[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014109191A1 - 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法 - Google Patents

硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法 Download PDF

Info

Publication number
WO2014109191A1
WO2014109191A1 PCT/JP2013/083950 JP2013083950W WO2014109191A1 WO 2014109191 A1 WO2014109191 A1 WO 2014109191A1 JP 2013083950 W JP2013083950 W JP 2013083950W WO 2014109191 A1 WO2014109191 A1 WO 2014109191A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
sulfide solid
electrolyte material
electrode active
active material
Prior art date
Application number
PCT/JP2013/083950
Other languages
English (en)
French (fr)
Inventor
祐樹 加藤
真由子 大崎
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to KR1020157017696A priority Critical patent/KR101689492B1/ko
Priority to DE112013006405.7T priority patent/DE112013006405T5/de
Priority to CN201380069290.9A priority patent/CN104885288B/zh
Priority to US14/758,712 priority patent/US10128532B2/en
Publication of WO2014109191A1 publication Critical patent/WO2014109191A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/10Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a sulfide solid electrolyte material having good ion conductivity and suppressing a decrease in charge / discharge efficiency.
  • lithium batteries currently on the market use an electrolyte containing a flammable organic solvent, it is possible to install safety devices that suppress the temperature rise during short circuits and to improve the structure and materials to prevent short circuits. Necessary.
  • a lithium battery in which the electrolyte is changed to a solid electrolyte layer to make the battery completely solid does not use a flammable organic solvent in the battery, so the safety device can be simplified, and manufacturing costs and productivity can be reduced. It is considered excellent.
  • Non-Patent Document 1 discloses a Li ion conductor (sulfide solid electrolyte material) having a composition of Li (4-x) Ge (1-x) P x S 4 .
  • Patent Document 1 discloses a LiGePS-based sulfide solid electrolyte material having a specific peak in X-ray diffraction measurement.
  • Non-Patent Document 2 discloses a LiGePS-based sulfide solid electrolyte material.
  • Patent Document 1 discloses that a sulfide solid electrolyte material having a high proportion of crystal phase having a specific peak in X-ray diffraction measurement has good ionic conductivity.
  • the LiGePS-based sulfide solid electrolyte material described in Patent Document 1 undergoes reductive decomposition when used in a battery together with a negative electrode active material (for example, graphite) having a relatively high reduction potential and a low operating potential, and charge and discharge efficiency There is a problem that decreases.
  • a negative electrode active material for example, graphite
  • the present invention has been made in view of the above problems, and has as its main object to provide a sulfide solid electrolyte material that has good ion conductivity and suppresses a decrease in charge / discharge efficiency.
  • a sulfide solid electrolyte material having good ion conductivity can be obtained. Furthermore, by introducing an O element into a sulfide solid electrolyte material containing Li element, Si element, P element, and S element, a sulfide solid electrolyte material in which a decrease in charge / discharge efficiency is suppressed can be obtained.
  • the octahedron O composed of Li element and S elements
  • M a element and the tetrahedron T 1 composed of S elements
  • M b element and tetrahedron T consists S elements
  • the tetrahedron T 1 and the octahedron O share a ridge
  • the tetrahedron T 2 and the octahedron O mainly contain a crystal structure sharing a vertex
  • At least one of M b includes Si
  • at least one of the M a and the M b includes P
  • at least one of the tetrahedron T 1 and the tetrahedron T 2 is bonded to the Si element.
  • S element A part or all of the S element is replaced with an O element, and the molar fraction of the O element (O / (S + O)) relative to the sum of the S element and the O element is greater than 0.2.
  • Sulfide solid characterized by To provide a Kaishitsu material.
  • a sulfide solid electrolyte material having good ion conductivity can be obtained. Furthermore, since at least one of the tetrahedron T 1 and the tetrahedron T 2 is one in which a part or all of the S element bonded to the Si element is replaced with the O element, the sulfide that suppresses the decrease in charge and discharge efficiency A solid electrolyte material.
  • the molar fraction (O / (S + O)) preferably satisfies 0.25 ⁇ O / (S + O) ⁇ 0.35.
  • the molar fraction (P / (P + Si)) of the P element with respect to the total of the P element and the Si element satisfies 0.65 ⁇ P / (P + Si) ⁇ 0.75.
  • at least one of the positive electrode active material layer, the negative electrode active material layer, and the electrolyte layer contains the sulfide solid electrolyte material described above.
  • a battery having high charge / discharge efficiency can be obtained by using the above-described sulfide solid electrolyte material.
  • a method for producing a sulfide solid electrolyte material having the above-described peak intensity ratio wherein the raw material contains the Li element, the Si element, the P element, the S element, and the O element.
  • a method for producing a sulfide solid electrolyte material is provided.
  • a method for producing a sulfide solid electrolyte material having the above-described crystal structure, containing the Li element, the M a element, the M b element, the S element and the O element An ion conductive material synthesis step of synthesizing an amorphous ion conductive material by mechanical milling using the raw material composition, and heating the amorphous ion conductive material, the sulfide And a heating step for obtaining a solid electrolyte material.
  • a method for producing a sulfide solid electrolyte material is provided.
  • the octahedron O, the tetrahedron T 1 and the tetrahedron T 2 have a predetermined crystal structure (three-dimensional) by performing amorphization in an ion conductive material synthesis step and then performing a heating step.
  • a sulfide solid electrolyte material having a structure can be obtained. Therefore, a sulfide solid electrolyte material having good ion conductivity can be obtained.
  • the raw material composition contains an O element, a sulfide solid electrolyte material in which a decrease in charge / discharge efficiency is suppressed can be obtained.
  • the raw material composition preferably contains a material having a Si—O bond.
  • FIG. 2 is an X-ray diffraction spectrum of a sulfide solid electrolyte material obtained in Examples 2 and 3, Reference Example 1 and Comparative Examples 2 and 3.
  • FIG. 3 is a result of charge and discharge efficiency measurement for batteries using the sulfide solid electrolyte materials obtained in Examples 1-2, 2, and 3, Reference Example 1, and Comparative Examples 2 and 3.
  • FIG. 3 is a result of charge / discharge efficiency measurement for a battery using the sulfide solid electrolyte material obtained in Examples 1-2, 2, and 3. 3 is a measurement result of Li ion conductivity of the sulfide solid electrolyte materials obtained in Examples 1-1 to 1-3 and Comparative Examples 1-1 and 1-2. It is the result of the first principle calculation regarding the reductive decomposition potential.
  • the sulfide solid electrolyte material of the present invention will be described.
  • the sulfide solid electrolyte material of the present invention can be roughly divided into two embodiments. Therefore, the sulfide solid electrolyte material of the present invention will be described separately for the first embodiment and the second embodiment.
  • the LiGePS-based sulfide solid electrolyte material described in Patent Document 1 is sulfide when used in a battery together with a negative electrode active material (for example, graphite) having a relatively high reduction potential and a low operating potential.
  • the solid electrolyte material is easily reductively decomposed. This is presumably because the Ge element contained in the sulfide solid electrolyte material is easily reduced. In contrast, in the first embodiment, by changing the Ge element to the Si element, a sulfide solid electrolyte material in which reductive decomposition is unlikely to occur can be obtained. Furthermore, in the first embodiment, a sulfide solid electrolyte material that is less liable to undergo reductive decomposition can be obtained by changing part or all of the S element bonded to the Si element to the O element. This is presumably because the Si—O bond is more difficult to reduce than the Si—S bond.
  • FIG. 1 is an X-ray diffraction spectrum for explaining a difference between a sulfide solid electrolyte material having high ion conductivity and a sulfide solid electrolyte material having low ion conductivity.
  • the two sulfide solid electrolyte materials in FIG. 1 are not the LiSiPS sulfide solid electrolyte material of the first embodiment but the LiGePS sulfide solid electrolyte material. The difference in ion conductivity depending on the crystal structure will be described using the sulfide solid electrolyte material.
  • the two sulfide solid electrolyte materials in FIG. 1 both have a composition of Li 3.25 Ge 0.25 P 0.75 S 4 . In FIG.
  • the sulfide solid electrolyte material with low ion conductivity also has the same peak.
  • the sulfide solid electrolyte material having high ion conductivity has a crystal structure similar to that of the sulfide solid electrolyte material of the second embodiment, as will be described later.
  • Crystal phases A and B are both crystalline phases exhibiting ionic conductivity, but there are differences in ionic conductivity.
  • the crystal phase A is considered to have significantly higher ionic conductivity than the crystal phase B.
  • the sulfide solid electrolyte material in the first embodiment preferably has a high proportion of the crystal phase A having high ion conductivity. Therefore, the value of I B / I A is preferably smaller, specifically, preferably 0.55 or less, more preferably 0.45 or less, and 0.25 or less.
  • the sulfide solid electrolyte material of the first embodiment contains Li element, Si element, P element, S element, and O element.
  • the sulfide solid electrolyte material of the first embodiment may be composed of only Li element, Si element, P element, S element, and O element, and may further contain other elements.
  • a part of the Li element may be substituted with a monovalent or divalent element.
  • the monovalent or divalent element include at least one selected from the group consisting of Na, K, Mg, Ca, and Zn. Note that the amount of monovalent or divalent elements is preferably smaller than the amount of Li elements.
  • a part of the Si element may be substituted with a trivalent, tetravalent or pentavalent element.
  • a part of the P element may be substituted with a trivalent, tetravalent, or pentavalent element.
  • the trivalent, tetravalent, or pentavalent element include one selected from the group consisting of Sb, Ge, Sn, B, Al, Ga, In, Ti, Zr, V, and Nb.
  • the amount of trivalent, tetravalent or pentavalent element is preferably smaller than the amount of Si element or P element, and in particular, the sulfide solid electrolyte material preferably does not contain Ge.
  • the sulfide solid electrolyte material of the first embodiment contains an S element and an O element.
  • the mole fraction of O element (O / (S + O)) with respect to the sum of S element and O element is not particularly limited, but is preferably greater than 0.2, for example, 0.25 or more. Is more preferably 0.26 or more. This is because if the molar fraction is too small, the reductive decomposition potential may not be lowered. On the other hand, the molar fraction (O / (S + O)) is not particularly limited. As a result of the first-principles calculation, it was confirmed that even if O / (S + O) is in a region close to 1, an effect of improving reducibility occurs.
  • O / (S + O) is, for example, preferably less than 0.4, more preferably 0.38 or less, and further preferably 0.35 or less.
  • the mole fraction of the O element can be determined by, for example, XPS or EDX.
  • the sulfide solid electrolyte material of the first embodiment contains a P element and a Si element.
  • the mole fraction of P element (P / (P + Si)) with respect to the total of P element and Si element is not particularly limited, but is preferably greater than 0.6, for example, 0.65 or more. Is more preferable. This is because if the molar fraction is too small, a sulfide solid electrolyte material having high ion conductivity may not be obtained.
  • the molar fraction (P / (P + Si)) is not particularly limited, but is preferably less than 0.8, for example, and more preferably 0.75 or less. This is because if the molar fraction is too large, a sulfide solid electrolyte material having high ion conductivity may not be obtained.
  • the composition of the sulfide solid electrolyte material of the first embodiment is not particularly limited, but Li (4-x) Si (1-x) P x (S 1-y O y ) 4 (x is 0 ⁇ x ⁇ 1 is satisfied, and y preferably satisfies 0.2 ⁇ y). It is because it can be set as the sulfide solid electrolyte material which does not produce reductive decomposition easily.
  • the composition of Li (4-x) Si (1-x) P x S 4 having no O element corresponds to the composition of the solid solution of Li 3 PS 4 and Li 4 SiS 4 . That is, this composition corresponds to the composition on the tie line of Li 3 PS 4 and Li 4 SiS 4 . Note that both Li 3 PS 4 and Li 4 SiS 4 correspond to the ortho composition and have an advantage of high chemical stability.
  • x in Li (4-x) Si (1-x) P x (S 1-y O y ) 4 is not particularly limited, but preferably satisfies, for example, 0.6 ⁇ x. More preferably, 0.65 ⁇ x is satisfied.
  • the x preferably satisfies, for example, x ⁇ 0.8, and more preferably satisfies x ⁇ 0.75.
  • Y preferably satisfies 0.2 ⁇ y, more preferably satisfies 0.25 ⁇ y, and further preferably satisfies 0.26 ⁇ y.
  • y preferably satisfies y ⁇ 0.4, more preferably satisfies y ⁇ 0.38, and further preferably satisfies y ⁇ 0.35.
  • the sulfide solid electrolyte material of the first embodiment is usually a crystalline sulfide solid electrolyte material.
  • the sulfide solid electrolyte material of the first embodiment preferably has high ionic conductivity, and the ionic conductivity of the sulfide solid electrolyte material at 25 ° C. is 1.0 ⁇ 10 ⁇ 4 S / cm or more. It is preferably 1.0 ⁇ 10 ⁇ 3 S / cm or more.
  • the shape of the sulfide solid electrolyte material of the first embodiment is not particularly limited, and examples thereof include powder. Further, the average particle diameter of the powdered sulfide solid electrolyte material is preferably in the range of 0.1 ⁇ m to 50 ⁇ m, for example.
  • the sulfide solid electrolyte material of the first embodiment has high ionic conductivity, it can be used for any application that requires ionic conductivity. Especially, it is preferable that the sulfide solid electrolyte material of a 1st embodiment is what is used for a battery. This is because it can greatly contribute to the high output of the battery.
  • the method for producing the sulfide solid electrolyte material of the first embodiment will be described in detail in “C. Method for producing sulfide solid electrolyte material” described later. Further, the sulfide solid electrolyte material of the first embodiment may have the characteristics of the second embodiment described later.
  • Sulfide solid electrolyte material of the second embodiment the octahedron O composed of Li element and S elements, a tetrahedron T 1 composed of M a element and S elements, composed of M b elements and S elemental and a tetrahedron T 2 that is, the tetrahedron T 1 and the octahedron O share a crest above tetrahedron T 2 and the octahedron O contains mainly a crystalline structure that share vertices, at least one of the M a and the M b, wherein the Si, at least one of the M a and the M b, includes a P, at least one of the tetrahedron T 1 and the tetrahedron T 2 are, the A part or all of the S element bonded to the Si element is substituted with the O element, and the
  • the tetrahedron T 1 and the tetrahedron T 2 have a predetermined crystal structure (three-dimensional structure), a sulfide solid electrolyte material having good ion conductivity is obtained. Can do. Furthermore, since at least one of the tetrahedron T 1 and the tetrahedron T 2 is one in which a part or all of the S element bonded to the Si element is replaced with the O element, the sulfide that suppresses the decrease in charge and discharge efficiency. A solid electrolyte material.
  • FIG. 2 is a perspective view for explaining an example of the crystal structure of the sulfide solid electrolyte material of the second embodiment.
  • the octahedron O is typically a LiS 6 octahedron having Li as a central element and six S at the apex of the octahedron.
  • the tetrahedron T 1 has M a as a central element, and has four S at the apexes of the tetrahedron (note that a part or all of S may be substituted with O). Specifically, both SiO 4 tetrahedron and PS 4 tetrahedron.
  • the tetrahedron T 2 has M b as a central element, and has four Ss (note that a part of S may be substituted with O) at the apex of the tetrahedron, Is a PS 4 tetrahedron.
  • at least one of the tetrahedron T 1 and the tetrahedron T 2 is one in which a part or all of the S element bonded to the Si element is substituted with the O element.
  • the fact that part or all of the S element is substituted with the O element can be confirmed by, for example, analysis of an XRD pattern by the Rietveld method, neutron diffraction, or the like.
  • the tetrahedron T 1 and the octahedron O share a ridge
  • the tetrahedron T 2 and the octahedron O share a vertex.
  • the sulfide solid electrolyte material of the second embodiment is characterized mainly by containing the above crystal structure as a main component.
  • the ratio of the crystal structure in the entire crystal structure of the sulfide solid electrolyte material is not particularly limited, but is preferably higher. This is because a sulfide solid electrolyte material having high ion conductivity can be obtained.
  • the ratio of the crystal structure is preferably 70 wt% or more, and more preferably 90 wt% or more.
  • the ratio of the said crystal structure can be measured by synchrotron radiation XRD, for example.
  • the sulfide solid electrolyte material of the second embodiment is preferably a single-phase material having the above crystal structure. This is because the ion conductivity can be made extremely high.
  • the tetrahedron T 1 or the tetrahedron T 2 having Si as a central element is represented by SiS 4 ⁇ x O x (x is an integer satisfying 0 ⁇ x ⁇ 4)
  • x is an integer satisfying 0 ⁇ x ⁇ 4
  • the ratio of tetrahedrons having a large is large. This is because a sulfide solid electrolyte material that is less susceptible to reductive decomposition can be obtained.
  • the molar fraction of SiO 4 is the largest with respect to all tetrahedrons represented by SiS 4-x O x contained in the sulfide solid electrolyte material.
  • the mole fraction of SiO 4 can be measured by NMR and XAFS.
  • At least one of M a element and M b element includes Si element.
  • elements other than Si element include trivalent, tetravalent, and pentavalent elements.
  • at least one of M a element and M b element includes P element.
  • elements other than the P element include trivalent, tetravalent, and pentavalent elements.
  • the trivalent, tetravalent, or pentavalent element include one selected from the group consisting of Sb, Ge, Sn, B, Al, Ga, In, Ti, Zr, V, and Nb.
  • the battery of the present invention includes a positive electrode active material layer containing a positive electrode active material, a negative electrode active material layer containing a negative electrode active material, an electrolyte layer formed between the positive electrode active material layer and the negative electrode active material layer, In which at least one of the positive electrode active material layer, the negative electrode active material layer, and the electrolyte layer contains the sulfide solid electrolyte material described above.
  • a battery having high charge / discharge efficiency can be obtained by using the above-described sulfide solid electrolyte material.
  • FIG. 3 is a schematic cross-sectional view showing an example of the battery of the present invention.
  • the battery 10 in FIG. 3 was formed between the positive electrode active material layer 1 containing the positive electrode active material, the negative electrode active material layer 2 containing the negative electrode active material, and the positive electrode active material layer 1 and the negative electrode active material layer 2.
  • An electrolyte layer 3 a positive electrode current collector 4 for collecting current of the positive electrode active material layer 1, a negative electrode current collector 5 for collecting current of the negative electrode active material layer 2, and a battery case 6 for housing these members. It is what you have.
  • At least one of the positive electrode active material layer 1, the negative electrode active material layer 2, and the electrolyte layer 3 contains the sulfide solid electrolyte material described in the above-mentioned “A. Sulfide solid electrolyte material”. And hereinafter, the battery of this invention is demonstrated for every structure.
  • Electrolyte layer The electrolyte layer in this invention is a layer formed between a positive electrode active material layer and a negative electrode active material layer.
  • the electrolyte layer is not particularly limited as long as it is a layer capable of conducting ions, but is preferably a solid electrolyte layer made of a solid electrolyte material. This is because a battery with higher safety can be obtained as compared with a battery using an electrolytic solution.
  • a solid electrolyte layer contains the sulfide solid electrolyte material mentioned above.
  • the ratio of the sulfide solid electrolyte material contained in the solid electrolyte layer is, for example, preferably in the range of 10% to 100% by volume, and more preferably in the range of 50% to 100% by volume.
  • the solid electrolyte layer is composed only of the sulfide solid electrolyte material. This is because a high output battery can be obtained.
  • the thickness of the solid electrolyte layer is, for example, preferably in the range of 0.1 ⁇ m to 1000 ⁇ m, more preferably in the range of 0.1 ⁇ m to 300 ⁇ m.
  • the method of compression-molding a solid electrolyte material etc. can be mentioned, for example.
  • the electrolyte layer in the present invention may be a layer composed of an electrolytic solution.
  • the electrolytic solution it is necessary to further consider safety compared to the case where the solid electrolyte layer is used, but a battery with higher output can be obtained.
  • at least one of the positive electrode active material layer and the negative electrode active material layer contains the above-described sulfide solid electrolyte material.
  • the electrolytic solution usually contains a lithium salt and an organic solvent (nonaqueous solvent).
  • lithium salt examples include inorganic lithium salts such as LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , and LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiC An organic lithium salt such as (CF 3 SO 2 ) 3 can be used.
  • organic solvent examples include ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), butylene carbonate (BC), and the like.
  • the positive electrode active material layer in the present invention is a layer containing at least a positive electrode active material, and may contain at least one of a solid electrolyte material, a conductive material and a binder, if necessary. good.
  • the positive electrode active material layer preferably contains a solid electrolyte material, and the solid electrolyte material is preferably the sulfide solid electrolyte material described above. This is because a positive electrode active material layer having high ion conductivity can be obtained.
  • the ratio of the sulfide solid electrolyte material contained in the positive electrode active material layer varies depending on the type of battery.
  • the positive electrode active material for example, LiCoO 2 , LiMnO 2 , Li 2 NiMn 3 O 8 , LiVO 2 , LiCrO 2 , LiFePO 4 , LiCoPO 4 , LiNiO 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 etc. can be mentioned.
  • the positive electrode active material layer in the present invention may further contain a conductive material.
  • a conductive material By adding a conductive material, the conductivity of the positive electrode active material layer can be improved.
  • the conductive material include acetylene black, ketjen black, and carbon fiber.
  • the positive electrode active material layer may contain a binder. Examples of the type of binder include fluorine-containing binders such as polytetrafluoroethylene (PTFE).
  • the thickness of the positive electrode active material layer is preferably in the range of 0.1 ⁇ m to 1000 ⁇ m, for example.
  • the negative electrode active material layer in the present invention is a layer containing at least a negative electrode active material, and may contain at least one of a solid electrolyte material, a conductive material and a binder as necessary.
  • the negative electrode active material layer preferably contains a solid electrolyte material, and the solid electrolyte material is the sulfide solid electrolyte material described above. This is because a negative electrode active material layer having high ion conductivity can be obtained.
  • the ratio of the sulfide solid electrolyte material contained in the negative electrode active material layer varies depending on the type of the battery.
  • the negative electrode active material examples include a metal active material and a carbon active material.
  • the metal active material examples include In, Al, Si, and Sn.
  • examples of the carbon active material include mesocarbon microbeads (MCMB), highly oriented graphite (HOPG), hard carbon, and soft carbon.
  • MCMB mesocarbon microbeads
  • HOPG highly oriented graphite
  • hard carbon examples of the conductive material and the binder used in the negative electrode active material layer are the same as those in the positive electrode active material layer described above.
  • the thickness of the negative electrode active material layer is preferably in the range of 0.1 ⁇ m to 1000 ⁇ m, for example.
  • the battery of the present invention has at least the electrolyte layer, the positive electrode active material layer, and the negative electrode active material layer described above. Furthermore, it usually has a positive electrode current collector for collecting current of the positive electrode active material layer and a negative electrode current collector for collecting current of the negative electrode active material layer.
  • the material for the positive electrode current collector include SUS, aluminum, nickel, iron, titanium, and carbon. Among them, SUS is preferable.
  • examples of the material for the negative electrode current collector include SUS, copper, nickel, and carbon. Of these, SUS is preferable.
  • the thickness and shape of the positive electrode current collector and the negative electrode current collector are preferably appropriately selected according to the use of the battery.
  • the battery case of a general battery can be used for the battery case used for this invention. Examples of the battery case include a SUS battery case.
  • Battery The battery of the present invention may be a primary battery or a secondary battery, but among them, a secondary battery is preferable. This is because it can be repeatedly charged and discharged and is useful, for example, as an in-vehicle battery.
  • Examples of the shape of the battery of the present invention include a coin type, a laminate type, a cylindrical type, and a square type.
  • the manufacturing method of the battery of this invention will not be specifically limited if it is a method which can obtain the battery mentioned above, The method similar to the manufacturing method of a general battery can be used.
  • the battery of the present invention is an all-solid battery
  • a material constituting the positive electrode active material layer, a material constituting the solid electrolyte layer, and a material constituting the negative electrode active material layer are sequentially provided.
  • Examples of the method include producing a power generation element by pressing, housing the power generation element inside the battery case, and caulking the battery case.
  • the method for producing a sulfide solid electrolyte material of the present invention can be roughly divided into two embodiments. Then, the manufacturing method of the sulfide solid electrolyte material of this invention is divided and demonstrated to a 1st embodiment and a 2nd embodiment.
  • the manufacturing method of the sulfide solid electrolyte material of 1st embodiment is a manufacturing method of the sulfide solid electrolyte material described in "A. Sulfide solid electrolyte material 1. 1st embodiment", Comprising: Ion conductive material synthesis for synthesizing an amorphous ion conductive material by mechanical milling using a raw material composition containing Li element, Si element, P element, S element, and O element And a heating step of obtaining the sulfide solid electrolyte material by heating the amorphous ion conductive material.
  • a solid electrolyte material can be obtained. Therefore, a sulfide solid electrolyte material having good ion conductivity can be obtained.
  • the raw material composition contains an O element, a sulfide solid electrolyte material in which a decrease in charge / discharge efficiency is suppressed can be obtained.
  • each step in the first embodiment is preferably performed in a non-oxygen atmosphere. This is because the amount of oxygen contained in the raw material composition can be made equal to the amount of oxygen contained in the obtained sulfide solid electrolyte material.
  • the non-oxygen atmosphere include an inert gas atmosphere and a vacuum atmosphere.
  • FIG. 4 is an explanatory view showing an example of a method for producing a sulfide solid electrolyte material of the first embodiment.
  • a raw material composition is prepared by mixing Li 2 S, P 2 S 5 , Li 2 O and SiO 2 .
  • the raw material composition in an inert gas atmosphere.
  • the raw material composition is ball milled to obtain an amorphous ion conductive material.
  • the amorphous ion conductive material is heated to improve the crystallinity, thereby obtaining a sulfide solid electrolyte material.
  • an ion conductive material that has been made amorphous once is synthesized.
  • the ion conductive material synthesizing step in the first embodiment is performed by mechanical milling using a raw material composition containing the Li element, the Si element, the P element, the S element, and the O element. This is a step of synthesizing the ionized conductive material.
  • the raw material composition in the first embodiment is not particularly limited as long as it contains Li element, Si element, P element, S element, and O element.
  • the compound containing Li element include a sulfide of Li and an oxide of Li.
  • Specific examples of the sulfide of Li include Li 2 S.
  • Specific examples of the oxide of Li include Li 2 O.
  • the monovalent or divalent element may be a simple substance, a sulfide, or an oxide. good.
  • monovalent or divalent sulfides include Na 2 S, K 2 S, MgS, CaS, and ZnS.
  • the monovalent or divalent oxide include Na 2 O, K 2 O, MgO, CaO, and ZnO.
  • the compound containing Si element examples include a simple substance of Si, an oxide of Si, and a sulfide of Si.
  • Specific examples of the sulfide of Si include SiS 2 and Li 4 SiS 4 .
  • Specific examples of the Si oxide include SiO 2 , Li 4 SiO 4 , and Li 2 SiO 3 .
  • the raw material composition preferably contains a material having a Si—O bond. This is because a sulfide solid electrolyte material that is less susceptible to reductive decomposition can be obtained.
  • the material having an Si—O bond examples include SiO 2 , Li 4 Si (S x O 1-x ) 4 (0 ⁇ x ⁇ 1), Li 2 SiO 3 and the like.
  • the raw material composition contains SiO 2 .
  • the compound containing P element include P alone, P oxide, P sulfide, and the like.
  • Specific examples of the P sulfide include P 2 S 5 and Li 3 PS 4 .
  • Specific examples of P oxide include P 2 O 5 and Li 3 PO 4 .
  • the trivalent, tetravalent or pentavalent element may be a simple substance or a sulfide. It may be an oxide or an oxide.
  • sulfides of trivalent, tetravalent, or pentavalent elements include Me 2 S 3 (Me is a trivalent element, for example, Al, B, Ga, In, and Sb), MeS 2 (Me is four).
  • a valence element for example Ge, Sn, Zr, Ti, Nb
  • Me 2 S 5 Me is a pentavalent element, for example V
  • Li 5 MeS 4 (Me is a trivalent element)
  • Li 4 MeS 4 Me is a tetravalent element, for example, Ge, Sn, Zr, Ti, Nb
  • Li 3 MeS 4 Me is a pentavalent element such as V.
  • oxides of trivalent, tetravalent, or pentavalent elements include Me 2 O 3 (Me is a trivalent element such as Al, B, Ga, In, and Sb), MeO 2 (Me is a tetravalent element).
  • Valent elements such as Ge, Sn, Zr, Ti, and Nb), Me 2 O 5 (Me is a pentavalent element, such as V), and Li 5 MeO 4 (Me is a trivalent element).
  • Elements such as Al, B, Ga, In, and Sb), Li 4 MeO 4 (Me is a tetravalent element, such as Ge, Sn, Zr, Ti, and Nb), Li 3 MeO 4. (Me is a pentavalent element such as V).
  • the raw material composition is Li (4-x) Si (1-x) P x (S 1-y O y ) 4 (x satisfies 0 ⁇ x ⁇ 1 and y is 0.2 ⁇ y It is preferable to have a composition of This is because a sulfide solid electrolyte material having high ion conductivity can be obtained.
  • the composition of Li (4-x) Si (1-x) P x S 4 having no O element corresponds to the composition of the solid solution of Li 3 PS 4 and Li 4 SiS 4 .
  • Mechanical milling is a method of crushing a sample while applying mechanical energy.
  • an amorphous ion conductive material is synthesized by applying mechanical energy to the raw material composition.
  • Examples of such mechanical milling include a vibration mill, a ball mill, a turbo mill, a mechanofusion, a disk mill, and the like, and among them, a vibration mill and a ball mill are preferable.
  • the conditions of the vibration mill are not particularly limited as long as an amorphous ion conductive material can be obtained.
  • the vibration amplitude of the vibration mill is, for example, preferably in the range of 5 mm to 15 mm, and more preferably in the range of 6 mm to 10 mm.
  • the vibration frequency of the vibration mill is, for example, preferably in the range of 500 rpm to 2000 rpm, and more preferably in the range of 1000 rpm to 1800 rpm.
  • the filling rate of the sample of the vibration mill is, for example, preferably in the range of 1 to 80% by volume, more preferably in the range of 5 to 60% by volume, and particularly in the range of 10 to 50% by volume.
  • a vibrator for example, an alumina vibrator
  • the conditions of the ball mill are not particularly limited as long as an amorphous ion conductive material can be obtained.
  • the rotation speed of the platform when performing the planetary ball mill is preferably in the range of 200 rpm to 500 rpm, and more preferably in the range of 250 rpm to 400 rpm.
  • the treatment time when performing the planetary ball mill is preferably in the range of, for example, 1 hour to 100 hours, and more preferably in the range of 1 hour to 70 hours.
  • Heating step in the first embodiment is a step of obtaining the sulfide solid electrolyte material by heating the amorphous ion conductive material.
  • the crystallinity is improved by heating the amorphized ion conductive material.
  • the temperature is preferably equal to or higher than the crystallization temperature of the phase.
  • the heating temperature is preferably 300 ° C. or higher, more preferably 350 ° C. or higher, further preferably 400 ° C. or higher, and particularly preferably 450 ° C. or higher.
  • the heating temperature is preferably 1000 ° C. or less, more preferably 700 ° C. or less, further preferably 650 ° C. or less, and particularly preferably 600 ° C. or less.
  • the heating in the first embodiment is preferably performed in an inert gas atmosphere or in vacuum from the viewpoint of preventing oxidation.
  • the sulfide solid electrolyte material obtained by the first embodiment is the same as the contents described in the above-mentioned “A. Sulfide solid electrolyte material 1. First embodiment”. .
  • a method for producing a sulfide solid electrolyte material according to a second embodiment is the method for producing a sulfide solid electrolyte material described in “A. Sulfide solid electrolyte material 2. Second embodiment”. Li element, the M a element, with the M b element, the S element, and a raw material composition containing the O elements, by mechanical milling, ion conductivity of synthesizing amorphized ion conductive material The method includes a material synthesis step and a heating step of obtaining the sulfide solid electrolyte material by heating the amorphous ion conductive material.
  • the octahedron O, the tetrahedron T 1, and the tetrahedron T 2 are made to have a predetermined crystal structure (amorphization is performed in the ion conductive material synthesis step and then the heating step is performed).
  • a sulfide solid electrolyte material having a three-dimensional structure can be obtained. Therefore, a sulfide solid electrolyte material having good ion conductivity can be obtained.
  • the raw material composition contains an O element, a sulfide solid electrolyte material in which a decrease in charge / discharge efficiency is suppressed can be obtained.
  • the ion conductive material synthesizing step and the heating step in the second embodiment are basically the same as the contents described in the above-mentioned “C. Method for producing sulfide solid electrolyte material 1. First embodiment”. The description here is omitted. It is preferable to set various conditions so that a desired sulfide solid electrolyte material can be obtained.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.
  • Li 2 S lithium sulfide
  • P 2 S 5 diphosphorus pentasulfide
  • the obtained Li 3 PS 4 powder and Li 4 SiO 4 powder (manufactured by Alfa) were mixed in a weight ratio shown in Table 1 in a glove box under an argon atmosphere to obtain a raw material composition.
  • This container was attached to a planetary ball mill (P7 made by Fritsch), and mechanical milling was performed at a base plate rotation speed of 370 rpm for 40 hours. Thereby, an amorphous ion conductive material was obtained.
  • the obtained ion conductive material powder was placed in a carbon-coated quartz tube and vacuum-sealed.
  • the pressure of the vacuum sealed quartz tube was about 30 Pa.
  • the quartz tube was placed in a firing furnace, heated from room temperature to 550 ° C. over 6 hours, maintained at 550 ° C. for 8 hours, and then gradually cooled to room temperature.
  • a crystalline sulfide solid electrolyte material having a composition of Li 3.25 Si 0.25 P 0.75 (S 0.75 O 0.25 ) 4 was obtained.
  • Example 1-2 A crystalline sulfide solid electrolyte material was obtained in the same manner as in Example 1-1 except that the weight ratios of the Li 3 PS 4 powder and the Li 4 SiO 4 powder were changed to the weight ratios shown in Table 1. .
  • Example 1-3 A crystalline sulfide solid electrolyte material was obtained in the same manner as in Example 1-1 except that the weight ratios of the Li 3 PS 4 powder and the Li 4 SiO 4 powder were changed to the weight ratios shown in Table 1. .
  • Example 1-1 A crystalline sulfide solid electrolyte material was obtained in the same manner as in Example 1-1 except that the weight ratios of the Li 3 PS 4 powder and the Li 4 SiO 4 powder were changed to the weight ratios shown in Table 1. .
  • Example 1-2 A crystalline sulfide solid electrolyte material was obtained in the same manner as in Example 1-1 except that the weight ratios of the Li 3 PS 4 powder and the Li 4 SiO 4 powder were changed to the weight ratios shown in Table 1. .
  • Example 2 As starting materials, lithium sulfide (Li 2 S, manufactured by Nippon Chemical Industry Co., Ltd.), lithium oxide (Li 2 O, manufactured by High-Purity Chemical Laboratory), diphosphorus pentasulfide (P 2 S 5 , manufactured by Aldrich), silicon oxide (SiO 2 , manufactured by High Purity Chemical Laboratory) was used. These powders were mixed in a weight ratio shown in Table 2 in a glove box under an argon atmosphere to obtain a raw material composition. A crystalline sulfide solid electrolyte material was obtained in the same manner as in Example 1-1 except that the obtained raw material composition was used.
  • Example 3 As starting materials, lithium sulfide (Li 2 S, manufactured by Nippon Chemical Industry Co., Ltd.), lithium oxide (Li 2 O, manufactured by High Purity Chemical Research Laboratory), diphosphorus pentasulfide (P 2 S 5 , manufactured by Aldrich), silicon sulfide (SiS 2 , manufactured by High Purity Chemical Laboratory) was used. These powders were mixed in a weight ratio shown in Table 2 in a glove box under an argon atmosphere to obtain a raw material composition. A crystalline sulfide solid electrolyte material was obtained in the same manner as in Example 1-1 except that the obtained raw material composition was used.
  • X-ray diffraction (XRD) measurement was performed using the sulfide solid electrolyte materials obtained in Examples 1-1 to 1-3 and Comparative Examples 1-1 and 1-2. XRD measurement was performed on the powder sample under an inert atmosphere and using CuK ⁇ rays. The result is shown in FIG. As shown in FIG. 5, it was confirmed that the above-described crystal phase A was formed in Examples 1-1 to 1-3. On the other hand, in Comparative Examples 1-1 and 1-2, it was confirmed that the above-described crystal phase A was not formed.
  • Batteries for evaluation were prepared using the sulfide solid electrolyte materials obtained in Examples 1-2, 2, and 3, Reference Example 1, and Comparative Examples 2 and 3, and the charge / discharge efficiency was evaluated.
  • 100 mg of Li 3 PS 4 powder synthesized in Example 1-1 was weighed, placed in a cylinder made by Macor, and pressed at a pressure of 1 ton / cm 2 to obtain a solid electrolyte layer.
  • the sulfide solid electrolyte material and the graphite powder are mixed at a weight ratio of 50:50, 12 mg of the obtained powder is weighed, placed on one surface of the solid electrolyte layer, and pressed at a pressure of 4 ton / cm 2.
  • the working electrode was obtained.
  • the reference electrode LiIn foil was placed on the other surface of the solid electrolyte layer, pressed at a pressure of 1 ton / cm 2 , and bolted at 6 Ncm to obtain a battery for evaluation.
  • the working electrode was charged to ⁇ 0.62 V with respect to the reference electrode, and then discharged to 1 V.
  • the current density was 0.15 mA / cm 2 .
  • Li ion conductivity at 25 ° C. was measured. First, 200 mg of the sulfide solid electrolyte material was weighed, placed in a cylinder made by Macor, and pressed at a pressure of 4 ton / cm 2 . Both ends of the obtained pellet were sandwiched between SUS pins, and restraint pressure was applied to the pellet by bolting to obtain an evaluation cell. With the evaluation cell kept at 25 ° C., Li ion conductivity was calculated by the AC impedance method.
  • a Solartron 1260 was used, and the applied voltage was 5 mV and the measurement frequency range was 0.01 to 1 MHz. Moreover, the temperature at the time of a measurement was changed, the Arrhenius plot was produced from Li ion conductivity in each temperature, and activation energy was computed. The result is shown in FIG. As shown in FIG. 9, it was suggested that x preferably satisfies 0.65 ⁇ x ⁇ 0.75. Similarly, it was suggested that y preferably satisfies 0.25 ⁇ y ⁇ 0.35.
  • Equation (1) Ge in the crystal phase A is a representation that the state of the four-coordinate has been GeS 4 tetrahedra in S
  • formula (2) is, Si in the crystal phase A is , which expresses that the state of the four-coordinate has been SiS 4 tetrahedra to S
  • the formula (3) is in the crystal phase
  • a Si is the SiO 4 tetrahedra which are four-coordinate in O It represents the state.
  • FIG. 10 it was suggested that Si was lower than Ge and had a lower reductive decomposition potential and was electrochemically stable. Furthermore, it was suggested that the electrochemical stability is further improved by selectively coordinating O to Si. That is, from the viewpoint of electrochemical stability, it was suggested that Si—O bond is preferable to Si—S bond, and that a SiO 4 tetrahedron is more preferable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Silicon Compounds (AREA)
  • Conductive Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Glass Compositions (AREA)

Abstract

 本発明は、イオン伝導性が良好であり、かつ、充放電効率の低下を抑制した硫化物固体電解質材料を提供することを課題とする。 本発明は、Li元素、Si元素、P元素、S元素、およびO元素を含有し、CuKα線を用いたX線回折測定における2θ=29.58°±0.50°の位置にピークを有し、2θ=27.33°±0.50°のピークを有しないか、上記2θ=29.58°±0.50°のピークの回折強度をIとし、2θ=27.33°±0.50°のピークの回折強度をIとした場合に、I/Iの値が1以下であり、上記S元素および上記O元素の合計に対する上記O元素のモル分率が0.2より大きいことを特徴とする硫化物固体電解質材料を提供することにより、上記課題を解決する。

Description

硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
 本発明は、イオン伝導性が良好であり、かつ、充放電効率の低下を抑制した硫化物固体電解質材料に関する。
 近年におけるパソコン、ビデオカメラおよび携帯電話等の情報関連機器や通信機器等の急速な普及に伴い、その電源として利用される電池の開発が重要視されている。また、自動車産業界等においても、電気自動車用あるいはハイブリッド自動車用の高出力かつ高容量の電池の開発が進められている。現在、種々の電池の中でも、エネルギー密度が高いという観点から、リチウム電池が注目を浴びている。
 現在市販されているリチウム電池は、可燃性の有機溶媒を含む電解液が使用されているため、短絡時の温度上昇を抑える安全装置の取り付けや短絡防止のための構造・材料面での改善が必要となる。これに対し、電解液を固体電解質層に変えて、電池を全固体化したリチウム電池は、電池内に可燃性の有機溶媒を用いないので、安全装置の簡素化が図れ、製造コストや生産性に優れると考えられている。
 全固体リチウム電池に用いられる固体電解質材料として、硫化物固体電解質材料が知られている。例えば、非特許文献1においては、Li(4-x)Ge(1-x)の組成を有するLiイオン伝導体(硫化物固体電解質材料)が開示されている。また、特許文献1においては、X線回折測定において特定のピークを有するLiGePS系の硫化物固体電解質材料が開示されている。さらに、非特許文献2には、LiGePS系の硫化物固体電解質材料が開示されている。
国際公開第2011/118801号
Ryoji Kanno et al., "Lithium Ionic Conductor Thio-LISICON The Li2S-GeS2-P2S5 System", Journal of The Electrochemical Society, 148 (7) A742-A746 (2001) Noriaki Kamaya et al., "A lithium superionic conductor", Nature Materials, Advanced online publication, 31 July 2011, DOI:10.1038/NMAT3066
 電池の高出力化の観点から、イオン伝導性が良好な固体電解質材料が求められている。特許文献1には、X線回折測定において特定のピークを有する結晶相の割合が高い硫化物固体電解質材料は、良好なイオン伝導性を有することが開示されている。一方、特許文献1に記載されたLiGePS系の硫化物固体電解質材料は、還元電位が比較的高く、作動電位が低い負極活物質(例えばグラファイト)とともに電池に用いると、還元分解し、充放電効率が低下するという問題がある。
 本発明は、上記問題点に鑑みてなされたものであり、イオン伝導性が良好であり、かつ、充放電効率の低下を抑制した硫化物固体電解質材料を提供することを主目的とする。
 上記課題を解決するために、本発明においては、Li元素、Si元素、P元素、S元素、およびO元素を含有し、CuKα線を用いたX線回折測定における2θ=29.58°±0.50°の位置にピークを有し、CuKα線を用いたX線回折測定における2θ=27.33°±0.50°の位置にピークを有しないか、上記2θ=27.33°±0.50°の位置にピークを有する場合、上記2θ=29.58°±0.50°のピークの回折強度をIとし、上記2θ=27.33°±0.50°のピークの回折強度をIとした際に、I/Iの値が1以下であり、上記S元素および上記O元素の合計に対する上記O元素のモル分率(O/(S+O))が、0.2より大きいことを特徴とする硫化物固体電解質材料を提供する。
 本発明によれば、2θ=29.58°付近のピークを有する結晶相の割合が高いため、イオン伝導性が良好な硫化物固体電解質材料とすることができる。さらに、Li元素、Si元素、P元素、S元素を有する硫化物固体電解質材料に、O元素を導入することにより、充放電効率の低下を抑制した硫化物固体電解質材料とすることができる。
 また、本発明においては、Li元素およびS元素から構成される八面体Oと、M元素およびS元素から構成される四面体Tと、M元素およびS元素から構成される四面体Tとを有し、上記四面体Tおよび上記八面体Oは稜を共有し、上記四面体Tおよび上記八面体Oは頂点を共有する結晶構造を主体として含有し、上記Mおよび上記Mの少なくとも一方は、Siを含み、上記Mおよび上記Mの少なくとも一方は、Pを含み、上記四面体Tおよび上記四面体Tの少なくとも一つは、上記Si元素に結合する上記S元素の一部または全部がO元素に置換されたものであり、上記S元素および上記O元素の合計に対する上記O元素のモル分率(O/(S+O))が、0.2より大きいことを特徴とする硫化物固体電解質材料を提供する。
 本発明によれば、八面体O、四面体Tおよび四面体Tが所定の結晶構造(三次元構造)を有することから、イオン伝導性が良好な硫化物固体電解質材料とすることができる。さらに、四面体Tおよび四面体Tの少なくとも一つは、Si元素に結合するS元素の一部または全部がO元素に置換されたものであるため、充放電効率の低下を抑制した硫化物固体電解質材料とすることができる。
 上記発明においては、上記モル分率(O/(S+O))が、0.25≦O/(S+O)≦0.35を満たすことが好ましい。
 上記発明においては、上記P元素および上記Si元素の合計に対する上記P元素のモル分率(P/(P+Si))が、0.65≦P/(P+Si)≦0.75を満たすことが好ましい。
 また、本発明においては、正極活物質を含有する正極活物質層と、負極活物質を含有する負極活物質層と、上記正極活物質層および上記負極活物質層の間に形成された電解質層とを含有する電池であって、上記正極活物質層、上記負極活物質層および上記電解質層の少なくとも一つが、上述した硫化物固体電解質材料を含有することを特徴とする電池を提供する。
 本発明によれば、上述した硫化物固体電解質材料を用いることにより、充放電効率が高い電池とすることができる。
 また、本発明においては、上述したピーク強度比を有する硫化物固体電解質材料の製造方法であって、上記Li元素、上記Si元素、上記P元素、上記S元素、および上記O元素を含有する原料組成物を用いて、メカニカルミリングにより、非晶質化したイオン伝導性材料を合成するイオン伝導性材料合成工程と、上記非晶質化したイオン伝導性材料を加熱することにより、上記硫化物固体電解質材料を得る加熱工程と、を有することを特徴とする硫化物固体電解質材料の製造方法を提供する。
 本発明によれば、イオン伝導性材料合成工程で非晶質化を行い、その後、加熱工程を行うことにより、2θ=29.58°付近のピークを有する結晶相の割合が高い硫化物固体電解質材料を得ることができる。そのため、イオン伝導性が良好な硫化物固体電解質材料を得ることができる。さらに、原料組成物がO元素を含有することから、充放電効率の低下を抑制した硫化物固体電解質材料を得ることができる。
 また、本発明においては、上述した結晶構造を有する硫化物固体電解質材料の製造方法であって、上記Li元素、上記M元素、上記M元素、上記S元素、および上記O元素を含有する原料組成物を用いて、メカニカルミリングにより、非晶質化したイオン伝導性材料を合成するイオン伝導性材料合成工程と、上記非晶質化したイオン伝導性材料を加熱することにより、上記硫化物固体電解質材料を得る加熱工程と、を有することを特徴とする硫化物固体電解質材料の製造方法を提供する。
 本発明によれば、イオン伝導性材料合成工程で非晶質化を行い、その後、加熱工程を行うことにより、八面体O、四面体Tおよび四面体Tが所定の結晶構造(三次元構造)を有する硫化物固体電解質材料を得ることができる。そのため、イオン伝導性が良好な硫化物固体電解質材料を得ることができる。さらに、原料組成物がO元素を含有することから、充放電効率の低下を抑制した硫化物固体電解質材料を得ることができる。
 上記発明においては、上記原料組成物が、Si-O結合を有する材料を含有することが好ましい。
 本発明においては、イオン伝導性が良好であり、かつ、充放電効率の低下を抑制した硫化物固体電解質材料を得ることができるという効果を奏する。
イオン伝導性の高い硫化物固体電解質材料と、イオン伝導性の低い硫化物固体電解質材料との違いを説明するX線回折スペクトルである。 本発明の硫化物固体電解質材料の結晶構造の一例を説明する斜視図である。 本発明の電池の一例を示す概略断面図である。 本発明の硫化物固体電解質材料の製造方法の一例を示す説明図である。 実施例1-1~1-3および比較例1-1、1-2で得られた硫化物固体電解質材料のX線回折スペクトルである。 実施例2、3、参考例1および比較例2、3で得られた硫化物固体電解質材料のX線回折スペクトルである。 実施例1-2、2、3、参考例1、比較例2、3で得られた硫化物固体電解質材料を用いた電池に対する、充放電効率測定の結果である。 実施例1-2、2、3で得られた硫化物固体電解質材料を用いた電池に対する、充放電効率測定の結果である。 実施例1-1~1-3、比較例1-1、1-2で得られた硫化物固体電解質材料のLiイオン伝導度の測定結果である。 還元分解電位に関する第一原理計算の結果である。
 以下、本発明の硫化物固体電解質材料、電池、および硫化物固体電解質材料の製造方法について、詳細に説明する。
A.硫化物固体電解質材料
 まず、本発明の硫化物固体電解質材料について説明する。本発明の硫化物固体電解質材料は、2つの実施態様に大別することができる。そこで、本発明の硫化物固体電解質材料について、第一実施態様および第二実施態様に分けて説明する。
1.第一実施態様
 第一実施態様の硫化物固体電解質材料は、Li元素、Si元素、P元素、S元素、およびO元素を含有し、CuKα線を用いたX線回折測定における2θ=29.58°±0.50°の位置にピークを有し、CuKα線を用いたX線回折測定における2θ=27.33°±0.50°の位置にピークを有しないか、上記2θ=27.33°±0.50°の位置にピークを有する場合、上記2θ=29.58°±0.50°のピークの回折強度をIとし、上記2θ=27.33°±0.50°のピークの回折強度をIとした際に、I/Iの値が1以下であり、上記S元素および上記O元素の合計に対する上記O元素のモル分率(O/(S+O))が、0.2より大きいことを特徴とするものである。
 第一実施態様によれば、2θ=29.58°付近のピークを有する結晶相の割合が高いため、イオン伝導性が良好な硫化物固体電解質材料とすることができる。さらに、Li元素、Si元素、P元素、S元素を有する硫化物固体電解質材料に、O元素を導入することにより、充放電効率の低下を抑制した硫化物固体電解質材料とすることができる。また、上述したように、特許文献1に記載されたLiGePS系の硫化物固体電解質材料は、還元電位が比較的高く、作動電位が低い負極活物質(例えばグラファイト)とともに電池に用いると、硫化物固体電解質材料が還元分解しやすい。これは、硫化物固体電解質材料に含まれるGe元素が還元しやすいためであると推測される。これに対して、第一実施態様においては、Ge元素をSi元素に変更することで、還元分解が生じにくい硫化物固体電解質材料とすることができる。さらに、第一実施態様においては、Si元素と結合するS元素の一部または全部をO元素に変更することで、さらに還元分解が生じにくい硫化物固体電解質材料とすることができる。これは、Si-S結合に比べて、Si-O結合が、より還元しにくいためであると推測される。
 図1は、イオン伝導性が高い硫化物固体電解質材料と、イオン伝導性が低い硫化物固体電解質材料との違いを説明するX線回折スペクトルである。なお、図1における2つの硫化物固体電解質材料は、第一実施態様のLiSiPS系の硫化物固体電解質材料ではなく、LiGePS系の硫化物固体電解質材料であるが、ここでは、便宜的にLiGePS系の硫化物固体電解質材料を用いて、結晶構造によるイオン伝導性の違いを説明する。図1における2つの硫化物固体電解質材料は、ともにLi3.25Ge0.250.75の組成を有するものである。図1において、イオン伝導性が高い硫化物固体電解質材料は、2θ=29.58°±0.50°の位置、および、2θ=27.33°±0.50°の位置にピークを有する。また、図1において、イオン伝導性が低い硫化物固体電解質材料も同様のピークを有する。ここで、2θ=29.58°付近のピークを有する結晶相と、2θ=27.33°付近のピークを有する結晶相とは、互いに異なる結晶相であると考えられる。なお、第一実施態様においては、2θ=29.58°付近のピークを有する結晶相を「結晶相A」と称し、2θ=27.33°付近のピークを有する結晶相を「結晶相B」と称する場合がある。なお、このイオン伝導性が高い硫化物固体電解質材料は、後述するように、第二実施態様の硫化物固体電解質材料と同様の結晶構造を有するものである。
 結晶相A、Bは、ともにイオン伝導性を示す結晶相であるが、そのイオン伝導性には違いがある。結晶相Aは、結晶相Bに比べて、イオン伝導性が顕著に高いと考えられる。
 また、第一実施態様においては、イオン伝導性が低い硫化物固体電解質材料と区別するため、2θ=29.58°付近のピークの回折強度をIとし、2θ=27.33°付近のピークの回折強度をIとし、I/Iの値を1以下に規定している。また、イオン伝導性の観点からは、第一実施態様における硫化物固体電解質材料は、イオン伝導性の高い結晶相Aの割合が高いことが好ましい。そのため、I/Iの値はより小さいことが好ましく、具体的には、0.55以下であることが好ましく、0.45以下であることがより好ましく、0.25以下であることがさらに好ましく、0.15以下であることが特に好ましく、0.07以下であることが極めて好ましい。また、I/Iの値は0であることが好ましい。言い換えると、第一実施態様の硫化物固体電解質材料は、結晶相Bのピークである2θ=27.33°付近のピークを有しないことが好ましい。
 第一実施態様の硫化物固体電解質材料は、2θ=29.58°付近にピークを有する。このピークは、上述したように、イオン伝導性の高い結晶相Aのピークの一つである。ここで、2θ=29.58°は実測値であり、材料組成等によって結晶格子が若干変化し、ピークの位置が2θ=29.58°から多少前後する場合がある。そのため、第一実施態様においては、結晶相Aの上記ピークを、29.58°±0.50°の位置のピークとして定義する。結晶相Aは、通常、2θ=17.38°、20.18°、20.44°、23.56°、23.96°、24.93°、26.96°、29.07°、29.58°、31.71°、32.66°、33.39°のピークを有すると考えられる。なお、これらのピーク位置も、±0.50°の範囲(中でも±0.30°の範囲、特に±0.10°の範囲)で前後する場合がある。
 一方、2θ=27.33°付近のピークは、上述したように、イオン伝導性の低い結晶相Bのピークの一つである。ここで、2θ=27.33°は実測値であり、材料組成等によって結晶格子が若干変化し、ピークの位置が2θ=27.33°から多少前後する場合がある。そのため、第一実施態様においては、結晶相Bの上記ピークを、27.33°±0.50°の位置のピークとして定義する。結晶相Bは、通常、2θ=17.46°、18.12°、19.99°、22.73°、25.72°、27.33°、29.16°、29.78°のピークを有すると考えられる。なお、これらのピーク位置も、±0.50°の範囲(中でも±0.30°の範囲、特に±0.10°の範囲)で前後する場合がある。
 また、第一実施態様の硫化物固体電解質材料は、Li元素、Si元素、P元素、S元素、およびO元素を含有するものである。第一実施態様の硫化物固体電解質材料は、Li元素、Si元素、P元素、S元素、およびO元素のみから構成されていても良く、他の元素をさらに含有していても良い。例えば、上記Li元素の一部は、一価または二価の元素で置換されていても良い。一価または二価の元素としては、例えば、Na、K、Mg、Ca、Znからなる群から選択される少なくとも一種を挙げることができる。なお、一価または二価の元素の量は、Li元素の量よりも少ないことが好ましい。
 また、Si元素の一部は、三価、四価または五価の元素で置換されていても良い。同様に、P元素の一部も、三価、四価または五価の元素で置換されていても良い。三価、四価または五価の元素としては、例えば、Sb、Ge、Sn、B、Al、Ga、In、Ti、Zr、V、Nbからなる群から選択される一種を挙げることができる。なお、三価、四価または五価の元素の量は、Si元素またはP元素の量よりも少ないことが好ましく、特に、硫化物固体電解質材料はGeを含有しないことが好ましい。
 また、第一実施態様の硫化物固体電解質材料は、S元素およびO元素を含有する。S元素およびO元素の合計に対するO元素のモル分率(O/(S+O))は、特に限定されるものではないが、例えば、0.2より大きいことが好ましく、0.25以上であることがより好ましく、0.26以上であることがさらに好ましい。上記モル分率が小さすぎると、還元分解電位を低くできない可能性があるからである。一方、上記モル分率(O/(S+O))は、特に限定されるものではない。第一原理計算で計算した結果、O/(S+O)が1に近い領域であっても、還元性向上の効果が生じることを確認した。中でも、O/(S+O)は、例えば、0.4より小さいことが好ましく、0.38以下であることがより好ましく、0.35以下であることがさらに好ましい。上記モル分率が大きすぎると、所定のI/Iの値を得ることができない可能性があるからである。なお、上記O元素のモル分率は、例えばXPS、EDXにより決定することができる。
 また、第一実施態様の硫化物固体電解質材料は、P元素およびSi元素を含有する。P元素およびSi元素の合計に対するP元素のモル分率(P/(P+Si))は、特に限定されるものではないが、例えば、0.6より大きいことが好ましく、0.65以上であることがより好ましい。上記モル分率が小さすぎると、イオン伝導性の高い硫化物固体電解質材料を得ることができない可能性があるからである。一方、上記モル分率(P/(P+Si))は、特に限定されるものではないが、例えば、0.8より小さいことが好ましく、0.75以下であることがより好ましい。上記モル分率が大きすぎると、イオン伝導性の高い硫化物固体電解質材料を得ることができない可能性があるからである。
 第一実施態様の硫化物固体電解質材料の組成は、特に限定されるものではないが、Li(4-x)Si(1-x)(S1-y(xは、0<x<1を満たし、yは、0.2<yを満たす)の組成であることが好ましい。還元分解が生じにくい硫化物固体電解質材料とすることができるからである。ここで、O元素を有しないLi(4-x)Si(1-x)の組成は、LiPSおよびLiSiSの固溶体の組成に該当する。すなわち、この組成は、LiPSおよびLiSiSのタイライン上の組成に該当する。なお、LiPSおよびLiSiSは、いずれもオルト組成に該当し、化学的安定性が高いという利点を有する。
 また、Li(4-x)Si(1-x)(S1-yにおけるxは、特に限定されるものではないが、例えば、0.6<xを満たすことが好ましく、0.65≦xを満たすことがより好ましい。一方、上記xは、例えば、x<0.8を満たすことが好ましく、x≦0.75を満たすことがより好ましい。上記yは、0.2<yを満たすことが好ましく、0.25≦yを満たすことがより好ましく、0.26≦yを満たすことがさらに好ましい。一方、上記yは、y<0.4を満たすことが好ましく、y≦0.38を満たすことがより好ましく、y≦0.35を満たすことがさらに好ましい。
 第一実施態様の硫化物固体電解質材料は、通常、結晶質の硫化物固体電解質材料である。また、第一実施態様の硫化物固体電解質材料は、イオン伝導性が高いことが好ましく、25℃における硫化物固体電解質材料のイオン伝導性は、1.0×10-4S/cm以上であることが好ましく、1.0×10-3S/cm以上であることがより好ましい。また、第一実施態様の硫化物固体電解質材料の形状は特に限定されるものではないが、例えば粉末状を挙げることができる。さらに、粉末状の硫化物固体電解質材料の平均粒径は、例えば0.1μm~50μmの範囲内であることが好ましい。
 第一実施態様の硫化物固体電解質材料は、高いイオン伝導性を有するものであるので、イオン伝導性を必要とする任意の用途に用いることができる。中でも、第一実施態様の硫化物固体電解質材料は、電池に用いられるものであることが好ましい。電池の高出力化に大きく寄与することができるからである。また、第一実施態様の硫化物固体電解質材料の製造方法については、後述する「C.硫化物固体電解質材料の製造方法」で詳細に説明する。また、第一実施態様の硫化物固体電解質材料は、後述する第二実施態様の特徴を兼ね備えたものであっても良い。
2.第二実施態様
 次に、本発明の硫化物固体電解質材料の第二実施態様について説明する。第二実施態様の硫化物固体電解質材料は、Li元素およびS元素から構成される八面体Oと、M元素およびS元素から構成される四面体Tと、M元素およびS元素から構成される四面体Tとを有し、上記四面体Tおよび上記八面体Oは稜を共有し、上記四面体Tおよび上記八面体Oは頂点を共有する結晶構造を主体として含有し、上記Mおよび上記Mの少なくとも一方は、Siを含み、上記Mおよび上記Mの少なくとも一方は、Pを含み、上記四面体Tおよび上記四面体Tの少なくとも一つは、上記Si元素に結合する上記S元素の一部または全部がO元素に置換されたものであり、上記S元素および上記O元素の合計に対する上記O元素のモル分率(O/(S+O))が、0.2より大きいことを特徴とするものである。
 第二実施態様によれば、八面体O、四面体Tおよび四面体Tが所定の結晶構造(三次元構造)を有することから、イオン伝導性が良好な硫化物固体電解質材料とすることができる。さらに、四面体Tおよび四面体Tの少なくとも一つは、Si元素に結合するS元素の一部または全部がO元素に置換されたものであるため、充放電効率の低下を抑制した硫化物固体電解質材料とすることができる。
 図2は、第二実施態様の硫化物固体電解質材料の結晶構造の一例を説明する斜視図である。図2に示す結晶構造において、八面体Oは、典型的には、中心元素としてLiを有し、八面体の頂点に6個のSを有するLiS八面体である。四面体Tは、中心元素としてMを有し、四面体の頂点に4個のS(なお、Sの一部または全部はOで置換されていても良い)を有しており、典型的にはSiO四面体およびPS四面体の両方である。四面体Tは、中心元素としてMを有し、四面体の頂点に4個のS(なお、Sの一部はOで置換されていても良い)を有しており、典型的にはPS四面体である。第二実施態様の硫化物固体電解質材料は、四面体Tおよび四面体Tの少なくとも一つは、Si元素に結合するS元素の一部または全部がO元素に置換されたものである。なお、S元素の一部または全部がO元素に置換されていることは、例えば、リートベルト法によるXRDパターンの解析、中性子回折等により確認することができる。さらに、四面体Tおよび八面体Oは稜を共有し、四面体Tおよび八面体Oは頂点を共有している。
 第二実施態様の硫化物固体電解質材料は、上記結晶構造を主体として含有することを大きな特徴とする。硫化物固体電解質材料の全結晶構造における上記結晶構造の割合は特に限定されるものではないが、より高いことが好ましい。イオン伝導性の高い硫化物固体電解質材料とすることができるからである。上記結晶構造の割合は、具体的には、70wt%以上であることが好ましく、90wt%以上であることがより好ましい。なお、上記結晶構造の割合は、例えば、放射光XRDにより測定することができる。特に、第二実施態様の硫化物固体電解質材料は、上記結晶構造の単相材料であることが好ましい。イオン伝導性を極めて高くすることができるからである。
 また、第二実施態様において、Siを中心元素とする四面体Tまたは四面体Tを、SiS4-x(xは、0≦x≦4を満たす整数)で表した場合、xが大きい四面体の割合が多いことが好ましい。より還元分解が生じにくい硫化物固体電解質材料とすることができるからである。具体的には、硫化物固体電解質材料に含まれるSiS4-xで表される全ての四面体に対して、SiOのモル分率が最も多いことが好ましい。なお、SiOのモル分率は、NMR、XAFSにより測定することができる。
 なお、第二実施態様において、M元素およびM元素の少なくとも一方はSi元素を含む。Si元素以外の元素としては、例えば、三価、四価または五価の元素を挙げることができる。また、第二実施態様において、M元素およびM元素の少なくとも一方はP元素を含む。P元素以外の元素としては、例えば、三価、四価または五価の元素を挙げることができる。三価、四価または五価の元素としては、例えば、Sb、Ge、Sn、B、Al、Ga、In、Ti、Zr、V、Nbからなる群から選択される一種を挙げることができる。
B.電池
 次に、本発明の電池について説明する。本発明の電池は、正極活物質を含有する正極活物質層と、負極活物質を含有する負極活物質層と、上記正極活物質層および上記負極活物質層の間に形成された電解質層とを含有する電池であって、上記正極活物質層、上記負極活物質層および上記電解質層の少なくとも一つが、上述した硫化物固体電解質材料を含有することを特徴とするものである。
 本発明によれば、上述した硫化物固体電解質材料を用いることにより、充放電効率が高い電池とすることができる。
 図3は、本発明の電池の一例を示す概略断面図である。図3における電池10は、正極活物質を含有する正極活物質層1と、負極活物質を含有する負極活物質層2と、正極活物質層1および負極活物質層2の間に形成された電解質層3と、正極活物質層1の集電を行う正極集電体4と、負極活物質層2の集電を行う負極集電体5と、これらの部材を収納する電池ケース6とを有するものである。本発明においては、正極活物質層1、負極活物質層2および電解質層3の少なくとも一つが、上記「A.硫化物固体電解質材料」に記載した硫化物固体電解質材料を含有することを大きな特徴とする。
 以下、本発明の電池について、構成ごとに説明する。
1.電解質層
 本発明における電解質層は、正極活物質層および負極活物質層の間に形成される層である。電解質層は、イオンの伝導を行うことができる層であれば特に限定されるものではないが、固体電解質材料から構成される固体電解質層であることが好ましい。電解液を用いる電池に比べて、安全性の高い電池を得ることができるからである。さらに、本発明においては、固体電解質層が、上述した硫化物固体電解質材料を含有することが好ましい。固体電解質層に含まれる上記硫化物固体電解質材料の割合は、例えば10体積%~100体積%の範囲内、中でも50体積%~100体積%の範囲内であることが好ましい。特に、本発明においては、固体電解質層が上記硫化物固体電解質材料のみから構成されていることが好ましい。高出力な電池を得ることができるからである。固体電解質層の厚さは、例えば0.1μm~1000μmの範囲内、中でも0.1μm~300μmの範囲内であることが好ましい。また、固体電解質層の形成方法としては、例えば、固体電解質材料を圧縮成形する方法等を挙げることができる。
 また、本発明における電解質層は、電解液から構成される層であっても良い。電解液を用いる場合、固体電解質層を用いる場合に比べて安全性をさらに配慮する必要があるが、より高出力な電池を得ることができる。また、この場合は、通常、正極活物質層および負極活物質層の少なくとも一方が、上述した硫化物固体電解質材料を含有することになる。電解液は、通常、リチウム塩および有機溶媒(非水溶媒)を含有する。リチウム塩としては、例えばLiPF、LiBF、LiClO、LiAsF等の無機リチウム塩、およびLiCFSO、LiN(CFSO、LiN(CSO、LiC(CFSO等の有機リチウム塩等を挙げることができる。上記有機溶媒としては、例えばエチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ブチレンカーボネート(BC)等を挙げることができる。
2.正極活物質層
 本発明における正極活物質層は、少なくとも正極活物質を含有する層であり、必要に応じて、固体電解質材料、導電化材および結着材の少なくとも一つを含有していても良い。特に、本発明においては、正極活物質層が固体電解質材料を含有し、その固体電解質材料が、上述した硫化物固体電解質材料であることが好ましい。イオン伝導性の高い正極活物質層を得ることができるからである。正極活物質層に含まれる上記硫化物固体電解質材料の割合は、電池の種類によって異なるものであるが、例えば0.1体積%~80体積%の範囲内、中でも1体積%~60体積%の範囲内、特に10体積%~50体積%の範囲内であることが好ましい。また、正極活物質としては、例えばLiCoO、LiMnO、LiNiMn、LiVO、LiCrO、LiFePO、LiCoPO、LiNiO、LiNi1/3Co1/3Mn1/3等を挙げることができる。
 本発明における正極活物質層は、さらに導電化材を含有していても良い。導電化材の添加により、正極活物質層の導電性を向上させることができる。導電化材としては、例えばアセチレンブラック、ケッチェンブラック、カーボンファイバー等を挙げることができる。また、正極活物質層は、結着材を含有していても良い。結着材の種類としては、例えば、ポリテトラフルオロエチレン(PTFE)等のフッ素含有結着材等を挙げることができる。また、正極活物質層の厚さは、例えば0.1μm~1000μmの範囲内であることが好ましい。
3.負極活物質層
 次に、本発明における負極活物質層について説明する。本発明における負極活物質層は、少なくとも負極活物質を含有する層であり、必要に応じて、固体電解質材料、導電化材および結着材の少なくとも一つを含有していても良い。特に、本発明においては、負極活物質層が固体電解質材料を含有し、その固体電解質材料が、上述した硫化物固体電解質材料であることが好ましい。イオン伝導性の高い負極活物質層を得ることができるからである。負極活物質層に含まれる上記硫化物固体電解質材料の割合は、電池の種類によって異なるものであるが、例えば0.1体積%~80体積%の範囲内、中でも1体積%~60体積%の範囲内、特に10体積%~50体積%の範囲内であることが好ましい。また、負極活物質としては、例えば金属活物質およびカーボン活物質を挙げることができる。金属活物質としては、例えばIn、Al、SiおよびSn等を挙げることができる。一方、カーボン活物質としては、例えばメソカーボンマイクロビーズ(MCMB)、高配向性グラファイト(HOPG)、ハードカーボン、ソフトカーボン等を挙げることができる。なお、負極活物質層に用いられる導電化材および結着材については、上述した正極活物質層における場合と同様である。また、負極活物質層の厚さは、例えば0.1μm~1000μmの範囲内であることが好ましい。
4.その他の構成
 本発明の電池は、上述した電解質層、正極活物質層および負極活物質層を少なくとも有するものである。さらに通常は、正極活物質層の集電を行う正極集電体、および負極活物質層の集電を行う負極集電体を有する。正極集電体の材料としては、例えばSUS、アルミニウム、ニッケル、鉄、チタンおよびカーボン等を挙げることができ、中でもSUSが好ましい。一方、負極集電体の材料としては、例えばSUS、銅、ニッケルおよびカーボン等を挙げることができ、中でもSUSが好ましい。また、正極集電体および負極集電体の厚さや形状等については、電池の用途等に応じて適宜選択することが好ましい。また、本発明に用いられる電池ケースには、一般的な電池の電池ケースを用いることができる。電池ケースとしては、例えばSUS製電池ケース等を挙げることができる。
5.電池
 本発明の電池は、一次電池であっても良く、二次電池であっても良いが、中でも二次電池であることが好ましい。繰り返し充放電でき、例えば車載用電池として有用だからである。本発明の電池の形状としては、例えば、コイン型、ラミネート型、円筒型および角型等を挙げることができる。また、本発明の電池の製造方法は、上述した電池を得ることができる方法であれば特に限定されるものではなく、一般的な電池の製造方法と同様の方法を用いることができる。例えば、本発明の電池が全固体電池である場合、その製造方法の一例としては、正極活物質層を構成する材料、固体電解質層を構成する材料、および負極活物質層を構成する材料を順次プレスすることにより、発電要素を作製し、この発電要素を電池ケースの内部に収納し、電池ケースをかしめる方法等を挙げることができる。
C.硫化物固体電解質材料の製造方法
 次に、本発明の硫化物固体電解質材料の製造方法について説明する。本発明の硫化物固体電解質材料の製造方法は、2つの実施態様に大別することができる。そこで、本発明の硫化物固体電解質材料の製造方法について、第一実施態様および第二実施態様に分けて説明する。
1.第一実施態様
 第一実施態様の硫化物固体電解質材料の製造方法は、「A.硫化物固体電解質材料 1.第一実施態様」に記載した硫化物固体電解質材料の製造方法であって、上記Li元素、上記Si元素、上記P元素、上記S元素、および上記O元素を含有する原料組成物を用いて、メカニカルミリングにより、非晶質化したイオン伝導性材料を合成するイオン伝導性材料合成工程と、上記非晶質化したイオン伝導性材料を加熱することにより、上記硫化物固体電解質材料を得る加熱工程と、を有することを特徴とするものである。
 第一実施態様によれば、イオン伝導性材料合成工程で非晶質化を行い、その後、加熱工程を行うことにより、2θ=29.58°付近のピークを有する結晶相の割合が高い硫化物固体電解質材料を得ることができる。そのため、イオン伝導性が良好な硫化物固体電解質材料を得ることができる。さらに、原料組成物がO元素を含有することから、充放電効率の低下を抑制した硫化物固体電解質材料を得ることができる。なお、第一実施態様における各工程は、いずれも非酸素雰囲気下で行われることが好ましい。原料組成物に含まれる酸素量と、得られる硫化物固体電解質材料に含まれる酸素量とを等しくできるからである。非酸素雰囲気としては、具体的には、不活性ガス雰囲気下、真空雰囲気下等を挙げることができる。
 図4は、第一実施態様の硫化物固体電解質材料の製造方法の一例を示す説明図である。図4における硫化物固体電解質材料の製造方法では、まず、LiS、P、LiOおよびSiOを混合することにより、原料組成物を作製する。この際、空気中の水分によって原料組成物が劣化することを防止するために、不活性ガス雰囲気下で原料組成物を作製することが好ましい。次に、原料組成物にボールミルを行い、非晶質化したイオン伝導性材料を得る。次に、非晶質化したイオン伝導性材料を加熱し、結晶性を向上させることで、硫化物固体電解質材料を得る。
 第一実施態様においては、2θ=29.58°付近のピークを有する結晶相の割合が高い硫化物固体電解質材料を得ることができるが、以下、その理由について説明する。第一実施態様においては、従来の合成方法である固相法と異なり、一度、非晶質化したイオン伝導性材料を合成する。これにより、イオン伝導性の高い結晶相A(2θ=29.58°付近のピークを有する結晶相)が析出しやすい環境になり、その後の加熱工程により、結晶相Aを積極的に析出させることができると考えられる。非晶質化により結晶相Aが析出しやすい環境になる理由は、完全には明らかではないが、メカニカルミリングによりイオン伝導性材料における固溶域が変化し、結晶相Aが析出しにくい環境から析出しやすい環境に変化した可能性が考えられる。
 以下、第一実施態様の硫化物固体電解質材料の製造方法について、工程ごとに説明する。
(1)イオン伝導性材料合成工程
 まず、第一実施態様におけるイオン伝導性材料合成工程について説明する。第一実施態様におけるイオン伝導性材料合成工程は、上記Li元素、上記Si元素、上記P元素、上記S元素、および上記O元素を含有する原料組成物を用いて、メカニカルミリングにより、非晶質化したイオン伝導性材料を合成する工程である。
 第一実施態様における原料組成物は、Li元素、Si元素、P元素、S元素、およびO元素を含有するものであれば特に限定されるものではない。Li元素を含有する化合物は、例えば、Liの硫化物およびLiの酸化物を挙げることができる。Liの硫化物としては、具体的にはLiSを挙げることができる。Liの酸化物としては、具体的にはLiOを挙げることができる。Li元素の一部が一価または二価の元素で置換されている場合、一価または二価の元素は、単体であっても良く、硫化物であっても良く、酸化物であっても良い。一価または二価の元素の硫化物としては、例えば、NaS、KS、MgS、CaS、ZnS等を挙げることができる。一価または二価の元素の酸化物としては、例えば、NaO、KO、MgO、CaO、ZnO等を挙げることができる。
 Si元素を含有する化合物は、例えば、Siの単体、Siの酸化物、Siの硫化物等を挙げることができる。Siの硫化物としては、具体的にはSiS、LiSiS等を挙げることができる。Siの酸化物としては、具体的にはSiO、LiSiO、LiSiO等を挙げることができる。また、第一実施態様においては、原料組成物が、Si-O結合を有する材料を含有することが好ましい。より還元分解が生じにくい硫化物固体電解質材料を得ることができるからである。Si-O結合を有する材料としては、例えば、SiO、LiSi(S1-x(0≦x<1)、LiSiO等を挙げることができる。特に、第一実施態様においては、原料組成物が、SiOを含有することが好ましい。安価な材料を用いて、イオン伝導性が高く、還元分解が生じにくい硫化物固体電解質材料を得ることができるからである。また、P元素を含有する化合物は、例えば、Pの単体、Pの酸化物、Pの硫化物等を挙げることができる。Pの硫化物としては、具体的にはP、LiPS等を挙げることができる。Pの酸化物としては、具体的にはP、LiPO挙げることができる。
 Si元素またはP元素の一部が、三価、四価または五価の元素で置換されている場合、三価、四価または五価の元素は、単体であっても良く、硫化物であっても良く、酸化物であっても良い。三価、四価または五価の元素の硫化物としては、Me(Meは三価の元素であり、例えばAl、B、Ga、In、Sbである)、MeS(Meは四価の元素であり、例えばGe、Sn、Zr、Ti、Nbである)、Me(Meは五価の元素であり、例えばVである)LiMeS(Meは三価の元素であり、例えばAl、B、Ga、In、Sbである)、LiMeS(Meは四価の元素であり、例えばGe、Sn、Zr、Ti、Nbである)、LiMeS(Meは五価の元素であり、例えばVである)等を挙げることができる。三価、四価または五価の元素の酸化物としては、Me(Meは三価の元素であり、例えばAl、B、Ga、In、Sbである)、MeO(Meは四価の元素であり、例えばGe、Sn、Zr、Ti、Nbである)、Me(Meは五価の元素であり、例えばVである)、LiMeO(Meは三価の元素であり、例えばAl、B、Ga、In、Sbである)、LiMeO(Meは四価の元素であり、例えばGe、Sn、Zr、Ti、Nbである)、LiMeO(Meは五価の元素であり、例えばVである)等を挙げることができる。
 さらに、原料組成物は、Li(4-x)Si(1-x)(S1-y(xは、0<x<1を満たし、yは、0.2<yを満たす)の組成を有することが好ましい。イオン伝導性の高い硫化物固体電解質材料を得ることができるからである。なお、上述したように、O元素を有しないLi(4-x)Si(1-x)の組成は、LiPSおよびLiSiSの固溶体の組成に該当する。ここで、原料組成物がLiS、PおよびSiSを含有する場合を考えると、LiPSを得るためのLiSおよびPの割合は、モル基準で、LiS:P=75:25である。一方、LiSiSを得るためのLiSおよびSiSの割合は、モル基準で、LiS:SiS=66.7:33.3である。そのため、これらの割合を考慮した上で、LiS、PおよびSiSの使用量を決定することが好ましい。また、xおよびyの好ましい範囲については、上記「A.硫化物固体電解質材料」に記載した内容と同様である。
 メカニカルミリングは、試料を、機械的エネルギーを付与しながら粉砕する方法である。第一実施態様においては、原料組成物に対して、機械的エネルギーを付与することで、非晶質化したイオン伝導性材料を合成する。このようなメカニカルミリングとしては、例えば、振動ミル、ボールミル、ターボミル、メカノフュージョン、ディスクミル等を挙げることができ、中でも振動ミルおよびボールミルが好ましい。
 振動ミルの条件は、非晶質化したイオン伝導性材料を得ることができるものであれば特に限定されるものではない。振動ミルの振動振幅は、例えば5mm~15mmの範囲内、中でも6mm~10mmの範囲内であることが好ましい。振動ミルの振動周波数は、例えば500rpm~2000rpmの範囲内、中でも1000rpm~1800rpmの範囲内であることが好ましい。振動ミルの試料の充填率は、例えば1体積%~80体積%の範囲内、中でも5体積%~60体積%の範囲内、特に10体積%~50体積%の範囲内であることが好ましい。また、振動ミルには、振動子(例えばアルミナ製振動子)を用いることが好ましい。
 ボールミルの条件は、非晶質化したイオン伝導性材料を得ることができるものであれば特に限定されるものではない。一般的に、回転数が大きいほど、イオン伝導性材料の生成速度は速くなり、処理時間が長いほど、原料組成物からイオン伝導性材料への転化率は高くなる。遊星型ボールミルを行う際の台盤回転数としては、例えば200rpm~500rpmの範囲内、中でも250rpm~400rpmの範囲内であることが好ましい。また、遊星型ボールミルを行う際の処理時間は、例えば1時間~100時間の範囲内、中でも1時間~70時間の範囲内であることが好ましい。
 なお、第一実施態様においては、2θ=29.58°付近のピークを有する結晶相が析出しやすい環境となるように、非晶質化したイオン伝導性材料を合成することが好ましい。
(2)加熱工程
 第一実施態様における加熱工程は、上記非晶質化したイオン伝導性材料を加熱することにより、上記硫化物固体電解質材料を得る工程である。
 第一実施態様においては、非晶質化したイオン伝導性材料を加熱することにより、結晶性の向上を図る。この加熱を行うことで、イオン伝導性の高い結晶相A(2θ=29.58°付近のピークを有する結晶相)を積極的に析出させることができる。
 第一実施態様における加熱温度は、所望の硫化物固体電解質材料を得ることができる温度であれば特に限定されるものではないが、結晶相A(2θ=29.58°付近のピークを有する結晶相)の結晶化温度以上の温度であることが好ましい。具体的には、上記加熱温度が300℃以上であることが好ましく、350℃以上であることがより好ましく、400℃以上であることがさらに好ましく、450℃以上であることが特に好ましい。一方、上記加熱温度は、1000℃以下であることが好ましく、700℃以下であることがより好ましく、650℃以下であることがさらに好ましく、600℃以下であることが特に好ましい。また、加熱時間は、所望の硫化物固体電解質材料が得られるように適宜調整することが好ましい。また、第一実施態様における加熱は、酸化を防止する観点から、不活性ガス雰囲気下または真空中で行うことが好ましい。また、第一実施態様により得られる硫化物固体電解質材料については、上記「A.硫化物固体電解質材料 1.第一実施態様」に記載した内容と同様であるので、ここでの記載は省略する。
2.第二実施態様
 第二実施態様の硫化物固体電解質材料の製造方法は、「A.硫化物固体電解質材料 2.第二実施態様」に記載した硫化物固体電解質材料の製造方法であって、上記Li元素、上記M元素、上記M元素、上記S元素、および上記O元素を含有する原料組成物を用いて、メカニカルミリングにより、非晶質化したイオン伝導性材料を合成するイオン伝導性材料合成工程と、上記非晶質化したイオン伝導性材料を加熱することにより、上記硫化物固体電解質材料を得る加熱工程と、を有することを特徴とするものである。
 第二実施態様によれば、イオン伝導性材料合成工程で非晶質化を行い、その後、加熱工程を行うことにより、八面体O、四面体Tおよび四面体Tが所定の結晶構造(三次元構造)を有する硫化物固体電解質材料を得ることができる。そのため、イオン伝導性が良好な硫化物固体電解質材料を得ることができる。さらに、原料組成物がO元素を含有することから、充放電効率の低下を抑制した硫化物固体電解質材料を得ることができる。
 第二実施態様におけるイオン伝導性材料合成工程および加熱工程については、基本的に、上述した「C.硫化物固体電解質材料の製造方法 1.第一実施態様」に記載した内容と同様であるので、ここでの記載は省略する。所望の硫化物固体電解質材料が得られるように、各種条件を設定することが好ましい。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
 以下に実施例を示して本発明をさらに具体的に説明する。
[実施例1-1]
 出発原料として、硫化リチウム(LiS、日本化学工業社製)および五硫化二リン(P、アルドリッチ社製)を用いた。これらの粉末をアルゴン雰囲気下のグローブボックス内で、75LiS・25Pのモル比(LiPS)となるように混合した。混合した出発原料1gを遊星型ボールミルの容器(45cc、ZrO製)に投入し、さらにZrOボール(φ=10mm、10個)を投入し、容器を完全に密閉した。この容器を遊星型ボールミル機(フリッチュ製P7)に取り付け、台盤回転数370rpmで40時間メカニカルミリングを行った。これにより、LiPS粉末を得た。
 得られたLiPS粉末と、LiSiO粉末(Alfa社製)とを、アルゴン雰囲気下のグローブボックス内で表1に示す重量割合で混合し、原料組成物を得た。原料組成物1gを遊星型ボールミルの容器(45cc、ZrO製)に投入し、さらにZrOボール(φ=10mm、10個)を投入し、容器を完全に密閉した。この容器を遊星型ボールミル機(フリッチュ製P7)に取り付け、台盤回転数370rpmで40時間メカニカルミリングを行った。これにより、非晶質化したイオン伝導性材料を得た。
 次に、得られたイオン伝導性材料の粉末を、カーボンコートした石英管に入れ真空封入した。真空封入した石英管の圧力は、約30Paであった。次に、石英管を焼成炉に設置し、6時間かけて室温から550℃まで昇温し、550℃を8時間維持し、その後室温まで徐冷した。これにより、Li3.25Si0.250.75(S0.750.25の組成を有する結晶質の硫化物固体電解質材料を得た。なお、上記組成は、Li(4-x)Si(1-x)(S1-yにおけるx=0.75、y=0.25の組成に該当する。
[実施例1-2]
 LiPS粉末およびLiSiO粉末の重量割合を、表1に示す重量割合に変更したこと以外は、実施例1-1と同様にして、結晶質の硫化物固体電解質材料を得た。得られた硫化物固体電解質材料は、Li3.3Si0.30.7(S0.70.3の組成を有し、この組成はLi(4-x)Si(1-x)(S1-yにおけるx=0.7、y=0.3の組成に該当する。
[実施例1-3]
 LiPS粉末およびLiSiO粉末の重量割合を、表1に示す重量割合に変更したこと以外は、実施例1-1と同様にして、結晶質の硫化物固体電解質材料を得た。得られた硫化物固体電解質材料は、Li3.35Si0.350.65(S0.650.35の組成を有し、この組成はLi(4-x)Si(1-x)(S1-yにおけるx=0.65、y=0.35の組成に該当する。
[比較例1-1]
 LiPS粉末およびLiSiO粉末の重量割合を、表1に示す重量割合に変更したこと以外は、実施例1-1と同様にして、結晶質の硫化物固体電解質材料を得た。得られた硫化物固体電解質材料は、Li3.2Si0.20.8(S0.80.2の組成を有し、この組成はLi(4-x)Si(1-x)(S1-yにおけるx=0.8、y=0.2の組成に該当する。
[比較例1-2]
 LiPS粉末およびLiSiO粉末の重量割合を、表1に示す重量割合に変更したこと以外は、実施例1-1と同様にして、結晶質の硫化物固体電解質材料を得た。得られた硫化物固体電解質材料は、Li3.4Si0.40.6(S0.60.4の組成を有し、この組成はLi(4-x)Si(1-x)(S1-yにおけるx=0.6、y=0.4の組成に該当する。
[実施例2]
 出発原料として、硫化リチウム(LiS、日本化学工業社製)、酸化リチウム(LiO、高純度化学研究所製)、五硫化二リン(P、アルドリッチ社製)、酸化ケイ素(SiO、高純度化学研究所製)を用いた。これらの粉末をアルゴン雰囲気下のグローブボックス内で表2に示す重量割合で混合し、原料組成物を得た。得られた原料組成物を用いたこと以外は、実施例1-1と同様にして、結晶質の硫化物固体電解質材料を得た。得られた硫化物固体電解質材料は、Li3.3Si0.30.7(S0.70.3の組成を有し、この組成はLi(4-x)Si(1-x)(S1-yにおけるx=0.7、y=0.3の組成に該当する。
[実施例3]
 出発原料として、硫化リチウム(LiS、日本化学工業社製)、酸化リチウム(LiO、高純度化学研究所製)、五硫化二リン(P、アルドリッチ社製)、硫化ケイ素(SiS、高純度化学研究所製)を用いた。これらの粉末をアルゴン雰囲気下のグローブボックス内で表2に示す重量割合で混合し、原料組成物を得た。得られた原料組成物を用いたこと以外は、実施例1-1と同様にして、結晶質の硫化物固体電解質材料を得た。得られた硫化物固体電解質材料は、Li3.3Si0.30.7(S0.70.3の組成を有し、この組成はLi(4-x)Si(1-x)(S1-yにおけるx=0.7、y=0.3の組成に該当する。
[参考例1]
 出発原料として、硫化リチウム(LiS、日本化学工業社製)、酸化リチウム(LiO、高純度化学研究所製)、五硫化二リン(P、アルドリッチ社製)、硫化ケイ素(SiS、高純度化学研究所製)を用いた。これらの粉末をアルゴン雰囲気下のグローブボックス内で表2に示す重量割合で混合し、原料組成物を得た。得られた原料組成物を用いたこと以外は、実施例1-1と同様にして、結晶質の硫化物固体電解質材料を得た。得られた硫化物固体電解質材料は、Li3.4Si0.40.6(S0.90.1の組成を有し、この組成はLi(4-x)Si(1-x)(S1-yにおけるx=0.6、y=0.1の組成に該当する。
[比較例2]
 出発原料として、硫化リチウム(LiS、日本化学工業社製)、五硫化二リン(P、アルドリッチ社製)、硫化ゲルマニウム(GeS、高純度化学研究所製)を用いた。これらの粉末をアルゴン雰囲気下のグローブボックス内で表2に示す重量割合で混合し、原料組成物を得た。得られた原料組成物を用いたこと以外は、実施例1-1と同様にして、結晶質の硫化物固体電解質材料を得た。得られた硫化物固体電解質材料は、Li3.35Ge0.50.65の組成を有する。
[比較例3]
 出発原料として、硫化リチウム(LiS、日本化学工業社製)、五硫化二リン(P、アルドリッチ社製)、硫化ケイ素(SiS、高純度化学研究所製)を用いた。これらの粉末をアルゴン雰囲気下のグローブボックス内で表2に示す重量割合で混合し、原料組成物を得た。得られた原料組成物を用いたこと以外は、実施例1-1と同様にして、結晶質の硫化物固体電解質材料を得た。得られた硫化物固体電解質材料は、Li3.4Si0.40.6の組成を有し、この組成はLi(4-x)Si(1-x)(S1-yにおけるx=0.6、y=0の組成に該当する。
[評価]
(X線回折測定)
 実施例1-1~1-3および比較例1-1、1-2で得られた硫化物固体電解質材料を用いて、X線回折(XRD)測定を行った。XRD測定は、粉末試料に対して、不活性雰囲気下、CuKα線使用の条件で行った。その結果を図5に示す。図5に示すように、実施例1-1~1-3では、上述した結晶相Aが形成されていることが確認された。これに対して、比較例1-1、1-2では、上述した結晶相Aが形成されていないことが確認された。
 実施例2、3、参考例1および比較例2、3で得られた硫化物固体電解質材料を用いて、同様にX線回折(XRD)測定を行った。その結果を図6に示す。図6に示すように、実施例2、3、参考例1および比較例2、3では、上述した結晶相Aが形成されていることが確認された。なお、結晶相Aの形成が確認されたサンプルを用いて、I/Iの値を算出した。その結果を表1、表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
(X線構造解析)
 比較例2で得られた硫化物固体電解質材料の結晶構造をX線構造解析により同定した。XRDで得られた回折図形を基に直接法で晶系・結晶群を決定し、その後、実空間法により結晶構造を同定した。その結果、上述した図2のような結晶構造を有することが確認された。すなわち、四面体Tと、八面体Oとは稜を共有し、四面体Tと、八面体Oとは頂点を共有している結晶構造であった。また、上述したように実施例1-1~1-3、2、3は、比較例2と同様の回折パターンを有することから、これらの実施例においても同様の結晶構造が形成されていることが確認された。
(充放電効率測定)
 実施例1-2、2、3、参考例1、比較例2、3で得られた硫化物固体電解質材料を用いて評価用電池を作製し、充放電効率を評価した。まず、実施例1-1で合成したLiPS粉末を100mg秤量し、マコール製のシリンダに入れ、1ton/cmの圧力でプレスし、固体電解質層を得た。次に、硫化物固体電解質材料およびグラファイト粉末を50:50の重量比で混合し、得られた粉末を12mg秤量し、固体電解質層の一方の表面に配置し、4ton/cmの圧力でプレスし、作用極を得た。最後に、参照極であるLiIn箔を固体電解質層の他方の表面に配置し、1ton/cmの圧力でプレスし、6Ncmでボルト締めし、評価用電池を得た。
 作用極の電位を、参照極に対して-0.62Vまで充電し、その後、1Vまで放電した。電流密度は、0.15mA/cmとした。下記式により、充放電効率を算出した。
 充放電効率(%)=放電容量/充電容量×100
 得られた結果を図7に示す。
 図7に示すように、実施例1-2、2、3で得られた評価用電池は、高い充放電効率を有することが確認された。また、比較例2と比較例3とを比べると、硫化物固体電解質材料に含まれるGeをSiに置換することで、充放電効率が向上することが示唆された。また、実施例1-2、2、3、参考例1と、比較例3とを比べると、硫化物固体電解質材料に含まれるSをOに置換することで、さらに充放電効率が向上することが示唆された。
 また、図8に示すように、実施例1-2、2、3を比べると、Si源として、Si-O結合を有する材料を用いた場合、Si-O結合を有しない材料を用いた場合よりも充放電効率が向上することが確認できた。
(Liイオン伝導度の測定)
 実施例1-1~1-3、比較例1-1、1-2で得られた硫化物固体電解質材料を用いて、25℃でのLiイオン伝導度を測定した。まず、硫化物固体電解質材料を200mg秤量し、マコール製のシリンダに入れ、4ton/cmの圧力でプレスした。得られたペレットの両端をSUS製ピンで挟み、ボルト締めによりペレットに拘束圧を印加し、評価用セルを得た。評価用セルを25℃に保った状態で、交流インピーダンス法によりLiイオン伝導度を算出した。測定には、ソーラトロン1260を用い、印加電圧5mV、測定周波数域0.01~1MHzとした。また、測定時の温度を変化させ、各温度でのLiイオン伝導度からアレニウスプロットを作製し、活性化エネルギーを算出した。その結果を図9に示す。図9に示すように、xは、0.65≦x≦0.75を満たすことが好ましいことが示唆された。同様に、yは、0.25≦y≦0.35を満たすことが好ましいことが示唆された。
[参考例2]
 第一原理計算により、下記の分解反応式(1)~(3)における、それぞれの構造体の生成エネルギーを求め、Nernstの式から還元分解電位を算出した。
式(1)
 Li3.33Ge0.330.67+1.33Li+1.33e
  →0.33Ge+1.33LiS+0.67LiPS
式(2)
 Li3.33Si0.330.67+1.33Li+1.33e
  →0.33Si+1.33LiS+0.67LiPS
式(3)
 Li3.33(SiO0.33(PS0.67+1.33Li+1.33e
  →0.33Si+1.33LiO+0.67LiPS
 式(1)は、結晶相A中のGeが、Sに4配位されたGeS四面体の状態であることを表現したものであり、式(2)は、結晶相A中のSiが、Sに4配位されたSiS四面体の状態であることを表現したものであり、式(3)は、結晶相A中のSiが、Oに4配位されたSiO四面体の状態であることを表現したものである。その結果を図10に示す。図10に示すように、GeよりもSiが、還元分解電位が低く、電気化学的に安定であることが示唆された。さらに、Siに対して選択的にOを配位させることで、さらに電気化学的安定性が向上することが示唆された。すなわち、電気化学的安定性の観点からは、Si-S結合よりもSi-O結合が好ましく、SiO四面体が形成されていることがより好ましいことが示唆された。
 1 … 正極活物質層
 2 … 負極活物質層
 3 … 電解質層
 4 … 正極集電体
 5 … 負極集電体
 6 … 電池ケース
 10 … 電池

Claims (8)

  1.  Li元素、Si元素、P元素、S元素、およびO元素を含有し、
     CuKα線を用いたX線回折測定における2θ=29.58°±0.50°の位置にピークを有し、
     CuKα線を用いたX線回折測定における2θ=27.33°±0.50°の位置にピークを有しないか、
     前記2θ=27.33°±0.50°の位置にピークを有する場合、前記2θ=29.58°±0.50°のピークの回折強度をIとし、前記2θ=27.33°±0.50°のピークの回折強度をIとした際に、I/Iの値が1以下であり、
     前記S元素および前記O元素の合計に対する前記O元素のモル分率(O/(S+O))が、0.2より大きいことを特徴とする硫化物固体電解質材料。
  2.  Li元素およびS元素から構成される八面体Oと、M元素およびS元素から構成される四面体Tと、M元素およびS元素から構成される四面体Tとを有し、前記四面体Tおよび前記八面体Oは稜を共有し、前記四面体Tおよび前記八面体Oは頂点を共有する結晶構造を主体として含有し、
     前記Mおよび前記Mの少なくとも一方は、Siを含み、
     前記Mおよび前記Mの少なくとも一方は、Pを含み、
     前記四面体Tおよび前記四面体Tの少なくとも一つは、前記Si元素に結合する前記S元素の一部または全部がO元素に置換されたものであり、
     前記S元素および前記O元素の合計に対する前記O元素のモル分率(O/(S+O))が、0.2より大きいことを特徴とする硫化物固体電解質材料。
  3.  前記モル分率(O/(S+O))が、0.25≦O/(S+O)≦0.35を満たすことを特徴とする請求項1または請求項2に記載の硫化物固体電解質材料。
  4.  前記P元素および前記Si元素の合計に対する前記P元素のモル分率(P/(P+Si))が、0.65≦P/(P+Si)≦0.75を満たすことを特徴とする請求項1から請求項3までのいずれかの請求項に記載の硫化物固体電解質材料。
  5.  正極活物質を含有する正極活物質層と、負極活物質を含有する負極活物質層と、前記正極活物質層および前記負極活物質層の間に形成された電解質層とを含有する電池であって、
     前記正極活物質層、前記負極活物質層および前記電解質層の少なくとも一つが、請求項1から請求項4までのいずれかの請求項に記載の硫化物固体電解質材料を含有することを特徴とする電池。
  6.  請求項1に記載の硫化物固体電解質材料の製造方法であって、
     前記Li元素、前記Si元素、前記P元素、前記S元素、および前記O元素を含有する原料組成物を用いて、メカニカルミリングにより、非晶質化したイオン伝導性材料を合成するイオン伝導性材料合成工程と、
     前記非晶質化したイオン伝導性材料を加熱することにより、前記硫化物固体電解質材料を得る加熱工程と、
     を有することを特徴とする硫化物固体電解質材料の製造方法。
  7.  請求項2に記載の硫化物固体電解質材料の製造方法であって、
     前記Li元素、前記M元素、前記M元素、前記S元素、および前記O元素を含有する原料組成物を用いて、メカニカルミリングにより、非晶質化したイオン伝導性材料を合成するイオン伝導性材料合成工程と、
     前記非晶質化したイオン伝導性材料を加熱することにより、前記硫化物固体電解質材料を得る加熱工程と、
     を有することを特徴とする硫化物固体電解質材料の製造方法。
  8.  前記原料組成物が、Si-O結合を有する材料を含有することを特徴とする請求項6または請求項7に記載の硫化物固体電解質材料の製造方法。
PCT/JP2013/083950 2013-01-11 2013-12-18 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法 WO2014109191A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020157017696A KR101689492B1 (ko) 2013-01-11 2013-12-18 황화물 고체 전해질 재료, 전지 및 황화물 고체 전해질 재료의 제조 방법
DE112013006405.7T DE112013006405T5 (de) 2013-01-11 2013-12-18 Sulfidfestelektrolytmaterial, Batterie und Verfahren zum Herstellen des Sulfidfestelektrolytmaterials
CN201380069290.9A CN104885288B (zh) 2013-01-11 2013-12-18 硫化物固体电解质材料、电池和硫化物固体电解质材料的制造方法
US14/758,712 US10128532B2 (en) 2013-01-11 2013-12-18 Sulfide solid electrolyte material, battery, and method for producing sulfide solid electrolyte material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013003075A JP5561383B2 (ja) 2013-01-11 2013-01-11 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
JP2013-003075 2013-01-11

Publications (1)

Publication Number Publication Date
WO2014109191A1 true WO2014109191A1 (ja) 2014-07-17

Family

ID=51166850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/083950 WO2014109191A1 (ja) 2013-01-11 2013-12-18 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法

Country Status (6)

Country Link
US (1) US10128532B2 (ja)
JP (1) JP5561383B2 (ja)
KR (1) KR101689492B1 (ja)
CN (1) CN104885288B (ja)
DE (1) DE112013006405T5 (ja)
WO (1) WO2014109191A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107683510A (zh) * 2015-07-02 2018-02-09 国立大学法人东京工业大学 硫化物固体电解质材料、电池和硫化物固体电解质材料的制造方法
WO2018173939A1 (ja) * 2017-03-22 2018-09-27 三菱瓦斯化学株式会社 Lgps系固体電解質の製造方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6222134B2 (ja) * 2015-02-25 2017-11-01 トヨタ自動車株式会社 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
US10446872B2 (en) * 2015-08-04 2019-10-15 Samsung Electronics Co., Ltd. Solid electrolyte and lithium battery including the same
JP6418145B2 (ja) * 2015-12-07 2018-11-07 トヨタ自動車株式会社 複合固体電解質
JP6323475B2 (ja) 2016-02-26 2018-05-16 トヨタ自動車株式会社 複合活物質、固体電池および複合活物質の製造方法
JP6347268B2 (ja) * 2016-02-26 2018-06-27 トヨタ自動車株式会社 複合活物質の製造方法
CN109314274B (zh) * 2016-03-11 2021-08-24 国立大学法人东京工业大学 硫化物固体电解质
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
CN110556523B (zh) * 2018-06-01 2022-08-30 丰田自动车株式会社 正极合剂、全固体电池、正极合剂的制造方法和全固体电池的制造方法
WO2020061354A1 (en) * 2018-09-19 2020-03-26 Blue Current, Inc. Lithium oxide argyrodites
WO2020095936A1 (ja) * 2018-11-08 2020-05-14 三井金属鉱業株式会社 硫化物固体電解質及び電池
CA3147348A1 (en) * 2019-09-06 2021-03-11 Rhodia Operations New method for the preparation of a li-p-s product and corresponding products
CN111129572B (zh) * 2019-12-23 2022-02-11 来骑哦互联网技术(深圳)有限公司 一种硫化物电解质及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000028608A1 (fr) * 1998-11-10 2000-05-18 Matsushita Electric Industrial Co., Ltd. Pile secondaire au lithium
JP2011086556A (ja) * 2009-10-16 2011-04-28 Sumitomo Electric Ind Ltd 硫化物固体電解質の製造方法、および複合体
JP2011129312A (ja) * 2009-12-16 2011-06-30 Toyota Motor Corp 硫化物固体電解質材料の製造方法、硫化物固体電解質材料およびリチウム電池
WO2011118801A1 (ja) * 2010-03-26 2011-09-29 国立大学法人東京工業大学 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
JP2012054212A (ja) * 2010-09-03 2012-03-15 Toyota Motor Corp 硫化物固体電解質材料、硫化物固体電解質材料の製造方法およびリチウム固体電池

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09293516A (ja) * 1996-04-25 1997-11-11 Matsushita Electric Ind Co Ltd 全固体リチウム電池
CN100583543C (zh) * 2005-01-11 2010-01-20 出光兴产株式会社 锂离子传导性固体电解质、其制造方法及使用了该固体电解质的锂二次电池用固体电解质以及使用了该二次电池用固体电解质的全固体锂电池
WO2010107084A1 (ja) * 2009-03-18 2010-09-23 株式会社三徳 全固体リチウム電池
US8956761B2 (en) * 2009-11-30 2015-02-17 Oerlikon Advanced Technologies Ag Lithium ion battery and method for manufacturing of such battery
JP5521899B2 (ja) * 2010-08-26 2014-06-18 トヨタ自動車株式会社 硫化物固体電解質材料およびリチウム固体電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000028608A1 (fr) * 1998-11-10 2000-05-18 Matsushita Electric Industrial Co., Ltd. Pile secondaire au lithium
JP2011086556A (ja) * 2009-10-16 2011-04-28 Sumitomo Electric Ind Ltd 硫化物固体電解質の製造方法、および複合体
JP2011129312A (ja) * 2009-12-16 2011-06-30 Toyota Motor Corp 硫化物固体電解質材料の製造方法、硫化物固体電解質材料およびリチウム電池
WO2011118801A1 (ja) * 2010-03-26 2011-09-29 国立大学法人東京工業大学 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
JP2012054212A (ja) * 2010-09-03 2012-03-15 Toyota Motor Corp 硫化物固体電解質材料、硫化物固体電解質材料の製造方法およびリチウム固体電池

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107683510A (zh) * 2015-07-02 2018-02-09 国立大学法人东京工业大学 硫化物固体电解质材料、电池和硫化物固体电解质材料的制造方法
US10897059B2 (en) 2015-07-02 2021-01-19 Tokyo Institute Of Technology Sulfide solid electrolyte material, battery, and producing method for sulfide solid electrolyte material
WO2018173939A1 (ja) * 2017-03-22 2018-09-27 三菱瓦斯化学株式会社 Lgps系固体電解質の製造方法
JPWO2018173939A1 (ja) * 2017-03-22 2020-01-30 三菱瓦斯化学株式会社 Lgps系固体電解質の製造方法
US10930973B2 (en) 2017-03-22 2021-02-23 Mitsubishi Gas Chemical Company, Inc. Production method for LGPS-based solid electrolyte
JP6996553B2 (ja) 2017-03-22 2022-02-04 三菱瓦斯化学株式会社 Lgps系固体電解質の製造方法

Also Published As

Publication number Publication date
CN104885288B (zh) 2017-06-30
US20150372345A1 (en) 2015-12-24
JP5561383B2 (ja) 2014-07-30
KR20150092256A (ko) 2015-08-12
US10128532B2 (en) 2018-11-13
KR101689492B1 (ko) 2016-12-23
DE112013006405T5 (de) 2015-09-24
CN104885288A (zh) 2015-09-02
JP2014135216A (ja) 2014-07-24

Similar Documents

Publication Publication Date Title
JP5561383B2 (ja) 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
JP5888610B2 (ja) 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
JP6222134B2 (ja) 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
JP5888609B2 (ja) 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
JP6288716B2 (ja) 硫化物固体電解質材料の製造方法
JP6044588B2 (ja) 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
JP5527673B2 (ja) 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
JP5880581B2 (ja) 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
JP6044587B2 (ja) 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
JP5720753B2 (ja) 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
JP6037444B2 (ja) 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
JP5975071B2 (ja) 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
JP6315617B2 (ja) 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
JP6036996B2 (ja) 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
JP2015032550A (ja) 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
JP5895917B2 (ja) 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
WO2013084944A1 (ja) 電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13870954

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 14758712

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157017696

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112013006405

Country of ref document: DE

Ref document number: 1120130064057

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13870954

Country of ref document: EP

Kind code of ref document: A1