[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014104762A1 - 방향성 전기강판 및 그 제조방법 - Google Patents

방향성 전기강판 및 그 제조방법 Download PDF

Info

Publication number
WO2014104762A1
WO2014104762A1 PCT/KR2013/012224 KR2013012224W WO2014104762A1 WO 2014104762 A1 WO2014104762 A1 WO 2014104762A1 KR 2013012224 W KR2013012224 W KR 2013012224W WO 2014104762 A1 WO2014104762 A1 WO 2014104762A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
annealing
electrical steel
oriented electrical
grain
Prior art date
Application number
PCT/KR2013/012224
Other languages
English (en)
French (fr)
Inventor
한민수
권민석
박순복
한찬희
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to EP13867879.2A priority Critical patent/EP2940161B1/en
Priority to JP2015550316A priority patent/JP6220891B2/ja
Priority to CN201380068919.8A priority patent/CN104884646B/zh
Priority to US14/758,212 priority patent/US10023932B2/en
Publication of WO2014104762A1 publication Critical patent/WO2014104762A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D3/00Diffusion processes for extraction of non-metals; Furnaces therefor
    • C21D3/02Extraction of non-metals
    • C21D3/04Decarburising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0257Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/28Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in one step
    • C23C8/30Carbo-nitriding
    • C23C8/32Carbo-nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/02Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in air or gases by adding vapour phase inhibitors
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding

Definitions

  • the present invention relates to a grain-oriented electrical steel sheet and a method for manufacturing the same, and more particularly, by intentionally preventing the base coating layer produced through the chemical reaction of the oxide layer produced in the decarbonization process and the MgO slurry used as a fusion inhibitor of the coil product
  • the present invention relates to a grain-oriented electrical steel sheet and a method of manufacturing the same wherein the surface pinning effect that causes magnetic deterioration is eliminated.
  • a grain-oriented electrical steel sheet contains 3.1% Si and has a grain structure in which the grain orientation is aligned in the (110) [001] direction. This product has very good magnetic properties in the rolling direction. Used as iron core materials for transformers, electric motors, generators and other electronic devices.
  • directional electrical steel excellent insulation coating should basically have uniform color without defect in appearance, but it is mainly used to improve electrical insulation and enhance film adhesion by incorporating various technologies to provide functionality. It was.
  • Techniques for removing the base coating include a method of forcibly removing a product already formed with the base coating with sulfuric acid or hydrochloric acid as in the conventional art, which is well described in Japanese Patent 1985-076603.
  • complicated processes such as chemical polishing or electropolishing should be involved, and the treatment cost offsets the performance improvement of the product, especially with the difficulty of keeping the acid concentration constant during the process to remove the surface with a certain thickness.
  • the surface roughness of the obtained product is too smooth to insulate the coating on the product, thereby securing adhesion as well as very poor insulation without using a physical / chemical vapor deposition method.
  • Al2O3 powder does not form the base coating itself. (Decarbonation annealing)-(Pickling)-(Al2O3 coating)-(High temperature annealing)-(Oxidation film formation by preannealing)-(Tension coating) Coating), and Al2O3 does not react with the oxide layer present on the material surface.
  • Another glassless technique is to remove the base coating by adding chloride, which is (decarbon annealing)-(MgO + chloride powder application)-(hot annealing)-(pickling)-(tension coating)
  • chloride which is (decarbon annealing)-(MgO + chloride powder application)-(hot annealing)-(pickling)-(tension coating)
  • MgO is used as a main component of the fusion preventive agent, ie, annealing separator, between coil plates at high temperature annealing, as described in US Pat. No.
  • the present invention provides a base coating free type having a very low iron loss by removing a pinning point, which is a main factor limiting magnetic movement in a material by allowing a base layer to be spontaneously removed during a high temperature annealing process. It is intended to provide an electrical steel sheet and a method of manufacturing the same.
  • An annealing separator includes MgO, oxychloride material and sulfate-based antioxidant.
  • the oxychloride material may be antimony oxychloride (SbOCl) or bismuth oxychloride (BiOCl).
  • the sulfate-based antioxidant may be at least one selected from antimony-based (Sb 2 (SO 4) 3), strontium-based (SrSO 4) or barium-based (BaSO 4).
  • the oxychloride material may be included in a weight ratio of 10 to 20 with respect to MgO: 100 to 200
  • the sulfate-based antioxidant may be included in a weight ratio of 1 to 5 with respect to MgO: 100 to 200.
  • Method for producing a grain-oriented electrical steel sheet the step of hot rolling a steel slab to produce a hot rolled steel sheet; Cold rolling the hot rolled steel sheet to produce a cold rolled steel sheet; Decarburizing annealing and nitriding annealing the cold rolled steel sheet; Applying an annealing separator including MgO, an oxychloride material and a sulfate-based antioxidant, and a glassless additive including water to the electrical steel sheet on which the decarburization annealing and nitriding annealing are completed, and finally performing high temperature annealing; Includes.
  • the oxychloride material may be antimony oxychloride (SbOCl) or bismuth oxychloride (BiOCl).
  • the sulfate-based antioxidant may be at least one selected from antimony (Sb 2 (SO 4) 3), strontium (SrSO 4), or barium (BaSO 4).
  • the oxychloride material may be included in a weight ratio of 10 to 20 with respect to MgO: 100 to 200
  • the sulfate-based antioxidant may be included in a weight ratio of 1 to 5 with respect to MgO: 100 to 200.
  • the amount of SiO 2 formed on the surface of the electrical steel sheet after the decarburization annealing and nitriding annealing may be formed 2 to 5 times the amount of Fe 2 SiO 4.
  • the decarburization and nitride annealing process may be carried out in a dew point range of 35 ⁇ 55 °C.
  • the activation degree of the MgO may be 400 to 3000 seconds.
  • the temperature increase rate may be performed at a temperature range of 700 to 950 ° C at 18 to 75 ° C / hr, and at a temperature range of 950 to 1200 ° C at 10 to 15 ° C / hr.
  • the decarburization and annealing temperature may be 800 to 950 ° C.
  • the glassless additive may be applied at 5-8 g / m 2 .
  • the steel slab is in weight%, Sn: 0.03 to 0.07%, Sb: 0.01 to 0.05%, P: 0.01 to 0.05%, the balance includes impurities such as Fe and other unavoidable addition, P + 0.5 Sb: 0.0370 ⁇ 0.0630% can be satisfied.
  • the grain-oriented electrical steel sheet according to an embodiment of the present invention in weight%, Sn: 0.03 to 0.07%, Sb: 0.01 to 0.05%, P: 0.01 to 0.05%, the balance includes Fe and other unavoidable impurities
  • the amount of SiO 2 formed on the surface of the steel sheet in which the decarburization annealing and nitriding annealing is completed is performed, and the grain-oriented electrical steel sheet is 2 to 5 times the amount of Fe 2 SiO 4.
  • the glassless additive including an annealing separator and water containing MgO, an oxychloride material and a sulfate-based antioxidant in the decarburizing annealing and nitriding annealing is completed. It is a grain-oriented electrical steel sheet coated and subjected to final high temperature annealing.
  • the oxychloride material may be antimony oxychloride (SbOCl) or bismuth oxychloride (BiOCl).
  • the sulfate-based antioxidant may be at least one selected from antimony (Sb 2 (SO 4) 3), strontium (SrSO 4), or barium (BaSO 4).
  • the oxychloride material may be included in a weight ratio of 10 to 20 with respect to MgO: 100 to 200
  • the sulfate-based antioxidant may be included in a weight ratio of 1 to 5 with respect to MgO: 100 to 200.
  • the amount of SiO 2 formed on the surface of the electrical steel sheet after the decarburization annealing and nitriding annealing may be formed 2 to 5 times the amount of Fe 2 SiO 4.
  • the decarburization and nitride annealing process may be carried out in a dew point range of 35 ⁇ 55 °C.
  • the activation degree of the MgO may be 400 to 3000 seconds.
  • the temperature increase rate may be performed at a temperature range of 700 to 950 ° C at 18 to 75 ° C / hr, and at a temperature range of 950 to 1200 ° C at 10 to 15 ° C / hr.
  • the decarburization and annealing temperature may be 800 to 950 ° C.
  • the glassless additive may be applied at 5-8 g / m 2 .
  • the present invention it is possible to minimize the base coating layer generated through the chemical reaction of the oxide layer and the MgO slurry used as a fusion inhibitor of the coil inevitably generated during the decarbonization annealing process of the grain-oriented electrical steel sheet.
  • MgO which is a main component of the annealing separator
  • the activation degree of MgO which is a main component of the annealing separator
  • oxychloride-based materials and sulfate-based antioxidants which are insoluble compounds of Fe-based oxides produced during slurry application and drying, are used.
  • Embodiment according to the present invention is a means for achieving the above object, it is necessary to control the overall electrical steel sheet manufacturing process.
  • the material used is by weight, Sn: 0.03 ⁇ 0.07% by weight, Sb: 0.01 ⁇ 0.05% by weight, P: 0.01 ⁇ 0.05% by weight, characterized in that it comprises essentially, Sn: 0.03 ⁇ 0.07% by weight , Sb: 0.01 ⁇ 0.05% by weight, P: 0.01 ⁇ 0.05% by weight of hot-rolled steel slab to prepare a hot rolled plate of 2.0 ⁇ 2.8 mm, and then hot rolled sheet after annealing and pickling 0.23 A cold rolled sheet having a thickness of 0.23 mm is produced by cold rolling to a thickness of mm.
  • the temperature, atmosphere, dew point, etc. of the furnace are controlled to adjust the amount of oxide layer formed on the surface of the material so that SiO2 is 2 to 5 times Fe2SiO4. At this time, the dew point is controlled to 35 ⁇ 55 °C.
  • a annealing separator consisting of water: 800
  • the activation degree of the activated MgO used in the annealing separator was limited to 400 to 3000 seconds, and the oxychloride material in the form of an inorganic compound having an insoluble property in an aqueous solution was applied to an antimony or bismuth system. Can be.
  • the sulfate-based material used as an antioxidant in the embodiment according to the present invention may be one or more of antimony-based, strontium-based or barium-based.
  • each element contributes to the magnetic improvement of the grain-oriented electrical steel sheet by the following action.
  • the component content in the examples according to the invention is by weight unless otherwise indicated.
  • Sn can improve iron loss by increasing the number of secondary nuclei in the ⁇ 110 ⁇ ⁇ 001> orientation to reduce the size of the secondary grains.
  • Sn also plays an important role in suppressing grain growth through segregation at grain boundaries, which compensates for the weakening of the grain growth inhibition effect as the AlN particles are coarsened and the Si content is increased.
  • the Si content can be increased as well as the final thickness can be reduced without compromising the completeness of the ⁇ 110 ⁇ ⁇ 001> secondary recrystallized structure.
  • the content of Sn is preferably 0.03 to 0.07% by weight within the range in which the content of other components is appropriately adjusted. That is, when controlling the content range of Sn to 0.03 to 0.07% by weight as described above, it is possible to confirm the discontinuous and significant iron loss reduction effect that could not be predicted in the past, so the content of Sn in the embodiment according to the present invention is It is limited to a range.
  • Sb segregates at grain boundaries and acts to suppress excessive growth of primary recrystallized grains.
  • Sb By adding Sb to suppress grain growth in the first recrystallization step, the non-uniformity of the first recrystallized grain size along the thickness direction of the plate is removed, and at the same time, the secondary recrystallization is stably formed to make the grain-oriented electrical steel sheet with better magnetism. Can be.
  • the effect of such Sb can be greatly improved when the content of Sb by 0.01 to 0.05% by weight, unpredictable in the prior art.
  • Sb segregates at grain boundaries to inhibit excessive growth of primary recrystallized grains, but if it is 0.01 wt% or less, the action is difficult to be exhibited properly. If 0.05 wt% or more is contained, the size of primary recrystallized grains is too small. In the embodiment according to the present invention, the content of Sb is limited to the above range because the secondary recrystallization start temperature is lowered to deteriorate the magnetic properties or the inhibition force against grain growth may be too large to form secondary recrystallization.
  • P promotes the growth of primary recrystallized grains in oriented electrical steel sheets of low temperature heating method, thereby increasing the secondary recrystallization temperature to increase the degree of integration of ⁇ 110 ⁇ ⁇ 001> orientation in the final product. If the primary recrystallization is too large, the secondary recrystallization becomes unstable, but as long as the secondary recrystallization occurs, it is advantageous for the magnet to have a large primary recrystallized grain to increase the secondary recrystallization temperature. On the other hand, P not only lowers the iron loss of the final product by increasing the number of grains having the ⁇ 110 ⁇ ⁇ 001> orientation in the primary recrystallized steel sheet, but also strongly develops the ⁇ 111 ⁇ ⁇ 112> texture in the primary recrystallized sheet.
  • the magnetic flux density is also increased.
  • P has a function of reinforcing the suppression force by segregating at the grain boundary to a high temperature of about 1000 ° C. during secondary recrystallization annealing, to delay decomposition of the precipitate.
  • the content of P is limited to 0.01 to 0.05% by weight, a remarkable effect that can not be predicted at all in the conventional literature can be obtained.
  • the content of P is limited to the above range.
  • the iron loss was further improved by controlling the content of P + 0.5Sb in the above-mentioned range in addition to the case of adding the various elements.
  • the elements are usually added together to produce a synergistic effect, when the synergistic effect is discontinuously maximized compared to other numerical ranges when it meets the above formula range. Therefore, in the embodiment according to the present invention, in addition to the respective component content, the P + 0.5 Sb is limited to the above range.
  • Fe-Si alloys such as grain-oriented electrical steel sheets, improve high temperature oxidation resistance.
  • Sn and Sb are included in the steel to control the quality of the oxide layer which plays the most important role in the base coating pre-process as well as the meaning as a metallurgical element for improving the magnetic properties of the grain-oriented electrical steel sheet.
  • Slab is used as the starting material.
  • the above-mentioned steel slab is hot rolled to make a hot rolled sheet of 2.0 to 2.8 mm, and then cold rolled to a final thickness of 0.23 mm after annealing and pickling.
  • the cold rolled steel sheet is then subjected to decarbonization annealing and recrystallization annealing, which will be described in detail.
  • the cold rolled steel sheet is subjected to decarburization and nitride annealing in a mixed gas atmosphere of ammonia + hydrogen + nitrogen in order to remove carbon contained in the steel and to generate an inhibitor for appropriately controlling secondary recrystallization growth during high temperature annealing.
  • Rough The characteristic of this process is that the furnace temperature is set to 800 ⁇ 950 °C in a humid atmosphere. If it is lower than 800 °C, sufficient decarbonization effect does not occur, and the grains remain fine, which is undesirable during secondary recrystallization. There is a fear that the orientation crystals may grow, and if it is higher than 950 ° C., the primary recrystallized grains may be excessively grown. Therefore, the furnace temperature during decarburization and annealing in the embodiment according to the present invention is limited to 800 to 950 ° C. do.
  • the oxide layer so as to be about 2 to 4 ° C. to be about 2 to 4 ° C. lower than that of the component system containing no Sn, Sb, or P, which is more advantageous for controlling grain orientation and improving iron loss of the final product.
  • an oxide layer is inevitably generated on the surface of the decarburization and annealing process, and in the conventional oriented electrical steel sheet manufacturing process, an oxide layer and an MgO slurry (aqueous solution in which MgO is dispersed in water) are produced.
  • a base coating Mg 2 SiO 4
  • the resulting forsterite layer i.e., the base coating, has been known to impart insulation to the material with the effect of preventing fusion between the plate and the plate of the grain-oriented electrical steel coil and tensioning the plate to reduce iron loss.
  • the Si with the highest oxygen affinity in the steel reacts with the oxygen supplied from the steam in the furnace to form SiO2 on the surface first.
  • Fe-based oxides are produced by penetration into steel.
  • the SiO 2 thus formed forms a base coating through the following chemical reaction formula.
  • the base coating layer which ultimately prevents the movement of the material is formed to the minimum at the front end of the high temperature annealing process, the rear end is removed so that a large amount of SiO 2 is formed on the material surface as in the conventional manufacturing method. There is no need to react with MgO to form a Payalite. In this case, it is advantageous to form a thin SiO2 layer on the surface of the material and to generate a very small amount of pallarite through the dew point, cracking temperature, and atmospheric gas control during the decarburization and sedimentation annealing processes.
  • Fe-based oxides such as FeO, Fe 2 SiO 3, etc. are inevitably generated.
  • the produced FeO and Fe2SiO3 basically do not react with glassless additives and remain on the surface of the material to form oxide hills of FeO (hereinafter referred to as Fe mound). In this case, the surface without the base coating is beautiful and glossy. You can't get good products.
  • a change in the oxide layer composition was induced by changing the dew point temperature in the furnace through decarburization and annealing, and the amount of SiO 2 and payarite thus obtained was quantified through FT-IR.
  • SiO2 is formed to be two times or more than five times of the payarite.
  • a conventional glassless additive such as BiCl 3 was applied and mixed with MgO and water on a specimen in which the oxide layer of the material was adjusted and finally annealed in a coil shape.
  • the primary cracking temperature was 700 °C and the secondary cracking temperature was 1200 °C
  • the temperature raising condition was 18 ⁇ 75 °C / hr in the temperature range of 700 ⁇ 950 °C, and in the temperature range of 950 ⁇ 1200 °C. It was set to 10-15 degreeC / hr.
  • the cracking time in 1200 degreeC was processed into 15 hours.
  • the atmosphere was mixed with 25% nitrogen + 75% hydrogen up to 1200 ° C. After reaching 1200 ° C, it was maintained in a 100% hydrogen atmosphere and then cooled.
  • the roughness and gloss improvement in the specimen treated as described above was superior to the conventional glassless system, but the beautiful surface properties of pickling and chemical polishing levels could not be obtained, and the magnetic improvement was also limited.
  • the base coating was not completely removed and the residual material of the specimen was analyzed. As a result, it was found to be a spinel-based (MgO ⁇ Al 2 O 3) compound and a Fe-based oxide. In addition, when such residual material remained, the magnetic properties required by the low iron loss oriented electrical steel sheet could not be satisfied. Therefore, in the embodiment according to the present invention, in order to ultimately overcome the limitations of the conventional glassless type and to drastically improve the iron loss of the oriented electrical steel sheet, the study focused on the above-described deterioration material formation mechanism.
  • the spinel oxide which is the first cause of the deterioration of the properties, is highly reactive with SiO 2 present on the surface as well as forming a base coating layer when the activation of MgO, the main component of the annealing coating agent, is high.
  • the spinel-based composite oxide was generated by reacting with Al, which is a steel component present at the interface between the material and the material.
  • MgO having various activation levels was prepared by artificially adjusting the activation degree of MgO.
  • the activation degree of the MgO is defined as the ability of the MgO powder to cause a chemical reaction with other components, and measured by the time taken for MgO to completely neutralize a certain amount of citric acid solution.
  • high activity is used in the case of MgO used as an annealing separator for oriented electrical steel sheet, and the activation degree is about 50 to 300 seconds.
  • a high-temperature firing process other than MgO having a normal activation degree is performed.
  • the activation degree of MgO is limited to 400 to 3000 seconds. If the activation degree is less than 400 seconds, the spinel oxide is left on the surface after high temperature annealing, such as conventional MgO, and more than 3000 seconds. In the large case, the activation degree is so weak that it does not react with the oxide layer present on the surface so that the base coating layer cannot be formed. Therefore, in the embodiment of the present invention, the activation degree of MgO is limited to 400 to 3000 seconds.
  • the second reason for the deterioration of the magnetic properties is Fe-based oxides, which are limited in production by controlling the dew point and atmosphere in the furnace during Sn, Sb introduction, decarburization and sedimentation in steel as described above.
  • the cause of Fe-based oxide formation is also related to the chemical reaction between the chloride used as the glassless additive and the aqueous solution used to disperse the annealing separator.
  • BiCl3 which is well known as a chloride of a conventional glassless system, is coated with MgO in an aqueous solution on a specimen and subjected to a high temperature annealing, and the following chemical reaction occurs on the surface.
  • an Fe-based oxide layer is already formed. Will form roots.
  • the antimony oxychloride (SbOCl) additive which does not dissociate in the non-chlorinated aqueous solution of non-chlorinated BiCl3 or similar system in the embodiment according to the present invention, thereby inhibiting Fe-based oxides.
  • This problem was solved by using antimony sulfate (Sb2 (SO4) 3) having no and Cl groups.
  • MgO very fine gloss and roughness
  • the activation is adjusted by annealing separator to produce a very good grain-oriented electrical steel sheet: antimony oxychloride (SbOCl): insoluble in aqueous solution: 10 ⁇ 20g and antimony sulfate (Sb2 (SO4) 3): 1 ⁇ 5g, after a mixture of water 800 ⁇ 1500g made in slurry form decarburization, chimjil is 5 ⁇ 8g / m 2 is applied to the surface of the material over the 300 to 700 Dry at ⁇ .
  • SBOCl antimony oxychloride
  • Sb2 (SO4) 3 1 ⁇ 5g
  • chimjil is 5 ⁇ 8g / m 2 is applied to the surface of the material over the 300 to 700 Dry at ⁇ .
  • the specimen thus prepared is made into a coil and subjected to high temperature annealing, and the temperature rising rate of the rapid heating rate section at the initial high temperature annealing is set at 18 to 75 ° C / hr, and the slow temperature rising rate considering the second recrystallization is 10 to 15 ° C. Set to / hr.
  • the thermal decomposition of the glassless additive in the annealing separator in the first half of the high temperature annealing process occurs as follows in the vicinity of 280 ° C.
  • the separated Cl gas diffuses back to the surface of the material rather than coming out of the coil by the pressure in the furnace, and forms FeCl2 at the interface between the material and the oxide layer.
  • a base coating is formed on the outermost surface of the material by the reaction of MgO and SiO 2 near 900 ° C. by equation (5).
  • FeCl2 formed at the interface between the material and the oxide layer starts to decompose around 1025 ⁇ 1100 ° C.
  • the decomposed Cl2 gas escapes to the outermost surface of the material, thereby peeling the base coating formed thereon.
  • the amount of chloride in the form of oxychloride which does not produce Fe-based oxides and does not inhibit iron loss during drying after slurry preparation is limited to 10-20 g based on MgO: 100-200 g added. . If the amount of chloride is less than 10g, there is a limit in improving the roughness and glossiness after high temperature annealing because Cl cannot be supplied enough to form sufficient FeCl2. In the embodiment according to the present invention, the amount of chloride is limited to 10 to 20 g for MgO: 100 to 200 g because the amount of MgO may be too much to interfere with the base coating formation itself, thereby affecting not only the surface but also metallurgical secondary recrystallization. do.
  • antimony sulphate (SbOCl) and antimony sulfate (Sb2 (SO4) 3) are added to form a thin layer of forsterite resulting from MgO and SiO2 reactions.
  • SbOCl antimony sulphate
  • Sb2 (SO4) 3 antimony sulfate
  • MgO the main component of annealing separator such as antimony oxychloride (SbOCl). Since too much amount may interfere with the base coating formation itself, the embodiment according to the present invention limits the amount of SbOCl and Sb2 (SO4) 3 added to the above range.
  • Table 2 shows the variation of the oxide layer composition according to the dew point temperature in the furnace during decarburization and annealing after cold rolling to 0.23mm thickness using Sn and Sb-added steel slabs (Sample No. 10 component system) proposed in Table 1.
  • the base coating removal ability was compared through the difference in roughness and gloss.
  • the cracking temperature of the furnace was 875 ° C., mixed with 75% of hydrogen and 25% of nitrogen, and 1% of dry ammonia gas, and maintained for 180 seconds.
  • the total amount of oxygen formed on the surface of the material and the composition of the oxide layer are greatly affected by the change in the furnace dew point temperature.
  • Table 2 when the amount of oxide layer formed on the surface was adjusted to more than 2 times and less than 5 times SiO2, Fe2SiO4 had the best surface roughness and glossiness. At 5 times or more, Fe2SiO4 formation was so weak that the base coating itself was very poor, resulting in too much residual material on the surface of the material. This is because the excessively produced FeO, Fe2SiO3 basically does not react to the glassless additives and adheres directly to the surface of the material to form Femound defects. It can be seen.
  • MgO was prepared based on 100 g of water and 1000 g of annealing separator. As shown in Table 3, the use of highly active MgO and highly oxidizing BiCl3, and similar chlorides, rather than chlorides of moderately active MgO, does not dissociate in aqueous solution, thereby inhibiting Fe oxides inherently. In the specimen to which antimony oxychloride (SbOCl) additive and antimony sulfate (Sb2 (SO4) 3) having no Cl group were applied, a grain-oriented electrical steel sheet having excellent roughness and gloss and very low iron loss was obtained.
  • SBOCl antimony oxychloride
  • SO4 antimony sulfate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

본 발명은 방향성 전기강판 및 그 제조방법에 관한 것으로, 강 슬라브를 열간압연하여 열간압연판을 제조 후, 열연판 소둔을 실시하거나 생략하고, 냉간압연을 거친 다음, 탈탄 및 질화소둔을 거쳐 최종 고온소둔을 포함하는 방향성 전기강판의 제조방법에 있어서, 상기 탈탄 및 질화소둔 공정은 35~55℃의 노점(Dew Point) 범위에서 실시되고, 상기 최종 고온소둔 공정에서 MgO를 포함하는 글라스리스 첨가제를 도포하는 것을 특징으로 하는 방향성 전기강판 제조방법 및 이에 의해 제조되는 방향성 전기강판이 제공된다.

Description

방향성 전기강판 및 그 제조방법
본 발명은 방향성 전기강판 및 그 제조방법에 관한 것으로, 보다 상세하게는 탈탄소둔 공정에서 생성되는 산화층과 코일의 융착방지제로 사용되는 MgO 슬러리의 화학적 반응을 통해 생성되는 베이스 코팅층을 의도적으로 방지하여 제품의 자성열화를 초래하는 표면 피닝(Pinning) 효과를 제거한 방향성 전기강판 및 그 제조방법에 관한 것이다.
방향성 전기강판이란 3.1% Si성분을 함유한 것으로서 결정립의 방위가 (110)[001]방향으로 정열된 집합조직을 가지고 있으며 이 제품은 압연방향으로 극히 우수한 자기적 특성을 가지고 있으므로 이 특성을 이용하여 변압기, 전동기, 발전기 및 기타 전자 기기 등의 철심 재료로 사용된다.
최근 고 자속밀도급의 방향성 전기강판이 상용화되면서 철손이 적은 재료가 요구되고 있다. 전기강판에 있어 철손 개선은 네 가지 기술적 방법으로 접근할 수 있는데 첫째는 방향성 전기강판의 자화용이 축을 포함하고 있는 {110} <001> 결정립 방위를 압연방향으로 정확하게 배향하는 방법, 둘째로 재료의 박물화, 셋째로 화학적, 물리적 방법을 통해 마그네틱 도메인을 미세화하는 자구미세화 방법, 그리고 마지막으로 표면처리등과 같은 화학적 방법에 의한 표면 물성 개선 또는 표면장력 부여 등이 있다.
그 중 방향성 전기강판 우수한 절연코팅은 기본적으로 외관에 결함이 없는 균일한 색상을 가져야 하지만, 기능성을 부여하려는 여러 가지 기술의 접목에 의하여 전기절연성을 향상시키고 피막의 밀착성을 강화시키는 것이 주로 이용되는 기술이었다.
그러나, 최근 저철손 방향성 전기강판에 대한 요구가 높아지면서 최종 절연피막의 고 장력화를 추구하게 되었고 실제 고장력 절연피막이 최종제품의 자기적 특성 개선에 크게 기여함이 확인되었다.
장력피막의 특성 향상을 위해서 여러 가지 공정인자의 제어 기법이 응용되고 있었으며, 현재 상품화되어 있는 방향성 전기강판은 강판과 포스테라이트(Mg2SiO4, 이하 베이스 코팅)계 바탕 피막 위에 형성된 절연피막의 열팽창 계수의 차이를 이용하는 것에 의해 강판에 인장응력을 부가함으로써 철손감소 효과를 도모하고 있다.
대표적인 절연피막 형성방법으로, 일본특허 특개평11-71683에서와 같이 고온의 유리 전이점을 가진 콜로이달 실리카를 사용하여 피막장력을 향상시킨 방법 또는 일본특허 제3098691호, 일본특허 제2688147호에서와 같이 알루미나 주체의 알루미나 솔(alumina sol)과 붕산 혼합액을 이용, 전기강판에 고장력의 산화물 피막을 형성하는 기술이 제안되었다. 이와 더불어 방향성 전기강판 표면의 성질을 적극적으로 개선함으로써 소재의 자성을 개선할 수 있는데 공정중 탈탄소둔 과정에서 필연적으로 생성되는 산화층과 코일의 융착방지제로 사용되는 MgO 슬러리의 화학적 반응을 통해 생성되는 베이스 코팅층을 제거함으로써 그 목적을 이룰 수 있다.
베이스 코팅을 제거하는 기술은 통상재와 같이 이미 베이스 코팅이 형성된 제품을 황산 또는 염산으로 강제적으로 제거하는 방법을 들 수 있으며 이는 일본특허 1985-076603 에 잘 기술되어 있다. 그러나, 이러한 경우 화학연마 또는 전해 연마와 같은 복잡한 과정이 수반되어야 하며 특히 일정한 두께로 표면을 제거하기 위해 공정 중 산 농도를 일정하게 유지시켜야 하는 어려움과 더불어 처리 비용이 제품의 성능 향상 효과를 상쇄시킨다. 또한, 얻어진 제품의 표면조도가 지나치게 매끈하여 제품위에 절연코팅을 할 수 없으며 이로 인해 물리/화학적 증착법을 이용하지 않고는 밀착성 확보는 물론 절연성 또한 매우 불량하다.
이와 같은 기술적인 한계성을 극복하기 위해 베이스 코팅을 생성하는 과정에서 베이스 코팅을 제거 또는 억제하는 기술(이하 글라스리스/Glassless 기술)이 제안되었으며 (미국특허 4543134), 크게 소둔분리제인 MgO에 염화물을 첨가한 후 고온소둔공정에서 표면 에칭효과를 이용하는 기술과 소둔분리제로 Al2O3분말을 도포하여 고온소둔 공정에서 베이스 코팅 자체를 형성시키지 않는 기술의 두 가지 방향으로 진행되었다.
우선 글라스리스 기술 중 Al2O3 분말을 이용하여 베이스 코팅 자체를 형성시키지 않는 기술은 (탈탄소둔) - (산세) - (Al2O3도포) - (고온소둔) - (예비소둔에 의한 산화막형성) - (장력피막 코팅)의 공정을 거치며, Al2O3가 소재표면에 존재하는 산화물층과의 반응하지 않는 다는 성질을 이용하여 제조하는 방법이다.
그러나, 상기 기술은 소둔분리제로 사용되는 Al2O3가 분말형태로 매우 작고 균일하여야 하나 공업적으로 사용되는 분말의 경우 입도가 2~10 ㎛ 정도로 도포를 위한 슬러리 제조시 분산상태로 유지시키는 것이 곤란하다.
또 다른 글라스리스 기술로서 베이스 코팅을 제거하는 방법으로는 염화물 첨가법을 들 수 있으며, 이 방법은 (탈탄소둔) - (MgO+염화물 분말 도포) - (고온소둔) - (산세) - (장력피막 코팅)의 과정을 거치며, 이것은 통상 제조법과 거의 동일한 공정법이라고 할 수 있다. 대표적인 염화물 첨가에 의한 방법으로는 미국특허 제4875947호에서와 같이 MgO를 고온소둔시 코일 판간의 융착방지제, 즉 소둔분리제 주성분으로 하고 여기에 Ca, Li, K, Na, Ba 등의 염화물(이하 종래 Glassless 첨가제)을 첨가하여 고온소둔 중 이들 염화물이 소재표면과 반응하여 FeCl2 피막을 형성하도록 한 후 표면에서 증발하여 제거함으로써, 글라스피막층의 형성자체를 차단하는 기술이다.
그러나, 상기 기술에 의하면 도포작업성은 우수하나 여전히 얇은 산화막이 존재하고 얻어지는 표면조도가 화학연마 등에 의해 제조된 시편보다 거칠고 따라서 철손개선 효과보다는 Base 코팅 부재로 인한 제품의 가공성, 즉 타발성 등에 유리한 효과만 기대할 수 있다. 따라서 이를 보완할 수 있는 기술들이 제안되었는데 일본특허 1993-167164 호에 나타난 바에 의하면 염화물로서 BiCl3를 사용하여 기존 소둔분리제 대비 조도가 우수하며 일반 염화물 대비 잔류물질이 없는 평활화된 제품을 얻었으며 철손도 베이스 코팅을 형성하고 있는 통상 제품 대비 매우 우수하다고 보고되었다.
그러나, 상기 기술에서 사용된 MgO와 BiCl3을 소둔분리제로 사용하기 위해 물과 함께 슬러리 상으로 제조하였을 경우 활성 MgO와 강 중에 존재하는 Al 성분과의 반응에 의한 스피넬 (Al2O3·MgO)에 의해 제안한 바와 같이 조도가 매우 낮은 제품을 얻기가 매우 힘들며, 함께 사용된 염화물인 BiCl3의 해리에 기인된 Fe산화물 생성이 가속화 되어 고온소둔 후 소재표면에 Fe계 잔류물질을 남긴다.
상기와 같은 문제점으로 베이스 코팅이 배제되고 통상 방향성 전기강판 일반재와 대비 철손이 지극히 우수한 제품을 얻는 것은 매우 어려운 실정이다.
상기와 같은 문제를 해결하기 위한 본 발명은 최소한으로 제한된 베이스 코팅층을 고온소둔 공정 중에 자발적으로 제거되도록 함으로써 소재 내에서 자구이동을 제한하는 주된 요소인 피닝 포인트를 제거함으로써 철손이 지극히 낮은 베이스 코팅 프리형 전기강판 및 그 제조방법을 제공하고자 한다.
본 발명의 일 실시예에 의한 소둔 분리제는, MgO, 옥시클로라이드 물질 및 설페이트계 산화방지제를 포함한다.
상기 옥시클로라이드 물질은 안티모니 옥시클로라이드(SbOCl) 또는 비스무스 옥시클로라이드(BiOCl)일 수 있다.
상기 설페이트계 산화방지제는 안티모니계 (Sb2(SO4)3), 스트론튬계 (SrSO4) 또는 바륨계 (BaSO4) 로부터 선택되는 하나 이상일 수 있다.
상기 옥시클로라이드 물질은 중량비로, 상기 MgO: 100~200에 대하여 10~20의 비로 포함하고, 상기 설페이트계 산화방지제는 중량비로, 상기 MgO: 100~200 에 대하여 1~5의 비로 포함할 수 있다.
본 발명의 일 실시예에 의한 방향성 전기강판의 제조방법은, 강 슬라브를 열간 압연하여 열연 강판을 제조하는 단계; 상기 열연 강판을 냉간 압연하여 냉연 강판을 제조하는 단계; 상기 냉연 강판을 탈탄 소둔 및 질화 소둔 하는 단계; 상기 탈탄 소둔 및 질화 소둔이 완료된 전기강판에 MgO, 옥시클로라이드 물질 및 설페이트계 산화방지제를 포함하는 소둔분리제 및 물을 포함하는 글라스리스 첨가제를 도포하여 최종 고온소둔 하는 단계; 를 포함 한다.
상기 옥시클로라이드 물질은 안티모니 옥시클로라이드(SbOCl) 또는 비스무스 옥시클로라이드(BiOCl)일 수 있다.
상기 설페이트계 산화방지제는 안티모니계(Sb2(SO4)3), 스트론튬계(SrSO4) 또는 바륨계(BaSO4) 로부터 선택되는 하나 이상 일 수 있다.
상기 옥시클로라이드 물질은 중량비로, 상기 MgO: 100~200에 대하여 10~20의 비로 포함하고, 상기 설페이트계 산화방지제는 중량비로, 상기 MgO: 100~200 에 대하여 1~5의 비로 포함할 수 있다.
상기 탈탄 소둔 및 질화 소둔이 완료된 전기강판의 표면에 형성되는 SiO2의 양이 Fe2SiO4 양의 2~5배로 형성될 수 있다.
상기 탈탄 및 질화소둔 공정은 35~55℃의 노점(Dew Point) 범위에서 실시될 수 있다.
상기 MgO의 활성화도는 400~3000초 일 수 있다.
상기 최종 고온소둔시, 700~950℃의 온도 범위에서는 승온속도를 18~75℃/hr로 실시하고, 950~1200℃의 온도 범위에서는 10~15℃/hr로 실시할 수 있다.
상기 탈탄 및 질화소둔시 온도는 800~950℃ 일 수 있다.
상기 글라스리스 첨가제는 5~8 g/m2 으로 도포 될 수 있다.
상기 강 슬라브는 중량 %로, Sn: 0.03~0.07%, Sb: 0.01~0.05%, P: 0.01~0.05%, 잔부는 Fe 및 기타 불가피하게 첨가되는 불순물을 포함하며, P+0.5Sb : 0.0370~0.0630% 를 만족 할 수 있다.
본 발명의 일 실시예에 의한 방향성 전기강판은, 중량 %로, Sn: 0.03~0.07%, Sb: 0.01~0.05%, P: 0.01~0.05%, 잔부는 Fe 및 기타 불가피하게 첨가되는 불순물을 포함하며, P+0.5Sb: 0.0370~0.0630% 을 만족하는 강 슬라브를 열간 압연하여 열연 강판을 제조 하고, 상기 열연 강판을 냉간 압연하여 냉연 강판을 제조 한 후, 상기 냉연 강판을 탈탄소둔 및 질화 소둔을 실시하되, 상기 탈탄 소둔 및 질화 소둔이 완료된 강판의 표면에 형성되는 SiO2의 양은 Fe2SiO4 양의 2~5배인 방향성 전기강판이다.
본 발명의 또 다른 실시예에 의한 방향성 전기강판은, 상기 탈탄 소둔 및 질화 소둔이 완료된 전기강판에 MgO, 옥시클로라이드 물질 및 설페이트계 산화방지제를 포함하는 소둔분리제 및 물을 포함하는 글라스리스 첨가제가 도포하여 최종 고온소둔을 실시한 방향성 전기강판이다.
상기 옥시클로라이드 물질은 안티모니 옥시클로라이드(SbOCl) 또는 비스무스 옥시클로라이드(BiOCl)일 수 있다.
상기 설페이트계 산화방지제는 안티모니계(Sb2(SO4)3), 스트론튬계(SrSO4) 또는 바륨계(BaSO4) 로부터 선택되는 하나 이상 일 수 있다.
상기 옥시클로라이드 물질은 중량비로, 상기 MgO: 100~200에 대하여 10~20의 비로 포함하고, 상기 설페이트계 산화방지제는 중량비로, 상기 MgO: 100~200 에 대하여 1~5의 비로 포함할 수 있다.
상기 탈탄 소둔 및 질화 소둔이 완료된 전기강판의 표면에 형성되는 SiO2의 양이 Fe2SiO4 양의 2~5배로 형성될 수 있다.
상기 탈탄 및 질화소둔 공정은 35~55℃의 노점(Dew Point) 범위에서 실시될 수 있다.
상기 MgO의 활성화도는 400~3000초 일 수 있다.
상기 최종 고온소둔시, 700~950℃의 온도 범위에서는 승온속도를 18~75℃/hr로 실시하고, 950~1200℃의 온도 범위에서는 10~15℃/hr로 실시할 수 있다.
상기 탈탄 및 질화소둔시 온도는 800~950℃ 일 수 있다.
상기 글라스리스 첨가제는 5~8 g/m2 으로 도포 될 수 있다.
본 발명의 실시예에 따르면 방향성 전기강판의 제조공정 중 탈탄소둔 과정에서 필연적으로 생성되는 산화층과 코일의 융착방지제로 사용되는 MgO 슬러리의 화학적 반응을 통해 생성되는 베이스 코팅층을 최소화할 수 있다.
또한, 베이스 코팅을 제거함으로써 자구이동을 제한하는 주된 요소인 피닝 포인트가 배제될 수 있어 방향성 전기강판의 철손을 향상시킬 수 있다.
또한, 활성화도가 제한된 MgO를 도입하여 소둔분리제의 주요성분인 MgO의 활성화도를 적절히 조절하고 슬러리 도포 및 건조시 생성되는 Fe계 산화물을 불용해성 화합물인 옥시클로라이드계 물질과 설페이트계 산화방지제를 도입함으로써 표면광택이 우수하고 조도가 매우 미려한 방향성 전기강판을 제조할 수 있다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
본 발명에 따른 실시예는 상기한 목적을 달성하기 위한 수단으로, 방향성 전기강판 제조공정에 대한 전반적인 제어가 필요하다. 이때, 사용된 소재는 중량%로, Sn: 0.03~0.07중량%, Sb: 0.01~0.05중량%, P: 0.01~0.05중량%를 필수적으로 포함하는 것을 특징으로 하며, Sn: 0.03~0.07중량%, Sb: 0.01~0.05중량%, P: 0.01~0.05중량%를 필수적으로 포함하는 강 슬라브를 열간압연하여 2.0~2.8 mm의 열간 압연판을 제조한 다음, 열연판 소둔 및 산세 후 최종두께인 0.23mm 두께로 냉간압연을 거쳐 0.23mm 두께의 냉연판을 제조한다.
냉간압연 후 탈탄 및 질화 처리를 행하는 공정에서 로의 온도, 분위기, 노점(Dew Point)등을 제어하여 소재표면에 생성되는 산화층의 양이 SiO2가 Fe2SiO4의 2~5배가 되도록 조정한다. 이때, 상기 노점은 35~55℃로 제어한다.
상기와 같이 제조된 소재에 MgO: 100~200g, 수용액에서 불용해성 성질을 갖는 무기 화합물 형태의 옥시클로라이드 물질: 10~20g, 설페이트계 산화방지제: 1~5 g 으로 구성된 소둔분리제를 물: 800~1500g 과 혼합하여 슬러리로 제조하고 이를 300~700℃에서 건조하고 도포하여 권취한 후, 전 구간을 10% 질소함유 수소 분위기에서 700~1200℃ 구간에서 승온율을 15℃/hr 이상으로 유지하고, 1200±10℃ 의 온도에서 20시간 이상 균열하는 마무리 고온소둔을 행하고 최종적으로는 절연코팅제를 도포하여 방향성 전기강판 제조한다.
본 발명에 따른 실시예에서는 상기 소둔분리제에 사용된 활성화 MgO의 활성화도를 400~3000초로 제한하였으며, 수용액에서 불용해성 성질을 갖는 무기 화합물 형태의 옥시클로라이드 물질은 안티모니계 또는 비스무스계에 적용될 수 있다.
또한, 본 발명에 따른 실시예에서 산화방지제로 사용되는 설페이트계의 물질은 안티모니계, 스트론튬계 또는 바륨계 중 하나 이상이 사용될 수 있다.
본 발명에 따른 실시예는 베이스 코팅을 가지지 않는 방향성 전기강판을 제조함에 있어 산세나 화학연마 등과 같은 복잡하고 경제성 없는 공정 또는 소둔분리제에 염화물을 첨가하여 고온소둔 중 이들 염화물이 소재표면과 반응하여 FeCl2 피막을 형성하도록 한 후 표면에서 증발하는 공정을 통하여, 종래의 글라스리스 방향성 전기강판 대비 제조시 표면이 조도와 광택이 매우 양호하며 이로 인해 철손이 획기적으로 개선된 베이스 코팅 프리(base coating free)형 방향성 전기강판을 제조할 수 있다.
이하에서는 본 발명의 실시예에 따른 방향성 전기강판의 성분 한정 이유에 대하여 설명한다. 이는 본 발명에 따른 실시예에서 제시하고 있는 베이스 코팅 프리형 전기강판을 제조하기에 매우 적합하기 때문이다. 일단 야금학적으로 각 원소들은 다음과 같은 작용에 의해 방향성 전기강판의 자성향상에 기여를 한다.
본 발명에 따른 실시예에서의 성분 함량은 특별한 언급이 없는 한 중량%이다.
Sn: 0.03~0.07중량%
Sn을 첨가하면 2차 결정립의 크기를 감소시키기 위하여 {110}<001> 방위의 2차 핵의 숫자를 증가시킴으로써 철손을 향상시킬 수 있다. 또한 Sn은 결정립계에 편석을 통해서 결정립 성장을 억제하는데 중요한 역할을 하며, 이는 AlN 입자가 조대화 되고, Si 함량을 증가함에 따라 결정립 성장을 억제하는 효과가 약화되는 것을 보상한다. 따라서, 결과적으로 상대적으로 높은 Si함유량을 가지고도 {110}<001> 2차 재결정 집합조직의 성공적인 형성이 보증될 수 있다. 즉, {110}<001> 2차 재결정 구조의 완성도를 전혀 약화시키지 않고서도 Si 함유량을 증가시킬 뿐만 아니라 최종 두께를 감소시킬 수 있다. 이러한 Sn의 함량은 이미 상술한 바와 같이 다른 성분의 함량을 적절히 조정한 범위 내에서 0.03~0.07중량%인 것이 바람직하다. 즉, 상술한 바와 같이 Sn의 함량범위를 상기 0.03~0.07중량%로 제어할 때, 종래에서는 예측할 수 없었던 불연속적이고 현저한 철손 감소 효과를 확인할 수 있으므로 본 발명에 따른 실시예에서의 Sn의 함량은 상기 범위로 한정한다.
또한, Sn 함량이 과할 경우에는 취성이 증가된다는 문제도 있을 수 있으므로 Sn을 상술한 범위로 제어할 경우에는 취성 향상에도 효과적이다.
Sb: 0.01~0.05중량%
Sb는 결정립계에 편석하여 1차 재결정립의 과도한 성장을 억제하는 작용이 있다. Sb를 첨가하여 1차 재결정단계에서 입성장을 억제함으로써 판의 두께 방향에 따른 1차 재결정립크기의 불균일성을 제거하고, 동시에 2차 재결정을 안정적으로 형성시킴으로써 자성이 보다 더 우수한 방향성 전기강판을 만들 수 있다. 특히, 이러한 Sb의 효과는 Sb를 0.01~0.05중량% 만큼 함유할 때 종래 문헌에서는 예측할 수 없었을 정도로 크게 향상될 수 있다.
Sb는 결정립계에 편석하여 1차 재결정립의 과도한 성장을 억제하는 작용이 있으나 0.01중량% 이하이면 그 작용이 제대로 발휘되기 어렵고, 0.05중량% 이상이 함유되면 1차 재결정립의 크기가 지나치게 작아져 2차 재결정 개시온도가 낮아져 자기특성을 열화시키거나 입성장에 대한 억제력이 지나치게 커져 2차 재결정이 형성되지 않을 수도 있기 때문에 본 발명에 따른 실시예에서는 Sb의 함량을 상기 범위로 한정한다.
P: 0.01~0.05중량%
P는 저온가열 방식의 방향성 전기강판에서 1차 재결정립의 성장을 촉진시키므로 2차 재결정 온도를 높여 최종 제품에서 {110}<001> 방위의 집적도를 높인다. 1차 재결정립이 너무 과대할 경우에는 2차 재결정이 불안해지지만 2차 재결정이 일어나는 한 2차 재결정 온도를 높이기 위해 1차 재결정립이 큰 것이 자성에 유리하다. 한편 P는 1차 재결정된 강판에서 {110}<001> 방위를 갖는 결정립의 수를 증가시켜 최종제품의 철손을 낮출 뿐만 아니라, 1차 재결정판에서 {111}<112> 집합조직을 강하게 발달시켜 최종제품의 {110}<001> 집적도를 향상시키므로 자속밀도도 높아지게 된다. 또한, P는 2차 재결정 소둔시 약 1000℃의 높은 온도까지 결정립계에 편석하여 석출물의 분해를 지체시켜 억제력을 보강하는 작용도 가지고 있다. 이러한 P의 함량을 0.01~0.05중량%로 제한할 경우에는 종래 문헌에서는 전혀 예측할 수 없었던 현저한 효과를 얻을 수 있다. P의 효과가 제대로 발휘되려면 0.01중량% 이상이 필요하고, P가 0.05중량% 이상이 되면 1차 재결정립의 크기가 오히려 감소되어 2차 재결정이 불안정해질 뿐만 아니라 취성을 증가시켜 냉간압연성을 저해하기 때문에 본 발명에 따른 실시예에서는 P의 함량을 상기 범위로 한정한다.
P+0.5Sb: 0.0370~0.0630%
또한, 본 발명에 따른 실시예에서는 상기 여러 원소를 첨가하는 경우 외에도 상기 P+0.5Sb의 함량을 상술한 범위로 제어하여 철손을 더욱 향상시켰다. 그 이유는 대체로 상기 원소들이 함께 첨가되어 상승효과를 거둘 수 있으며, 상승효과가 상기 수식 범위를 충족할 때 다른 수치범위에 비하여 불연속적으로 최대화되기 때문이다. 따라서, 본 발명에 따른 실시예에서는 각각의 성분 함량 이외에도 상기 P+0.5Sb를 상기 범위로 한정한다.
상기와 같은 야금학적인 장점 외에 주요원소로 사용된 Sn, Sb가 강 중에 첨가 되면, 방향성 전기강판과 같은 Fe-Si 합금의 경우 내고온 산화성이 향상된다.
이는 본 발명에 따른 실시예에서 제안하는 베이스 코팅 프리 제품 제조를 위해 매우 중요한 전제조건이 되는데, 베이스 코팅 프리 제조를 위해서는 탈탄 소둔 공정 중에 필연적으로 발생하는 SiO2 산화층과 소둔분리제로 사용되는 MgO 슬러리간의 선택적 반응을 통해 적당량의 베이스 코팅층만이 생성되어야 하며, 이외의 부산물을 만들 수 있는 Fe계 산화층을 억제하는 것이 매우 중요하다.
따라서, 본 발명에 따른 실시예에서는 방향성 전기강판의 자성향상을 위한 야금학적 원소로서의 의미 뿐만 아니라 베이스 코팅 프리 공정에 가장 중요한 역할을 담당하는 산화층의 질을 제어하기 위해 강 중 Sn, Sb가 포함된 슬라브를 그 출발 물질로 한다.
이하에서는 본 발명의 실시예에 따른 방향성 전기강판의 제조방법에 대하여 설명하기로 한다.
상기에 언급된 강 슬라브를 열간압연하여 2.0~2.8 mm의 열간 압연판을 만든다음, 열연판 소둔 및 산세 후 최종두께인 0.23mm 두께로 냉간압연을 거친다. 냉간압연된 강판은 이후, 탈탄소둔과 재결정 소둔을 겪게 되는데 이에 대하여 상세히 설명한다.
상기 냉간압연된 강판은 강 중에 포함된 탄소를 제거하는 동시에 고온소둔시 2차 재결정 성장을 적절히 제어하는 억제제(Inhibitor)를 생성시키기 위하여, 암모니아+수소+질소의 혼합가스 분위기에서 탈탄 및 질화소둔을 거친다. 이 공정의 특징은 습윤 분위기하에서 로내 온도를 800~950℃ 정도로 설정하여 작업하는데 800℃보다 낮은 경우에는 충분한 탈탄소둔 효과가 발생하지 않을 뿐만 아니라 결정립이 미세한 상태로 유지되어 2차 재결정시 바람직하지 못한 방위의 결정이 성장할 우려가 있으며, 950℃보다 높으면 1차 재결정된 결정립이 과다하게 성장될 우려가 있으므로, 본 발명에 따른 실시예에서의 탈탄 및 질화소둔시의 로내 온도는 800~950℃로 한정한다.
또한, Sn, Sb, P를 함유하지 않는 성분계에 비하여 2~4℃ 정도 낮도록 50~70℃ 정도로 하는 것이 산화층 관리에 유리하며 최종 제품의 결정립 방위제어나 철손향상에 보다 유리하다.
이상에서와 같이 야금학적 측면에서 볼 때 탈탄 및 질화소둔 공정에서 필연적으로 표면에 산화층이 생성될 수 밖에 없으며 종래의 방향성 전기강판 제조공정에서는 생성된 산화층과 MgO슬러리(MgO를 물에 분산시킨 수용액)를 도포하여 고온소둔 공정 중 베이스 코팅(Mg2SiO4)층이 형성되었다. 이렇게 생성된 포스테라이트층, 즉 베이스 코팅은 통상적으로 방향성 전기강판 코일의 판과 판 사이 융착을 방지하고 판에 장력을 부여하여 철손을 감소시키는 효과와 더불어 소재에 절연성을 부여하는 것으로 알려져 왔다.
그러나, 최근에는 저철손 고자속밀도급 소재의 요구가 증가되면서 제품의 박물화 추세가 가속화 되고 있으며 이에 따라 소재 표면 쪽에서 손실되는 자기적 성질이 점점 더 중요해지고 있다. 이런 관점에서 볼 때 탈탄 및 질화공정 중 생성되는 산화층과 소둔분리제로 사용되는 MgO 슬러리와의 반응을 통해 생성되는 베이스 코팅이 오히려 소재 표면을 통해 이동하는 자구의 흐름을 방해하는 피닝 포인트(pinning point)를 다량 생성하는 원인으로 작용하고 있으며, 이를 제거하기 위한 연구가 진행되고 있다.
냉간압연판이 탈탄 침질을 위해 습윤분위기로 제어되고 있는 가열로를 통과할 때 강 중 산소친화도가 가장 높은 Si가 로내 수증기에서 공급되는 산소와 반응해 가장 먼저 표면에 SiO2가 형성되고, 이후에 산소가 강 중으로 침투함에 의해 Fe계 산화물이 생성된다. 이렇게 형성된 SiO2는 다음과 같은 화학 반응식을 통해 베이스 코팅을 형성한다.
2Mg(OH)2 + SiO2 --> Mg2SiO4 + 2H2O -----------------(1)
상기 반응식 (1)에서와 같이 SiO2가 고체상태의 MgO 슬러리와 반응함에 있어 완전한 화학적 반응을 이루기 위해서는 두 고체 사이를 연결해 주는 촉매역할의 물질이 필요하며 파야라이트(fayalite, Fe2SiO4)가 이를 담당한다. 따라서, 종래에는 SiO2 형성량 뿐만 아니라 적절한 파야라이트 형성이 중요하였다.
그러나, 본 발명에 따른 실시예에서는 궁극적으로 소재의 자구이동을 방해하는 베이스 코팅층을 고온소둔 공정 전단부에 최소한으로 형성한 후 후단부에서는 이를 제거하므로 종래의 제조방법과 같이 소재표면 위에 대량의 SiO2와 파야라이트를 형성하여 MgO와 반응시킬 필요가 없다. 이러한 경우에는 탈탄 및 침질 소둔공정시 노점, 균열온도 그리고 분위기 가스제어를 통해서 소재의 표면에 얇은 SiO2층을 형성시키고 파야라이트도 아주 소량 생성시키는 것이 유리하다. 그 이유는 종래에는 SiO2와 MgO간의 반응을 완벽하게 유도하기 위해서 비교적 많은 양의 촉매물질인 파야라이트가 필요하며 이를 생성하기 위해서는 필수불가결하게 FeO, Fe2SiO3 등과 같은 Fe계 산화물들이 같이 생성된다. 생성된 FeO, Fe2SiO3는 기본적으로 글라스리스(glassless)계 첨가물에 반응하지 않고 소재 표면에 그대로 붙어 FeO 계통의 산화물 언덕(이하 Fe mound)을 형성하고 이러한 경우 베이스 코팅이 배제된 표면이 미려하고 광택이 우수한 제품을 얻을 수 없다.
따라서, 본 발명에 따른 실시예에서는 탈탄 및 질화소둔 경유시 로내 노점 온도에 변화를 주어 산화층 조성의 변화를 유도하였고, 이렇게 유도된 SiO2와 파야라이트의 양을 FT-IR을 통해 정량화하였다.
그 결과 표면에 형성된 산화층의 양이 SiO2가 파야라이트의 2배 이상 5배 이하로 조정했을 때 표면의 조도 및 광택도가 가장 우수하였으며 2배 이하에서는 Fe mound성 결함이 발생하여 표면 조도를 저하시켰으며, 5배 이상에서는 파야라이트 형성이 너무 미약하여 포스테라이트 형성 자체가 매우 불량하고 이로 인해 소재표면에 잔류물질이 너무 많았다.
따라서, 본 발명에 따른 실시예에서는 SiO2가 파야라이트의 2배 이상 5배 이하로 형성되도록 한다.
상기와 같이 소재의 산화층이 조정된 시편 위에 BiCl3와 같은 종래의 글라스리스 첨가제를 MgO, 물과 혼합하여 도포하고 코일상으로 최종소둔하였다. 최종소둔시 1차 균열온도는 700℃, 2차 균열온도는 1200℃로 하였고, 승온구간의 승온조건은 700~950℃의 온도구간에서는 18~75℃/hr, 950~1200℃의 온도구간에서는 10~15℃/hr로 하였다. 한편, 1200℃에서의 균열시간은 15시간으로 하여 처리하였다. 최종소둔시의 분위기는 1200℃까지는 25%질소+75%수소의 혼합분위기로 하였고, 1200℃ 도달후에는 100% 수소분위기에서 유지한 후 노냉하였다.
상기와 같이 처리한 시편에서 조도 및 광택도 개선은 종래의 글라스리스계 대비 우수하였으나 산세 및 화학연마 수준의 미려한 표면 성질을 얻을 수 없었으며 그 자성개선 또한 한계가 있었다.
이에 본 발명에 따른 실시예에서는 소둔분리제에 사용되는 성분들이 소재표면에 도포되고 건조될 때 각 성분별 반응 메커니즘 및 고온소둔 후 표면에 잔류하고 있는 물질에 대해 연구하였다.
우선 고온소둔 후 베이스 코팅이 완전히 제거되지 않고 남아 있는 시편의 잔류물질을 분석한 결과 스피넬계(MgO·Al2O3) 화합물과 Fe계 산화물로 판명되었다. 또한, 이러한 잔류물질이 남은 경우에는 저철손 방향성전기강판이 요구하는 자성특성을 만족 시킬 수 없었다. 따라서, 본 발명에 따른 실시예에서는 궁극적으로 종래의 글라스리스 타입의 한계를 극복하고 방향성 전기강판의 철손을 획기적으로 개선하고자 위의 특성저하 물질 형성 메커니즘에 중점을 두고 연구하였다.
상기에서 제시한 특성저하 원인의 첫번째인 스피넬계 산화물은 소둔도포제의 주성분인 MgO의 활성화도 높으면 상기 식 (1)과 같이 표면에 존재하는 SiO2와 반응하여 베이스 코팅층을 형성함은 물론이고, 표면산화층과 소재 계면에 존재하는 강중 성분인 Al과 반응하여 위의 스피넬계 복합산화물이 발생된 것으로 파악되었다. 이를 증명하기 위해 본 발명에 따른 실시예에서는 MgO의 활성화도를 인위적으로 조절하여 다양한 활성화도를 지닌 MgO를 제조하였다. 상기 MgO의 활성화도는 MgO분말이 타 성분과 화학반응을 일으킬 수 있는 능력으로 정의되고, MgO가 일정량의 구연산용액을 완전 중화시키는데 걸리는 시간으로 측정하였다.
일반적으로 통상 방향성 전기강판용 소둔분리제로 이용되는 MgO의 경우에는 고활성이 사용되며, 활성화도는 50~300초 정도인데, 본 발명에 따른 실시예에서는 통상의 활성화도를 가진 MgO 이외에 고온소성 과정을 통해 MgO의 활성화도를 조절한 MgO를 적용한 결과 스피넬계 화합물이 잔류물질로 남는 것을 억제할 수 있었다.
특히, 본 발명에 따른 실시예에서는 MgO의 활성화도를 400~3000초로 한정하는데, 만약 활성화도가 400초 보다 작은 경우에는 통상의 MgO와 같이 고온소둔 후 표면에 스피넬계 산화물을 남기고, 3000초 보다 큰 경우에는 활성화도가 너무 미약해 표면에 존재하는 산화층과 반응하지 않아 베이스 코팅층을 형성할 수 없게 되므로 본 발명에 따른 실시예에서는 MgO의 활성화도를 400~3000초로 한정한다.
자기특성 저하 원인 중 두번째는 Fe계 산화물로써 이는 상기에서 설명한 바와 같이 강중 Sn, Sb 도입 및 탈탄, 침질과정에서 로내 노점 및 분위기 제어를 통하여 생성이 제한된다. 그러나, 이러한 제한에도 불구하고 Fe계 산화물의 생성 원인은 글라스리스 첨가제로 사용되고 있는 염화물과 소둔분리제를 분산하기 위해 사용되는 수용액간의 화학적 반응과도 연관성이 있다. 일반적으로 종래의 글라스리스 계통의 염화물로 잘 알려진 BiCl3를 MgO와 함께 수용액상으로 시편 위에 도포하고 고온소둔 과정을 거치면 표면에서 다음과 같은 화학적 반응이 일어난다.
BiCl3 + H2O --> BiOCl (s) + 2HCl --------------------(2)
상기 화학반응식 (2)와 같이 수용액상에 발생된 2HCl은 소재 표면에 존재하는 Fe 또는 FeO와 함께 다음과 같은 화학반응을 일으킨다.
(Fe, FeO) + HCl --> FeCl2(s) + H2O ---------------------(3)
따라서 통상적인 글라스리스 첨가제가 도입된 소둔분리제를 도포하고 코일상으로 만들기 위해 700℃ 이하에서 건조할 때 이미 Fe계열의 산화층이 생성되며 이렇게 생성된 물질이 고온소둔 공정을 거치면서 소재표면에 깊은 뿌리를 형성하게 된다.
이러한 현상을 억제하기 위해 본 발명에 따른 실시예에서는 산화성이 강한 BiCl3 또는 이와 유사한 계통의 염화물이 아닌 수용액 내에서 해리되지 않고, 이로 인해 Fe계 산화물을 원천적으로 억제하는 안티모니 옥시클로라이드(SbOCl) 첨가제와 Cl기를 가지지 않는 안티모니 설페이트(Sb2(SO4)3)를 사용함으로써 이러한 문제를 해결하고자 하였다.
즉, 광택과 조도가 매우 미려하고, 철손이 지극히 양호한 방향성 전기강판을 제조하기 위해 소둔분리제로 활성화가 조정된 MgO: 100~200g, 수용액에서 불용해성 성질을 갖는 안티모니 옥시클로라이드(SbOCl): 10~20g과 안티모니 설페이트(Sb2(SO4)3): 1~5g, 물 800~1500g 을 혼합하여 슬러리 형태로 만든 후 탈탄, 침질이 끝난 소재의 표면에 5~8g/m2 도포하고 300~700℃에서 건조한다. 이렇게 제조된 시편을 코일상으로 제조한 후 고온소둔을 거치게 되는데 고온소둔 초기의 빠른 승온속도구간의 승온속도를 18~75℃/hr로 정하고, 2차 재결정을 고려한 느린 승온속도를 10~15℃/hr로 정한다. 이 때, 고온소둔 과정 전반부 소둔분리제 내의 글라스리스계 첨가제의 열적 분해가 280℃ 부근에서 다음과 같이 일어나게 된다.
2SbOCl --> Sb2 (s) + O2 (g) + Cl2(g) -------------------(4)
상기 화학반응식 (4)와 같이 수용액에서 Cl기가 해리가능한 BiCl3 또는 SbCl3와 달리 옥시클로라이드 형태의 염화물의 경우 열적 분해를 통해서만 Cl기가 생성되며, 안티모니 옥시클로라이드를 수용액상에서 슬러리 상태로 제조한 후 도포, 건조하는 과정에서 조도와 광택도 및 궁극적으로 철손 감소를 저해할 수 있는 Fe계 산화물을 발생시키지 않는다.
이렇게 분리된 Cl 가스는 코일에 작용하는 로내 압력에 의해 코일 밖으로 빠져나가기보다는 다시 소재표면 쪽으로 확산해서 들어가면서 소재와 산화층의 경계면에서 FeCl2를 형성하게 된다.
Fe (소재) + Cl2 --> FeCl2 (소재와 산화층 계면) -----------(5)
이후, 900℃ 근처에서 MgO와 SiO2 반응에 의해 소재의 최외곽 표면에는 식(5)에 의해 베이스 코팅이 형성된다. 이후 1025~1100℃ 부근에서 소재와 산화층 계면에서 형성되었던 FeCl2가 분해되기 시작하며 이렇게 분해된 Cl2 가스가 소재 최외곽 표면으로 빠져나오면서 위에 형성되었던 베이스 코팅을 소재로부터 박리시킨다.
본 발명에 따른 실시예에서는 슬러리 제조 후 건조시 Fe계 산화물을 생성시키지 않고 철손 감소를 저해하지 않는 옥시클로라이드 형태의 염화물의 양을 투입되는 MgO: 100~200g에 대하여 10~20g로 제한하여 사용한다. 만약, 상기 염화물의 양을 10g 보다 적게 투입하면 충분한 FeCl2를 형성할만한 Cl을 공급할 수 없게 되어 고온소둔 후 조도 및 광택도를 향상하는데 그 한계가 있고, 20g 보다 많게 투입하면 소둔분리제의 주요 성분인 MgO 대비 너무 많은 양으로 인해 베이스 코팅 형성 자체를 방해하여 표면 뿐만 아니라 야금학적으로 2차 재결정에 영향을 줄 수 있으므로 본 발명에 따른 실시예에서는 MgO: 100~200g에 대하여 염화물을 10~20g으로 한정한다.
한편, 안티모니 옥시클로라이드(SbOCl)와 더불어 안티모니 설페이트(Sb2(SO4)3)는 MgO와 SiO2 반응으로부터 생성되는 포스테라이트 층을 얇게 형성하기 위하여 투입되는데, MgO: 100~200g에 대하여 1~5g 으로 제한한다. 만약, 1g 보다 적은 양을 첨가하면 첨가보조제로서 효과가 미미하여 조도 및 광택향상에 기여를 하지 못하고, 5g 보다 많은 양을 첨가하면 안티모니 옥시클로라이드(SbOCl)와 같이 소둔분리제의 주요 성분인 MgO 대비 너무 많은 양으로 인해 베이스 코팅 형성 자체를 방해할 수 있으므로, 본 발명에 따른 실시예에서는 SbOCl 및 Sb2(SO4)3의 첨가량을 상기 범위로 한정한다.
이하에서는 본 발명에 따른 실시예에 대하여 보다 구체적으로 설명한다.
[실시예 1]
중량%로 Si: 3.26%, C: 0.055%, Mn: 0.12%, Sol. Al: 0.026%, N: 0.0042%, S: 0.0045%, 그리고 Sn, Sb, P함량을 본 발명에서 제안한 성분계와 통상의 방향성 전기강판 성분계에서 통상의 염화물들이 포함된 MgO 소둔분리제를 도포한 후 조도와 광택도를 측정하여 베이스 코팅 형성 여부를 비교하였다. 여기서 광택도는 Gloss 광택도로서 반사각 60°에서 표면에 반사된 빛의 양을 측정하고 거울면 광택도 1000을 기준으로 한다.
표 1
시편번호 Sn함량(중량%) P함량(중량%) Sb함량(중량%) Glassless첨가제 조도(Ra: ㎛) 광택도(index)
1 0 0 0 MgCl2 0.65 54
CaCl2 0.58 67
2 0 0 0.015 MgCl2 0.55 72
CaCl2 0.67 48
3 0 0.02 0 MgCl2 0.74 66
CaCl2 0.62 59
4 0 0.035 0.015 MgCl2 0.59 62
CaCl2 0.60 57
5 0.01 0.035 0.025 MgCl2 0.57 82
CaCl2 0.61 48
6 0.03 0.035 0.025 MgCl2 0.48 103
CaCl2 0.45 107
7 0.04 0.035 0.025 MgCl2 0.49 95
CaCl2 0.50 89
8 0.05 0.02 0.035 MgCl2 0.46 106
CaCl2 0.47 109
9 0.05 0.035 0.045 MgCl2 0.54 97
CaCl2 0.51 98
10 0.06 0.35 0.025 MgCl2 0.43 115
CaCl2 0.42 121
표 1에서 보는 바와 같이 본 발명에서 제안한 Sn, Sb 첨가 소재에 종래의 글라스리스 염화물 소둔분리제로 알려진 물질을 MgO와 혼합한 후 그 슬러리를 도포한 결과 염화물 소둔분리제 종류에 관계 없이 통상의 방향성 전기강판 대비 매우 우수한 광택도와 조도를 얻을 수 있었다. 이러한 원인은 강중 Sn, Sb가 내고온 산화성 향상과 관련이 있으며, 특히 외부 산화를 억제하여 고온소둔 공정에서 염화물의 포스테라이트 층, 즉 베이스 코팅 제거 반응시 잔류물질로 존재하는 Fe산화물 형성을 방해하는 효과에 기인함을 간접적으로 알 수 있다. 본 발명에 따른 실시예에서는 외부산화를 억제하고 베이스 코팅 제거에 유리한 Sn, Sb 첨가 소재를 공시재로 하였다.
표 2는 표 1에서 제안된 Sn, Sb 첨가 강 슬라브(시편번호 10 성분계)를 이용하여 0.23mm 두께로 냉간압연한 후 탈탄 및 질화소둔 경유시 로내 노점 온도에 따른 산화층 조성의 변화를 유도하였고, 이에 따른 조도와 광택도 차이를 통해 베이스 코팅 제거 능력을 비교하였다. 이때 로의 균열온도는 875℃, 75%의 수소와 25%의 질소의 혼합분위기와 1%의 건조한 암모니아 가스를 동시에 투입하여 180초간 유지하여 동시 탈탄, 질화처리하였다.
탈탄 및 질화소둔 공정에서 로내 노점 온도의 변화에 따라 소재 표면에 형성되는 산소총량 및 산화층의 조성은 많은 영향을 받는다. 표 2에서 나타난 바와 같이 표면에 형성된 산화층의 양이 SiO2가 Fe2SiO4의 2배 이상 5배 이하로 조정했을 때 표면의 조도 및 광택도가 가장 우수하였으며 2배 이하에서는 Fe mound성 결함이 발생하여 표면 조도가 저하되었으며, 5배 이상에서는 Fe2SiO4 형성이 너무 미약하여 베이스 코팅 형성 자체가 매우 불량하고 이로 인해 소재표면에 잔류물질이 너무 많았다. 이러한 원인은 과잉 생성된 FeO, Fe2SiO3는 기본적으로 글라스리스계 첨가물에 반응하지 않고 소재 표면에 그대로 붙어 Fe mound 결함을 형성하고 이러한 경우 베이스 코팅이 배제된 표면이 미려하고 광택이 우수한 제품을 얻을 수 없음을 알 수 있다.
표 2
시편번호 노점온도 총산소량(ppm) SiO2/FeO 글라스리스첨가제 조도(Ra: ㎛) 광택도(index)
1 35 340 7.2 MgCl2 0.32 114
2 CaCl2 0.34 120
3 BiCl3 0.31 126
4 SbCl3 0.31 132
5 45 480 4.8 MgCl2 0.32 177
6 CaCl2 0.34 172
7 BiCl3 0.31 191
8 SbCl3 0.31 194
9 55 630 2.3 MgCl2 0.39 160
10 CaCl2 0.38 158
11 BiCl3 0.35 179
12 SbCl3 0.34 166
따라서 표 1 및 2로부터 본 발명에 따른 실시예에서 추구하는 조도와 광택도가 우수하고 그 결과 철손이 지극히 양호한 베이스 코팅 프리형 방향성 전기강판을 제조하기 위해 슬라브 성분계와 산화층 양과 조성의 조건을 도출하였다. 즉, 표 1의 시편번호 5번 성분계로 제조된 냉연판을 표 2에서 도출된 산화층 조건 (SiO2/Fe2SiO4=4.8)으로 제조된 시편을 공시재로 하고 본 발명에 따른 실시예에서 제안한 새로운 베이스 코팅 프리용 신소둔분리제를 표 3과 같이 제조한 후 적용하여 자기적 성질을 포함한 소재특성을 비교하였다.
그리고, 소둔분리제 제조시 MgO는 100g, 물은 1000 g을 기준으로 제조하였다. 표 3에서 볼 수 있듯이 활성화도가 높은 MgO 및 산화성이 강한 BiCl3, 그와 유사한 계통의 염화물이 아닌 활성화도가 적절히 조절된 MgO를 사용하면 수용액 내에서 해리되지 않고, 이로 인해 Fe 산화물을 원천적으로 억제하는 안티모니 옥시클로라이드(SbOCl) 첨가제와 Cl기를 가지지 않는 안티모니 설페이트(Sb2(SO4)3)를 적용한 시편에서 조도와 광택이 우수하고 철손도 매우 낮은 방향성 전기강판을 얻을 수 있었다.
표 3
MgO활성도(S) 통상글라스리스(BiCl3) 베이스코팅 프리소둔분리제 조도(Ra: ㎛) 광택도(index) 자속밀도(B10) 철손(W17/50) 비고
SbOCl Sb2(SO4)3
50 - - - - - 1.91 0.87 통상재
5 - - 0.31 191 1.91 0.90 비교재
10 - - 0.30 200 1.92 0.88
- 5 - 0.29 215 1.92 0.88
- 10 - 0.30 209 1.92 0.89
- 20 - 0.28 220 1.92 0.87
- 5 2.5 0.27 235 1.92 0.86
- 10 2.5 0.26 280 1.92 0.85
- 20 2.5 0.28 255 1.92 0.86
500 - 5 - 0.26 288 1.92 0.85 비교재
- 10 - 0.25 301 1.92 0.83
- 10 0.5 0.25 299 1.93 0.83
- 10 3.5 0.24 316 1.93 0.81 본발명
- 7.5 0.23 330 1.93 0.79 본발명
- 20 2.5 0.25 287 1.93 0.82 비교재
이상 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다.
그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변경된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (25)

  1. 융착방지제로 사용되는 전기강판용 소둔분리제에 있어서,
    MgO, 옥시클로라이드 물질 및 설페이트계 산화방지제를 포함하는 소둔분리제.
  2. 제1항에 있어서,
    상기 옥시클로라이드 물질은 안티모니 옥시클로라이드(SbOCl) 또는 비스무스 옥시클로라이드(BiOCl)인 소둔분리제.
  3. 제2항에 있어서,
    상기 설페이트계 산화방지제는 안티모니계 (Sb2(SO4)3), 스트론튬계 (SrSO4) 또는 바륨계 (BaSO4) 로부터 선택되는 하나 이상인 소둔분리제.
  4. 제 1 항 내지 제 3 항 중 어느 하나의 항에 있어서,
    상기 옥시클로라이드 물질은 중량비로, 상기 MgO: 100~200에 대하여 10~20의 비로 포함하고, 상기 설페이트계 산화방지제는 중량비로, 상기 MgO: 100~200 에 대하여 1~5의 비로 포함하는 소둔분리제.
  5. 강 슬라브를 열간 압연하여 열연 강판을 제조하는 단계;
    상기 열연 강판을 냉간 압연하여 냉연 강판을 제조하는 단계;
    상기 냉연 강판을 탈탄 소둔 및 질화 소둔 하는 단계;
    상기 탈탄 소둔 및 질화 소둔이 완료된 전기강판에 MgO, 옥시클로라이드 물질 및 설페이트계 산화방지제를 포함하는 소둔분리제 및 물을 포함하는 글라스리스 첨가제를 도포하여 최종 고온소둔 하는 단계;
    를 포함하는 방향성 전기강판의 제조방법.
  6. 제 5 항에 있어서,
    상기 옥시클로라이드 물질은 안티모니 옥시클로라이드(SbOCl) 또는 비스무스 옥시클로라이드(BiOCl)인 방향성 전기강판의 제조방법.
  7. 제 6 항에 있어서,
    상기 설페이트계 산화방지제는 안티모니계(Sb2(SO4)3), 스트론튬계(SrSO4) 또는 바륨계(BaSO4) 로부터 선택되는 하나 이상인 방향성 전기강판의 제조방법.
  8. 제7항에 있어서,
    상기 옥시클로라이드 물질은 중량비로, 상기 MgO: 100~200에 대하여 10~20의 비로 포함하고, 상기 설페이트계 산화방지제는 중량비로, 상기 MgO: 100~200 에 대하여 1~5의 비로 포함하는 방향성 전기강판의 제조방법.
  9. 제 8 항에 있어서,
    상기 탈탄 소둔 및 질화 소둔이 완료된 전기강판의 표면에 형성되는 SiO2의 양이 Fe2SiO4 양의 2~5배로 형성되는 방향성 전기강판의 제조방법.
  10. 제 9 항에 있어서,
    상기 탈탄 및 질화소둔 공정은 35~55℃의 노점(Dew Point) 범위에서 실시되는 방향성 전기강판의 제조방법
  11. 제10항에 있어서,
    상기 MgO의 활성화도는 400~3000초인 방향성 전기강판 제조방법.
  12. 제 11 항에 있어서,
    상기 최종 고온소둔시, 700~950℃의 온도 범위에서는 승온속도를 18~75℃/hr로 실시하고, 950~1200℃의 온도 범위에서는 10~15℃/hr로 실시하는 방향성 전기강판 제조방법.
  13. 제 12 항에 있어서,
    상기 탈탄 및 질화소둔시 온도는 800~950℃인 방향성 전기강판 제조방법.
  14. 제13항에 있어서,
    상기 글라스리스 첨가제는 5~8 g/m2 으로 도포하는 방향성 전기강판 제조방법.
  15. 제 14 항에 있어서,
    상기 강 슬라브는 중량 %로, Sn: 0.03~0.07%, Sb: 0.01~0.05%, P: 0.01~0.05%, 잔부는 Fe 및 기타 불가피하게 첨가되는 불순물을 포함하며, P+0.5Sb : 0.0370~0.0630% 를 만족하는 방향성 전기강판 제조방법.
  16. 중량 %로, Sn: 0.03~0.07%, Sb: 0.01~0.05%, P: 0.01~0.05%, 잔부는 Fe 및 기타 불가피하게 첨가되는 불순물을 포함하며, P+0.5Sb: 0.0370~0.0630% 을 만족하는 강 슬라브를 열간 압연하여 열연 강판을 제조 하고, 상기 열연 강판을 냉간 압연하여 냉연 강판을 제조 한 후, 상기 냉연 강판을 탈탄소둔 및 질화 소둔을 실시하되,
    상기 탈탄 소둔 및 질화 소둔이 완료된 강판의 표면에 형성되는 SiO2의 양은 Fe2SiO4 양의 2~5배인 방향성 전기강판.
  17. 제 16 항에 있어서,
    상기 탈탄 소둔 및 질화 소둔이 완료된 전기강판에 MgO, 옥시클로라이드 물질 및 설페이트계 산화방지제를 포함하는 소둔분리제 및 물을 포함하는 글라스리스 첨가제가 도포하여 최종 고온소둔을 실시한 방향성 전기강판.
  18. 제 17 항에 있어서,
    상기 옥시클로라이드 물질은 안티모니 옥시클로라이드(SbOCl) 또는 비스무스 옥시클로라이드(BiOCl)인 방향성 전기강판.
  19. 제 18 항에 있어서,
    상기 설페이트계 산화방지제는 안티모니계 (Sb2(SO4)3), 스트론튬계 (SrSO4) 또는 바륨계 (BaSO4) 로 부터 선택되는 하나 이상인 방향성 전기강판.
  20. 제19항에 있어서,
    상기 옥시클로라이드 물질은 중량비로, 상기 MgO: 100~200에 대하여 10~20의 비로 포함하고, 상기 설페이트계 산화방지제는 중량비로, 상기 MgO: 100~200 에 대하여 1~5의 비로 포함하는 방향성 전기강판.
  21. 제 20 항에 있어서,
    상기 탈탄 및 질화소둔 공정은 35~55℃의 노점(Dew Point) 범위에서 실시되는 방향성 전기강판.
  22. 제21항에 있어서,
    상기 MgO의 활성화도는 400~3000초인 방향성 전기강판.
  23. 제 22 항에 있어서,
    상기 최종 고온소둔시, 700~950℃의 온도 범위에서는 승온속도를 18~75℃/hr로 실시하고, 950~1200℃의 온도 범위에서는 10~15℃/hr로 실시하는 방향성 전기강판.
  24. 제 23 항에 있어서,
    상기 탈탄 및 질화소둔시 온도는 800~950℃인 방향성 전기강판.
  25. 제24항에 있어서,
    상기 글라스리스 첨가제는 5~8 g/m2 으로 도포하는 방향성 전기강판.
PCT/KR2013/012224 2012-12-28 2013-12-26 방향성 전기강판 및 그 제조방법 WO2014104762A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13867879.2A EP2940161B1 (en) 2012-12-28 2013-12-26 Grain-oriented electrical steel sheet, and method for manufacturing same
JP2015550316A JP6220891B2 (ja) 2012-12-28 2013-12-26 方向性電磁鋼板およびその製造方法
CN201380068919.8A CN104884646B (zh) 2012-12-28 2013-12-26 取向电工钢板及其制造方法
US14/758,212 US10023932B2 (en) 2012-12-28 2013-12-26 Grain-oriented electrical steel sheet, and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20120156915A KR101480498B1 (ko) 2012-12-28 2012-12-28 방향성 전기강판 및 그 제조방법
KR10-2012-0156915 2012-12-28

Publications (1)

Publication Number Publication Date
WO2014104762A1 true WO2014104762A1 (ko) 2014-07-03

Family

ID=51021716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/012224 WO2014104762A1 (ko) 2012-12-28 2013-12-26 방향성 전기강판 및 그 제조방법

Country Status (6)

Country Link
US (1) US10023932B2 (ko)
EP (1) EP2940161B1 (ko)
JP (1) JP6220891B2 (ko)
KR (1) KR101480498B1 (ko)
CN (1) CN104884646B (ko)
WO (1) WO2014104762A1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106574371A (zh) * 2014-08-07 2017-04-19 Posco公司 用于取向电工钢板的预涂层剂组合物、包括该组合物的取向电工钢板及其制造方法
JP2018504517A (ja) * 2014-11-26 2018-02-15 ポスコPosco 方向性電磁鋼板用焼鈍分離剤組成物、およびこれを用いた方向性電磁鋼板の製造方法
CN112030168A (zh) * 2020-08-18 2020-12-04 武汉钢铁有限公司 改善渗氮取向硅钢表面亮点缺陷的工艺方法
US11066717B2 (en) * 2015-12-21 2021-07-20 Posco Method for manufacturing grain-oriented electrical steel sheet
US11725254B2 (en) * 2015-12-24 2023-08-15 Posco Co., Ltd Method for manufacturing grain-oriented electrical steel sheet

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105154646B (zh) * 2015-10-23 2018-06-08 武汉钢铁有限公司 一种高磁感取向硅钢用退火隔离剂及制备方法
KR101850133B1 (ko) 2016-10-26 2018-04-19 주식회사 포스코 방향성 전기강판용 소둔 분리제 조성물, 방향성 전기강판 및 방향성 전기강판의 제조방법
KR101909218B1 (ko) * 2016-12-21 2018-10-17 주식회사 포스코 방향성 전기강판용 소둔 분리제 조성물, 방향성 전기강판 및 방향성 전기강판의 제조방법
KR101944901B1 (ko) 2016-12-21 2019-02-01 주식회사 포스코 방향성 전기강판용 소둔 분리제 조성물, 방향성 전기강판 및 방향성 전기강판의 제조방법
JP6881581B2 (ja) * 2017-07-13 2021-06-02 日本製鉄株式会社 方向性電磁鋼板
KR102149826B1 (ko) * 2018-12-19 2020-08-31 주식회사 포스코 방향성 전기강판 및 그의 제조 방법
EP3913099A4 (en) * 2019-01-16 2022-09-28 Nippon Steel Corporation GRAIN ORIENTED ELECTRICAL STEEL SHEET
US11866812B2 (en) * 2019-02-08 2024-01-09 Nippon Steel Corporation Grain oriented electrical steel sheet, forming method for insulation coating of grain oriented electrical steel sheet, and producing method for grain oriented electrical steel sheet
CN112646966B (zh) * 2020-12-17 2023-01-10 首钢智新迁安电磁材料有限公司 一种无底层取向硅钢的制备方法及其产品
CN113073177B (zh) * 2021-03-17 2022-08-09 武汉钢铁有限公司 改善取向钢氧化层组分的控制方法
CN115838848B (zh) * 2022-09-30 2023-09-08 无锡普天铁心股份有限公司 一种改善取向硅钢表面质量的高温退火底板
CN116516133B (zh) * 2023-04-13 2023-12-01 首钢智新迁安电磁材料有限公司 一种晶粒组织和磁性能均匀的取向硅钢及其制备方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6076603A (ja) 1983-10-04 1985-05-01 Kobe Steel Ltd 係合面間の当たり均一度測定方法
US4543134A (en) 1984-01-09 1985-09-24 Nippon Steel Corporation Process for producing grain-oriented electrical steel sheet having both improved magnetic properties and properties of glass film
US4875947A (en) 1987-08-31 1989-10-24 Nippon Steel Corporation Method for producing grain-oriented electrical steel sheet having metallic luster and excellent punching property
JPH05167164A (ja) 1991-12-11 1993-07-02 Toshiba Corp レーザ発振装置
JP2688147B2 (ja) 1992-08-21 1997-12-08 新日本製鐵株式会社 低鉄損方向性電磁鋼板の製造方法
KR19980026185U (ko) * 1996-11-08 1998-08-05 구자홍 액정프로젝터의 화면 강조장치
JPH1136018A (ja) * 1997-07-17 1999-02-09 Nippon Steel Corp グラス皮膜と磁気特性の極めて優れる方向性電磁鋼板の製造方法
JPH1171683A (ja) 1997-08-28 1999-03-16 Nippon Steel Corp 高張力絶縁被膜を有する方向性電磁鋼板とその処理方法
KR19990078406A (ko) * 1998-03-30 1999-10-25 아사무라 타카싯 자기 특성이 우수한 일방향성 전기 강판의 제조방법
JP3098691B2 (ja) 1995-04-12 2000-10-16 新日本製鐵株式会社 被膜耐水性、耐置錆性にすぐれた低鉄損一方向性珪素鋼板
KR20010031919A (ko) * 1997-11-12 2001-04-16 추후제출 어닐링 분리제로 전자 강대를 코팅하기 위한 방법
JP2006501371A (ja) * 2002-11-11 2006-01-12 ポスコ 高珪素方向性電気鋼板の製造方法

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA82715B (en) * 1981-08-20 1983-09-28 Springs Ind Inc Textile fabrics with opaque pigment printing and method for producing same
US4562107A (en) * 1982-09-30 1985-12-31 Springs Industries, Inc. Textile fabrics with opaque pigment printing and method of producing same
JPS59226115A (ja) 1983-06-07 1984-12-19 Kawasaki Steel Corp 均質なフオルステライト質絶縁被膜を有する一方向性珪素鋼板の製造方法
US4507350A (en) * 1984-03-08 1985-03-26 Springs Industries, Inc. Method of producing opaque printed textile fabrics with curing by free radical initiation and resulting printed fabrics
JPS61236105A (ja) 1985-04-12 1986-10-21 Kawasaki Steel Corp ひずみ取り焼鈍による特性劣化がない低鉄損方向性けい素鋼板の製造方法
JPH0641642A (ja) 1992-03-31 1994-02-15 Nippon Steel Corp フォルステライト被膜のない高磁束密度方向性珪素鋼板の製造方法
EP0577124B1 (en) 1992-07-02 2002-10-16 Nippon Steel Corporation Grain oriented electrical steel sheet having high magnetic flux density and ultra low iron loss and process for producing the same
JPH06100931A (ja) 1992-09-17 1994-04-12 Kawasaki Steel Corp マルテンサイト系ステンレス継目無管製造用丸ビレットの製造方法
JPH06100937A (ja) * 1992-09-21 1994-04-12 Nippon Steel Corp グラス被膜を有しない極めて鉄損の優れた珪素鋼板の製造法
KR960010595B1 (ko) * 1992-09-21 1996-08-06 신니뽄세이데스 가부시끼가이샤 1차 막이 최소화되고 자성이 뛰어나며 운용성이 우수한 배향 전기 강판의 제조방법
JPH06136555A (ja) 1992-10-26 1994-05-17 Nippon Steel Corp 鏡面方向性珪素鋼板の製造方法
JP2647333B2 (ja) * 1993-06-03 1997-08-27 新日本製鐵株式会社 鋼板表面平滑化および低鉄損化に適した電磁鋼板用焼鈍分離剤
JP2664333B2 (ja) * 1993-06-07 1997-10-15 新日本製鐵株式会社 超低鉄損方向性電磁鋼板の製造法
JP2647334B2 (ja) 1993-07-06 1997-08-27 新日本製鐵株式会社 高磁束密度低鉄損方向性電磁鋼板の製造法
JP3496067B2 (ja) 1996-10-28 2004-02-09 新日本製鐵株式会社 鏡面一方向性電磁鋼板の製造方法
JP3650525B2 (ja) * 1998-03-25 2005-05-18 新日本製鐵株式会社 方向性電磁鋼板の焼鈍分離剤およびグラス被膜と磁気特性の優れた方向性電磁鋼板の製造方法
JP4116702B2 (ja) * 1998-07-21 2008-07-09 新日本製鐵株式会社 方向性電磁鋼板の製造方法
JP3482374B2 (ja) 1999-09-14 2003-12-22 新日本製鐵株式会社 被膜特性に優れた方向性電磁鋼板およびその製造方法
JP3536775B2 (ja) 2000-04-25 2004-06-14 Jfeスチール株式会社 方向性電磁鋼の焼鈍分離剤用マグネシアおよびその製造方法と被膜特性に優れる方向性電磁鋼板の製造方法
KR100526122B1 (ko) 2001-03-20 2005-11-08 주식회사 포스코 그라스피막이 없는 저온가열 방향성전기강판의 제조방법
JP5000054B2 (ja) * 2001-09-11 2012-08-15 新日本製鐵株式会社 焼鈍分離剤及びグラス被膜と磁気特性の優れる方向性電磁鋼板の製造方法
KR100544615B1 (ko) 2001-12-24 2006-01-24 주식회사 포스코 글래스피막이 없는 저온가열 방향성 전기강판의 제조방법
JP2005290445A (ja) 2004-03-31 2005-10-20 Jfe Steel Kk 焼鈍分離剤スラリーの調製方法と方向性電磁鋼板の製造方法
JP4893259B2 (ja) 2006-11-21 2012-03-07 Jfeスチール株式会社 方向性電磁鋼板用焼鈍分離剤の塗布方法および方向性電磁鋼板の製造方法
US20080299154A1 (en) * 2007-05-30 2008-12-04 L'oreal Usa Products, Inc. Cosmetic hair compositions containing metal-oxide layered pigments and methods of use
ZA200804693B (en) * 2007-05-30 2009-02-25 Oreal Cosmetic hair compositions containing metal-oxide layered pigments and functionalized metal-oxide layered pigments and methods of use
JP5793305B2 (ja) 2007-12-28 2015-10-14 ポスコ 磁気特性に優れた方向性電磁鋼板及びその製造方法
CN101768697B (zh) 2008-12-31 2012-09-19 宝山钢铁股份有限公司 用一次冷轧法生产取向硅钢的方法
US20140209391A1 (en) * 2013-01-29 2014-07-31 Halliburton Energy Services, Inc. Wellbore Fluids Comprising Mineral Particles and Methods Relating Thereto
US20140209392A1 (en) * 2013-01-29 2014-07-31 Halliburton Energy Services, Inc. Wellbore Fluids Comprising Mineral Particles and Methods Relating Thereto
US10407988B2 (en) * 2013-01-29 2019-09-10 Halliburton Energy Services, Inc. Wellbore fluids comprising mineral particles and methods relating thereto
US20140209387A1 (en) * 2013-01-29 2014-07-31 Halliburton Energy Services, Inc. Wellbore Fluids Comprising Mineral Particles and Methods Relating Thereto
US9777207B2 (en) * 2013-01-29 2017-10-03 Halliburton Energy Services, Inc. Wellbore fluids comprising mineral particles and methods relating thereto
US9322231B2 (en) * 2013-01-29 2016-04-26 Halliburton Energy Services, Inc. Wellbore fluids comprising mineral particles and methods relating thereto
US9410065B2 (en) * 2013-01-29 2016-08-09 Halliburton Energy Services, Inc. Precipitated particles and wellbore fluids and methods relating thereto
US20140209390A1 (en) * 2013-01-29 2014-07-31 Halliburton Energy Services, Inc. Wellbore Fluids Comprising Mineral Particles and Methods Relating Thereto
US20140209393A1 (en) * 2013-01-29 2014-07-31 Halliburton Energy Services, Inc. Precipitated Particles and Wellbore Fluids and Methods Relating Thereto
US20140209307A1 (en) * 2013-01-29 2014-07-31 Halliburton Energy Services, Inc. Wellbore Fluids Comprising Mineral Particles and Methods Relating Thereto
JP6598776B2 (ja) * 2013-12-09 2019-10-30 ローム アンド ハース カンパニー 光拡散ポリマービーズを含有するスキンケア組成物

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6076603A (ja) 1983-10-04 1985-05-01 Kobe Steel Ltd 係合面間の当たり均一度測定方法
US4543134A (en) 1984-01-09 1985-09-24 Nippon Steel Corporation Process for producing grain-oriented electrical steel sheet having both improved magnetic properties and properties of glass film
US4875947A (en) 1987-08-31 1989-10-24 Nippon Steel Corporation Method for producing grain-oriented electrical steel sheet having metallic luster and excellent punching property
JPH05167164A (ja) 1991-12-11 1993-07-02 Toshiba Corp レーザ発振装置
JP2688147B2 (ja) 1992-08-21 1997-12-08 新日本製鐵株式会社 低鉄損方向性電磁鋼板の製造方法
JP3098691B2 (ja) 1995-04-12 2000-10-16 新日本製鐵株式会社 被膜耐水性、耐置錆性にすぐれた低鉄損一方向性珪素鋼板
KR19980026185U (ko) * 1996-11-08 1998-08-05 구자홍 액정프로젝터의 화면 강조장치
JPH1136018A (ja) * 1997-07-17 1999-02-09 Nippon Steel Corp グラス皮膜と磁気特性の極めて優れる方向性電磁鋼板の製造方法
JPH1171683A (ja) 1997-08-28 1999-03-16 Nippon Steel Corp 高張力絶縁被膜を有する方向性電磁鋼板とその処理方法
KR20010031919A (ko) * 1997-11-12 2001-04-16 추후제출 어닐링 분리제로 전자 강대를 코팅하기 위한 방법
KR19990078406A (ko) * 1998-03-30 1999-10-25 아사무라 타카싯 자기 특성이 우수한 일방향성 전기 강판의 제조방법
JP2006501371A (ja) * 2002-11-11 2006-01-12 ポスコ 高珪素方向性電気鋼板の製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106574371A (zh) * 2014-08-07 2017-04-19 Posco公司 用于取向电工钢板的预涂层剂组合物、包括该组合物的取向电工钢板及其制造方法
CN106574371B (zh) * 2014-08-07 2019-07-05 Posco公司 用于取向电工钢板的预涂层剂组合物、包括该组合物的取向电工钢板及其制造方法
US10648083B2 (en) 2014-08-07 2020-05-12 Posco Pre-coating agent composition for grain-oriented electrical steel sheet, grain-oriented electrical steel sheet comprising same, and manufacturing method therefor
JP2018504517A (ja) * 2014-11-26 2018-02-15 ポスコPosco 方向性電磁鋼板用焼鈍分離剤組成物、およびこれを用いた方向性電磁鋼板の製造方法
US11066717B2 (en) * 2015-12-21 2021-07-20 Posco Method for manufacturing grain-oriented electrical steel sheet
US11725254B2 (en) * 2015-12-24 2023-08-15 Posco Co., Ltd Method for manufacturing grain-oriented electrical steel sheet
CN112030168A (zh) * 2020-08-18 2020-12-04 武汉钢铁有限公司 改善渗氮取向硅钢表面亮点缺陷的工艺方法
CN112030168B (zh) * 2020-08-18 2022-10-04 武汉钢铁有限公司 改善渗氮取向硅钢表面亮点缺陷的工艺方法

Also Published As

Publication number Publication date
JP6220891B2 (ja) 2017-10-25
US10023932B2 (en) 2018-07-17
JP2016513358A (ja) 2016-05-12
KR101480498B1 (ko) 2015-01-08
US20160194731A1 (en) 2016-07-07
EP2940161B1 (en) 2019-06-19
EP2940161A1 (en) 2015-11-04
CN104884646B (zh) 2018-02-02
CN104884646A (zh) 2015-09-02
KR20140092467A (ko) 2014-07-24
EP2940161A4 (en) 2016-01-20

Similar Documents

Publication Publication Date Title
WO2014104762A1 (ko) 방향성 전기강판 및 그 제조방법
EP3395961B1 (en) Method for manufacturing grain-oriented electrical steel sheet
EP3533885B1 (en) Annealing separator composition for oriented electrical steel sheet, oriented electrical steel sheet, and method for manufacturing oriented electrical steel sheet
EP1464712A1 (en) Method for producing grain-oriented silicon steel plate with mirror surface
EP3561086A1 (en) Annealing separator composition for grain-oriented electrical steel sheet, grain-oriented electrical steel sheet, and method for producing grain-oriented electrical steel sheet
WO2016021782A1 (ko) 방향성 전기강판용 예비 코팅제 조성물, 이를 포함하는 방향성 전기강판 및 이의 제조방법
WO2022139352A1 (ko) 방향성 전기강판 및 그의 제조방법
WO2020067719A1 (ko) 방향성 전기강판용 소둔 분리제 조성물, 방향성 전기강판 및 방향성 전기강판의 제조방법
KR101651431B1 (ko) 방향성 전기강판의 제조방법
WO2020130328A1 (ko) 방향성의 전기강판 및 그 제조 방법
WO2020130643A1 (ko) 방향성 전기강판용 소둔 분리제 조성물, 방향성 전기강판 및 방향성 전기강판의 제조방법
EP0607440B1 (en) Process for producing a grain-orientated electical steel sheet having mirror surface
WO2016085257A1 (ko) 방향성 전기강판용 소둔 분리제 조성물, 및 이를 이용한 방향성 전기강판의 제조방법
KR101356066B1 (ko) 방향성 전기강판 및 그 제조방법
WO2020122558A1 (ko) 방향성 전기강판 및 그의 제조방법
KR101356053B1 (ko) 방향성 전기강판 및 그 제조방법
WO2020111741A1 (ko) 방향성 전기강판 및 그의 제조방법
KR102180816B1 (ko) 저철손 방향성 전기강판 제조방법
KR100774229B1 (ko) 방향성 전자 강판의 소둔 방법 및 방향성 전자 강판의 제조방법
WO2020263026A2 (ko) 방향성 전기강판 및 그 제조 방법
WO2023121259A1 (ko) 방향성 전기강판용 소둔 분리제 조성물 및 방향성 전기강판의 제조방법
JP3277059B2 (ja) 方向性電磁鋼板用焼鈍分離剤
KR20190077773A (ko) 방향성 전기강판용 소둔 분리제 조성물, 방향성 전기강판 및 그의 제조방법
JP2895645B2 (ja) 方向性珪素鋼板の絶縁被膜の形成方法
WO2021125863A2 (ko) 방향성 전기강판용 소둔 분리제 조성물, 방향성 전기강판 및 그의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13867879

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015550316

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14758212

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013867879

Country of ref document: EP