, and the like, and a 1.0- to 20.0-fold volume or 1.0 Equivalent to 20.0 equivalents of an organic base, preferably 1.0 to 3.0 volumes of an organic base with a pKa of 6 to 10 (for example, N-methylmorpholine, etc.) and 20 ° C. to 100 ° C.
  • the compound represented by the general formula (A-6) can be obtained by reacting preferably at 70 ° C. to 80 ° C. for 0.5 to 24 hours.
  • R 4 of the compound represented by the general formula (A-6) obtained by the above method is a hydrogen atom, the following oxidation reaction is performed.
  • This step can be performed according to the method described in Experimental Chemistry Course, 5th edition, volume 17 (Yamazen).
  • a compound represented by the general formula (A-6) is mixed with a buffer solution such as an aqueous solution of sodium dihydrogen phosphate in a solvent such as ethyl acetate, acetonitrile, or tert-butanol, and 1.0 equivalent to 20.0 equivalents of 2 -1.0 equivalent to 10.0 equivalents, preferably 2.0 equivalents to 5.0 equivalents of sodium chlorite in the presence of methyl-2-butene, squalene, etc., and 0 ° C to 60 ° C, preferably 10
  • a compound represented by the general formula (A-7) can be obtained by reacting at a temperature of from 40 ° C. to 40 ° C. for 0.5 to 24 hours.
  • R 4 of the compound represented by the general formula (A-6) is an alkoxy group
  • a solvent such as methanol, ethanol, 1,4-dioxane, tetrahydrofuran, or a mixed solvent thereof
  • a 0.1 N to 10 N aqueous alkali solution sodium hydroxide aqueous solution, potassium hydroxide aqueous solution, etc.
  • a compound represented by A-7 can be obtained.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 and B in the formula are as defined above.
  • P 2 has the same meaning as the above-mentioned “protecting group for hydroxyl group in nucleic acid synthesis”.
  • a 4,4′-dimethoxytrityl group, a trityl group, a TBDPS group or a TBS group is preferable.
  • P 3 represents a “phosphoramidite group”.
  • “Phosphoramidite group” means a group represented by the formula —P (OR 11 ) (NR 12 ) (wherein R 11 is an alkyl group having 1 to 6 carbon atoms or a cyanoalkyl group having 1 to 7 carbon atoms).
  • R 12 represents an alkyl group having 1 to 6 carbon atoms.), Preferably a group represented by the formula —P (OC 2 H 4 CN) (N (iPr) 2 ) It is a group represented by —P (OCH 3 ) (N (iPr) 2 ).
  • Step 7 is a step wherein compound A-8 is obtained by deprotecting the protecting group R 2 substituted on the amino group of the compound represented by formula (A-7). This step can be performed according to the method described in Protective Groups in Organic Synthesis, Theodora W Green (John Wiley & Sons) and the like.
  • Step 8 is a step for obtaining a compound represented by the general formula (A-9) in which the 2′-position and the 4′-position are cyclized by an amide bond from the compound represented by the general formula (A-8). .
  • other condensing agents or HOBt, HOSu, etc. are added to these condensing agents) and reacted at ⁇ 20 to 120 ° C., preferably 0 to 80 ° C. for 0.5 to 24 hours.
  • a compound represented by the formula (A-9) can be obtained.
  • This step is a general formula (A-10) wherein the 5′-position hydroxyl group of the compound represented by the general formula (A-9) is protected with a protecting group P 2 (for example, 4,4′-dimethoxytrityl group).
  • P 2 for example, 4,4′-dimethoxytrityl group.
  • the compound represented by the general formula (A-9) is dissolved in a solvent such as dichloromethane or toluene in the presence of a base such as pyridine, triethylamine, diisopropylethylamine, DABCO (1,4-diazabicyclo [2.2.2] octane).
  • a base such as pyridine, triethylamine, diisopropylethylamine, DABCO (1,4-diazabicyclo [2.2.2] octane).
  • a pyridine solvent 1.0 equivalent to 5 equivalents, preferably 1.0 equivalent to 1.5 equivalents of 4,4′-dimethoxytrityl chloride is added, and 0 ° C. to 80 ° C., preferably 20 ° C. to 30 ° C.
  • a compound represented by the general formula (A-10) in which P 2 is a 4,4′-dimethoxytrityl group can be obtained by reacting at 0.5 ° C
  • Step 10 This step is a step of obtaining a compound represented by the general formula (A-11) in which the hydroxyl protecting group R 3 bonded to the 3′-position of the compound represented by the general formula (A-10) is deprotected. It is. This step can be performed according to the method described in Protective Groups in Organic Synthesis, Theodora W Green (John Wiley & Sons) and the like.
  • R 3 of the compound represented by the general formula (A-10) is, for example, a silyl protecting group (TBS group, TBDPS group, TES group, etc.), in a solvent such as tetrahydrofuran, methanol, ethanol, dioxane, 1.0 Equivalent to 10.0 equivalents, preferably 1.1 equivalents to 3.0 equivalents of a desilylating agent (fluorine-containing reagents such as tetrabutylammonium fluoride, ammonium fluoride, cesium fluoride, trifluoroacetic acid, hydrochloric acid, etc.
  • the compound represented by the general formula (A-11) can be obtained by reacting with an acid at 0 to 100 ° C., preferably 20 to 80 ° C. for 0.1 to 24 hours.
  • R 3 of the compound represented by the general formula (A-10) is, for example, a benzyl protecting group (Bn group, p-methoxybenzyl group, etc.), it is dissolved in a solvent such as methanol, tetrahydrofuran, ethanol, dioxane, toluene and the like. Or palladium-carbon powder or palladium hydroxide-carbon powder in a mixed solvent thereof, and the mixture is reacted at 0 ° C. to 40 ° C. for 1 hour to 24 hours in a hydrogen stream, thereby obtaining a compound represented by the general formula (A-11) Can be obtained.
  • a solvent such as methanol, tetrahydrofuran, ethanol, dioxane, toluene and the like.
  • palladium-carbon powder or palladium hydroxide-carbon powder in a mixed solvent thereof, and the mixture is reacted at 0 ° C. to 40 ° C. for 1 hour to 24 hours in
  • This step is represented by the general formula (A-12) in which the 3′-position hydroxyl group is amidated by reacting the compound represented by the general formula (A-11) with an amidite forming reagent.
  • This is a step of obtaining a compound.
  • the compound represented by the general formula (A-11) is mixed with 2-cyanoethyl-N, N-diisopropyl in a solvent such as acetonitrile, dichloromethane, tetrahydrofuran or the like in the presence of a base such as diisopropylethylamine or triethylamine.
  • Step 1 This step comprises the step of preparing a compound represented by the general formula (A-10-2) in which the hydroxyl protecting group R 3 bonded to the 3′-position of the compound represented by the general formula (A-9) is deprotected. It is a process to obtain.
  • the compound represented by the general formula (A-10-2) can be obtained by the same method as the third step (steps A-10 to A-11) of the general production method (1) of the four amidites.
  • nucleobase is adenine (A), guanine (G), or cytosine (C) and the amino group is unprotected
  • silylation with a silylating agent such as TMS chloride or TBS chloride in the presence of the base
  • An acylating agent such as benzoyl chloride, phenoxyacetyl chloride, various acid anhydrides, or an iminating agent such as 1,1-dimethoxy-N, N′-dimethylmethanamine is ⁇ 20 ° C. to 120 ° C., preferably 0 ° C. to 50 ° C.
  • reacting with an acid treatment or a desilylating agent to obtain a compound represented by the general formula (A-10-2) in which the amino group of the nucleobase is protected. be able to.
  • Second Step the 5′-position hydroxyl group of the compound represented by the general formula (A-10-2) is protected with a protecting group R 7 (usually a 4,4′-dimethoxytrityl group).
  • R 7 usually a 4,4′-dimethoxytrityl group.
  • This is a step of obtaining a compound represented by 11).
  • the compound represented by the general formula (A-11) can be obtained by the same method as the second step (steps A-9 to A-10) of the general production method (1) of the four amidites.
  • R 1 , R 2 , R 3 , R 5 , R 6 and B are as defined above.
  • R 7 is a hydroxyl-protecting group used for nucleic acid synthesis such as 4,4′-dimethoxytrityl group (or trityl group, TBDPS group, TBS group).
  • Step 1 This step is a step for obtaining a compound represented by the general formula (A-13) by removing the protecting groups at the 2′-position and the 3′-position from the compound represented by the general formula (A-7).
  • the protecting group at the 2 ′ position is a trifluoroacetyl group, it is 1.0 equivalent to 5 equivalents, preferably 1.0 equivalents to 3. equivalents, in a solvent such as tetrahydrofuran, methanol, acetonitrile, pyridine, or a mixed solvent thereof.
  • the compound represented by the general formula (A-13) can be obtained by reacting for a period of time.
  • the characteristic of this reaction is that the trifluoroacetyl group, which is not normally removed by the desilylating agent, is removed, but the nucleobase protecting group such as benzoyl group is not removed. It is a method that makes it possible to improve.
  • R 2 is an acyl protecting group containing a trifluoroacetyl group or a carbamate protecting group
  • a solvent such as methanol, ethanol, 1,4-dioxane, tetrahydrofuran, or a mixed solvent thereof.
  • 1N-10N alkaline solution sodium hydroxide aqueous solution, potassium hydroxide-methanol solution, etc.
  • the compound represented by the general formula (A-13) can be obtained by removing the protecting group at the 'position and then desilylating with TBAF or the like.
  • R 2 is a tertiary butyloxycarbonyl group (BOC group)
  • an acid such as trifluoroacetic acid or hydrogen chloride and ⁇ 20 ° C.
  • a solvent such as methanol, ethanol, 1,4-dioxane, tetrahydrofuran, or without solvent.
  • R 2 is a benzyl-based protecting group (CBz group, Bn group, MPM group, etc.), in a solvent such as methanol, tetrahydrofuran, ethanol, dioxane, toluene, or a mixed solvent thereof, palladium-carbon powder or water
  • a solvent such as methanol, tetrahydrofuran, ethanol, dioxane, toluene, or a mixed solvent thereof
  • a solvent such as methanol, tetrahydrofuran, ethanol, dioxane, toluene, or a mixed solvent thereof
  • palladium-carbon powder or water By adding palladium oxide-carbon powder and reacting at 0 ° C. to 40 ° C. for 1 to 24 hours under a hydrogen stream, the protecting group at the 2′-position is removed, followed by desilylation with TBAF or the like.
  • a compound represented by the general formula (A-13) can be obtained.
  • This step is a step of obtaining a compound represented by the general formula (A-14) in which the 2′-position and the 4′-position are cyclized by amide bonds from the compound represented by the general formula (A-13). .
  • 1.0 equivalent to 10 equivalents preferably 1.0 equivalent to 3 equivalents of DCC, EDC, CDI (carbonyldiimidazole) in a solvent such as N, N′-dimethylformamide, tetrahydrofuran, acetonitrile, or a mixed solvent thereof.
  • a solvent such as N, N′-dimethylformamide, tetrahydrofuran, acetonitrile, or a mixed solvent thereof.
  • other condensing agents or HOBt, HOSu, etc. are added to these condensing agents) and reacted at ⁇ 20 ° C. to 120 ° C., preferably 25 ° C.
  • a compound represented by the formula (A-14) can be obtained.
  • silylation with silylating agents such as TMS chloride, TBS chloride, etc. in the presence of the base results in benzoyl
  • An acylating agent such as chloride, phenoxyacetyl chloride, various acid anhydrides, or an iminating agent such as 1,1-dimethoxy-N, N′-dimethylmethanamine is used at ⁇ 20 ° C. to 120 ° C., preferably 0 ° C. to 50 ° C.
  • the compound represented by the general formula (A-14) in which the amino group of the nucleobase is protected can be obtained by reacting with an acid treatment or a desilylating agent. .
  • This step is a general formula (A-11) wherein the 5′-position hydroxyl group of the compound represented by the general formula (A-14) is protected with a protecting group R 7 (for example, 4,4′-dimethoxytrityl group).
  • R 7 for example, 4,4′-dimethoxytrityl group.
  • B becomes adenine (A), guanine (G ), Cytosine (C), or a compound represented by the general formula (A-7) of these derivatives.
  • Q 1 , Q 2 , and Q 3 in the formula have the same meaning as the aforementioned “alkyl group having 1 to 5 carbon atoms”.
  • This step is a step represented in the compound represented by the above general formula (A-10) from a thymidine-type compound in which the nucleobase part (B) is thymine or a thymine derivative (A-10t). ) Is a step of obtaining a cytidine-type compound which is cytosine or a cytosine derivative (A-10c).
  • a base such as triethylamine, imidazole, N, N-dimethylaminopyridine, and a sulfonyl chloride such as 2,4,6-triisopropylbenzenesulfonyl chloride in a solvent such as acetonitrile, dichloromethane, pyridine, or a mixed solvent thereof;
  • aqueous ammonia is added, and 0 ° C. to 80 ° C., preferably 0 ° C. to 30 ° C., 0.5 to By reacting for 8 hours, a compound represented by the general formula (A-10c) can be obtained.
  • Step 2 This step is a step of obtaining a compound represented by the general formula (A-11c) by further modifying the amino group of cytosine or cytosine derivative from the compound represented by the general formula (A-10c).
  • Bases such as triethylamine, imidazole and N, N-dimethylaminopyridine, and acyl chlorides such as benzoyl chloride and acetyl chloride in a solvent such as N, N′-dimethylformamide, pyridine, acetonitrile, dichloromethane or a mixture thereof
  • it is represented by the general formula (A-11c) by reacting with an acid anhydride such as benzoic anhydride or acetic anhydride at ⁇ 20 ° C. to 80 ° C., preferably 0 ° C. to 30 ° C. for 0.1 to 48 hours. Can be obtained.
  • Step 1 Synthesis of Compound 2
  • a suspension of Compound 1 (4.40 g, 8.05 mmol) in tetrahydrofuran (26 mL) under a nitrogen atmosphere was synthesized according to the method described in Organic Letters, 7, 1569-1572 (2005).
  • saturated aqueous sodium hydrogen carbonate (13 mL) and Cbz chloride (1.26 mL, 8.86 mmol) were added under ice-cooling, and the mixture was stirred at room temperature for 1 hr.
  • Water (13 mL) was added to the reaction mixture, and the mixture was extracted with dichloromethane (75 mL). The organic layer was washed with saturated brine (25 mL) and dried over sodium sulfate.
  • Step 3 Synthesis of Compound 4 To a chloroform (40 mL) solution of the crude product of Compound 3 obtained in Step 2, 4 mol / L hydrogen chloride / ethyl acetate solution (2.00 mL, 8.00 mmol) was added under ice cooling, The mixture was stirred for 4.5 hours while warming to room temperature. Further, a 4 mol / L hydrogen chloride / ethyl acetate solution (1.34 mL, 5.36 mmol) was added under ice cooling, and the mixture was stirred for 30 minutes.
  • Step 5 Synthesis of Compound 6
  • triethylamine (2.00 mL, 14.4 mmol) and 37% formalin aqueous solution (2.00 mL, 26.9 mmol) were added. It added at room temperature and stirred at 80 degreeC for 4 hours.
  • 1 mol / L hydrochloric acid (20 mL) was added to the reaction solution under ice-cooling, and the mixture was extracted with ethyl acetate (30 mL and 20 mL). The organic layer was washed with water (20 mL) and saturated brine (20 mL), and dried over sodium sulfate. The solvent was distilled off under reduced pressure to obtain a crude product of compound 6.
  • Step 6 Synthesis of Compound 7 Crude product of Compound 6 obtained in Step 5, sodium dihydrogen phosphate dihydrate (551 mg, 3.53 mmol) and 2-methyl-2-butene (1.87 mL, 17.7 mmol) )
  • sodium dihydrogen phosphate dihydrate 551 mg, 3.53 mmol
  • 2-methyl-2-butene (1.87 mL, 17.7 mmol)
  • tert-butanol 10 mL
  • water 3 mL
  • sodium chlorite 800 mg, 8.85 mmol
  • the mixture was stirred for 2.5 hours.
  • To the reaction solution was added 0.2 mol / L aqueous sodium hydroxide solution (20 mL), and the mixture was washed with toluene (20 mL).
  • Step 1 Synthesis of Compound 9 DMF (3.9 L) suspension of Compound 1 (1300 g, 2.53 mol) according to the method described in Organic Letters, 7, 1569-1572 (2005) under nitrogen atmosphere A solution of TBS chloride (1717 g, 11.39 mol) in DMF (2.6 L) was added dropwise at 5 to 15 ° C. Subsequently, sodium iodide (1138 g, 7.59 mol) was added at 10 to 20 ° C., and N-methylimidazole (999 mL, 12.7 mol) was added dropwise at the same temperature. After stirring at 20-30 ° C. for 6 hours, the mixture was allowed to stand overnight.
  • the reaction mixture was poured into a mixture of ethyl acetate (3.9 L) and ice water (10.4 L), and ethyl acetate (2.6 L) and water (2.6 L) were further added.
  • the organic layer was washed successively with 1 mol / L hydrochloric acid (6.5 L), 10% aqueous sodium carbonate solution (6.5 L), and 10% brine (6.5 L).
  • the solvent was distilled off under reduced pressure, and methanol (2.6 L) was added to the obtained residue (2.68 kg).
  • the solvent was distilled off again under reduced pressure to obtain a crude product of compound 9 (2.62 kg).
  • Step 2 Synthesis of Compound 10
  • 35% hydrochloric acid (633 mL, 7.59 mol) was added dropwise at 20-30 ° C. Stir for 4 hours.
  • the reaction mixture was poured into a mixture of diisopropyl ether (6.5 L) and ice water (3.9 L), and diisopropyl ether (6.5 L) and water (2.6 L) were further added.
  • the aqueous layer was washed with diisopropyl ether (3.25 L), then a solution of sodium carbonate (1073 g, 10.1 mol) in water (6.5 L) was added and extracted with ethyl acetate (19.5 L and 6.5 L), The organic layer was dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure, and tetrahydrofuran (2.6 L) was added to the obtained residue. The solvent was distilled off again under reduced pressure to obtain a crude product of compound 10 (1.08 kg).
  • the physical property data of the obtained compound 10 were as follows.
  • Step 3 Synthesis of Compound 11 To a solution of the crude product of Compound 10 obtained in Step 2 (17.7 g) and pyridine (10.1 mL, 125 mmol) in tetrahydrofuran (80 mL) under a nitrogen atmosphere at 0 to 10 ° C. Acetic anhydride (17.8 mL, 125 mmol) was added dropwise and stirred for 1 hour. The reaction mixture was poured into a 20% aqueous sodium carbonate solution (112 mL) under ice-cooling, and tetrahydrofuran (24 mL) and water (48 mL) were added.
  • Step 4 Synthesis of Compound 12 Under a nitrogen atmosphere, a solution of compound 11 (450 g, 935 mmol) in DMSO (1.35 L) was charged with EDC (538 g, 2800 mmol), DMSO (675 mL), pyridinium paratoluenesulfonate (235 g, 935 mmol) and DMSO (225 mL) was sequentially added, and the mixture was stirred at 20-30 ° C. for 2.5 hours. Subsequently, ethyl acetate (4.5 L), water (2.25 L) and ethyl acetate (2.25 L) were sequentially added at 10 to 20 ° C.
  • Step 5 Synthesis of Compound 13 First, conditions for the aldol reaction performed in Step 5 were examined. Specifically, the combination of the type / amount of the base used, the type / amount of the reagent, the type / amount of the solvent, the reaction temperature, and the reaction time were examined, and the target product, by-product formation rate, and raw material residual rate were determined by HPLC. Analyzed in The results are shown in the following table.
  • Step 6 (2R, 3S, 4R, 5R) -3- (tert-Butyldimethylalkyloxy) -2-hydroxymethyl-5- (5-methyl-2,4-dioxo-3,4-dihydropyrimidine-1 (2H) -yl) -4- (2,2,2-trifluoro-N-methylacetamide) tetrahydrofuran-2-carboxylate (compound 14) in ethyl acetate solution containing compound 13 obtained in synthesis step 5 To the mixture, sodium dihydrogen phosphate dihydrate (292 g, 1870 mmol) in water (1.35 L), squalene (898 mL, 1870 mmol), and acetonitrile (1.35 L) were sequentially added.
  • aqueous layers were combined and washed with ethyl acetate (900 mL), and then ethyl acetate (5.4 L) and a 2 mol / L aqueous hydrochloric acid solution (2.25 L) were added to the aqueous layer.
  • the organic layer was washed with 10% brine (2.25 L) and dried over anhydrous sodium sulfate.
  • the mixture was filtered, and the drying agent was washed with ethyl acetate (1.35 L).
  • potassium acetate (82.5 g, 841 mmol) and ethanol (338 mL) were added. The mixture was stirred at 20-30 ° C. for 1 hour.
  • Step 1 Synthesis of Compound 15 1 mol / L TBAF-tetrahydrofuran solution (0.888 mL, 0.888 mmol) was added dropwise to a suspension of compound 14 (455 mg, 0.807 mmol) in pyridine (4 mL) under a nitrogen atmosphere. After stirring at ⁇ 70 ° C. for 9 hours, the mixture was allowed to stand at room temperature overnight. The next day, the mixture was further stirred at 60 to 70 ° C. for 9 hours, and then allowed to stand overnight at room temperature. After adding EDC hydrochloride (310 mg, 1.62 mmol) and stirring at 60-70 ° C. for 9 hours, EDC hydrochloride (310 mg, 1.62 mmol) was added and allowed to stand overnight at room temperature.
  • EDC hydrochloride 310 mg, 1.62 mmol
  • DMTr (4,4′-dimethoxytrityl) chloride (547 mg, 1.61 mmol) was added and stirred at room temperature for 5 hours, and then DMTr chloride (547 mg, 1.61 mmol) was further added and stirred for 2 hours.
  • 5% Aqueous sodium hydrogen carbonate solution (10 mL) was added to the reaction mixture, and the mixture was extracted with ethyl acetate (10 mL), and washed 3 times with water (5 mL). Each water wash was extracted with ethyl acetate (5 mL).
  • Step 2 Synthesis of Compound 16 (T Amidite) Compound 16 was synthesized according to a method according to the method described in WO2011 / 052436A1.
  • the route from compound 14 to compound 15 can also be synthesized by a method that does not go through a deTFA reaction as follows.
  • Step 1 Synthesis of Compound 30
  • Step 2 Synthesis of Compound 31
  • the crude product of Compound 30 (196 mg) obtained in the previous step was suspended in N, N′-dimethylformamide (1.4 ml), EDC hydrochloride (76 mg) was added, and room temperature For 4 hours.
  • the reaction mixture was filtered to remove inorganic substances (washed with N, N′-dimethylformamide (1.5 ml)), and then water (3.3 ml) was added to precipitate a slurry solid. .
  • Step 3 Synthesis of Compound 32
  • Compound 32 was obtained by treating Compound 31 with 4,4′-dimethoxytrityl chloride in pyridine.
  • Step 4 Conversion of Compound 32 to Compound 15
  • Compound 15 was obtained by treating Compound 32 with a tetrabutylammonium fluoride-tetrahydrofuran solution.
  • Step 1 The conditions of the transglycosylation reaction performed in the synthesis step 1 of Compound 17 were examined. Specifically, the combination amount of the reagent and the type of the solvent was examined, and the target product, by-product formation rate, and the raw material residual rate were analyzed by HPLC. The results are shown in the following table.
  • N O-bis (trimethylsilyl) was added to a suspension of compound 14 (170 g, 271 mmol) and 6-N-benzoyladenine (64.9 g, 271 mmol) in cyclopentyl methyl ether (1700 mL) under a nitrogen atmosphere.
  • Acetamide (466 mL, 1900 mmol) and TMSOTf (98 mL, 543 mmol) were added and stirred at 70-73 ° C. for 4 hours.
  • Tetrahydrofuran (2920 mL), 2 mol / L hydrochloric acid (1700 mL) and water (1020 mL) were added to the reaction solution under ice cooling, and then the organic layer and aqueous layer were partitioned.
  • the organic layer was 0.1 mol / L hydrochloric acid (1700 mL).
  • Chloroform (340 mL) was added to the residue obtained by distilling off the solvent under reduced pressure, and the resulting slurry obtained by stirring for 20 minutes was filtered.
  • the solid collected by filtration was washed with chloroform (510 mL) and then air-dried to obtain Compound 17 (165 g, yield 80.9%).
  • Step 2 Synthesis of Compound 18 Under a nitrogen atmosphere, 1 mol / L TBAF-tetrahydrofuran solution (14.9 mL, 14.9 mmol) was added dropwise to a solution of Compound 17 (4.75 g, 7.44 mmol) in tetrahydrofuran (25 mL). Stir at ⁇ 65 ° C for 3.5 hours. EDC hydrochloride (1.71 g, 8.92 mmol) was added and stirred at 60-65 ° C. for 1 hour. The solvent was distilled off under reduced pressure, acetonitrile (50 mL) was added to the resulting residue, and the solvent was distilled off again under reduced pressure three times to obtain a crude product of compound 18 (9.12 g).
  • Step 3 Synthesis of Compound 19
  • DABCO 2.09 g, 18.6 mmol
  • DMTr chloride 5. 04 g, 14.9 mmol
  • Step 4 Synthesis of Compound 20 (A Amidite) Under a nitrogen atmosphere, a suspension of compound 19 (107 g, 150 mmol) and DIEA (79 mL, 450 mmol, 3.0 eq.) In a pyridine (428 mL, 4 V) suspension under ice cooling under 2-cyanoethyl-N, N-diisopropylchlorophosphoro Amidite (53.6 mL, 240 mmol, 1.6 eq.) was added dropwise and stirred at room temperature for 2 hours. Under ice-cooling, 5% aqueous sodium hydrogen carbonate solution (1.1 L) was added to the reaction mixture, and the mixture was extracted with ethyl acetate (1.1 L).
  • Step 1 Synthesis of Compound 33 Under a nitrogen atmosphere, a suspension of compound 14 (5.0 g, 8.07 mmol) and adenine (1.091 g, 8.07 mmol) in cyclopentyl methyl ether (50 mL) was added to N, O-bis (trimethylsilyl) acetamide (13. 85 mL, 56.5 mmol) and TMSOTf (2.92 mL, 16.15 mmol) were added and stirred at 70 ° C. for 4 hours.
  • Step 2 Synthesis of Compound 34
  • a solution of compound 33 (309 mg, 0.578 mmol) in ethanol (3 ml) was added 1 mol / L lithium borohydride tetrahydrofuran solution (1.156 ml) at 0 ° C., and the mixture was stirred at room temperature for 3 hours.
  • a 4 mol / L hydrogen chloride-dioxane solution (0.578 ml) was added to the reaction mixture, and the mixture was stirred at room temperature for 1 hr, EDC hydrochloride (222 mg, 1.156 mmol.) was added, and the mixture was stirred at 65 ° C. for 2 hr. After allowing to cool, the obtained solid was collected by filtration, washed with methanol, and then air-dried to obtain Compound 34 (187 mg, yield 77%).
  • Step 3 Synthesis of Compound 35 Under a nitrogen stream, compound 34 (149 mg, 0.354 mmol) and methanol (4.5 mL) were added to a 20 ml Falcon tube, followed by addition of ammonium fluoride (52.5 mg, 1.417 mmol) at room temperature, and 60 ° C. And heated at reflux for 8 hours. After allowing to cool, methanol (1.5 ml) and tetrahydrofuran (2 ml) were added, and the resulting slurry was collected by filtration to give compound 35 (89.5 mg, yield 89.5%) as a white solid. .
  • Step 4 Synthesis of Compound 36 An azeotropic dehydration operation of compound 35 (8.00 g, 19.9 mmol) with pyridine (80 ml) was repeated three times with 500 ml of 1 L eggplant colben, and then suspended in pyridine (80 ml). N, N′-dimethylformamide-dimethylacetal (8.0 mL) was added and stirred at room temperature for 1 hour. The resulting orange solution was concentrated as it was, and the residue was subjected to a single azeotropic dehydration operation with pyridine (80 ml) and then dissolved in pyridine (80 ml).
  • Methanol 5.0 ml was added dropwise to the reaction solution, stirred for 40 minutes, and diluted with ethyl acetate.
  • the organic layer was washed twice with saturated aqueous sodium hydrogen carbonate solution and saturated brine, dried over anhydrous sodium sulfate, filtered and concentrated. Again, it was dissolved in pyridine (100 ml), 25% aqueous ammonia (30 ml) was added, and the mixture was stirred at room temperature for 20 hours.
  • Step 5 Conversion of Compound 36 to A (Bz) -DMTr Form (Compound 19) Under a nitrogen stream, HOBt (1.38 g, 10.19 mmol), dichloromethane (20 mL), N-methylmorpholine (2 .17 mL, 19.72 mmol) was added. Thereafter, BzCl (1.15 mL, 9.86 mmol) was added dropwise at room temperature to prepare Bz-OBt. Under a nitrogen stream, Compound 36 (2.00 g, 3.29 mmol), pyridine (20 mL), and N-methylmorpholine (2.17 mL, 19.72 mmol) were added to a 100 mL eggplant flask B.
  • Step 1 Synthesis of Compound 37
  • Compound 37 was obtained by treating Compound 14 with trimethylsilyldiazomethane-n-hexane solution / methanol.
  • Step 2 Synthesis of Compound 38
  • Compound 38 was obtained by subjecting Compound 37 to the same conditions as in Step 2 of Example 2.
  • Step 3 Synthesis of Compound 39 Under a nitrogen stream, Compound 37 (78.0 mg, 0.10 mmol), N-benzoyladenine (47.8 mg, 0.20 mmol), 1,2-dichloroethane (1 mL), BSA were placed in a 10 mL eggplant flask. (0.15 mL, 0.60 mmol) was added. The reaction solution was heated to 60 ° C. and stirred for 40 minutes, and then allowed to cool to room temperature. Trimethylsilyl trifluoromethanesulfonate (0.020 mL, 0.11 mmol) was added at room temperature, and the mixture was heated to reflux for 4 hours.
  • Step 4 Synthesis of Compound 40
  • Compound 38 was obtained by treating Compound 39 with NaOH / methanol.
  • Step 5 Conversion of Compound 40 to Compound 35
  • Compound 35 was obtained by carrying out under the same conditions as in Step 3 of Example 4.
  • Step 6 Conversion from Compound 35 to A (Bz) amidite (Compound 20) The step was carried out under the same conditions as in Step 5 of the method not passing through the deTFA reaction of Example 4 and Step 4 of Example 4. [Example 5]
  • Step 1 Synthesis of Compound 33 The reaction was performed under the same conditions as in Step 1 of the method of Example 4 without passing through the deTFA reaction.
  • Step 2 Conversion from Compound 33 to Compound 35 Synthesized by the same route as in Step 2 of Example 4.
  • Step 3 Conversion from Compound 35 to Compound 36
  • the reaction was carried out under the same conditions as in Step 4 of the method not passing through the deTFAization reaction of Example 4.
  • PacCl (3.85 mL) was added dropwise at room temperature over 3 minutes and then stirred for 20 minutes to prepare Pac-OBt.
  • the above-mentioned trimethylsilylation reaction solution was added to this reaction solution and stirred overnight, and the reaction was incomplete, so the same amount of Pac-Bt solution was added, and the mixture was further stirred for 23 hours.
  • reaction solution was poured into a saturated aqueous sodium hydrogen carbonate solution, the organic layer was separated, and washed successively with a saturated aqueous sodium hydrogen carbonate solution and saturated brine. Each aqueous layer was re-extracted with dichloromethane, and the organic layers were combined, dried over anhydrous sodium sulfate, filtered and concentrated. The residue was azeotroped with toluene to remove pyridine, dried, dissolved in tetrahydrofuran (50 ml), added with hydrogen fluoride / triethylamine complex (4 ml), and stirred at room temperature for 40 minutes.
  • reaction mixture was diluted with ethyl acetate, washed twice with saturated aqueous sodium hydrogen carbonate solution and then with saturated brine, dried over anhydrous sodium sulfate, filtered and concentrated.
  • the obtained residue was purified by silica gel column chromatography (ethyl acetate / acetone, 100/0 ⁇ 80/20) to give compound 42 (9.91 g, purity 96%, yield 84%) as a beige powder.
  • reaction mixture was diluted with ethyl acetate, washed successively with saturated aqueous sodium hydrogen carbonate solution and saturated brine, dried over anhydrous sodium sulfate, filtered and concentrated.
  • a (amidine) amidite can be synthesized from compound 40 by the following route.
  • Step 1 Synthesis of Compound 44
  • Compound 40 (1.82 g, 2.99 mmol) and pyridine (20 mL) were added to a 100 mL eggplant flask under a nitrogen stream. Thereafter, 1,1-dimethoxy-N, N-dimethylmethanamine (1.192 ml, 8.97 mmol) was added and stirred at room temperature for 30 minutes. The reaction solution was concentrated under reduced pressure, and the resulting residue was purified by silica gel column chromatography (dichloromethane / methanol, 10/0 ⁇ 9/1) to obtain compound 44 (1.74 g, 87.7%) as white. Obtained as a foamy solid.
  • Step 2 Synthesis of Compound 45 Under a nitrogen stream, Compound 44 (1.70 g, 2.56 mmol), N, N-diisopropylethylamine (2.68 mL, 15.37 mmol), and chloroform (17 mL) were added to a 100 mL eggplant flask. Thereafter, 2-cyanoethyl-N, N-diisopropylchlorophosphoramidite (1.714 ml, 7.68 mmol) was added at 0 ° C., and the mixture was warmed to room temperature and stirred for 4 hours. Saturated multistory water was added to the reaction solution to stop the reaction.
  • Step 1 Synthesis of Compound 21 N, O-bis (trimethylsilyl) was added to a suspension of compound 14 (15.0 g, 26.6 mmol) and guanine (4.02 g, 26.6 mmol) in cyclopentyl methyl ether (135 mL) under a nitrogen atmosphere.
  • Acetamide (65.1 mL, 266 mmol) and cyclopentyl methyl ether (7.5 mL) were added and stirred at 60-70 ° C. for 10 minutes before TMSOTf (11.83 g, 53.20 mmol) and cyclopentyl methyl ether (7.5 mL). ) was added and stirred for 2 hours.
  • Step 2 Synthesis of Compound 22 Under a nitrogen atmosphere, a solution of compound 21 (14.0 g, 23.9 mmol) and N-methylimidazole (7.60 mL, 95.4 mmol) in DMA (70 mL) was added with a 1 mol / L TBAF-tetrahydrofuran solution. (28.6 mL, 28.6 mmol) and DMA (14 mL) were added and stirred at 70-80 ° C. for 8 hours. EDC hydrochloride (13.72 g, 71.55 mmol) and DMA (7 mL) were added at 20-30 ° C. and stirred for 4 hours.
  • N-methylimidazole (7.60 mL, 95.4 mmol) was added to the reaction solution, TBS chloride (14.38 g, 95.40 mmol) was added at 20 ° C. or lower, and the mixture was stirred at room temperature for 2 hours.
  • Ethyl acetate (280 mL) and 10% brine (140 mL) were added to the reaction solution, and the organic layer was washed twice with water (140 mL). Each washing solution was extracted with ethyl acetate (140 mL).
  • Step 3 Synthesis of Compound 23 Trimethylsilyl chloride (9.33 g, 85.9 mmol) was suspended in a pyridine (37.5 mL, 464 mmol) suspension of Compound 22 (7.50 g, 17.2 mmol) at 10 to 20 ° C. under a nitrogen atmosphere. ) was added dropwise, followed by stirring at room temperature for 30 minutes. Next, phenoxyacetyl chloride (3.52 g, 20.6 mmol) was added dropwise at 0 to 5 ° C., followed by stirring at room temperature for 1 hour.
  • the reaction mixture was diluted with ethyl acetate (150 mL), and a mixed solution of 10% brine (37.5 mL) and concentrated hydrochloric acid (30.0 mL) was added dropwise at 0 to 10 ° C.
  • the organic layer was washed twice with 1 mol / L hydrochloric acid (75 mL) and water (75 mL), and then ethyl acetate (37.5 mL) and 2 mol / L hydrochloric acid methanol solution (38.7 mL, 77.4 mmol) were sequentially added. Stir at room temperature for 1 hour.
  • Step 4 Synthesis of compound 24 (G amidite) Under a nitrogen atmosphere, a solution of compound 23 (500 mg, 1.10 mmol) in DMA (3.5 mL) was added DMTr chloride (1.11 g, 3.29 mmol) and DABCO (369 mg, 3 .21 mmol) was added and stirred at room temperature for 2.5 hours. DABCO (369 mg, 3.21 mmol) and 2-cyanoethyldiisopropylchlorophosphoramidite (0.587 mL, 2.63 mmol) were added to the reaction solution at 10 ° C. or lower, and the mixture was stirred at room temperature for 1 hour.
  • the route from compound 14 to compound 21a can also be synthesized by a method that does not go through a deTFA reaction as follows.
  • Step 1 Synthesis of Compound 46 Under a nitrogen stream, cyclopentyl methyl ether of Compound 14 (5.56 g, 8.88 mmol) and 2-acetamido-9H-purin-6-yl-diphenylcarbamate (3.79 g, 9.77 mmol) (50 mL, 10 V)
  • N, O-bis (trimethylsilyl) acetamide BSA, 21.75 mL, 89 mmol
  • trimethylsilyl trifluoromethanesulfonate (3.95 mL, 17 .76 mmol) was added and heated at the same temperature for 4 hours.
  • Step 2 Synthesis of Compound 47
  • a solution of crude compound 46 (9.52 g, corresponding to 8.88 mmol) in methanol (25 ml) was added 28% aqueous ammonia (25 ml), and the mixture was stirred at room temperature for 4 hours.
  • ethyl acetate 250 ml
  • 10% brine 60 ml
  • the precipitated slurry-like solid was collected by filtration.
  • Step 4 Conversion of Compound 48 to Compound 21a Methanol (1.5 mL) and ammonium fluoride (17 mg, 0.458 mmol) were added to compound 48 (100 mg, 0.229 mmol) at room temperature, and 4.5 hours at 70 ° C. Heated to reflux. After cooling to room temperature, the precipitate was collected by filtration, washed with methanol (0.5 ml), and air-dried to obtain Compound 21a (51 mg, yield 68.9%).
  • Process 1 It implemented on the same conditions as the process 1 of the comparative example 1.
  • Process 2 It carried out on the same conditions as the process 2 of the comparative example 1.
  • Process 3 Compound 38 (12 mg, 15 umol) and ON, N-diphenylcarbamoyl-N-acetylguanine (12 mg, 31 umol) were azeotroped with toluene in an eggplant flask (10 mL) (1 mL, once). After drying under a vacuum line, 1,2-dichloroethane (1 mL) was added under a nitrogen atmosphere. N, O-bis (trimethylsilyl) acetamide (BSA, 38 ⁇ L, 154 ⁇ mol) was added, heated to 60 ° C. and stirred for 10 minutes.
  • N-diphenylcarbamoyl-N-acetylguanine (12 mg, 31 umol) were azeotroped with toluene in an eggplant flask (10 mL) (1 mL, once). After drying under a vacuum line, 1,2-dichloroethane (1 mL) was added under a nitrogen atmosphere. N, O-bis (trimethyl
  • TMSOTf trimethylsilyl trifluoromethanesulfonate
  • Process 5 The synthesis was carried out by the same route as in Step 3 of the route not passing through the deTFAation reaction of Example 6.
  • Step 6 The compound was synthesized by the same route as in Step 3 of Example 6.
  • Step 7 It implemented on the same conditions as the process 4 of Example 6.
  • Step 1 Synthesis of Compound 21
  • the compound 21 was prepared under the same conditions as in Step 1 of Example 6.
  • Step 2 Synthesis of Compound 21a The reaction was performed under the same conditions as in Step 2 of Example 6.
  • Step 3 Synthesis of Compound 23 Under a nitrogen stream, Compound 21a (19.5 g, 60.5 mmol) was made into a slurry solution with pyridine (200 ml) and dichloromethane (20 ml), and chlorotrimethylsilane (65.7 g, 605 mmol) was cooled with ice. Dropping was performed. After the dropwise addition, the internal temperature was raised to room temperature, the mixture was stirred for 1.5 hours, the reaction solution was cooled again to ice cooling, and PacCl (11.5 g, 67.4 mmol) was added dropwise.
  • Step 4 Synthesis of Compound 23a Pyridine (200 g) and 4,4′-dimethoxytrityl chloride (21.5 g, 63.5 mmol) were added to the residue obtained by subjecting the crude product of Compound 23 to pyridine azeotropy (60 ml ⁇ 3 times). The mixture was further stirred at room temperature for 2.5 hours. The reaction mixture was added to ethyl acetate (400 ml) and saturated aqueous sodium hydrogen carbonate solution (500 ml), and the layers were separated, the aqueous layer was re-extracted with ethyl acetate (100 ml), and the resulting organic layers were combined and saturated.
  • Step 5 Synthesis of compound 24 To compound 23a (28.3 g, 3 73 mmol), acetonitrile (220 ml) and tetrahydrofuran (30 ml) were added under a nitrogen stream, diisopropylammonium tetrazolide (7.34 g, 42.9 mmol), and then 2-cyanoethyl N, N, N ′, N′-tetraisopropyl phosphoramidite (16.9 g, 55.9 mmol) was added. After stirring at 30 ° C. for 4 hours, the reaction solution was added to ethyl acetate (200 ml) and saturated aqueous sodium hydrogen carbonate (20 ml) for liquid separation.
  • Step 1 to Step 5 The steps can be performed under the same conditions as in Example 6. [Example 9]
  • Step 1 Synthesis of Compound 58
  • Compound 58 can be obtained by adding levulinic acid, EDC hydrochloride and 4-dimethylaminopyridine to a dichloromethane solution of compound 23 (synthesized by the method described in Example 6) and stirring overnight at room temperature.
  • Step 1 Synthesis of Compound 60 To a N, N-dimethylformamide solution of compound 21a (synthesized by the method described in Example 6), tert-butyl-diphenylsilyl chloride and imidazole are added and reacted at room temperature to form a TBDPS at the 5′-position hydroxyl group. After the product is obtained, compound 60 can be obtained by adding trimethylsilyl chloride and phenoxyacetyl chloride to the pyridine solution and reacting at room temperature.
  • Step 2 Synthesis of Compound 61
  • Compound 61 can be synthesized in the same manner as in Step 4 of Example 6. [Example 11]
  • Step 1 Synthesis of Compound 25 108.1 g of Compound 15 (Purity: 92.53%, Content: 100 g, 0.167 mol), DMF 300 ml, Imidazole 47.8 g (4.2 eq.), TBSCl 51.6 g (2.05 eq) .) was added and stirred at around 25 ° C. for 23 hours.
  • the solution was separated by adding 600 ml of AcOEt and 600 ml of water, and the aqueous layer was re-extracted with 300 ml of AcOEt.
  • the organic layers were mixed, washed with 600 ml of 5% NaHCO 3 and 600 ml of 5% NaCl, and the solvent was recovered.
  • Step 2 Synthesis of Compound 26 Compound 25 132.6 g (corresponding to 0.167 mol), MeCN 800 ml, TEA 50.7 g (3 eq.), DMAP 2.0 g (0.1 eq.), TPBSO2Cl 65.8 g (1.3 eq. ) And stirred at around 25 ° C. for 22 hours. 25% NH 3 aq. 800 ml was added and stirred at around 25 ° C. for 2 hours. MeCN was roughly recovered, and 400 ml of AcOEt and 400 ml of water were added for liquid separation, and the aqueous layer was re-extracted with 300 ml of AcOEt.
  • Step 3 192.8 g (corresponding to 0.167 mol) of Compound 26 of Compound 27, 500 ml of DMF, and 75.6 g ( 2 eq.) Of Bz 2 O were added, and the mixture was stirred at around 25 ° C. for 22 hours.
  • AcOEt 1000 ml, 5% NaHCO 3 1000 ml was added for liquid separation, and the aqueous layer was re-extracted with AcOEt 500 ml.
  • the organic layers were mixed, washed with 500 ml of 5% NaHCO 3 and 500 ml of 5% NaCl, and the solvent was recovered to obtain crude compound 5.
  • Step 4 Synthetic compound 27 124.1 g (0.152 mol), THF 869 ml, 1M-TBAF / THF 182 ml (1.2 eq.) Were added, and the mixture was stirred for 2 hours. The solvent was recovered, and liquid separation was performed by adding 620 ml of AcOEt and 620 ml of 5% NaHCO 3 . The solvent was recovered by washing with 620 ml of 5% NaCl. After removing the solvent by toluene 620 ml ⁇ 3 for the purpose of removing TBSOH, the solidified amorphous was loosened to obtain the intended compound 28 (119.2 g, yield 119% from compound 27).
  • Step 5 Synthesis of Compound 29 (MeC (Bz) amidite) 108.2 g (equivalent to 0.138 mol) of Compound 28, 564 ml of dichloromethane and 35.7 g (2 eq.) Of DIPEA were charged and 2-cyanoethyldiisopropylchlorophosphoramidite at 5 ° C. or lower. 49.0 g (1.5 eq.) was added dropwise. Then, it stirred at 25 degreeC vicinity for 2 hours. 564 ml of 5% NaHCO 3 was added for liquid separation, and the solvent was recovered to obtain crude MeC (Bz).
  • the reaction mixture was partitioned by adding tetrahydrofuran (20 mL) and 1 mol / L hydrochloric acid (20 mL) under ice-cooling, and the organic layer was washed with 0.1 mol / L hydrochloric acid (110 mL) and water (110 mL), and then added to anhydrous magnesium sulfate. After drying, the solvent was concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography (chloroform / methanol) to obtain Compound 62 (84 mg, yield 75%). 1 H-NMR was observed as a 71:29 rotamer mixture.
  • Step 1 Synthesis of Compound 25 Synthesis was performed under the same conditions as in Step 1 of Example 11.
  • Step 5 Synthesis of Compound 66
  • the reaction mixture was partitioned by adding tetrahydrofuran (20 mL) and 1 mol / L hydrochloric acid (20 mL) under ice-cooling, and the organic layer was washed with 0.1 mol / L hydrochloric acid (110 mL) and water (110 mL), and then added to anhydrous magnesium sulfate. After drying, the solvent was concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography (chloroform / methanol) to obtain Compound 67 (80 mg, yield 75%).
  • Step 1 Synthesis of Compound 102 N, N′-dimethylformamide solution (10.5 L, 10.5 L) of Compound 101 (3.5 kg, 4.782 mol) derived from D-glucose by the method described in WO 2011/052436 3V) was added potassium carbonate (1652 g, 11.95 mol, 2.5 eq) and paramethoxybenzyl chloride (823.8 g, 5.260 mol, 1.1 eq), and the mixture was stirred at room temperature for 19 hours. Ethyl acetate 35.00L (10v / w) and city water 35.00L (10v / w) were added to this reaction liquid, and extraction and liquid separation were performed to obtain an organic layer I and an aqueous layer I.
  • the aqueous layer I was extracted with 10.50 L (3 v / w) of ethyl acetate to obtain an organic layer II.
  • the obtained organic layers I and II were combined, washed with 24.50 L (7 v / w) of water and 24.50 L (7 v / w) of 10% brine, concentrated and dried under reduced pressure to give compound 102 (4470 g).
  • the crude product was obtained as a brown oil.
  • the obtained compound 102 was not purified, and the yield was quantitative, and it was advanced to the next step.
  • Step 2 Synthesis of Compound 103
  • Compound 102 (crude, 4470 g) was dissolved in tetrahydrofuran (16.30 L, 4 v / w), and city water (407.5 g, 0.1 w / w) was added.
  • city water 407.5 g, 0.1 w / w
  • n-tributylphosphine (1258 g, 6.218 mol, 1.3 eq) was added dropwise at a liquid temperature of 30 ° C. or lower, and the mixture was stirred at the same temperature for 5 hours.
  • Step 3 Synthesis of Compound 104
  • Compound 103 (crude, 5557 g) was dissolved in dichloromethane (7.900 L (2 v / w)), and pyridine (945.6 g, 11.95 mol, 2.5 eq) was added.
  • TFAA (1507 g, 7.175 mol, 1.5 eq) was added dropwise at a liquid temperature of 35 ° C. or lower, and the mixture was stirred at the same temperature for 2 hours.
  • the reaction was diluted with CH 2 Cl 2 (19.75 L, 5 v / w), cold 10% Na 2 CO 3 aq. (11.85 L, 3 v / w), extraction and liquid separation were performed, and the obtained organic layer was added with 5% NaHCO 3 aq.
  • Step 4 Synthesis of Compound 105
  • Compound 104 + n-Bu 3 PO (4392 g) was dissolved in 10.60 L (3 v / w) of DMF at a liquid temperature of 50 ° C., and potassium carbonate (1062 g, 7.684 mol, 2 eq) was added.
  • potassium carbonate (1062 g, 7.684 mol, 2 eq) was added.
  • iodomethane (818.3 g, 5.765 mol, 1.5 eq) was added dropwise at a liquid temperature of 55 ° C. or lower, and the mixture was stirred at the same temperature for 7 hours and at room temperature for 15 hours.
  • Step 5 Synthesis of Compound 106
  • Crude product (4386 g) of Compound 105 was dissolved in acetonitrile (25.20 L, 7 v / w), and the solution temperature was 30 ° C. or less, and 7586 g (13.84 mol, 3.6 eq) + city of CAN A water (9.0000 L, 2.5 v / w) solution was added dropwise over 30 minutes, and the mixture was stirred at the same temperature for 2 hours.
  • Ethyl acetate (36.00 L, 10 v / w) and city water (25.20 L, 7 v / w) were added to this reaction solution for extraction and liquid separation, and the resulting organic layer was washed with city water (25.20 L, 7 v / w).
  • a 5% sodium hydrogen oxyacid aqueous solution (25.20 L, 7 v / w) was added thereto, and the resulting insoluble matter was filtered (AcOEt 8.000 L (2.2 v / w) was used for washing).
  • Step 1 Synthesis of Compound 107
  • Compound 100 (2.38 mmol) derived from D-glucose by the method described in WO 2011/052436 was dissolved in methylamine (20 mL, 2.0 mol / L THF solution, 40 mmol). And heated to 60 ° C. using a microwave and stirred for 8 hours. The reaction solution was concentrated to dryness to obtain Compound 107. The obtained compound was not purified and proceeded to the next reaction as it was.
  • Step 2 Conversion of Compound 107 to Compound 106
  • Compound 107 obtained in the previous step was dissolved in dichloromethane (10 mL), pyridine (481 ⁇ l, 5.96 mmol) was added, and TFAA (504 ⁇ L, 3.58 mmol) was added dropwise at room temperature. Stir for 2 hours. Saturated aqueous ammonium chloride solution was added and extracted. The obtained organic layer was washed with a saturated aqueous sodium hydrogen carbonate solution and saturated brine, and dried over magnesium sulfate.
  • Step 1 Synthesis of Compound 107 Under a nitrogen stream, Compound 106 (599.60 g, 734.85 mmol), Bz-adenine (351.82 g, 2 eq.), 1,2-DCE (3000 ml, 5 v / w) were added to a 20 L flask and dissolved by stirring. did. BSA (899.50 g, 6 eq.) Was added to this solution, the temperature was raised, and the mixture was stirred for 1 hour while maintaining at 49 ° C. After cooling to 24 ° C., TMSOTf (49.55 g, 0.3 eq.) Was added, the temperature was raised again, and stirring was continued for 5.5 hours while maintaining the temperature at 60 ° C.
  • the reaction solution was cooled to 5 ° C., and 8% aqueous sodium hydrogen carbonate solution (900 g) was added dropwise. After completion of the dropwise addition, this was stirred at room temperature for 15 hours (beige slurry).
  • DCM (7800 g) was added thereto, and the mixture was stirred at room temperature for 1 hour, and the solid was separated by filtration through celite.
  • the filtered residue was slurried again with DCM (4800 g) and the solid was filtered off through celite filtration. Further, the residue was slurry washed with DCM (3000 g), and the solid was separated by suction filtration (this operation was repeated twice).
  • Step 2 Synthesis of Compound 108 Under a nitrogen stream, 1.0 mol / L-TBAF / THF solution (766.44 g, 1.2 eq.) was added to a THF (1290 ml, 2 v / w) solution of Compound 107 (645 g, 694.24 mmol) at room temperature. The mixture was stirred at 24 ° C. for 21 hours. The reaction solution was concentrated under reduced pressure, dissolved in ethyl acetate (1743 g), transferred to a 10 L water washing kettle, and washed with city water (2142 g). The organic layer was washed again with 5% brine (1290 g) and the brine was extracted again with ethyl acetate (322 g).
  • Step 3 Synthesis of Compound 109
  • Compound 108 (402 g, 582.04 mmol), acetonitrile (3216 ml, 8 v / w), 1 mol / l aqueous acetic acid solution (543 ml, 1.35 v / w) in a 10 L four-necked flask under a nitrogen stream 1 mol / l sodium acetate aqueous solution (1085 ml, 2.7 v / w), TEMPO (9.09 g, 0.1 eq.), 80% sodium chlorite (138.13 g, 2.1 eq.), 9% hypochlorous acid Sodium chlorate (6.0 ml, 0.015 v / w) was sequentially added, the internal temperature was raised to 36 ° C., and the mixture was stirred while keeping warm.
  • Step 4 Synthesis of Compound 110 Under a nitrogen stream, 25% aqueous ammonia (468 ml, 1 v / w) was added to a solution of compound 109 (468 g, content 410 g, 582.04 mmol) in methanol (2800 ml, 6 v / w) at room temperature. After that, the temperature was raised to 39 ° C., and the mixture was stirred while keeping warm. After stirring for 6 hours, 25% aqueous ammonia (140 ml, 0.3 v / w) was added. After further stirring for 16 hours, 25% aqueous ammonia (94 ml, 0.2 v / w) was added.
  • Step 5 Synthesis of Compound 111
  • Compound 110 (470 g, contents 294 g, 582.04 mmol) and DMF (1800 ml, 6.1 v / w) were added to a 10 L four-necked flask under a nitrogen stream, and the mixture was stirred while keeping at 24 ° C. .
  • EDC hydrochloride (169 g, 1.5 eq.) was added and stirred while keeping warm.
  • EDC hydrochloride 23 g, 0.2 eq.
  • city water (5124 g) was added dropwise over 15 minutes.
  • Step 6 Synthesis of Compound 112 Under a nitrogen stream, Compound 111 (225 g, 462.47 mmol) and acetic acid (1125 ml, 5 v / w) were added to a 3 L flask, and the mixture was heated to 50 ° C. and dissolved by stirring. 20% Pd (OH) 2 -C (44.98 g, 0.2 w / w) was added thereto, and the inside of the system was replaced with hydrogen, followed by stirring while keeping hydrogen blown into the reaction solution. After stirring for 6 hours, 20% Pd (OH) 2 —C (22.49 g, 0.1 w / w) was added.
  • the route from compound 106 to compound 110 can also be synthesized by the following method.
  • Step 1 Synthesis of Compound 113
  • the compound 113 can be synthesized under the same conditions as in Step 2 of the synthesis of A (Bz) amidite in Reference Example 1 described above.
  • Step 2 Synthesis of Compound 114
  • the compound 114 can be synthesized under the same conditions as in Step 3 of the synthesis of A (Bz) amidite in Reference Example 1 described above.
  • Step 3 Derivation of Compound 114 to Compound 110
  • Compound 114 (14 mg, 0.023 mmol) was dissolved in 1 mL of dichloroethane, and 16 mg (0.069 mmol) of N-benzoylguanine and 42 mg of (E) -trimethylsilyl N-trimethylsilylacetamide (0. 21 mmol) was added and heated to 60 ° C. and stirred for 20 minutes. After the reaction solution was lowered to room temperature, TMSOTf (4 ⁇ l, 0.023 mmol) was added, and the mixture was heated again to 60 ° C. and stirred for 6 hours.
  • Step 1 Synthesis of Compound 115 Under a nitrogen stream, ON, N-diphenylcarbamoyl-N-isobutylguanine (93.0 g, 223 mmol), 1,2-dichloroethane (760 ml) was charged, and BSA (136. 2 g, 670 mmol) was added dropwise. The internal temperature was heated to 60 ° C. and stirred for 30 minutes. Thereafter, the internal temperature was lowered to ice-cooling, compound 106 (152 g, 186 mmol) was added, and after washing with 1,2-dichloroethane (150 ml), TMSOTf (l2.4 g, 55.8 mmol) was added dropwise. It was.
  • Step 2 Synthesis of Compound 116 After adding ammonium fluoride (77.3 g, 2.09 mol) to a methanol (500 g) solution of Compound 115 (192.5 g, 1.74 mmol) at room temperature, the bath temperature was raised to 68 ° C. For 3.5 hours. After cooling to room temperature, the reaction solution was added to water (1 L) and ethyl acetate (1.5 L). Liquid separation was performed, and the aqueous layer was extracted with ethyl acetate (500 ml ⁇ 2). The organic layers were combined, washed with saturated brine (500 ml), and concentrated.
  • Step 3 Synthesis of Compound 117
  • Compound 116 (87 g) was dissolved in acetonitrile (440 g) at room temperature, and 1 mol / L acetic acid (87 ml) and 1 mol / L sodium acetate (174 ml) were added. Further TEMPO (1.8 g, 11.6 mmol) was added followed by 80% sodium chlorite (NaClO2, 27.5 g, 243 mmol) and 12% sodium hypochlorite (NaClO, 1.5 ml). The mixture was stirred at around 28 ° C. for 2.5 hours, and 12% sodium hypochlorite (NaClO, 1.5 ml) was added (the reaction solution changed from amber to brown).
  • Step 4 Synthesis of Compound 118
  • Crude compound 117 113 g was dissolved in methanol (400 g), 25% aqueous ammonia (200 ml) was added, and the mixture was stirred at 40 ° C. overnight.
  • the reaction mixture was concentrated and azeotroped with toluene (200 ml ⁇ 3 times) to obtain a crude product of Compound 118 (112.8 g).
  • Step 5 Synthesis of Compound 119
  • Compound 118 (112.8 g, corresponding to 115.7 mmol) was dissolved in N, N′-dimethylformamide (440 g) at room temperature under a nitrogen stream, and EDC hydrochloride (33.3 g, 173) was dissolved. .6 mmol) was added.
  • EDC hydrochloride (17.8 g, 92.8 mmol) was added while stirring as it was and confirming the progress of the reaction. After confirming the completion of the reaction, the reaction solution was dispersed under stirring with water (1760 g) and ethyl acetate (25 g).
  • Step 6 Conversion from Compound 119 to Compound 21a Under a nitrogen stream, compound 119 (40 g, 79.6 mmol) was mixed with acetic acid (400 ml) at room temperature, palladium hydroxide (12.5 g) was added, and then hydrogen atmosphere was added. Stir for 24 hours at 30 ° C. Since crystals precipitated in the reaction system, water (80 g) was added, and the mixture was further stirred for 2 days. Then, the catalyst was filtered off, and the filtrate was concentrated.
  • the route from compound 106 to compound 118 can also be synthesized by the method described in the following scheme.
  • Example of synthesis of T amidite Conversion of compound 106 to compound 14b can be carried out by the method described in the following scheme.
  • the compound 14b can be synthesized by the method described in Example 3 or International Publication No. 2011/052436.
  • Step 1 Synthesis of Compound 124 Chemische Berichte, 101 (7), 2289-93 (1968). To obtain Compound 124 from D-glucosamine hydrochloride.
  • Step 2 Synthesis of Compound 125 Under a nitrogen stream, a suspension of sodium hydride (0.89 g, 22.2 mmol) in N, N′-dimethylformamide (30 mL) was charged with Compound 124 (5.2 g, 17.1 mmol) in N, N′-dimethylformamide (30 mL) was added dropwise and stirred for 30 minutes. Subsequently, benzyl bromide (2.4 mL, 20.5 mmol) was added dropwise to the reaction solution at 7-8 ° C., and the mixture was stirred at room temperature for 90 minutes. A saturated aqueous ammonium chloride solution was added, and the mixture was extracted with tert-butyl methyl ether.
  • Step 3 Synthesis of Compound 126
  • N, O-bistrimethylsilylacetamide (4.7 mL, 18.9 mmol) was added to a suspension of thymine (1.43 g, 11.4 mmol) in acetonitrile (15 mL) at 80 ° C. Stirred for 60 minutes under.
  • a solution of compound 125 (3.0 g, 7.6 mmol) in acetonitrile (15 mL) and tin tetrachloride (0.89 mL, 7.6 mmol) were added, and the mixture was stirred at 80 ° C. for 6 hours. After cooling to room temperature, saturated multistory water was added, and the precipitated solid was removed by Celite filtration.
  • the reaction mixture was concentrated under reduced pressure, extracted from the residue with ethyl acetate, and washed with water and saturated brine.
  • the crude product 125a (4.1g) was obtained by drying with sodium sulfate and concentrating under reduced pressure.
  • the crude product 126 (4.1 g) was dissolved in methanol (30 mL) and water (10 mL), camphorsulfonic acid (0.73 g, 3.1 mmol) was added at room temperature, and the mixture was stirred for 2 hours.
  • the mixture was neutralized by adding a 1 mol / L aqueous sodium hydroxide solution and then concentrated under reduced pressure.
  • Step 4 Synthesis of Compound 127
  • sodium periodate (2.3 g, 10.6 mmol) was added to a tetrahydron-water mixed solution of compound 126 (3.4 g, 7.1 mmol) (1: 1, 30 mL). And stirred for 1 hour.
  • Ethylene glycol (0.4 mL, 7.1 mmol) was added and stirred for a while, and the resulting white solid was removed by filtration.
  • the organic layer was extracted with ethyl acetate, washed with water and saturated brine, and dried over sodium sulfate. The organic layer was distilled off under reduced pressure to obtain a crude product 127 (3.6 g).
  • Step 6 Synthesis of Compound 129
  • 2-methyl-2-butene (7.8 mL, 7.8 mL) was added to a mixed solution of crude product 128 (3.6 g) in tert-butanol-water-tetrahydrofuran (5: 5: 1, 33 mL).
  • 75 mmol sodium dihydrogen phosphate (2.7 g, 22.5 mmol) and sodium chlorite (1.4 g, 15 mmol) were added and stirred for 2 hours 30 minutes.
  • a 1 mol / L hydrochloric acid aqueous solution was added to adjust the reaction solution to pH 2 to 3, followed by extraction with chloroform.
  • the organic layer was washed with water and saturated brine, and dried over sodium sulfate.
  • the organic layer was distilled off under reduced pressure to obtain a crude product 129 (3.7 g).
  • Step 7 Synthesis of Compound 130 A 2 mol / L trimethylsilyldiazomethane solution (4.9 mL, 9.7 mmol) was added dropwise to a toluene-methanol solution (2: 1, 30 mL) of the crude product 129 (3.7 g) at room temperature. And stirred for 40 minutes. Acetic acid (0.2 mL) was added, and the reaction mixture was concentrated under reduced pressure. The obtained solid was recrystallized from ethyl acetate / methanol to obtain compound 130 (1.54 g, 3.1 mmol) as a white solid.
  • step 3 The conditions for the glycosylation reaction performed in step 3 were examined. Specifically, the combination of acid catalyst and solvent was examined, and the product and the remaining amount of raw material were analyzed by HPLC or the like. As a result, it has been found that the combination shown in Condition 7 as shown in the following table is the optimum condition that gives the highest product yield and the lowest raw material residual rate and byproduct production rate.
  • Step 6 Compound 153 (480 mg, 0.97 mmol) obtained in the fifth step was dissolved in pyridine (1.5 ml). Under ice-cooling, mesyl chloride (0.18 ml, 2.28 mmol) was added, and the mixture was stirred at 0 ° C. for 30 minutes. The reaction solution was diluted with ethyl acetate, extracted with water. The obtained organic layer was washed 3 times with 2 mol / L aqueous hydrochloric acid, then washed with a saturated aqueous sodium hydrogen carbonate solution and saturated brine, and dried over magnesium sulfate. The solvent was distilled off under reduced pressure to obtain Compound 154 (520 mg, 93% yield) as amorphous.
  • Step 7 Compound 154 (515 mg, 0.90 mmol) obtained in step 6 was dissolved in acetonitrile (5 ml). Diazabicycloundecene (0.18 ml, 1.20 mmol) was added at room temperature, and the mixture was stirred at room temperature for 7 hours. The reaction mixture was diluted with ethyl acetate under ice-cooling, and extracted with 5% aqueous citric acid solution. The obtained organic layer was washed with 5% aqueous citric acid solution, saturated aqueous sodium hydrogen carbonate solution and saturated brine, and dried over magnesium sulfate. The solvent was distilled off under reduced pressure to obtain a pale yellow oil.
  • Step 9 Compound 122 (17 mg, 0.90 mmol) obtained in the eighth step was dissolved in a mixed solvent of tetrahydrofuran (1 ml) and methanol (0.2 ml). 20% Parazimed carbon (8 mg) was added and stirred for 2 hours under hydrogen atmosphere. Nitrogen substitution was performed, the catalyst was removed by filtration, and the solvent was distilled off from the filtrate under reduced pressure. Recrystallization of the obtained colorless oil (methanol / chloroform) gave Compound 14b (10 mg, 93% yield) as a white solid.
  • T amidite (compound 16) and MeC (Bz) amidite (compound 29) can be obtained from compound 14b by the method described in Example 3, Example 11 or International Publication No. 2011/052436.
  • Compound 122 was converted to 1) NaOH aq.
  • Compound 156 was obtained in two steps by treatment with / THF 2) (CF 3 CO) 2 O / pyridine.
  • Compound 156 can be derived into A (Bz) amidite (Compound 20) and G (Pac) amidite (Compound 24) by the method of Reference Example 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Saccharide Compounds (AREA)

Abstract

The present invention provides a method for producing an amide cross-linked nucleic acid derivative, which is useful as a molecule for use as an antisense, with high efficiency. An intermediate that is important for the synthesis of an amide cross-linked nucleic acid derivative can be synthesized with high efficiency by carrying out an aldol reaction under specified conditions. The intermediate can be ring-closed with high efficiency by removing a protective group therefrom.

Description

架橋型核酸誘導体の製造方法Method for producing cross-linked nucleic acid derivative
本発明は、アミド架橋型核酸誘導体の効率的な製造に有用な中間体の製造方法に関する。 The present invention relates to a method for producing an intermediate useful for the efficient production of amide-bridged nucleic acid derivatives.
  核酸医薬による疾病の治療方法の一つとしてアンチセンス法が知られている。アンチセンス法は、疾病に関わるmRNAと相補的なオリゴヌクレオチド(アンチセンス鎖)を外部から導入し、二重鎖を形成させることにより、病原RNAの翻訳過程を阻害し、疾病の治療や予防を行う手法である。 The antisense method is known as one of the methods for treating diseases with nucleic acid drugs. Antisense method introduces oligonucleotide (antisense strand) complementary to disease-related mRNA from the outside to form a double strand, thereby inhibiting the translation process of pathogenic RNA and treating or preventing disease. It is a technique to do.
  天然型オリゴヌクレオチドをアンチセンス法に適用した場合、生体内の酵素により加水分解を受ける、細胞膜透過性が高くないなどの問題が生じる。この問題を解決するために核酸誘導体が数多く合成され、研究が重ねられてきた。例えば、リン原子上の酸素原子をイオウ原子に置換したホスホロチオエート(非特許文献1)、メチル基に置換したメチルホスホネート(非特許文献2)の他、BNA(bridged nucleic acid) やLNA(locked nucleic acid)などの架橋型タイプが合成されている(特許文献1~3)。 When natural oligonucleotides are applied to the antisense method, there are problems such as being hydrolyzed by enzymes in the body and not having high cell membrane permeability. In order to solve this problem, many nucleic acid derivatives have been synthesized and studied. For example, phosphorothioate (non-patent document 1) in which an oxygen atom on a phosphorus atom is substituted with a sulfur atom, methylphosphonate (non-patent document 2) in which a methyl group is substituted, BNA (bridged nucleic acid), LNA (locked nucleic acid) Etc.) have been synthesized (Patent Documents 1 to 3).
  このような中で、小比賀らは従来の架橋型タイプに比べて、生体内でヌクレアーゼによる分解を受けにくく、標的のmRNAに対する高い結合親和性を有し、特定の遺伝子の発現を効率よく制御することのできるアンチセンス法に適用可能な分子として2’、4’-BNAの架橋構造にアミド結合を導入した新規な核酸誘導体を見出した(特許文献4)。 Under these circumstances, Obiga et al. Are less susceptible to degradation by nucleases in vivo than conventional cross-linked types, have high binding affinity for target mRNA, and efficiently control the expression of specific genes. As a molecule that can be applied to the antisense method, a novel nucleic acid derivative in which an amide bond is introduced into a 2 ′, 4′-BNA cross-linked structure has been found (Patent Document 4).
  しかしながら、この新規なアミド架橋型核酸誘導体を製造するまでに多段階の工程を要しており、大量合成を目的とした製造法という点において改良の余地を残していた。 However, a multi-step process is required to produce this novel amide-bridged nucleic acid derivative, leaving room for improvement in terms of a production method for mass synthesis.
国際公開第2003/068795International Publication No. 2003/066875 国際公開第2005/021570International Publication No. 2005/021570 国際公開第2011/156202International Publication No. 2011/156202 国際公開第2011/052436International Publication No. 2011/052436
本発明は、アンチセンス法に用いる分子として有用なアミド架橋型核酸誘導体を、効率的に製造する方法の提供を目的としている。 An object of the present invention is to provide a method for efficiently producing an amide-bridged nucleic acid derivative useful as a molecule used in an antisense method.
本発明者らは、特定の条件下においてアルドール反応を行うことによりアミド架橋型核酸誘導体を合成するための重要な中間体を効率的に合成できることを見出して、本発明を完成した。また、この中間体の保護基を除去して効率的に閉環させる方法を見出して、本発明を完成させた。 The present inventors have found that an important intermediate for synthesizing an amide-bridged nucleic acid derivative can be efficiently synthesized by carrying out an aldol reaction under a specific condition, thereby completing the present invention. Further, the present invention was completed by finding a method for efficiently removing a ring by removing the protecting group of the intermediate.
すなわち本発明は、
(1)一般式(I)で表される化合物を塩基の存在下でアルドール反応に付する以下に示す工程:
Figure JPOXMLDOC01-appb-C000013

(式中、R及びRは、同一または異なって、水素原子、核酸合成のアミノ基の保護基、アルキル基、アルケニル基、シクロアルキル基、アリール基、アラルキル基、アシル基、シリル基、リン酸基、核酸合成の保護基で保護されたリン酸基、-P(R7)R8[式中、R7およびR8は、同一または異なって、水酸基、核酸合成の保護基で保護された水酸基、メルカプト基、核酸合成の保護基で保護されたメルカプト基、アミノ基、炭素数1~5のアルコキシ基、炭素数1~5のアルキルチオ基、炭素数1~6のシアノアルコキシ基、または、炭素数1~5のアルキル基で置換されたアミノ基を示す];
は、水素原子、核酸合成の水酸基の保護基、アルキル基、アルケニル基、シクロアルキル基、アリール基、アラルキル基、アシル基、シリル基、リン酸基、核酸合成の保護基で保護されたリン酸基、-P(R)R10[式中、RおよびR10は、同一または異なって、水酸基、核酸合成の保護基で保護された水酸基、メルカプト基、核酸合成の保護基で保護されたメルカプト基、アミノ基、炭素数1~5のアルコキシ基、炭素数1~5のアルキルチオ基、炭素数1~6のシアノアルコキシ基、または、炭素数1~5のアルキル基で置換されたアミノ基を示す];
は、水素原子、水酸基、または、炭素数1~5のアルコキシ基;
及びRは、同一または異なって、水素原子、炭素数1~5のアルキル基、またはアリール基;
Bは、置換基を有していてもよい核酸塩基部分)
を含む、一般式(II)で表される化合物の製造方法、
(2)一般式(I)で表される化合物を塩基の存在下で式:RC(=O)Rで表される化合物と反応させる以下に示す工程:
Figure JPOXMLDOC01-appb-C000014
(式中、各定義は前記(1)と同意義)を含む、一般式(II)で表される化合物の製造方法、
(3)前記塩基が、共役酸のpKaが6~10のものである前記(1)または(2)記載の製造方法、
(4)前記塩基が、トリエチルアミン、またはN-メチルモルホリンである前記(3)記載の製造方法、
(5)前記(1)~(4)のいずれかに記載の方法により一般式(II)で表される化合物を得た後、Rが、水素原子である場合、得られた一般式(II)で表される化合物を酸化反応に付する以下の工程:
Figure JPOXMLDOC01-appb-C000015
(式中、Rは水素原子、それ以外の定義は前記(1)と同意義)を含む、一般式(III)で表される化合物の製造方法、
(6)R1およびR2のいずれか一方が核酸合成のアミノ基の保護基であり、その他方が水素原子またはアルキル基である前記(1)~(5)のいずれかに記載の製造方法、
(7)R3が核酸合成の水酸基の保護基である前記(1)~(6)のいずれかに記載の製造方法、
(8)R4が水素原子である前記(1)~(7)のいずれかに記載の製造方法、
(9)R5およびR6がいずれも水素原子である前記(1)~(8)のいずれかに記載の製造方法、
(10)Bが置換基を有していてもよい、ピリミジン核酸塩基もしくはプリン核酸塩基である前記(1)~(9)のいずれかに記載の製造方法、
(11)下記一般式(III)で表される化合物およびその塩
Figure JPOXMLDOC01-appb-C000016
(式中、Rは核酸合成の水酸基の保護基、それ以外の定義は前記(1)と同意義)、
(12)一般式(III)で表される化合物を脱シリル化剤と反応させ、その反応液に縮合剤を反応させる以下に示す工程:
Figure JPOXMLDOC01-appb-C000017
(式中、Rは、炭素数1~5のアルキル基、Rは、核酸合成のアミノ基の保護基、Rは核酸合成の水酸基の保護基であってシリル基を有する保護基、それ以外の定義は前記(1)と同意義)
を含む、一般式(IV)で表される化合物の製造方法、
(13)前記(12)に記載の方法により一般式(IV)で表される化合物を得た後、得られた一般式(IV)で表される化合物に、核酸合成の水酸基の保護に使用する試薬を反応させる以下に示す工程:
Figure JPOXMLDOC01-appb-C000018
(式中、Rは核酸合成の水酸基の保護基、それ以外の定義は前記(12)と同意義)
を含む、一般式(V)で表される化合物の製造方法、
(14)下記一般式(V)で表される化合物およびその塩、
Figure JPOXMLDOC01-appb-C000019
(式中、各定義は、前記(13)と同意義)
(15)下記一般式(VI)で表される化合物をトランスグリコシル化反応に付する以下に示す工程:
Figure JPOXMLDOC01-appb-C000020
(式中、Bは置換基を有していてもよいピリミジン核酸塩基、Bは置換基を有していてもよいチミン以外の核酸塩基、Xは水素原子、ナトリウム原子またはカリウム原子、それ以外の定義は前記(1)と同義)
を含む、一般式(VII)で表される化合物の製造方法、
(16)下記一般式(VII)で表される化合物およびその塩、
Figure JPOXMLDOC01-appb-C000021
(式中、各定義は、前記(15)と同意義)
(17)下記一般式(VIII)で表される化合物をアルキルアミンと反応させる以下に示す工程:
Figure JPOXMLDOC01-appb-C000022
(式中、Yは置換基を有していてもよいアルキル基または置換基を有していてもよいフェニル基、Y~Yは核酸合成の水酸基の保護基、R1’およびR2’は水素原子またはアルキル基、Bは置換基を有していてもよい芳香族複素環基)
を含む、一般式(IX)で表される化合物の製造方法、
(18)下記一般式(X)で表される化合物をN-グリコシル化反応に付する以下に示す工程:
Figure JPOXMLDOC01-appb-C000023
(式中、Yは核酸合成の水酸基の保護基、R4’はアルキル基、置換基を有していてもよい芳香環、Bは置換基を有していてもよい芳香族複素環基)
を含む、一般式(XI)で表される化合物の製造方法、および
(19)下記一般式(XII)で表される化合物を分子内環化反応に付する以下に示す工程:
Figure JPOXMLDOC01-appb-C000024
(式中、YおよびYは核酸合成の水酸基の保護基、R5’はアルキル基、水素原子、置換基を有していてもよいベンジル基、または置換基を有していてもよい芳香環、R6’、R7’、R8’およびR9’は水素原子またはアルキル基)を含む、一般式(XIII)で表される化合物の製造方法、
に関する。
That is, the present invention
(1) The following steps for subjecting a compound represented by the general formula (I) to an aldol reaction in the presence of a base:
Figure JPOXMLDOC01-appb-C000013

(In the formula, R 1 and R 2 are the same or different and each represents a hydrogen atom, an amino group protecting group for nucleic acid synthesis, an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, an aralkyl group, an acyl group, a silyl group, Phosphate group, phosphate group protected with a protecting group for nucleic acid synthesis, -P (R 7 ) R 8 [wherein R 7 and R 8 are the same or different and protected with a hydroxyl group, a protecting group for nucleic acid synthesis A hydroxyl group, a mercapto group, a mercapto group protected with a protecting group for nucleic acid synthesis, an amino group, an alkoxy group having 1 to 5 carbon atoms, an alkylthio group having 1 to 5 carbon atoms, a cyanoalkoxy group having 1 to 6 carbon atoms, Or an amino group substituted with an alkyl group having 1 to 5 carbon atoms];
R 3 was protected with a hydrogen atom, a hydroxyl protecting group for nucleic acid synthesis, an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, an aralkyl group, an acyl group, a silyl group, a phosphate group, or a protecting group for nucleic acid synthesis. Phosphate group, —P (R 9 ) R 10 wherein R 9 and R 10 are the same or different and are a hydroxyl group, a hydroxyl group protected with a protecting group for nucleic acid synthesis, a mercapto group, or a protecting group for nucleic acid synthesis. Substituted with a protected mercapto group, amino group, alkoxy group having 1 to 5 carbon atoms, alkylthio group having 1 to 5 carbon atoms, cyanoalkoxy group having 1 to 6 carbon atoms, or alkyl group having 1 to 5 carbon atoms Represents an amino group];
R 4 represents a hydrogen atom, a hydroxyl group, or an alkoxy group having 1 to 5 carbon atoms;
R 5 and R 6 are the same or different and each represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or an aryl group;
B is a nucleobase moiety optionally having a substituent)
A process for producing a compound represented by the general formula (II),
(2) reacting a compound represented by the general formula (I) with a compound represented by the formula: R 5 C (═O) R 6 in the presence of a base:
Figure JPOXMLDOC01-appb-C000014
(Wherein each definition has the same meaning as in the above (1)), a method for producing a compound represented by the general formula (II),
(3) The production method according to (1) or (2), wherein the base is a conjugate acid having a pKa of 6 to 10.
(4) The production method according to the above (3), wherein the base is triethylamine or N-methylmorpholine,
(5) After obtaining the compound represented by the general formula (II) by the method described in any one of (1) to (4) above, when R 4 is a hydrogen atom, the obtained general formula ( The following steps for subjecting the compound represented by II) to an oxidation reaction:
Figure JPOXMLDOC01-appb-C000015
(Wherein, R 4 is a hydrogen atom, and other definitions are as defined in the above (1)), a method for producing a compound represented by the general formula (III),
(6) The production method according to any one of (1) to (5), wherein either one of R 1 and R 2 is an amino-protecting group for nucleic acid synthesis, and the other is a hydrogen atom or an alkyl group. ,
(7) The production method according to any one of (1) to (6), wherein R 3 is a hydroxyl-protecting group for nucleic acid synthesis,
(8) The production method according to any one of (1) to (7), wherein R 4 is a hydrogen atom.
(9) The production method according to any one of (1) to (8), wherein both R 5 and R 6 are hydrogen atoms.
(10) The production method according to any one of (1) to (9), wherein B is a pyrimidine nucleobase or a purine nucleobase optionally having a substituent,
(11) A compound represented by the following general formula (III) and a salt thereof
Figure JPOXMLDOC01-appb-C000016
(Wherein R 3 is a protecting group for a hydroxyl group in nucleic acid synthesis, and other definitions are the same as defined in (1) above),
(12) reacting the compound represented by the general formula (III) with a desilylation agent and reacting the reaction solution with a condensing agent:
Figure JPOXMLDOC01-appb-C000017
(Wherein R 1 is an alkyl group having 1 to 5 carbon atoms, R 2 is a protecting group for an amino group for nucleic acid synthesis, R 3 is a protecting group for a hydroxyl group for nucleic acid synthesis and has a silyl group, Other definitions are the same as (1) above)
A process for producing a compound represented by the general formula (IV),
(13) After obtaining the compound represented by the general formula (IV) by the method described in the above (12), the obtained compound represented by the general formula (IV) is used for protecting hydroxyl groups in nucleic acid synthesis. The steps shown below for reacting the reagents to be reacted:
Figure JPOXMLDOC01-appb-C000018
(Wherein R 7 is a hydroxyl-protecting group for nucleic acid synthesis, and other definitions are the same as defined in (12) above)
A process for producing a compound represented by the general formula (V),
(14) A compound represented by the following general formula (V) and a salt thereof,
Figure JPOXMLDOC01-appb-C000019
(Wherein each definition has the same meaning as (13) above)
(15) A step shown below for subjecting a compound represented by the following general formula (VI) to a transglycosylation reaction:
Figure JPOXMLDOC01-appb-C000020
(Wherein B 1 is a pyrimidine nucleobase which may have a substituent, B 2 is a nucleobase other than thymine which may have a substituent, X is a hydrogen atom, sodium atom or potassium atom, Definitions other than are synonymous with (1) above)
A process for producing a compound represented by the general formula (VII),
(16) A compound represented by the following general formula (VII) and a salt thereof,
Figure JPOXMLDOC01-appb-C000021
(Wherein each definition has the same meaning as in the above (15))
(17) The following process of reacting a compound represented by the following general formula (VIII) with an alkylamine:
Figure JPOXMLDOC01-appb-C000022
Wherein Y 1 is an alkyl group which may have a substituent or a phenyl group which may have a substituent, Y 2 to Y 4 are hydroxyl protecting groups for nucleic acid synthesis, R 1 ′ and R 1 2 ′ is a hydrogen atom or an alkyl group, B is an aromatic heterocyclic group which may have a substituent)
A process for producing a compound represented by the general formula (IX),
(18) A step shown below for subjecting a compound represented by the following general formula (X) to an N-glycosylation reaction:
Figure JPOXMLDOC01-appb-C000023
(Wherein Y 5 is a hydroxyl-protecting group for nucleic acid synthesis, R 4 ′ is an alkyl group, an optionally substituted aromatic ring, and B is an optionally substituted aromatic heterocyclic group. )
A process for producing a compound represented by the general formula (XI), and (19) subjecting the compound represented by the following general formula (XII) to an intramolecular cyclization reaction:
Figure JPOXMLDOC01-appb-C000024
Wherein Y 7 and Y 8 are hydroxyl-protecting groups for nucleic acid synthesis, R 5 ′ is an alkyl group, a hydrogen atom, an optionally substituted benzyl group, or an optionally substituted group. An aromatic ring, R 6 ′ , R 7 ′ , R 8 ′ and R 9 ′ are a hydrogen atom or an alkyl group), and a method for producing a compound represented by the general formula (XIII),
About.
本発明によれば、アンチセンス法に用いる分子として有用なアミド架橋型核酸誘導体の製造に必要な新規な重要中間体を効率よく製造することができる。より具体的には原料残と副生成物を最小限におさえて重要中間体を製造することができる。また、この中間体を用いることによって、従来の方法よりも効率的にアンチセンス分子として有用なアミド架橋型核酸誘導体を製造することが可能となった。さらに、この中間体の保護基を除去して効率的に閉環させる方法を見出して、高収率で中間体を得ることが可能となった。 ADVANTAGE OF THE INVENTION According to this invention, the novel important intermediate required for manufacture of an amide bridge | crosslinking type nucleic acid derivative useful as a molecule | numerator used for an antisense method can be manufactured efficiently. More specifically, an important intermediate can be produced with a minimum of raw material residues and by-products. Further, by using this intermediate, it has become possible to produce an amide-bridged nucleic acid derivative useful as an antisense molecule more efficiently than the conventional method. Furthermore, it has become possible to obtain an intermediate in a high yield by finding a method for removing the protecting group of the intermediate and efficiently cyclizing the intermediate.
まず、本明細書中で用いられる用語を定義する。 First, terms used in this specification are defined.
Bの「核酸塩基部分」とは、炭化水素環式基の他、炭化水素環の構成原子である炭素原子を、1個以上の窒素原子、硫黄原子もしくは酸素原子などのヘテロ原子に置き換えた構造を有し、芳香族性を示す5~20員環のあらゆる複素環式基をいい、単環、縮合環を含む。具体的には、炭化水素環としては、例えば、ベンゼン、ナフタレン、アントラセン、フェナントレン、インダン、インデン、テトラヒドロナフチレン、ビフェニレン等が挙げられる。複素環としては、例えば、ピリミジン核酸塩基もしくはプリン核酸塩基が挙げられる。いずれの環も、以下のα群から選択される置換基を1つ以上有していてもよい。ここで、ピリミジン核酸塩基もしくはプリン核酸塩基には、核酸の構成成分として一般に知られる塩基(例えば、グアニン、アデニン、シトシン、チミン、ウラシル)、及びその他これらに類する核酸成分の塩基として作用もしくは代用し得るあらゆる化学構造が含まれる。その他、チオフェン、チアントレン、フラン、ピラン、イソベンゾフラン、クロメン、キサンテン、フェノキサチイン、ピロール、イミダゾール、ピラゾール、イソチアゾール、イソキサゾール、ピリダジン、インドリジン、インドール、イソインドール、イソキノリン、キノリン、ナフチリジン、キノキサリン、キナゾリン、プテリジン、カルバゾール、フェナントリジン、アクリジン、ペリミジン、フェナジン、フェナルサジン、フェノチアジン、フラザン、フェノキサジン、ピロリジン、ピロリン、イミダゾリジン、イミダゾリン、ピラゾリジンなども含まれる。好適には、ピリミジン核酸塩基もしくはプリン核酸塩基、以下のα群から選択される置換基を1つ以上有していてもよいピリミジン核酸塩基もしくはプリン核酸塩基であり、具体的には、プリン-9-イル基、2-オキソ-ピリミジン-1-イル基、または下記α群から選択される置換基を有するプリン-9-イル基もしくは2-オキソ-ピリミジン-1-イル基が好適である。
α群:水酸基、核酸合成の保護基で保護された水酸基、炭素数1~5のアルコキシ基、メルカプト基、核酸合成の保護基で保護されたメルカプト基、炭素数1~5のアルキルチオ基、アミノ基、核酸合成の保護基で保護されたアミノ基、炭素数1~5のアルキル基で置換されたアミノ基、炭素数1~5のアルキル基、および、ハロゲン原子。
The “nucleobase moiety” of B is a structure in which, in addition to a hydrocarbon cyclic group, a carbon atom which is a constituent atom of the hydrocarbon ring is replaced with one or more hetero atoms such as a nitrogen atom, a sulfur atom or an oxygen atom Any heterocyclic group having a 5- to 20-membered ring and having aromaticity, including monocyclic and condensed rings. Specifically, examples of the hydrocarbon ring include benzene, naphthalene, anthracene, phenanthrene, indane, indene, tetrahydronaphthylene, biphenylene and the like. Examples of the heterocyclic ring include pyrimidine nucleobase or purine nucleobase. Any ring may have one or more substituents selected from the following α group. Here, the pyrimidine nucleobase or purine nucleobase acts or substitutes for a base generally known as a constituent component of a nucleic acid (eg, guanine, adenine, cytosine, thymine, uracil) and other similar nucleic acid components. Includes every chemical structure you get. Others, thiophene, thianthrene, furan, pyran, isobenzofuran, chromene, xanthene, phenoxathiin, pyrrole, imidazole, pyrazole, isothiazole, isoxazole, pyridazine, indolizine, indole, isoindole, isoquinoline, quinoline, naphthyridine, quinoxaline, Also included are quinazoline, pteridine, carbazole, phenanthridine, acridine, perimidine, phenazine, phenalazine, phenothiazine, furazane, phenoxazine, pyrrolidine, pyrroline, imidazolidine, imidazoline, pyrazolidine and the like. Preferably, it is a pyrimidine nucleobase or a purine nucleobase, or a pyrimidine nucleobase or a purine nucleobase, which may have one or more substituents selected from the following α group. A -yl group, a 2-oxo-pyrimidin-1-yl group, or a purin-9-yl group or a 2-oxo-pyrimidin-1-yl group having a substituent selected from the following group α is preferred.
α group: hydroxyl group, hydroxyl group protected with a protecting group for nucleic acid synthesis, alkoxy group having 1 to 5 carbon atoms, mercapto group, mercapto group protected with a protecting group for nucleic acid synthesis, alkylthio group having 1 to 5 carbon atoms, amino An amino group protected with a protecting group for nucleic acid synthesis, an amino group substituted with an alkyl group having 1 to 5 carbon atoms, an alkyl group having 1 to 5 carbon atoms, and a halogen atom.
ここで、「置換基を有していてもよいプリン核酸塩基」として好適な基は、6-アミノプリン-9-イル(即ち、アデニニル)、アミノ基が核酸合成の保護基で保護された6-アミノプリン-9-イル、2,6-ジアミノプリン-9-イル、2-アミノ-6-クロロプリン-9-イル、アミノ基が核酸合成の保護基で保護された2-アミノ-6-クロロプリン-9-イル、2-アミノ-6-フルオロプリン-9-イル、アミノ基が核酸合成の保護基で保護された2-アミノ-6-フルオロプリン-9-イル、2-アミノ-6-ブロモプリン-9-イル、アミノ基が核酸合成の保護基で保護された2-アミノ-6-ブロモプリン-9-イル、2-アミノ-6-ヒドロキシプリン-9-イル(即ち、グアニニル)、アミノ基が核酸合成の保護基で保護された2-アミノ-6-ヒドロキシプリン-9-イル、6-アミノ-2-メトキシプリン-9-イル、6-アミノ-2-クロロプリン-9-イル、6-アミノ-2-フルオロプリン-9-イル、2,6-ジメトキシプリン-9-イル、2,6-ジクロロプロリン-2-イル又は6-メルカプトプリン-9-イル基であり、さらに好適には、6-ベンゾイルアミノプリン-9-イル、アデニニル、2-イソブチリルアミノ-6-ヒドロキシプリン-9-イル又はグアニニル基である。 Here, a group suitable as “optionally substituted purine nucleobase” is 6-aminopurin-9-yl (that is, adeninyl), 6 in which the amino group is protected with a protecting group for nucleic acid synthesis. -Aminopurin-9-yl, 2,6-diaminopurine-9-yl, 2-amino-6-chloropurin-9-yl, 2-amino-6- in which the amino group is protected with a protecting group for nucleic acid synthesis Chloropurin-9-yl, 2-amino-6-fluoropurin-9-yl, 2-amino-6-fluoropurin-9-yl, amino group protected with a protecting group for nucleic acid synthesis, 2-amino-6 -Bromopurin-9-yl, 2-amino-6-bromopurin-9-yl, 2-amino-6-hydroxypurin-9-yl (ie, guanylyl) in which the amino group is protected with a protecting group for nucleic acid synthesis The amino group is a protecting group for nucleic acid synthesis. Protected 2-amino-6-hydroxypurin-9-yl, 6-amino-2-methoxypurine-9-yl, 6-amino-2-chloropurin-9-yl, 6-amino-2-fluoropurine -9-yl, 2,6-dimethoxypurin-9-yl, 2,6-dichloroprolin-2-yl or 6-mercaptopurin-9-yl group, more preferably 6-benzoylaminopurine- 9-yl, adenylyl, 2-isobutyrylamino-6-hydroxypurin-9-yl or guaninyl group.
また、「置換基を有していてもよいピリミジン核酸塩基」として好適な基は、2-オキソ-4-アミノ-1,2-ジヒドロピリミジン-1-イル(即ち、シトシニル)、アミノ基が核酸合成の保護基で保護された2-オキソ-4-アミノ-1,2-ジヒドロピリミジン-1-イル、2-オキソ-4-アミノ-5-フルオロ-1,2-ジヒドロピリミジン-1-イル、アミノ基が核酸合成の保護基で保護された2-オキソ-4-アミノ-5-フルオロ-1,2-ジヒドロピリミジン-1-イル、4-アミノ-2-オキソ-5-クロロ-1,2-ジヒドロピリミジン-1-イル、2-オキソ-4-メトキシ-1,2-ジヒドロピリミジン-1-イル、2-オキソ-4-メルカプト-1,2-ジヒドロピリミジン-1-イル、2-オキソ-4-ヒドロキシ-1,2-ジヒドロピリミジン-1-イル(即ち、ウラシニル)、2-オキソ-4-ヒドロキシ-5-メチル-1,2-ジヒドロピリミジン-1-イル(即ち、チミニル)または4-アミノ-5-メチル-2-オキソ-1,2-ジヒドロピリミジン-1-イル(即ち、5-メチルシトシニル)基であり、さらに好適には、2-オキソ-4-ベンゾイルアミノ-1,2-ジヒドロピリミジン-1-イル、シトシニル、チミニル、ウラシニル、2-オキソ-4-ベンゾイルアミノ-5-メチル-1,2-ジヒドロピリミジン-1-イル、又は5-メチルシトシニル基である。 A group suitable as “an optionally substituted pyrimidine nucleobase” is 2-oxo-4-amino-1,2-dihydropyrimidin-1-yl (ie, cytosynyl), and the amino group is a nucleic acid. 2-oxo-4-amino-1,2-dihydropyrimidin-1-yl protected with a synthetic protecting group, 2-oxo-4-amino-5-fluoro-1,2-dihydropyrimidin-1-yl, 2-oxo-4-amino-5-fluoro-1,2-dihydropyrimidin-1-yl, 4-amino-2-oxo-5-chloro-1,2, wherein the amino group is protected with a protecting group for nucleic acid synthesis -Dihydropyrimidin-1-yl, 2-oxo-4-methoxy-1,2-dihydropyrimidin-1-yl, 2-oxo-4-mercapto-1,2-dihydropyrimidin-1-yl, 2-oxo- 4-hide Xyl-1,2-dihydropyrimidin-1-yl (ie uracinyl), 2-oxo-4-hydroxy-5-methyl-1,2-dihydropyrimidin-1-yl (ie thyminyl) or 4-amino- 5-methyl-2-oxo-1,2-dihydropyrimidin-1-yl (ie, 5-methylcytosinyl) group, more preferably 2-oxo-4-benzoylamino-1,2-dihydropyrimidine- 1-yl, cytosynyl, thyminyl, uracinyl, 2-oxo-4-benzoylamino-5-methyl-1,2-dihydropyrimidin-1-yl, or 5-methylcytosinyl group.
「置換基を有していてもよいプリン核酸塩基もしくはピリミジン核酸塩基」の中で、さらに好適には、6-アミノプリン-9-イル(即ち、アデニニル)、アミノ基が核酸合成の保護基で保護された6-アミノプリン-9-イル、2,6-ジアミノプリン-9-イル、2-アミノ-6-クロロプリン-9-イル、アミノ基が核酸合成の保護基で保護された2-アミノ-6-クロロプリン-9-イル、2-アミノ-6-フルオロプリン-9-イル、アミノ基が核酸合成の保護基で保護された2-アミノ-6-フルオロプリン-9-イル、2-アミノ-6-ブロモプリン-9-イル、アミノ基が核酸合成の保護基で保護された2-アミノ-6-ブロモプリン-9-イル、2-アミノ-6-ヒドロキシプリン-9-イル(即ち、グアニニル)、アミノ基が核酸合成の保護基で保護された2-アミノ-6-ヒドロキシプリン-9-イル、6-アミノ-2-メトキシプリン-9-イル、6-アミノ-2-クロロプリン-9-イル、6-アミノ-2-フルオロプリン-9-イル、2,6-ジメトキシプリン-9-イル、2,6-ジクロロプリン-9-イル、6-メルカプトプリン-9-イル、2-オキソ-4-アミノ-1,2-ジヒドロピリミジン-1-イル(即ち、シトシニル)、アミノ基が核酸合成の保護基で保護された2-オキソ-4-アミノ-1,2-ジヒドロピリミジン-1-イル、2-オキソ-4-アミノ-5-フルオロ-1,2-ジヒドロピリミジン-1-イル、アミノ基が核酸合成の保護基で保護された2-オキソ-4-アミノ-5-フルオロ-1,2-ジヒドロピリミジン-1-イル、4-アミノ-2-オキソ-5-クロロ-1,2-ジヒドロピリミジン-1-イル、2-オキソ-4-メトキシ-1,2-ジヒドロピリミジン-1-イル、2-オキソ-4-メルカプト-1,2-ジヒドロピリミジン-1-イル、2-オキソ-4-ヒドロキシ-1,2-ジヒドロピリミジン-1-イル(即ち、ウラシニル)、2-オキソ-4-ヒドロキシ-5-メチル-1,2-ジヒドロピリミジン-1-イル(即ち、チミニル)、4-アミノ-5-メチル-2-オキソ-1,2-ジヒドロピリミジン-1-イル(即ち、5-メチルシトシニル)、または、アミノ基が核酸合成の保護基で保護された4-アミノ-5-メチル-2-オキソ-1,2-ジヒドロピリミジン-1-イルである。 Among “optionally substituted purine nucleobases or pyrimidine nucleobases”, more preferably, 6-aminopurin-9-yl (ie, adeninyl), wherein the amino group is a protecting group for nucleic acid synthesis. Protected 6-aminopurin-9-yl, 2,6-diaminopurin-9-yl, 2-amino-6-chloropurin-9-yl, 2-amino protected with a protecting group for nucleic acid synthesis Amino-6-chloropurin-9-yl, 2-amino-6-fluoropurin-9-yl, 2-amino-6-fluoropurin-9-yl having an amino group protected with a protecting group for nucleic acid synthesis, 2 -Amino-6-bromopurin-9-yl, 2-amino-6-bromopurin-9-yl, 2-amino-6-hydroxypurin-9-yl in which the amino group is protected with a protecting group for nucleic acid synthesis ( That is, Guaninyl), Ami 2-amino-6-hydroxypurin-9-yl, 6-amino-2-methoxypurin-9-yl, 6-amino-2-chloropurin-9-yl, the group of which is protected with a protecting group for nucleic acid synthesis, 6-amino-2-fluoropurin-9-yl, 2,6-dimethoxypurin-9-yl, 2,6-dichloropurin-9-yl, 6-mercaptopurin-9-yl, 2-oxo-4- Amino-1,2-dihydropyrimidin-1-yl (ie cytosynyl), 2-oxo-4-amino-1,2-dihydropyrimidin-1-yl in which the amino group is protected with a protecting group for nucleic acid synthesis, -Oxo-4-amino-5-fluoro-1,2-dihydropyrimidin-1-yl, 2-oxo-4-amino-5-fluoro-1,2-amino group protected with a protecting group for nucleic acid synthesis Dihydropyrimidine- -Yl, 4-amino-2-oxo-5-chloro-1,2-dihydropyrimidin-1-yl, 2-oxo-4-methoxy-1,2-dihydropyrimidin-1-yl, 2-oxo-4 -Mercapto-1,2-dihydropyrimidin-1-yl, 2-oxo-4-hydroxy-1,2-dihydropyrimidin-1-yl (ie uracinyl), 2-oxo-4-hydroxy-5-methyl- 1,2-dihydropyrimidin-1-yl (ie, thyminyl), 4-amino-5-methyl-2-oxo-1,2-dihydropyrimidin-1-yl (ie, 5-methylcytosinyl), or an amino group Is 4-amino-5-methyl-2-oxo-1,2-dihydropyrimidin-1-yl protected with a protecting group for nucleic acid synthesis.
「核酸合成のアミノ基の保護基」および「核酸合成の水酸基の保護基」、「核酸合成の保護基で保護された水酸基」の保護基とは、核酸合成の際に安定してアミノ基または水酸基を保護し得るものであれば、特に制限はないが、具体的には、酸性又は中性条件で安定であり、加水素分解、加水分解、電気分解及び光分解のような化学的方法により開裂し得る保護基のことをいい、そのような保護基としては、例えば、ホルミル、アセチル、プロピオニル、ブチリル、イソブチリル、ペンタノイル、ピバロイル、バレリル、イソバレリル、オクタノイル、ノナノイル、デカノイル、3-メチルノナノイル、8-メチルノナノイル、3-エチルオクタノイル、3,7-ジメチルオクタノイル、ウンデカノイル、ドデカノイル、トリデカノイル、テトラデカノイル、ペンタデカノイル、ヘキサデカノイル、1-メチルペンタデカノイル、14-メチルペンタデカノイル、13,13-ジメチルテトラデカノイル、ヘプタデカノイル、15-メチルヘキサデカノイル、オクタデカノイル、1-メチルヘプタデカノイル、ノナデカノイル、4-オキソペンタノイル(レブリノイル)、アイコサノイル及びヘナイコサノイルのようなアルキルカルボニル基、スクシノイル、グルタロイル、アジポイルのようなカルボキシ化アルキルカルボニル基、クロロアセチル、ジクロロアセチル、トリクロロアセチル、トリフルオロアセチルのようなハロゲノ低級アルキルカルボニル基、メトキシアセチル、フェニキシアセチル基、2-(4-tert-ブチル)フェノキシアセチル基のようなアルコキシ低級アルキルカルボニル基、(E)-2-メチル-2-ブテノイルのような不飽和アルキルカルボニル基のような「脂肪族アシル基」;メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、s-ブチル、tert-ブチル、n-ペンチル、イソペンチル、2-メチルブチル、ネオペンチル、1-エチルプロピル、n-ヘキシル、イソヘキシル、4-メチルペンチル、3-メチルペンチル、2-メチルペンチル、1-メチルペンチル、3,3-ジメチルブチル、2,2-ジメチルブチル、1,1-ジメチルブチル、1,2-ジメチルブチル、1,3-ジメチルブチル、2,3-ジメチルブチル、2-エチルブチルのような「低級アルキル基」;エテニル、1-プロペニル、2-プロペニル、1-メチル-2-プロペニル、1-メチル-1-プロペニル、2-メチル-1-プロペニル、2-メチル-2-プロペニル、2-エチル-2-プロペニル、1-ブテニル、2-ブテニル、1-メチル-2-ブテニル、1-メチル-1-ブテニル、3-メチル-2-ブテニル、1-エチル-2-ブテニル、3-ブテニル、1-メチル-3-ブテニル、2-メチル-3-ブテニル、1-エチル-3-ブテニル、1-ペンテニル、2-ペンテニル、1-メチル-2-ペンテニル、2-メチル-2-ペンテニル、3-ペンテニル、1-メチル-3-ペンテニル、2-メチル-3-ペンテニル、4-ペンテニル、1-メチル-4-ペンテニル、2-メチル-4-ペンテニル、1-ヘキセニル、2-ヘキセニル、3-ヘキセニル、4-ヘキセニル、5-ヘキセニルのような「低級アルケニル基」;ベンゾイル、α-ナフトイル、β-ナフトイルのようなアリールカルボニル基、2-ブロモベンゾイル、4-クロロベンゾイルのようなハロゲノアリールカルボニル基、2,4,6-トリメチルベンゾイル、4-トルオイルのような低級アルキル化アリールカルボニル基、4-アニソイルのような低級アルコキシ化アリールカルボニル基、2-カルボキシベンゾイル、3-カルボキシベンゾイル、4-カルボキシベンゾイルのようなカルボキシ化アリールカルボニル基、4-ニトロベンゾイル、2-ニトロベンゾイルのようなニトロ化アリールカルボニル基;N,N-ジメチルホルムイミノ基のようなジアルキルイミノ基;2-(メトキシカルボニル)ベンゾイルのような低級アルコキシカルボニル化アリールカルボニル基、4-フェニルベンゾイルのようなアリール化アリールカルボニル基のような「芳香族アシル基」;テトラヒドロピラン-2-イル、3-ブロモテトラヒドロピラン-2-イル、4-メトキシテトラヒドロピラン-4-イル、テトラヒドロチオピラン-4-イル、4-メトキシテトラヒドロチオピラン-4-イルのような「テトラヒドロピラニル又はテトラヒドロチオピラニル基」;テトラヒドロフラン-2-イル、テトラヒドロチオフラン-2-イルのような「テトラヒドロフラニル又はテトラヒドロチオフラニル基」;トリメチルシリル、トリエチルシリル、イソプロピルジメチルシリル、t-ブチルジメチルシリル、メチルジイソプロピルシリル、メチルジ-t-ブチルシリル、トリイソプロピルシリルのようなトリ低級アルキルシリル基、ジフェニルメチルシリル、ジフェニルブチルシリル、ジフェニルイソプロピルシリル、フェニルジイソプロピルシリルのような1~2個のアリール基で置換されたトリ低級アルキルシリル基のような「シリル基」;メトキシメチル、1,1-ジメチル-1-メトキシメチル、エトキシメチル、プロポキシメチル、イソプロポキシメチル、ブトキシメチル、t-ブトキシメチル、1-エトキシエチルのような「低級アルコキシメチル基」;2-メトキシエトキシメチルのような「低級アルコキシ化低級アルコキシメチル基」;2,2,2-トリクロロエトキシメチル、ビス(2-クロロエトキシ)メチルのような「ハロゲノ低級アルコキシメチル基」;1-エトキシエチル、1-(イソプロポキシ)エチルのような「低級アルコキシ化エチル基」;2,2,2-トリクロロエチルのような「ハロゲン化エチル基」;ベンジル、α-ナフチルメチル、β-ナフチルメチル、ジフェニルメチル、トリフェニルメチル、α-ナフチルジフェニルメチル、9-アンスリルメチルのような「1~3個のアリール基で置換されたメチル基」;4-メチルベンジル、2,4,6-トリメチルベンジル、3,4,5-トリメチルベンジル、4-メトキシベンジル、4-メトキシフェニルジフェニルメチル、4,4’-ジメトキシトリフェニルメチル、2-ニトロベンジル、4-ニトロベンジル、4-クロロベンジル、4-ブロモベンジル、4-シアノベンジルのような「低級アルキル、低級アルコキシ、ハロゲン、シアノ基でアリール環が置換された1~3個のアリール基で置換されたメチル基」;メトキシカルボニル、エトキシカルボニル、t-ブトキシカルボニル、イソブトキシカルボニルのような「低級アルコキシカルボニル基」;4-クロロフェニル、2-フロロフェニル、4-メトキシフェニル、4-ニトロフェニル、2,4-ジニトロフェニルのような「ハロゲン原子、低級アルコキシ基又はニトロ基で置換されたアリール基」;2,2,2-トリクロロエトキシカルボニル、2-トリメチルシリルエトキシカルボニルのような「ハロゲン又はトリ低級アルキルシリル基で置換された低級アルコキシカルボニル基」;ビニルオキシカルボニル、アリールオキシカルボニルのような「アルケニルオキシカルボニル基」;ベンジルオキシカルボニル、4-メトキシベンジルオキシカルボニル、3,4-ジメトキシベンジルオキシカルボニル、2-ニトロベンジルオキシカルボニル、4-ニトロベンジルオキシカルボニルのような1~2個の「低級アルコキシ又はニトロ基でアリール環が置換されていてもよいアラルキルオキシカルボニル基」を挙げることができ、「核酸合成の水酸基の保護基」においては、好適には、「脂肪族アシル基」、「芳香族アシル基」、「1~3個のアリール基で置換されたメチル基」、「低級アルキル、低級アルコキシ、ハロゲン、シアノ基でアリール環が置換された1~3個のアリール基で置換されたメチル基」又は「シリル基」であり、さらに好適には、アセチル基、ベンゾイル基、ベンジル基、p-メトキシベンゾイル基、ジメトキシトリチル基、モノメトキシトリチル基又はtert-ブチルジフェニルシリル基、tert-ブチルジメチルシリル基、4-オキソペンタノイル(レブリノイル)基であり、「核酸合成の保護基で保護された水酸基」の保護基においては、好適には、「脂肪族アシル基」、「芳香族アシル基」、「1~3個のアリール基で置換されたメチル基」、「ハロゲン原子、低級アルコキシ基又はニトロ基で置換されたアリール基」、「低級アルキル基」又は「低級アルケニル基」であり、さらに好適には、ベンゾイル基、ベンジル基、2-クロロフェニル基、4-クロロフェニル基又は2-プロペニル基である。 “Protecting group for amino group for nucleic acid synthesis” and “protecting group for hydroxyl group for nucleic acid synthesis” and “hydroxyl group protected by protecting group for nucleic acid synthesis” are an amino group or a stable group during nucleic acid synthesis. Although it is not particularly limited as long as it can protect a hydroxyl group, specifically, it is stable under acidic or neutral conditions, and is obtained by a chemical method such as hydrogenolysis, hydrolysis, electrolysis and photolysis. Examples of the protecting group that can be cleaved include formyl, acetyl, propionyl, butyryl, isobutyryl, pentanoyl, pivaloyl, valeryl, isovaleryl, octanoyl, nonanoyl, decanoyl, 3-methylnonanoyl, 8- Methylnonanoyl, 3-ethyloctanoyl, 3,7-dimethyloctanoyl, undecanoyl, dodecanoyl, tridecanoyl, te Radecanoyl, pentadecanoyl, hexadecanoyl, 1-methylpentadecanoyl, 14-methylpentadecanoyl, 13,13-dimethyltetradecanoyl, heptadecanoyl, 15-methylhexadecanoyl, octadecanoyl, 1-methylhepta Decanoyl, nonadecanoyl, 4-oxopentanoyl (levulinoyl), alkylcarbonyl groups such as icosanoyl and henaicosanoyl, carboxylated alkylcarbonyl groups such as succinoyl, glutaroyl, adipoyl, chloroacetyl, dichloroacetyl, trichloroacetyl, trifluoroacetyl Such as halogeno lower alkylcarbonyl group, methoxyacetyl, phenoxyacetyl group, 2- (4-tert-butyl) phenoxyacetyl group An “aliphatic acyl group” such as an alkylcarbonyl group, an unsaturated alkylcarbonyl group such as (E) -2-methyl-2-butenoyl; methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s -Butyl, tert-butyl, n-pentyl, isopentyl, 2-methylbutyl, neopentyl, 1-ethylpropyl, n-hexyl, isohexyl, 4-methylpentyl, 3-methylpentyl, 2-methylpentyl, 1-methylpentyl, “Lower” such as 3,3-dimethylbutyl, 2,2-dimethylbutyl, 1,1-dimethylbutyl, 1,2-dimethylbutyl, 1,3-dimethylbutyl, 2,3-dimethylbutyl, 2-ethylbutyl Alkyl group "; ethenyl, 1-propenyl, 2-propenyl, 1-methyl-2-propenyl, 1- Methyl-1-propenyl, 2-methyl-1-propenyl, 2-methyl-2-propenyl, 2-ethyl-2-propenyl, 1-butenyl, 2-butenyl, 1-methyl-2-butenyl, 1-methyl- 1-butenyl, 3-methyl-2-butenyl, 1-ethyl-2-butenyl, 3-butenyl, 1-methyl-3-butenyl, 2-methyl-3-butenyl, 1-ethyl-3-butenyl, 1- Pentenyl, 2-pentenyl, 1-methyl-2-pentenyl, 2-methyl-2-pentenyl, 3-pentenyl, 1-methyl-3-pentenyl, 2-methyl-3-pentenyl, 4-pentenyl, 1-methyl- “Lower alkenyl such as 4-pentenyl, 2-methyl-4-pentenyl, 1-hexenyl, 2-hexenyl, 3-hexenyl, 4-hexenyl, 5-hexenyl An arylcarbonyl group such as benzoyl, α-naphthoyl, β-naphthoyl, a halogenoarylcarbonyl group such as 2-bromobenzoyl, 4-chlorobenzoyl, 2,4,6-trimethylbenzoyl, 4-toluoyl, etc. Lower alkylated arylcarbonyl group, lower alkoxylated arylcarbonyl group such as 4-anisoyl, carboxylated arylcarbonyl group such as 2-carboxybenzoyl, 3-carboxybenzoyl, 4-carboxybenzoyl, 4-nitrobenzoyl, 2- Nitrated arylcarbonyl groups such as nitrobenzoyl; dialkylimino groups such as N, N-dimethylformimino group; lower alkoxycarbonylated arylcarbonyl groups such as 2- (methoxycarbonyl) benzoyl; 4-phenyl “Aromatic acyl groups” such as arylated arylcarbonyl groups such as benzoyl; tetrahydropyran-2-yl, 3-bromotetrahydropyran-2-yl, 4-methoxytetrahydropyran-4-yl, tetrahydrothiopyran- “Tetrahydropyranyl or tetrahydrothiopyranyl group” such as 4-yl, 4-methoxytetrahydrothiopyran-4-yl; “tetrahydrofuranyl or tetrahydro such as tetrahydrofuran-2-yl, tetrahydrothiofuran-2-yl” A thiofuranyl group ”; a tri-lower alkylsilyl group such as trimethylsilyl, triethylsilyl, isopropyldimethylsilyl, t-butyldimethylsilyl, methyldiisopropylsilyl, methyldi-t-butylsilyl, triisopropylsilyl; “Silyl groups” such as tri-lower alkylsilyl groups substituted by 1 to 2 aryl groups such as rumethylsilyl, diphenylbutylsilyl, diphenylisopropylsilyl, phenyldiisopropylsilyl; methoxymethyl, 1,1-dimethyl-1 “Lower alkoxymethyl groups” such as methoxymethyl, ethoxymethyl, propoxymethyl, isopropoxymethyl, butoxymethyl, t-butoxymethyl, 1-ethoxyethyl; “lower alkoxylated lower alkoxy” such as 2-methoxyethoxymethyl “Methyl group”; “halogeno lower alkoxymethyl group” such as 2,2,2-trichloroethoxymethyl and bis (2-chloroethoxy) methyl; “lower” such as 1-ethoxyethyl and 1- (isopropoxy) ethyl Alkoxylated ethyl group "; “Halogenated ethyl groups” such as 2,2-trichloroethyl; “benzyl, α-naphthylmethyl, β-naphthylmethyl, diphenylmethyl, triphenylmethyl, α-naphthyldiphenylmethyl, 9-anthrylmethyl” Methyl group substituted with 1 to 3 aryl groups ”; 4-methylbenzyl, 2,4,6-trimethylbenzyl, 3,4,5-trimethylbenzyl, 4-methoxybenzyl, 4-methoxyphenyldiphenylmethyl, 4,4'-dimethoxytriphenylmethyl, 2-nitrobenzyl, 4-nitrobenzyl, 4-chlorobenzyl, 4-bromobenzyl, 4-cyanobenzyl and the like "lower alkyl, lower alkoxy, halogen, aryl with cyano group" A methyl group substituted with 1 to 3 aryl groups substituted on the ring; “Lower alkoxycarbonyl groups” such as nyl, ethoxycarbonyl, t-butoxycarbonyl, isobutoxycarbonyl; 4-chlorophenyl, 2-fluorophenyl, 4-methoxyphenyl, 4-nitrophenyl, 2,4-dinitrophenyl, etc. “Aryl group substituted by halogen atom, lower alkoxy group or nitro group”; “lower group substituted by halogen or tri-lower alkylsilyl group” such as 2,2,2-trichloroethoxycarbonyl, 2-trimethylsilylethoxycarbonyl “Alkoxycarbonyl group”; “alkenyloxycarbonyl group” such as vinyloxycarbonyl and aryloxycarbonyl; benzyloxycarbonyl, 4-methoxybenzyloxycarbonyl, 3,4-dimethoxybenzyloxycarbonyl, 2 Examples include 1 to 2 “aralkyloxycarbonyl groups in which the aryl ring may be substituted with a lower alkoxy or nitro group”, such as nitrobenzyloxycarbonyl and 4-nitrobenzyloxycarbonyl. The “protecting group for hydroxyl group” is preferably “aliphatic acyl group”, “aromatic acyl group”, “methyl group substituted with 1 to 3 aryl groups”, “lower alkyl, lower alkoxy, halogen”. A methyl group substituted with 1 to 3 aryl groups in which the aryl ring is substituted with a cyano group ”or“ silyl group ”, and more preferably an acetyl group, a benzoyl group, a benzyl group, p-methoxybenzoyl Group, dimethoxytrityl group, monomethoxytrityl group or tert-butyldiphenylsilyl group, tert-butyldimethylsilyl group In the protective group of “hydroxy group protected with a protective group for nucleic acid synthesis”, preferably an “aliphatic acyl group”, “aromatic acyl group”, 4-oxopentanoyl (levulinoyl) group, “Methyl group substituted with 1 to 3 aryl groups”, “aryl group substituted with halogen atom, lower alkoxy group or nitro group”, “lower alkyl group” or “lower alkenyl group”, more preferred And benzoyl group, benzyl group, 2-chlorophenyl group, 4-chlorophenyl group or 2-propenyl group.
「アルキル基」とは、炭素数1~20の直鎖または分岐鎖状のアルキル基を示し、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、s-ブチル、tert-ブチル、n-ペンチル、イソペンチル、2-メチルブチル、ネオペンチル、1-エチルプロピル、n-ヘキシル、イソヘキシル、4-メチルペンチル、3-メチルペンチル、2-メチルペンチル、1-メチルペンチル、3,3-ジメチルブチル、2,2-ジメチルブチル、1,1-ジメチルブチル、1,2-ジメチルブチル、1,3-ジメチルブチル、2,3-ジメチルブチル、2-エチルブチルのような炭素数1~6の直鎖または分岐鎖状のアルキル基(本明細書においては、これらを低級アルキル基とも称す。)の他、ヘプチル、オクチル、ノニル、デシルなど炭素数7~20の直鎖または分岐鎖状のアルキル基が含まれ、好適には、上記の炭素数1~6の直鎖または分岐鎖状のアルキル基である。 “Alkyl group” means a linear or branched alkyl group having 1 to 20 carbon atoms, and includes methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, tert-butyl, n -Pentyl, isopentyl, 2-methylbutyl, neopentyl, 1-ethylpropyl, n-hexyl, isohexyl, 4-methylpentyl, 3-methylpentyl, 2-methylpentyl, 1-methylpentyl, 3,3-dimethylbutyl, 2 Linear or branched having 1 to 6 carbon atoms such as 1,2-dimethylbutyl, 1,1-dimethylbutyl, 1,2-dimethylbutyl, 1,3-dimethylbutyl, 2,3-dimethylbutyl, 2-ethylbutyl In addition to chain alkyl groups (in the present specification, these are also referred to as lower alkyl groups), heptyl, octyl, nonyl, deci Like it includes straight or branched chain alkyl group having 7 to 20 carbon atoms, preferably a straight or branched chain alkyl group above having 1 to 6 carbon atoms.
「アルケニル基」とは、炭素数2~20の直鎖または分岐鎖状のアルケニル基を示し、エテニル、1-プロペニル、2-プロペニル、1-メチル-2-プロペニル、1-メチル-1-プロペニル、2-メチル-1-プロペニル、2-メチル-2-プロペニル、2-エチル-2-プロペニル、1-ブテニル、2-ブテニル、1-メチル-2-ブテニル、1-メチル-1-ブテニル、3-メチル-2-ブテニル、1-エチル-2-ブテニル、3-ブテニル、1-メチル-3-ブテニル、2-メチル-3-ブテニル、1-エチル-3-ブテニル、1-ペンテニル、2-ペンテニル、1-メチル-2-ペンテニル、2-メチル-2-ペンテニル、3-ペンテニル、1-メチル-3-ペンテニル、2-メチル-3-ペンテニル、4-ペンテニル、1-メチル-4-ペンテニル、2-メチル-4-ペンテニル、1-ヘキセニル、2-ヘキセニル、3-ヘキセニル、4-ヘキセニル、5-ヘキセニルのような炭素数2~6の直鎖または分岐鎖状のアルケニル基(本明細書においては、これらを低級アルケニル基とも称す。)の他、ゲラニル、ファルネシルなどが含まれ、好適には、上記の炭素数2~6の直鎖または分岐鎖状のアルケニル基である。 The “alkenyl group” refers to a straight or branched alkenyl group having 2 to 20 carbon atoms, and includes ethenyl, 1-propenyl, 2-propenyl, 1-methyl-2-propenyl, 1-methyl-1-propenyl. 2-methyl-1-propenyl, 2-methyl-2-propenyl, 2-ethyl-2-propenyl, 1-butenyl, 2-butenyl, 1-methyl-2-butenyl, 1-methyl-1-butenyl, 3 -Methyl-2-butenyl, 1-ethyl-2-butenyl, 3-butenyl, 1-methyl-3-butenyl, 2-methyl-3-butenyl, 1-ethyl-3-butenyl, 1-pentenyl, 2-pentenyl 1-methyl-2-pentenyl, 2-methyl-2-pentenyl, 3-pentenyl, 1-methyl-3-pentenyl, 2-methyl-3-pentenyl, 4-pentenyl, 1-methyl Linear or branched alkenyl having 2 to 6 carbon atoms such as ru-4-pentenyl, 2-methyl-4-pentenyl, 1-hexenyl, 2-hexenyl, 3-hexenyl, 4-hexenyl and 5-hexenyl In addition to groups (in the present specification, these are also referred to as lower alkenyl groups), geranyl, farnesyl, and the like are included. Preferably, the straight chain or branched chain alkenyl group having 2 to 6 carbon atoms is used. is there.
「シクロアルキル基」とは、炭素数3~10のシクロアルキル基を示し、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル、ノルボルニル、アダマンチルなどが挙げられ、好適には、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチルなどの炭素数3~8のシクロアルキル基である。また、「シクロアルキル基」には、上記シクロアルキル基の環上の1つ以上のメチレンが酸素原子や硫黄原子、あるいはアルキル基で置換された窒素原子に置換された複素環基も含まれ、例えば、テトラヒドロピラニル基などが挙げられる。 The “cycloalkyl group” refers to a cycloalkyl group having 3 to 10 carbon atoms, and examples thereof include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, norbornyl, adamantyl, and the like, preferably cyclopropyl, A cycloalkyl group having 3 to 8 carbon atoms such as cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl and the like. In addition, the “cycloalkyl group” includes a heterocyclic group in which one or more methylenes on the ring of the cycloalkyl group are substituted with an oxygen atom, a sulfur atom, or a nitrogen atom substituted with an alkyl group, Examples thereof include a tetrahydropyranyl group.
「アリール基」とは、芳香族炭化水素基から水素原子1個を除いた炭素数6~14の1価の置換基を意味し、例えば、フェニル、インデニル、ナフチル、フェナンスレニル、アントラセニルなどが挙げられる。また、アリール環が、ハロゲン原子、低級アルキル基、水酸基、アルコキシ基、アリールオキシ基、アミノ基、ニトロ基、トリフルオロメチル、フェニル基等の1種以上の基によって置換されていてもよく、そのような置換されていてもよいアリール基としては、例えば、2-メチルフェニル、2,6-ジメチルフェニル、2-クロロフェニル、4-クロロフェニル、2,4-ジクロロフェニル、2,5-ジクロロフェニル、2-ブロモフェニル、4-メトキシフェニル、4-クロロ-2-ニトロフェニル、4-ニトロフェニル、2,4-ジニトロフェニル、ビフェニルなどが挙げられる。好適には、ハロゲン原子、低級アルコキシ基ニトロ基で置換されたフェニル基、フェニル基などが挙げられる。 The “aryl group” means a monovalent substituent having 6 to 14 carbon atoms in which one hydrogen atom is removed from an aromatic hydrocarbon group, and examples thereof include phenyl, indenyl, naphthyl, phenanthrenyl, anthracenyl and the like. . Further, the aryl ring may be substituted with one or more groups such as a halogen atom, a lower alkyl group, a hydroxyl group, an alkoxy group, an aryloxy group, an amino group, a nitro group, trifluoromethyl, a phenyl group, Examples of the optionally substituted aryl group include 2-methylphenyl, 2,6-dimethylphenyl, 2-chlorophenyl, 4-chlorophenyl, 2,4-dichlorophenyl, 2,5-dichlorophenyl, and 2-bromo. Examples include phenyl, 4-methoxyphenyl, 4-chloro-2-nitrophenyl, 4-nitrophenyl, 2,4-dinitrophenyl, biphenyl and the like. Preferable examples include a halogen atom, a phenyl group substituted with a lower alkoxy group nitro group, and a phenyl group.
「アラルキル基」とは、アリール基で置換された炭素数1~6のアルキル基を意味し、ベンジル、α-ナフチルメチル、β-ナフチルメチル、インデニルメチル、フェナンスレニルメチル、アントラセニルメチル、ジフェニルメチル、トリフェニルメチル、α-ナフチルジフェニルメチル、9-アンスリルメチルのような「1~3個のアリール基で置換されたメチル基」や、4-メチルベンジル、2,4,6-トリメチルベンジル、3,4,5-トリメチルベンジル、4-メトキシベンジル、4-メトキシフェニルジフェニルメチル、4,4’-ジメトキシトリフェニルメチル、2-ニトロベンジル、4-ニトロベンジル、4-クロロベンジル、4-ブロモベンジル、4-シアノベンジルのような「低級アルキル、低級アルコキシ、ハロゲン、シアノ基でアリール環が置換された1~3個のアリール基で置換されたメチル基」の他、1-フェネチル、2-フェネチル、1-ナフチルエチル、2-ナフチルエチル、1-フェニルプロピル、2-フェニルプロピル、3-フェニルプロピル、1-ナフチルプロピル、2-ナフチルプロピル、3-ナフチルプロピル、1-フェニルブチル、2-フェニルブチル、3-フェニルブチル、4-フェニルブチル、1-ナフチルブチル、2-ナフチルブチル、3-ナフチルブチル、4-ナフチルブチル、1-フェニルペンチル、2-フェニルペンチル、3-フェニルペンチル、4-フェニルペンチル、5-フェニルペンチル、1-ナフチルペンチル、2-ナフチルペンチル、3-ナフチルペンチル、4-ナフチルペンチル、5-ナフチルペンチル、1-フェニルヘキシル、2-フェニルヘキシル、3-フェニルヘキシル、4-フェニルヘキシル、5-フェニルヘキシル、6-フェニルヘキシル、1-ナフチルペンチル、2-ナフチルペンチル、3-ナフチルペンチル、4-ナフチルペンチル、5-ナフチルペンチル、6-ナフチルペンチル、などの「アリール基で置換された炭素数3~6のアルキル基」などが含まれる。好適には、「1~3個のアリール基で置換されたメチル基」、「低級アルキル、低級アルコキシ、ハロゲン、シアノ基でアリール環が置換された1~3個のアリール基で置換されたメチル基」であり、さらに好適には、4-メトキシフェニルジフェニルメチル、4,4’-ジメトキシトリフェニルメチルである。 The “aralkyl group” means an alkyl group having 1 to 6 carbon atoms substituted with an aryl group, and includes benzyl, α-naphthylmethyl, β-naphthylmethyl, indenylmethyl, phenanthrenylmethyl, anthracenyl “Methyl group substituted with 1 to 3 aryl groups” such as methyl, diphenylmethyl, triphenylmethyl, α-naphthyldiphenylmethyl, 9-anthrylmethyl, 4-methylbenzyl, 2,4,6 -Trimethylbenzyl, 3,4,5-trimethylbenzyl, 4-methoxybenzyl, 4-methoxyphenyldiphenylmethyl, 4,4'-dimethoxytriphenylmethyl, 2-nitrobenzyl, 4-nitrobenzyl, 4-chlorobenzyl, 4-bromobenzyl, “lower alkyl, lower alkoxy, halogen, such as 4-cyanobenzyl, In addition to 1-phenethyl, 2-phenethyl, 1-naphthylethyl, 2-naphthylethyl, 1-phenylpropyl, and a methyl group substituted with 1 to 3 aryl groups in which the aryl ring is substituted with an ano group, -Phenylpropyl, 3-phenylpropyl, 1-naphthylpropyl, 2-naphthylpropyl, 3-naphthylpropyl, 1-phenylbutyl, 2-phenylbutyl, 3-phenylbutyl, 4-phenylbutyl, 1-naphthylbutyl, 2 -Naphthylbutyl, 3-naphthylbutyl, 4-naphthylbutyl, 1-phenylpentyl, 2-phenylpentyl, 3-phenylpentyl, 4-phenylpentyl, 5-phenylpentyl, 1-naphthylpentyl, 2-naphthylpentyl, 3 -Naphthylpentyl, 4-naphthylpentyl, 5-naphthylpentyl, 1 Phenylhexyl, 2-phenylhexyl, 3-phenylhexyl, 4-phenylhexyl, 5-phenylhexyl, 6-phenylhexyl, 1-naphthylpentyl, 2-naphthylpentyl, 3-naphthylpentyl, 4-naphthylpentyl, 5- “C3-C6 alkyl groups substituted with aryl groups” such as naphthylpentyl, 6-naphthylpentyl, and the like are included. Preferably, “methyl group substituted with 1 to 3 aryl groups”, “methyl substituted with 1 to 3 aryl groups with aryl ring substituted with lower alkyl, lower alkoxy, halogen, cyano group” Group, more preferably 4-methoxyphenyldiphenylmethyl, 4,4′-dimethoxytriphenylmethyl.
「アシル基」としては、ホルミル、アセチル、プロピオニル、ブチリル、イソブチリル、ペンタノイル、ピバロイル、バレリル、イソバレリル、オクタノイル、ノナノイル、デカノイル、3-メチルノナノイル、8-メチルノナノイル、3-エチルオクタノイル、3,7-ジメチルオクタノイル、ウンデカノイル、ドデカノイル、トリデカノイル、テトラデカノイル、ペンタデカノイル、ヘキサデカノイル、1-メチルペンタデカノイル、14-メチルペンタデカノイル、13,13-ジメチルテトラデカノイル、ヘプタデカノイル、15-メチルヘキサデカノイル、オクタデカノイル、1-メチルヘプタデカノイル、ノナデカノイル、アイコサノイル及びヘナイコサノイルのようなアルキルカルボニル基、スクシノイル、グルタロイル、アジポイルのようなカルボキシ化アルキルカルボニル基、クロロアセチル、ジクロロアセチル、トリクロロアセチル、トリフルオロアセチルのようなハロゲノ低級アルキルカルボニル基、メトキシアセチルのような低級アルコキシ低級アルキルカルボニル基、(E)-2-メチル-2-ブテノイルのような不飽和アルキルカルボニル基のような「脂肪族アシル基」およびベンゾイル、α-ナフトイル、β-ナフトイルのようなアリールカルボニル基、2-ブロモベンゾイル、4-クロロベンゾイルのようなハロゲノアリールカルボニル基、2,4,6-トリメチルベンゾイル、4-トルオイルのような低級アルキル化アリールカルボニル基、4-アニソイルのような低級アルコキシ化アリールカルボニル基、2-カルボキシベンゾイル、3-カルボキシベンゾイル、4-カルボキシベンゾイルのようなカルボキシ化アリールカルボニル基、4-ニトロベンゾイル、2-ニトロベンゾイルのようなニトロ化アリールカルボニル基;2-(メトキシカルボニル)ベンゾイルのような低級アルコキシカルボニル化アリールカルボニル基、4-フェニルベンゾイルのようなアリール化アリールカルボニル基のような「芳香族アシル基」が挙げられ、好適には、ホルミル、アセチル、プロピオニル、ブチリル、イソブチリル、ペンタノイル、ピバロイル、ベンゾイル基である。 Examples of the “acyl group” include formyl, acetyl, propionyl, butyryl, isobutyryl, pentanoyl, pivaloyl, valeryl, isovaleryl, octanoyl, nonanoyl, decanoyl, 3-methylnonanoyl, 8-methylnonanoyl, 3-ethyloctanoyl, 3,7-dimethyl Octanoyl, undecanoyl, dodecanoyl, tridecanoyl, tetradecanoyl, pentadecanoyl, hexadecanoyl, 1-methylpentadecanoyl, 14-methylpentadecanoyl, 13,13-dimethyltetradecanoyl, heptadecanoyl, 15-methylhexayl Alkylcarbonyl groups such as decanoyl, octadecanoyl, 1-methylheptadecanoyl, nonadecanoyl, icosanoyl and heinacosanoyl, succinoyl, glutaroyl, Carboxylated alkylcarbonyl groups such as poyl, halogeno lower alkylcarbonyl groups such as chloroacetyl, dichloroacetyl, trichloroacetyl and trifluoroacetyl, lower alkoxy lower alkylcarbonyl groups such as methoxyacetyl, (E) -2-methyl “Aliphatic acyl groups” such as unsaturated alkylcarbonyl groups such as -2-butenoyl and arylcarbonyl groups such as benzoyl, α-naphthoyl, β-naphthoyl, 2-bromobenzoyl, 4-chlorobenzoyl, etc. Halogenoarylcarbonyl group, 2,4,6-trimethylbenzoyl, lower alkylated arylcarbonyl group such as 4-toluoyl, lower alkoxylated arylcarbonyl group such as 4-anisoyl, 2-carboxybenzoyl, 3-carb Carboxylated arylcarbonyl groups such as xylbenzoyl, 4-carboxybenzoyl, nitrated arylcarbonyl groups such as 4-nitrobenzoyl, 2-nitrobenzoyl; lower alkoxycarbonylated arylcarbonyl groups such as 2- (methoxycarbonyl) benzoyl And an “aromatic acyl group” such as an arylated arylcarbonyl group such as 4-phenylbenzoyl, preferably a formyl, acetyl, propionyl, butyryl, isobutyryl, pentanoyl, pivaloyl, benzoyl group.
「シリル基」としては、トリメチルシリル、トリエチルシリル、イソプロピルジメチルシリル、t-ブチルジメチルシリル、メチルジイソプロピルシリル、メチルジ-t-ブチルシリル、トリイソプロピルシリルのような「トリ低級アルキルシリル基」、ジフェニルメチルシリル、ブチルジフェニルブチルシリル、ジフェニルイソプロピルシリル、フェニルジイソプロピルシリルのような「1~2個のアリール基で置換されたトリ低級アルキルシリル基」などが挙げられ、好適には、トリメチルシリル、トリエチルシリル、トリイソプロピルシリル、t-ブチルジメチルシリル、t-ブチルジフェニルシリルであり、さらに好適にはトリメチルシリルである。 Examples of the “silyl group” include “tri-lower alkylsilyl group” such as trimethylsilyl, triethylsilyl, isopropyldimethylsilyl, t-butyldimethylsilyl, methyldiisopropylsilyl, methyldi-t-butylsilyl, triisopropylsilyl, diphenylmethylsilyl, “Tri-lower alkylsilyl group substituted with 1 to 2 aryl groups” such as butyldiphenylbutylsilyl, diphenylisopropylsilyl, phenyldiisopropylsilyl, and the like, preferably trimethylsilyl, triethylsilyl, triisopropylsilyl , T-butyldimethylsilyl, t-butyldiphenylsilyl, and more preferably trimethylsilyl.
「核酸合成の保護基で保護されたリン酸基」の「保護基」とは、核酸合成の際に安定してリン酸基を保護し得るものであれば、特に限定はないが、具体的には、酸性又は中性条件で安定であり、加水素分解、加水分解、電気分解及び光分解のような化学的方法により開裂し得る保護基のことをいい、そのような保護基としては、例えば、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、s-ブチル、tert-ブチル、n-ペンチル、イソペンチル、2-メチルブチル、ネオペンチル、1-エチルプロピル、n-ヘキシル、イソヘキシル、4-メチルペンチル、3-メチルペンチル、2-メチルペンチル、1-メチルペンチル、3,3-ジメチルブチル、2,2-ジメチルブチル、1,1-ジメチルブチル、1,2-ジメチルブチル、1,3-ジメチルブチル、2,3-ジメチルブチル、2-エチルブチルのような「低級アルキル基」;2-シアノエチル、2-シアノ-1,1-ジメチルエチルのような「シアノ化低級アルキル基」;2-メチルジフェニルシリルエチル、2-トリメチルシリルエチル、2-トリフェニルシリルエチルのような「シリル基で置換されたエチル基」;2,2,2-トリクロロエチル、2,2,2-トリブロモエチル、2,2,2-トリフルオロエチル、2,2,2-トリクロロ-1,1-ジメチルエチルのような「ハロゲン化低級アルキル基」;エテニル、1-プロペニル、2-プロペニル、1-メチル-2-プロペニル、1-メチル-1-プロペニル、2-メチル-2-プロペニル、2-エチル-2-プロペニル、1-ブテニル、2-ブテニル、1-メチル-2-ブテニル、1-メチル-1-ブテニル、3-メチル-2-ブテニル、1-エチル-2-ブテニル、3-ブテニル、1-メチル-3-ブテニル、2-メチル-3-ブテニル、1-エチル-3-ブテニル、1-ペンテニル、2-ペンテニル、1-メチル-2-ペンテニル、2-メチル-2-ペンテニル、3-ペンテニル、1-メチル-3-ペンテニル、2-メチル-3-ペンテニル、4-ペンテニル、1-メチル-4-ペンテニル、2-メチル-4-ペンテニル、1-ヘキセニル、2-ヘキセニル、3-ヘキセニル、4-ヘキセニル、5-ヘキセニルのような「低級アルケニル基」;シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、ノルボルニル、アダマンチルのような「シクロアルキル基」;2-シアノブテニルのような「シアノ化低級アルケニル基」;ベンジル、α-ナフチルメチル、β-ナフチルメチル、インデニルメチル、フェナンスレニルメチル、アントラセニルメチル、ジフェニルメチル、トリフェニルメチル、1-フェネチル、2-フェネチル、1-ナフチルエチル、2-ナフチルエチル、1-フェニルプロピル、2-フェニルプロピル、3-フェニルプロピル、1-ナフチルプロピル、2-ナフチルプロピル、3-ナフチルプロピル、1-フェニルブチル、2-フェニルブチル、3-フェニルブチル、4-フェニルブチル、1-ナフチルブチル、2-ナフチルブチル、3-ナフチルブチル、4-ナフチルブチル、1-フェニルペンチル、2-フェニルペンチル、3-フェニルペンチル、4-フェニルペンチル、5-フェニルペンチル、1-ナフチルペンチル、2-ナフチルペンチル、3-ナフチルペンチル、4-ナフチルペンチル、5-ナフチルペンチル、1-フェニルヘキシル、2-フェニルヘキシル、3-フェニルヘキシル、4-フェニルヘキシル、5-フェニルヘキシル、6-フェニルヘキシル、1-ナフチルペンチル、2-ナフチルペンチル、3-ナフチルペンチル、4-ナフチルペンチル、5-ナフチルペンチル、6-ナフチルペンチルのような「アラルキル基」;4-クロロベンジル、2-(4-ニトロフェニル)エチル、o-ニトロベンジル、4-ニトロベンジル、2,4-ジニトロベンジル、4-クロロ-2-ニトロベンジルのような「ニトロ基、ハロゲン原子でアリール環が置換されたアラルキル基」;フェニル、インデニル、ナフチル、フェナンスレニル、アントラセニルのような「アリール基」;2-メチルフェニル、2,6-ジメチルフェニル、2-クロロフェニル、4-クロロフェニル、2,4-ジクロロフェニル、2,5-ジクロロフェニル、2-ブロモフェニル、4-ニトロフェニル、4-クロロ-2-ニトロフェニルのような「低級アルキル基、ハロゲン原子、ニトロ基で置換されたアリール基」を挙げることができ、好適には「低級アルキル基」、「シアノ基で置換された低級アルキル基」、「アラルキル基」、「ニトロ基、ハロゲン原子でアリール環が置換されたアラルキル基」または「低級アルキル基、ハロゲン原子、ニトロ基で置換されたアリール基」であり、さらに好適には、2-シアノエチル基、2,2,2-トリクロロエチル基、ベンジル基、2-クロロフェニル基または4-クロロフェニル基である。 The “protecting group” of the “phosphate group protected with a protecting group for nucleic acid synthesis” is not particularly limited as long as it can stably protect the phosphate group during nucleic acid synthesis, but is not specifically limited. Refers to a protecting group that is stable under acidic or neutral conditions and can be cleaved by chemical methods such as hydrogenolysis, hydrolysis, electrolysis and photolysis. For example, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, tert-butyl, n-pentyl, isopentyl, 2-methylbutyl, neopentyl, 1-ethylpropyl, n-hexyl, isohexyl, 4 -Methylpentyl, 3-methylpentyl, 2-methylpentyl, 1-methylpentyl, 3,3-dimethylbutyl, 2,2-dimethylbutyl, 1,1-dimethylbutyl, 1,2 “Lower alkyl groups” such as dimethylbutyl, 1,3-dimethylbutyl, 2,3-dimethylbutyl and 2-ethylbutyl; “cyanated lower groups” such as 2-cyanoethyl and 2-cyano-1,1-dimethylethyl "Alkyl group"; "ethyl group substituted with silyl group" such as 2-methyldiphenylsilylethyl, 2-trimethylsilylethyl, 2-triphenylsilylethyl; 2,2,2-trichloroethyl, 2,2,2 “Halogenated lower alkyl groups” such as tribromoethyl, 2,2,2-trifluoroethyl, 2,2,2-trichloro-1,1-dimethylethyl; ethenyl, 1-propenyl, 2-propenyl, 1-methyl-2-propenyl, 1-methyl-1-propenyl, 2-methyl-2-propenyl, 2-ethyl-2-propenyl, 1-butyl Nyl, 2-butenyl, 1-methyl-2-butenyl, 1-methyl-1-butenyl, 3-methyl-2-butenyl, 1-ethyl-2-butenyl, 3-butenyl, 1-methyl-3-butenyl, 2-methyl-3-butenyl, 1-ethyl-3-butenyl, 1-pentenyl, 2-pentenyl, 1-methyl-2-pentenyl, 2-methyl-2-pentenyl, 3-pentenyl, 1-methyl-3- Of pentenyl, 2-methyl-3-pentenyl, 4-pentenyl, 1-methyl-4-pentenyl, 2-methyl-4-pentenyl, 1-hexenyl, 2-hexenyl, 3-hexenyl, 4-hexenyl, 5-hexenyl Such as “lower alkenyl groups”; such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, norbornyl, adamantyl A “cycloalkylated lower alkenyl group” such as 2-cyanobutenyl; benzyl, α-naphthylmethyl, β-naphthylmethyl, indenylmethyl, phenanthrenylmethyl, anthracenylmethyl, diphenylmethyl , Triphenylmethyl, 1-phenethyl, 2-phenethyl, 1-naphthylethyl, 2-naphthylethyl, 1-phenylpropyl, 2-phenylpropyl, 3-phenylpropyl, 1-naphthylpropyl, 2-naphthylpropyl, 3- Naphthylpropyl, 1-phenylbutyl, 2-phenylbutyl, 3-phenylbutyl, 4-phenylbutyl, 1-naphthylbutyl, 2-naphthylbutyl, 3-naphthylbutyl, 4-naphthylbutyl, 1-phenylpentyl, 2- Phenylpentyl, 3-phenylpentyl, 4-fluoro Phenylpentyl, 5-phenylpentyl, 1-naphthylpentyl, 2-naphthylpentyl, 3-naphthylpentyl, 4-naphthylpentyl, 5-naphthylpentyl, 1-phenylhexyl, 2-phenylhexyl, 3-phenylhexyl, 4-phenyl “Aralkyl groups” such as hexyl, 5-phenylhexyl, 6-phenylhexyl, 1-naphthylpentyl, 2-naphthylpentyl, 3-naphthylpentyl, 4-naphthylpentyl, 5-naphthylpentyl, 6-naphthylpentyl; 4 “Nitro group, aryl at halogen atom, such as -chlorobenzyl, 2- (4-nitrophenyl) ethyl, o-nitrobenzyl, 4-nitrobenzyl, 2,4-dinitrobenzyl, 4-chloro-2-nitrobenzyl Aralkyl group with substituted ring ”; phenyl “Aryl groups” such as indenyl, naphthyl, phenanthrenyl, anthracenyl; 2-methylphenyl, 2,6-dimethylphenyl, 2-chlorophenyl, 4-chlorophenyl, 2,4-dichlorophenyl, 2,5-dichlorophenyl, 2-bromo “Lower alkyl group, halogen atom, aryl group substituted by nitro group” such as phenyl, 4-nitrophenyl, 4-chloro-2-nitrophenyl, and the like, preferably “lower alkyl group”, "Lower alkyl group substituted with a cyano group", "Aralkyl group", "Nitro group, an aralkyl group substituted with an aryl ring with a halogen atom" or "Aryl group substituted with a lower alkyl group, a halogen atom, or a nitro group" And more preferably a 2-cyanoethyl group, 2,2,2-trichloroethyl Group, a benzyl group, a 2-chlorophenyl group or 4-chlorophenyl group.
「核酸合成の保護基で保護されたメルカプト基」の保護基としては、核酸合成の際に安定してメルカプト基を保護し得るものであれば、特に限定はないが、具体的には、酸性又は中性条件で安定であり、加水素分解、加水分解、電気分解及び光分解のような化学的方法により開裂し得る保護基をいい、例えば、上記水酸基の保護基として挙げたものの他、メチルチオ、エチルチオ、tert-ブチルチオのようなアルキルチオ基、ベンジルチオのようなアリールチオ基等の「ジスルフィドを形成する基」を挙げることができ、好適には、「脂肪族アシル基」又は「芳香族アシル基」であり、さらに好適には、ベンゾイル基である。 The protecting group of the “mercapto group protected with a protecting group for nucleic acid synthesis” is not particularly limited as long as it can stably protect the mercapto group during nucleic acid synthesis. Or a protecting group that is stable under neutral conditions and can be cleaved by a chemical method such as hydrogenolysis, hydrolysis, electrolysis and photolysis. , An alkylthio group such as ethylthio and tert-butylthio, an arylthio group such as benzylthio, and the like, and a “aliphatic acyl group” or “aromatic acyl group” are preferred. And more preferably a benzoyl group.
「炭素数1~5のアルコキシ基」としては、例えば、メトキシ、エトキシ、n-プロポキシ、イソプロポキシ、n-ブトキシ、イソブトキシ、s-ブトキシ、tert-ブトキシ、n-ペントキシを挙げることができ、好適には、メトキシ又はエトキシ基である。 Examples of the “C 1-5 alkoxy group” include methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, s-butoxy, tert-butoxy and n-pentoxy. Is a methoxy or ethoxy group.
「炭素数1~5のアルキルチオ基」としては、例えば、メチルチオ、エチルチオ、プロピルチオ、イソプロピルチオ、ブチルチオ、イソブチルチオ、s-ブチルチオ、tert-ブチルチオ、n-ペンチルチオを挙げることができ、好適には、メチルチオ又はエチルチオ基である。 Examples of the “alkylthio group having 1 to 5 carbon atoms” include methylthio, ethylthio, propylthio, isopropylthio, butylthio, isobutylthio, s-butylthio, tert-butylthio, and n-pentylthio. A methylthio or ethylthio group;
「炭素数1~6のシアノアルコキシ基」とは、上記「炭素数1~5のアルコキシ基」のシアノ基が置換した基をいい、そのような基としては、例えば、シアノメトキシ、2-シアノエトキシ、3-シアノプロポキシ、4-シアノブトキシ、3-シアノ-2-メチルプロポキシ、又は1-シアノメチル-1,1-ジメチルメトキシを挙げることができ、好適には、2-シアノエトキシ基である。 The “C 1-6 cyanoalkoxy group” refers to a group substituted by the cyano group of the above “C 1-5 alkoxy group”. Examples of such a group include cyanomethoxy, 2-cyano Examples thereof include ethoxy, 3-cyanopropoxy, 4-cyanobutoxy, 3-cyano-2-methylpropoxy, and 1-cyanomethyl-1,1-dimethylmethoxy, and a 2-cyanoethoxy group is preferable.
「炭素数1~5のアルキル基で置換されたアミノ基」としては、例えば、メチルアミノ、エチルアミノ、プロピルアミノ、イソプロピルアミノ、ブチルアミノ、イソブチルアミノ、s-ブチルアミノ、tert-ブチルアミノ、ジメチルアミノ、ジエチルアミノ、ジプロピルアミノ、ジイソプロピルアミノ、ジブチルアミノ、ジイソブチルアミノ、ジ(s-ブチル)アミノ、ジ(tert-ブチル)アミノを挙げることができ、好適には、メチルアミノ、エチルアミノ、ジメチルアミノ、ジエチルアミノまたはジイソプロピルアミノ基である。 Examples of the “amino group substituted with an alkyl group having 1 to 5 carbon atoms” include, for example, methylamino, ethylamino, propylamino, isopropylamino, butylamino, isobutylamino, s-butylamino, tert-butylamino, dimethyl Amino, diethylamino, dipropylamino, diisopropylamino, dibutylamino, diisobutylamino, di (s-butyl) amino, di (tert-butyl) amino can be mentioned, preferably methylamino, ethylamino, dimethylamino , Diethylamino or diisopropylamino group.
「炭素数1~5のアルキル基」としては、例えば、メチル、エチル、プロピル、イソプロピル、イソプロピル、ブチル、イソブチル、s-ブチル、tert-ブチル、n-ペンチルなどを挙げることができ、好適には、メチル又はエチル基である。 Examples of the “C 1-5 alkyl group” include methyl, ethyl, propyl, isopropyl, isopropyl, butyl, isobutyl, s-butyl, tert-butyl, n-pentyl, etc. , Methyl or ethyl group.
「ハロゲン原子」としては、例えば、フッ素原子、塩素原子、臭素原子又はヨウ素原子を挙げることができ、好適には、フッ素原子又は塩素原子である。 Examples of the “halogen atom” include a fluorine atom, a chlorine atom, a bromine atom or an iodine atom, and preferably a fluorine atom or a chlorine atom.
「核酸合成の保護基で保護されたアミノ基」の保護基としては、核酸合成の際に安定してアミノ基を保護し得るものであれば、特に限定はないが、具体的には、酸性又は中性条件で安定であり、加水素分解、加水分解、電気分解及び光分解のような化学的方法により開裂し得る保護基をいい、例えば、ホルミル、アセチル、プロピオニル、ブチリル、イソブチリル、ペンタノイル、ピバロイル、バレリル、イソバレリル、オクタノイル、ノナノイル、デカノイル、3-メチルノナノイル、8-メチルノナノイル、3-エチルオクタノイル、3,7-ジメチルオクタノイル、ウンデカノイル、ドデカノイル、トリデカノイル、テトラデカノイル、ペンタデカノイル、ヘキサデカノイル、1-メチルペンタデカノイル、14-メチルペンタデカノイル、13,13-ジメチルテトラデカノイル、ヘプタデカノイル、15-メチルヘキサデカノイル、オクタデカノイル、1-メチルヘプタデカノイル、ノナデカノイル、ノナデカノイル、アイコサノイル及びヘナイコサノイルのようなアルキルカルボニル基、スクシノイル、グルタロイル、アジポイルのようなカルボキシ化アルキルカルボニル基、クロロアセチル、ジクロロアセチル、トリクロロアセチル、トリフルオロアセチルのようなハロゲノ低級アルキルカルボニル基、メトキシアセチル、フェニキシアセチル基、2-(4-tert-ブチル)フェノキシ)アセチル基のようなアルコキシ低級アルキルカルボニル基、(E)-2-メチル-2-ブテノイルのような不飽和アルキルカルボニル基等の「脂肪族アシル基」;ベンゾイル、α-ナフトイル、β-ナフトイルのようなアリールカルボニル基、2-ブロモベンゾイル、4-クロロベンゾイルのようなハロゲノアリールカルボニル基、2,4,6-トリメチルベンゾイル、4-トルオイルのような低級アルキル化アリールカルボニル基、4-アニソイルのような低級アルコキシ化アリールカルボニル基、2-カルボキシベンゾイル、3-カルボキシベンゾイル、4-カルボキシベンゾイルのようなカルボキシ化アリールカルボニル基、4-ニトロベンゾイル、2-ニトロベンゾイルのようなニトロ化アリールカルボニル基;2-(メトキシカルボニル)ベンゾイルのような低級アルコキシカルボニル化アリールカルボニル基、4-フェニルベンゾイルのようなアリール化アリールカルボニル基等の「芳香族アシル基」;メトキシカルボニル、エトキシカルボニル、t-ブトキシカルボニル、イソブトキシカルボニルのような「低級アルコキシカルボニル基」;2,2,2-トリクロロエトキシカルボニル、2-トリメチルシリルエトキシカルボニルのような「ハロゲン又はトリ低級アルキルシリル基で置換された低級アルコキシカルボニル基」;ビニルオキシカルボニル、アリールオキシカルボニルのような「アルケニルオキシカルボニル基」;ベンジルオキシカルボニル、4-メトキシベンジルオキシカルボニル、2-ニトロベンジルオキシカルボニル、4-ニトロベンジルオキシカルボニルのような1~2個の「低級アルコキシ又はニトロ基でアリール環が置換されていてもよいアラルキルオキシカルボニル基」を挙げることができ、好適には、「脂肪族アシル基」又は「芳香族アシル基」であり、さらに好適には、ベンゾイル基である。「ヌクレオシド類縁体」とは、プリン塩基又はピリミジン塩基と糖が結合した「ヌクレオシド」のうち非天然型のもの、並びに、プリン及びピリミジン以外の芳香族複素環及び芳香族炭化水素環でプリン塩基又はピリミジン塩基との代用が可能なものと糖が結合したものいう。 The protecting group of the “amino group protected with a protecting group for nucleic acid synthesis” is not particularly limited as long as it can stably protect an amino group during nucleic acid synthesis. Or a protecting group that is stable under neutral conditions and can be cleaved by chemical methods such as hydrogenolysis, hydrolysis, electrolysis and photolysis, such as formyl, acetyl, propionyl, butyryl, isobutyryl, pentanoyl, Pivaloyl, valeryl, isovaleryl, octanoyl, nonanoyl, decanoyl, 3-methylnonanoyl, 8-methylnonanoyl, 3-ethyloctanoyl, 3,7-dimethyloctanoyl, undecanoyl, dodecanoyl, tridecanoyl, tetradecanoyl, pentadecanoyl, hexadecana Noyl, 1-methylpentadecanoyl, 14-methylpentadecano , Alkylcarbonyl groups such as 13,13-dimethyltetradecanoyl, heptadecanoyl, 15-methylhexadecanoyl, octadecanoyl, 1-methylheptadecanoyl, nonadecanoyl, nonadecanoyl, icosanoyl and heinacosanoyl, succinoyl, glutaroyl, adipoyl Carboxylated alkylcarbonyl groups such as, chloroacetyl, dichloroacetyl, trichloroacetyl, halogeno lower alkylcarbonyl groups such as trifluoroacetyl, methoxyacetyl, phenoxyacetyl group, 2- (4-tert-butyl) phenoxy) acetyl An “aliphatic acyl group” such as an alkoxy lower alkylcarbonyl group such as a group, an unsaturated alkylcarbonyl group such as (E) -2-methyl-2-butenoyl; -Arylcarbonyl groups such as naphthoyl, β-naphthoyl, halogenoarylcarbonyl groups such as 2-bromobenzoyl, 4-chlorobenzoyl, lower alkylated arylcarbonyls such as 2,4,6-trimethylbenzoyl, 4-toluoyl Groups, lower alkoxylated arylcarbonyl groups such as 4-anisoyl, carboxylated arylcarbonyl groups such as 2-carboxybenzoyl, 3-carboxybenzoyl, 4-carboxybenzoyl, 4-nitrobenzoyl, 2-nitrobenzoyl, etc. Nitrated arylcarbonyl group; “aromatic acyl group” such as lower alkoxycarbonylated arylcarbonyl group such as 2- (methoxycarbonyl) benzoyl, arylated arylcarbonyl group such as 4-phenylbenzoyl; “Lower alkoxycarbonyl groups” such as xoxycarbonyl, ethoxycarbonyl, t-butoxycarbonyl, isobutoxycarbonyl; “halogen or tri-lower alkylsilyl groups such as 2,2,2-trichloroethoxycarbonyl, 2-trimethylsilylethoxycarbonyl” A lower alkoxycarbonyl group substituted with a “alkenyloxycarbonyl group” such as vinyloxycarbonyl or aryloxycarbonyl; benzyloxycarbonyl, 4-methoxybenzyloxycarbonyl, 2-nitrobenzyloxycarbonyl, 4-nitrobenzyloxy Examples thereof include 1 to 2 “aralkyloxycarbonyl groups in which the aryl ring may be substituted with a lower alkoxy or nitro group” such as carbonyl. A Le group "or" aromatic acyl group ", more preferably a benzoyl group. “Nucleoside analog” means a non-natural type of “nucleoside” in which a purine base or a pyrimidine base and a sugar are bonded, and a purine base or an aromatic heterocycle other than purine and pyrimidine and an aromatic hydrocarbon ring. A substance that can be substituted with a pyrimidine base is combined with a sugar.
「その塩」とは、本発明の化合物(III)は、塩にすることができるので、その塩をいい、そのような塩としては、好適にはナトリウム塩、カリウム塩、リチウム塩のようなアルカリ金属塩、カルシウム塩、マグネシウム塩のようなアルカリ土類金属塩、アルミニウム塩、鉄塩、亜鉛塩、銅塩、ニッケル塩、コバルト塩等の金属塩;アンモニウム塩のような無機塩、t-オクチルアミン塩、ジベンジルアミン塩、モルホリン塩、グルコサミン塩、フェニルグリシンアルキルエステル塩、エチレンジアミン塩、N-メチルグルカミン塩、グアニジン塩、ジエチルアミン塩、トリエチルアミン塩、ジシクロヘキシルアミン塩、N,N’-ジベンジルエチレンジアミン塩、クロロプロカイン塩、プロカイン塩、ジエタノールアミン塩、N-ベンジル-フェネチルアミン塩、ピペラジン塩、テトラメチルアンモニウム塩、トリス(ヒドロキシメチル)アミノメタン塩のような有機塩等のアミン塩;フッ化水素酸塩、塩酸塩、臭化水素酸塩、ヨウ化水素酸塩のようなハロゲン原子化水素酸塩、硝酸塩、過塩素酸塩、硫酸塩、リン酸塩等の無機酸塩;メタンスルホン酸塩、トリフルオロメタンスルホン酸塩、エタンスルホン酸塩のような低級アルカンスルホン酸塩、ベンゼンスルホン酸塩、p-トルエンスルホン酸塩のようなアリールスルホン酸塩、酢酸塩、リンゴ酸塩、フマル酸塩、コハク酸塩、クエン酸塩、酒石酸塩、シュウ酸塩、マレイン酸塩等の有機酸塩;及び、グリシン塩、リジン塩、アルギニン塩、オルニチン塩、グルタミン酸塩、アスパラギン酸塩のようなアミノ酸塩を挙げることができる。 The “salt” refers to a salt of the compound (III) of the present invention, and is preferably a salt such as sodium salt, potassium salt or lithium salt. Alkali earth metal salts such as alkali metal salts, calcium salts and magnesium salts, metal salts such as aluminum salts, iron salts, zinc salts, copper salts, nickel salts and cobalt salts; inorganic salts such as ammonium salts, t- Octylamine salt, dibenzylamine salt, morpholine salt, glucosamine salt, phenylglycine alkyl ester salt, ethylenediamine salt, N-methylglucamine salt, guanidine salt, diethylamine salt, triethylamine salt, dicyclohexylamine salt, N, N'-di Benzylethylenediamine salt, chloroprocaine salt, procaine salt, diethanolamine salt, N-benzyl -Amine salts such as organic salts such as phenethylamine, piperazine, tetramethylammonium and tris (hydroxymethyl) aminomethane; hydrofluoric acid, hydrochloride, hydrobromide, hydroiodide Inorganic acid salts such as halogen hydrides, nitrates, perchlorates, sulfates, phosphates, etc .; lower alkane sulfones such as methanesulfonates, trifluoromethanesulfonates, ethanesulfonates Acid salts, aryl sulfonates such as benzenesulfonate, p-toluenesulfonate, acetate, malate, fumarate, succinate, citrate, tartrate, oxalate, maleic acid Organic acid salts such as salts; and amino acid salts such as glycine salts, lysine salts, arginine salts, ornithine salts, glutamate salts, aspartates Door can be.
「核酸合成の水酸基の保護に使用する試薬」とは、核酸を構成する糖水酸基に、前記「核酸合成の水酸基の保護基」を導入するために用いられる試薬をいう。例えば、5’位の水酸基が
1)4,4’-ジメトキシトリチル基の場合:ピリジン、DABCO(1,4-ジアザビシクロ[2.2.2]オクタン)、トリエチルアミン、ジイソプロピルエチルアミン等の塩基存在下、4,4’-ジメトキシトリチルクロリドあるいは4,4’-ジメトキシトリチルトリフルオロメタンスルホナート、
2)トリチル基の場合:ピリジン、DABCO(1,4-ジアザビシクロ[2.2.2]オクタン)、トリエチルアミン、ジイソプロピルエチルアミン等の塩基存在下、トリチルクロリドあるいはトリチルトリフルオロメタンスルホナート、
3)tert-ブチルジメチルシリル基の場合:イミダゾール、N-メチルイミダゾール、4,4-ジメチルアミノピリジン、トリエチルアミン等の塩基存在下、tert-ブチルジメチルシリルクロリドあるいはtert-ブチルジメチルシリルトリフルオロメタンスルホナート
4)tert-ブチルジフェニルシリル基の場合;イミダゾール、N-メチルイミダゾール、4,4-ジメチルアミノピリジン、トリエチルアミン等の塩基存在下、tert-ブチルジメチルシリルクロリドあるいはtert-ブチルジフェニルシリルトリフルオロメタンスルホナート
5)ベンゾイル基の場合;i) ピリジン、トリエチルアミン、炭酸カリウム等の塩基存在下、ベンゾイルクロリド、安息香酸無水物 ii)トリエチルアミン、N-メチルモルホリン等の塩基およびEDC(1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド)塩酸塩、DCC(N,N’-ジシクロヘキシルカルボジイミド)等の縮合剤存在下、安息香酸
6)レブノイル基の場合;4-ジメチルアミノピリジン、トリエチルアミン等の塩基およびEDC塩酸塩、DCC等の縮合剤存在下、レブリン酸
7)2-エトキシエチル基の場合:ピリジウムパラトルエンスルホン酸、トルエンスルホン酸等の酸触媒存在下、エトキシビニルエーテルが該当する。
The “reagent used for protecting a hydroxyl group for nucleic acid synthesis” refers to a reagent used for introducing the “protecting group for a hydroxyl group for nucleic acid synthesis” into a sugar hydroxyl group constituting a nucleic acid. For example, when the hydroxyl group at the 5 ′ position is 1) 4,4′-dimethoxytrityl group: in the presence of a base such as pyridine, DABCO (1,4-diazabicyclo [2.2.2] octane), triethylamine, diisopropylethylamine, 4,4′-dimethoxytrityl chloride or 4,4′-dimethoxytrityl trifluoromethanesulfonate,
2) In the case of a trityl group: in the presence of a base such as pyridine, DABCO (1,4-diazabicyclo [2.2.2] octane), triethylamine, diisopropylethylamine, trityl chloride or trityltrifluoromethanesulfonate,
3) In the case of tert-butyldimethylsilyl group: tert-butyldimethylsilyl chloride or tert-butyldimethylsilyl trifluoromethanesulfonate 4 in the presence of a base such as imidazole, N-methylimidazole, 4,4-dimethylaminopyridine, triethylamine, etc. ) In the case of tert-butyldiphenylsilyl group; tert-butyldimethylsilyl chloride or tert-butyldiphenylsilyl trifluoromethanesulfonate 5) in the presence of a base such as imidazole, N-methylimidazole, 4,4-dimethylaminopyridine, triethylamine, etc. In the case of a benzoyl group; i) in the presence of a base such as pyridine, triethylamine or potassium carbonate, benzoyl chloride, benzoic anhydride ii) a base such as triethylamine or N-methylmorpholine and EDC (1-ethyl-3- (3 In the presence of a condensing agent such as -dimethylaminopropyl) carbodiimide) hydrochloride, DCC (N, N'-dicyclohexylcarbodiimide), in the case of benzoic acid 6) levonoyl group; In the presence of a condensing agent such as DCC, levulinic acid 7) In the case of 2-ethoxyethyl group: ethoxy vinyl ether is applicable in the presence of an acid catalyst such as pyridium paratoluenesulfonic acid or toluenesulfonic acid.
本発明の一態様は、以下の式により示されるアルドール反応を含む。 One aspect of the invention involves an aldol reaction represented by the following formula:
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
「アルドール反応(aldol reaction)」とは、アルドール縮合(aldol condensation)もしくはアルドール付加(aldol addition)とも呼ばれる。α位に水素原子をもつカルボニル化合物に他のカルボニル化合物と反応させてβヒドロキシカルボニル化合物を生成する反応である。酸または塩基いずれかの触媒で起こる平衡反応である。 “Aldol reaction” is also referred to as aldol condensation or aldol addition. This is a reaction in which a carbonyl compound having a hydrogen atom at the α-position is reacted with another carbonyl compound to form a β-hydroxycarbonyl compound. An equilibrium reaction that occurs with either an acid or base catalyst.
本発明で出発物質と反応させるカルボニル化合物として例えば、アセトンなどのケトン化合物、ホルムアルデヒドなどのアルデヒド化合物を挙げることができ、好適にはホルマリン又はパラホルムアルデヒドが挙げられる。 Examples of the carbonyl compound to be reacted with the starting material in the present invention include ketone compounds such as acetone and aldehyde compounds such as formaldehyde, preferably formalin or paraformaldehyde.
通常は塩基の存在下で行われる。このとき使用される塩基としては、水酸化ナトリウム、炭酸ナトリウムなどの無機塩基、あるいはN-メチルモルホリン、DBU、トリエチルアミン、ピリジンなどの有機塩基が挙げられる。共役酸のpKaが6~10である有機塩基が好ましく、このような例としてはトリエチルアミンやN-メチルモルホリンである。 Usually, it is carried out in the presence of a base. Examples of the base used at this time include inorganic bases such as sodium hydroxide and sodium carbonate, and organic bases such as N-methylmorpholine, DBU, triethylamine and pyridine. An organic base having a pKa of a conjugate acid of 6 to 10 is preferable, and examples thereof include triethylamine and N-methylmorpholine.
使用する溶媒としては、アルコール、アセトニトリル又はN,N’-ジメチルホルムアミド(DMF)などの水溶性溶媒が好ましい。 As the solvent to be used, a water-soluble solvent such as alcohol, acetonitrile or N, N′-dimethylformamide (DMF) is preferable.
好適な組み合わせとしては、ホルマリン水溶液を1~3倍容量、塩基としてN-メチルモルホリンを1~3倍容量、そして溶媒としてアセトニトリルを2~6倍容量である。なぜならば、この組み合わせにおいて一般式(I)の化合物についてアルドール反応を行った結果、反応後に原料の(I)の残存および副生成物の生成量を最小限におさえることができたからである。 A suitable combination is 1 to 3 volumes of an aqueous formalin solution, 1 to 3 volumes of N-methylmorpholine as a base, and 2 to 6 volumes of acetonitrile as a solvent. This is because as a result of carrying out the aldol reaction on the compound of the general formula (I) in this combination, it was possible to minimize the residual amount of the raw material (I) and the amount of by-products after the reaction.
反応温度および反応時間は特に制限されないが、好適には、反応温度は50℃~100℃、反応時間は1~24時間である。 The reaction temperature and reaction time are not particularly limited, but preferably the reaction temperature is 50 ° C. to 100 ° C., and the reaction time is 1 to 24 hours.
また、本発明の更なる態様は以下の式により示される縮合反応も含む。より、具体的には出発原料の化合物と脱シリル化剤と反応させ、その反応液に縮合剤を反応させる。 Further embodiments of the present invention also include a condensation reaction represented by the following formula: More specifically, the starting material compound and the desilylating agent are reacted, and the condensing agent is reacted with the reaction solution.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
「脱シリル化剤」とは、シリル基の脱離反応を起こさせるために加える反応助剤のことであって、一般には、塩酸、酢酸、パラトルエンスルホン酸など各種の酸の他、フッ化テトラブチルアンモニウム、フッ化水素酸、フッ化セシウム等のフッ化物イオンが挙げられる。 The “desilylating agent” is a reaction aid added to cause the elimination reaction of the silyl group. Generally, in addition to various acids such as hydrochloric acid, acetic acid, paratoluenesulfonic acid, fluorination Fluoride ions such as tetrabutylammonium, hydrofluoric acid and cesium fluoride can be mentioned.
「縮合剤」とは、アミノ基とカルボキシル基とを脱水縮合を起こさせるために加える反応助剤のことである。一般には、EDC塩酸塩(1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩)、DCC(ジシクロヘキシルカルボジイミド)、DIC(ジイソプロピルカルボジイミド)、CDI(カルボニルジイミダゾール)、PyBop〔(ベンゾトリアゾール-1-イルオキシ)トリピロリジノホスホニウム ヘキサフルオホスフェート〕、HATU〔O-(7-アザベンゾトリアゾール-1-イル)-N, N, N’,N’-テトラメチルウロニウム ヘキサフルオホスフェート〕、DMT-MM〔4―(4,6-ジメトキシー1,3,5-トリアジンー2-イル)-4-メチルモルホリニウムクロリド〕などのペプチド合成に用いられる試剤や塩化アルミニウム、塩化チタン(IV)などの酸性触媒等が挙げられる。 A “condensation agent” is a reaction aid added to cause an amino group and a carboxyl group to undergo dehydration condensation. In general, EDC hydrochloride (1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride), DCC (dicyclohexylcarbodiimide), DIC (diisopropylcarbodiimide), CDI (carbonyldiimidazole), PyBop [(benzotriazole- 1-yloxy) tripyrrolidinophosphonium hexafluorophosphate], HATU [O- (7-azabenzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium hexafluorophosphate], DMT- Reagents used for peptide synthesis such as MM [4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride] and acidic such as aluminum chloride and titanium (IV) chloride A catalyst etc. are mentioned.
さらに、本発明の更なる態様は、以下の式により示されるトランスグリコシル化反応も含む。 Furthermore, a further aspect of the invention also includes a transglycosylation reaction represented by the following formula:
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
ここで「トランスグリコシル化反応」とは、核酸誘導体の塩基部分を置換する反応をいう。 As used herein, “transglycosylation reaction” refers to a reaction for substituting the base moiety of a nucleic acid derivative.
本発明における一般式はシス体、トランス体のいずれをも含む。好ましくは、トランス体である。また本発明における反応工程では、その立体を維持することができ、工業的に非常に有用な方法である。 The general formula in the present invention includes both a cis form and a trans form. A trans form is preferable. Moreover, in the reaction process in this invention, the solid can be maintained and it is an industrially very useful method.
 上記の一般式(I)で表される化合物(下記のA-5に該当)については、例えば下記の方法により得ることができる。 The compound represented by the above general formula (I) (corresponding to A-5 below) can be obtained, for example, by the following method.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 式中のR、R、R、R、R、RおよびBについては前述と同意義を示す。また、Pについては前述の「核酸合成の水酸基の保護基」と同意義である。好適には、メトキシ基で置換されていてもよいトリチル基、ベンジル基である。 R 1 , R 2 , R 3 , R 4 , R 5 , R 6 and B in the formula are as defined above. P 1 has the same meaning as the above-mentioned “protecting group for hydroxyl group in nucleic acid synthesis”. A trityl group and a benzyl group which may be substituted with a methoxy group are preferable.
 式中の一般式(A-1)で表わされる化合物は、Organic Letters,7,1569-1572(2005)に記載されている方法より合成することができる。 The compound represented by the general formula (A-1) in the formula can be synthesized by the method described in Organic Letters, 7, 1569-1572 (2005).
(第1工程)
本工程は、一般式(A-1)で表わされる化合物にR-Hal(式中、Halはハロゲン)、(RO等を反応させることにより、3’位水酸基がR-で保護された一般式(A-2)で表わされる化合物を得る工程である。本工程は、Protective Groups in Organic Synthesis,Theodora W Green(John Wiley & Sons)等に記載の方法に従って行うことができる。例えば、一般式A-1で表わされる化合物を、DMF、アセトニトリル、ジクロロメタン等の溶媒中、1.0当量~10.0当量、好ましくは3.0当量~6.0当量のR-Hal(式中、Halはハロゲン)、1.0当量~10.0当量、好ましくは3.0当量~6.0当量の有機塩基(例えば、N-メチルイミダゾール等)または無機塩基(例えば、水素化ナトリウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム等)および1.0当量~10.0当量、好ましくは2.0当量~4.0当量のヨウ化ナトリウムなどの添加剤と、0℃~120℃、好ましくは10℃~30℃で1~24時間反応させることにより一般式(A-2)で表わされる化合物を得ることができる。
(First step)
In this step, the compound represented by the general formula (A-1) is reacted with R 3 —Hal (wherein Hal is halogen), (R 3 ) 2 O, etc., so that the hydroxyl group at the 3′-position is R 3 —. This is a step for obtaining a compound represented by formula (A-2) protected by. This step can be performed according to the method described in Protective Groups in Organic Synthesis, Theodora W Green (John Wiley & Sons) and the like. For example, the compound represented by the general formula A-1 is converted into 1.0 equivalent to 10.0 equivalents, preferably 3.0 equivalents to 6.0 equivalents of R 3 -Hal (in a solvent such as DMF, acetonitrile, dichloromethane, etc.). Wherein Hal is halogen), 1.0 equivalent to 10.0 equivalents, preferably 3.0 equivalents to 6.0 equivalents of an organic base (eg, N-methylimidazole) or an inorganic base (eg, sodium hydride) , Sodium carbonate, potassium carbonate, cesium carbonate and the like) and 1.0 equivalent to 10.0 equivalents, preferably 2.0 equivalents to 4.0 equivalents of sodium iodide and the like, and 0 ° C. to 120 ° C., preferably Can be reacted at 10 ° C. to 30 ° C. for 1 to 24 hours to obtain a compound represented by the general formula (A-2).
(第2工程)
本工程は、一般式(A-2)で表わされる化合物に塩酸などの強酸等を反応させることにより、4’位に結合する水酸基の保護基Pが脱保護された化合物A-3を得る工程である。本工程は、Protective Groups in Organic Synthesis,Theodora W Green(John Wiley & Sons)等に記載の方法に従って行うことができる。例えば、一般式A-2で表わされる化合物を、メタノール、エタノール、酢酸エチル、ジオキサン等の溶媒中、1.0当量~10.0当量、好ましくは2.0当量~4.0当量の強酸(塩酸、硫酸等の水溶液、パラトルエンスルホン酸等の有機酸等)と、0℃~100℃、好ましくは20℃~30℃で0.5~24時間反応させることにより一般式(A-3)で表わされる化合物を得ることができる。
(Second step)
In this step, the compound represented by formula (A-2) is reacted with a strong acid such as hydrochloric acid to obtain a compound A-3 in which the hydroxyl protecting group P 1 bonded to the 4′-position is deprotected. It is a process. This step can be performed according to the method described in Protective Groups in Organic Synthesis, Theodora W Green (John Wiley & Sons) and the like. For example, the compound represented by the general formula A-2 is converted into a strong acid (1.0 equivalent to 10.0 equivalents, preferably 2.0 equivalents to 4.0 equivalents) in a solvent such as methanol, ethanol, ethyl acetate, or dioxane. An aqueous solution such as hydrochloric acid and sulfuric acid, an organic acid such as paratoluenesulfonic acid, etc.) at 0 ° C. to 100 ° C., preferably 20 ° C. to 30 ° C., for 0.5 to 24 hours to react with the general formula (A-3) Can be obtained.
(第3工程)
本工程は、一般式(A-3)で表わされる化合物に(RO、R-Hal(式中、Halはハロゲン)等を反応させることにより、アミノ基がR-で保護された化合物A-4を得る工程である。本工程は、Protective Groups in Organic Synthesis,Theodora W Green(John Wiley & Sons)等に記載の方法に従って行うことができる。例えば、一般式A-3で表わされる化合物を、テトラヒドロフラン、ジクロロメタン、アセトニトリル、DMF等の溶媒中、または水-テトラヒドロフラン、水-トルエン等の混合溶媒中、1.0当量~5.0当量、好ましくは2.0当量~4.0当量の(ROおよび1.0当量~5.0当量、好ましくは2.0当量~4.0当量の有機塩基(例えば、ピリジン等)または無機塩基(例えば、水素化ナトリウム、水酸化ナトリウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、炭酸水素ナトリウム等)と、-20℃~50℃、好ましくは0℃~30℃で0.5~24時間反応させることにより一般式(A-4)で表わされる化合物を得ることができる。
(Third step)
In this step, the amino group is protected with R 2 -by reacting the compound represented by the general formula (A-3) with (R 2 ) 2 O, R 2 -Hal (where Hal is halogen), etc. This is a step of obtaining the compound A-4. This step can be performed according to the method described in Protective Groups in Organic Synthesis, Theodora W Green (John Wiley & Sons) and the like. For example, the compound represented by the general formula A-3 is 1.0 equivalent to 5.0 equivalents in a solvent such as tetrahydrofuran, dichloromethane, acetonitrile, DMF, or a mixed solvent such as water-tetrahydrofuran and water-toluene, preferably Is 2.0 equivalents to 4.0 equivalents of (R 2 ) 2 O and 1.0 equivalents to 5.0 equivalents, preferably 2.0 equivalents to 4.0 equivalents of an organic base (such as pyridine) or inorganic Reaction with a base (for example, sodium hydride, sodium hydroxide, sodium carbonate, potassium carbonate, cesium carbonate, sodium bicarbonate, etc.) at -20 ° C to 50 ° C, preferably 0 ° C to 30 ° C for 0.5 to 24 hours To obtain a compound represented by the general formula (A-4).
(第4工程)
本工程は、一般式(A-4)で表わされる化合物の4’位に結合する水酸基を酸化して、カルボニル基を有する化合物(A-5)を得る工程である。本工程は、実験化学講座第5版17巻(山善)等に記載の方法に従って行うことができる。例えば、一般式A-4で表わされる化合物を、DMSO等の溶媒中、1.0当量~5.0当量、好ましくは2.0当量~4.0当量のEDCおよび1.0当量~3.0当量、好ましくは1.0当量~2.0当量の有機酸(例えば、パラトルエンスルホン酸ピリジニウム等)と、0℃~50℃、好ましくは10℃~30℃で0.5~24時間反応させることにより一般式(A-5)で表わされる化合物を得ることができる。
(4th process)
This step is a step of obtaining a compound (A-5) having a carbonyl group by oxidizing the hydroxyl group bonded to the 4′-position of the compound represented by the general formula (A-4). This step can be performed according to the method described in Experimental Chemistry Course 5th edition Volume 17 (Yamazen) and the like. For example, the compound represented by the general formula A-4 is added in an amount of 1.0 equivalent to 5.0 equivalent, preferably 2.0 equivalent to 4.0 equivalent of EDC and 1.0 equivalent to 3. equivalent in a solvent such as DMSO. Reaction with 0 equivalents, preferably 1.0 equivalents to 2.0 equivalents of an organic acid (eg, pyridinium paratoluenesulfonate) at 0 ° C. to 50 ° C., preferably 10 ° C. to 30 ° C. for 0.5 to 24 hours To obtain a compound represented by the general formula (A-5).
(第5工程)
上記の方法で得た一般式(A-5)で表わされる化合物については以下のアルドール反応を行う。
(5th process)
The following aldol reaction is performed on the compound represented by the general formula (A-5) obtained by the above method.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
本工程は、一般式(A-5)で表わされる化合物を本発明の請求項1に示すアルドール反応に付して、一般式(A-6)で表わされる化合物を得る工程である。例えば、一般式(A-5)で表わされる化合物を、エタノール、ブタノール、アセトニトリル、DMF等の溶媒中、好ましくはアセトニトリル中、1.0倍~20.0倍容量もしくは1.0当量~20.0当量のRC(=O)Rであらわされるカルボニル化合物、好ましくは1.0倍~3.0倍容量のホルマリン水溶液等、および1.0倍~20.0倍容量もしくは1.0当量~20.0当量の有機塩基、好ましくは1.0倍~3.0倍容量の共役酸のpKaが6~10の有機塩基(例えば、N-メチルモルホリン等)と、20℃~100℃、好ましくは70℃~80℃で0.5~24時間反応させることにより一般式(A-6)で表わされる化合物を得ることができる。 This step is a step of obtaining the compound represented by the general formula (A-6) by subjecting the compound represented by the general formula (A-5) to the aldol reaction shown in claim 1 of the present invention. For example, the compound represented by the general formula (A-5) is 1.0 to 20.0 times volume or 1.0 equivalent to 20. A carbonyl compound represented by 0 equivalent of R 5 C (═O) R 6 , preferably a 1.0- to 3.0-fold volume formalin aqueous solution, and the like, and a 1.0- to 20.0-fold volume or 1.0 Equivalent to 20.0 equivalents of an organic base, preferably 1.0 to 3.0 volumes of an organic base with a pKa of 6 to 10 (for example, N-methylmorpholine, etc.) and 20 ° C. to 100 ° C. The compound represented by the general formula (A-6) can be obtained by reacting preferably at 70 ° C. to 80 ° C. for 0.5 to 24 hours.
(第6工程)
上記の方法で得た一般式(A-6)で表わされる化合物のRが水素原子である場合には、以下の酸化反応を行う。
(6th process)
When R 4 of the compound represented by the general formula (A-6) obtained by the above method is a hydrogen atom, the following oxidation reaction is performed.
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
本工程は、実験化学講座第5版17巻(山善)等に記載の方法に従って行うことができる。例えば、一般式(A-6)で表わされる化合物を、酢酸エチル、アセトニトリル、tert-ブタノール等の溶媒中、リン酸二水素ナトリウム水溶液等の緩衝液および1.0当量~20.0当量の2-メチル-2-ブテン、スクアレン等の存在下、1.0当量~10.0当量、好ましくは2.0当量~5.0当量の亜塩素酸ナトリウムと、0℃~60℃、好ましくは10℃~40℃で0.5~24時間反応させることにより一般式(A-7)で表わされる化合物を得ることができる。 This step can be performed according to the method described in Experimental Chemistry Course, 5th edition, volume 17 (Yamazen). For example, a compound represented by the general formula (A-6) is mixed with a buffer solution such as an aqueous solution of sodium dihydrogen phosphate in a solvent such as ethyl acetate, acetonitrile, or tert-butanol, and 1.0 equivalent to 20.0 equivalents of 2 -1.0 equivalent to 10.0 equivalents, preferably 2.0 equivalents to 5.0 equivalents of sodium chlorite in the presence of methyl-2-butene, squalene, etc., and 0 ° C to 60 ° C, preferably 10 A compound represented by the general formula (A-7) can be obtained by reacting at a temperature of from 40 ° C. to 40 ° C. for 0.5 to 24 hours.
また、一般式(A-6)で表わされる化合物のRがアルコキシ基である場合には、例えば、メタノール、エタノール,1,4-ジオキサン、テトラヒドロフラン等の溶媒中、またはそれらの混合溶媒中、0.1規定~10規定のアルカリ水溶液(水酸化ナトリウム水溶液、水酸化カリウム水溶液等)と、0℃~100℃、好ましくは20℃~30℃で0.1~24時間反応させることにより一般式A-7で表わされる化合物を得ることができる。 In the case where R 4 of the compound represented by the general formula (A-6) is an alkoxy group, for example, in a solvent such as methanol, ethanol, 1,4-dioxane, tetrahydrofuran, or a mixed solvent thereof, By reacting with a 0.1 N to 10 N aqueous alkali solution (sodium hydroxide aqueous solution, potassium hydroxide aqueous solution, etc.) at 0 ° C. to 100 ° C., preferably 20 ° C. to 30 ° C. for 0.1 to 24 hours, A compound represented by A-7 can be obtained.
4種アミダイトの一般的製法(1)
 上記の方法で得た一般式(A-6)(ただし、Rが水酸基である場合に限る)もしくは(A-7)で表わされる化合物から一般式(A-12)で表されるアミダイト化合物は、下記の製法により得ることができる。
General production method of 4 types of amidites (1)
The amidite compound represented by the general formula (A-12) from the compound represented by the general formula (A-6) (provided that R 4 is a hydroxyl group) or (A-7) obtained by the above method Can be obtained by the following production method.
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
式中のR、R、R、R、R、RおよびBについては前述と同意義を示す。また、Pについては前述の「核酸合成の水酸基の保護基」と同意義である。好適には、4,4’‐ジメトキシトリチル基、トリチル基、TBDPS基あるいはTBS基である。Pについては「ホスホロアミダイト基」を示す。「ホスホロアミダイト基」とは、式-P(OR11)(NR12)で表される基(式中、R11は炭素数1~6のアルキル基又は炭素数1~7のシアノアルキル基を示し、R12は炭素数1~6のアルキル基を示す。)を意味し、好適には、式-P(OCCN)(N(iPr))で表される基又は式-P(OCH)(N(iPr))で表される基である。 R 1 , R 2 , R 3 , R 4 , R 5 , R 6 and B in the formula are as defined above. P 2 has the same meaning as the above-mentioned “protecting group for hydroxyl group in nucleic acid synthesis”. A 4,4′-dimethoxytrityl group, a trityl group, a TBDPS group or a TBS group is preferable. P 3 represents a “phosphoramidite group”. “Phosphoramidite group” means a group represented by the formula —P (OR 11 ) (NR 12 ) (wherein R 11 is an alkyl group having 1 to 6 carbon atoms or a cyanoalkyl group having 1 to 7 carbon atoms). R 12 represents an alkyl group having 1 to 6 carbon atoms.), Preferably a group represented by the formula —P (OC 2 H 4 CN) (N (iPr) 2 ) It is a group represented by —P (OCH 3 ) (N (iPr) 2 ).
第7工程
本工程は、一般式(A-7)で表わされる化合物のアミノ基に置換する保護基Rを脱保護して化合物A-8を得る工程である。本工程は、Protective Groups in Organic Synthesis,Theodora W Green(John Wiley & Sons)等に記載の方法に従って行うことができる。
Step 7 This step is a step wherein compound A-8 is obtained by deprotecting the protecting group R 2 substituted on the amino group of the compound represented by formula (A-7). This step can be performed according to the method described in Protective Groups in Organic Synthesis, Theodora W Green (John Wiley & Sons) and the like.
第8工程
本工程は、一般式(A-8)で表わされる化合物から、2’位と4’位がアミド結合で環化した一般式(A-9)で表わされる化合物を得る工程である。N,N’-ジメチルホルムアミド、アセトニトリル等の溶媒中、またはそれらの混合溶媒中、1.0当量~5当量、好ましくは1.0当量~1.5当量のDCC、EDC、CDI(カルボニルジイミダゾール)等の縮合剤を加え(あるいはそれらの縮合剤にHOBt、HOSu等を添加し)、-20℃~120℃、好ましくは0℃~80℃で0.5時間~24時間反応させることにより一般式(A-9)で表わされる化合物を得ることができる。
Step 8 This step is a step for obtaining a compound represented by the general formula (A-9) in which the 2′-position and the 4′-position are cyclized by an amide bond from the compound represented by the general formula (A-8). . 1.0 equivalent to 5 equivalents, preferably 1.0 equivalent to 1.5 equivalents of DCC, EDC, CDI (carbonyldiimidazole) in a solvent such as N, N′-dimethylformamide, acetonitrile or a mixed solvent thereof. And other condensing agents (or HOBt, HOSu, etc. are added to these condensing agents) and reacted at −20 to 120 ° C., preferably 0 to 80 ° C. for 0.5 to 24 hours. A compound represented by the formula (A-9) can be obtained.
第9工程
本工程は、一般式(A-9)で表わされる化合物の5’位水酸基を保護基P(例えば4,4’‐ジメトキシトリチル基)で保護された一般式(A-10)で表わされる化合物を得る工程である。本工程は、Protective Groups in Organic Synthesis,Theodora W Green(John Wiley & Sons)等に記載の方法に従って行うことができる。
Ninth Step This step is a general formula (A-10) wherein the 5′-position hydroxyl group of the compound represented by the general formula (A-9) is protected with a protecting group P 2 (for example, 4,4′-dimethoxytrityl group). Is a step of obtaining a compound represented by the formula: This step can be performed according to the method described in Protective Groups in Organic Synthesis, Theodora W Green (John Wiley & Sons) and the like.
 例えば、一般式(A-9)で表わされる化合物を、ピリジン、トリエチルアミン、ジイソプロピルエチルアミン、DABCO(1、4-ジアザビシクロ[2.2.2]オクタン)等の塩基存在下、ジクロロメタン、トルエン等の溶媒中、あるいはピリジン溶媒中、1.0当量~5当量、好ましくは1.0当量~1.5当量の4,4’‐ジメトキシトリチルクロリドを加え、0℃~80℃、好ましくは20℃~30℃で、0.5時間~24時間反応させることによりPが4,4’‐ジメトキシトリチル基である一般式(A-10)で表わされる化合物を得ることができる。 For example, the compound represented by the general formula (A-9) is dissolved in a solvent such as dichloromethane or toluene in the presence of a base such as pyridine, triethylamine, diisopropylethylamine, DABCO (1,4-diazabicyclo [2.2.2] octane). In a pyridine solvent, 1.0 equivalent to 5 equivalents, preferably 1.0 equivalent to 1.5 equivalents of 4,4′-dimethoxytrityl chloride is added, and 0 ° C. to 80 ° C., preferably 20 ° C. to 30 ° C. A compound represented by the general formula (A-10) in which P 2 is a 4,4′-dimethoxytrityl group can be obtained by reacting at 0.5 ° C. for 0.5 to 24 hours.
第10工程
本工程は、一般式(A-10)で表わされる化合物の3’位に結合する水酸基の保護基Rが脱保護された一般式(A-11)で表わされる化合物を得る工程である。本工程は、Protective Groups in Organic Synthesis,Theodora W Green(John Wiley & Sons)等に記載の方法に従って行うことができる。
Step 10 This step is a step of obtaining a compound represented by the general formula (A-11) in which the hydroxyl protecting group R 3 bonded to the 3′-position of the compound represented by the general formula (A-10) is deprotected. It is. This step can be performed according to the method described in Protective Groups in Organic Synthesis, Theodora W Green (John Wiley & Sons) and the like.
一般式(A-10)で表わされる化合物のRが、例えばシリル系保護基(TBS基、TBDPS基、TES基など)の場合、テトラヒドロフラン、メタノール、エタノール、ジオキサン等の溶媒中、1.0当量~10.0当量、好ましくは1.1当量~3.0当量の脱シリル化剤(テトラブチルアンモニウムフロリド、アンモニウムフロリド、セシウムフロリド等のフッ素含有試薬、トリフルオロ酢酸、塩酸等の酸)と、0℃~100℃、好ましくは20℃~80℃で0.1時間~24時間反応させることにより一般式(A-11)で表わされる化合物を得ることができる。 In the case where R 3 of the compound represented by the general formula (A-10) is, for example, a silyl protecting group (TBS group, TBDPS group, TES group, etc.), in a solvent such as tetrahydrofuran, methanol, ethanol, dioxane, 1.0 Equivalent to 10.0 equivalents, preferably 1.1 equivalents to 3.0 equivalents of a desilylating agent (fluorine-containing reagents such as tetrabutylammonium fluoride, ammonium fluoride, cesium fluoride, trifluoroacetic acid, hydrochloric acid, etc. The compound represented by the general formula (A-11) can be obtained by reacting with an acid at 0 to 100 ° C., preferably 20 to 80 ° C. for 0.1 to 24 hours.
また、一般式(A-10)で表わされる化合物のRが、例えばベンジル系保護基(Bn基、p-メトキシベンジル基など)の場合、メタノール、テトラヒドロフラン、エタノール、ジオキサン、トルエン等の溶媒中、またはそれらの混合溶媒中、パラジウム-炭素粉末や水酸化パラジウム-炭素粉末を加え、水素気流下、0℃~40℃で、1時間~24時間反応させることにより、一般式(A-11)で表わされる化合物を得ることができる。 Further, when R 3 of the compound represented by the general formula (A-10) is, for example, a benzyl protecting group (Bn group, p-methoxybenzyl group, etc.), it is dissolved in a solvent such as methanol, tetrahydrofuran, ethanol, dioxane, toluene and the like. Or palladium-carbon powder or palladium hydroxide-carbon powder in a mixed solvent thereof, and the mixture is reacted at 0 ° C. to 40 ° C. for 1 hour to 24 hours in a hydrogen stream, thereby obtaining a compound represented by the general formula (A-11) Can be obtained.
第11工程
 本工程は、一般式(A-11)で表わされる化合物に対して、アミダイト化試薬を反応させることにより、3’位水酸基がアミダイト化された一般式(A-12)で表わされる化合物を得る工程である。一般式(A-11)で表わされる化合物をアセトニトリル、ジクロロメタン、テトラヒドロフラン等の溶媒中、またはそれらの混合溶媒中、ジイソプロピルエチルアミン、トリエチルアミン等の塩基の存在下で、2-シアノエチル-N,N-ジイソプロピルクロロホスホロアミダイトあるいはテトラゾール、ジシアノイミダゾール等の酸存在下で2-シアノエチル-N,N,N’,N’-テトライソプロピルホスフォロアミダイトを加え、0℃~60℃で、1時間~24時間反応させることにより、一般式(A-12)を得ることができる。
Eleventh Step This step is represented by the general formula (A-12) in which the 3′-position hydroxyl group is amidated by reacting the compound represented by the general formula (A-11) with an amidite forming reagent. This is a step of obtaining a compound. The compound represented by the general formula (A-11) is mixed with 2-cyanoethyl-N, N-diisopropyl in a solvent such as acetonitrile, dichloromethane, tetrahydrofuran or the like in the presence of a base such as diisopropylethylamine or triethylamine. Add 2-cyanoethyl-N, N, N ', N'-tetraisopropyl phosphoramidite in the presence of chlorophosphoramidite or tetrazole, dicyanoimidazole, etc., and react at 0-60 ° C for 1-24 hours Thus, the general formula (A-12) can be obtained.
以上の各工程については順序が入れ替わっても良く、一般式(A-7)で表わされる化合物から一般式(A-12)で表わされる化合物へ変換できれば良い。 The order of the above steps may be changed as long as the compound represented by the general formula (A-7) can be converted into the compound represented by the general formula (A-12).
4種アミダイトの一般的製法(2)
 4種アミダイトの一般的製法(1)の別法として、一般式(A-9)から一般式(A-10-2)を経由して、一般式(A-11)を得ることが出来る
General production method of 4 amidites (2)
As an alternative to the general production method (1) of the four amidites, the general formula (A-11) can be obtained from the general formula (A-9) via the general formula (A-10-2).
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
第1工程
本工程は、一般式(A-9)で表わされる化合物の3’位に結合する水酸基の保護基Rが脱保護された一般式(A-10-2)で表わされる化合物を得る工程である。4種アミダイトの一般的製法(1)の第3工程(A-10からA-11の工程)と同様な方法で、一般式(A-10-2)で表わされる化合物を得ることができる。
なお、核酸塩基がアデニン(A)、グアニン(G)、シトシン(C)の場合でそのアミノ基が無保護の場合は、塩基存在下、TMSクロリド、 TBSクロリドなどのシリル化剤でシリル化し、ベンゾイルクロリド、フェノキシアセチルクロリド、各種酸無水物などのアシル化剤あるいは1,1-ジメトキシーN,N‘-ジメチルメタンアミン等のイミノ化剤を-20℃~120℃、好ましくは0℃~50℃で0.5時間~24時間反応させた後、酸処理あるいは脱シリル化剤と反応させることにより、核酸塩基のアミノ基が保護された一般式(A-10-2)で表わされる化合物を得ることができる。
Step 1 This step comprises the step of preparing a compound represented by the general formula (A-10-2) in which the hydroxyl protecting group R 3 bonded to the 3′-position of the compound represented by the general formula (A-9) is deprotected. It is a process to obtain. The compound represented by the general formula (A-10-2) can be obtained by the same method as the third step (steps A-10 to A-11) of the general production method (1) of the four amidites.
In the case where the nucleobase is adenine (A), guanine (G), or cytosine (C) and the amino group is unprotected, silylation with a silylating agent such as TMS chloride or TBS chloride in the presence of the base, An acylating agent such as benzoyl chloride, phenoxyacetyl chloride, various acid anhydrides, or an iminating agent such as 1,1-dimethoxy-N, N′-dimethylmethanamine is −20 ° C. to 120 ° C., preferably 0 ° C. to 50 ° C. And then reacting with an acid treatment or a desilylating agent to obtain a compound represented by the general formula (A-10-2) in which the amino group of the nucleobase is protected. be able to.
第2工程
本工程は、一般式(A-10-2)で表わされる化合物の5’位水酸基を保護基R(通常は4,4’‐ジメトキシトリチル基)で保護した一般式(A-11)で表わされる化合物を得る工程である。4種アミダイトの一般的製法(1)の第2工程(A-9からA-10の工程)と同様な方法で、一般式(A-11)で表わされる化合物を得ることができる。
Second Step In this step, the 5′-position hydroxyl group of the compound represented by the general formula (A-10-2) is protected with a protecting group R 7 (usually a 4,4′-dimethoxytrityl group). This is a step of obtaining a compound represented by 11). The compound represented by the general formula (A-11) can be obtained by the same method as the second step (steps A-9 to A-10) of the general production method (1) of the four amidites.
以上の各工程についても順序が入れ替わっても良く、一般式(A-9)で表わされる化合物から一般式(A-11)で表わされる化合物へ変換できれば良い。 The order of the above steps may be changed as long as the compound represented by the general formula (A-9) can be converted into the compound represented by the general formula (A-11).
4種アミダイトの一般的製法(3)
4種アミダイトの一般的製法(1)の別法として、一般式(A-7)から一般式(A-11)は以下の工程によっても得ることができる。
General production method of 4 kinds of amidites (3)
As an alternative to the general production method (1) of the four amidites, the general formulas (A-7) to (A-11) can also be obtained by the following steps.
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
 R、R、R、R、RおよびBは前述と同意義を示す。Rは4,4’-ジメトキシトリチル基(あるいはトリチル基、TBDPS基、TBS基)など核酸合成に用いる水酸基の保護基である。 R 1 , R 2 , R 3 , R 5 , R 6 and B are as defined above. R 7 is a hydroxyl-protecting group used for nucleic acid synthesis such as 4,4′-dimethoxytrityl group (or trityl group, TBDPS group, TBS group).
第1工程
本工程は、一般式(A-7)で表わされる化合物から、2’位と3’位の保護基を除去して一般式(A-13)で表わされる化合物を得る工程である。2’位の保護基がトリフルオロアセチル基の場合、テトラヒドロフラン、メタノール、アセトニトリル,ピリジン等の溶媒中、またはそれらの混合溶媒中、1.0当量~5当量、好ましくは1.0当量~3.0当量のTBAF(テトラブチルアンモニウムフロリド)、フッ化水素トリエチルアミン錯体、フッ化アンモニウム等の脱シリル化剤を加え、0℃~100℃、好ましくは25℃~80℃で0.5時間~24時間反応させることにより一般式(A-13)で表わされる化合物を得ることができる。脱シリル化剤では通常除去されないトリフルオロアセチル基が除去される一方で、ベンゾイル基など核酸塩基の保護基が除去されないことが本反応の特徴であり、架橋型核酸誘導体の合成工程数、収率の向上を可能にする方法である。
また、別法としてRがトリフルオロアセチル基を含むアシル系保護基あるいはカーバメート系保護基の場合、メタノール、エタノール、1,4-ジオキサン、テトラヒドロフラン等の溶媒中、またはそれらの混合溶媒中、0.1規定~10規定のアルカリ溶液(水酸化ナトリウム水溶液、水酸化カリウム-メタノール溶液等)と、0℃~100℃、好ましくは20℃~30℃で0.1~24時間反応することにより2’位の保護基を除去した後、TBAF等で脱シリル化することにより、一般式(A-13)で表わされる化合物を得ることができる。
が第3ブチルオキシカルボニル基(BOC基)の場合、メタノール、エタノール、1,4-ジオキサン、テトラヒドロフラン等の溶媒中、あるいは無溶媒で、トリフルオロ酢酸あるいは塩化水素等の酸と-20℃~100℃、好ましくは20℃~30℃で0.1~24時間反応することにより2’位の保護基を除去した後、TBAF等で脱シリル化することにより、一般式(A-13)で表わされる化合物を得ることができる。
がベンジル系の保護基(CBz基、Bn基、MPM基等)の場合は、メタノール、テトラヒドロフラン、エタノール、ジオキサン、トルエン等の溶媒中、またはそれらの混合溶媒中、パラジウム-炭素粉末や水酸化パラジウム-炭素粉末を加え、水素気流下、0℃~40℃で、1時間~24時間反応させることにより、2’位の保護基を除去した後、TBAF等で脱シリル化することにより、一般式(A-13)で表わされる化合物を得ることができる。
Step 1 This step is a step for obtaining a compound represented by the general formula (A-13) by removing the protecting groups at the 2′-position and the 3′-position from the compound represented by the general formula (A-7). . When the protecting group at the 2 ′ position is a trifluoroacetyl group, it is 1.0 equivalent to 5 equivalents, preferably 1.0 equivalents to 3. equivalents, in a solvent such as tetrahydrofuran, methanol, acetonitrile, pyridine, or a mixed solvent thereof. 0 equivalent of TBAF (tetrabutylammonium fluoride), hydrogen fluoride triethylamine complex, ammonium fluoride and other desilylating agents are added, and 0 to 100 ° C., preferably 25 to 80 ° C. for 0.5 hours to 24 The compound represented by the general formula (A-13) can be obtained by reacting for a period of time. The characteristic of this reaction is that the trifluoroacetyl group, which is not normally removed by the desilylating agent, is removed, but the nucleobase protecting group such as benzoyl group is not removed. It is a method that makes it possible to improve.
As another method, when R 2 is an acyl protecting group containing a trifluoroacetyl group or a carbamate protecting group, it is 0 in a solvent such as methanol, ethanol, 1,4-dioxane, tetrahydrofuran, or a mixed solvent thereof. 2 by reacting with 1N-10N alkaline solution (sodium hydroxide aqueous solution, potassium hydroxide-methanol solution, etc.) at 0-100 ° C, preferably 20-30 ° C for 0.1-24 hours. The compound represented by the general formula (A-13) can be obtained by removing the protecting group at the 'position and then desilylating with TBAF or the like.
In the case where R 2 is a tertiary butyloxycarbonyl group (BOC group), an acid such as trifluoroacetic acid or hydrogen chloride and −20 ° C. can be used in a solvent such as methanol, ethanol, 1,4-dioxane, tetrahydrofuran, or without solvent. After removing the protecting group at the 2 ′ position by reacting at ˜100 ° C., preferably 20 ° C. to 30 ° C. for 0.1 to 24 hours, desilylation with TBAF or the like is carried out to obtain the general formula (A-13) Can be obtained.
When R 2 is a benzyl-based protecting group (CBz group, Bn group, MPM group, etc.), in a solvent such as methanol, tetrahydrofuran, ethanol, dioxane, toluene, or a mixed solvent thereof, palladium-carbon powder or water By adding palladium oxide-carbon powder and reacting at 0 ° C. to 40 ° C. for 1 to 24 hours under a hydrogen stream, the protecting group at the 2′-position is removed, followed by desilylation with TBAF or the like. A compound represented by the general formula (A-13) can be obtained.
第2工程
本工程は、一般式(A-13)で表わされる化合物から、2’位と4’位がアミド結合で環化した一般式(A-14)で表わされる化合物を得る工程である。N,N’-ジメチルホルムアミド、テトラヒドロフラン、アセトニトリル等の溶媒中、またはそれらの混合溶媒中、1.0当量~10当量、好ましくは1.0当量~3当量のDCC、EDC、CDI(カルボニルジイミダゾール)等の縮合剤を加え(あるいはそれらの縮合剤にHOBt、HOSu等を添加し)、-20℃~120℃、好ましくは25℃~80℃で0.5時間~24時間反応させることにより一般式(A-14)で表わされる化合物を得ることができる。
なお,核酸塩基がアデニン(A)、グアニン(G)、シトシン(C)で、そのアミノ基が無保護の場合は、塩基存在下、TMSクロリド、 TBSクロリドなどのシリル化剤でシリル化し、ベンゾイルクロリド、フェノキシアセチルクロリド、各種酸無水物などのアシル化剤あるいは1,1-ジメトキシーN,N‘-ジメチルメタンアミン等のイミノ化剤を-20℃~120℃、好ましくは0℃~50℃で0.5時間~24時間反応させた後、酸処理あるいは脱シリル化剤と反応させることにより、核酸塩基のアミノ基が保護された一般式(A-14)で表わされる化合物を得ることができる。
Second Step This step is a step of obtaining a compound represented by the general formula (A-14) in which the 2′-position and the 4′-position are cyclized by amide bonds from the compound represented by the general formula (A-13). . 1.0 equivalent to 10 equivalents, preferably 1.0 equivalent to 3 equivalents of DCC, EDC, CDI (carbonyldiimidazole) in a solvent such as N, N′-dimethylformamide, tetrahydrofuran, acetonitrile, or a mixed solvent thereof. And other condensing agents (or HOBt, HOSu, etc. are added to these condensing agents) and reacted at −20 ° C. to 120 ° C., preferably 25 ° C. to 80 ° C. for 0.5 to 24 hours. A compound represented by the formula (A-14) can be obtained.
In addition, when the nucleobase is adenine (A), guanine (G), or cytosine (C) and the amino group is unprotected, silylation with silylating agents such as TMS chloride, TBS chloride, etc. in the presence of the base results in benzoyl An acylating agent such as chloride, phenoxyacetyl chloride, various acid anhydrides, or an iminating agent such as 1,1-dimethoxy-N, N′-dimethylmethanamine is used at −20 ° C. to 120 ° C., preferably 0 ° C. to 50 ° C. After reacting for 0.5 to 24 hours, the compound represented by the general formula (A-14) in which the amino group of the nucleobase is protected can be obtained by reacting with an acid treatment or a desilylating agent. .
第3工程
本工程は、一般式(A-14)で表わされる化合物の5’位水酸基を保護基R(例えば、4,4’‐ジメトキシトリチル基)で保護された一般式(A-11)で表わされる化合物を得る工程である。本工程は、Protective Groups in Organic Synthesis,Theodora W Green(John Wiley & Sons)等に記載の方法に従って行うことができる。
一般式(A-14)で表わされる化合物をピリジン、DABCO(1,4-ジアザビシクロ[2.2.2]オクタン)、トリエチルアミン、ジイソプロピルエチルアミン等の塩基存在下、ジクロロメタン、トルエン、テトラヒドロフラン等の溶媒中、あるいはピリジン溶媒中、1.0当量~5当量、好ましくは1.0当量~3当量の4,4’-ジメトキシトリチルクロリドを加え、0℃~80℃、好ましくは20℃~30℃で、0.5時間~24時間反応させることによりRが4,4’-ジメトキシトリチル基である一般式(A―11)で表わされる化合物を得ることができる。
なお、第1工程~第3工程は反応溶媒を適切に選択することにより、1ポットで実施することも可能である。
Third Step This step is a general formula (A-11) wherein the 5′-position hydroxyl group of the compound represented by the general formula (A-14) is protected with a protecting group R 7 (for example, 4,4′-dimethoxytrityl group). Is a step of obtaining a compound represented by This step can be performed according to the method described in Protective Groups in Organic Synthesis, Theodora W Green (John Wiley & Sons) and the like.
In the presence of a base such as pyridine, DABCO (1,4-diazabicyclo [2.2.2] octane), triethylamine, diisopropylethylamine, etc. in a solvent such as dichloromethane, toluene, tetrahydrofuran, etc. Or 1.0 equivalent to 5 equivalents, preferably 1.0 equivalent to 3 equivalents of 4,4′-dimethoxytrityl chloride in pyridine solvent and added at 0 ° C. to 80 ° C., preferably 20 ° C. to 30 ° C., By reacting for 0.5 to 24 hours, a compound represented by formula (A-11) in which R 7 is a 4,4′-dimethoxytrityl group can be obtained.
The first to third steps can be carried out in one pot by appropriately selecting the reaction solvent.
4種アミダイトの一般的製法(4)
一般式(A-7)において、Bがチミン(T)あるいはその誘導体である場合には、トランスグリコシル化反応によって、アデニン(A)、グアニン(G)、シトシン(C)あるいはこれらの誘導体に変換することができる。具体的には、1,2-ジクロロエタン、トルエン、アセトニトリル、CPME(シクロペンチルメチルエーテル)等の溶媒中、またはそれらの混合溶媒中、BSA(N,O-ビス(トリメチルシリル)アセトアミド)、アデニン、グアニン、あるいはこれらの誘導体、TMSOTf、BF3OEt2等のルイス酸を加え、0℃~120℃、好ましくは50℃~80℃で0.1~24時間反応することにより、Bがアデニン(A)、グアニン(G)、シトシン(C)あるいはこれらの誘導体の一般式(A-7)で表わされる化合物を得ることができる。
General production method of 4 kinds of amidites (4)
In the general formula (A-7), when B is thymine (T) or a derivative thereof, it is converted into adenine (A), guanine (G), cytosine (C) or a derivative thereof by transglycosylation reaction. can do. Specifically, in a solvent such as 1,2-dichloroethane, toluene, acetonitrile, CPME (cyclopentylmethyl ether), or a mixed solvent thereof, BSA (N, O-bis (trimethylsilyl) acetamide), adenine, guanine, Alternatively, a Lewis acid such as these derivatives, TMSOTf, BF3OEt2, etc. is added and reacted at 0 ° C. to 120 ° C., preferably 50 ° C. to 80 ° C. for 0.1 to 24 hours, whereby B becomes adenine (A), guanine (G ), Cytosine (C), or a compound represented by the general formula (A-7) of these derivatives.
シチジン型化合物のアミダイトの一般的製法
 一般式(A-11c)で表される化合物は、一般式(A-10)より、下記の方法により得ることができる。
General Process for Cytidine-type Compound Amidite The compound represented by the general formula (A-11c) can be obtained from the general formula (A-10) by the following method.
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
式中のQ、Q、およびQについては前述の「炭素数1~5のアルキル基」と同意義である。 Q 1 , Q 2 , and Q 3 in the formula have the same meaning as the aforementioned “alkyl group having 1 to 5 carbon atoms”.
第1工程
本工程は、上記の一般式(A-10)で表わされる化合物において、核酸塩基部(B)がチミン又はチミン誘導体(A-10t)であるチミジン型化合物から、核酸塩基部(B)がシトシン又はシトシン誘導体(A-10c)であるシチジン型化合物を得る工程である。アセトニトリル、ジクロロメタン、ピリジン等の溶媒中、またはそれらの混合溶媒中、トリエチルアミン、イミダゾール、N,N-ジメチルアミノピリジン等の塩基、および2,4,6-トリイソプロピルベンゼンスルホニルクロリド等のスルホニルクロリドと、-20℃~80℃、好ましくは0℃~30℃で0.1~24時間反応させた後、アンモニア水を加えて、0℃~80℃、好ましくは0℃~30℃で0.5~8時間反応させることにより、一般式(A-10c)で表わされる化合物を得ることができる。
First Step This step is a step represented in the compound represented by the above general formula (A-10) from a thymidine-type compound in which the nucleobase part (B) is thymine or a thymine derivative (A-10t). ) Is a step of obtaining a cytidine-type compound which is cytosine or a cytosine derivative (A-10c). A base such as triethylamine, imidazole, N, N-dimethylaminopyridine, and a sulfonyl chloride such as 2,4,6-triisopropylbenzenesulfonyl chloride in a solvent such as acetonitrile, dichloromethane, pyridine, or a mixed solvent thereof; After reacting at −20 ° C. to 80 ° C., preferably 0 ° C. to 30 ° C. for 0.1 to 24 hours, aqueous ammonia is added, and 0 ° C. to 80 ° C., preferably 0 ° C. to 30 ° C., 0.5 to By reacting for 8 hours, a compound represented by the general formula (A-10c) can be obtained.
第2工程
本工程は、一般式(A-10c)で表わされる化合物から、さらに、シトシン又はシトシン誘導体のアミノ基を修飾して、一般式(A-11c)で表わされる化合物を得る工程である。N,N’-ジメチルホルムアミド、ピリジン、アセトニトリル、ジクロロメタン等の溶媒中、またはそれらの混合溶媒中、トリエチルアミン、イミダゾール、N,N-ジメチルアミノピリジン等の塩基、およびベンゾイルクロリド、アセチルクロリド等のアシルクロリドあるいは安息香酸無水物、無水酢酸等の酸無水物と、-20℃~80℃、好ましくは0℃~30℃で0.1~48時間反応させることにより、一般式(A-11c)で表わされる化合物を得ることができる。
Step 2 This step is a step of obtaining a compound represented by the general formula (A-11c) by further modifying the amino group of cytosine or cytosine derivative from the compound represented by the general formula (A-10c). . Bases such as triethylamine, imidazole and N, N-dimethylaminopyridine, and acyl chlorides such as benzoyl chloride and acetyl chloride in a solvent such as N, N′-dimethylformamide, pyridine, acetonitrile, dichloromethane or a mixture thereof Alternatively, it is represented by the general formula (A-11c) by reacting with an acid anhydride such as benzoic anhydride or acetic anhydride at −20 ° C. to 80 ° C., preferably 0 ° C. to 30 ° C. for 0.1 to 48 hours. Can be obtained.
以下、本発明の核酸誘導体の合成を実施例に基づいてさらに詳しく説明する。
[実施例1]
Hereinafter, the synthesis of the nucleic acid derivative of the present invention will be described in more detail based on examples.
[Example 1]
 (2R,3S,4R,5R)-3-(tert-ブチルジメチルシキルオキシ)-2-ヒドロキシメチル-5-(5-メチル-2,4-ジオキソ-3,4-ジヒドロピリミジン-1(2H)-イル)-4-(メチルアミノ)テトラヒドロフラン-2-カルボン酸の合成 (2R, 3S, 4R, 5R) -3- (tert-butyldimethylalkyloxy) -2-hydroxymethyl-5- (5-methyl-2,4-dioxo-3,4-dihydropyrimidine-1 (2H ) -Yl) -4- (methylamino) tetrahydrofuran-2-carboxylic acid synthesis
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
工程1 化合物2の合成
 窒素雰囲気下、化合物1(合成法はOrganic Letters,7,1569-1572(2005)に記載の方法に準じる、4.40g、8.05mmol)のテトラヒドロフラン(26mL)懸濁液に、飽和重曹水(13mL)、Cbzクロリド(1.26mL、8.86mmol)を氷冷下で加え、室温で1時間撹拌した。反応液に水(13mL)を加え、ジクロロメタン(75mL)で抽出した。有機層を飽和食塩水(25mL)で洗浄し、硫酸ナトリウムで乾燥した。溶媒を減圧留去し、得られた残渣に酢酸エチル-イソプロピルエーテル(2:1、66mL)を加えた。析出した固体をろ取した後、酢酸エチル-イソプロピルエーテル(1:1)で洗浄し、化合物2(4.87g、収率93%)を得た。得られた化合物2の物性データは、以下のとおりであった。
1H-NMR(CDCl3)δ:8.04(1H, s), 7.54(1H, s), 7.44-7.27(20H, m), 6.59(1H, d, J=7.3 Hz), 5.20(1H, brs), 4.63(1H, brs), 4.17(1H, s), 3.49(1H, dd, J=10.7, 2.4 Hz), 3.39(1H, brs), 3.15(3H, s), 1.36(3H, s).
Step 1 Synthesis of Compound 2 A suspension of Compound 1 (4.40 g, 8.05 mmol) in tetrahydrofuran (26 mL) under a nitrogen atmosphere was synthesized according to the method described in Organic Letters, 7, 1569-1572 (2005). To the mixture, saturated aqueous sodium hydrogen carbonate (13 mL) and Cbz chloride (1.26 mL, 8.86 mmol) were added under ice-cooling, and the mixture was stirred at room temperature for 1 hr. Water (13 mL) was added to the reaction mixture, and the mixture was extracted with dichloromethane (75 mL). The organic layer was washed with saturated brine (25 mL) and dried over sodium sulfate. The solvent was distilled off under reduced pressure, and ethyl acetate-isopropyl ether (2: 1, 66 mL) was added to the resulting residue. The precipitated solid was collected by filtration and washed with ethyl acetate-isopropyl ether (1: 1) to obtain compound 2 (4.87 g, yield 93%). The physical property data of the obtained compound 2 were as follows.
1 H-NMR (CDCl 3 ) δ: 8.04 (1H, s), 7.54 (1H, s), 7.44-7.27 (20H, m), 6.59 (1H, d, J = 7.3 Hz), 5.20 (1H, brs ), 4.63 (1H, brs), 4.17 (1H, s), 3.49 (1H, dd, J = 10.7, 2.4 Hz), 3.39 (1H, brs), 3.15 (3H, s), 1.36 (3H, s) .
工程2 化合物3の合成
 化合物2(4.35g、6.72mmol)、イミダゾール(81.8mg、1.20mmol)のDMF(9mL)溶液に、TBSクロリド(140mg、0.929mmol)を氷冷下で加え、室温で19時間攪拌した。反応液を酢酸エチル(45mL)で希釈した後、水(15mL)および2mol/L塩酸(5mL)を氷冷下で加えた。有機層を水(20mL)および飽和食塩水(20mL)で洗浄し、硫酸ナトリウムで乾燥した。溶媒を減圧留去し、化合物3の粗生成物を得た。
Step 2 Synthesis of Compound 3 To a solution of compound 2 (4.35 g, 6.72 mmol) and imidazole (81.8 mg, 1.20 mmol) in DMF (9 mL) was added TBS chloride (140 mg, 0.929 mmol) under ice-cooling. The mixture was further stirred at room temperature for 19 hours. The reaction mixture was diluted with ethyl acetate (45 mL), and water (15 mL) and 2 mol / L hydrochloric acid (5 mL) were added under ice cooling. The organic layer was washed with water (20 mL) and saturated brine (20 mL), and dried over sodium sulfate. The solvent was distilled off under reduced pressure to obtain a crude product of compound 3.
工程3 化合物4の合成
 工程2で得た化合物3の粗生成物のクロロホルム(40mL)溶液に、4mol/L塩化水素・酢酸エチル溶液(2.00mL、8.00mmol)を氷冷下で加え、室温に昇温しながら4.5時間攪拌した。さらに4mol/L塩化水素・酢酸エチル溶液(1.34mL、5.36mmol)を氷冷下で加え、30分間攪拌した。反応液に水(40mL)を氷冷下で加え、有機層を水(40mL)および飽和食塩水(20mL)で洗浄し、硫酸ナトリウムで乾燥した。溶媒を減圧留去し、得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン-酢酸エチル)により精製して化合物4(2.20g、収率63%)と化合物3(1.68g、収率33%)を得た。得られた化合物4の物性データは、以下のとおりであった。
1H-NMR(CDCl3)δ:8.24(1H, s), 7.46(0.8H, s), 7.33-7.24(5.2H, m), 6.42(0.8H, d, J=9.3 Hz), 6.23(0.2H, d, J=8.3 Hz), 5.19-5.05(2H, m), 4.73(0.2H, t, J=7.9 Hz), 4.66(0.8H, t, J=7.3 Hz), 4.49(0.8H, d, J=6.3 Hz), 4.42(0.2H, d, J=5.3 Hz), 4.02(0.8H, s), 3.99(0.2H, s), 3.88(1H, d, J=12.0 Hz), 3.78-3.71(1H, m), 3.07(0.7H, s), 3.06(2.3H, s), 2.38(1H, brs), 1.89(2.3H, s), 1.84(0.7H, s), 0.85(9H, s), 0.01(3H, s), -0.03(3H, s).
Step 3 Synthesis of Compound 4 To a chloroform (40 mL) solution of the crude product of Compound 3 obtained in Step 2, 4 mol / L hydrogen chloride / ethyl acetate solution (2.00 mL, 8.00 mmol) was added under ice cooling, The mixture was stirred for 4.5 hours while warming to room temperature. Further, a 4 mol / L hydrogen chloride / ethyl acetate solution (1.34 mL, 5.36 mmol) was added under ice cooling, and the mixture was stirred for 30 minutes. Water (40 mL) was added to the reaction solution under ice-cooling, and the organic layer was washed with water (40 mL) and saturated brine (20 mL), and dried over sodium sulfate. The solvent was distilled off under reduced pressure, and the resulting residue was purified by silica gel column chromatography (n-hexane-ethyl acetate) to obtain compound 4 (2.20 g, yield 63%) and compound 3 (1.68 g, yield). 33%). The physical property data of the obtained compound 4 were as follows.
1 H-NMR (CDCl 3 ) δ: 8.24 (1H, s), 7.46 (0.8H, s), 7.33-7.24 (5.2H, m), 6.42 (0.8H, d, J = 9.3 Hz), 6.23 ( 0.2H, d, J = 8.3 Hz), 5.19-5.05 (2H, m), 4.73 (0.2H, t, J = 7.9 Hz), 4.66 (0.8H, t, J = 7.3 Hz), 4.49 (0.8H , d, J = 6.3 Hz), 4.42 (0.2H, d, J = 5.3 Hz), 4.02 (0.8H, s), 3.99 (0.2H, s), 3.88 (1H, d, J = 12.0 Hz), 3.78-3.71 (1H, m), 3.07 (0.7H, s), 3.06 (2.3H, s), 2.38 (1H, brs), 1.89 (2.3H, s), 1.84 (0.7H, s), 0.85 ( 9H, s), 0.01 (3H, s), -0.03 (3H, s).
また、得られた化合物3の物性データは、以下のとおりであった。
1H-NMR(CDCl3)δ:8.13(0.4H, s), 8.08(0.6H, s), 7.69(0.4H, s), 7.56(0.6H, s), 7.49-7.20 (20H, m), 6.60-6.55(1H, m), 5.47(0.4H, d, J=11.8 Hz), 5.19(1.2H, s), 4.97(0.6H, dd, J=9.0, 6.4 Hz), 4.87(0.4H, d, J=12.2 Hz), 4.81(0.4H, dd, J=8.7, 5.8 Hz), 4.67(0.6H, d, J=5.9 Hz), 4.47(0.4H, d, J=5.3 Hz), 4.05(0.6H, s), 3.98(0.4H, s), 3.40-3.24(2H, m), 3.16(1.2H, s), 3.12(1.8H, s), 1.41(1.2H, s), 1.34(1.8H, s), 0.82(5.4H, s), 0.77(3.6H, s), -0.03(1.8H, s), -0.09(1.8H, s), -0.21(1.2H, s), -0.26(1.2H, s).
Moreover, the physical property data of the obtained compound 3 were as follows.
1 H-NMR (CDCl 3 ) δ: 8.13 (0.4H, s), 8.08 (0.6H, s), 7.69 (0.4H, s), 7.56 (0.6H, s), 7.49-7.20 (20H, m) , 6.60-6.55 (1H, m), 5.47 (0.4H, d, J = 11.8 Hz), 5.19 (1.2H, s), 4.97 (0.6H, dd, J = 9.0, 6.4 Hz), 4.87 (0.4H , d, J = 12.2 Hz), 4.81 (0.4H, dd, J = 8.7, 5.8 Hz), 4.67 (0.6H, d, J = 5.9 Hz), 4.47 (0.4H, d, J = 5.3 Hz), 4.05 (0.6H, s), 3.98 (0.4H, s), 3.40-3.24 (2H, m), 3.16 (1.2H, s), 3.12 (1.8H, s), 1.41 (1.2H, s), 1.34 (1.8H, s), 0.82 (5.4H, s), 0.77 (3.6H, s), -0.03 (1.8H, s), -0.09 (1.8H, s), -0.21 (1.2H, s), -0.26 (1.2H, s).
工程4 化合物5の合成
 化合物4(1.07g、2.06mmol)のDMSO(10mL)溶液に、EDC塩酸塩(1.18mg、6.16mmol)およびパラトルエンスルホン酸ピリジニウム(518mg、2.06mmol)を室温で加え、3時間攪拌した。反応液を酢酸エチル(30mL)で希釈した後、水(10mL×4回)および飽和食塩水(10mL)で洗浄し、硫酸ナトリウムで乾燥した。溶媒を減圧留去し、化合物5の粗生成物を得た。
Step 4 Synthesis of Compound 5 To a solution of Compound 4 (1.07 g, 2.06 mmol) in DMSO (10 mL) was added EDC hydrochloride (1.18 mg, 6.16 mmol) and pyridinium paratoluenesulfonate (518 mg, 2.06 mmol). Was added at room temperature and stirred for 3 hours. The reaction mixture was diluted with ethyl acetate (30 mL), washed with water (10 mL × 4 times) and saturated brine (10 mL), and dried over sodium sulfate. The solvent was distilled off under reduced pressure to obtain a crude product of compound 5.
工程5 化合物6の合成
 工程4で得た化合物5の粗生成物のエタノール(4mL)溶液に、トリエチルアミン(2.00mL、14.4mmol)および37%ホルマリン水溶液(2.00mL、26.9mmol)を室温で加え、80℃で4時間攪拌した。反応液に1mol/L塩酸(20mL)を氷冷下で加え、酢酸エチル(30mLおよび20mL)で抽出した。有機層を水(20mL)および飽和食塩水(20mL)で洗浄し、硫酸ナトリウムで乾燥した。溶媒を減圧留去し、化合物6の粗生成物を得た。
Step 5 Synthesis of Compound 6 To a solution of the crude product of Compound 5 obtained in Step 4 in ethanol (4 mL), triethylamine (2.00 mL, 14.4 mmol) and 37% formalin aqueous solution (2.00 mL, 26.9 mmol) were added. It added at room temperature and stirred at 80 degreeC for 4 hours. 1 mol / L hydrochloric acid (20 mL) was added to the reaction solution under ice-cooling, and the mixture was extracted with ethyl acetate (30 mL and 20 mL). The organic layer was washed with water (20 mL) and saturated brine (20 mL), and dried over sodium sulfate. The solvent was distilled off under reduced pressure to obtain a crude product of compound 6.
工程6 化合物7の合成
 工程5で得た化合物6の粗生成物、りん酸二水素ナトリウム二水和物(551mg、3.53mmol)および2-メチル-2-ブテン(1.87mL、17.7mmol)のtert-ブタノール(10mL)、水(3mL)溶液に、亜塩素酸ナトリウム(800mg、8.85mmol)の水(5mL)溶液を氷冷下で滴下した後、反応液を室温に昇温しながら2.5時間攪拌した。反応液に0.2mol/L水酸化ナトリウム水溶液(20mL)を加え、トルエン(20mL)で洗浄した。有機層を水(5mL)で抽出し、水層を合わせて2mol/L塩酸(4mL)を加えた後、酢酸エチル(20mL×2回)で抽出した。酢酸エチル抽出液を飽和食塩水(20mL)で洗浄し、硫酸ナトリウムで乾燥した。溶媒を減圧留去し、化合物7(816mg、ジアステレオマー比率93%、3工程通算収率70%)を得た。得られた化合物7の物性データは、以下のとおりであった。
1H-NMR(DMSO-d6)δ:11.51(1H, d, J=4.6 Hz), 7.66(0.8H, d, J=4.5 Hz), 7.36-7.21(5.2H, m), 6.59(0.8H, d, J=8.8 Hz), 6.48(0.2H, d, J=9.5 Hz), 5.54-5.49(0.8H, m), 5.22(0.2H, d, J=13.1 Hz), 5.11-4.94(2H, m), 4.66-4.55(1H, m), 4.49(1H, dd, J=6.4, 6.4 Hz), 4.23(0.8H, s), 3.87(0.8H, dd, J=11.7, 3.6 Hz), 3.78(0.2H, d, J=11.2 Hz), 3.72-3.54(1H, m), 2.96(2H, s), 2.91(1H, s), 1.79(2H, s), 1.76(1H, s), 0.89-0.82(9H, m), 0.10-0.00(3H, m), -0.10--0.18(3H, m).
Step 6 Synthesis of Compound 7 Crude product of Compound 6 obtained in Step 5, sodium dihydrogen phosphate dihydrate (551 mg, 3.53 mmol) and 2-methyl-2-butene (1.87 mL, 17.7 mmol) ) In tert-butanol (10 mL) and water (3 mL), a solution of sodium chlorite (800 mg, 8.85 mmol) in water (5 mL) was added dropwise under ice-cooling, and the reaction mixture was warmed to room temperature. The mixture was stirred for 2.5 hours. To the reaction solution was added 0.2 mol / L aqueous sodium hydroxide solution (20 mL), and the mixture was washed with toluene (20 mL). The organic layer was extracted with water (5 mL), the aqueous layers were combined, 2 mol / L hydrochloric acid (4 mL) was added, and then extracted with ethyl acetate (20 mL × twice). The ethyl acetate extract was washed with saturated brine (20 mL) and dried over sodium sulfate. The solvent was distilled off under reduced pressure to obtain Compound 7 (816 mg, diastereomer ratio 93%, total yield of 70% for 3 steps). The physical property data of the obtained compound 7 were as follows.
1 H-NMR (DMSO-d 6 ) δ: 11.51 (1H, d, J = 4.6 Hz), 7.66 (0.8H, d, J = 4.5 Hz), 7.36-7.21 (5.2H, m), 6.59 (0.8 H, d, J = 8.8 Hz), 6.48 (0.2H, d, J = 9.5 Hz), 5.54-5.49 (0.8H, m), 5.22 (0.2H, d, J = 13.1 Hz), 5.11-4.94 ( 2H, m), 4.66-4.55 (1H, m), 4.49 (1H, dd, J = 6.4, 6.4 Hz), 4.23 (0.8H, s), 3.87 (0.8H, dd, J = 11.7, 3.6 Hz) , 3.78 (0.2H, d, J = 11.2 Hz), 3.72-3.54 (1H, m), 2.96 (2H, s), 2.91 (1H, s), 1.79 (2H, s), 1.76 (1H, s) , 0.89-0.82 (9H, m), 0.10-0.00 (3H, m), -0.10--0.18 (3H, m).
工程7 (2R,3S,4R,5R)-3-(tert-ブチルジメチルシキルオキシ)-2-ヒドロキシメチル-5-(5-メチル-2,4-ジオキソ-3,4-ジヒドロピリミジン-1(2H)-イル)-4-(メチルアミノ)テトラヒドロフラン-2-カルボン酸(化合物8)の合成
 化合物7(816mg、1.45mmol)、10%パラジウム炭素(78.0mg)のメタノール(16mL)懸濁液を常圧の水素雰囲気下で5時間攪拌した。反応液をろ過した後、ろ液の溶媒を減圧留去し、化合物8の粗生成物を得た。得られた化合物8の物性データは、以下のとおりであった。
1H-NMR(DMSO-d6)δ:11.41(1H, s), 7.83(1H, s), 6.07(1H, d, J=5.5 Hz), 5.34(1H, brs), 4.60(1H, d, J=6.0 Hz), 3.85-3.72(3H, m), 2.47(3H, s), 1.83(4H, s),  0.91(9H, s), 0.16(3H, s), 0.15(3H, s).
[実施例2]
Step 7 (2R, 3S, 4R, 5R) -3- (tert-butyldimethylalkyloxy) -2-hydroxymethyl-5- (5-methyl-2,4-dioxo-3,4-dihydropyrimidine-1 Synthesis of (2H) -yl) -4- (methylamino) tetrahydrofuran-2-carboxylic acid (Compound 8) Compound 7 (816 mg, 1.45 mmol), 10% palladium on carbon (78.0 mg) in methanol (16 mL) The suspension was stirred for 5 hours under a hydrogen atmosphere at normal pressure. After the reaction solution was filtered, the solvent of the filtrate was distilled off under reduced pressure to obtain a crude product of compound 8. The physical property data of the obtained Compound 8 were as follows.
1 H-NMR (DMSO-d 6 ) δ: 11.41 (1H, s), 7.83 (1H, s), 6.07 (1H, d, J = 5.5 Hz), 5.34 (1H, brs), 4.60 (1H, d , J = 6.0 Hz), 3.85-3.72 (3H, m), 2.47 (3H, s), 1.83 (4H, s), 0.91 (9H, s), 0.16 (3H, s), 0.15 (3H, s) .
[Example 2]
 (2R,3S,4R,5R)-3-(tert-ブチルジメチルシキルオキシ)-2-ヒドロキシメチル-5-(5-メチル-2,4-ジオキソ-3,4-ジヒドロピリミジン-1(2H)-イル)-4-(2,2,2-トリフルオロ-N-メチルアセタミド)テトラヒドロフラン-2-カルボン酸カリウムの合成 (2R, 3S, 4R, 5R) -3- (tert-butyldimethylalkyloxy) -2-hydroxymethyl-5- (5-methyl-2,4-dioxo-3,4-dihydropyrimidine-1 (2H Synthesis of potassium) -yl) -4- (2,2,2-trifluoro-N-methylacetamide) tetrahydrofuran-2-carboxylate
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
工程1 化合物9の合成
 窒素雰囲気下、化合物1(合成法はOrganic Letters,7,1569-1572(2005)に記載の方法に準じる、1300g、2.53mol)のDMF(3.9L)懸濁液に、TBSクロリド(1717g、11.39mol)のDMF(2.6L)溶液を5~15℃で滴下した。続いて、10~20℃でヨウ化ナトリウム(1138g、7.59mol)を加え、同温下でN-メチルイミダゾール(999mL、12.7mol)を滴下した。20~30℃で6時間撹拌した後、終夜で静置した。反応液を酢酸エチル(3.9L)と氷水(10.4L)の混合物に注加し、更に酢酸エチル(2.6L)、水(2.6L)を加えた。有機層を1mol/L塩酸(6.5L)、10%炭酸ナトリウム水溶液(6.5L)、10%食塩水(6.5L)で順次洗浄した。溶媒を減圧留去し、得られた残渣(2.68kg)にメタノール(2.6L)を加えた。再び溶媒を減圧留去し、化合物9の粗生成物(2.62kg)を得た。
Step 1 Synthesis of Compound 9 DMF (3.9 L) suspension of Compound 1 (1300 g, 2.53 mol) according to the method described in Organic Letters, 7, 1569-1572 (2005) under nitrogen atmosphere A solution of TBS chloride (1717 g, 11.39 mol) in DMF (2.6 L) was added dropwise at 5 to 15 ° C. Subsequently, sodium iodide (1138 g, 7.59 mol) was added at 10 to 20 ° C., and N-methylimidazole (999 mL, 12.7 mol) was added dropwise at the same temperature. After stirring at 20-30 ° C. for 6 hours, the mixture was allowed to stand overnight. The reaction mixture was poured into a mixture of ethyl acetate (3.9 L) and ice water (10.4 L), and ethyl acetate (2.6 L) and water (2.6 L) were further added. The organic layer was washed successively with 1 mol / L hydrochloric acid (6.5 L), 10% aqueous sodium carbonate solution (6.5 L), and 10% brine (6.5 L). The solvent was distilled off under reduced pressure, and methanol (2.6 L) was added to the obtained residue (2.68 kg). The solvent was distilled off again under reduced pressure to obtain a crude product of compound 9 (2.62 kg).
工程2 化合物10の合成
 工程1で得た化合物9の粗生成物(2.62kg)のメタノール(6.5L)溶液に、35%塩酸(633mL、7.59mol)を20~30℃で滴下し、4時間撹拌した。反応液をジイソプロピルエーテル(6.5L)と氷水(3.9L)の混合物に注加し、更にジイソプロピルエーテル(6.5L)、水(2.6L)を加えた。水層をジイソプロピルエーテル(3.25L)で洗浄した後、炭酸ナトリウム(1073g、10.1mol)の水(6.5L)溶液を加え、酢酸エチル(19.5Lおよび6.5L)で抽出し、有機層を無水硫酸マグネシウムで乾燥した。溶媒を減圧留去し、得られた残渣にテトラヒドロフラン(2.6L)を加えた。再び溶媒を減圧留去し、化合物10の粗生成物(1.08kg)を得た。得られた化合物10の物性データは、以下のとおりであった。
1H-NMR(DMSO-d6)δ:0.13 (s, 6H), 0.91 (s, 9H), 1.40-1.55 (br, 1H), 1.79 (s, 3H), 2.28 (s, 3H), 3.15-3.20 (d, J = 4.1Hz, 1H), 3.52-3.65 (m, 2H), 3.85 (s, 1H), 4.30-4.35  (d, J = 4.1Hz, 1H), 5.18-5.24 (br, 1H), 5.64-5.70 (d, J = 7.3Hz), 7.73 (s, 1H), 11.34 (s, 1H).
Step 2 Synthesis of Compound 10 To a solution of the crude product of Compound 9 obtained in Step 1 (2.62 kg) in methanol (6.5 L), 35% hydrochloric acid (633 mL, 7.59 mol) was added dropwise at 20-30 ° C. Stir for 4 hours. The reaction mixture was poured into a mixture of diisopropyl ether (6.5 L) and ice water (3.9 L), and diisopropyl ether (6.5 L) and water (2.6 L) were further added. The aqueous layer was washed with diisopropyl ether (3.25 L), then a solution of sodium carbonate (1073 g, 10.1 mol) in water (6.5 L) was added and extracted with ethyl acetate (19.5 L and 6.5 L), The organic layer was dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure, and tetrahydrofuran (2.6 L) was added to the obtained residue. The solvent was distilled off again under reduced pressure to obtain a crude product of compound 10 (1.08 kg). The physical property data of the obtained compound 10 were as follows.
1 H-NMR (DMSO-d 6 ) δ: 0.13 (s, 6H), 0.91 (s, 9H), 1.40-1.55 (br, 1H), 1.79 (s, 3H), 2.28 (s, 3H), 3.15 -3.20 (d, J = 4.1Hz, 1H), 3.52-3.65 (m, 2H), 3.85 (s, 1H), 4.30-4.35 (d, J = 4.1Hz, 1H), 5.18-5.24 (br, 1H ), 5.64-5.70 (d, J = 7.3Hz), 7.73 (s, 1H), 11.34 (s, 1H).
工程3 化合物11の合成
 窒素雰囲気下、工程2で得た化合物10の粗生成物(17.7g)およびピリジン(10.1mL、125mmol)のテトラヒドロフラン(80mL)溶液に、0~10℃でトリフルオロ酢酸無水物(17.8mL、125mmol)を滴下し、1時間撹拌した。反応液を氷冷下、20%炭酸ナトリウム水溶液(112mL)へ注加し、テトラヒドロフラン(24mL)および水(48mL)を加えた。氷冷下で20分間、室温で1時間撹拌した後、酢酸エチル(112mL)、n-ヘキサン(80mL)、10%食塩水(32mL)および水(176mL)を加えた。有機層を2mol/L塩酸(80mL)、0.4mol/L塩酸(80mL)、5%炭酸水素ナトリウム水溶液(80mL)、10%食塩水(80mL)で順次洗浄した。各水層はそれぞれ酢酸エチル(80mL)で抽出した。有機層を合わせ、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去し、得られた残渣に酢酸エチル(24mL)を加え、60℃に加熱して溶解させた後、n-ヘキサン(72mL)を加えた。生じたスラリーを室温まで冷却した後、ろ過して得られた固体を酢酸エチル/n-ヘキサン(3.2mL/60.8mL)で洗浄した後、通風乾燥を1日行い、化合物11(15.8g、工程1からの通算収率79.1%)を得た。得られた化合物11の物性データは、以下のとおりであった。
1H-NMR(DMSO-d6)δ:-0.01 (2.1H, s), 0.02 (0.9H, s), 0.08 (2.1H, s), 0.09 (s, 0.9H, s), 0.86 (6.3H, s), 0.87 (2.7H, s), 1.78 (0.9H, d, J = 0.8Hz), 1.79 (2.1H, d, J = 0.8Hz), 3.12 (0.9H, s), 3.20 (2.1H, s), 3.61-3.57 (1.0H, m), 3.72-3.67 (1.0H, m),  3.99 (0.7H, q, J = 3.3Hz), 4.02 (0.3H, m), 4.45 (0.3H, m), 4.45 (0.3H, m), 4.52 (0.7H, dd, J = 6.8, 3.3Hz), 4.77 (0.7H, dd, J = 7.6, 6.8Hz), 5.30 (0.7H, t, J = 4.7Hz), 5.38  (0.3H, t, J = 4.7Hz), 6.37 (0.3H, m), 6.39 (0.7H, d, J = 7.6Hz), 7.73 (1.0H, s), 11.44  (0.7H, brs), 11.5 (0.3H, brs).
Step 3 Synthesis of Compound 11 To a solution of the crude product of Compound 10 obtained in Step 2 (17.7 g) and pyridine (10.1 mL, 125 mmol) in tetrahydrofuran (80 mL) under a nitrogen atmosphere at 0 to 10 ° C. Acetic anhydride (17.8 mL, 125 mmol) was added dropwise and stirred for 1 hour. The reaction mixture was poured into a 20% aqueous sodium carbonate solution (112 mL) under ice-cooling, and tetrahydrofuran (24 mL) and water (48 mL) were added. After stirring for 20 minutes under ice-cooling and 1 hour at room temperature, ethyl acetate (112 mL), n-hexane (80 mL), 10% brine (32 mL) and water (176 mL) were added. The organic layer was washed successively with 2 mol / L hydrochloric acid (80 mL), 0.4 mol / L hydrochloric acid (80 mL), 5% aqueous sodium hydrogen carbonate solution (80 mL), and 10% brine (80 mL). Each aqueous layer was extracted with ethyl acetate (80 mL). The organic layers were combined and dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure, ethyl acetate (24 mL) was added to the resulting residue, and the mixture was heated to 60 ° C. for dissolution, and then n-hexane (72 mL) was added. The resulting slurry was cooled to room temperature, and the solid obtained by filtration was washed with ethyl acetate / n-hexane (3.2 mL / 60.8 mL) and then air-dried for 1 day to give compound 11 (15. 8 g, the total yield from Step 1 was 79.1%). The physical property data of the obtained compound 11 were as follows.
1 H-NMR (DMSO-d 6 ) δ: -0.01 (2.1H, s), 0.02 (0.9H, s), 0.08 (2.1H, s), 0.09 (s, 0.9H, s), 0.86 (6.3 H, s), 0.87 (2.7H, s), 1.78 (0.9H, d, J = 0.8Hz), 1.79 (2.1H, d, J = 0.8Hz), 3.12 (0.9H, s), 3.20 (2.1 H, s), 3.61-3.57 (1.0H, m), 3.72-3.67 (1.0H, m), 3.99 (0.7H, q, J = 3.3Hz), 4.02 (0.3H, m), 4.45 (0.3H , m), 4.45 (0.3H, m), 4.52 (0.7H, dd, J = 6.8, 3.3Hz), 4.77 (0.7H, dd, J = 7.6, 6.8Hz), 5.30 (0.7H, t, J = 4.7Hz), 5.38 (0.3H, t, J = 4.7Hz), 6.37 (0.3H, m), 6.39 (0.7H, d, J = 7.6Hz), 7.73 (1.0H, s), 11.44 (0.7 H, brs), 11.5 (0.3H, brs).
工程4 化合物12の合成
 窒素雰囲気下、化合物11(450g、935mmol)のDMSO(1.35L)溶液に、EDC(538g、2800mmol)、DMSO(675mL)、パラトルエンスルホン酸ピリジニウム(235g、935mmol)およびDMSO(225mL)を順次加え、20~30℃で2.5時間撹拌した。続いて10~20℃で酢酸エチル(4.5L)、水(2.25L)および酢酸エチル(2.25L)を順次加えた。有機層を水(2.25L)で2回洗浄した後、溶媒を減圧留去し、得られた残渣にアセトニトリル(900mL)を加えた。再び溶媒を減圧留去し、化合物12の粗生成物(540g)を得た。
Step 4 Synthesis of Compound 12 Under a nitrogen atmosphere, a solution of compound 11 (450 g, 935 mmol) in DMSO (1.35 L) was charged with EDC (538 g, 2800 mmol), DMSO (675 mL), pyridinium paratoluenesulfonate (235 g, 935 mmol) and DMSO (225 mL) was sequentially added, and the mixture was stirred at 20-30 ° C. for 2.5 hours. Subsequently, ethyl acetate (4.5 L), water (2.25 L) and ethyl acetate (2.25 L) were sequentially added at 10 to 20 ° C. The organic layer was washed twice with water (2.25 L), then the solvent was distilled off under reduced pressure, and acetonitrile (900 mL) was added to the resulting residue. The solvent was distilled off again under reduced pressure to obtain a crude product of compound 12 (540 g).
工程5 化合物13の合成
まず工程5で行うアルドール反応の条件検討を行った。具体的には、用いる塩基の種類・量、試薬の種類・量、溶媒の種類・量、反応温度、反応時間について組み合わせ検討を行い、目的物、副生物の生成率、原料の残存率をHPLCにて分析した。その結果を以下の表に示す。
Step 5 Synthesis of Compound 13 First, conditions for the aldol reaction performed in Step 5 were examined. Specifically, the combination of the type / amount of the base used, the type / amount of the reagent, the type / amount of the solvent, the reaction temperature, and the reaction time were examined, and the target product, by-product formation rate, and raw material residual rate were determined by HPLC. Analyzed in The results are shown in the following table.
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000037
 上記条件9にしたがい、工程4で得られた化合物12の粗生成物(540g)のアセトニトリル(1.8L)溶液に、37%ホルマリン水溶液(900mL)、N-メチルモルホリン(900mL)を順次加え、70~80℃で4時間撹拌した。反応液を20~30℃へ冷却した後、酢酸エチル(2.25L)を加え、続いて10~20℃で4mol/L塩酸(2.25L)を加えた。有機層を水(2.25L)で2回洗浄し、化合物13を含有する酢酸エチル溶液を得た。 Under the above condition 9, 37% formalin aqueous solution (900 mL) and N-methylmorpholine (900 mL) were sequentially added to a solution of the crude product of compound 12 obtained in step 4 (540 g) in acetonitrile (1.8 L), The mixture was stirred at 70-80 ° C. for 4 hours. After cooling the reaction solution to 20-30 ° C., ethyl acetate (2.25 L) was added, followed by 4 mol / L hydrochloric acid (2.25 L) at 10-20 ° C. The organic layer was washed twice with water (2.25 L) to obtain an ethyl acetate solution containing compound 13.
工程6 (2R,3S,4R,5R)-3-(tert-ブチルジメチルシキルオキシ)-2-ヒドロキシメチル-5-(5-メチル-2,4-ジオキソ-3,4-ジヒドロピリミジン-1(2H)-イル)-4-(2,2,2-トリフルオロ-N-メチルアセタミド)テトラヒドロフラン-2-カルボン酸カリウム(化合物14)の合成
工程5で得られた化合物13を含有する酢酸エチル溶液にリン酸二水素ナトリウム2水和物(292g、1870mmol)の水(1.35L)水溶液、スクアレン(898mL、1870mmol)、アセトニトリル(1.35L)を順次加えた。20~30℃で亜塩素酸ナトリウム(423g、4670mmol)の水(2.25L)溶液を滴下し、3時間撹拌した。続いて10~15℃で0.5mol/L水酸化ナトリウム水溶液(3.6L)、チオ硫酸ナトリウム5水和物(1160g、4670mmol)を順次加え、5~15℃で20分間撹拌した。反応液に酢酸エチル(900mL)および水(900mL)を加え、有機層を水(900mL)で洗浄した。水層を合わせて酢酸エチル(900mL)で洗浄した後、水層に酢酸エチル(5.4L)および2mol/L塩酸水溶液(2.25L)を加えた。有機層を10%食塩水(2.25L)で洗浄し、無水硫酸ナトリウムで乾燥した。混合物をろ過、乾燥剤を酢酸エチル(1.35L)で洗浄して得られたろ液に酢酸カリウム(82.5g、841mmol)およびエタノール(338mL)を加えた。混合物を20~30℃で1時間撹拌した。生じたスラリーをろ過して得られた固体を酢酸エチル/エタノール(3860mL/193mL)で洗浄した後、通風乾燥を1日行い、化合物14(283g、工程4からの通算収率53.8%)を得た。得られた化合物14の物性データは、以下のとおりであった。
1H-NMR(DMSO-d6)δ :-0.11 (1.8H, s), -0.09 (1.2H, s), 0.09 (1.8H, s), 0.10 (1.2H, s), 0.82 (3.6H, s), 0.83 (5.4H, s), 1.77 (1.2H, s), 1.78 (1.8H, s), 3.18 (1.2H, s),  3.33 (1.8H, s), 3.54 (1.0H, d, J = 10.8Hz), 3.68 (0.6H, d, J = 10.8Hz), 3.69 (0.4H,  d, J = 10.8Hz), 4.18 (0.4H, dd, J = 8.6, 7.8Hz), 4.49 (0.4H, d, J = 8.6Hz), 4.51 (0.6H,  d, J = 8.6Hz), 4.73 (0.6H, dd, J = 8.6, 7.8Hz), 6.1 (1H, br), 6.90 (0.4H, d, J = 7.8Hz),  6.92 (0.6H, d, J = 7.8Hz), 7.61 (0.6H, s), 7.65 (0.4H, s).
[実施例3]
Step 6 (2R, 3S, 4R, 5R) -3- (tert-Butyldimethylalkyloxy) -2-hydroxymethyl-5- (5-methyl-2,4-dioxo-3,4-dihydropyrimidine-1 (2H) -yl) -4- (2,2,2-trifluoro-N-methylacetamide) tetrahydrofuran-2-carboxylate (compound 14) in ethyl acetate solution containing compound 13 obtained in synthesis step 5 To the mixture, sodium dihydrogen phosphate dihydrate (292 g, 1870 mmol) in water (1.35 L), squalene (898 mL, 1870 mmol), and acetonitrile (1.35 L) were sequentially added. A solution of sodium chlorite (423 g, 4670 mmol) in water (2.25 L) was added dropwise at 20-30 ° C. and stirred for 3 hours. Subsequently, a 0.5 mol / L aqueous sodium hydroxide solution (3.6 L) and sodium thiosulfate pentahydrate (1160 g, 4670 mmol) were successively added at 10 to 15 ° C., and the mixture was stirred at 5 to 15 ° C. for 20 minutes. Ethyl acetate (900 mL) and water (900 mL) were added to the reaction solution, and the organic layer was washed with water (900 mL). The aqueous layers were combined and washed with ethyl acetate (900 mL), and then ethyl acetate (5.4 L) and a 2 mol / L aqueous hydrochloric acid solution (2.25 L) were added to the aqueous layer. The organic layer was washed with 10% brine (2.25 L) and dried over anhydrous sodium sulfate. The mixture was filtered, and the drying agent was washed with ethyl acetate (1.35 L). To the filtrate obtained, potassium acetate (82.5 g, 841 mmol) and ethanol (338 mL) were added. The mixture was stirred at 20-30 ° C. for 1 hour. The solid obtained by filtering the resulting slurry was washed with ethyl acetate / ethanol (3860 mL / 193 mL) and then dried by ventilation for 1 day to give compound 14 (283 g, total yield from step 4 of 53.8%). Got. The physical property data of the obtained compound 14 were as follows.
1 H-NMR (DMSO-d 6 ) δ: -0.11 (1.8H, s), -0.09 (1.2H, s), 0.09 (1.8H, s), 0.10 (1.2H, s), 0.82 (3.6H , s), 0.83 (5.4H, s), 1.77 (1.2H, s), 1.78 (1.8H, s), 3.18 (1.2H, s), 3.33 (1.8H, s), 3.54 (1.0H, d , J = 10.8Hz), 3.68 (0.6H, d, J = 10.8Hz), 3.69 (0.4H, d, J = 10.8Hz), 4.18 (0.4H, dd, J = 8.6, 7.8Hz), 4.49 ( 0.4H, d, J = 8.6Hz), 4.51 (0.6H, d, J = 8.6Hz), 4.73 (0.6H, dd, J = 8.6, 7.8Hz), 6.1 (1H, br), 6.90 (0.4H , d, J = 7.8Hz), 6.92 (0.6H, d, J = 7.8Hz), 7.61 (0.6H, s), 7.65 (0.4H, s).
[Example 3]
Tアミダイトの合成
Figure JPOXMLDOC01-appb-C000038
Synthesis of T amidite
Figure JPOXMLDOC01-appb-C000038
工程1 化合物15の合成
窒素雰囲気下、化合物14(455mg、0.807mmol)のピリジン(4mL)懸濁液に、1mol/L TBAF-テトラヒドロフラン溶液(0.888mL、0.888mmol)を滴下し、60~70℃で9時間撹拌した後、終夜室温で静置した。翌日さらに60~70℃で9時間撹拌した後、終夜室温で静置した。EDC塩酸塩(310mg、1.62mmol)を加え、60~70℃で9時間撹拌した後、EDC塩酸塩(310mg、1.62mmol)を追加し、終夜室温で静置した。DMTr(4,4’-ジメトキシトリチル)クロリド(547mg、1.61mmol)を加えて室温で5時間撹拌した後、さらにDMTrクロリド(547mg、1.61mmol)を加え、2時間撹拌した。反応液に5%炭酸水素ナトリウム水溶液(10mL)を加え、酢酸エチル(10mL)で抽出した後、水(5mL)で3回洗浄した。それぞれの水洗浄液は酢酸エチル(5mL)で抽出した。有機層を合わせて溶媒を減圧留去し、得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム-メタノール)により精製し、化合物15(334mg、収率69.1%)を得た。
1H-NMR(CDCl3)δ:1.70 (s, 3H), 1.97 (d, J = 5.1Hz, 1H), 3.02 (s, 3H), 3.61 (d, J = 12.3Hz, 1H), 3.79 (s, 6H), 3.95 (d, J = 12.3Hz, 1H), 4.11 (s, 1H), 4.37 (d, J = 4.9Hz, 1H), 5.41 (s, 1H), 6.85 (dd, J = 8.5, 2.5Hz, 4H), 7.23-7.36 (m, 7H), 7.45 (d, J = 7.7Hz, 2H), 7.76 (s, 1H), 8.55 (s, 1H).
Step 1 Synthesis of Compound 15 1 mol / L TBAF-tetrahydrofuran solution (0.888 mL, 0.888 mmol) was added dropwise to a suspension of compound 14 (455 mg, 0.807 mmol) in pyridine (4 mL) under a nitrogen atmosphere. After stirring at ˜70 ° C. for 9 hours, the mixture was allowed to stand at room temperature overnight. The next day, the mixture was further stirred at 60 to 70 ° C. for 9 hours, and then allowed to stand overnight at room temperature. After adding EDC hydrochloride (310 mg, 1.62 mmol) and stirring at 60-70 ° C. for 9 hours, EDC hydrochloride (310 mg, 1.62 mmol) was added and allowed to stand overnight at room temperature. DMTr (4,4′-dimethoxytrityl) chloride (547 mg, 1.61 mmol) was added and stirred at room temperature for 5 hours, and then DMTr chloride (547 mg, 1.61 mmol) was further added and stirred for 2 hours. 5% Aqueous sodium hydrogen carbonate solution (10 mL) was added to the reaction mixture, and the mixture was extracted with ethyl acetate (10 mL), and washed 3 times with water (5 mL). Each water wash was extracted with ethyl acetate (5 mL). The organic layers were combined, the solvent was distilled off under reduced pressure, and the resulting residue was purified by silica gel column chromatography (chloroform-methanol) to obtain Compound 15 (334 mg, yield 69.1%).
1H-NMR (CDCl3) δ: 1.70 (s, 3H), 1.97 (d, J = 5.1Hz, 1H), 3.02 (s, 3H), 3.61 (d, J = 12.3Hz, 1H), 3.79 (s, 6H), 3.95 (d, J = 12.3Hz, 1H), 4.11 (s, 1H), 4.37 (d, J = 4.9Hz, 1H), 5.41 (s, 1H), 6.85 (dd, J = 8.5, 2.5 Hz, 4H), 7.23-7.36 (m, 7H), 7.45 (d, J = 7.7Hz, 2H), 7.76 (s, 1H), 8.55 (s, 1H).
工程2 化合物16(Tアミダイト)の合成
 WO2011/052436A1に記載の方法に準じた方法に従って、化合物16を合成した。
Step 2 Synthesis of Compound 16 (T Amidite) Compound 16 was synthesized according to a method according to the method described in WO2011 / 052436A1.
化合物14から化合物15に至る経路については、以下の通り脱TFA化反応を経由しない方法でも合成できる。 The route from compound 14 to compound 15 can also be synthesized by a method that does not go through a deTFA reaction as follows.
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
工程1 化合物30の合成
 メタノール溶液(1ml)に0℃で水素化ホウ素ナトリウム(47mg、6eq.)を加えた後、化合物14(100mg)を加え、室温で3.5時間撹拌した。原料が消失しなかったので、さらに水素化ホウ素ナトリウム(32mg)を加え、室温で1時間撹拌した後、塩酸―メタノール溶液にて、pH=3に調整し、さらに1時間撹拌した。反応液はそのまま濃縮し、化合物30の粗生成物(218mg)を得た。得られた化合物30の粗生成物は精製を行わず、収率は定量的とし次工程に進めた。
Step 1 Synthesis of Compound 30 Sodium borohydride (47 mg, 6 eq.) Was added to a methanol solution (1 ml) at 0 ° C., then Compound 14 (100 mg) was added, and the mixture was stirred at room temperature for 3.5 hours. Since the raw material did not disappear, sodium borohydride (32 mg) was further added, and the mixture was stirred at room temperature for 1 hour, adjusted to pH = 3 with hydrochloric acid-methanol solution, and further stirred for 1 hour. The reaction solution was concentrated as it was to obtain a crude product of compound 30 (218 mg). The obtained crude product of compound 30 was not purified, and the yield was quantitative, and it was advanced to the next step.
工程2 化合物31の合成
 前工程で得られた化合物30の粗生成物(196mg)をN,N’-ジメチルホルムアミド(1.4ml)に懸濁した後、EDC塩酸塩(76mg)を加え、室温で4時間撹拌した。反応液をろ過することにより無機物をろ別した後(N,N’-ジメチルホルムアミド(1.5ml)にて洗浄)、水(3.3ml)を加えて、スラリー状の固形物を析出させた。固形物をろ取、水洗、乾燥することにより化合物31(36.5mg、化合物14からの収率=63%)を無色固体として得た。
Step 2 Synthesis of Compound 31 The crude product of Compound 30 (196 mg) obtained in the previous step was suspended in N, N′-dimethylformamide (1.4 ml), EDC hydrochloride (76 mg) was added, and room temperature For 4 hours. The reaction mixture was filtered to remove inorganic substances (washed with N, N′-dimethylformamide (1.5 ml)), and then water (3.3 ml) was added to precipitate a slurry solid. . The solid was collected by filtration, washed with water, and dried to give Compound 31 (36.5 mg, yield from Compound 14 = 63%) as a colorless solid.
工程3 化合物32の合成
 化合物31をピリジン中、4,4’-ジメトキシトリチルクロリドで処理することにより、化合物32を得た。
工程4 化合物32から化合物15への変換
 化合物32をテトラブチルアンモニウムフロリド-テトラヒドロフラン溶液で処理することにより、化合物15を得た。
[実施例4]
Step 3 Synthesis of Compound 32 Compound 32 was obtained by treating Compound 31 with 4,4′-dimethoxytrityl chloride in pyridine.
Step 4 Conversion of Compound 32 to Compound 15 Compound 15 was obtained by treating Compound 32 with a tetrabutylammonium fluoride-tetrahydrofuran solution.
[Example 4]
A(Bz)アミダイトの合成
Figure JPOXMLDOC01-appb-C000040
Synthesis of A (Bz) amidite
Figure JPOXMLDOC01-appb-C000040
工程1 化合物17の合成
工程1で行うトランスグリコシル化反応の条件検討を行った。具体的には、試薬量、溶媒の種類について組み合わせ検討を行い、目的物、副生物の生成率、原料の残存率をHPLCにて分析した。その結果を以下の表に示す。
Step 1 The conditions of the transglycosylation reaction performed in the synthesis step 1 of Compound 17 were examined. Specifically, the combination amount of the reagent and the type of the solvent was examined, and the target product, by-product formation rate, and the raw material residual rate were analyzed by HPLC. The results are shown in the following table.
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000041
上記条件6に準じ、窒素雰囲気下、化合物14(170g、271mmol)および6-N-ベンゾイルアデニン(64.9g、271mmol)のシクロペンチルメチルエーテル(1700mL)懸濁液に、N,O-ビス(トリメチルシリル)アセトアミド(466mL、1900mmol)およびTMSOTf(98mL、543mmol)を加え、70~73℃で4時間撹拌した。反応液に氷冷下、テトラヒドロフラン(2920mL)、2mol/L塩酸(1700mL)および水(1020mL)を加えた後、有機層と水層に分配し、有機層を0.1mol/L塩酸(1700mL)および水(1700mL)で洗浄した。溶媒を減圧留去して得られた残渣にクロロホルム(340mL)を加え、20分攪拌して得られたスラリーをろ過した。ろ取した固体をクロロホルム(510mL)で洗浄した後、風乾することにより化合物17(165g、収率80.9%)を得た。
1H-NMR(DMSO-d6)δ:-0.06 (s, 3H), 0.13 (s, 2.1H), 0.14 (s, 0.9H), 0.89 (s, 9H), 3.22 (s, 0.9H), 3.31 (s, 2.1H), 3.82 (d, J = 12.0Hz, 1H), 3.89-3.95 (m, 1H), 4.70 (d, J = 7.3Hz, 0.3H), 4.75 (d, J = 7.3Hz, 0.7H), 5.04 (t, J = 7.5Hz, 0.3H), 5.41 (brs, 0.7H), 5.49 (t, J = 8.0Hz, 0.7H), 5.55 (brs, 0.3H), 7.02 (d, J = 8.5Hz, 0.3H), 7.04 (d, J = 8.5Hz, 0.7H), 7.56 (t, J = 7.4Hz, 2H), 7.66 (t, J = 7.4Hz, 1H), 8.04 (d, J = 7.8Hz, 2H), 8.78 (s, 1H), 8.80 (s, 1H), 11.31 (s, 1H), 13.34 (brs, 1H).
According to the above condition 6, N, O-bis (trimethylsilyl) was added to a suspension of compound 14 (170 g, 271 mmol) and 6-N-benzoyladenine (64.9 g, 271 mmol) in cyclopentyl methyl ether (1700 mL) under a nitrogen atmosphere. ) Acetamide (466 mL, 1900 mmol) and TMSOTf (98 mL, 543 mmol) were added and stirred at 70-73 ° C. for 4 hours. Tetrahydrofuran (2920 mL), 2 mol / L hydrochloric acid (1700 mL) and water (1020 mL) were added to the reaction solution under ice cooling, and then the organic layer and aqueous layer were partitioned. The organic layer was 0.1 mol / L hydrochloric acid (1700 mL). And washed with water (1700 mL). Chloroform (340 mL) was added to the residue obtained by distilling off the solvent under reduced pressure, and the resulting slurry obtained by stirring for 20 minutes was filtered. The solid collected by filtration was washed with chloroform (510 mL) and then air-dried to obtain Compound 17 (165 g, yield 80.9%).
1H-NMR (DMSO-d6) δ: -0.06 (s, 3H), 0.13 (s, 2.1H), 0.14 (s, 0.9H), 0.89 (s, 9H), 3.22 (s, 0.9H), 3.31 (s, 2.1H), 3.82 (d, J = 12.0Hz, 1H), 3.89-3.95 (m, 1H), 4.70 (d, J = 7.3Hz, 0.3H), 4.75 (d, J = 7.3Hz, 0.7H), 5.04 (t, J = 7.5Hz, 0.3H), 5.41 (brs, 0.7H), 5.49 (t, J = 8.0Hz, 0.7H), 5.55 (brs, 0.3H), 7.02 (d, J = 8.5Hz, 0.3H), 7.04 (d, J = 8.5Hz, 0.7H), 7.56 (t, J = 7.4Hz, 2H), 7.66 (t, J = 7.4Hz, 1H), 8.04 (d, J = 7.8Hz, 2H), 8.78 (s, 1H), 8.80 (s, 1H), 11.31 (s, 1H), 13.34 (brs, 1H).
工程2 化合物18の合成
 窒素雰囲気下、化合物17(4.75g、7.44mmol)のテトラヒドロフラン(25mL)溶液に、1mol/L TBAF-テトラヒドロフラン溶液(14.9mL、14.9mmol)を滴下し、60~65℃で3.5時間撹拌した。EDC塩酸塩(1.71g、8.92mmol)を加え、60~65℃で1時間撹拌した。溶媒を減圧留去し、得られた残渣にアセトニトリル(50mL)を加え、再び溶媒を減圧留去することを3回繰り返し、化合物18の粗生成物(9.12g)を得た。
1H-NMR(CDCl3)δ:3.14 (s, 3H), 4.09 (dd, J = 13.8, 6.8Hz, 1H), 4.18 (dd, J = 14.0, 3.3Hz, 1H), 4.37 (s, 1H), 4.64 (s, 1H), 5.26 (m, 1H), 5.89 (s, 1H), 6.46(brs, 1H), 7.52 (t, J = 7.5Hz, 2H), 7.60 (t, J = 7.3Hz, 1H), 8.01 (d, J = 7.7Hz, 2H), 8.56(s, 1H), 8.78 (s, 1H), 9.31 (s, 1H).
Step 2 Synthesis of Compound 18 Under a nitrogen atmosphere, 1 mol / L TBAF-tetrahydrofuran solution (14.9 mL, 14.9 mmol) was added dropwise to a solution of Compound 17 (4.75 g, 7.44 mmol) in tetrahydrofuran (25 mL). Stir at ~ 65 ° C for 3.5 hours. EDC hydrochloride (1.71 g, 8.92 mmol) was added and stirred at 60-65 ° C. for 1 hour. The solvent was distilled off under reduced pressure, acetonitrile (50 mL) was added to the resulting residue, and the solvent was distilled off again under reduced pressure three times to obtain a crude product of compound 18 (9.12 g).
1H-NMR (CDCl3) δ: 3.14 (s, 3H), 4.09 (dd, J = 13.8, 6.8Hz, 1H), 4.18 (dd, J = 14.0, 3.3Hz, 1H), 4.37 (s, 1H), 4.64 (s, 1H), 5.26 (m, 1H), 5.89 (s, 1H), 6.46 (brs, 1H), 7.52 (t, J = 7.5Hz, 2H), 7.60 (t, J = 7.3Hz, 1H ), 8.01 (d, J = 7.7Hz, 2H), 8.56 (s, 1H), 8.78 (s, 1H), 9.31 (s, 1H).
工程3 化合物19の合成
 窒素雰囲気下、工程2で得た化合物18の粗生成物(9.12g)のジクロロメタン(25mL)溶液に、DABCO(2.09g、18.6mmol)およびDMTrクロリド(5.04g、14.9mmol)を加え、室温で2時間撹拌した。DMTrクロリド(1.26g、3.72mmol)を追加し、さらに2時間撹拌した。反応液に5%炭酸水素ナトリウム水溶液(50mL)およびジクロロメタン(50mL)を加え、有機層を水(50ml)で洗浄し、水洗浄液はジクロロメタン(50mL)で抽出した。有機層を合わせてメタノール(50mL)を加え、重量が60gになるまで溶媒を留去した後、再びメタノール(50mL)を加え、重量が67gになるまで溶媒を留去した。再びメタノール(25mL)を加え、室温で30分間撹拌して得られたスラリーをろ過した。ろ取した固体をメタノール(35mL)で洗浄した後、風乾することにより化合物19(4.31g、工程2からの通算収率81.3%)を得た。
1H-NMR(DMSO-d6)δ:2.98 (s, 3H), 3.26 (d, J = 11.0Hz, 1H), 3.42 (d, J = 11.7Hz, 1H), 3.73 (s, 6H), 4.67 (s, 1H), 4.79 (brs, 1H), 6.14 (s, 1H), 6.19 (brs, 1H), 6.88 (d, J = 8.3Hz, 4H), 7.21-7.32 (m, 7H), 7.39 (d, J = 7.8Hz, 2H), 7.57 (t, J = 7.4 Hz, 2H), 7.67 (t, J = 7.4Hz, 1H), 8.06 (d, J = 7.4Hz, 2H), 8.53 (s, 1H), 8.84 (s, 1H), 11.33 (brs, 1H). 1H-NMR(CDCl3)δ:8.98(1H, s), 8.81 (1H, s), 8.39 (1H, s), 8.03 (1H, d, J=8.0 Hz), 7.63 (1H, t, J=8.0 Hz), 7.55 (2H, t, J=8.0 Hz), 7.46 (2H, d, J=8.0 Hz), 7.38-7.24 (7H, m), 6.86 (4H, d, J=8.0 Hz), 5.89 (1H, s), 4.51 (1H, s), 4.47 (1H, m), 3.91 (1H, d, J=12.0 Hz), 3.79 (6H, s), 3.73 (1H, d, J=12.0 Hz), 3.15 (3H, s), 2.07 (1H, br s, 4.0 Hz).LC-MS: UPLC 4min base 2.28 min M+H = 713
Step 3 Synthesis of Compound 19 To a solution of the crude product of Compound 18 (9.12 g) obtained in Step 2 (9.12 g) in dichloromethane (25 mL) under a nitrogen atmosphere was added DABCO (2.09 g, 18.6 mmol) and DMTr chloride (5. 04 g, 14.9 mmol) was added and stirred at room temperature for 2 hours. DMTr chloride (1.26 g, 3.72 mmol) was added, and the mixture was further stirred for 2 hours. A 5% aqueous sodium hydrogen carbonate solution (50 mL) and dichloromethane (50 mL) were added to the reaction solution, the organic layer was washed with water (50 ml), and the aqueous wash was extracted with dichloromethane (50 mL). The organic layers were combined, methanol (50 mL) was added, the solvent was distilled off until the weight reached 60 g, methanol (50 mL) was added again, and the solvent was distilled off until the weight reached 67 g. Methanol (25 mL) was added again, and the resulting slurry was stirred for 30 minutes at room temperature and filtered. The solid collected by filtration was washed with methanol (35 mL) and then air-dried to obtain Compound 19 (4.31 g, total yield from Step 2 81.3%).
1H-NMR (DMSO-d6) δ: 2.98 (s, 3H), 3.26 (d, J = 11.0Hz, 1H), 3.42 (d, J = 11.7Hz, 1H), 3.73 (s, 6H), 4.67 ( s, 1H), 4.79 (brs, 1H), 6.14 (s, 1H), 6.19 (brs, 1H), 6.88 (d, J = 8.3Hz, 4H), 7.21-7.32 (m, 7H), 7.39 (d , J = 7.8Hz, 2H), 7.57 (t, J = 7.4 Hz, 2H), 7.67 (t, J = 7.4Hz, 1H), 8.06 (d, J = 7.4Hz, 2H), 8.53 (s, 1H ), 8.84 (s, 1H), 11.33 (brs, 1H). 1 H-NMR (CDCl 3 ) δ: 8.98 (1H, s), 8.81 (1H, s), 8.39 (1H, s), 8.03 (1H , d, J = 8.0 Hz), 7.63 (1H, t, J = 8.0 Hz), 7.55 (2H, t, J = 8.0 Hz), 7.46 (2H, d, J = 8.0 Hz), 7.38-7.24 (7H , m), 6.86 (4H, d, J = 8.0 Hz), 5.89 (1H, s), 4.51 (1H, s), 4.47 (1H, m), 3.91 (1H, d, J = 12.0 Hz), 3.79 (6H, s), 3.73 (1H, d, J = 12.0 Hz), 3.15 (3H, s), 2.07 (1H, br s, 4.0 Hz) .LC-MS: UPLC 4min base 2.28 min M + H = 713
工程4 化合物20(Aアミダイト)の合成
 
窒素雰囲気下、化合物19(107g、150mmol)およびDIEA(79mL、450mmol、3.0eq.)のピリジン(428mL、4V)懸濁液に氷冷下、2-シアノエチル-N,N-ジイソプロピルクロロホスホロアミジト(53.6mL、240mmol、1.6eq.)を滴下し、室温で2時間撹拌した。反応液に氷冷下、5%炭酸水素ナトリウム水溶液(1.1L)を加え、酢酸エチル(1.1L)で抽出した。有機層を3%塩化ナトリウム水溶液(1.1L)で2回洗浄し、洗浄液はそれぞれ酢酸エチル(1.1L)で再抽出し、有機層を合わせて硫酸ナトリウムで乾燥した。溶媒を減圧留去し、得られた残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル)により精製し、化合物20 (120g、ピリジン2.0wt%、酢酸エチル5.0wt%含有、収率81.5%)を得た。
1H-NMR(DMSO-d6)δ:0.87 (d, J = 6.8Hz, 2H), 0.92 (d, J = 6.5Hz, 4H), 1.06 (d, J = 6.8Hz, 2H), 1.08 (d, J = 6.8Hz, 4H), 2.55 (dd, J = 11.7, 5.4Hz, 1.3H), 2.70 (m, 0.7H), 2.99 (s, 2H), 3.01 (s, 1H), 3.18 (d, J = 11.5Hz, 0.7H), 3.22 (d, J = 11.5Hz, 0.3H), 3.43-3.57 (m, 4.3H), 3.65-3.70 (m, 0.7H), 3.72 (s, 2H), 3.73 (s, 4H), 4.98 (s, 1H), 5.04 (d, J = 4.8Hz, 0.3H), 5.12 (d, J = 7.8Hz, 0.7H), 6.28 (s, 0.7H), 6.29 (s, 0.3H), 6.85-6.89 (m, 4H), 7.21-7.31 (m, 7H), 7.36-7.39 (m, 2H), 7.57 (t, J = 7.5Hz, 2H), 7.66 (t, J = 7.3Hz, 1H), 8.06 (d, J = 7.5Hz, 2H), 8.50 (s, 0.3H), 8.52 (s, 0.7H), 8.83 (s, 1H), 11.31 (brs, 1H).
31P-NMR(DMSO-d6)δ:150.13 (s, 0.3H), 150.42 (s, 0.7H).
Step 4 Synthesis of Compound 20 (A Amidite)
Under a nitrogen atmosphere, a suspension of compound 19 (107 g, 150 mmol) and DIEA (79 mL, 450 mmol, 3.0 eq.) In a pyridine (428 mL, 4 V) suspension under ice cooling under 2-cyanoethyl-N, N-diisopropylchlorophosphoro Amidite (53.6 mL, 240 mmol, 1.6 eq.) Was added dropwise and stirred at room temperature for 2 hours. Under ice-cooling, 5% aqueous sodium hydrogen carbonate solution (1.1 L) was added to the reaction mixture, and the mixture was extracted with ethyl acetate (1.1 L). The organic layer was washed twice with 3% aqueous sodium chloride solution (1.1 L), and the washings were re-extracted with ethyl acetate (1.1 L), respectively, and the organic layers were combined and dried over sodium sulfate. The solvent was distilled off under reduced pressure, and the resulting residue was purified by silica gel column chromatography (ethyl acetate) to obtain compound 20 (120 g, containing 2.0 wt% pyridine and 5.0 wt% ethyl acetate, yield 81.5%). Got.
1H-NMR (DMSO-d6) δ: 0.87 (d, J = 6.8Hz, 2H), 0.92 (d, J = 6.5Hz, 4H), 1.06 (d, J = 6.8Hz, 2H), 1.08 (d, J = 6.8Hz, 4H), 2.55 (dd, J = 11.7, 5.4Hz, 1.3H), 2.70 (m, 0.7H), 2.99 (s, 2H), 3.01 (s, 1H), 3.18 (d, J = 11.5Hz, 0.7H), 3.22 (d, J = 11.5Hz, 0.3H), 3.43-3.57 (m, 4.3H), 3.65-3.70 (m, 0.7H), 3.72 (s, 2H), 3.73 ( s, 4H), 4.98 (s, 1H), 5.04 (d, J = 4.8Hz, 0.3H), 5.12 (d, J = 7.8Hz, 0.7H), 6.28 (s, 0.7H), 6.29 (s, 0.3H), 6.85-6.89 (m, 4H), 7.21-7.31 (m, 7H), 7.36-7.39 (m, 2H), 7.57 (t, J = 7.5Hz, 2H), 7.66 (t, J = 7.3 Hz, 1H), 8.06 (d, J = 7.5Hz, 2H), 8.50 (s, 0.3H), 8.52 (s, 0.7H), 8.83 (s, 1H), 11.31 (brs, 1H).
31P-NMR (DMSO-d6) δ: 150.13 (s, 0.3H), 150.42 (s, 0.7H).
化合物14から化合物19に至る経路については、以下の通り脱TFA化反応を経由しない方法でも合成できる。 About the path | route from the compound 14 to the compound 19, it can synthesize | combine also by the method which does not go through de-TFA reaction as follows.
Figure JPOXMLDOC01-appb-C000042

Figure JPOXMLDOC01-appb-I000043
Figure JPOXMLDOC01-appb-C000042

Figure JPOXMLDOC01-appb-I000043
工程1 化合物33の合成 
窒素雰囲気下、化合物14(5.0g、8.07mmol)およびアデニン(1.091g、8.07mmol)のシクロペンチルメチルエーテル(50mL)懸濁液に、N,O-ビス(トリメチルシリル)アセトアミド(13.85mL、56.5mmol)およびTMSOTf(2.92mL、16.15mmol)を加え、70℃で4時間撹拌した。反応液に氷冷下、酢酸エチル(50mL)、0.1mol/L塩酸(40mL)、テトラヒドロフラン(70mL)を加え、有機層と水層に分配した後、得られた有機層を0.1mol/L塩酸(110mL)および水(110mL)で洗浄した。溶媒を減圧留去して得られた残渣に酢酸エチル(50mL)、n-ヘキサン(50ml)を加えて、攪拌して得られたスラリーをろ過した。ろ取した固体を酢酸エチルとn-ヘキサンの混合溶媒(1:1、20ml)で洗浄した後、風乾することにより化合物33(3.58g、収率83%)を得た。
Step 1 Synthesis of Compound 33
Under a nitrogen atmosphere, a suspension of compound 14 (5.0 g, 8.07 mmol) and adenine (1.091 g, 8.07 mmol) in cyclopentyl methyl ether (50 mL) was added to N, O-bis (trimethylsilyl) acetamide (13. 85 mL, 56.5 mmol) and TMSOTf (2.92 mL, 16.15 mmol) were added and stirred at 70 ° C. for 4 hours. Ethyl acetate (50 mL), 0.1 mol / L hydrochloric acid (40 mL), and tetrahydrofuran (70 mL) were added to the reaction solution under ice-cooling, and the organic layer and the aqueous layer were partitioned. Washed with L hydrochloric acid (110 mL) and water (110 mL). Ethyl acetate (50 mL) and n-hexane (50 ml) were added to the residue obtained by distilling off the solvent under reduced pressure, and the resulting slurry obtained by stirring was filtered. The solid collected by filtration was washed with a mixed solvent of ethyl acetate and n-hexane (1: 1, 20 ml) and then air-dried to obtain Compound 33 (3.58 g, yield 83%).
工程2 化合物34の合成 
化合物33(309mg、0.578mmol)のエタノール(3ml)溶液に、0°Cで1mol/Lリチウムボロヒドリドーテトラヒドロフラン溶液(1.156ml)を加え、室温で3時間撹拌した。
反応液に4mol/L塩化水素―ジオキサン溶液(0.578ml)を加え、室温で1時間撹拌した後、EDC塩酸塩(222mg、1.156mmol.)を加え、65°Cで2時間撹拌した。放冷後、得られた固体をろ取、メタノールで洗浄した後、風乾することにより化合物34(187mg、収率77%)を得た。
 LC-MS:UPLC 4min base 1.57 min, M+H = 420
Step 2 Synthesis of Compound 34
To a solution of compound 33 (309 mg, 0.578 mmol) in ethanol (3 ml) was added 1 mol / L lithium borohydride tetrahydrofuran solution (1.156 ml) at 0 ° C., and the mixture was stirred at room temperature for 3 hours.
A 4 mol / L hydrogen chloride-dioxane solution (0.578 ml) was added to the reaction mixture, and the mixture was stirred at room temperature for 1 hr, EDC hydrochloride (222 mg, 1.156 mmol.) Was added, and the mixture was stirred at 65 ° C. for 2 hr. After allowing to cool, the obtained solid was collected by filtration, washed with methanol, and then air-dried to obtain Compound 34 (187 mg, yield 77%).
LC-MS: UPLC 4min base 1.57 min, M + H = 420
工程3 化合物35の合成 
窒素気流下、20mlのファルコンチューブに化合物34(149mg、0.354mmol)、メタノール(4.5mL)を加えた後、室温にてフッ化アンモニウム(52.5mg,1.417mmol)を加え、60℃で8時間加熱還流した.放冷後、メタノール(1.5ml)、テトラヒドロフラン(2ml)を加えた後、生成したスラリーをろ取することにより、化合物35(89.5mg、収率89.5%)を白色固体として得た。
Step 3 Synthesis of Compound 35
Under a nitrogen stream, compound 34 (149 mg, 0.354 mmol) and methanol (4.5 mL) were added to a 20 ml Falcon tube, followed by addition of ammonium fluoride (52.5 mg, 1.417 mmol) at room temperature, and 60 ° C. And heated at reflux for 8 hours. After allowing to cool, methanol (1.5 ml) and tetrahydrofuran (2 ml) were added, and the resulting slurry was collected by filtration to give compound 35 (89.5 mg, yield 89.5%) as a white solid. .
工程4 化合物36の合成 
500mlの1Lナスコルベンにて、化合物35(8.00g、19.9mmol)をピリジン(80ml)での共沸脱水操作を3回繰り返した後、ピリジン(80ml)に懸濁した。N,N’-ジメチルホルムアミドージメチルアセタール(8.0mL)を添加して室温で1時間撹拌した。生じた橙色溶液をそのまま濃縮し、残渣をピリジン(80ml)での1回共沸脱水操作を行った後にピリジン(80ml)に溶解した。4,4’-ジメトキシトリチルクロリド(10.1g、MR=1.5)を添加して室温で3時間撹拌した。反応液にメタノール(5.0ml)を滴加して40分間撹拌後、酢酸エチルで希釈した。有機層を飽和炭酸水素ナトリウム水溶液で2回、飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥、ろ過、濃縮した。再び、ピリジン(100ml)に溶解して、25%アンモニア水(30ml)を添加して室温で20時間撹拌した。反応液をそのまま濃縮した後、得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール, 10/0→9/1)にて精製することにより、化合物36(8.83g、純度93%, 収率73%)を黄色粉末として得た。
Step 4 Synthesis of Compound 36
An azeotropic dehydration operation of compound 35 (8.00 g, 19.9 mmol) with pyridine (80 ml) was repeated three times with 500 ml of 1 L eggplant colben, and then suspended in pyridine (80 ml). N, N′-dimethylformamide-dimethylacetal (8.0 mL) was added and stirred at room temperature for 1 hour. The resulting orange solution was concentrated as it was, and the residue was subjected to a single azeotropic dehydration operation with pyridine (80 ml) and then dissolved in pyridine (80 ml). 4,4′-Dimethoxytrityl chloride (10.1 g, MR = 1.5) was added and stirred at room temperature for 3 hours. Methanol (5.0 ml) was added dropwise to the reaction solution, stirred for 40 minutes, and diluted with ethyl acetate. The organic layer was washed twice with saturated aqueous sodium hydrogen carbonate solution and saturated brine, dried over anhydrous sodium sulfate, filtered and concentrated. Again, it was dissolved in pyridine (100 ml), 25% aqueous ammonia (30 ml) was added, and the mixture was stirred at room temperature for 20 hours. After concentrating the reaction solution as it was, the resulting residue was purified by silica gel column chromatography (chloroform / methanol, 10/0 → 9/1) to obtain compound 36 (8.83 g, purity 93%, yield). 73%) was obtained as a yellow powder.
工程5 化合物36からA(Bz)-DMTr体(化合物19)への変換
窒素気流下、100mLナスフラスコAにHOBt(1.38g,10.19mmol)、ジクロロメタン(20mL)、N-メチルモルホリン(2.17mL,19.72mmol)を加えた。その後、BzCl(1.15mL,9.86mmol)を室温にて滴下してBz-OBtを調整した。窒素気流下、100mLナスフラスコBに化合物36(2.00g,3.29mmol)、ピリジン(20mL)、N-メチルモルホリン(2.17mL, 19.72mmol)を加えた。続いて室温にて、クロロトリメチルシラン(1.68mL,13.14mmol)を滴下し、白色懸濁液を得た。フラスコBに対してフラスコAの溶液を室温で滴下し、一晩撹拌した。反応が5%程度しか進行しなかったため、同量のBzOt溶液を調製し、反応液に室温で滴下した。その後、50℃にて12時間撹拌し、室温で週末静置した。反応完結を確認後、反応溶液を酢酸エチルにあけ、有機層を分液操作により飽和重層水、飽和食塩水で洗浄した。得られた有機層に硫酸ナトリウムを添加し30分撹拌後、濾過、減圧濃縮、乾燥を行い、粗精製のジベンゾイル体を得た。残渣をメタノール(20mL)に溶解し、0℃で炭酸カリウム(2.72g,19.72mmol)を加え、0℃で1時間撹拌した。その後、濾過、減圧濃縮、乾燥を行い、得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール、10/0→9/1)にて精製し、化合物19(1.76g,75.1%)を白色泡状固体として得た。
Step 5 Conversion of Compound 36 to A (Bz) -DMTr Form (Compound 19) Under a nitrogen stream, HOBt (1.38 g, 10.19 mmol), dichloromethane (20 mL), N-methylmorpholine (2 .17 mL, 19.72 mmol) was added. Thereafter, BzCl (1.15 mL, 9.86 mmol) was added dropwise at room temperature to prepare Bz-OBt. Under a nitrogen stream, Compound 36 (2.00 g, 3.29 mmol), pyridine (20 mL), and N-methylmorpholine (2.17 mL, 19.72 mmol) were added to a 100 mL eggplant flask B. Subsequently, chlorotrimethylsilane (1.68 mL, 13.14 mmol) was added dropwise at room temperature to obtain a white suspension. The solution of Flask A was added dropwise to Flask B at room temperature and stirred overnight. Since the reaction proceeded only about 5%, the same amount of BzOt solution was prepared and added dropwise to the reaction solution at room temperature. Then, it stirred at 50 degreeC for 12 hours, and left still at room temperature on the weekend. After confirming the completion of the reaction, the reaction solution was poured into ethyl acetate, and the organic layer was washed with saturated multistory water and saturated brine by a liquid separation operation. Sodium sulfate was added to the obtained organic layer and stirred for 30 minutes, followed by filtration, concentration under reduced pressure, and drying to obtain a crude dibenzoyl compound. The residue was dissolved in methanol (20 mL), potassium carbonate (2.72 g, 19.72 mmol) was added at 0 ° C., and the mixture was stirred at 0 ° C. for 1 hr. Thereafter, filtration, concentration under reduced pressure, and drying were performed, and the resulting residue was purified by silica gel column chromatography (chloroform / methanol, 10/0 → 9/1) to obtain compound 19 (1.76 g, 75.1%). Was obtained as a white foamy solid.
(比較例1)従来のトランスグリコシル化反応によるA(Bz)アミダイトの合成
Figure JPOXMLDOC01-appb-C000044

Figure JPOXMLDOC01-appb-I000045
(Comparative Example 1) Synthesis of A (Bz) amidite by conventional transglycosylation reaction
Figure JPOXMLDOC01-appb-C000044

Figure JPOXMLDOC01-appb-I000045
工程1 化合物37の合成
化合物14をトリメチルシリルジアゾメタン-n-ヘキサン溶液/メタノールで処理することにより、化合物37を得た。
Step 1 Synthesis of Compound 37 Compound 37 was obtained by treating Compound 14 with trimethylsilyldiazomethane-n-hexane solution / methanol.
工程2 化合物38の合成
化合物37を実施例2の工程2と同様な条件に付すことにより、化合物38を得た。
Step 2 Synthesis of Compound 38 Compound 38 was obtained by subjecting Compound 37 to the same conditions as in Step 2 of Example 2.
工程3 化合物39の合成
窒素気流下、10mLナスフラスコに化合物37(78.0mg、0.10mmol)、N-ベンゾイルアデニン(47.8mg、0.20mmol)、1,2-ジクロロエタン(1mL)、BSA(0.15mL、0.60mmol)を加えた。反応溶液を60℃に加熱し40分間撹拌した後に室温へ放冷した。室温にてトリメチルシリルトリフルオロメタンスルホネート(0.020mL、0.11mmol)を加えた後に、4時間加熱還流した。原料消失後、室温へと放冷し、飽和重層水で反応を停止した。続いて反応溶液を酢酸エチルで希釈した後に、有機層を水、飽和食塩水で洗浄した。得られた有機層に硫酸ナトリウムを添加し30分撹拌後、濾過、減圧濃縮し、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/ヘキサン:1/9→2/3)にて精製し、化合物39(86.4mg、97.0%)を白色泡状固体として得た。得られた化合物の物性データは、以下のとおりであった。
1H-NMR(CDCl3, 5:1 mixture of rotamers)δ:8.80(1H, s), 8.19 (1H, s), 8.02 (2H, d, J=4.0 Hz), 7.72-7.30 (14H, m), 6.83 (1H, d, J=12.0 Hz), 5.32 (1H, t, J=8.0 Hz), 4.93 (1H, d, 8.0 Hz), 4.20 (1H, d, J=12.0Hz), 4.05 (1H, d, J=12.0 Hz), 3.80 (3H, s), 3.39 (3H, s), 1.14 (9H, s), 1.00 (9H, s), 0.03 (3H, s), 0.00 (3H, s). LC-MS: UPLC 4min base 3.60 min, M+H = 892
Step 3 Synthesis of Compound 39 Under a nitrogen stream, Compound 37 (78.0 mg, 0.10 mmol), N-benzoyladenine (47.8 mg, 0.20 mmol), 1,2-dichloroethane (1 mL), BSA were placed in a 10 mL eggplant flask. (0.15 mL, 0.60 mmol) was added. The reaction solution was heated to 60 ° C. and stirred for 40 minutes, and then allowed to cool to room temperature. Trimethylsilyl trifluoromethanesulfonate (0.020 mL, 0.11 mmol) was added at room temperature, and the mixture was heated to reflux for 4 hours. After the disappearance of the raw materials, the mixture was allowed to cool to room temperature, and the reaction was stopped with saturated multilayer water. Subsequently, the reaction solution was diluted with ethyl acetate, and then the organic layer was washed with water and saturated brine. Sodium sulfate was added to the obtained organic layer, and the mixture was stirred for 30 minutes, filtered and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (ethyl acetate / hexane: 1/9 → 2/3) to give compound 39 ( 86.4 mg, 97.0%) was obtained as a white foamy solid. The physical property data of the obtained compound were as follows.
1 H-NMR (CDCl 3 , 5: 1 mixture of rotamers) δ: 8.80 (1H, s), 8.19 (1H, s), 8.02 (2H, d, J = 4.0 Hz), 7.72-7.30 (14H, m ), 6.83 (1H, d, J = 12.0 Hz), 5.32 (1H, t, J = 8.0 Hz), 4.93 (1H, d, 8.0 Hz), 4.20 (1H, d, J = 12.0 Hz), 4.05 ( 1H, d, J = 12.0 Hz), 3.80 (3H, s), 3.39 (3H, s), 1.14 (9H, s), 1.00 (9H, s), 0.03 (3H, s), 0.00 (3H, s LC-MS: UPLC 4min base 3.60 min, M + H = 892
工程4 化合物40の合成
化合物39をNaOH/メタノールで処理することにより、化合物38を得た。
Step 4 Synthesis of Compound 40 Compound 38 was obtained by treating Compound 39 with NaOH / methanol.
工程5 化合物40から化合物35への変換
実施例4の工程3と同様な条件にて実施することにより化合物35を得た。
Step 5 Conversion of Compound 40 to Compound 35 Compound 35 was obtained by carrying out under the same conditions as in Step 3 of Example 4.
工程6 化合物35からA(Bz)アミダイト(化合物20)への変換
実施例4の脱TFA化反応を経由しない方法の工程5および実施例4の工程4と同条件で実施した。
[実施例5]
Step 6 Conversion from Compound 35 to A (Bz) amidite (Compound 20) The step was carried out under the same conditions as in Step 5 of the method not passing through the deTFA reaction of Example 4 and Step 4 of Example 4.
[Example 5]
A(Pac)アミダイト体の合成
Figure JPOXMLDOC01-appb-C000046
Synthesis of A (Pac) amidite
Figure JPOXMLDOC01-appb-C000046
工程1 化合物33の合成
 実施例4の脱TFA化反応を経由しない方法の工程1と同条件で実施した。
Step 1 Synthesis of Compound 33 The reaction was performed under the same conditions as in Step 1 of the method of Example 4 without passing through the deTFA reaction.
工程2 化合物33から化合物35への変換
 実施例4の工程2と同様なルートで合成した。
Step 2 Conversion from Compound 33 to Compound 35 Synthesized by the same route as in Step 2 of Example 4.
工程3 化合物35から化合物36への変換
実施例4の脱TFA化反応を経由しない方法の工程4と同条件で実施した。
Step 3 Conversion from Compound 35 to Compound 36 The reaction was carried out under the same conditions as in Step 4 of the method not passing through the deTFAization reaction of Example 4.
工程4 化合物42の合成
窒素気流下、100mLのナスフラスコに化合物40(5.68g、9.33mmol)、ピリジン(57ml、10V)、N-メチルモルホリン(6.2mL,MR=6)を入れ、撹拌溶解後、氷冷バスで冷却した。クロロトリメチルシラン(4.7mL,MR=4)を5分間滴加、そのまま20分間さらに室温で1時間撹拌した。
窒素気流下、200mLのナスフラスコにHOBt(3.91g,MR=3.1)、ジクロロメタン(57mL)を入れた懸濁液にN-メチルモルホリン(6.2mL,MR=6)を添加した。室温でPacCl(3.85mL)を3分間で滴下した後、20分間撹拌し、Pac-OBtを調製した。本反応液に上述のトリメチルシリル化反応液を添加して一晩撹拌した後、反応が未完結であったので、同量のPac-Bt溶液を追加して、さらに23時間撹拌した。反応液を飽和炭酸水素ナトリウム水溶液にあけ、有機層を分離した後、飽和炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄した。各水層をジクロロメタンで再抽出して、有機層を合一し、無水硫酸ナトリウムで乾燥後、ろ過、濃縮した。残渣をトルエンで共沸操作を行ってピリジンを除いた後、乾燥し、テトラヒドロフラン(50ml)に溶解し、フッ化水素・トリエチルアミン錯体(4ml)を添加して室温で40分間撹拌した。反応液を酢酸エチルで希釈し、飽和炭酸水素ナトリウム水溶液で2回、飽和食塩水で順次洗浄して、無水硫酸ナトリウムで乾燥後、ろ過、濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/アセトン, 100/0→80/20)にて精製することにより、化合物42 (9.91g、純度96%, 収率84%)をベージュ色粉末として得た。
Step 4 Synthesis of Compound 42 Under a nitrogen stream, Compound 40 (5.68 g, 9.33 mmol), pyridine (57 ml, 10 V), N-methylmorpholine (6.2 mL, MR = 6) were placed in a 100 mL eggplant flask. After stirring and dissolving, the mixture was cooled with an ice-cooled bath. Chlorotrimethylsilane (4.7 mL, MR = 4) was added dropwise for 5 minutes, and the mixture was further stirred for 20 minutes at room temperature for 1 hour.
Under a nitrogen stream, N-methylmorpholine (6.2 mL, MR = 6) was added to a suspension containing HOBt (3.91 g, MR = 3.1) and dichloromethane (57 mL) in a 200 mL eggplant flask. PacCl (3.85 mL) was added dropwise at room temperature over 3 minutes and then stirred for 20 minutes to prepare Pac-OBt. The above-mentioned trimethylsilylation reaction solution was added to this reaction solution and stirred overnight, and the reaction was incomplete, so the same amount of Pac-Bt solution was added, and the mixture was further stirred for 23 hours. The reaction solution was poured into a saturated aqueous sodium hydrogen carbonate solution, the organic layer was separated, and washed successively with a saturated aqueous sodium hydrogen carbonate solution and saturated brine. Each aqueous layer was re-extracted with dichloromethane, and the organic layers were combined, dried over anhydrous sodium sulfate, filtered and concentrated. The residue was azeotroped with toluene to remove pyridine, dried, dissolved in tetrahydrofuran (50 ml), added with hydrogen fluoride / triethylamine complex (4 ml), and stirred at room temperature for 40 minutes. The reaction mixture was diluted with ethyl acetate, washed twice with saturated aqueous sodium hydrogen carbonate solution and then with saturated brine, dried over anhydrous sodium sulfate, filtered and concentrated. The obtained residue was purified by silica gel column chromatography (ethyl acetate / acetone, 100/0 → 80/20) to give compound 42 (9.91 g, purity 96%, yield 84%) as a beige powder. Got as.
工程5 化合物43(A(Pac)アミダイト)の合成
 窒素雰囲気下、化合物42(5.54g、7.46mmol)のアセトニトリル(55mL)-テトラヒドロフラン(5.5ml)の混合溶液にジイソプロピルアンモニウムテトラゾリド(1.34g、MR=1.05)を添加した後、2-シアノエチル-N,N,N’,N’-テトライソプロピルホスホロアミダイト(3.37g、MR=1.5)を3分間程度で滴下し、室温で7時間撹拌した。反応液を酢酸エチルで希釈し、飽和炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥後、ろ過、濃縮した。溶媒を減圧留去し、得られた残渣を2回のシリカゲルカラムクロマトグラフィー(1回目)ヘキサン/酢酸エチル/アセトン 2/1/1、 (2回目)酢酸エチル)により精製し、化合物43(6.20g、収率71%、2種のジアステレオマー比(1H-NMRの積分値より算出)=60:40))を得た。
1H-NMR (CDCl3)δ:(major diastereomer)9.54 (1H, br s), 8.82 (1H, s), 8.54 (1H, s), 7.45 (2H, d, J=8.0 Hz), 7.40-7.25 (9H, m), 7.09 (2H, d, J=8.0 Hz), 7.08 (1H, m), 6.89-6.83 (4H, m), 5.96 (1H, s, H-1 of sugar), 4.88 (2H, s), 4.68 (1H, dd, J=8.5, 1.0 Hz), 4.64 (1H, s), 3.96 (1H, d, J = 12.8 Hz), 3.81 (3H, s), 3.80 (3H, s), 3.57-3.39 (4H, m), 3.47 (1H, d, J=12.8 Hz), 3.12 (3H, s, -NCH3), 2.27 (2H, t, J=6.3 Hz), 1.09 (6H, d, J=6.8 Hz), 0.90 (6H, d, J=6.8 Hz).(minor diastereomer)9.54 (1H, br s), 8.84 (1H, s), 8.54 (1H, s), 7.45 (2H, d, J=8.0 Hz), 7.40-7.25 (9H, m), 7.09 (2H, d, J=8.0 Hz), 7.08 (1H, m), 6.89-6.83 (4H, m), 5.96 (1H, s, H-1 of sugar), 4.88 (2H, s), 4.76 (1H, s, H-2 of sugar), 4.65 (1H, dd, J=5.0, 1.2 Hz), 3.89 (1H, d, J=12.3 Hz), 3.80 (6H, s), 3.70-3.55 (2H, m), 3.52 (1H, d, J = 12.3 Hz), 3.49-3.38 (2H, m), 3.14 (3H, s, -NCH3), 2.44-2.39 (2H, m), 1.08 (6H, d, J = 6.8 Hz), 0.89 (6H, d, J = 6.8 Hz).
Step 5 Synthesis of Compound 43 (A (Pac) amidite) Under a nitrogen atmosphere, a mixed solution of Compound 42 (5.54 g, 7.46 mmol) in acetonitrile (55 mL) -tetrahydrofuran (5.5 ml) was added diisopropylammonium tetrazolide ( After adding 1.34 g, MR = 1.05), 2-cyanoethyl-N, N, N ′, N′-tetraisopropyl phosphoramidite (3.37 g, MR = 1.5) was added in about 3 minutes. The solution was added dropwise and stirred at room temperature for 7 hours. The reaction mixture was diluted with ethyl acetate, washed successively with saturated aqueous sodium hydrogen carbonate solution and saturated brine, dried over anhydrous sodium sulfate, filtered and concentrated. The solvent was distilled off under reduced pressure, and the resulting residue was purified by silica gel column chromatography (first time) hexane / ethyl acetate / acetone 2/1/1, (second time ethyl acetate) to obtain compound 43 (6 20 g, yield 71%, ratio of the two diastereomers (calculated from the integrated value of 1 H-NMR) = 60: 40)).
1 H-NMR (CDCl3) δ: (major diastereomer) 9.54 (1H, br s), 8.82 (1H, s), 8.54 (1H, s), 7.45 (2H, d, J = 8.0 Hz), 7.40-7.25 (9H, m), 7.09 (2H, d, J = 8.0 Hz), 7.08 (1H, m), 6.89-6.83 (4H, m), 5.96 (1H, s, H-1 of sugar), 4.88 (2H , s), 4.68 (1H, dd, J = 8.5, 1.0 Hz), 4.64 (1H, s), 3.96 (1H, d, J = 12.8 Hz), 3.81 (3H, s), 3.80 (3H, s) , 3.57-3.39 (4H, m), 3.47 (1H, d, J = 12.8 Hz), 3.12 (3H, s, -NCH3), 2.27 (2H, t, J = 6.3 Hz), 1.09 (6H, d, J = 6.8 Hz), 0.90 (6H, d, J = 6.8 Hz). (Minor diastereomer) 9.54 (1H, br s), 8.84 (1H, s), 8.54 (1H, s), 7.45 (2H, d, J = 8.0 Hz), 7.40-7.25 (9H, m), 7.09 (2H, d, J = 8.0 Hz), 7.08 (1H, m), 6.89-6.83 (4H, m), 5.96 (1H, s, H -1 of sugar), 4.88 (2H, s), 4.76 (1H, s, H-2 of sugar), 4.65 (1H, dd, J = 5.0, 1.2 Hz), 3.89 (1H, d, J = 12.3 Hz ), 3.80 (6H, s), 3.70-3.55 (2H, m), 3.52 (1H, d, J = 12.3 Hz), 3.49-3.38 (2H, m), 3.14 (3H, s, -NCH3), 2.44 -2.39 (2H, m), 1.08 (6H, d, J = 6.8 Hz), 0.89 (6H, d, J = 6.8 Hz).
さらに、化合物40から以下の経路によってA(アミジン)アミダイト体の合成が可能となる。 Furthermore, A (amidine) amidite can be synthesized from compound 40 by the following route.
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
工程1 化合物44の合成
窒素気流下、100mLナスフラスコに化合物40(1.82g,2.99mmol)、ピリジン(20mL)を加えた。その後、1,1-ジメトキシ-N,N-ジメチルメタンアミン(1.192ml,8.97mmol)を加え室温で30分撹拌した。反応溶液を減圧下で濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィー(ジクロロメタン/メタノール、10/0→9/1)にて精製し、化合物44(1.74g、87.7%)を白色泡状固体として得た。
1H-NMR(CDCl3)δ:8.99(1H, s), 8.51 (1H, s), 8.25 (1H, s), 7.47-7.21 (9H, m), 6.86 (4H, d, J=8.0 Hz), 5.84 (1H, s), 4.50 (1H, s), 4.44 (1H, s), 3.91 (1H, d, J=12.0 Hz), 3.78 (6H, s), 3.71 (1H, d, J=12.0 Hz), 3.24 (3H, s), 3.21 (3H, s), 3.12 (3H, s).LC-MS: UPLC 4min base 2.05 min, M+H = 664
Step 1 Synthesis of Compound 44 Compound 40 (1.82 g, 2.99 mmol) and pyridine (20 mL) were added to a 100 mL eggplant flask under a nitrogen stream. Thereafter, 1,1-dimethoxy-N, N-dimethylmethanamine (1.192 ml, 8.97 mmol) was added and stirred at room temperature for 30 minutes. The reaction solution was concentrated under reduced pressure, and the resulting residue was purified by silica gel column chromatography (dichloromethane / methanol, 10/0 → 9/1) to obtain compound 44 (1.74 g, 87.7%) as white. Obtained as a foamy solid.
1 H-NMR (CDCl 3 ) δ: 8.99 (1H, s), 8.51 (1H, s), 8.25 (1H, s), 7.47-7.21 (9H, m), 6.86 (4H, d, J = 8.0 Hz ), 5.84 (1H, s), 4.50 (1H, s), 4.44 (1H, s), 3.91 (1H, d, J = 12.0 Hz), 3.78 (6H, s), 3.71 (1H, d, J = 12.0 Hz), 3.24 (3H, s), 3.21 (3H, s), 3.12 (3H, s) .LC-MS: UPLC 4min base 2.05 min, M + H = 664
工程2 化合物45の合成 
窒素気流下、100mLのナスフラスコに化合物44(1.70g,2.56mmol)、N,N-ジイソプロピルエチルアミン(2.68mL、15.37mmol)、クロロホルム(17mL)を加えた。その後、0℃にて2-シアノエチル-N,N-ジイソプロピルクロロホスホロアミジト(1.714ml、7.68mmol)を加え、室温まで昇温し4時間撹拌した。反応溶液に飽和重層水を加えて反応を停止した。溶液を酢酸エチルにあけ、有機層を水、飽和食塩水で洗浄した。得られた有機層に硫酸ナトリウムを添加し30分撹拌後、濾過、減圧濃縮し、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル)にて精製することにより、化合物45(1.76g,79.5%)を白色泡状固体として得た。 
1H-NMR(CDCl3, 1:1 mixture of diastereomers) δ:9.04(1H, s), 8.56 (1H, s), 8.42 (1H, s), 7.45 (2H, d, J=8.0 Hz), 7.36-7.21 (9H, m), 6.84 (4H, m), 5.93 (1H, s), 4.72 (1H, s), 4.60 (1H, s), 4.14 (1H, d, J=8.0Hz), 3.80 (6H, s), 3.52-3.40 (5H, m), 3.30 (3H, s), 3.24 (3H, s), 3.12 (3H, s), 2.38 (1H, m), 1.10 (6H, t, J=8.0 Hz), 0.90 (6H, t, J=8.0 Hz). 31P-NMR(CDCl3)δ:150.8 (s), 150.0 (s). LC-MS: UPLC 4min base 2.67 min, M+H = 864
[実施例6]
Step 2 Synthesis of Compound 45
Under a nitrogen stream, Compound 44 (1.70 g, 2.56 mmol), N, N-diisopropylethylamine (2.68 mL, 15.37 mmol), and chloroform (17 mL) were added to a 100 mL eggplant flask. Thereafter, 2-cyanoethyl-N, N-diisopropylchlorophosphoramidite (1.714 ml, 7.68 mmol) was added at 0 ° C., and the mixture was warmed to room temperature and stirred for 4 hours. Saturated multistory water was added to the reaction solution to stop the reaction. The solution was poured into ethyl acetate, and the organic layer was washed with water and saturated brine. Sodium sulfate was added to the obtained organic layer, and the mixture was stirred for 30 minutes, filtered and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (ethyl acetate) to give Compound 45 (1.76 g, 79.5%). ) Was obtained as a white foamy solid.
1 H-NMR (CDCl 3 , 1: 1 mixture of diastereomers) δ: 9.04 (1H, s), 8.56 (1H, s), 8.42 (1H, s), 7.45 (2H, d, J = 8.0 Hz), 7.36-7.21 (9H, m), 6.84 (4H, m), 5.93 (1H, s), 4.72 (1H, s), 4.60 (1H, s), 4.14 (1H, d, J = 8.0Hz), 3.80 (6H, s), 3.52-3.40 (5H, m), 3.30 (3H, s), 3.24 (3H, s), 3.12 (3H, s), 2.38 (1H, m), 1.10 (6H, t, J = 8.0 Hz), 0.90 (6H, t, J = 8.0 Hz). 31 P-NMR (CDCl 3 ) δ: 150.8 (s), 150.0 (s). LC-MS: UPLC 4min base 2.67 min, M + H = 864
[Example 6]
G(Pac)アミダイトの合成
Figure JPOXMLDOC01-appb-C000048
Synthesis of G (Pac) amidite
Figure JPOXMLDOC01-appb-C000048
工程1 化合物21の合成
 窒素雰囲気下、化合物14(15.0g、26.6mmol)およびグアニン(4.02g、26.6mmol)のシクロペンチルメチルエーテル(135mL)懸濁液にN,O-ビス(トリメチルシリル)アセトアミド(65.1mL、266mmol)およびシクロペンチルメチルエーテル(7.5mL)を加え、60~70℃で10分間攪拌した後、TMSOTf(11.83g、53.20mmol)およびシクロペンチルメチルエーテル(7.5mL)を加え、2時間撹拌した。反応液に20~30℃で酢酸エチル(150mL)を加え、さらに15~30℃で2mol/L塩酸(75mL)、テトラヒドロフラン(150mL)および水(75mL)を加え、有機層を水(150mL)で2回洗浄した。洗浄液は合わせて酢酸エチル(150mL)で抽出し、水(75mL)で洗浄した。有機層を合わせて溶媒を減圧留去し、得られた残渣に酢酸エチル(37.5mL)およびn-ヘキサン(112.5mL)を加え、室温で20分間撹拌した。得られたスラリーをろ過し、ろ取した固体を酢酸エチル-n-ヘキサン(1:9、75mL)で洗浄した後、風乾することにより化合物21(14.35g、収率91.8%)を得た。
1H-NMR(DMSO-d6)δ :-0.09 (3H, s), 0.11 (3H, s), 0.85 (9H, s), 3.10 - 3.60 (4H, m), 3.74 (1H, dd, J = 11.8, 6.8Hz), 3.90 (1H, dd, J = 11.9, 9.4Hz), 4.65 (1H, m), 5.09 (1H, t, J = 8.2Hz), 6.50 - 6.70 (3H, m), 8.00 (1H, d, J = 9.0Hz), 10.74 (1H, s), 13.24 (1H, brs).
Step 1 Synthesis of Compound 21 N, O-bis (trimethylsilyl) was added to a suspension of compound 14 (15.0 g, 26.6 mmol) and guanine (4.02 g, 26.6 mmol) in cyclopentyl methyl ether (135 mL) under a nitrogen atmosphere. ) Acetamide (65.1 mL, 266 mmol) and cyclopentyl methyl ether (7.5 mL) were added and stirred at 60-70 ° C. for 10 minutes before TMSOTf (11.83 g, 53.20 mmol) and cyclopentyl methyl ether (7.5 mL). ) Was added and stirred for 2 hours. Ethyl acetate (150 mL) was added to the reaction solution at 20 to 30 ° C., 2 mol / L hydrochloric acid (75 mL), tetrahydrofuran (150 mL) and water (75 mL) were further added at 15 to 30 ° C., and the organic layer was added with water (150 mL). Washed twice. The washings were combined and extracted with ethyl acetate (150 mL) and washed with water (75 mL). The organic layers were combined and the solvent was distilled off under reduced pressure. Ethyl acetate (37.5 mL) and n-hexane (112.5 mL) were added to the resulting residue, and the mixture was stirred at room temperature for 20 minutes. The obtained slurry was filtered, and the collected solid was washed with ethyl acetate-n-hexane (1: 9, 75 mL) and then air-dried to obtain Compound 21 (14.35 g, yield 91.8%). Obtained.
1H-NMR (DMSO-d6) δ: -0.09 (3H, s), 0.11 (3H, s), 0.85 (9H, s), 3.10-3.60 (4H, m), 3.74 (1H, dd, J = 11.8 , 6.8Hz), 3.90 (1H, dd, J = 11.9, 9.4Hz), 4.65 (1H, m), 5.09 (1H, t, J = 8.2Hz), 6.50-6.70 (3H, m), 8.00 (1H , d, J = 9.0Hz), 10.74 (1H, s), 13.24 (1H, brs).
工程2 化合物22の合成
 窒素雰囲気下、化合物21(14.0g、23.9mmol)およびN-メチルイミダゾール(7.60mL、95.4mmol)のDMA(70mL)溶液に、1mol/L TBAF-テトラヒドロフラン溶液(28.6mL、28.6mmol)およびDMA(14mL)を加え、70~80℃で8時間撹拌した。EDC塩酸塩(13.72g、71.55mmol)およびDMA(7mL)を20~30℃で加え、4時間撹拌した。反応液にN-メチルイミダゾール(7.60mL、95.4mmol)を加えた後、TBSクロリド(14.38g、95.40mmol)を20℃以下で加え、室温で2時間撹拌した。反応液に酢酸エチル(280mL)および10%食塩水(140mL)を加え、有機層を水(140mL)で2回洗浄した。洗浄液はそれぞれ酢酸エチル(140mL)で抽出した。有機層を合わせて溶媒を減圧留去し、得られた残渣にアセトニトリル(56mL)、イソプロピルアルコール(28mL)および水(266mL)を室温で順次加え、0~10℃で1時間撹拌した。得られたスラリーをろ過し、ろ取した固体をアセトニトリル-水(1:9、70mL)で洗浄した後、減圧下、60℃で乾燥し、化合物22(7.71g、収率74.1%)を得た。
1H-NMR(DMSO-d6)δ :-0.09 (3H, s), 0.10 (3H, s), 0.81 (9H, s), 2.92 (3H, s), 3.89 (2H, dd, J = 33.0, 12.7Hz), 4.33 (2H, s), 5.67 (1H, s), 5.93 (1H, brs), 6.54 (2H, brs), 7.69 (1H, s), 10.72 (1H, brs).
Step 2 Synthesis of Compound 22 Under a nitrogen atmosphere, a solution of compound 21 (14.0 g, 23.9 mmol) and N-methylimidazole (7.60 mL, 95.4 mmol) in DMA (70 mL) was added with a 1 mol / L TBAF-tetrahydrofuran solution. (28.6 mL, 28.6 mmol) and DMA (14 mL) were added and stirred at 70-80 ° C. for 8 hours. EDC hydrochloride (13.72 g, 71.55 mmol) and DMA (7 mL) were added at 20-30 ° C. and stirred for 4 hours. N-methylimidazole (7.60 mL, 95.4 mmol) was added to the reaction solution, TBS chloride (14.38 g, 95.40 mmol) was added at 20 ° C. or lower, and the mixture was stirred at room temperature for 2 hours. Ethyl acetate (280 mL) and 10% brine (140 mL) were added to the reaction solution, and the organic layer was washed twice with water (140 mL). Each washing solution was extracted with ethyl acetate (140 mL). The organic layers were combined, the solvent was distilled off under reduced pressure, and acetonitrile (56 mL), isopropyl alcohol (28 mL) and water (266 mL) were sequentially added to the obtained residue at room temperature, and the mixture was stirred at 0 to 10 ° C. for 1 hour. The obtained slurry was filtered, and the collected solid was washed with acetonitrile-water (1: 9, 70 mL), and then dried at 60 ° C. under reduced pressure to obtain Compound 22 (7.71 g, yield 74.1%). )
1H-NMR (DMSO-d6) δ: -0.09 (3H, s), 0.10 (3H, s), 0.81 (9H, s), 2.92 (3H, s), 3.89 (2H, dd, J = 33.0, 12.7 Hz), 4.33 (2H, s), 5.67 (1H, s), 5.93 (1H, brs), 6.54 (2H, brs), 7.69 (1H, s), 10.72 (1H, brs).
工程3 化合物23の合成
 窒素雰囲気下、化合物22(7.50g、17.2mmol)のピリジン(37.5mL、464mmol)懸濁液に、10~20℃でトリメチルシリルクロリド(9.33g、85.9mmol)を滴下した後、室温で30分間撹拌した。次に0~5℃でフェノキシアセチルクロリド(3.52g、20.6mmol)を滴下した後、室温で1時間撹拌した。反応液を酢酸エチル(150mL)で希釈した後、0~10℃で10%食塩水(37.5mL)および濃塩酸(30.0mL)の混合液を滴下した。有機層を1mol/L塩酸(75mL)および水(75mL)で2回洗浄し、次に酢酸エチル(37.5mL)および2mol/L塩酸メタノール溶液(38.7mL、77.4mmol)を順次加え、室温で1時間撹拌した。得られたスラリーにメタノール(15mL)を加え、室温で30分間撹拌した後,ろ過し、ろ取した固体を酢酸エチル(45mL)で洗浄した後、風乾することにより化合物23(5.51g、収率70.3%)を得た。
1H-NMR(DMSO-d6)δ :2.95 (3H, s), 3.68 (1H, d, J = 13.6Hz), 3.82 (1H, d, J = 13.3Hz), 4.35 (1H, s), 4.41 (1H, s), 4.92 (2H, s), 5.80 (1H, s), 6.99 (3H, m), 7.32 (2H, m), 8.19(1H, s), 11.82(2H, br).
Step 3 Synthesis of Compound 23 Trimethylsilyl chloride (9.33 g, 85.9 mmol) was suspended in a pyridine (37.5 mL, 464 mmol) suspension of Compound 22 (7.50 g, 17.2 mmol) at 10 to 20 ° C. under a nitrogen atmosphere. ) Was added dropwise, followed by stirring at room temperature for 30 minutes. Next, phenoxyacetyl chloride (3.52 g, 20.6 mmol) was added dropwise at 0 to 5 ° C., followed by stirring at room temperature for 1 hour. The reaction mixture was diluted with ethyl acetate (150 mL), and a mixed solution of 10% brine (37.5 mL) and concentrated hydrochloric acid (30.0 mL) was added dropwise at 0 to 10 ° C. The organic layer was washed twice with 1 mol / L hydrochloric acid (75 mL) and water (75 mL), and then ethyl acetate (37.5 mL) and 2 mol / L hydrochloric acid methanol solution (38.7 mL, 77.4 mmol) were sequentially added. Stir at room temperature for 1 hour. Methanol (15 mL) was added to the resulting slurry, and the mixture was stirred at room temperature for 30 minutes, filtered, and the solid collected by filtration was washed with ethyl acetate (45 mL) and then air-dried to obtain compound 23 (5.51 g, yield). Rate 70.3%).
1H-NMR (DMSO-d6) δ: 2.95 (3H, s), 3.68 (1H, d, J = 13.6Hz), 3.82 (1H, d, J = 13.3Hz), 4.35 (1H, s), 4.41 ( 1H, s), 4.92 (2H, s), 5.80 (1H, s), 6.99 (3H, m), 7.32 (2H, m), 8.19 (1H, s), 11.82 (2H, br).
工程4 化合物24(Gアミダイト)の合成
 窒素雰囲気下、化合物23(500mg、1.10mmol)のDMA(3.5mL)溶液に、DMTrクロリド(1.11g、3.29mmol)およびDABCO(369mg、3.21mmol)を加え、室温で2.5時間撹拌した。反応液に10℃以下でDABCO(369mg、3.21mmol)および2-シアノエチルジイソプロピルクロロホスホロアミジト(0.587mL、2.63mmol)を加え、室温で1時間撹拌した。反応液に酢酸エチル(10mL)、5%炭酸水素ナトリウム水溶液(2.5mL)および10%食塩水(2.5mL)を加え、有機層を10%食塩水(5mL)で2回洗浄した。洗浄液は合わせて酢酸エチル(2.5mL)で抽出した。有機層を合わせて無水硫酸ナトリウムで乾燥した後、溶媒を減圧留去し、得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル)により精製し、化合物24(720mg、酢酸エチル9.9wt%含有、収率61.7%)を得た。
1H-NMR (DMSO-d6)δ: 11.87 (1.0H, br s), 11.77 (1.0H, br s), 8.07 (1.0H, s), 7.40 (1.9H, t, J = 7.4 Hz), 7.35-7.23 (9.0H, m), 7.02-6.97 (3.0H, m), 6.93-6.88 (4.0H, m), 6.08 (1.0H, s), 4.91 (2.0H, s), 4.78 (1.0H, s), 4.64 (0.7H, d, J = 8.8 Hz), 4.59 (0.3H, d, J = 6.0 Hz), 3.75 (4.2H, s), 3.74 (1.8H, s), 3.72-3.60 (0.6H, m), 3.60-3.49 (1.3H, m), 3.48-3.39 (1.4H, m), 3.21 (0.7H, dd, J = 15.4, 11.6 Hz), 2.98 (0.9H, s), 2.97 (2.1H, s), 2.70 (0.6H, dd, J = 10.1, 5.4 Hz), 2.58 (1.4H, t, J = 5.9 Hz), 1.09-1.05 (6.0H, m), 0.91-0.83 (6.0H, m).
31P-NMR (CDCl3) δ: 148.90, 149.98
Step 4 Synthesis of compound 24 (G amidite) Under a nitrogen atmosphere, a solution of compound 23 (500 mg, 1.10 mmol) in DMA (3.5 mL) was added DMTr chloride (1.11 g, 3.29 mmol) and DABCO (369 mg, 3 .21 mmol) was added and stirred at room temperature for 2.5 hours. DABCO (369 mg, 3.21 mmol) and 2-cyanoethyldiisopropylchlorophosphoramidite (0.587 mL, 2.63 mmol) were added to the reaction solution at 10 ° C. or lower, and the mixture was stirred at room temperature for 1 hour. Ethyl acetate (10 mL), 5% aqueous sodium hydrogen carbonate solution (2.5 mL) and 10% brine (2.5 mL) were added to the reaction mixture, and the organic layer was washed twice with 10% brine (5 mL). The washings were combined and extracted with ethyl acetate (2.5 mL). The organic layers were combined and dried over anhydrous sodium sulfate, the solvent was distilled off under reduced pressure, and the resulting residue was purified by silica gel column chromatography (hexane / ethyl acetate) to give compound 24 (720 mg, ethyl acetate 9.9 wt%). Content, yield 61.7%).
1H-NMR (DMSO-d6) δ: 11.87 (1.0H, br s), 11.77 (1.0H, br s), 8.07 (1.0H, s), 7.40 (1.9H, t, J = 7.4 Hz), 7.35 -7.23 (9.0H, m), 7.02-6.97 (3.0H, m), 6.93-6.88 (4.0H, m), 6.08 (1.0H, s), 4.91 (2.0H, s), 4.78 (1.0H, s), 4.64 (0.7H, d, J = 8.8 Hz), 4.59 (0.3H, d, J = 6.0 Hz), 3.75 (4.2H, s), 3.74 (1.8H, s), 3.72-3.60 (0.6 H, m), 3.60-3.49 (1.3H, m), 3.48-3.39 (1.4H, m), 3.21 (0.7H, dd, J = 15.4, 11.6 Hz), 2.98 (0.9H, s), 2.97 ( 2.1H, s), 2.70 (0.6H, dd, J = 10.1, 5.4 Hz), 2.58 (1.4H, t, J = 5.9 Hz), 1.09-1.05 (6.0H, m), 0.91-0.83 (6.0H , m).
31P-NMR (CDCl3) δ: 148.90, 149.98
化合物14から化合物21aに至る経路については、以下の通り脱TFA化反応を経由しない方法でも合成できる。 The route from compound 14 to compound 21a can also be synthesized by a method that does not go through a deTFA reaction as follows.
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
工程1 化合物46の合成
窒素気流下、化合物14(5.56g,8.88mmol)、2-アセタミド-9H-プリン-6-イル-ジフェニルカルバマート(3.79g、9.77mmol)のシクロペンチルメチルエーテル(50mL、10V)懸濁液に、N,O-ビス(トリメチルシリル)アセトアミド(BSA、21.75mL、89mmol)を加え、60℃で20分間撹拌した後、トリメチルシリルトリフルオロメタンスルホネート(3.95mL、17.76mmol)を加え、同温度で4時間加熱した.室温に冷却した後、酢酸エチル(100ml、20V)を加え、続いて市水(7.5ml、1.5V)を滴下した。不溶物をろ別した後、ろ液を10%食塩水(15ml、3V)に加え、有機層と水層に分配した。有機層を2mol/L塩酸(50ml、10V)および市水(50ml、10V)にて順次洗浄した後、濃縮することにより、化合物46(9.52g)の粗生成物を得た。
1H-NMR(DMSO-d6) δ:8.65(2H, d, J=8.0 Hz), 7.91 (2H, d, J=8.0 Hz), 7.51 (1H, t, J=4.0 Hz), 7.43 (2H, m), 6.89 (1H, d, 12.0 Hz), 5.36 (1H, t, J=8.0Hz), 4.61 (1H, d, J=8.0 Hz), 3.79 (1H, d, J=12.0 Hz), 3.70 (1H, d, J=12.0Hz), 3.26 (1H, s), 2.38 (3H, s), 0.77 (9H, s), 0.06 (3H, s), -0.19 (3H, s). LC-MS: UPLC 4min base 1.91 min, M+H = 789
Step 1 Synthesis of Compound 46 Under a nitrogen stream, cyclopentyl methyl ether of Compound 14 (5.56 g, 8.88 mmol) and 2-acetamido-9H-purin-6-yl-diphenylcarbamate (3.79 g, 9.77 mmol) (50 mL, 10 V) To the suspension, N, O-bis (trimethylsilyl) acetamide (BSA, 21.75 mL, 89 mmol) was added and stirred at 60 ° C. for 20 minutes, and then trimethylsilyl trifluoromethanesulfonate (3.95 mL, 17 .76 mmol) was added and heated at the same temperature for 4 hours. After cooling to room temperature, ethyl acetate (100 ml, 20 V) was added, followed by the dropwise addition of city water (7.5 ml, 1.5 V). The insoluble material was filtered off, and the filtrate was added to 10% brine (15 ml, 3V) and partitioned into an organic layer and an aqueous layer. The organic layer was washed successively with 2 mol / L hydrochloric acid (50 ml, 10 V) and city water (50 ml, 10 V) and then concentrated to obtain a crude product of compound 46 (9.52 g).
1 H-NMR (DMSO-d 6 ) δ: 8.65 (2H, d, J = 8.0 Hz), 7.91 (2H, d, J = 8.0 Hz), 7.51 (1H, t, J = 4.0 Hz), 7.43 ( 2H, m), 6.89 (1H, d, 12.0 Hz), 5.36 (1H, t, J = 8.0 Hz), 4.61 (1H, d, J = 8.0 Hz), 3.79 (1H, d, J = 12.0 Hz) , 3.70 (1H, d, J = 12.0Hz), 3.26 (1H, s), 2.38 (3H, s), 0.77 (9H, s), 0.06 (3H, s), -0.19 (3H, s) .LC -MS: UPLC 4min base 1.91 min, M + H = 789
工程2 化合物47の合成
粗製の化合物46(9.52g、8.88mmol相当)のメタノール(25ml)溶液に28%アンモニア水溶液(25ml)を加え、室温で4時間撹拌した。酢酸エチル(250ml)と10%食塩水(60ml)を加えた後、析出したスラリー状の固体をろ取した。得られた固体を酢酸エチル(25ml)で洗浄後、風乾することにより、化合物47(3.89g、純度=91.4wt%、化合物14からの収率70.6%)を得た。
Step 2 Synthesis of Compound 47 To a solution of crude compound 46 (9.52 g, corresponding to 8.88 mmol) in methanol (25 ml) was added 28% aqueous ammonia (25 ml), and the mixture was stirred at room temperature for 4 hours. After adding ethyl acetate (250 ml) and 10% brine (60 ml), the precipitated slurry-like solid was collected by filtration. The obtained solid was washed with ethyl acetate (25 ml) and then air-dried to obtain Compound 47 (3.89 g, purity = 91.4 wt%, yield 70.6% from Compound 14).
工程3 化合物48の合成
化合物46(547mg、純度=91.4wt%、0.881mmol相当)のテトラヒドロフラン懸濁液(5ml)に1.8mol/L リチウムボロヒドリドーテトラヒドロフラン溶液(1.76ml)を滴下し、室温で15分間撹拌した。撹拌を継続しながら、メタノール(500・L)、アセトン(500・L)、2mol/L 塩酸-メタノール溶液(3.52ml)を順次加えた後、室温でEDC塩酸塩(507mg,2.64mmol、3eq.)を加え、60~70℃で1.5時間撹拌した。EDC塩酸塩(422mg,2.20mmol、2.5eq.)、ジメチルアセタミド(1ml)を追加した後、同温度で2.5時間撹拌した。室温に冷却し、10%食塩水(10ml)を加えた後、反応液がスラリーになるまで、溶媒を留去した(残渣重量:12.95g)。一晩放置後、得られた固体をろ取し、固体を5%メタノール水溶液(5ml)で洗浄、風乾することにより、化合物48(273mg、収率70.9%)を得た。
LC-MS: UPLC 4min base 1.41 min, M+H = 437
Step 3 A 1.8 mol / L lithium borohydride tetrahydrofuran solution (1.76 ml) was added dropwise to a tetrahydrofuran suspension (5 ml) of synthetic compound 46 (547 mg, purity = 91.4 wt%, corresponding to 0.881 mmol) of compound 48. And stirred at room temperature for 15 minutes. While continuing stirring, methanol (500 · L), acetone (500 · L), 2 mol / L hydrochloric acid-methanol solution (3.52 ml) were sequentially added, and then EDC hydrochloride (507 mg, 2.64 mmol, 3 eq.) Was added, and the mixture was stirred at 60 to 70 ° C. for 1.5 hours. After adding EDC hydrochloride (422 mg, 2.20 mmol, 2.5 eq.) And dimethylacetamide (1 ml), the mixture was stirred at the same temperature for 2.5 hours. After cooling to room temperature and adding 10% brine (10 ml), the solvent was distilled off until the reaction mixture became a slurry (residue weight: 12.95 g). After standing overnight, the resulting solid was collected by filtration, and the solid was washed with 5% aqueous methanol (5 ml) and air dried to obtain Compound 48 (273 mg, yield 70.9%).
LC-MS: UPLC 4min base 1.41 min, M + H = 437
工程4 化合物48から化合物21aへの変換
化合物48(100mg、0.229mmol)に室温にてメタノール(1.5mL)、フッ化アンモニウム(17mg,0.458mmol)を加え、70℃で4.5時間加熱還流した。室温に冷却した後、析出物をろ取し、メタノール(0.5ml)にて洗浄、風乾することにより、化合物21a(51mg、収率68.9%)を得た。
Step 4 Conversion of Compound 48 to Compound 21a Methanol (1.5 mL) and ammonium fluoride (17 mg, 0.458 mmol) were added to compound 48 (100 mg, 0.229 mmol) at room temperature, and 4.5 hours at 70 ° C. Heated to reflux. After cooling to room temperature, the precipitate was collected by filtration, washed with methanol (0.5 ml), and air-dried to obtain Compound 21a (51 mg, yield 68.9%).
(比較例2)従来のトランスグリコシル化反応によるG(Pac)アミダイトの合成  Comparative Example 2 Synthesis of G (Pac) amidite by conventional transglycosylation reaction
Figure JPOXMLDOC01-appb-C000050

Figure JPOXMLDOC01-appb-I000051
Figure JPOXMLDOC01-appb-C000050

Figure JPOXMLDOC01-appb-I000051
工程1
 比較例1の工程1と同条件で実施した。
Process 1
It implemented on the same conditions as the process 1 of the comparative example 1.
工程2
 比較例1の工程2と同条件で実施した。
Process 2
It carried out on the same conditions as the process 2 of the comparative example 1.
工程3
化合物38(12mg, 15umol)およびO-N,N-ジフェニルカルバモイル-N-アセチルグアニン(12mg、31umol)をナスフラスコ(10mL)中でトルエン共沸した(1mL、1回)。真空ライン下で乾燥した後に、窒素雰囲気下で1,2-ジクロロエタン(1mL)を加えた。N,O-ビス(トリメチルシリル)アセトアミド(BSA,38μL、154μmol)を加えて,60℃に加熱して10分間撹拌した。室温まで冷却した後に、トリフルオロメタンスルホン酸トリメチルシリル(TMSOTf、3μL、28μmol)を加えた。13分間リフラックスして再び室温に戻した。反応液を炭酸水素ナトリウム飽和水溶液(10mL)と酢酸エチル(10mL,2回)で抽出し,有機層を合わせて無水硫酸マグネシウムで乾燥した。ろ過を行い、濃縮乾固したサンプルをシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=2:1から1:1)にて精製して無色アモルファス状の化合物49(10mg、9.6μmol,収率62%)を得た。
Process 3
Compound 38 (12 mg, 15 umol) and ON, N-diphenylcarbamoyl-N-acetylguanine (12 mg, 31 umol) were azeotroped with toluene in an eggplant flask (10 mL) (1 mL, once). After drying under a vacuum line, 1,2-dichloroethane (1 mL) was added under a nitrogen atmosphere. N, O-bis (trimethylsilyl) acetamide (BSA, 38 μL, 154 μmol) was added, heated to 60 ° C. and stirred for 10 minutes. After cooling to room temperature, trimethylsilyl trifluoromethanesulfonate (TMSOTf, 3 μL, 28 μmol) was added. Refluxed for 13 minutes and returned to room temperature. The reaction solution was extracted with a saturated aqueous solution of sodium hydrogencarbonate (10 mL) and ethyl acetate (10 mL, twice), and the organic layers were combined and dried over anhydrous magnesium sulfate. The sample after filtration and concentration to dryness was purified by silica gel column chromatography (hexane / ethyl acetate = 2: 1 to 1: 1) to give colorless amorphous compound 49 (10 mg, 9.6 μmol, yield 62%). )
工程4
化合物49(5mg,4.8μmol)を尖端バイアル中で酢酸エチル(0.2mL)に溶解し、ヨウ化リチウム(1.2mg,9.6umol)を加えた。13.5時間リフラックスした後に反応液を10%硫酸ナトリウム水溶液(5mL)とクロロホルム(5mL、2回)で抽出した。有機層を合わせて0.1mol/L 塩酸、水、飽和食塩水で順に洗い、無水硫酸マグネシウムで乾燥した。ろ過後、濃縮乾固することにより、化合物50を無色アモルファス状サンプル(4mg)として得た。
Process 4
Compound 49 (5 mg, 4.8 μmol) was dissolved in ethyl acetate (0.2 mL) in a tip vial and lithium iodide (1.2 mg, 9.6 umol) was added. After refluxing for 13.5 hours, the reaction solution was extracted with 10% aqueous sodium sulfate solution (5 mL) and chloroform (5 mL, twice). The organic layers were combined, washed sequentially with 0.1 mol / L hydrochloric acid, water, and saturated brine, and dried over anhydrous magnesium sulfate. After filtration, it was concentrated to dryness to obtain Compound 50 as a colorless amorphous sample (4 mg).
工程5
実施例6の脱TFA化反応を経由しないルートの工程3と同様なルートで合成した。
Process 5
The synthesis was carried out by the same route as in Step 3 of the route not passing through the deTFAation reaction of Example 6.
工程6
実施例6の工程3と同様なルートで合成した。
Step 6
The compound was synthesized by the same route as in Step 3 of Example 6.
工程7
実施例6の工程4と同条件で実施した。
[実施例7]
Step 7
It implemented on the same conditions as the process 4 of Example 6. FIG.
[Example 7]
G(Pac)アミダイト 体の合成(その2)
Figure JPOXMLDOC01-appb-C000052
G (Pac) amidite synthesis (part 2)
Figure JPOXMLDOC01-appb-C000052
工程1 化合物21の合成
実施例6の工程1と同条件で実施した。
Step 1 Synthesis of Compound 21 The compound 21 was prepared under the same conditions as in Step 1 of Example 6.
工程2 化合物21aの合成
実施例6の工程2と同様な条件で実施した。
Step 2 Synthesis of Compound 21a The reaction was performed under the same conditions as in Step 2 of Example 6.
工程3 化合物23の合成
窒素気流下、化合物21a(19.5g、60.5mmol)をピリジン(200ml)、ジクロロメタン(20ml)でスラリー液とし、氷冷でクロロトリメチルシラン(65.7g、605mmol)の滴下を行った。滴下後、室温まで内温を上げ、1.5時間撹拌し、再び氷冷下まで反応液を冷却し、PacCl(11.5g、67.4mmol)の滴下を行った。滴下後、室温まで内温を上げ、1.5時間撹拌し、再び氷冷下まで反応液を冷却し、メタノール(60ml)の滴下を行った。その後、室温で2日間撹拌を行い、反応液を濃縮することにより、化合物23の粗生成物を得た。
Step 3 Synthesis of Compound 23 Under a nitrogen stream, Compound 21a (19.5 g, 60.5 mmol) was made into a slurry solution with pyridine (200 ml) and dichloromethane (20 ml), and chlorotrimethylsilane (65.7 g, 605 mmol) was cooled with ice. Dropping was performed. After the dropwise addition, the internal temperature was raised to room temperature, the mixture was stirred for 1.5 hours, the reaction solution was cooled again to ice cooling, and PacCl (11.5 g, 67.4 mmol) was added dropwise. After the dropwise addition, the internal temperature was raised to room temperature, the mixture was stirred for 1.5 hours, the reaction solution was cooled again under ice cooling, and methanol (60 ml) was added dropwise. Then, the crude product of compound 23 was obtained by stirring at room temperature for 2 days and concentrating the reaction solution.
工程4 化合物23aの合成
化合物23の粗生成物をピリジン共沸(60mlx3回)して得られた残渣にピリジン(200g)、4,4’-ジメトキシトリチルクロリド(21.5g、63.5mmol)を加え、室温で2.5時間撹拌した。反応液を酢酸エチル(400ml)、飽和炭酸水素ナトリウム水溶液(500ml)に添加した後、分液を行い、水層を酢酸エチル(100ml)で再抽出、得られた有機層を合一し、飽和食塩水(100ml)で洗浄、無水硫酸ナトリウムで乾燥し濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル/アセトニトリル)で精製した後、アセトニトリル(100g)、酢酸エチル(145g)でスラリー洗浄を行い、次いでろ過、乾燥することにより、化合物23a(28.3g、収率62%)を得た。
Step 4 Synthesis of Compound 23a Pyridine (200 g) and 4,4′-dimethoxytrityl chloride (21.5 g, 63.5 mmol) were added to the residue obtained by subjecting the crude product of Compound 23 to pyridine azeotropy (60 ml × 3 times). The mixture was further stirred at room temperature for 2.5 hours. The reaction mixture was added to ethyl acetate (400 ml) and saturated aqueous sodium hydrogen carbonate solution (500 ml), and the layers were separated, the aqueous layer was re-extracted with ethyl acetate (100 ml), and the resulting organic layers were combined and saturated. The extract was washed with brine (100 ml), dried over anhydrous sodium sulfate and concentrated. The obtained residue was purified by silica gel column chromatography (hexane / ethyl acetate / acetonitrile), washed with slurry with acetonitrile (100 g) and ethyl acetate (145 g), then filtered and dried to give compound 23a (28 .3 g, 62% yield).
工程5 化合物24の合成
化合物23a(28.3g,3 73mmol)に窒素気流下でアセトニトリル(220ml)、テトラヒドロフラン(30ml)を添加し、ジイソプロピルアンモニウムテトラゾリド(7.34g,42.9mmol)、次いで、2-シアノエチル N,N,N’,N’-テトライソプロピルホスホロアミダイト(16.9g,55.9mmol)を添加した。30℃で4時間撹拌した後、酢酸エチル(200ml)、飽和重曹水(20ml)に反応液を添加し、分液を行った。得られた水層を酢酸エチル(100ml)で再抽出し、有機層を合わせて、飽和食塩水(80ml)で洗浄した。有機層を無水硫酸ナトリウムで乾燥し、濃縮した後、得られた残渣をシリカゲルカラムクロマトグラフィー(イソプロピルエーテル/酢酸エチル/アセトニトリル)により精製し、化合物24(17.0g、収率49%)を得た。
[実施例8]
Step 5 Synthesis of compound 24 To compound 23a (28.3 g, 3 73 mmol), acetonitrile (220 ml) and tetrahydrofuran (30 ml) were added under a nitrogen stream, diisopropylammonium tetrazolide (7.34 g, 42.9 mmol), and then 2-cyanoethyl N, N, N ′, N′-tetraisopropyl phosphoramidite (16.9 g, 55.9 mmol) was added. After stirring at 30 ° C. for 4 hours, the reaction solution was added to ethyl acetate (200 ml) and saturated aqueous sodium hydrogen carbonate (20 ml) for liquid separation. The obtained aqueous layer was re-extracted with ethyl acetate (100 ml), and the organic layers were combined and washed with saturated brine (80 ml). The organic layer was dried over anhydrous sodium sulfate and concentrated, and then the resulting residue was purified by silica gel column chromatography (isopropyl ether / ethyl acetate / acetonitrile) to obtain compound 24 (17.0 g, yield 49%). It was.
[Example 8]
G(Ac)アミダイト体の合成
Figure JPOXMLDOC01-appb-C000053
Synthesis of G (Ac) amidite body
Figure JPOXMLDOC01-appb-C000053
工程1~工程5 実施例6と同様な条件で実施できる。
[実施例9]
Step 1 to Step 5 The steps can be performed under the same conditions as in Example 6.
[Example 9]
5’-O-Lev-G(Pac)アミダイト体の合成
Figure JPOXMLDOC01-appb-C000054
Synthesis of 5′-O-Lev-G (Pac) amidite
Figure JPOXMLDOC01-appb-C000054
工程1 化合物58の合成 
化合物23(実施例6に記載の方法にて合成)のジクロロメタン溶液にレブリン酸、EDC塩酸塩、4-ジメチルアミノピリジンを加え、室温で1晩撹拌することにより、化合物58を得ることが出来る。
Step 1 Synthesis of Compound 58
Compound 58 can be obtained by adding levulinic acid, EDC hydrochloride and 4-dimethylaminopyridine to a dichloromethane solution of compound 23 (synthesized by the method described in Example 6) and stirring overnight at room temperature.
工程2 化合物59の合成
実施例6の工程4と同様な方法にて化合物59を合成できる。
[実施例10]
Step 2 Synthesis of Compound 59 Compound 59 can be synthesized in the same manner as in Step 4 of Example 6.
[Example 10]
5’-O-TBDPS-G(Pac)アミダイト体の合成
Figure JPOXMLDOC01-appb-C000055
Synthesis of 5'-O-TBDPS-G (Pac) amidite
Figure JPOXMLDOC01-appb-C000055
工程1 化合物60の合成 
化合物21a(実施例6に記載の方法にて合成)のN,N-ジメチルホルムアミド溶液にtert-ブチル-ジフェニルシリルクロリドとイミダゾールを加え、室温で反応し、5’位水酸基がTBDPS化された生成物を得た後、ピリジン溶液にトリメチルシリルクロリド、フェノキシアセチルクロリドを加え、室温で反応させることにより、化合物60を得ることが出来る。 
Step 1 Synthesis of Compound 60
To a N, N-dimethylformamide solution of compound 21a (synthesized by the method described in Example 6), tert-butyl-diphenylsilyl chloride and imidazole are added and reacted at room temperature to form a TBDPS at the 5′-position hydroxyl group. After the product is obtained, compound 60 can be obtained by adding trimethylsilyl chloride and phenoxyacetyl chloride to the pyridine solution and reacting at room temperature.
工程2 化合物61の合成
実施例6の工程4と同様な方法にて化合物61を合成できる。
[実施例11]
Step 2 Synthesis of Compound 61 Compound 61 can be synthesized in the same manner as in Step 4 of Example 6.
[Example 11]
MeC(Bz)アミダイトの合成
Figure JPOXMLDOC01-appb-C000056
Synthesis of MeC (Bz) amidite
Figure JPOXMLDOC01-appb-C000056
工程1 化合物25の合成
 化合物15 108.1g(純度:92.53%、含量:100g、0.167mol)、DMF 300ml、イミダゾール47.8g(4.2eq.)、TBSCl 51.6g(2.05eq.)を仕込み25℃付近で23時間撹拌を行った。AcOEt 600ml、水 600mlを加えて分液を行い、水層をAcOEt 300mlで再抽出を行った。有機層を混合し、5%NaHCO 600ml、5%NaCl 600mlで洗浄を行い、溶媒を回収した。TBSOHの除去を目的にトルエン 500ml×3回溶媒置換を行った後、アモルファスを固化させたものをほぐして目的の化合物25(132.6g、粗収率 111.2%)を得た。
1H-NMR (CDCl3)δ: 8.33 (1H, s), 7.89 (1H, s), 7.41 (2H, d, J = 7.0 Hz), 7.33-7.21 (7H, m), 6.82 (4H, dd, J = 8.8, 5.6 Hz), 5.43 (1H, s), 4.50 (1H, s), 4.04 (1H, s), 3.87 (1H, d, J = 11.8 Hz), 3.789 (3H, s), 3.787 (3H, s), 3.41 (1H, d, J = 11.8 Hz), 3.00 (3H, s), 1.56 (3H, s), 0.75 (9H, s), 0.04 (2H, s), -0.04 (2H, s).
Step 1 Synthesis of Compound 25 108.1 g of Compound 15 (Purity: 92.53%, Content: 100 g, 0.167 mol), DMF 300 ml, Imidazole 47.8 g (4.2 eq.), TBSCl 51.6 g (2.05 eq) .) Was added and stirred at around 25 ° C. for 23 hours. The solution was separated by adding 600 ml of AcOEt and 600 ml of water, and the aqueous layer was re-extracted with 300 ml of AcOEt. The organic layers were mixed, washed with 600 ml of 5% NaHCO 3 and 600 ml of 5% NaCl, and the solvent was recovered. After removing the solvent by toluene 500 ml × 3 for the purpose of removing TBSOH, the solidified amorphous was loosened to obtain the intended compound 25 (132.6 g, crude yield 111.2%).
1H-NMR (CDCl3) δ: 8.33 (1H, s), 7.89 (1H, s), 7.41 (2H, d, J = 7.0 Hz), 7.33-7.21 (7H, m), 6.82 (4H, dd, J = 8.8, 5.6 Hz), 5.43 (1H, s), 4.50 (1H, s), 4.04 (1H, s), 3.87 (1H, d, J = 11.8 Hz), 3.789 (3H, s), 3.787 (3H , s), 3.41 (1H, d, J = 11.8 Hz), 3.00 (3H, s), 1.56 (3H, s), 0.75 (9H, s), 0.04 (2H, s), -0.04 (2H, s ).
工程2 化合物26の合成
 化合物25 132.6g(0.167mol相当)、MeCN 800ml、TEA 50.7g(3eq.)、DMAP 2.0g(0.1eq.)、TPBSO2Cl 65.8g(1.3eq.)を加え、25℃付近で22時間撹拌した。25%NHaq. 800mlを加え25℃付近で2時間撹拌した。MeCNを粗く回収し、AcOEt 400ml、水 400mlを加えて分液を行い、水層をAcOEt 300mlで再抽出した。有機層を混合し、5%NaCl 400ml×2回洗浄を行い、溶媒を回収した。アモルファスを固化させたものをほぐして目的の化合物26(192.8g、粗収率 161.9 % from 化合物15)を得た。
1H-NMR (CDCl3)δ: 7.97 (1H, s), 7.53 (2H, d, J = 7.2 Hz), 7.35-7.25 (7H, m), 6.83 (4H, dd, J = 8.8, 6.8 Hz), 5.51 (1H, s), 4.46 (1H, s), 4.19 (1H, s), 3.88 (1H, d, J = 11.7 Hz), 3.79 (6H, s), 3.39 (1H, d, J = 11.7 Hz), 3.02 (3H, s), 1.85 (3H, s), 1.66 (3H, s), 0.74 (9H, s), 0.04 (2H, s), -0.04 (2H, s).
Step 2 Synthesis of Compound 26 Compound 25 132.6 g (corresponding to 0.167 mol), MeCN 800 ml, TEA 50.7 g (3 eq.), DMAP 2.0 g (0.1 eq.), TPBSO2Cl 65.8 g (1.3 eq. ) And stirred at around 25 ° C. for 22 hours. 25% NH 3 aq. 800 ml was added and stirred at around 25 ° C. for 2 hours. MeCN was roughly recovered, and 400 ml of AcOEt and 400 ml of water were added for liquid separation, and the aqueous layer was re-extracted with 300 ml of AcOEt. The organic layers were mixed, washed with 400 ml of 5% NaCl × 2 times, and the solvent was recovered. The solidified amorphous was loosened to obtain the target compound 26 (192.8 g, crude yield 161.9% from compound 15).
1H-NMR (CDCl3) δ: 7.97 (1H, s), 7.53 (2H, d, J = 7.2 Hz), 7.35-7.25 (7H, m), 6.83 (4H, dd, J = 8.8, 6.8 Hz), 5.51 (1H, s), 4.46 (1H, s), 4.19 (1H, s), 3.88 (1H, d, J = 11.7 Hz), 3.79 (6H, s), 3.39 (1H, d, J = 11.7 Hz ), 3.02 (3H, s), 1.85 (3H, s), 1.66 (3H, s), 0.74 (9H, s), 0.04 (2H, s), -0.04 (2H, s).
工程3 化合物27の合成
化合物26 192.8g(0.167mol相当)、DMF 500ml、BzO 75.6g(2eq.)を加え、25℃付近で22h撹拌した。AcOEt 1000ml、5%NaHCO 1000mlを加えて分液を行い、水層をAcOEt 500mlで再抽出した。有機層を混合し、5%NaHCO 500ml、5%NaCl 500mlで洗浄を行い、溶媒を回収して粗製の化合物5を得た。シリカゲル1.3kg、展開溶媒Hex/AcOEt=8/2→6/4で精製を行い、アモルファスを固化させたものをほぐして目的の化合物27(124.1g、 収率 91 % from 化合物15)を得た。
1H-NMR (CDCl3)δ: 8.33 (2H, d, J = 7.2 Hz), 8.05 (1H, s), 7.53 (1H, dd, J = 7.4, 7.4 Hz), 7.49-7.41 (5H, m), 7.35-7.28 (7H, m), 7.25 (1H, m), 6.84 (4H, dd, J = 8.8, 6.4 Hz), 5.49(1H, s), 4.51 (1H, s), 4.10 (1H, s), 3.90 (1H, d, J = 11.7 Hz), 3.803 (3H, s), 3.800 (3H, s), 3.42 (1H, d, J = 11.7 Hz), 3.11 (3H, s), 1.85 (3H, s), 0.74 (9H, s), 0.04 (2H, s), -0.04 (2H, s).
Step 3 192.8 g (corresponding to 0.167 mol) of Compound 26 of Compound 27, 500 ml of DMF, and 75.6 g ( 2 eq.) Of Bz 2 O were added, and the mixture was stirred at around 25 ° C. for 22 hours. AcOEt 1000 ml, 5% NaHCO 3 1000 ml was added for liquid separation, and the aqueous layer was re-extracted with AcOEt 500 ml. The organic layers were mixed, washed with 500 ml of 5% NaHCO 3 and 500 ml of 5% NaCl, and the solvent was recovered to obtain crude compound 5. Purification is performed using 1.3 kg of silica gel, developing solvent Hex / AcOEt = 8/2 → 6/4, and the solidified amorphous is loosened to obtain the target compound 27 (124.1 g, yield 91% from compound 15). Obtained.
1H-NMR (CDCl3) δ: 8.33 (2H, d, J = 7.2 Hz), 8.05 (1H, s), 7.53 (1H, dd, J = 7.4, 7.4 Hz), 7.49-7.41 (5H, m), 7.35-7.28 (7H, m), 7.25 (1H, m), 6.84 (4H, dd, J = 8.8, 6.4 Hz), 5.49 (1H, s), 4.51 (1H, s), 4.10 (1H, s) , 3.90 (1H, d, J = 11.7 Hz), 3.803 (3H, s), 3.800 (3H, s), 3.42 (1H, d, J = 11.7 Hz), 3.11 (3H, s), 1.85 (3H, s), 0.74 (9H, s), 0.04 (2H, s), -0.04 (2H, s).
工程4 化合物28の合成
化合物27 124.1g(0.152mol)、THF 869ml、1M-TBAF/THF 182ml(1.2eq.)を加え2時間撹拌を行った。溶媒を回収し、AcOEt 620ml、5%NaHCO 620mlを加えて分液を行った。5%NaCl 620mlで洗浄し溶媒を回収した。TBSOHの除去を目的にトルエン 620ml×3回溶媒置換を行った後、アモルファスを固化させたものをほぐして目的の化合物28(119.2g、 収率 119 % from 化合物27)を得た。
1H-NMR (CDCl3)δ: 13.44 (1H, br s), 8.32 (2H, d, J = 7.5 Hz), 7.92 (1H, s), 7.55 (1H, dd, J = 7.3, 7.3 Hz), 7.50-7.43 (4H, m), 7.40-7.30 (7H, m), 7.26 (1H, m), 6.86 (4H, dd, J = 8.8, 3.6 Hz), 5.46 (1H, s), 4.37 (1H, br.s), 4.16 (1H, s), 3.92 (1H, d, J = 12.3 Hz), 3.803 (3H, s), 3.800 (3H, s), 3.57-3.42 (4H, m), 3.63 (1H, d, J = 12.3 Hz), 3.03 (3H, s), 1.90 (3H, s).
Step 4 Synthetic compound 27 124.1 g (0.152 mol), THF 869 ml, 1M-TBAF / THF 182 ml (1.2 eq.) Were added, and the mixture was stirred for 2 hours. The solvent was recovered, and liquid separation was performed by adding 620 ml of AcOEt and 620 ml of 5% NaHCO 3 . The solvent was recovered by washing with 620 ml of 5% NaCl. After removing the solvent by toluene 620 ml × 3 for the purpose of removing TBSOH, the solidified amorphous was loosened to obtain the intended compound 28 (119.2 g, yield 119% from compound 27).
1H-NMR (CDCl3) δ: 13.44 (1H, br s), 8.32 (2H, d, J = 7.5 Hz), 7.92 (1H, s), 7.55 (1H, dd, J = 7.3, 7.3 Hz), 7.50 -7.43 (4H, m), 7.40-7.30 (7H, m), 7.26 (1H, m), 6.86 (4H, dd, J = 8.8, 3.6 Hz), 5.46 (1H, s), 4.37 (1H, br .s), 4.16 (1H, s), 3.92 (1H, d, J = 12.3 Hz), 3.803 (3H, s), 3.800 (3H, s), 3.57-3.42 (4H, m), 3.63 (1H, d, J = 12.3 Hz), 3.03 (3H, s), 1.90 (3H, s).
工程5 化合物29(MeC(Bz)アミダイト)の合成
化合物28 108.2g(0.138mol相当)、ジクロロメタン 564ml、DIPEA 35.7g(2eq.)を仕込み5℃以下で2-シアノエチルジイソプロピルクロロホスフォロアミダイト 49.0g(1.5eq.)を滴下した。その後、25℃付近で2時間撹拌した。5%NaHCO 564mlを加え分液し、溶媒を回収して粗製のMeC(Bz)を得た。シリカゲル2.3kg、展開溶媒Hex/AcOEt=7/3→5/5で精製を行い、アモルファスを固化させたものをほぐして目的の化合物29(MeC(Bz)アミダイト、105.2g、 収率 84% from 化合物27、2種のジアステレオマー比(HPLCの積分値より算出)=54:46)を得た。
1H-NMR (CDCl3)δ:(major diastereomer)13.47 (1H, br s), 8.33 (2H, d, J = 7.4 Hz), 7.98 (1H, s), 7.52 (1H, dd, J = 7.4, 7.4 Hz),7.50-7.42 (4H, m), 7.37-7.24 (8H, m), 6.86 (4H, dd, J = 8.8, 6.6 Hz), 5.52 (1H, s), 4.64 (1H, d, J = 6.9 Hz), 4.37 (1H, s), 3.92 (1H, d, J = 11.7 Hz), 3.812 (3H, s), 3.807 (3H, s), 3.57-3.42 (4H, m), 3.51 (1H, d, J = 11.7 Hz), 3.02 (3H, s), 2.36 (2H, t, J = 5.9 Hz), 1.77 (3H, s), 1.14 (6H, d, J = 6.8 Hz), 1.05 (6H, d, J = 6.8 Hz).(minor diastereomer)13.47 (1H, br s), 8.33 (2H, d, J = 7.3 Hz), 7.98 (1H, s), 7.56 (1H, dd, J = 7.3, 7.3 Hz), 7.47-7.43 (4H, m), 7.35-7.28 (7H, m), 7.22 (1H, m), 6.86 (4H, dd, J = 8.8, 5.5 Hz), 5.51 (1H, s), 4.60 (1H, d, J = 4.3 Hz), 4.43 (1H, s), 3.88 (1H, d, J = 11.7 Hz), 3.802 (3H, s), 3.798 (3H, s), 3.64 (1H, m), 3.52 (1H, d, J = 11.7 Hz), 3.52-3.44 (3H, m), 3.04 (3H, s), 2.60-2.52 (2H, m), 1.79 (3H, s), 1.11 (6H, d, J = 6.8 Hz), 0.99 (6H, d, J = 6.8 Hz).
31P-NMR (CDCl3) δ: 151.24, 151.05.
[実施例12]
Step 5 Synthesis of Compound 29 (MeC (Bz) amidite) 108.2 g (equivalent to 0.138 mol) of Compound 28, 564 ml of dichloromethane and 35.7 g (2 eq.) Of DIPEA were charged and 2-cyanoethyldiisopropylchlorophosphoramidite at 5 ° C. or lower. 49.0 g (1.5 eq.) Was added dropwise. Then, it stirred at 25 degreeC vicinity for 2 hours. 564 ml of 5% NaHCO 3 was added for liquid separation, and the solvent was recovered to obtain crude MeC (Bz). Purified with 2.3 kg of silica gel, developing solvent Hex / AcOEt = 7/3 → 5/5, loosened the solidified amorphous, and the target compound 29 (MeC (Bz) amidite, 105.2 g, yield 84) % From compound 27, the ratio of two diastereomers (calculated from the integrated value of HPLC) = 54: 46).
1H-NMR (CDCl3) δ: (major diastereomer) 13.47 (1H, br s), 8.33 (2H, d, J = 7.4 Hz), 7.98 (1H, s), 7.52 (1H, dd, J = 7.4, 7.4 Hz), 7.50-7.42 (4H, m), 7.37-7.24 (8H, m), 6.86 (4H, dd, J = 8.8, 6.6 Hz), 5.52 (1H, s), 4.64 (1H, d, J = 6.9 Hz), 4.37 (1H, s), 3.92 (1H, d, J = 11.7 Hz), 3.812 (3H, s), 3.807 (3H, s), 3.57-3.42 (4H, m), 3.51 (1H, d, J = 11.7 Hz), 3.02 (3H, s), 2.36 (2H, t, J = 5.9 Hz), 1.77 (3H, s), 1.14 (6H, d, J = 6.8 Hz), 1.05 (6H, d, J = 6.8 Hz). (minor diastereomer) 13.47 (1H, br s), 8.33 (2H, d, J = 7.3 Hz), 7.98 (1H, s), 7.56 (1H, dd, J = 7.3, 7.3 Hz), 7.47-7.43 (4H, m), 7.35-7.28 (7H, m), 7.22 (1H, m), 6.86 (4H, dd, J = 8.8, 5.5 Hz), 5.51 (1H, s), 4.60 (1H, d, J = 4.3 Hz), 4.43 (1H, s), 3.88 (1H, d, J = 11.7 Hz), 3.802 (3H, s), 3.798 (3H, s), 3.64 (1H, m) , 3.52 (1H, d, J = 11.7 Hz), 3.52-3.44 (3H, m), 3.04 (3H, s), 2.60-2.52 (2H, m), 1.79 (3H, s), 1.11 (6H, d , J = 6.8 Hz), 0.99 (6H, d, J = 6.8 Hz).
31P-NMR (CDCl3) δ: 151.24, 151.05.
[Example 12]
MeC(Bz)体の合成 
Figure JPOXMLDOC01-appb-C000057
Synthesis of Me C (Bz) body
Figure JPOXMLDOC01-appb-C000057
工程1
 窒素雰囲気下、化合物14(100mg、0.177mmol)および6-N-ベンゾイルメチルシトシン(49mg、0.213mmol)のシクロペンチルメチルエーテル(2mL)懸濁液に、N,O-ビス(トリメチルシリル)アセトアミド(0.304mL、1.24mmol)およびTMSOTf(0.0641mL、0.355mmol)を加え、70℃で4時間撹拌した。反応液に氷冷下、テトラヒドロフラン(20mL)、1mol/L塩酸(20mL)を加えて分配した後、有機層を0.1mol/L塩酸(110mL)および水(110mL)で洗浄、無水硫酸マグネシウムにて乾燥後、溶媒を減圧下濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール)にて精製することにより,化合物62(84mg、収率75%)を得た。1H-NMRでは71:29のロータマー混合物として観測された。
1H-NMR(CD3OD)δ:(Major) 8.30-8.17 (2H, m), 7.96 (1H, br.s), 7.56 (1H, dd, J=7.3
7.3 Hz), 7.48 (2H, d, J=7.5, 7.3 Hz), 6.95 (1H, J=8.6 Hz, H-1 of sugar), 4.99 (1H, dd,
J=8.6, 8.0 Hz), 4.79 (1H, d, J=8.0 Hz), 4.10 (1H, d, J=11.9 Hz), 3.90 (1H, d, J=11.9 Hz), 2.11 (3H, s), 0.93 (9H, s), 0.21 (3H, s), -0.01 (3H, s). (Minor) 8.30-8.17 (2H, m), 7.98 (1H, br.s), 7.56 (1H, dd, J=7.3, 7.3 Hz), 7.48 (2H, d, J=7.5, 7.3 Hz), 6.90 (1H, J=7.8 Hz, H-1 of sugar), 4.73 (1H, d, J=6.8 Hz), 4.51 (1H, dd, J=7.8, 6.8 Hz), 4.12 (1H, d, J=11.9 Hz), 3.86 (1H, d, J=11.9 Hz), 2.11 (3H, s), 0.93 (9H, s), 0.21 (3H, s), -0.01 (3H, s).
Process 1
Under a nitrogen atmosphere, a suspension of compound 14 (100 mg, 0.177 mmol) and 6-N-benzoylmethylcytosine (49 mg, 0.213 mmol) in cyclopentylmethyl ether (2 mL) was charged with N, O-bis (trimethylsilyl) acetamide ( 0.304 mL, 1.24 mmol) and TMSOTf (0.0641 mL, 0.355 mmol) were added and stirred at 70 ° C. for 4 hours. The reaction mixture was partitioned by adding tetrahydrofuran (20 mL) and 1 mol / L hydrochloric acid (20 mL) under ice-cooling, and the organic layer was washed with 0.1 mol / L hydrochloric acid (110 mL) and water (110 mL), and then added to anhydrous magnesium sulfate. After drying, the solvent was concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography (chloroform / methanol) to obtain Compound 62 (84 mg, yield 75%). 1 H-NMR was observed as a 71:29 rotamer mixture.
1 H-NMR (CD3OD) δ: (Major) 8.30-8.17 (2H, m), 7.96 (1H, br.s), 7.56 (1H, dd, J = 7.3
7.3 Hz), 7.48 (2H, d, J = 7.5, 7.3 Hz), 6.95 (1H, J = 8.6 Hz, H-1 of sugar), 4.99 (1H, dd,
J = 8.6, 8.0 Hz), 4.79 (1H, d, J = 8.0 Hz), 4.10 (1H, d, J = 11.9 Hz), 3.90 (1H, d, J = 11.9 Hz), 2.11 (3H, s) , 0.93 (9H, s), 0.21 (3H, s), -0.01 (3H, s). (Minor) 8.30-8.17 (2H, m), 7.98 (1H, br.s), 7.56 (1H, dd, J = 7.3, 7.3 Hz), 7.48 (2H, d, J = 7.5, 7.3 Hz), 6.90 (1H, J = 7.8 Hz, H-1 of sugar), 4.73 (1H, d, J = 6.8 Hz), 4.51 (1H, dd, J = 7.8, 6.8 Hz), 4.12 (1H, d, J = 11.9 Hz), 3.86 (1H, d, J = 11.9 Hz), 2.11 (3H, s), 0.93 (9H, s ), 0.21 (3H, s), -0.01 (3H, s).
工程2
 実施例2の工程2と同様な条件で合成した。
Process 2
The compound was synthesized under the same conditions as in Step 2 of Example 2.
工程3
 実施例2の工程3と同様な条件で合成した。
Process 3
The compound was synthesized under the same conditions as in Step 3 of Example 2.
工程4
 実施例11の工程5と同条件で合成した。
[実施例13]
Process 4
The compound was synthesized under the same conditions as in Step 5 of Example 11.
[Example 13]
MeC(Ac)体の合成 
Figure JPOXMLDOC01-appb-C000058
Synthesis of Me C (Ac) body
Figure JPOXMLDOC01-appb-C000058
工程1 化合物25の合成
 実施例11の工程1と同条件で合成した。
Step 1 Synthesis of Compound 25 Synthesis was performed under the same conditions as in Step 1 of Example 11.
工程2 化合物26の合成
 実施例11の工程2と同条件で合成した。
Step 2 Synthesis of Compound 26 Synthesized under the same conditions as in Step 2 of Example 11.
工程3 化合物64の合成
窒素気流下、2Lの4口フラスコに化合物26(粗製、101.7g)、ピリジン(300ml)を加え、撹拌溶解した。無水酢酸(50mL)を添加して室温で1時間撹拌した後、酢酸エチルで希釈、飽和炭酸水素ナトリウム水溶液(2回)、飽和食塩水で順次洗浄した。無水硫酸ナトリウムにて乾燥後、ろ過、濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(トルエン/酢酸エチル=2/1→1/1→ 2/3→ 0/1)で精製することにより、化合物64(49.1g、化合物25からの収率77%)をベージュ粉末として得た。
Step 3 Synthesis of Compound 64 Under a nitrogen stream, Compound 26 (crude, 101.7 g) and pyridine (300 ml) were added to a 2 L four-necked flask and dissolved by stirring. Acetic anhydride (50 mL) was added, and the mixture was stirred at room temperature for 1 hour, diluted with ethyl acetate, washed successively with saturated aqueous sodium hydrogen carbonate solution (twice) and saturated brine. After drying with anhydrous sodium sulfate, filtration and concentration, the residue obtained was purified by silica gel column chromatography (toluene / ethyl acetate = 2/1 → 1/1 → 2/3 → 0/1). Compound 64 (49.1 g, 77% yield from compound 25) was obtained as a beige powder.
工程4 化合物65の合成
窒素気流下、1Lの4口フラスコに化合物64(61.7g)、テトラヒドロフラン(305ml)を加え、撹拌溶解した。1mol/l テトラブチルアンモニウムフロリド/テトラヒドロフラン溶液(98ml、1.2eq.)を加え、室温で1時間撹拌した後、そのまま濃縮した。残渣を酢酸エチルと水で分配して得られた有機層を飽和食塩水で洗浄、無水硫酸ナトリウムにて乾燥後、ろ過、濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(トルエン/酢酸エチル=1/0→1/1)で精製して、化合物65(17.1g)を得た。
Step 4 Synthesis of Compound 65 Under a nitrogen stream, Compound 64 (61.7 g) and tetrahydrofuran (305 ml) were added to a 1 L four-necked flask and dissolved by stirring. A 1 mol / l tetrabutylammonium fluoride / tetrahydrofuran solution (98 ml, 1.2 eq.) Was added, and the mixture was stirred at room temperature for 1 hour, and then concentrated as it was. The organic layer obtained by partitioning the residue between ethyl acetate and water was washed with saturated brine, dried over anhydrous sodium sulfate, filtered and concentrated. The obtained residue was purified by silica gel column chromatography (toluene / ethyl acetate = 1/0 → 1/1) to obtain Compound 65 (17.1 g).
工程5 化合物66の合成
 窒素雰囲気下、500mLの4口フラスコに化合物65(17.0g、26.5mmol)、ジイソプロピルアンモニウムテトラゾリド(3.41g、MR=0.75)を入れ、アセトニトリル(170mL)、テトラヒドロフラン(57ml)を加えて、15分間撹拌した後、2-シアノエチルーN,N、N’、N’-テトライソプロピルホスホロアミダイト(9.60g、MR=1.2)を添加して30℃で3時間撹拌した。室温にて酢酸エチルー5%炭酸水素ナトリウム水溶液にて分配後、有機層を飽和食塩水で洗浄、無水硫酸ナトリウムで乾燥後、ろ過、濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/アセトン 10/1)にて精製した後、ジクロロメタンとヘキサンの混合溶媒にて洗浄することにより、化合物66(15.4g、2種のジアステレオマー比(1H-NMRの積分値より算出)=72:28))を得た。
1H-NMR (CDCl3)δ:(major diastereomer)8.06 (1H, br s), 7.44 (2H, d, J=7.3 Hz), 7.37-7.24 (8H, m), 6.88-6.80 (4H, m), 5.56 (1H, br.s, H-1 of sugar), 4.59 (1H, d, J=7.5 Hz), 4.47 (1H, br.s), 3.90 (1H, d, J = 11.8 Hz), 3.802 (3H, s), 3.798 (3H, s), 3.58-3.40 (5H, m), 3.03 (3H, s, -NCH3), 2.69 (2H, br.s), 1.58 (3H, s), 1.14 (6H, d, J=6.8 Hz), 1.03 (6H, d, J=6.8 Hz).(minor diastereomer)8.06 (1H, br s), 7.43 (2H, d, J=7.3 Hz), 7.37-7.24 (8H, m), 6.88-6.80 (4H, m), 5.54 (1H, br.s, H-1 of sugar), 4.57 (1H, dd, J=5.8, 1.5 Hz), 4.47 (1H, br.s), 3.87 (1H, d, J = 11.8 Hz), 3.792 (3H, s), 3.789 (3H, s), 3.78 (1H, m), 3.61 (1H, m), 3.54 (1H, d, J = 11.8 Hz),  3.52-3.41 (2H, m), 3.05 (3H, s, -NCH3), 2.69 (2H, br.s), 1.58 (3H, s), 1.10 (6H, d, J=6.8 Hz), 0.98 (6H, d, J=6.8 Hz).
[実施例14]
Step 5 Synthesis of Compound 66 In a nitrogen atmosphere, Compound 65 (17.0 g, 26.5 mmol) and diisopropylammonium tetrazolide (3.41 g, MR = 0.75) were placed in a 500 mL four-necked flask and acetonitrile (170 mL). ), Tetrahydrofuran (57 ml) was added, and the mixture was stirred for 15 minutes, and then 2-cyanoethyl-N, N, N ′, N′-tetraisopropylphosphoramidite (9.60 g, MR = 1.2) was added and added. Stir at 0 ° C. for 3 hours. After partitioning with ethyl acetate-5% aqueous sodium hydrogen carbonate solution at room temperature, the organic layer was washed with saturated brine, dried over anhydrous sodium sulfate, filtered and concentrated. The obtained residue was purified by silica gel column chromatography (ethyl acetate / acetone 10/1) and then washed with a mixed solvent of dichloromethane and hexane to give compound 66 (15.4 g, two diastereomers. Ratio (calculated from the integrated value of 1 H-NMR) = 72: 28)).
1 H-NMR (CDCl3) δ: (major diastereomer) 8.06 (1H, br s), 7.44 (2H, d, J = 7.3 Hz), 7.37-7.24 (8H, m), 6.88-6.80 (4H, m) , 5.56 (1H, br.s, H-1 of sugar), 4.59 (1H, d, J = 7.5 Hz), 4.47 (1H, br.s), 3.90 (1H, d, J = 11.8 Hz), 3.802 (3H, s), 3.798 (3H, s), 3.58-3.40 (5H, m), 3.03 (3H, s, -NCH3), 2.69 (2H, br.s), 1.58 (3H, s), 1.14 ( 6H, d, J = 6.8 Hz), 1.03 (6H, d, J = 6.8 Hz). (Minor diastereomer) 8.06 (1H, br s), 7.43 (2H, d, J = 7.3 Hz), 7.37-7.24 ( 8H, m), 6.88-6.80 (4H, m), 5.54 (1H, br.s, H-1 of sugar), 4.57 (1H, dd, J = 5.8, 1.5 Hz), 4.47 (1H, br.s ), 3.87 (1H, d, J = 11.8 Hz), 3.792 (3H, s), 3.789 (3H, s), 3.78 (1H, m), 3.61 (1H, m), 3.54 (1H, d, J = 11.8 Hz), 3.52-3.41 (2H, m), 3.05 (3H, s, -NCH3), 2.69 (2H, br.s), 1.58 (3H, s), 1.10 (6H, d, J = 6.8 Hz) , 0.98 (6H, d, J = 6.8 Hz).
[Example 14]
C(Bz)アミダイト体の合成 
Figure JPOXMLDOC01-appb-C000059
Synthesis of C (Bz) amidite
Figure JPOXMLDOC01-appb-C000059
工程1
 窒素雰囲気下、化合物14(100mg、0.177mmol)および6-N-ベンゾイルウリジン(49mg、0.213mmol)のシクロペンチルメチルエーテル(2mL)懸濁液に、N,O-ビス(トリメチルシリル)アセトアミド(0.304mL、1.24mmol)およびTMSOTf(0.0641mL、0.355mmol)を加え、70℃で4時間撹拌した。反応液に氷冷下、テトラヒドロフラン(20mL)、1mol/L塩酸(20mL)を加えて分配した後、有機層を0.1mol/L塩酸(110mL)および水(110mL)で洗浄、無水硫酸マグネシウムにて乾燥後、溶媒を減圧下濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール)にて精製することにより、化合物67(80mg、収率75%)を得た。
Process 1
Under a nitrogen atmosphere, a suspension of compound 14 (100 mg, 0.177 mmol) and 6-N-benzoyluridine (49 mg, 0.213 mmol) in cyclopentylmethyl ether (2 mL) was charged with N, O-bis (trimethylsilyl) acetamide (0 .304 mL, 1.24 mmol) and TMSOTf (0.0641 mL, 0.355 mmol) were added and stirred at 70 ° C. for 4 hours. The reaction mixture was partitioned by adding tetrahydrofuran (20 mL) and 1 mol / L hydrochloric acid (20 mL) under ice-cooling, and the organic layer was washed with 0.1 mol / L hydrochloric acid (110 mL) and water (110 mL), and then added to anhydrous magnesium sulfate. After drying, the solvent was concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography (chloroform / methanol) to obtain Compound 67 (80 mg, yield 75%).
工程2
 実施例2の工程2と同様な条件で合成した。
Process 2
The compound was synthesized under the same conditions as in Step 2 of Example 2.
工程3
 実施例2の工程3と同様な条件で合成した。
Process 3
The compound was synthesized under the same conditions as in Step 3 of Example 2.
工程4
 実施例11の工程5と同様な条件で合成した。

以下に、アミド架橋型核酸誘導体のその他の架橋型核酸誘導体の合成ルートを示す。
Process 4
The compound was synthesized under the same conditions as in Step 5 of Example 11.

The synthesis route of other bridged nucleic acid derivatives of amide bridged nucleic acid derivatives is shown below.
参考例1Reference example 1
グルコース法
2'-(R)-(トリフルオロアセチル)-N-メチルアミノ-3',5'-ジ-O-ベンジル-4'-tert-ブチルジフェニルシリルオキシメチルチミジン(2'-(R)-(trifluoroacetyl)-N-methylamino-3',5'-di-O-benzyl-4'-tert-butyldiphenylsilyloxymethylthymidine)の合成法(その1)
Figure JPOXMLDOC01-appb-C000060

Figure JPOXMLDOC01-appb-I000061
Glucose method
2 '-(R)-(trifluoroacetyl) -N-methylamino-3', 5'-di-O-benzyl-4'-tert-butyldiphenylsilyloxymethylthymidine (2 '-(R)-( (trifluoroacetyl) -N-methylamino-3 ', 5'-di-O-benzyl-4'-tert-butyldiphenylsilyloxymethylthymidine) (Part 1)
Figure JPOXMLDOC01-appb-C000060

Figure JPOXMLDOC01-appb-I000061
工程1 化合物102の合成
国際公開第2011/052436号に記載の方法にてD-グルコースより誘導した化合物101(3.5kg、4.782mo1)のN,N’-ジメチルホルムアミド溶液(10.5L、3V)に、炭酸カリウム(1652g、11.95mol、2.5eq)、パラメトキシベンジルクロリド(823.8g、5.260mol, 1.1eq)を加え、室温にて19時間撹拌した。この反応液に酢酸エチル 35.00L(10v/w)、市水 35.00L(10v/w)を加えて抽出、分液を行い、有機層Iと水層Iを得た。そして、水層Iを酢酸エチル 10.50L(3v/w)で抽出を行い、有機層IIを得た。得られた有機層IとIIを合わせ、水 24.50L(7v/w)、10%食塩水24.50L(7v/w)でそれぞれ洗浄し、濃縮、減圧乾燥を行い、化合物102(4470g)の粗生成物を褐色油状物として得た。得られた化合物102は精製を行わず、収率は定量的とし次工程に進めた。
Step 1 Synthesis of Compound 102 N, N′-dimethylformamide solution (10.5 L, 10.5 L) of Compound 101 (3.5 kg, 4.782 mol) derived from D-glucose by the method described in WO 2011/052436 3V) was added potassium carbonate (1652 g, 11.95 mol, 2.5 eq) and paramethoxybenzyl chloride (823.8 g, 5.260 mol, 1.1 eq), and the mixture was stirred at room temperature for 19 hours. Ethyl acetate 35.00L (10v / w) and city water 35.00L (10v / w) were added to this reaction liquid, and extraction and liquid separation were performed to obtain an organic layer I and an aqueous layer I. Then, the aqueous layer I was extracted with 10.50 L (3 v / w) of ethyl acetate to obtain an organic layer II. The obtained organic layers I and II were combined, washed with 24.50 L (7 v / w) of water and 24.50 L (7 v / w) of 10% brine, concentrated and dried under reduced pressure to give compound 102 (4470 g). The crude product was obtained as a brown oil. The obtained compound 102 was not purified, and the yield was quantitative, and it was advanced to the next step.
工程2 化合物103の合成
化合物102(粗製、4470g)をテトラヒドロフラン(16.30L、4v/w)に溶解させ、市水(407.5g、0.1w/w)を加えた。次いで、液温30℃以下でn-トリブチルホスフィン(1258g、6.218mol、1.3eq)を滴下し、同温にて5時間撹拌した。この反応液にジクロロメタン(24.50L、6v/w)、市水(4.100L、1v/w)を加えて抽出、分液を行い、得られた有機層を留出がほぼなくなるまで濃縮を行った。ジクロロメタン(5.000L、1.2v/w)×2回で共沸させた後、減圧乾燥を行い、化合物103(5557g)の粗生成物を褐色油状物として得た。前工程同様、得られた化合物103は精製を行わず、収率は定量的とし次工程に進めた。
Step 2 Synthesis of Compound 103 Compound 102 (crude, 4470 g) was dissolved in tetrahydrofuran (16.30 L, 4 v / w), and city water (407.5 g, 0.1 w / w) was added. Next, n-tributylphosphine (1258 g, 6.218 mol, 1.3 eq) was added dropwise at a liquid temperature of 30 ° C. or lower, and the mixture was stirred at the same temperature for 5 hours. Dichloromethane (24.50 L, 6 v / w) and city water (4.100 L, 1 v / w) were added to this reaction solution, followed by extraction and separation, and the resulting organic layer was concentrated until almost no distillation occurred. went. After azeotroping with dichloromethane (5.000L, 1.2 v / w) × 2 times, drying under reduced pressure was performed to obtain a crude product of Compound 103 (5557 g) as a brown oil. As in the previous step, the obtained compound 103 was not purified, and the yield was quantitative and proceeded to the next step.
工程3 化合物104の合成
化合物103(粗製、5557g)をジクロロメタン(7.900L(2v/w))に溶解させ、ピリジン(945.6g、11.95mol、2.5eq)を加えた。次いで、液温35℃以下でTFAA(1507g、7.175mol、1.5eq)を滴下し、同温にて2時間撹拌した。この反応液をCHCl(19.75L、5v/w)、冷10% NaCO aq.(11.85L、3v/w)に滴下し、抽出、分液を行い、得られた有機層を5%NaHCO aq.(24.50L、7v/w)で洗浄し、濃縮、減圧乾燥を行い、化合物104(6550g)を赤褐色固体として得た。これにジクロロメタン(2.000L、0.5v/w)を加え、液温40℃にて加熱溶解させ、イソプロピルエーテル(39.50L、10v/w)を徐々に加えて、室温まで自然放冷した後、18時間撹拌した。そして、液温5℃以下にて1時間撹拌し、析出した結晶をろ過した。得られた結晶をイソプロピルエーテル(10.00L、2.5v/w)で洗浄後、減圧乾燥を行い、化合物104+n-BuPO(4392g)を淡桃色結晶化合物として得た。この結晶のH-NMRを測定し、化合物104は3544g(3.844mol)含有していると換算した。化合物101からの収率=80.4%。
Step 3 Synthesis of Compound 104 Compound 103 (crude, 5557 g) was dissolved in dichloromethane (7.900 L (2 v / w)), and pyridine (945.6 g, 11.95 mol, 2.5 eq) was added. Next, TFAA (1507 g, 7.175 mol, 1.5 eq) was added dropwise at a liquid temperature of 35 ° C. or lower, and the mixture was stirred at the same temperature for 2 hours. The reaction was diluted with CH 2 Cl 2 (19.75 L, 5 v / w), cold 10% Na 2 CO 3 aq. (11.85 L, 3 v / w), extraction and liquid separation were performed, and the obtained organic layer was added with 5% NaHCO 3 aq. (24.50 L, 7 v / w), concentrated and dried under reduced pressure to obtain Compound 104 (6550 g) as a reddish brown solid. Dichloromethane (2.000 L, 0.5 v / w) was added thereto, and the mixture was dissolved by heating at a liquid temperature of 40 ° C., isopropyl ether (39.50 L, 10 v / w) was gradually added, and the mixture was naturally cooled to room temperature. Thereafter, the mixture was stirred for 18 hours. And it stirred at the liquid temperature of 5 degrees C or less for 1 hour, and the precipitated crystal | crystallization was filtered. The obtained crystals were washed with isopropyl ether (10.00 L, 2.5 v / w) and dried under reduced pressure to obtain Compound 104 + n-Bu 3 PO (4392 g) as a pale pink crystalline compound. 1 H-NMR of this crystal was measured and converted to that compound 104 contained 3544 g (3.844 mol). Yield from compound 101 = 80.4%.
工程4 化合物105の合成
化合物104+n-BuPO(4392g)を液温50℃でDMF 10.60L(3v/w)に溶解させ、炭酸カリウム(1062g、7.684mol、2eq)を加えた。次いで、液温55℃以下でヨードメタン(818.3g、5.765mol, 1.5eq)を滴下し、同温にて7時間、室温にて15時間撹拌した。この反応液に酢酸エチル(35.50L、10v/w)、5%食塩水(24.80L、7v/w)を加えて抽出、分液を行い、有機層Iと水層Iを得た。そして、水層Iを酢酸エチル(10.00L、2.8v/w)で抽出を行い、有機層IIを得た。得られた有機層IとIIを合わせ、Na・5HO 1908g(7.688mol、2eq)+市水 24.80L(7v/w)、5%炭酸水素ナトリウム水溶液(24.80L、7v/w)、10%食塩水(24.80L、7v/w)でそれぞれ洗浄し、濃縮、減圧乾燥を行い、化合物105の粗生成物(4386g)を黄褐色油状物として得た。得られた化合物105の粗生成物は精製を行わず、収率は定量的とし次工程に進めた。
Step 4 Synthesis of Compound 105 Compound 104 + n-Bu 3 PO (4392 g) was dissolved in 10.60 L (3 v / w) of DMF at a liquid temperature of 50 ° C., and potassium carbonate (1062 g, 7.684 mol, 2 eq) was added. Subsequently, iodomethane (818.3 g, 5.765 mol, 1.5 eq) was added dropwise at a liquid temperature of 55 ° C. or lower, and the mixture was stirred at the same temperature for 7 hours and at room temperature for 15 hours. Ethyl acetate (35.50 L, 10 v / w) and 5% brine (24.80 L, 7 v / w) were added to this reaction solution for extraction and liquid separation to obtain an organic layer I and an aqueous layer I. Then, the aqueous layer I was extracted with ethyl acetate (10.00 L, 2.8 v / w) to obtain an organic layer II. The obtained organic layers I and II were combined, and 1908 g (7.688 mol, 2 eq) of Na 2 S 2 O 3 .5H 2 O + 24.80 L (7 v / w) of city water (5% aqueous sodium hydrogen carbonate solution (24. 80 L, 7 v / w), 10% brine (24.80 L, 7 v / w), respectively, concentrated and dried under reduced pressure to obtain a crude product of compound 105 (4386 g) as a tan oil. The obtained crude product of compound 105 was not purified, and the yield was quantitative, and it was advanced to the next step.
工程5 化合物106の合成
化合物105の粗生成物(4386g)をアセトニトリル(25.20L、7v/w)に溶解させ、液温30℃以下で、CAN 7586g(13.84mol,3.6eq)+市水(9.000L、2.5v/w)溶液を30分間で滴下し、同温にて2時間撹拌した。この反応液に酢酸エチル(36.00L、10v/w)、市水(25.20L、7v/w)を加えて抽出、分液を行い、得られた有機層を市水(25.20L、7v/w)で洗浄した。ここに5%酸水素ナトリウム水溶液(25.20L、7v/w)を加え、生成した不溶物をろ過後(洗浄でAcOEt 8.000L(2.2v/w)使用)、分液を行い、得られた有機層を5%炭酸水素ナトリウム水溶液(25.20L、7v/w)、10%食塩水(25.20L、7v/w)でそれぞれ洗浄し、濃縮、減圧乾燥を行った。
得られた残渣を10% 酢酸エチル-n-ヘキサン溶液(5.000L)溶解させたものを、シリカゲルカラムクロマトグラフィー(シリカゲル:43.00kg、酢酸エチル/ n-ヘキサン=0/1~1/4(v/v))により精製した後、トルエン(4000g)にて再結晶することにより、化合物106(2398g、化合物104からの収率=76.5%)を微黄色結晶として得た。1H-NMRでは8:2のロータマー混合物として観測された。
1H-NMR(CDCl3)・:(Major) 8.17 (1H, br.s), 7.66-7.05 (21H, m), 6.58 (1H, d, J=9.7 Hz), 5.17 (1H, dd, J = 9.7, 5.7Hz), 4.69-4.48 (4H, m), 4.44 (1H, d, J = 11.3 Hz), 3.97 (1H, d, J = 10.2 Hz), 3.75 (1H, d, J = 10.2 Hz), 3.65 (1H, d, J = 10.2 Hz), 3.60 (1H, d, J = 10.2 Hz), 3.20 (3H, s), 2.36 (3H, s), 1.03 (9H, s).(Minor)8.10 (1H, br.s), 7.66-7.05 (21H, m), 6.53 (1H, d, J=9.0 Hz), 3.69 (1H, d, J = 10.2 Hz), 3.55 (1H, d, J = 10.2 Hz), 3.15 (3H, s), 2.36 (3H, s), 1.03 (9H, s).
Step 5 Synthesis of Compound 106 Crude product (4386 g) of Compound 105 was dissolved in acetonitrile (25.20 L, 7 v / w), and the solution temperature was 30 ° C. or less, and 7586 g (13.84 mol, 3.6 eq) + city of CAN A water (9.0000 L, 2.5 v / w) solution was added dropwise over 30 minutes, and the mixture was stirred at the same temperature for 2 hours. Ethyl acetate (36.00 L, 10 v / w) and city water (25.20 L, 7 v / w) were added to this reaction solution for extraction and liquid separation, and the resulting organic layer was washed with city water (25.20 L, 7 v / w). A 5% sodium hydrogen oxyacid aqueous solution (25.20 L, 7 v / w) was added thereto, and the resulting insoluble matter was filtered (AcOEt 8.000 L (2.2 v / w) was used for washing). The obtained organic layer was washed with 5% aqueous sodium hydrogen carbonate solution (25.20 L, 7 v / w) and 10% brine (25.20 L, 7 v / w), concentrated and dried under reduced pressure.
A 10% ethyl acetate-n-hexane solution (5.000 L) dissolved in the obtained residue was subjected to silica gel column chromatography (silica gel: 43.00 kg, ethyl acetate / n-hexane = 0/1 to 1/4). (V / v)) and then recrystallized with toluene (4000 g) to obtain Compound 106 (2398 g, yield from Compound 104 = 76.5%) as slightly yellow crystals. It was observed as a 8: 2 rotamer mixture by 1 H-NMR.
1 H-NMR (CDCl 3 ): (Major) 8.17 (1H, br.s), 7.66-7.05 (21H, m), 6.58 (1H, d, J = 9.7 Hz), 5.17 (1H, dd, J = 9.7, 5.7Hz), 4.69-4.48 (4H, m), 4.44 (1H, d, J = 11.3 Hz), 3.97 (1H, d, J = 10.2 Hz), 3.75 (1H, d, J = 10.2 Hz ), 3.65 (1H, d, J = 10.2 Hz), 3.60 (1H, d, J = 10.2 Hz), 3.20 (3H, s), 2.36 (3H, s), 1.03 (9H, s). (Minor) 8.10 (1H, br.s), 7.66-7.05 (21H, m), 6.53 (1H, d, J = 9.0 Hz), 3.69 (1H, d, J = 10.2 Hz), 3.55 (1H, d, J = 10.2 Hz), 3.15 (3H, s), 2.36 (3H, s), 1.03 (9H, s).
2'-(R)-(トリフルオロアセチル)-N-メチルアミノ-3',5'-ジ-O-ベンジル-4'-tert-ブチルジフェニルシリルオキシメチルチミジン(2'-(R)-(trifluoroacetyl)-N-methylamino-3',5'-di-O-benzyl-4'-tert-butyldiphenylsilyloxymethylthymidine)の合成法(その2)2 '-(R)-(trifluoroacetyl) -N-methylamino-3', 5'-di-O-benzyl-4'-tert-butyldiphenylsilyloxymethylthymidine (2 '-(R)-( (trifluoroacetyl) -N-methylamino-3 ', 5'-di-O-benzyl-4'-tert-butyldiphenylsilyloxymethylthymidine) (Part 2)
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000062
工程1 化合物107の合成
国際公開第2011/052436号に記載の方法にてD-グルコースより誘導した化合物100(2.38mmol)をメチルアミン(20mL、2.0mol/L THF溶液,40mmol)に溶解させ,マイクロウェーブを用いて60℃まで加熱し8時間攪拌した。反応液を濃縮乾固し、化合物107を得た。得られた化合物は精製せずそのまま次の反応に進めた。
Step 1 Synthesis of Compound 107 Compound 100 (2.38 mmol) derived from D-glucose by the method described in WO 2011/052436 was dissolved in methylamine (20 mL, 2.0 mol / L THF solution, 40 mmol). And heated to 60 ° C. using a microwave and stirred for 8 hours. The reaction solution was concentrated to dryness to obtain Compound 107. The obtained compound was not purified and proceeded to the next reaction as it was.
工程2 化合物107から化合物106への変換
前工程で得られた化合物107をジクロロメタン(10mL)に溶解させ、ピリジン(481μl、5.96mmol)加え、TFAA(504μL、3.58mmol)を滴下し室温で2時間攪拌した。飽和塩化アンモニウム水溶液を加え、抽出した。得られた有機層を飽和炭酸水素ナトリウム水溶液及び飽和食塩水で洗浄し、硫酸マグネシムにて乾燥した。減圧下溶媒を留去し、得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=3/1)にて精製し、化合物106(1g、収率51%)を得た。
LC-MS: UPLC 4min acid 3.29 min, M+H = 816
Step 2 Conversion of Compound 107 to Compound 106 Compound 107 obtained in the previous step was dissolved in dichloromethane (10 mL), pyridine (481 μl, 5.96 mmol) was added, and TFAA (504 μL, 3.58 mmol) was added dropwise at room temperature. Stir for 2 hours. Saturated aqueous ammonium chloride solution was added and extracted. The obtained organic layer was washed with a saturated aqueous sodium hydrogen carbonate solution and saturated brine, and dried over magnesium sulfate. The solvent was distilled off under reduced pressure, and the resulting residue was purified by silica gel column chromatography (hexane / ethyl acetate = 3/1) to obtain Compound 106 (1 g, yield 51%).
LC-MS: UPLC 4min acid 3.29 min, M + H = 816
A(Bz)アミダイトの合成例
Figure JPOXMLDOC01-appb-C000063

Figure JPOXMLDOC01-appb-I000064
Synthesis example of A (Bz) amidite
Figure JPOXMLDOC01-appb-C000063

Figure JPOXMLDOC01-appb-I000064
工程1 化合物107の合成 
窒素気流下、20Lフラスコに化合物106(599.60g,734.85mmol)、Bz-アデニン(351.82g,2eq.)、1,2-DCE(3000ml,5v/w)を加えてこれを撹拌溶解した。この溶液にBSA(899.50g、6eq.)を加え昇温し、49℃に保ちながら1時間撹拌した。24℃まで冷却後、TMSOTf(49.55g,0.3eq.)を加え再度昇温し、60℃に保ちながら5.5時間撹拌した。反応溶液を5℃まで冷却した後、8%炭酸水素ナトリウム水溶液(900g)を滴加した。滴加終了後、室温でこれを15時間撹拌した(ベージュ色スラリー状)。これにDCM(7800g)を加え、1時間室温で撹拌し、セライト濾過により固体を濾別した。濾別した残渣をDCM(4800g)により再度スラリー洗浄し、セライト濾過により固体を濾別した。さらにその残渣をDCM(3000g)によりスラリー洗浄し、吸引濾過により固体を濾別した(この操作を2回繰り返した)。得られた母液全てを20L水洗釜に移し、8%炭酸水素ナトリウム水溶液(900g)を加えて有機層を洗浄し、水層をDCM(900g)で再抽出した。得られた有機層に硫酸ナトリウム(600g)を添加し30分撹拌後、濾過、減圧濃縮、乾燥を行い、化合物107(645g,収率94.4%)を黄褐色アモルファス固体として得た。
Step 1 Synthesis of Compound 107
Under a nitrogen stream, Compound 106 (599.60 g, 734.85 mmol), Bz-adenine (351.82 g, 2 eq.), 1,2-DCE (3000 ml, 5 v / w) were added to a 20 L flask and dissolved by stirring. did. BSA (899.50 g, 6 eq.) Was added to this solution, the temperature was raised, and the mixture was stirred for 1 hour while maintaining at 49 ° C. After cooling to 24 ° C., TMSOTf (49.55 g, 0.3 eq.) Was added, the temperature was raised again, and stirring was continued for 5.5 hours while maintaining the temperature at 60 ° C. The reaction solution was cooled to 5 ° C., and 8% aqueous sodium hydrogen carbonate solution (900 g) was added dropwise. After completion of the dropwise addition, this was stirred at room temperature for 15 hours (beige slurry). DCM (7800 g) was added thereto, and the mixture was stirred at room temperature for 1 hour, and the solid was separated by filtration through celite. The filtered residue was slurried again with DCM (4800 g) and the solid was filtered off through celite filtration. Further, the residue was slurry washed with DCM (3000 g), and the solid was separated by suction filtration (this operation was repeated twice). All of the obtained mother liquor was transferred to a 20 L water washing kettle, 8% aqueous sodium hydrogen carbonate solution (900 g) was added to wash the organic layer, and the aqueous layer was re-extracted with DCM (900 g). Sodium sulfate (600 g) was added to the obtained organic layer and stirred for 30 minutes, followed by filtration, concentration under reduced pressure, and drying to obtain Compound 107 (645 g, yield 94.4%) as a tan amorphous solid.
工程2 化合物108の合成 
窒素気流下、化合物107(645g,694.24mmol)のTHF(1290ml,2v/w)溶液に1.0mol/L-TBAF/THF溶液(766.44g、1.2eq.)を室温で加えた後、24℃で21時間保温撹拌した。反応溶液を減圧濃縮した後、これを酢酸エチル(1743g)に溶解して10L水洗釜に移し、市水(2142g)で洗浄した。有機層を5%食塩水(1290g)で再度洗浄し、この食塩水を酢酸エチル(322g)で再度抽出した。得られた有機層を減圧濃縮した後、トルエン(1000g)共沸を行った。これを乾燥して得られた粗体(405g)にジクロロメタン(712g)を加えて、40℃に加温溶解した。これをシリカゲル(シリカゲルの担体量:3870g、酢酸エチル/トルエン=1/2→1/1→ 2/1→1/0)により精製し、化合物108(405g、収率84.5%)を白色固体として得た。
Step 2 Synthesis of Compound 108
Under a nitrogen stream, 1.0 mol / L-TBAF / THF solution (766.44 g, 1.2 eq.) Was added to a THF (1290 ml, 2 v / w) solution of Compound 107 (645 g, 694.24 mmol) at room temperature. The mixture was stirred at 24 ° C. for 21 hours. The reaction solution was concentrated under reduced pressure, dissolved in ethyl acetate (1743 g), transferred to a 10 L water washing kettle, and washed with city water (2142 g). The organic layer was washed again with 5% brine (1290 g) and the brine was extracted again with ethyl acetate (322 g). The obtained organic layer was concentrated under reduced pressure, and then azeotroped with toluene (1000 g). Dichloromethane (712 g) was added to the crude product (405 g) obtained by drying this, and heated to 40 ° C. for dissolution. This was purified by silica gel (silica gel carrier amount: 3870 g, ethyl acetate / toluene = 1/2 → 1/1 → 2/1 → 1/0) to give compound 108 (405 g, yield 84.5%) as white. Obtained as a solid.
工程3 化合物109の合成
窒素気流下、10Lの四つ口フラスコに化合物108(402g、582.04mmol)、アセトニトリル(3216ml、8v/w)、1mol/l酢酸水溶液(543ml、1.35v/w)、1mol/l酢酸ナトリウム水溶液(1085ml,2.7v/w)、TEMPO(9.09g,0.1eq.)、80%亜塩素酸ナトリウム(138.13g,2.1eq.)、9%次亜塩素酸ナトリウム(6.0ml,0.015v/w)を順次加え、内温を36℃まで昇温し、保温撹拌した。4.5時間撹拌後、9%次亜塩素酸ナトリウム(2ml、0.005v/w)を追加し、さらに16時間保温撹拌した。反応溶液を6℃まで冷却した後、20%亜硫酸ナトリウム水溶液(804g)を滴加し、続けて酢酸(177g)を添加した。この混合溶液を分液し、水層を酢酸エチル(1123g)で再抽出し、得られた有機層を15%食塩水(1373g)で洗浄した。この有機層を減圧濃縮し、トルエン(1200ml×2)共沸、乾燥を行い、化合物109(468g)を白色固体として得た。
Step 3 Synthesis of Compound 109 Compound 108 (402 g, 582.04 mmol), acetonitrile (3216 ml, 8 v / w), 1 mol / l aqueous acetic acid solution (543 ml, 1.35 v / w) in a 10 L four-necked flask under a nitrogen stream 1 mol / l sodium acetate aqueous solution (1085 ml, 2.7 v / w), TEMPO (9.09 g, 0.1 eq.), 80% sodium chlorite (138.13 g, 2.1 eq.), 9% hypochlorous acid Sodium chlorate (6.0 ml, 0.015 v / w) was sequentially added, the internal temperature was raised to 36 ° C., and the mixture was stirred while keeping warm. After stirring for 4.5 hours, 9% sodium hypochlorite (2 ml, 0.005 v / w) was added, and the mixture was further stirred for 16 hours. After the reaction solution was cooled to 6 ° C., 20% aqueous sodium sulfite solution (804 g) was added dropwise, followed by acetic acid (177 g). The mixed solution was separated, the aqueous layer was re-extracted with ethyl acetate (1123 g), and the obtained organic layer was washed with 15% brine (1373 g). The organic layer was concentrated under reduced pressure, azeotroped with toluene (1200 ml × 2), and dried to obtain Compound 109 (468 g) as a white solid.
工程4 化合物110の合成
 窒素気流下、化合物109(468g、中身量410g,582.04mmol)のメタノール(2800ml、6v/w)溶液に25%アンモニア水(468ml,1v/w)を室温下で加えた後、39℃まで昇温し、保温撹拌した。6時間撹拌後、25%アンモニア水(140ml、0.3v/w)を追加し、さらに16時間撹拌後、25%アンモニア水(94ml、0.2v/w)を追加した。8時間保温撹拌後、反応溶液を放冷し、さらに16時間撹拌した。反応溶液を減圧濃縮し、トルエン(2500ml×2)共沸、乾燥を行い、化合物110(470g、HPLCから算出した純度:80.8%)を橙色固体として得た。
Step 4 Synthesis of Compound 110 Under a nitrogen stream, 25% aqueous ammonia (468 ml, 1 v / w) was added to a solution of compound 109 (468 g, content 410 g, 582.04 mmol) in methanol (2800 ml, 6 v / w) at room temperature. After that, the temperature was raised to 39 ° C., and the mixture was stirred while keeping warm. After stirring for 6 hours, 25% aqueous ammonia (140 ml, 0.3 v / w) was added. After further stirring for 16 hours, 25% aqueous ammonia (94 ml, 0.2 v / w) was added. After stirring while keeping the temperature for 8 hours, the reaction solution was allowed to cool and further stirred for 16 hours. The reaction solution was concentrated under reduced pressure, azeotroped with toluene (2500 ml × 2), and dried to obtain Compound 110 (470 g, purity calculated from HPLC: 80.8%) as an orange solid.
工程5 化合物111の合成
窒素気流下、10Lの四つ口フラスコに化合物110(470g、中身量294g、582.04mmol)、DMF(1800ml、6.1v/w)を加え、24℃で保温撹拌した。溶解確認後、EDC塩酸塩(169g、1.5eq.)を加え、保温撹拌した。5時間撹拌後、EDC塩酸塩(23g、0.2eq.)を追加しさらに17.5時間保温撹拌した後、市水(5124g)を15分かけて滴加した。このスラリー溶液を1時間撹拌した後、吸引濾過により結晶を濾過、市水でかけ洗い、結晶を乾燥し、化合物111(226g,化合物108から3工程での収率79.9%)をクリーム色結晶として得た。
Step 5 Synthesis of Compound 111 Compound 110 (470 g, contents 294 g, 582.04 mmol) and DMF (1800 ml, 6.1 v / w) were added to a 10 L four-necked flask under a nitrogen stream, and the mixture was stirred while keeping at 24 ° C. . After confirmation of dissolution, EDC hydrochloride (169 g, 1.5 eq.) Was added and stirred while keeping warm. After stirring for 5 hours, EDC hydrochloride (23 g, 0.2 eq.) Was added, and the mixture was further stirred for 17.5 hours, and then city water (5124 g) was added dropwise over 15 minutes. After stirring this slurry solution for 1 hour, the crystals were filtered by suction filtration, washed with city water, the crystals were dried, and Compound 111 (226 g, yield of 79.9% in 3 steps from Compound 108) was cream crystals. Got as.
工程6 化合物112の合成
窒素気流下、3Lフラスコに化合物111(225g、462.47mmol)と酢酸(1125ml、5v/w)を加え、50℃まで昇温し撹拌溶解した。これに20%Pd(OH)-C(44.98g、0.2w/w)を添加し系内を水素置換した後、続けて水素を反応溶液に吹き込みながら保温撹拌した。6時間撹拌後、20%Pd(OH)-C(22.49g、0.1w/w)を追加した。2.5時間撹拌後、20%Pd(OH)-C(11.25g、0.05w/w)をさらに追加し、さらに3時間撹拌した。その後反応溶液を吸引濾過し、メタノール(2030g)でかけ洗い、母液を約1Lまで減圧濃縮した。トルエン(1300ml×2)共沸を行った後(約1Lまで減圧濃縮)、トルエン(1000ml)を加え室温で撹拌し、吸引濾過により固体をろ取、乾燥し、化合物112(139.7g、98.7%)を淡い灰色固体として得た。
Step 6 Synthesis of Compound 112 Under a nitrogen stream, Compound 111 (225 g, 462.47 mmol) and acetic acid (1125 ml, 5 v / w) were added to a 3 L flask, and the mixture was heated to 50 ° C. and dissolved by stirring. 20% Pd (OH) 2 -C (44.98 g, 0.2 w / w) was added thereto, and the inside of the system was replaced with hydrogen, followed by stirring while keeping hydrogen blown into the reaction solution. After stirring for 6 hours, 20% Pd (OH) 2 —C (22.49 g, 0.1 w / w) was added. After stirring for 2.5 hours, 20% Pd (OH) 2 —C (11.25 g, 0.05 w / w) was further added, and the mixture was further stirred for 3 hours. The reaction solution was then filtered with suction, washed with methanol (2030 g), and the mother liquor was concentrated under reduced pressure to about 1 L. Toluene (1300 ml × 2) was azeotroped (concentrated under reduced pressure to about 1 L), toluene (1000 ml) was added and stirred at room temperature, the solid was collected by suction filtration and dried, and compound 112 (139.7 g, 98 .7%) was obtained as a light gray solid.
化合物106から化合物110に至る経路については、以下の方法でも合成できる。
Figure JPOXMLDOC01-appb-C000065
The route from compound 106 to compound 110 can also be synthesized by the following method.
Figure JPOXMLDOC01-appb-C000065
工程1 化合物113の合成
 前出の参考例1のA(Bz)アミダイトの合成の工程2と同様な条件で合成できる。
Step 1 Synthesis of Compound 113 The compound 113 can be synthesized under the same conditions as in Step 2 of the synthesis of A (Bz) amidite in Reference Example 1 described above.
工程2 化合物114の合成
 前出の参考例1のA(Bz)アミダイトの合成の工程3と同様な条件で合成できる。
Step 2 Synthesis of Compound 114 The compound 114 can be synthesized under the same conditions as in Step 3 of the synthesis of A (Bz) amidite in Reference Example 1 described above.
工程3 化合物114から化合物110への誘導
化合物114(14mg、0.023mmol)をジクロロエタン1mLに溶解させ、N-ベンゾイルグアニン16mg(0.069mmol)と(E)-トリメチルシリル N-トリメチルシリルアセトアミド 42mg(0.21mmol)を加え60℃まで加熱し20分攪拌した。反応液を室温まで低下させた後にTMSOTf(4μl、0.023mmol)を加え再び60℃まで加熱し6時間攪拌した。反応液をそのまま、シリカゲルカラムクロマトグラフィー(クロロホルム/メタノール=10/1)にて精製することにより、化合物110(5mg、収率30%)を得た。LC-MS: UPLC 4min acid 2.50, 2.59(回転異性体) min, M+H = 719
Step 3 Derivation of Compound 114 to Compound 110 Compound 114 (14 mg, 0.023 mmol) was dissolved in 1 mL of dichloroethane, and 16 mg (0.069 mmol) of N-benzoylguanine and 42 mg of (E) -trimethylsilyl N-trimethylsilylacetamide (0. 21 mmol) was added and heated to 60 ° C. and stirred for 20 minutes. After the reaction solution was lowered to room temperature, TMSOTf (4 μl, 0.023 mmol) was added, and the mixture was heated again to 60 ° C. and stirred for 6 hours. The reaction solution was purified by silica gel column chromatography (chloroform / methanol = 10/1) as it was to obtain compound 110 (5 mg, yield 30%). LC-MS: UPLC 4min acid 2.50, 2.59 (rotamers) min, M + H = 719
Gアミダイトの合成例
Figure JPOXMLDOC01-appb-C000066

Figure JPOXMLDOC01-appb-I000067
Synthesis example of G amidite
Figure JPOXMLDOC01-appb-C000066

Figure JPOXMLDOC01-appb-I000067
工程1 化合物115の合成
窒素気流下、O-N,N-ジフェニルカルバモイル-N-イソブチルグアニン(93.0g,223mmol),1、2―ジクロロエタン(760ml)を仕込み、氷冷下でBSA(136.2g,670mmol)の滴下を行った。内温を60℃まで加熱し、30分間撹枠した。その後氷冷下まで内温を下げ、化合物106(152g,186mmol)を添加、1,2―ジクロロエタン(l50ml)で洗い込みを行った後、TMSOTf(l2.4g、55.8mmol)の滴下を行った。再び60℃まで加温し、2時間撹拌を行った。反応液を氷冷下にて飽和重曹水(675ml)を滴下し、次いでろ過助剤としてKCフロック(45g)を添加した。反応液をろ過した後、酢酸エチルでヌッチェ洗浄を行い、有機溶媒を濃縮した。濃縮液を酢酸エチルで3回抽出した後、飽和食塩水で洗浄、無水硫酸ナトリウムにて乾燥、濃縮することにより、化合物115(l92.9g,174mmol、収率94%)を得た。
Step 1 Synthesis of Compound 115 Under a nitrogen stream, ON, N-diphenylcarbamoyl-N-isobutylguanine (93.0 g, 223 mmol), 1,2-dichloroethane (760 ml) was charged, and BSA (136. 2 g, 670 mmol) was added dropwise. The internal temperature was heated to 60 ° C. and stirred for 30 minutes. Thereafter, the internal temperature was lowered to ice-cooling, compound 106 (152 g, 186 mmol) was added, and after washing with 1,2-dichloroethane (150 ml), TMSOTf (l2.4 g, 55.8 mmol) was added dropwise. It was. The mixture was heated again to 60 ° C. and stirred for 2 hours. Saturated aqueous sodium bicarbonate (675 ml) was added dropwise to the reaction mixture under ice cooling, and then KC floc (45 g) was added as a filter aid. The reaction solution was filtered, washed with Nutsche with ethyl acetate, and the organic solvent was concentrated. The concentrated solution was extracted three times with ethyl acetate, washed with saturated brine, dried over anhydrous sodium sulfate, and concentrated to give compound 115 (92.9 g, 174 mmol, 94% yield).
工程2 化合物116の合成
化合物115(192.5g,1.74mmol)のメタノール(500g)溶液に室温でフッ化アンモニウム(77.3g,2.09mol)を加えた後、バス温を68℃まで上げ、3.5時間撹枠を行った。室温まで冷却し、水(1L)と酢酸エチル(1.5L)に反応液を添加した。分液を行い、さらに水層を酢酸エチル(500mlx2)で抽出した後、有機層を合わせて飽和食塩水(500ml)で洗浄、濃縮した。得られた粗体を
シリカゲルカラムクロマトクロマトグラフィー(シリカゲルの担体量:1.1kg、ヘキサン・酢酸エチル・メタノール)で精製することにより、化合物116(87.0g、収率68.5%)を得た。
Step 2 Synthesis of Compound 116 After adding ammonium fluoride (77.3 g, 2.09 mol) to a methanol (500 g) solution of Compound 115 (192.5 g, 1.74 mmol) at room temperature, the bath temperature was raised to 68 ° C. For 3.5 hours. After cooling to room temperature, the reaction solution was added to water (1 L) and ethyl acetate (1.5 L). Liquid separation was performed, and the aqueous layer was extracted with ethyl acetate (500 ml × 2). The organic layers were combined, washed with saturated brine (500 ml), and concentrated. The resulting crude product was purified by silica gel column chromatography (silica gel carrier amount: 1.1 kg, hexane / ethyl acetate / methanol) to obtain compound 116 (87.0 g, yield 68.5%). It was.
工程3 化合物117の合成
室温下、化合物116(87g)をアセトニトリル(440g)に溶解させ、1mol/L 酢酸(87ml)、1mol/L 酢酸ナトリウム(174ml)を添加した。さらにTEMPO(1.8g,11.6mmol)を加え、80%亜塩素酸ソーダ(NaClO2、27.5g,243mmol)及び12%次亜塩素酸ソーダ(NaClO、1.5ml)を加えた。28℃付近で2.5時間撹拌し、12%次亜塩素酸ソーダ(NaClO、1.5ml)を追加した(反応液が燈色から茶褐色へと変化した)。そのまま1夜撹拌した後、2―メチルー2―ブテン(80ml)を添加し、40分間撹拌した(反応液が茶褐色から燈色に変化)。この溶液に酢酸(35ml)を添加し、酢酸エチル(200ml)で抽出した後、飽和食塩水(50ml)で洗浄、濃縮し、トルエン(100mlx3回)で共沸を行うことにより、化合物117(113g)の粗生成物を得た。
Step 3 Synthesis of Compound 117 Compound 116 (87 g) was dissolved in acetonitrile (440 g) at room temperature, and 1 mol / L acetic acid (87 ml) and 1 mol / L sodium acetate (174 ml) were added. Further TEMPO (1.8 g, 11.6 mmol) was added followed by 80% sodium chlorite (NaClO2, 27.5 g, 243 mmol) and 12% sodium hypochlorite (NaClO, 1.5 ml). The mixture was stirred at around 28 ° C. for 2.5 hours, and 12% sodium hypochlorite (NaClO, 1.5 ml) was added (the reaction solution changed from amber to brown). After stirring overnight, 2-methyl-2-butene (80 ml) was added and stirred for 40 minutes (the reaction solution changed from brown to amber). Acetic acid (35 ml) was added to this solution, and the mixture was extracted with ethyl acetate (200 ml), washed with saturated brine (50 ml), concentrated, and azeotroped with toluene (100 ml × 3 times) to give compound 117 (113 g). ) Was obtained.
工程4 化合物118の合成
粗製の化合物117(113g)をメタノール(400g)に溶解させ、25%アンモニア水(200ml)を加え、40℃で一晩撹拌した。反応液を濃縮し、トルエン(200mlx3回)で共沸を行うことにより、化合物118(112.8g)の粗生成物を得た。
Step 4 Synthesis of Compound 118 Crude compound 117 (113 g) was dissolved in methanol (400 g), 25% aqueous ammonia (200 ml) was added, and the mixture was stirred at 40 ° C. overnight. The reaction mixture was concentrated and azeotroped with toluene (200 ml × 3 times) to obtain a crude product of Compound 118 (112.8 g).
工程5 化合物119の合成
窒素気流下、室温で化合物118(112.8g,115.7mmol相当とする)をN,N’-ジメチルホルムアミド(440g)に溶解させ、EDC塩酸塩(33.3g,173.6mmol)を添加した。そのまま撹枠を行い、反応進行を確認しながら、EDC塩酸塩(17.8g,92.8mmol)を添加した。反応の終了確認後、反応液を水(1760g)と酢酸エチル(25g)撹拌下で分散を行った。生じた結晶をろ取し、水(300g)及び酢酸エチル/ヘキサン(1/4)(150ml)にて洗浄、減圧乾燥を行うことにより、化合物119(40g,79.6mmol、化合物116から収率:45.9%)を無色固体として得た。
Step 5 Synthesis of Compound 119 Compound 118 (112.8 g, corresponding to 115.7 mmol) was dissolved in N, N′-dimethylformamide (440 g) at room temperature under a nitrogen stream, and EDC hydrochloride (33.3 g, 173) was dissolved. .6 mmol) was added. EDC hydrochloride (17.8 g, 92.8 mmol) was added while stirring as it was and confirming the progress of the reaction. After confirming the completion of the reaction, the reaction solution was dispersed under stirring with water (1760 g) and ethyl acetate (25 g). The resulting crystals were collected by filtration, washed with water (300 g) and ethyl acetate / hexane (1/4) (150 ml), and dried under reduced pressure to give compound 119 (40 g, 79.6 mmol, yield from compound 116). : 45.9%) as a colorless solid.
工程6 化合物119から化合物21aへの変換
窒素気流下、室温で化合物119(40g,79.6mmol)を酢酸(400ml)と混合し、水酸化パラジウム(12.5g)を添加後、水素雰囲気下で24時間、30℃で撹拌した。反応系中で結晶が析出するため、水(80g)を添加し、さらに2日間撹拌した後、触媒をろ別し、ろ液を濃縮した。トルエン(80gx2回)で共沸を行った後、得られた固体をメタノール(50g)にてスラリー洗浄、乾燥し、化合物21a(19.5g,60.5mmol、収率76.2%)で得た。
Step 6 Conversion from Compound 119 to Compound 21a Under a nitrogen stream, compound 119 (40 g, 79.6 mmol) was mixed with acetic acid (400 ml) at room temperature, palladium hydroxide (12.5 g) was added, and then hydrogen atmosphere was added. Stir for 24 hours at 30 ° C. Since crystals precipitated in the reaction system, water (80 g) was added, and the mixture was further stirred for 2 days. Then, the catalyst was filtered off, and the filtrate was concentrated. After azeotroping with toluene (80 g × 2 times), the obtained solid was slurry washed with methanol (50 g) and dried to obtain compound 21a (19.5 g, 60.5 mmol, yield 76.2%). It was.
化合物21aからG(Pac)アミダイト(24)へは実施例6に記載の方法にて誘導した。 Compound 21a to G (Pac) amidite (24) was induced by the method described in Example 6.
化合物106から化合物118に至る経路については、以下のスキームに記載の方法でも合成できる。The route from compound 106 to compound 118 can also be synthesized by the method described in the following scheme.
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000068
Tアミダイトの合成例
化合物106から化合物14bへの変換は以下のスキームに記載の方法で実施できる。化合物14bからは、実施例3あるいは国際公開第2011/052436号に記載の方法で合成することができる。
Example of synthesis of T amidite Conversion of compound 106 to compound 14b can be carried out by the method described in the following scheme. The compound 14b can be synthesized by the method described in Example 3 or International Publication No. 2011/052436.
Figure JPOXMLDOC01-appb-C000069

Figure JPOXMLDOC01-appb-I000070
Figure JPOXMLDOC01-appb-C000069

Figure JPOXMLDOC01-appb-I000070
参考例2Reference example 2
グルコサミンルート
グルコサミンを出発原料とした合成法(その1)
Figure JPOXMLDOC01-appb-C000071

Figure JPOXMLDOC01-appb-I000072

Figure JPOXMLDOC01-appb-I000073
Glucosamine root
Synthesis method using glucosamine as a starting material (part 1)
Figure JPOXMLDOC01-appb-C000071

Figure JPOXMLDOC01-appb-I000072

Figure JPOXMLDOC01-appb-I000073
工程1 化合物124の合成
Chemische Berichte、101(7), 2289-93(1968).に記載の方法にて、D-グルコサミン塩酸塩より化合物124を得た。
Step 1 Synthesis of Compound 124 Chemische Berichte, 101 (7), 2289-93 (1968). To obtain Compound 124 from D-glucosamine hydrochloride.
工程2 化合物125の合成
窒素気流下、水素化ナトリウム(0.89g,22.2mmol)のN,N’-ジメチルホルムアミド(30mL)懸濁液に、5~7℃で化合物124(5.2g,17.1mmol)のN,N’-ジメチルホルムアミド(30mL)溶液を滴下し、30分間撹拌した。続いて臭化ベンジル(2.4mL,20.5mmol)を7~8℃で反応液に滴下して、室温にて90分間撹拌した。飽和塩化アンモニウム水溶液を加えて、tert-ブチルメチルエーテルで抽出後、有機層を水および飽和食塩水で洗浄した。その後硫酸ナトリウムで乾燥し、減圧留去した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(n-ヘキサン/酢酸エチル)にて精製し、化合物125(5.1g,12.9mmol)を淡黄色固体として得た。
1H-NMR (CDCl3)δ: 8.04 (2H, dt, J = 6.71, 1.60 Hz), 7.53-7.32 (10H, m), 6.25 (1H, d, J = 5.19 Hz), 5.02 (1H, d, J = 11.44 Hz), 4.84 (1H, dd, J = 6.71, 5.34 Hz), 4.71 (1H, d, J = 11.29 Hz), 4.42 (1H, td, J = 7.02, 2.90 Hz), 4.28 (1H, dd, J = 8.69, 6.86 Hz), 4.04-3.88 (3H, m), 1.40 (3H, s), 1.39 (4H, s).
Step 2 Synthesis of Compound 125 Under a nitrogen stream, a suspension of sodium hydride (0.89 g, 22.2 mmol) in N, N′-dimethylformamide (30 mL) was charged with Compound 124 (5.2 g, 17.1 mmol) in N, N′-dimethylformamide (30 mL) was added dropwise and stirred for 30 minutes. Subsequently, benzyl bromide (2.4 mL, 20.5 mmol) was added dropwise to the reaction solution at 7-8 ° C., and the mixture was stirred at room temperature for 90 minutes. A saturated aqueous ammonium chloride solution was added, and the mixture was extracted with tert-butyl methyl ether. The organic layer was washed with water and saturated brine. Thereafter, it was dried over sodium sulfate and distilled off under reduced pressure. The resulting crude product was purified by silica gel column chromatography (n-hexane / ethyl acetate) to obtain Compound 125 (5.1 g, 12.9 mmol) as a pale yellow solid.
1 H-NMR (CDCl 3 ) δ: 8.04 (2H, dt, J = 6.71, 1.60 Hz), 7.53-7.32 (10H, m), 6.25 (1H, d, J = 5.19 Hz), 5.02 (1H, d , J = 11.44 Hz), 4.84 (1H, dd, J = 6.71, 5.34 Hz), 4.71 (1H, d, J = 11.29 Hz), 4.42 (1H, td, J = 7.02, 2.90 Hz), 4.28 (1H , dd, J = 8.69, 6.86 Hz), 4.04-3.88 (3H, m), 1.40 (3H, s), 1.39 (4H, s).
工程3 化合物126の合成
窒素気流下、チミン(1.43g,11.4mmol)のアセトニトリル(15mL)懸濁液にN,O-ビストリメチルシリルアセトアミド(4.7mL,18.9mmol)を加えて80℃下で60分間撹拌した。その後、化合物125(3.0g,7.6mmol)のアセトニトリル(15mL)溶液および四塩化スズ(0.89mL,7.6mmol)を加えて、80℃下で6時間撹拌した。室温まで冷ました後飽和重層水を加えて、析出した固体をセライトろ過により除去した。反応液を減圧濃縮後、残渣から酢酸エチルで抽出し、水および飽和食塩水で洗浄した。硫酸ナトリウムで乾燥し、減圧濃縮することで粗生成物125a(4.1g)を得た。続いて、粗生成物126(4.1g)をメタノール(30mL)および水(10mL)に溶解させ、室温にてカンファースルホン酸(0.73g,3.1mmol)を加えて2時間撹拌した。1mol/L水酸化ナトリウム水溶液を加えて中和した後、減圧濃縮した。残渣から酢酸エチルで抽出して水および飽和食塩水で洗浄後、硫酸ナトリウムで乾燥し減圧濃縮した。再結晶(n-ヘキサン/酢酸エチル)により化合物126(3.2g,6.7mmol)を白色固体として得た。
1H-NMR (CD3OD)δ: 7.83 (1H, d, J = 1.18 Hz), 7.75-7.72 (2H, m), 7.55-7.52 (1H, m), 7.46-7.25 (7H, m), 6.19 (1H, d, J = 8.39 Hz), 4.91 (1H, dd, J = 8.48, 5.79 Hz), 4.75 (1H, d, J = 11.92 Hz), 4.55 (1H, d, J = 11.92 Hz), 4.36-4.32 (2H, m), 3.90 (1H, td, J = 5.75, 3.58 Hz), 3.61 (2H, d, J = 5.88 Hz), 1.91 (3H, d, J = 1.18 Hz).
Step 3 Synthesis of Compound 126 In a nitrogen stream, N, O-bistrimethylsilylacetamide (4.7 mL, 18.9 mmol) was added to a suspension of thymine (1.43 g, 11.4 mmol) in acetonitrile (15 mL) at 80 ° C. Stirred for 60 minutes under. Thereafter, a solution of compound 125 (3.0 g, 7.6 mmol) in acetonitrile (15 mL) and tin tetrachloride (0.89 mL, 7.6 mmol) were added, and the mixture was stirred at 80 ° C. for 6 hours. After cooling to room temperature, saturated multistory water was added, and the precipitated solid was removed by Celite filtration. The reaction mixture was concentrated under reduced pressure, extracted from the residue with ethyl acetate, and washed with water and saturated brine. The crude product 125a (4.1g) was obtained by drying with sodium sulfate and concentrating under reduced pressure. Subsequently, the crude product 126 (4.1 g) was dissolved in methanol (30 mL) and water (10 mL), camphorsulfonic acid (0.73 g, 3.1 mmol) was added at room temperature, and the mixture was stirred for 2 hours. The mixture was neutralized by adding a 1 mol / L aqueous sodium hydroxide solution and then concentrated under reduced pressure. The residue was extracted with ethyl acetate, washed with water and saturated brine, dried over sodium sulfate, and concentrated under reduced pressure. Recrystallization (n-hexane / ethyl acetate) gave Compound 126 (3.2 g, 6.7 mmol) as a white solid.
1 H-NMR (CD 3 OD) δ: 7.83 (1H, d, J = 1.18 Hz), 7.75-7.72 (2H, m), 7.55-7.52 (1H, m), 7.46-7.25 (7H, m), 6.19 (1H, d, J = 8.39 Hz), 4.91 (1H, dd, J = 8.48, 5.79 Hz), 4.75 (1H, d, J = 11.92 Hz), 4.55 (1H, d, J = 11.92 Hz), 4.36-4.32 (2H, m), 3.90 (1H, td, J = 5.75, 3.58 Hz), 3.61 (2H, d, J = 5.88 Hz), 1.91 (3H, d, J = 1.18 Hz).
工程4 化合物127の合成
 室温下、化合物126(3.4g,7.1mmol)のテトラヒドロン―水混合溶液(1:1,30mL)に過ヨウ素酸ナトリウム(2.3g,10.6mmol)を加えて、1時間撹拌した。エチレングリコール(0.4mL,7.1mmol)を加えてしばらく撹拌した後、生じた白色固体をろ過により除去した。有機層を酢酸エチルで抽出した後、水および飽和食塩水で洗浄し、硫酸ナトリウムで乾燥した。有機層を減圧留去して、粗生成物127(3.6g)を得た。
Step 4 Synthesis of Compound 127 At room temperature, sodium periodate (2.3 g, 10.6 mmol) was added to a tetrahydron-water mixed solution of compound 126 (3.4 g, 7.1 mmol) (1: 1, 30 mL). And stirred for 1 hour. Ethylene glycol (0.4 mL, 7.1 mmol) was added and stirred for a while, and the resulting white solid was removed by filtration. The organic layer was extracted with ethyl acetate, washed with water and saturated brine, and dried over sodium sulfate. The organic layer was distilled off under reduced pressure to obtain a crude product 127 (3.6 g).
工程5 化合物128の合成
粗生成物127(3.4g、7.3mmol)のテトラヒドロンフラン(20mL)溶液を-10℃まで冷却後、37%ホルムアルデヒド(1.4mL、18.2mmol)および2mol/L水酸化ナトリウム水溶液(11mL、22mmol)を加えて、2℃下で3時間撹拌した。2mol/L塩酸水溶液で中和後、酢酸エチルで抽出した。有機層を水および飽和食塩水で洗浄後、硫酸ナトリウムで乾燥した。有機層を減圧留去して、粗生成物128(3.6g)を得た。
Step 5 Synthesis of Compound 128 Crude product 127 (3.4 g, 7.3 mmol) in tetrahydrofuran (20 mL) was cooled to −10 ° C., and then 37% formaldehyde (1.4 mL, 18.2 mmol) and 2 mol / L Aqueous sodium hydroxide solution (11 mL, 22 mmol) was added and stirred at 2 ° C. for 3 hours. The mixture was neutralized with 2 mol / L hydrochloric acid aqueous solution and extracted with ethyl acetate. The organic layer was washed with water and saturated brine, and dried over sodium sulfate. The organic layer was distilled off under reduced pressure to obtain a crude product 128 (3.6 g).
工程6 化合物129の合成
室温下、粗生成物128(3.6g)のtert-ブタノール‐水‐テトラヒドロフラン(5:5:1, 33mL)混合溶液に2-メチル-2-ブテン(7.8mL、75mmol)、リン酸二水素ナトリウム(2.7g、22.5mmol)、亜塩素酸ナトリウム(1.4g、15mmol)を加えて2時間30分撹拌した。1mol/L塩酸水溶液を加えて反応液をpH2~3に調整した後、クロロホルムで抽出した。有機層を水および飽和食塩水で洗浄後、硫酸ナトリウムで乾燥した。有機層を減圧留去して、粗生成物129(3.7g)を得た。
Step 6 Synthesis of Compound 129 At room temperature, 2-methyl-2-butene (7.8 mL, 7.8 mL) was added to a mixed solution of crude product 128 (3.6 g) in tert-butanol-water-tetrahydrofuran (5: 5: 1, 33 mL). 75 mmol), sodium dihydrogen phosphate (2.7 g, 22.5 mmol) and sodium chlorite (1.4 g, 15 mmol) were added and stirred for 2 hours 30 minutes. A 1 mol / L hydrochloric acid aqueous solution was added to adjust the reaction solution to pH 2 to 3, followed by extraction with chloroform. The organic layer was washed with water and saturated brine, and dried over sodium sulfate. The organic layer was distilled off under reduced pressure to obtain a crude product 129 (3.7 g).
工程7 化合物130の合成
室温にて、粗生成物129(3.7g)のトルエン-メタノール溶液(2:1、30mL)に2mol/Lトリメチルシリルジアゾメタン溶液(4.9mL、9.7mmol)を滴下して40分間撹拌した。酢酸(0.2mL)を加えた後、反応液を減圧濃縮した。得られた固体を酢酸エチル/メタノールから再結晶して、化合物130(1.54g、3.1mmol)を白色固体として得た。
1H-NMR (CD3OD)δ: 7.81 (1H, d, J = 1.22 Hz), 7.68-7.66 (2H, m), 7.53-7.51 (1H, m), 7.42-7.40 (3H, m), 7.26-7.21 (6H, m), 6.36 (1H, d, J = 8.69 Hz), 4.96-4.87 (28H, m), 4.66 (1H, d, J = 11.13 Hz), 4.60-4.51 (3H, m), 4.12 (1H, dd, J = 13.12, 9.46 Hz), 3.88 (2H, t, J = 10.98 Hz), 3.72 (3H, s), 1.91 (3H, t, J = 3.13 Hz).
Step 7 Synthesis of Compound 130 A 2 mol / L trimethylsilyldiazomethane solution (4.9 mL, 9.7 mmol) was added dropwise to a toluene-methanol solution (2: 1, 30 mL) of the crude product 129 (3.7 g) at room temperature. And stirred for 40 minutes. Acetic acid (0.2 mL) was added, and the reaction mixture was concentrated under reduced pressure. The obtained solid was recrystallized from ethyl acetate / methanol to obtain compound 130 (1.54 g, 3.1 mmol) as a white solid.
1 H-NMR (CD 3 OD) δ: 7.81 (1H, d, J = 1.22 Hz), 7.68-7.66 (2H, m), 7.53-7.51 (1H, m), 7.42-7.40 (3H, m), 7.26-7.21 (6H, m), 6.36 (1H, d, J = 8.69 Hz), 4.96-4.87 (28H, m), 4.66 (1H, d, J = 11.13 Hz), 4.60-4.51 (3H, m) , 4.12 (1H, dd, J = 13.12, 9.46 Hz), 3.88 (2H, t, J = 10.98 Hz), 3.72 (3H, s), 1.91 (3H, t, J = 3.13 Hz).
工程3で行うグリコシル化反応の条件検討を行った。具体的には、酸触媒、溶媒の種類について組み合わせ検討を行ない、生成物、原料残存量をHPLC等で分析した。その結果、以下の表のように条件7に示す組み合わせが目的物の生成率が最も高く、原料残存率および副生物生成率が最も低い結果を与える最適条件であることを見出した。
Figure JPOXMLDOC01-appb-T000074
The conditions for the glycosylation reaction performed in step 3 were examined. Specifically, the combination of acid catalyst and solvent was examined, and the product and the remaining amount of raw material were analyzed by HPLC or the like. As a result, it has been found that the combination shown in Condition 7 as shown in the following table is the optimum condition that gives the highest product yield and the lowest raw material residual rate and byproduct production rate.
Figure JPOXMLDOC01-appb-T000074
グルコサミンを出発原料とした合成法 (その2)
グルコサミンを出発原料とした合成法(その1)で合成した化合物132は以下に記載のルートでも合成することができる。
Figure JPOXMLDOC01-appb-C000075

Figure JPOXMLDOC01-appb-I000076

Figure JPOXMLDOC01-appb-I000077

Figure JPOXMLDOC01-appb-I000078
Synthesis method using glucosamine as a starting material (Part 2)
Compound 132 synthesized by the synthesis method (part 1) using glucosamine as a starting material can also be synthesized by the route described below.
Figure JPOXMLDOC01-appb-C000075

Figure JPOXMLDOC01-appb-I000076

Figure JPOXMLDOC01-appb-I000077

Figure JPOXMLDOC01-appb-I000078
参考例3Reference example 3
環化反応を利用したルート
Figure JPOXMLDOC01-appb-C000079

Figure JPOXMLDOC01-appb-I000080
Route using cyclization reaction
Figure JPOXMLDOC01-appb-C000079

Figure JPOXMLDOC01-appb-I000080
工程1
  既知の手法(Tetrahedron、1998、54、3607.など)により合成した化合物148(2.0g、 4.70mmol)をアセトニトリル(20ml)及び酢酸緩衝液(6ml)に溶解させた。氷冷下2,2,6,6-テトラメチルピペリジニルオキシラジカル (74mg、 0.47 mmol)、亜塩素酸ナトリウム(894mg、9.88mmol)及び5%次亜塩素酸ナトリウム水溶液(1ml)を加え、室温にて一晩攪拌した。反応液に2-メチル-2-ブテン(2ml)を加え、室温にて2時間攪拌し、酢酸エチルにて抽出した。得られた有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムにて乾燥した。減圧下溶媒を留去し、淡オレンジ色のオイルを得た。再結晶(酢酸エチル/ヘキサン)により、化合物149(1.58g、収率81%)を白色固体として得た。
1H-NMR (DMSO-D6)δ: 12.68 (1H, s), 7.37-7.29 (10H, m), 5.78 (1H, d, J = 3.8 Hz), 4.76 (1H, t, J = 4.5 Hz), 4.60 (2H, dd, J = 50.7, 11.9 Hz), 4.14 (1H, d, J = 5.3 Hz), 3.66 (2H, t, J = 10.7 Hz), 1.49 (3H, s), 1.29 (3H, s).
Process 1
Compound 148 (2.0 g, 4.70 mmol) synthesized by a known method (Tetrahedron, 1998, 54, 3607., etc.) was dissolved in acetonitrile (20 ml) and acetate buffer (6 ml). 2,2,6,6-tetramethylpiperidinyloxy radical (74 mg, 0.47 mmol), sodium chlorite (894 mg, 9.88 mmol) and 5% aqueous sodium hypochlorite solution (1 ml) under ice cooling And stirred at room temperature overnight. 2-Methyl-2-butene (2 ml) was added to the reaction mixture, stirred at room temperature for 2 hours, and extracted with ethyl acetate. The obtained organic layer was washed with saturated brine and dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure to obtain a pale orange oil. Recrystallization (ethyl acetate / hexane) gave Compound 149 (1.58 g, 81% yield) as a white solid.
1 H-NMR (DMSO-D 6 ) δ: 12.68 (1H, s), 7.37-7.29 (10H, m), 5.78 (1H, d, J = 3.8 Hz), 4.76 (1H, t, J = 4.5 Hz ), 4.60 (2H, dd, J = 50.7, 11.9 Hz), 4.14 (1H, d, J = 5.3 Hz), 3.66 (2H, t, J = 10.7 Hz), 1.49 (3H, s), 1.29 (3H , s).
工程2
 第1工程で得られた化合物149(720mg、1.74mmol)をN,N-ジメチルホルムアミド(5.5ml)に溶解させた。室温にて2mol/Lメタンアミンのテトラヒドロフラン溶液(2.6ml、5.22mmol)、1-ヒドロキシベンゾトリアゾール一水和物(293mg、1.91mmol)及び1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(366mg、1.91mmol)を加え、室温にて8時間攪拌した。反応液に飽和炭酸水素ナトリウム水溶液を加え、酢酸エチルにて抽出した。得られた有機層を1mol/L塩酸水、飽和炭酸水素ナトリウム水溶液及び飽和食塩水で洗浄し、硫酸マグネシウムにて乾燥した。減圧下溶媒を留去し、化合物150(753mg)を淡オレンジ色固体として得た。
1H-NMR (DMSO-D6)δ: 7.44 (1H, d, J = 4.6 Hz), 7.37-7.27 (10H, m), 5.86 (1H, d, J = 4.3 Hz), 4.82 (1H, t, J = 4.8 Hz), 4.60 (2H, dd, J = 40.0, 12.0 Hz), 4.48 (2H, dd, J = 14.2, 12.8 Hz), 4.12 (1H, d, J = 5.5 Hz), 3.63 (2H, dd, J = 56.9, 10.2 Hz), 2.63 (3H, d, J = 4.6 Hz), 1.41 (3H, s), 1.30 (3H, s).
Process 2
Compound 149 (720 mg, 1.74 mmol) obtained in the first step was dissolved in N, N-dimethylformamide (5.5 ml). 2 mol / L methanamine in tetrahydrofuran (2.6 ml, 5.22 mmol), 1-hydroxybenzotriazole monohydrate (293 mg, 1.91 mmol) and 1-ethyl-3- (3-dimethylaminopropyl) at room temperature Carbodiimide hydrochloride (366 mg, 1.91 mmol) was added, and the mixture was stirred at room temperature for 8 hours. Saturated aqueous sodium hydrogen carbonate solution was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The obtained organic layer was washed with 1 mol / L hydrochloric acid aqueous solution, saturated aqueous sodium hydrogen carbonate solution and saturated brine, and dried over magnesium sulfate. The solvent was distilled off under reduced pressure to obtain Compound 150 (753 mg) as a pale orange solid.
1 H-NMR (DMSO-D 6 ) δ: 7.44 (1H, d, J = 4.6 Hz), 7.37-7.27 (10H, m), 5.86 (1H, d, J = 4.3 Hz), 4.82 (1H, t , J = 4.8 Hz), 4.60 (2H, dd, J = 40.0, 12.0 Hz), 4.48 (2H, dd, J = 14.2, 12.8 Hz), 4.12 (1H, d, J = 5.5 Hz), 3.63 (2H , dd, J = 56.9, 10.2 Hz), 2.63 (3H, d, J = 4.6 Hz), 1.41 (3H, s), 1.30 (3H, s).
工程3
 第2工程で得られた化合物150(500mg、1.11mmol)を酢酸(1.2ml、21.13mmol)に溶解させた。無水酢酸(0.58ml、6.12mmol)を加え、氷冷下濃硫酸(0.012ml、0.22mmol)を滴下し、室温にて7時間攪拌した。反応液を酢酸エチル(5ml)にて希釈し、氷水に注いだ。氷冷下、水酸化ナトリウム水溶液にて中和し、酢酸エチルにて抽出した。得られた有機層を20%炭酸ナトリウム水溶液及び飽和食塩水にて洗浄し、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、化合物151(543mg)を粗オイルとして得た。
Process 3
Compound 150 (500 mg, 1.11 mmol) obtained in the second step was dissolved in acetic acid (1.2 ml, 21.13 mmol). Acetic anhydride (0.58 ml, 6.12 mmol) was added, concentrated sulfuric acid (0.012 ml, 0.22 mmol) was added dropwise under ice cooling, and the mixture was stirred at room temperature for 7 hours. The reaction mixture was diluted with ethyl acetate (5 ml) and poured into ice water. Under ice cooling, the mixture was neutralized with an aqueous sodium hydroxide solution and extracted with ethyl acetate. The obtained organic layer was washed with 20% aqueous sodium carbonate solution and saturated brine, and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure to obtain Compound 151 (543 mg) as a crude oil.
工程4
 第3工程で得られた化合物151(540mg、1.11mmol)をアセトニトリル(3ml)に溶解した。室温にて5-メチルウリジン(188mg、1.49mmol)、N,O-ビストリメチルシリルアセトアミド(0.56ml、2.29mmol)を加え、55℃にて15分間攪拌した。トリメチルシリルトリフラート(0.23ml、1.26mmol)を加え、75℃にて3.5時間攪拌した。氷冷下、反応液に3%飽和炭酸水素ナトリウム水溶液を加え、酢酸エチルにて抽出した。有機層を飽和炭酸水素ナトリウム水溶液及び飽和食塩水にて洗浄し、無水硫酸マグネシウムを用いて乾燥した。減圧下溶媒を留去し、化合物152(549mg、収率93%)をアモルファスとして得た。
1H-NMR (DMSO-D6)δ: 11.39 (1H, s), 8.26 (1H, d, J = 4.5 Hz), 7.61 (1H, s), 7.36 (10H, m), 6.31 (1H, d, J = 8.4 Hz), 5.39 (1H, dd, J = 8.3, 4.9 Hz), 4.72 (1H, d, J = 11.7 Hz), 4.62 (2H, dd, J = 11.2, 6.9 Hz), 4.49 (2H, dd, J = 16.1, 7.8 Hz), 4.12 (1H, d, J = 10.3 Hz), 3.73 (1H, d, J = 10.3 Hz), 2.61 (3H, d, J = 4.3 Hz), 2.02 (3H, s), 1.43 (3H, s).
Process 4
Compound 151 (540 mg, 1.11 mmol) obtained in the third step was dissolved in acetonitrile (3 ml). 5-Methyluridine (188 mg, 1.49 mmol) and N, O-bistrimethylsilylacetamide (0.56 ml, 2.29 mmol) were added at room temperature, and the mixture was stirred at 55 ° C. for 15 minutes. Trimethylsilyl triflate (0.23 ml, 1.26 mmol) was added and stirred at 75 ° C. for 3.5 hours. Under ice-cooling, 3% saturated aqueous sodium hydrogen carbonate solution was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated aqueous sodium hydrogen carbonate solution and saturated brine, and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure to obtain Compound 152 (549 mg, 93% yield) as amorphous.
1 H-NMR (DMSO-D 6 ) δ: 11.39 (1H, s), 8.26 (1H, d, J = 4.5 Hz), 7.61 (1H, s), 7.36 (10H, m), 6.31 (1H, d , J = 8.4 Hz), 5.39 (1H, dd, J = 8.3, 4.9 Hz), 4.72 (1H, d, J = 11.7 Hz), 4.62 (2H, dd, J = 11.2, 6.9 Hz), 4.49 (2H , dd, J = 16.1, 7.8 Hz), 4.12 (1H, d, J = 10.3 Hz), 3.73 (1H, d, J = 10.3 Hz), 2.61 (3H, d, J = 4.3 Hz), 2.02 (3H , s), 1.43 (3H, s).
工程5
 第4工程で得られた化合物152(549mg、1.03mmol)をテトラヒドロフラン(1.5ml)に溶解させた。室温にて40%メタンアミン水溶液(0.49ml、5.89mmol)を加え、室温にて3時間攪拌した。氷冷下反応液に飽和塩化アンモニウム水溶液を加え、酢酸エチルにて抽出した。得られた有機層を飽和食塩水で洗浄し、硫酸マグネシウムにて乾燥した。減圧下溶媒を留去し、化合物153(498mg、収率98%)をアモルファスとして得た。
1H-NMR (DMSO-D6)δ: 11.36 (1H, s), 8.08 (1H, d, J = 4.6 Hz), 7.57 (1H, s), 7.38-7.29 (10H, m), 6.09 (1H, d, J = 8.4 Hz), 5.59 (1H, d, J = 6.3 Hz), 4.80 (1H, d, J = 11.2 Hz), 4.66 (1H, d, J = 11.7 Hz), 4.58 (2H, d, J = 10.7 Hz), 4.44 (1H, dd, J = 12.4, 6.8 Hz), 4.17 (1H, d, J = 4.3 Hz), 4.05 (1H, d, J = 10.7 Hz), 3.68 (1H, d, J = 10.2 Hz), 2.60 (3H, d, J = 4.5 Hz), 1.50 (3H, s).
Process 5
Compound 152 (549 mg, 1.03 mmol) obtained in the fourth step was dissolved in tetrahydrofuran (1.5 ml). A 40% aqueous methanamine solution (0.49 ml, 5.89 mmol) was added at room temperature, and the mixture was stirred at room temperature for 3 hours. A saturated aqueous ammonium chloride solution was added to the reaction mixture under ice cooling, and the mixture was extracted with ethyl acetate. The obtained organic layer was washed with saturated brine and dried over magnesium sulfate. The solvent was distilled off under reduced pressure to obtain Compound 153 (498 mg, 98% yield) as amorphous.
1 H-NMR (DMSO-D 6 ) δ: 11.36 (1H, s), 8.08 (1H, d, J = 4.6 Hz), 7.57 (1H, s), 7.38-7.29 (10H, m), 6.09 (1H , d, J = 8.4 Hz), 5.59 (1H, d, J = 6.3 Hz), 4.80 (1H, d, J = 11.2 Hz), 4.66 (1H, d, J = 11.7 Hz), 4.58 (2H, d , J = 10.7 Hz), 4.44 (1H, dd, J = 12.4, 6.8 Hz), 4.17 (1H, d, J = 4.3 Hz), 4.05 (1H, d, J = 10.7 Hz), 3.68 (1H, d , J = 10.2 Hz), 2.60 (3H, d, J = 4.5 Hz), 1.50 (3H, s).
工程6
 第5工程で得られた化合物153(480mg、0.97mmol)をピリジン(1.5ml)に溶解させた。氷冷下メシルクロライド(0.18ml、2.28mmol)を加え、0℃にて30分間攪拌した。反応液を酢酸エチルにて希釈し、水を加え、抽出を行なった。得られた有機層を2mol/L塩酸水で3回洗浄後、飽和炭酸水素ナトリウム水溶液及び飽和食塩水で洗浄し、硫酸マグネシムにて乾燥した。減圧下溶媒を留去し、化合物154(520mg、収率93%)をアモルファスとして得た。
1H-NMR (DMSO-D6)δ: 11.46 (1H, s), 8.28 (1H, d, J = 4.6 Hz), 7.55 (1H, s), 7.40-7.32 (10H, m), 6.31 (1H, d, J = 8.2 Hz), 5.36 (1H, dd, J = 8.0, 4.6 Hz), 4.73-4.60 (5H, m), 4.10 (1H, d, J = 10.3 Hz), 3.77 (1H, d, J = 10.3 Hz), 3.23 (3H, s), 2.61 (3H, d, J = 4.5 Hz), 1.43 (3H, s).
Step 6
Compound 153 (480 mg, 0.97 mmol) obtained in the fifth step was dissolved in pyridine (1.5 ml). Under ice-cooling, mesyl chloride (0.18 ml, 2.28 mmol) was added, and the mixture was stirred at 0 ° C. for 30 minutes. The reaction solution was diluted with ethyl acetate, extracted with water. The obtained organic layer was washed 3 times with 2 mol / L aqueous hydrochloric acid, then washed with a saturated aqueous sodium hydrogen carbonate solution and saturated brine, and dried over magnesium sulfate. The solvent was distilled off under reduced pressure to obtain Compound 154 (520 mg, 93% yield) as amorphous.
1 H-NMR (DMSO-D 6 ) δ: 11.46 (1H, s), 8.28 (1H, d, J = 4.6 Hz), 7.55 (1H, s), 7.40-7.32 (10H, m), 6.31 (1H , d, J = 8.2 Hz), 5.36 (1H, dd, J = 8.0, 4.6 Hz), 4.73-4.60 (5H, m), 4.10 (1H, d, J = 10.3 Hz), 3.77 (1H, d, J = 10.3 Hz), 3.23 (3H, s), 2.61 (3H, d, J = 4.5 Hz), 1.43 (3H, s).
工程7
工程6で得られた化合物154(515mg、0.90mmol)をアセトニトリル(5ml)に溶解させた。室温にてジアザビシクロウンデセン(0.18ml、1.20mmol)を加え、室温にて7時間攪拌した。氷冷下反応液に酢酸エチルを加えて希釈し、5%クエン酸水溶液を加え、抽出した。得られた有機層を5%クエン酸水溶液、飽和炭酸水素ナトリウム水溶液及び飽和食塩水で洗浄し、硫酸マグネシムにて乾燥した。減圧下溶媒を留去し、淡黄色オイルを得た。再結晶(酢酸エチル/ヘキサン)により化合物155(374mg、収率87%)を白色固体として得た。
1H-NMR (DMSO-D6)δ: 7.96 (1H, d, J = 4.6 Hz), 7.75 (1H, s), 7.37-7.26 (8H, m), 7.08 (2H, d, J = 7.2 Hz), 6.53 (1H, d, J = 5.9 Hz), 5.47 (1H, d, J = 5.9 Hz), 4.65 (2H, dd, J = 57.6, 11.5 Hz), 4.43 (1H, s), 4.24 (2H, dd, J = 32.7, 12.6 Hz), 3.69 (1H, d, J = 10.4 Hz), 3.32 (1H, d, J = 10.8 Hz), 2.61 (3H, d, J = 4.5 Hz), 1.84 (3H, s).
Step 7
Compound 154 (515 mg, 0.90 mmol) obtained in step 6 was dissolved in acetonitrile (5 ml). Diazabicycloundecene (0.18 ml, 1.20 mmol) was added at room temperature, and the mixture was stirred at room temperature for 7 hours. The reaction mixture was diluted with ethyl acetate under ice-cooling, and extracted with 5% aqueous citric acid solution. The obtained organic layer was washed with 5% aqueous citric acid solution, saturated aqueous sodium hydrogen carbonate solution and saturated brine, and dried over magnesium sulfate. The solvent was distilled off under reduced pressure to obtain a pale yellow oil. Recrystallization (ethyl acetate / hexane) gave Compound 155 (374 mg, 87% yield) as a white solid.
1 H-NMR (DMSO-D 6 ) δ: 7.96 (1H, d, J = 4.6 Hz), 7.75 (1H, s), 7.37-7.26 (8H, m), 7.08 (2H, d, J = 7.2 Hz ), 6.53 (1H, d, J = 5.9 Hz), 5.47 (1H, d, J = 5.9 Hz), 4.65 (2H, dd, J = 57.6, 11.5 Hz), 4.43 (1H, s), 4.24 (2H , dd, J = 32.7, 12.6 Hz), 3.69 (1H, d, J = 10.4 Hz), 3.32 (1H, d, J = 10.8 Hz), 2.61 (3H, d, J = 4.5 Hz), 1.84 (3H , s).
工程8
 ナトリウムtert-ブトキシド(18mg、0.19mmol)のN,N-ジメチルホルムアミド(0.6ml)溶液に、第7工程で得られた化合物155(30mg、0.06mmol)を加え、室温にて1.5時間攪拌した。氷冷下酢酸エチルにて希釈し、飽和塩化アンモニウム水溶液を加え、抽出した。得られた有機層を飽和炭酸水素ナトリウム水溶液及び飽和食塩水で洗浄し、硫酸マグネシムにて乾燥した。減圧下溶媒を留去し、得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル)にて精製し、化合物122(19mg、収率63%)をアモルファスとして得た。
1H-NMR (DMSO-D6)δ: 11.47 (1H, s), 7.38-7.28 (11H, m), 5.48 (1H, s), 4.62 (4H, dd, J = 20.7, 10.5 Hz), 4.40 (1H, s), 4.14 (1H, s), 3.92 (1H, d, J = 11.9 Hz), 3.79 (1H, d, J = 11.8 Hz), 2.87 (3H, s), 1.48 (3H, s).
Process 8
To a solution of sodium tert-butoxide (18 mg, 0.19 mmol) in N, N-dimethylformamide (0.6 ml) was added compound 155 (30 mg, 0.06 mmol) obtained in the seventh step, and 1. Stir for 5 hours. The mixture was diluted with ethyl acetate under ice-cooling, and a saturated aqueous ammonium chloride solution was added for extraction. The obtained organic layer was washed with a saturated aqueous sodium hydrogen carbonate solution and saturated brine, and dried over magnesium sulfate. The solvent was distilled off under reduced pressure, and the resulting residue was purified by silica gel column chromatography (hexane / ethyl acetate) to obtain Compound 122 (19 mg, 63% yield) as amorphous.
1 H-NMR (DMSO-D 6 ) δ: 11.47 (1H, s), 7.38-7.28 (11H, m), 5.48 (1H, s), 4.62 (4H, dd, J = 20.7, 10.5 Hz), 4.40 (1H, s), 4.14 (1H, s), 3.92 (1H, d, J = 11.9 Hz), 3.79 (1H, d, J = 11.8 Hz), 2.87 (3H, s), 1.48 (3H, s) .
工程9
 第8工程で得られた化合物122(17mg、0.90mmol)をテトラヒドロフラン(1ml)及びメタノール(0.2ml)の混合溶媒に溶解させた。20%水酸化パラジムカーボン(8mg)を加え、水素雰囲気下2時間攪拌した。窒素置換を行い、触媒をろ過により除去し、ろ液を減圧下溶媒を留去した。得られた無色オイルの再結晶(メタノール/クロロホルム)により化合物14b(10mg、収率93%)を白色固体として得た。
1H-NMR (MeOD)δ: 7.84 (1H, s), 5.47 (1H, s), 4.30 (1H, s), 4.15 (1H, s), 4.06 (1H, d, J = 13.3 Hz), 3.89 (1H, d, J = 13.6 Hz), 3.03 (3H, s), 1.91 (3H, s).
Step 9
Compound 122 (17 mg, 0.90 mmol) obtained in the eighth step was dissolved in a mixed solvent of tetrahydrofuran (1 ml) and methanol (0.2 ml). 20% Parazimed carbon (8 mg) was added and stirred for 2 hours under hydrogen atmosphere. Nitrogen substitution was performed, the catalyst was removed by filtration, and the solvent was distilled off from the filtrate under reduced pressure. Recrystallization of the obtained colorless oil (methanol / chloroform) gave Compound 14b (10 mg, 93% yield) as a white solid.
1 H-NMR (MeOD) δ: 7.84 (1H, s), 5.47 (1H, s), 4.30 (1H, s), 4.15 (1H, s), 4.06 (1H, d, J = 13.3 Hz), 3.89 (1H, d, J = 13.6 Hz), 3.03 (3H, s), 1.91 (3H, s).
化合物14bより実施例3、実施例11あるいは国際公開第2011/052436号に記載の方法により、Tアミダイト(化合物16)およびMeC(Bz)アミダイト(化合物29)を得ることができる。 T amidite (compound 16) and MeC (Bz) amidite (compound 29) can be obtained from compound 14b by the method described in Example 3, Example 11 or International Publication No. 2011/052436.
環化反応の条件検討
工程9で行う環化反応の条件検討を行った。具体的には、塩基、溶媒の種類、反応温度について検討を行ない、生成物(化合物122)、副生成物(化合物156)をHPLC等で分析した。その結果、以下の表のように条件8に示す組み合わせが目的物の生成率が最も高く、原料残存率および副生物生成率が最も低い結果を与える最適条件であることを見出した。
Figure JPOXMLDOC01-appb-C000081

Figure JPOXMLDOC01-appb-T000082
Examination of conditions for cyclization reaction Conditions for the cyclization reaction performed in Step 9 were examined. Specifically, the types of base, solvent, and reaction temperature were examined, and the product (Compound 122) and the by-product (Compound 156) were analyzed by HPLC or the like. As a result, it has been found that the combination shown in Condition 8 as shown in the following table is the optimum condition that gives the highest product yield and the lowest raw material residual rate and by-product production rate.
Figure JPOXMLDOC01-appb-C000081

Figure JPOXMLDOC01-appb-T000082
アミダイトへの変換
化合物122を 1)NaOHaq./THF 2)(CFCO)O/ピリジンで処理することにより、2工程で化合物156を得た。化合物156は、参考例1の方法により、A(Bz)アミダイト(化合物20)、G(Pac)アミダイト(化合物24)に誘導できる。
Figure JPOXMLDOC01-appb-C000083
Conversion to amidite Compound 122 was converted to 1) NaOH aq. Compound 156 was obtained in two steps by treatment with / THF 2) (CF 3 CO) 2 O / pyridine. Compound 156 can be derived into A (Bz) amidite (Compound 20) and G (Pac) amidite (Compound 24) by the method of Reference Example 1.
Figure JPOXMLDOC01-appb-C000083

Claims (19)

  1. 一般式(I)で表される化合物を塩基の存在下でアルドール反応に付する以下に示す工程:
    Figure JPOXMLDOC01-appb-C000001
    (式中、R及びRは、同一または異なって、水素原子、核酸合成のアミノ基の保護基、アルキル基、アルケニル基、シクロアルキル基、アリール基、アラルキル基、アシル基、シリル基、リン酸基、核酸合成の保護基で保護されたリン酸基、-P(R7)R8[式中、R7およびR8は、同一または異なって、水酸基、核酸合成の保護基で保護された水酸基、メルカプト基、核酸合成の保護基で保護されたメルカプト基、アミノ基、炭素数1~5のアルコキシ基、炭素数1~5のアルキルチオ基、炭素数1~6のシアノアルコキシ基、または、炭素数1~5のアルキル基で置換されたアミノ基を示す];
    は、水素原子、核酸合成の水酸基の保護基、アルキル基、アルケニル基、シクロアルキル基、アリール基、アラルキル基、アシル基、シリル基、リン酸基、核酸合成の保護基で保護されたリン酸基、-P(R)R10[式中、RおよびR10は、同一または異なって、水酸基、核酸合成の保護基で保護された水酸基、メルカプト基、核酸合成の保護基で保護されたメルカプト基、アミノ基、炭素数1~5のアルコキシ基、炭素数1~5のアルキルチオ基、炭素数1~6のシアノアルコキシ基、または、炭素数1~5のアルキル基で置換されたアミノ基を示す];
    は、水素原子、水酸基、または、炭素数1~5のアルコキシ基;
    及びRは、同一または異なって、水素原子、炭素数1~5のアルキル基、またはアリール基;
    Bは、置換基を有していてもよい核酸塩基部分)
    を含む、一般式(II)で表される化合物の製造方法。
    The following steps for subjecting a compound represented by the general formula (I) to an aldol reaction in the presence of a base:
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, R 1 and R 2 are the same or different and each represents a hydrogen atom, an amino group protecting group for nucleic acid synthesis, an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, an aralkyl group, an acyl group, a silyl group, Phosphate group, phosphate group protected with a protecting group for nucleic acid synthesis, -P (R 7 ) R 8 [wherein R 7 and R 8 are the same or different and protected with a hydroxyl group, a protecting group for nucleic acid synthesis A hydroxyl group, a mercapto group, a mercapto group protected with a protecting group for nucleic acid synthesis, an amino group, an alkoxy group having 1 to 5 carbon atoms, an alkylthio group having 1 to 5 carbon atoms, a cyanoalkoxy group having 1 to 6 carbon atoms, Or an amino group substituted with an alkyl group having 1 to 5 carbon atoms];
    R 3 was protected with a hydrogen atom, a hydroxyl protecting group for nucleic acid synthesis, an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, an aralkyl group, an acyl group, a silyl group, a phosphate group, or a protecting group for nucleic acid synthesis. Phosphate group, —P (R 9 ) R 10 wherein R 9 and R 10 are the same or different and are a hydroxyl group, a hydroxyl group protected with a protecting group for nucleic acid synthesis, a mercapto group, or a protecting group for nucleic acid synthesis. Substituted with a protected mercapto group, amino group, alkoxy group having 1 to 5 carbon atoms, alkylthio group having 1 to 5 carbon atoms, cyanoalkoxy group having 1 to 6 carbon atoms, or alkyl group having 1 to 5 carbon atoms Represents an amino group];
    R 4 represents a hydrogen atom, a hydroxyl group, or an alkoxy group having 1 to 5 carbon atoms;
    R 5 and R 6 are the same or different and each represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or an aryl group;
    B is a nucleobase moiety optionally having a substituent)
    The manufacturing method of the compound represented by general formula (II) including this.
  2. 一般式(I)で表される化合物を塩基の存在下で式:RC(=O)Rで表される化合物と反応させる以下に示す工程:
    Figure JPOXMLDOC01-appb-C000002
    (式中、各定義は請求項1と同意義)を含む、一般式(II)で表される化合物の製造方法。
    The following steps of reacting a compound represented by the general formula (I) with a compound represented by the formula: R 5 C (═O) R 6 in the presence of a base:
    Figure JPOXMLDOC01-appb-C000002
    (Wherein each definition has the same meaning as in claim 1), and a method for producing a compound represented by general formula (II).
  3. 前記塩基が、共役酸のpKaが6~10のものである請求項1または2記載の製造方法。 The production method according to claim 1 or 2, wherein the base has a conjugate acid having a pKa of 6 to 10.
  4. 前記塩基が、トリエチルアミン、またはN-メチルモルホリンである請求項3記載の製造方法。 The method according to claim 3, wherein the base is triethylamine or N-methylmorpholine.
  5. 請求項1~4のいずれかに記載の方法により一般式(II)で表される化合物を得た後、Rが、水素原子である場合、得られた一般式(II)で表される化合物を酸化反応に付する以下の工程:
    Figure JPOXMLDOC01-appb-C000003
    (式中、Rは水素原子、それ以外の定義は請求項1と同意義)を含む、一般式(III)で表される化合物の製造方法。
    After obtaining the compound represented by the general formula (II) by the method according to any one of claims 1 to 4, when R 4 is a hydrogen atom, the compound represented by the obtained general formula (II) The following steps for subjecting the compound to an oxidation reaction:
    Figure JPOXMLDOC01-appb-C000003
    (Wherein R 4 is a hydrogen atom, and other definitions are as defined in claim 1), and a method for producing a compound represented by general formula (III).
  6. 1およびR2のいずれか一方が核酸合成のアミノ基の保護基であり、その他方が水素原子またはアルキル基である請求項1~5のいずれかに記載の製造方法。 6. The production method according to claim 1, wherein one of R 1 and R 2 is an amino-protecting group for nucleic acid synthesis, and the other is a hydrogen atom or an alkyl group.
  7. 3が核酸合成の水酸基の保護基である請求項1~6のいずれかに記載の製造方法。 7. The production method according to claim 1, wherein R 3 is a hydroxyl-protecting group for nucleic acid synthesis.
  8. 4が水素原子である請求項1~7のいずれかに記載の製造方法。 The production method according to any one of claims 1 to 7, wherein R 4 is a hydrogen atom.
  9. 5およびR6がいずれも水素原子である請求項1~8のいずれかに記載の製造方法。 9. The production method according to claim 1, wherein R 5 and R 6 are both hydrogen atoms.
  10. Bが置換基を有していてもよい、ピリミジン核酸塩基もしくはプリン核酸塩基である請求項1~9のいずれかに記載の製造方法。 The production method according to any one of claims 1 to 9, wherein B is a pyrimidine nucleobase or a purine nucleobase which may have a substituent.
  11. 下記一般式(III)で表される化合物およびその塩。
    Figure JPOXMLDOC01-appb-C000004
    (式中、Rは核酸合成の水酸基の保護基、それ以外の定義は請求項1と同意義)
    Compounds represented by the following general formula (III) and salts thereof.
    Figure JPOXMLDOC01-appb-C000004
    (Wherein R 3 is a protecting group for a hydroxyl group in nucleic acid synthesis, and other definitions are the same as in claim 1)
  12. 一般式(III)で表される化合物を脱シリル化剤と反応させ、その反応液に縮合剤を反応させる以下に示す工程:
    Figure JPOXMLDOC01-appb-C000005
    (式中、Rは、炭素数1~5のアルキル基、Rは、核酸合成のアミノ基の保護基、Rは核酸合成の水酸基の保護基、それ以外の定義は請求項1と同意義)
    を含む、一般式(IV)で表される化合物の製造方法。
    The following steps of reacting the compound represented by the general formula (III) with a desilylating agent and reacting the reaction solution with a condensing agent:
    Figure JPOXMLDOC01-appb-C000005
    Wherein R 1 is an alkyl group having 1 to 5 carbon atoms, R 2 is a protecting group for an amino group for nucleic acid synthesis, R 3 is a protecting group for a hydroxyl group for nucleic acid synthesis, and other definitions are as defined in claim 1. (Same meaning)
    The manufacturing method of the compound represented by general formula (IV) including this.
  13. 請求項12に記載の方法により一般式(IV)で表される化合物を得た後、得られた一般式(IV)で表される化合物に、核酸合成の水酸基の保護に使用する試薬を反応させる以下に示す工程:
    Figure JPOXMLDOC01-appb-C000006
    (式中、Rは核酸合成の水酸基の保護基、それ以外の定義は請求項12と同意義)
    を含む、一般式(V)で表される化合物の製造方法。
    After obtaining the compound represented by the general formula (IV) by the method according to claim 12, the compound represented by the general formula (IV) is reacted with a reagent used for protecting the hydroxyl group in nucleic acid synthesis. The steps shown below:
    Figure JPOXMLDOC01-appb-C000006
    (Wherein R 7 is a hydroxyl-protecting group for nucleic acid synthesis, and other definitions are as defined in claim 12).
    The manufacturing method of the compound represented by general formula (V) including this.
  14. 下記一般式(V)で表される化合物およびその塩。
    Figure JPOXMLDOC01-appb-C000007
    (式中、各定義は、請求項13と同意義)
    Compounds represented by the following general formula (V) and salts thereof.
    Figure JPOXMLDOC01-appb-C000007
    (Wherein each definition has the same meaning as in claim 13)
  15. 下記一般式(VI)で表される化合物をトランスグリコシル化反応に付する以下に示す工程:
    Figure JPOXMLDOC01-appb-C000008
    (式中、Bは置換基を有していてもよいピリミジン核酸塩基、Bは置換基を有していてもよいチミン以外の核酸塩基、Xは水素原子、ナトリウム原子またはカリウム原子、それ以外の定義は請求項1と同義)
    を含む、一般式(VII)で表される化合物の製造方法。
    The following steps for subjecting a compound represented by the following general formula (VI) to a transglycosylation reaction:
    Figure JPOXMLDOC01-appb-C000008
    (Wherein B 1 is a pyrimidine nucleobase which may have a substituent, B 2 is a nucleobase other than thymine which may have a substituent, X is a hydrogen atom, sodium atom or potassium atom, Definitions other than are synonymous with claim 1)
    The manufacturing method of the compound represented by general formula (VII) including this.
  16. 下記一般式(VII)で表される化合物およびその塩。
    Figure JPOXMLDOC01-appb-C000009
    (式中、各定義は、請求項15と同意義)
    The compound represented by the following general formula (VII) and its salt.
    Figure JPOXMLDOC01-appb-C000009
    (Wherein each definition has the same meaning as claim 15)
  17. 下記一般式(VIII)で表される化合物をアルキルアミンと反応させる以下に示す工程:
    Figure JPOXMLDOC01-appb-C000010
    (式中、Yは置換基を有していてもよいアルキル基または置換基を有していてもよいフェニル基、Y~Yは核酸合成の水酸基の保護基、R1’およびR2’は水素原子またはアルキル基、Bは置換基を有していてもよい芳香族複素環基)
    を含む、一般式(IX)で表される化合物の製造方法。
    The following steps of reacting a compound represented by the following general formula (VIII) with an alkylamine:
    Figure JPOXMLDOC01-appb-C000010
    Wherein Y 1 is an alkyl group which may have a substituent or a phenyl group which may have a substituent, Y 2 to Y 4 are hydroxyl protecting groups for nucleic acid synthesis, R 1 ′ and R 1 2 ′ is a hydrogen atom or an alkyl group, B is an aromatic heterocyclic group which may have a substituent)
    The manufacturing method of the compound represented by general formula (IX) containing this.
  18. 下記一般式(X)で表される化合物をN-グリコシル化反応に付する以下に示す工程:
    Figure JPOXMLDOC01-appb-C000011
    (式中、Yは核酸合成の水酸基の保護基、R4'はアルキル基、置換基を有していてもよい芳香環、Bは置換基を有していてもよい芳香族複素環基)
    を含む、一般式(XI)で表される化合物の製造方法。
    The following steps for subjecting a compound represented by the following general formula (X) to an N-glycosylation reaction:
    Figure JPOXMLDOC01-appb-C000011
    (Wherein Y 5 is a hydroxyl-protecting group for nucleic acid synthesis, R 4 ′ is an alkyl group, an optionally substituted aromatic ring, and B is an optionally substituted aromatic heterocyclic group. )
    The manufacturing method of the compound represented by general formula (XI) including this.
  19. 下記一般式(XII)で表される化合物を分子内環化反応に付する以下に示す工程:
    Figure JPOXMLDOC01-appb-C000012
    (式中、YおよびYは核酸合成の水酸基の保護基、R5’はアルキル基、水素原子、置換基を有していてもよいベンジル基、または置換基を有していてもよい芳香環、R6’、R7’、R8’およびR9’は水素原子またはアルキル基)
    を含む、一般式(XIII)で表される化合物の製造方法。
    The following steps for subjecting a compound represented by the following general formula (XII) to an intramolecular cyclization reaction:
    Figure JPOXMLDOC01-appb-C000012
    Wherein Y 7 and Y 8 are hydroxyl-protecting groups for nucleic acid synthesis, R 5 ′ is an alkyl group, a hydrogen atom, an optionally substituted benzyl group, or an optionally substituted group. An aromatic ring, R 6 ′ , R 7 ′ , R 8 ′ and R 9 ′ are a hydrogen atom or an alkyl group)
    The manufacturing method of the compound represented by general formula (XIII) containing this.
PCT/JP2014/050325 2013-01-10 2014-01-10 Method for producing cross-linked nucleic acid derivative WO2014109384A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014556449A JP6270742B2 (en) 2013-01-10 2014-01-10 Method for producing cross-linked nucleic acid derivative

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013002895 2013-01-10
JP2013-002895 2013-01-10
JP2013-091058 2013-04-24
JP2013091058 2013-04-24

Publications (1)

Publication Number Publication Date
WO2014109384A1 true WO2014109384A1 (en) 2014-07-17

Family

ID=51167030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/050325 WO2014109384A1 (en) 2013-01-10 2014-01-10 Method for producing cross-linked nucleic acid derivative

Country Status (2)

Country Link
JP (1) JP6270742B2 (en)
WO (1) WO2014109384A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017047816A1 (en) * 2015-09-18 2017-03-23 田辺三菱製薬株式会社 Crosslinked nucleic acid guna, method for producing same, and intermediate compound
WO2018123925A1 (en) 2016-12-28 2018-07-05 第一三共株式会社 Therapeutic drug for alport's syndrome
WO2019009299A1 (en) 2017-07-05 2019-01-10 国立大学法人大阪大学 ENA ANTISENSE OLIGONUCLEOTIDE FOR INHIBITION OF α-SYNUCLEIN EXPRESSION
WO2019172286A1 (en) 2018-03-09 2019-09-12 第一三共株式会社 Therapeutic agent for glycogen storage disease type ia
WO2019240164A1 (en) 2018-06-13 2019-12-19 第一三共株式会社 Myocardial dysfunction therapeutic agent
WO2021010301A1 (en) 2019-07-12 2021-01-21 第一三共株式会社 ANTISENSE OLIGONUCLEOTIDE CAPABLE OF ALTERING SPLICING OF DUX4 pre-mRNA
WO2021049504A1 (en) 2019-09-10 2021-03-18 第一三共株式会社 Galnac-oligonucleotide conjugate for liver-targeted delivery use, and method for producing same
WO2023176862A1 (en) 2022-03-16 2023-09-21 第一三共株式会社 siRNA FOR SUPPRESSING EXPRESSION OF TRANSFERRIN RECEPTOR-2
WO2023176863A1 (en) 2022-03-16 2023-09-21 第一三共株式会社 Chemically-modified oligonucleotide having rnai activity
US11963974B2 (en) 2017-03-10 2024-04-23 National Center For Child Health And Development Antisense oligonucleotide and composition for prevention or treatment of glycogen storage disease type Ia

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01503069A (en) * 1987-04-16 1989-10-19 メディヴイル・アクチエボラーグ Novel pharmaceutical compounds
WO2000000456A1 (en) * 1998-06-30 2000-01-06 Eastman Chemical Company Preparation of an aldol using a base-modified clay catalyst
WO2011052436A1 (en) * 2009-10-29 2011-05-05 国立大学法人大阪大学 Bridged artificial nucleoside and nucleotide
WO2012029870A1 (en) * 2010-08-31 2012-03-08 国立大学法人大阪大学 Oligonucleotide, and therapeutic agent for dyslipidemia containing oligonucleotide as active ingredient

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01503069A (en) * 1987-04-16 1989-10-19 メディヴイル・アクチエボラーグ Novel pharmaceutical compounds
WO2000000456A1 (en) * 1998-06-30 2000-01-06 Eastman Chemical Company Preparation of an aldol using a base-modified clay catalyst
WO2011052436A1 (en) * 2009-10-29 2011-05-05 国立大学法人大阪大学 Bridged artificial nucleoside and nucleotide
WO2012029870A1 (en) * 2010-08-31 2012-03-08 国立大学法人大阪大学 Oligonucleotide, and therapeutic agent for dyslipidemia containing oligonucleotide as active ingredient

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YOSHIYUKI HARI ET AL.: "Synthesis and duplex- forming ability of oligonucleotides containing 4'-carboxythymidine analogst", ORGANIC & BIOMOLECULAR CHEMISTRY, vol. 10, no. 48, 28 December 2012 (2012-12-28), pages 9639 - 9649 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017047816A1 (en) * 2015-09-18 2017-03-23 田辺三菱製薬株式会社 Crosslinked nucleic acid guna, method for producing same, and intermediate compound
US10961269B2 (en) 2015-09-18 2021-03-30 Mitsubishi Tanabe Pharma Corporation Bridged nucleic acid GuNA, method for producing same, and intermediate compound
WO2018123925A1 (en) 2016-12-28 2018-07-05 第一三共株式会社 Therapeutic drug for alport's syndrome
US11963974B2 (en) 2017-03-10 2024-04-23 National Center For Child Health And Development Antisense oligonucleotide and composition for prevention or treatment of glycogen storage disease type Ia
WO2019009299A1 (en) 2017-07-05 2019-01-10 国立大学法人大阪大学 ENA ANTISENSE OLIGONUCLEOTIDE FOR INHIBITION OF α-SYNUCLEIN EXPRESSION
WO2019172286A1 (en) 2018-03-09 2019-09-12 第一三共株式会社 Therapeutic agent for glycogen storage disease type ia
US11958878B2 (en) 2018-03-09 2024-04-16 Daiichi Sankyo Company, Limited Therapeutic agent for glycogen storage disease type IA
WO2019240164A1 (en) 2018-06-13 2019-12-19 第一三共株式会社 Myocardial dysfunction therapeutic agent
WO2021010301A1 (en) 2019-07-12 2021-01-21 第一三共株式会社 ANTISENSE OLIGONUCLEOTIDE CAPABLE OF ALTERING SPLICING OF DUX4 pre-mRNA
WO2021049504A1 (en) 2019-09-10 2021-03-18 第一三共株式会社 Galnac-oligonucleotide conjugate for liver-targeted delivery use, and method for producing same
WO2023176862A1 (en) 2022-03-16 2023-09-21 第一三共株式会社 siRNA FOR SUPPRESSING EXPRESSION OF TRANSFERRIN RECEPTOR-2
WO2023176863A1 (en) 2022-03-16 2023-09-21 第一三共株式会社 Chemically-modified oligonucleotide having rnai activity

Also Published As

Publication number Publication date
JP6270742B2 (en) 2018-01-31
JPWO2014109384A1 (en) 2017-01-19

Similar Documents

Publication Publication Date Title
JP6270742B2 (en) Method for producing cross-linked nucleic acid derivative
JP5030998B2 (en) Nucleoside analogues and oligonucleotide derivatives containing the nucleotide analogues thereof
JP5685526B2 (en) Method for producing nucleoside
US7427672B2 (en) Artificial nucleic acids of n-o bond crosslinkage type
DK1152009T4 (en) HIS UNKNOWN NUCLEOSIDES AND OLIGONUCLEOTIDE ANALOGS
US10961269B2 (en) Bridged nucleic acid GuNA, method for producing same, and intermediate compound
WO2017018360A1 (en) Artificial nucleoside, artificial nucleotide, and artificial oligonucleotide
JP6150440B2 (en) Intermediate for producing nucleoside analogue and method for producing the same
JP7233660B2 (en) Production of crosslinked artificial nucleosides
JP4255227B2 (en) 2 ', 4'-BNA oligonucleotide with N3'-P5' linkage
JP2004307464A (en) New artificial nucleic acid with saccharide s-type conformation
US20050176941A1 (en) Nucleoside analogues whose sugar moieties are bound in s-form and oligonucleotide derivatives comprising nucleotide analogues thereof
WO2004037842A1 (en) Novel synthetic nucleic acids whose sugar moieties have s-configuration

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14738000

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014556449

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14738000

Country of ref document: EP

Kind code of ref document: A1