WO2014104332A1 - Power supply device - Google Patents
Power supply device Download PDFInfo
- Publication number
- WO2014104332A1 WO2014104332A1 PCT/JP2013/085190 JP2013085190W WO2014104332A1 WO 2014104332 A1 WO2014104332 A1 WO 2014104332A1 JP 2013085190 W JP2013085190 W JP 2013085190W WO 2014104332 A1 WO2014104332 A1 WO 2014104332A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fet
- circuit
- voltage
- power supply
- type fet
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J1/00—Circuit arrangements for dc mains or dc distribution networks
- H02J1/10—Parallel operation of dc sources
Definitions
- the present invention relates to a power supply device, and more particularly to a power supply device connected to an in-vehicle battery.
- the power supply device is configured to supply and control power for driving a load circuit using an FET (Field Effect Transistor).
- FET Field Effect Transistor
- enhancement-type FETs can be easily switched, so that they are used for power supply devices in in-vehicle electronic devices.
- a booster circuit is used for driving the FET.
- Patent Document 1 discloses an in-vehicle electronic device that uses a booster circuit to drive an FET of a power supply device.
- FIG. 5 shows a power supply device 900 for the electronic control device 941 disclosed in Patent Document 1 as a first conventional example.
- an appropriate voltage is applied to the gate of the FET, and the voltage drop between the drain and source of the FET is about 0.4 V. Proceed as if there is. Further, the discussion will be made assuming that the FET is in an off state when substantially the same voltage is applied to the drain and the gate of the FET or when the voltage drop between the drain and the source of the FET is about 2V.
- the power supply apparatus 900 includes a power supply terminal 905 connected to the battery 903 and an FET 921 connected to the power supply terminal 905.
- the gate voltage needs to be higher than the source voltage by a predetermined voltage (about 3 V).
- the output terminal of the booster circuit 943 is connected to the gate of the FET 921.
- the booster circuit 943 is configured to generate a voltage higher than the voltage VB of the battery 903 by a predetermined voltage or more and apply the generated boosted voltage to the gate of the FET 921 to turn on the FET 921.
- a conventional on-vehicle power supply device 800 includes an input terminal 811 connected to a battery 851, an FET circuit 801, an output terminal 812 connected to a load circuit 852, and a booster circuit 803. And a control circuit 804.
- the anode of the protective diode 801c is connected to the input terminal 811
- the cathode of the protective diode 801c is connected to the drain D0 of the FET 801a
- the source S0 of the FET 801a is connected to the output terminal 812. Yes.
- a resistor 801b and a protective diode 801d are connected in series, and are connected between the gate G0 of the FET 801a and the input terminal 811.
- the booster circuit 803 is supplied with the output voltage Vout from the output terminal 812 as a power supply voltage, and its output terminal is connected to the gate G0 of the FET 801a. Note that the booster circuit 803 is designed to operate at 7 V or higher so that internal loss during operation does not become excessive.
- the control circuit 804 is provided for controlling the operation of the booster circuit 803 and controlling the operation of the load circuit 852. Note that an enhancement type FET is used as the FET 801a, and a circuit through which a current of about 3 A or more flows is assumed as the load circuit 852.
- the voltage of the gate G of the FET 801a needs to be higher than the voltage of the source S by a predetermined voltage (about 3V) or more. Therefore, the booster circuit 803 is operated, and the voltage output from the booster circuit 803 is applied to the gate of the FET 801a.
- the booster circuit 803 is configured to boost the voltage supplied to the booster circuit 803 to a voltage approximately twice as large as the voltage output.
- FIG. 7A shows a state before the FET 801a is turned on.
- 9V is supplied to the booster circuit 803 as the power supply voltage, 18V, which is twice 9V, is output to the output terminal of the booster circuit 803 which is a voltage doubler generation circuit. Accordingly, when the voltage of the gate G0 with respect to the source S0 becomes 9V, the FET 801a can be turned on.
- FIG. 7B shows a state when the FET 801a is turned on.
- the output voltage Vout at the output terminal 812 is 10.6V.
- the FET 801a since 21.2 V is applied to the gate G0 of the FET 801a, the FET 801a can be kept on.
- the output voltage (Vout) at which the load circuit 852 can operate is assumed to be 7 V or more and less than 13 V. As described above, there is no particular problem if the voltage Vin at the input terminal 811 is the normal voltage 12V.
- the conventional power supply apparatus 900 or 800 shown in FIG. 5 or 6 has the following problem when the voltage at the input terminal 811 drops to, for example, 9V.
- FIG. 7C shows the state before and after the start of power supply to the load circuit 852 when the voltage Vin at the input terminal 811 is lowered to 9 V in the power supply apparatus 800 shown in FIG.
- the booster circuit 803 is designed to operate with a voltage of Vout of 7V or higher.
- the output voltage Vout at the output terminal 812 that is, the power supply voltage of the booster circuit 803 decreases to 6V. Since the booster circuit 803 is designed to operate at 7 V or higher, the booster circuit 803 cannot operate when Vout decreases to 6 V. Therefore, the voltage necessary for turning on the FET 801a from the booster circuit 803 is not applied to the gate G0 of the FET 801a, and the state of the FET 801a remains unchanged and remains as shown in FIG. Therefore, the FET 801a cannot be turned on.
- the FET 801a cannot be turned on. Therefore, when the voltage Vin at the input terminal 811 decreases, the conventional power supply apparatus 800 has a problem in that power cannot be supplied to the load circuit 852.
- the present invention has been made in view of the actual situation of the prior art, and an object of the present invention is to stably supply power for driving the load circuit even when the voltage output from the battery is lowered. It is an object of the present invention to provide a power supply device that can perform the above-described operation.
- the power supply device of the present invention includes an input terminal to which power is supplied from a battery, an output terminal to which a load circuit is connected, a drain connected to the input terminal, and the output terminal.
- the 1FET is an element that is turned off when the same voltage is supplied to the drain and gate of the first FET, and a voltage boosted by the booster circuit is applied to the gate of the first FET.
- the drain of T is connected to the drain of the first FET
- the source of the second FET is connected to the source of the first FET
- the second FET has the same voltage supplied to the drain and gate of the second FET Is an element that can be turned on, and before turning on the power supply to the load circuit, the second FET is turned on, and when the power supply is started, the booster circuit is connected to the load circuit via the second FET. It has a feature that voltage is supplied.
- the power supply device configured as described above turns on the second FET when power supply to the load circuit is started and supplies the voltage to the booster circuit via the second FET. A sufficiently high voltage can be obtained. Therefore, even when the voltage output from the battery decreases, the first FET can be turned on, so that it is possible to stably supply power for driving the load circuit.
- the voltage is supplied from the battery to the first FET and the second FET before the start of power supply to the load circuit, and the control is performed when the power supply to the load circuit is started.
- the booster circuit is operated by a first control signal from the circuit to turn on the first FET, and the load circuit can be operated.
- the power supply device configured as described above controls the booster circuit and the load circuit with the first control signal from the control circuit when the power supply to the load circuit is started. Can be determined.
- the second FET is turned off by a second control signal from the control circuit after the first FET is turned on.
- the first FET is an enhancement type FET
- the second FET is a depletion type FET
- the drain and gate of the enhancement type FET are connected via a resistor
- the drain and gate of the depletion type FET have a resistance. It has the characteristic that it is connected via.
- the second FET can be turned on when the power supply to the load circuit is started, and the voltage drop of the second FET is reduced. A voltage can be supplied to the booster circuit in a small state.
- the depletion type FET is characterized by being a MOS • FET.
- the power supply device configured as described above uses a MOS • FET as a depletion type FET, the gate voltage with respect to the source can be used from a negative voltage to a positive voltage. For this reason, since the ON / OFF of the second FET can be controlled with a low voltage, it is easy to use, and power can be easily supplied to the booster circuit when power supply to the load circuit is started.
- the above configuration has a feature that it is connected to a battery mounted on the vehicle.
- the power supply device configured as described above can operate the electronic devices in the vehicle without any trouble even when the voltage of the battery mounted on the vehicle decreases at a low temperature or the like.
- the power supply device of the present invention can stably supply power for driving the load circuit even when the voltage output from the battery drops.
- FIG. 1 is a circuit diagram showing a configuration of a power supply device according to a first embodiment of the present invention. It is a circuit diagram which shows the structure of the power supply apparatus which concerns on 2nd Embodiment of this invention. It is a circuit diagram for showing operation of a power supply device concerning a 2nd embodiment of the present invention. It is a circuit diagram for showing operation of a power supply device concerning a 2nd embodiment of the present invention. It is a circuit diagram which shows the structure of the power supply apparatus which concerns on a 1st prior art example. It is a circuit diagram for demonstrating the structure of the power supply apparatus which concerns on a 2nd prior art example. It is a circuit diagram for demonstrating operation
- the voltage drop between the drain and the source is about 0.4 V under the condition that power is supplied to the drain of the enhancement type FET and an appropriate voltage is applied to the gate. Let's talk about time as if the enhancement FET is on.
- the enhancement type FET is off regardless of the drain and source voltage values.
- the depletion type FET is supplied with power to its drain and the appropriate voltage for turning off the FET is not applied to the gate, the depletion type FET is turned on. .
- the case where power is supplied to the drain and an appropriate voltage for turning off the FET is applied to the gate is assumed to be that the depletion type FET is turned off.
- the battery output voltage is assumed to be a normal output voltage of 12V, but the voltage value will change from 9V to about 16V. Further, it is assumed that the load circuit and the booster circuit can operate at a power supply voltage of 7V to 13V, and that the power supply voltage from 7V to 13V is supplied to the load circuit and the booster circuit.
- the power supply to the load circuit refers to the power supply when the load circuit is driven by the control signal from the control circuit. In the state where the voltage is simply supplied to the output terminal, It does not say that it is supplying power to the circuit.
- the names of the standby signal SG1off and the standby release signal SG1on are used as the first control signal SG1 from the control circuit to the booster circuit and the load circuit.
- the standby signal SG1off is a control signal for stopping the operation of the target circuit
- the standby release signal SG1on is a signal for starting up and operating the target circuit whose operation is stopped.
- the name of the second control signal SG2 is used as a control signal from the control circuit to the depletion type FET.
- the second control signal SG2 is a control signal for turning off the depletion type FET.
- the second control signal SG2 is not output, and the description will be made on the assumption that the connection between the control circuit and the depletion type FET can be opened.
- FIG. 1 is a circuit diagram showing a configuration of a power supply apparatus 100 according to the first embodiment of the present invention.
- the first FET circuit 1, the second FET circuit 2, and these circuits according to the first embodiment It is a circuit diagram which shows the relationship with a block.
- the power supply device 100 includes an input terminal 11 to which power is supplied from a battery 51, an output terminal 12 to which a load circuit 52 is connected, a drain D1 connected to the input terminal 11, and an output terminal.
- 12 includes a first FET 1a to which a source S1 is connected.
- a resistor 1b is connected between the drain D1 and the gate G1 of the first FET 1a, and the first FET circuit 1 is constituted by the first FET 1a and the resistor 1b.
- the first FET 1a is an enhancement type FET.
- the second FET 2a is connected to the first FET 1a.
- the second FET 2a is a depletion type FET.
- the drain D2 of the depletion type FET that is the second FET 2a is connected to the drain D1 of the enhancement type FET that is the first FET 1a, and the source S2 of the depletion type FET is connected to the source S1 of the enhancement type FET.
- a resistor 2b is connected between the drain D2 and the gate G2 of the second FET 2a, and the second FET 2a and the resistor 2b constitute the second FET circuit 2.
- the first FET 1a will be referred to as an enhancement type FET 1a
- the second FET 2a will be referred to as a depletion type FET 2a.
- the power supply apparatus 100 includes a booster circuit 3 that is connected to the output terminal 12 and boosts an output voltage from the output terminal 12, and a control circuit 4 that controls the booster circuit 3. .
- the booster circuit 3 has its output terminal connected to the gate G1 of the enhancement type FET 1a so that the boosted voltage is applied to the gate G1 of the enhancement type FET 1a.
- the control circuit 4 is connected to the booster circuit 3 in order to control the booster circuit 3, and is also connected to the gate G2 of the depletion type FET 2a in order to control the depletion type FET 2a.
- the control circuit 4 is also connected to the load circuit 52, and is configured to control the load circuit 52 simultaneously with controlling the booster circuit 3.
- the power supply voltage of the control circuit 4 is always supplied from the battery 51 via a regulator (not shown) in a separate system. Further, the power supply voltage value of the control circuit 4 is configured to use 5V.
- the enhancement type FET 1a is an element that is turned off when the same voltage is supplied to the drain D1 and the gate G1 of the enhancement type FET 1a.
- the depletion type FET 2a is an element that can be turned on when the same voltage is supplied to the drain D2 and the gate G2 of the depletion type FET 2a. In this state, when the second control signal SG2 is not applied from the control circuit 4 to the gate G2 of the depletion type FET 2a, that is, when the connection between the gate G2 of the depletion type FET 2a and the control circuit 4 is open, the depletion type FET 2a Is on.
- the same voltage is supplied from the battery 51 to the drain D1 and the gate G1 of the enhancement type FET 1a, and at the same time, the same is applied to the drain D2 and the gate G2 of the depletion type FET 2a. Voltage is being supplied.
- the second control signal SG2 from the control circuit 4 is not applied to the gate G2 of the depletion type FET 2a. Therefore, the enhancement type FET 1a is in an off state and the depletion type FET 2a is in an on state.
- the standby signal SG1off is supplied from the control circuit 4 to the booster circuit 3 as the first control signal SG1.
- the control circuit 4 supplies the first control signal SG1 to the booster circuit 3 and the same first control signal SG1 to the load circuit 52 at the same time. Therefore, before the start of power supply to the load circuit 52, the standby signal SG1off is supplied to the booster circuit 3 and the load circuit 52, and the operations of the booster circuit 3 and the load circuit 52 are stopped.
- the standby release signal SG1on is output as the first control signal SG1 from the control circuit 4, and the booster circuit 3 and the load circuit 52 are made operable.
- the depletion type FET 2a is in an on state, a voltage is supplied to the booster circuit 3 via the depletion type FET 2a. In this state, the standby release signal SG1on is supplied from the control circuit 4 to the booster circuit 3.
- the booster circuit 3 to which the standby release signal SG1on is supplied boosts the voltage supplied via the depletion type FET 2a and applies it to the gate G1 of the enhancement type FET 1a to turn on the enhancement type FET.
- the booster circuit 3 is configured by a circuit called a charge pump circuit, and has a function of boosting the supplied voltage to twice the voltage.
- the charge pump circuit includes an oscillation circuit (not shown) and a multistage capacitor group (not shown) that is sequentially charged and discharged by the oscillation of the oscillation circuit.
- the voltage stored in the last capacitor of the capacitor group is output from the output terminal of the booster circuit 3. Since such a circuit configuration is a well-known circuit configuration, detailed description thereof is omitted.
- the output voltage Vout is output to the output terminal 12 via the enhancement type FET 1a.
- the output voltage Vout is supplied to the load circuit 52 to which the standby release signal SG1on is supplied, and the load circuit 52 starts its operation. Further, a voltage is supplied to the booster circuit 3 via the enhancement type FET 1a, and the supplied voltage is boosted and continuously applied to the gate G1 of the enhancement type FET 1a.
- the depletion type FET 2a is turned off by the second control signal SG2 from the control circuit 4.
- the depletion type FET 2a can be turned off.
- the power supply device 100 supplies the voltage to the booster circuit 3 via the depletion type FET 2a that is already turned on when the power supply to the load circuit 52 is started. .
- the voltage drop when the depletion type FET 2a is on is about 0.4V. Therefore, the power supply apparatus 100 according to the first embodiment of the present invention has a booster circuit 803 of the second conventional example, which is approximately the same as when the output voltage of the enhancement type FET 801a having a voltage drop of approximately 2 V is supplied.
- a voltage higher by 1.6 V can be supplied to the booster circuit 3. Therefore, even when the voltage output from the battery 51 decreases, the voltage supplied to the booster circuit can be set to the required voltage, and the enhancement FET 1a can be turned on. Therefore, the power to the load circuit 52 can be stably supplied.
- FIG. 2 is a circuit diagram showing the configuration of the third FET circuit 21 and the fourth FET circuit 22 of the power supply apparatus 200 according to the second embodiment of the present invention, and the relationship between these circuits and other blocks.
- the booster circuit 3 the control circuit 4, and the like, the same reference numerals as those in the first embodiment are used for those having the same functions as those in the first embodiment.
- the block configuration of the power supply apparatus 200 according to the second embodiment of the present invention will be described with reference to FIG.
- the power supply device 200 according to the second embodiment of the present invention is an embodiment having a configuration closer to the actual product configuration than the power supply device 100 according to the first embodiment of the present invention.
- the power supply device 200 includes an input terminal 11 to which a battery 51 is connected, a third FET circuit 21, an output terminal 12 to which a load circuit 52 is connected, a fourth FET circuit 22, and a booster circuit. 3, a control circuit 4, and a protection circuit 31.
- the third FET circuit 21 is connected between the input terminal 11 and the output terminal 12.
- the booster circuit 3 is connected to the output terminal 12 and the output voltage Vout from the output terminal 12 is supplied as a power supply voltage.
- the booster circuit 3 boosts the output voltage Vout from the output terminal 12 to the third FET circuit 21. It is configured to supply.
- a protection circuit 31 is connected between the output terminal 12, the third FET circuit 21, and the ground.
- a control circuit 4 is provided to control the operation of the circuit in the apparatus.
- the control circuit 4 is connected to the booster circuit 3 in order to control the booster circuit 3.
- the control circuit 4 is also connected to the load circuit 52, and is configured to control the load circuit 52 simultaneously with controlling the booster circuit 3.
- the power supply voltage of the control circuit 4 is always supplied from the battery 51 via a regulator (not shown) in a separate system. Further, the power supply voltage value of the control circuit 4 is configured to use 5V.
- the fourth FET circuit 22 is connected in parallel to the third FET circuit 21.
- the control circuit 4 is also connected to the fourth FET circuit 22 in order to control the fourth FET circuit 22.
- the circuit configuration of the power supply device 200 will be described in detail with reference to FIG. 2, focusing on the third FET circuit 21 and the fourth FET circuit 22.
- the third FET circuit 21 includes an enhancement type FET 21a connected between the input terminal 11 and the output terminal 12, a resistor 21b, a diode 21c, and a diode 21d.
- the protection circuit 31 is connected between the output terminal 12 and the gate G1 of the enhancement type FET 1a and the ground.
- the protection circuit 31 is configured using a Zener diode (not shown), and is a circuit for controlling the output voltage Vout at the output terminal 12 so as not to exceed a predetermined voltage.
- a Zener diode not shown
- omitted since the structure of the protection circuit 31 in 2nd Embodiment is known, detailed description is abbreviate
- the anode of the diode 21c is connected to the input terminal 11
- the drain D3 of the enhancement type FET 21a is connected to the cathode of the diode 21c
- the source S3 of the enhancement type FET 21a is connected to the output terminal 12.
- a gate G3 of the enhancement type FET 21a is connected to the input terminal 11 through a series connection circuit of a diode 21d and a resistor 21b, and is connected to the output terminal of the booster circuit 3.
- the diode 21c and the diode 21d are diodes for preventing reverse connection. These diodes break down the power supply device 200 and the load circuit 52 when the power output terminal and the ground terminal of the battery 51 are connected to the input terminal 11 and the ground terminal of the power supply device 200 in reverse. Has been inserted so as not to. When the voltage from the battery 51 is supplied to the input terminal 11, a voltage drop of about 1 V occurs between the anode and cathode of the diode 21c and the diode 21d.
- the voltage output from the booster circuit 3 is applied to the gate G3 of the FET 21a.
- the booster circuit 3 is connected to the control circuit 4 and is controlled by the first control signal SG1 from the control circuit 4. Prior to the start of the supply of drive power to the load circuit 52, the booster circuit 3 receives the standby signal SG1off from the control circuit 4 as the first control signal SG1, and stops the operation of the circuit.
- the booster circuit 3 is set to perform a boost operation after the power supply voltage supplied to the booster circuit 3 is 7 V or more and the standby release signal SG1on from the control circuit 4 is input.
- the fourth FET circuit 22 has a depletion type FET 22a, a resistor 22b, and a Zener diode 22c.
- the depletion type FET 22a has a drain D4 connected to the drain D3 of the enhancement type FET 21a and a source S4 connected to the source S3 of the enhancement type FET 21a.
- a depletion type FET has an operation region that is turned on even when the gate voltage is lower than the source voltage. For example, it is turned on even if the gate voltage is about 2 V lower than the source voltage. Therefore, the depletion type FET can be turned off by setting the gate voltage to be lower than the source voltage by a predetermined voltage (about 3 V) or more. For example, when the source voltage of the depletion type FET is equal to or higher than a predetermined voltage (about 3 V), the gate voltage can be set to 0 V to turn it off.
- a depletion type FET has few elements capable of flowing a large current of several A or more like an enhancement type FET, and can only supply a current of about 1 A. Therefore, a method of using a large current through the depletion type FET is rarely used. Further, such a depletion type FET is likely to be very expensive even if it exists, and is not generally used.
- a depletion type MOS • FET Metal • Oxide • Semiconductor • Field • Effect • Transistor
- the depletion type MOS • FET can be used from a negative voltage to a positive voltage as a gate voltage with respect to the source, and is therefore easy to use.
- the resistor 22b is connected between the drain D4 and the gate G4 of the depletion type FET 22a.
- the zener diode 22c is connected between the gate G4 of the depletion type FET 22a and the ground.
- the Zener diode 22c has a Zener voltage value set so that a voltage higher than the threshold is not applied to the gate G4 of the depletion type FET 22a even when a high voltage higher than a certain threshold (Zener voltage) is externally applied to the gate G4. ing.
- the Zener voltage value is set to 17.5V.
- the output terminal of the control circuit 4 is connected to the gate G4 of the depletion type FET 22a.
- the control circuit 4 is configured to output a second control signal SG2 for turning off the depletion type FET 22a. For example, when 0V is applied to the gate G2 of the depletion type FET 22a as the second control signal SG2 from the control circuit 4, the depletion type FET 22a is turned off.
- the control circuit 4 and the gate G2 of the depletion type FET 2a are disconnected. Since the resistor 22b is connected between the drain D4 and the gate G4 of the depletion type FET 22a, the same voltage as the drain D4 is applied to the gate G4, and the depletion type FET 2a is turned on.
- FIG. 2 The operation of the power supply apparatus 200 shown in FIG. 2 from when the power supply to the load circuit 52 is started until the power is supplied when the voltage of the battery 51 is in a normal state (about 12 V) is shown in FIG. This will be described with reference to 3 (a) and FIG. 3 (b).
- the operation of the power supply device 200 when the voltage of the battery 51 is lowered will be described with reference to FIGS. 4 (a) and 4 (b).
- the required output voltage (Vout) is assumed to be 7V or more and less than 13V.
- the enhancement type FET 21a is supplied with the voltage Vin via the diode 21c. Since there is a voltage drop of about 1V between both ends of the diode 21c, the voltage 11V is applied to the drain D3 of the enhancement type FET 21a, but the standby signal SG1off is input from the control circuit 4 to the booster circuit 3. Therefore, no voltage is applied from the booster circuit 3 to the gate G3 of the enhancement type FET 21a, and the enhancement type FET 21a is turned off.
- the control circuit 4 does not output a signal for turning off the depletion type FET 22a, and is disconnected from the gate G4 of the depletion type FET 22a. Therefore, since the voltage of the gate G4 of the depletion type FET 22a is the same as the voltage of the drain D4 of the depletion type FET 22a, the depletion type FET 22a is on.
- the output terminal 12 outputs a voltage of 10.6 V via the depletion type FET 22a as the output voltage Vout.
- the standby signal SG1off is input from the control circuit 4 to the booster circuit 3 and the load circuit 52 as described above. Therefore, an appropriate voltage for turning on the enhancement type FET 21a is not applied to the gate G3 of the enhancement type FET 21a. Therefore, the enhancement type FET 21a is still off.
- FIG. 3B shows a state after the standby release signal SG1on is input from the control circuit 4 to the booster circuit 3 and the load circuit 52.
- the booster circuit 3 outputs 21.2V, which is twice the voltage of 10.6V, and is applied to the gate G3 of the enhancement type FET 21a.
- 21.2 V is applied to the gate G1
- the enhancement type FET 21a is turned on, and a voltage is output to the output terminal 12 via the enhancement type FET 21a. Since the voltage drop is 0.4V after the enhancement type FET 21a is turned on, 10.6V is output to the output terminal 12.
- the depletion type FET 22a is turned off after the booster circuit 3 has been started. Although the depletion type FET 2a cannot flow a large current of several A, it can flow a necessary current to the booster circuit 3. Therefore, there is no problem in using it for starting up the booster circuit 3. .
- the second control signal SG2 is applied to the gate G4 of the depletion type FET 22a. Specifically, 0 V is applied from the control circuit 4 to the gate G2 of the depletion type FET 2a. For this reason, a voltage 10.6V lower than the source S2 is applied to the gate G2 of the depletion type FET 2a. Therefore, the depletion type FET 2a is turned off.
- the operation of the power supply device 200 when the voltage Vin at the input terminal 11, that is, the voltage from the battery 51 is lowered to a voltage lower than the normal voltage 12 V, for example, 9 V, for example, due to low temperature or the like will be described.
- 4A and 4B show the states before and after the start of power supply for driving the load circuit 52 when the voltage at the input terminal 11 is lowered to 9 V in the power supply apparatus 200 shown in FIG. Show.
- the enhancement type FET 21a is supplied with the voltage Vin via the diode 21c. Since there is a voltage drop of about 1V across the diode 21c, a voltage of 8V is applied to the drain D3 of the enhancement type FET 21a. However, since the standby signal SG1off is input from the control circuit 4 to the booster circuit 3 and the load circuit 52, no voltage is applied from the booster circuit 3 to the gate G3 of the enhancement type FET 21a, and the enhancement type FET 21a is turned off. ing.
- a voltage is supplied to the drain D4 of the depletion type FET 22a through the diode 21c, and a voltage is supplied to the gate G4 through the diode 21c and the resistor 22b. Accordingly, the voltage 8V is applied to the drain D4 and the gate G4 of the depletion type FET 22a, similarly to the enhancement type FET 21a.
- the control circuit 4 does not output a signal for turning off the depletion type FET 22a, and is disconnected from the gate G4 of the depletion type FET 22a. Therefore, since the voltage of the gate G4 of the depletion type FET 22a is the same as the voltage of the drain D4 of the depletion type FET 22a, the depletion type FET 22a is on.
- the output terminal 12 outputs a voltage 7.6 V via the depletion type FET 22a as the output voltage Vout.
- the standby signal SG1off is input from the control circuit 4 to the booster circuit 3 and the load circuit 52. Therefore, an appropriate voltage for turning on the enhancement type FET 21a is not applied to the gate of the enhancement type FET 21a. Therefore, the enhancement type FET 21a is still off.
- FIG. 4B shows a state after the standby release signal SG1on is input from the control circuit 4 to the booster circuit 3 and the load circuit 52.
- the booster circuit 3 outputs 15.2V, which is twice the voltage of 7.6V, and is applied to the gate G3 of the enhancement type FET 21a.
- 15.2 V is applied to the gate G3
- the enhancement type FET 21a is turned on, and a voltage is output to the output terminal 12 via the enhancement type FET 21a. Note that, after the enhancement type FET 21a is turned on, the voltage drop is 0.4V, so 7.6V is output to the output terminal 12.
- the output voltage Vout at the output terminal 12 is 7.6V, which is the voltage at which the booster circuit 3 can operate. It can be. Therefore, even when the voltage from the battery 51 drops to 9V, the same operation as when the voltage from the battery 51 is 12V can be expected.
- the discussion has been made assuming that the voltage at which the booster circuit 3 can operate is 7 V or more. However, when the operating voltage of the booster circuit 3 is from a lower voltage, for example, the voltage from the battery 51 can of course correspond to a lower voltage.
- the power supply apparatus 200 can stably supply power to the load circuit 52 even when the voltage from the battery 51 decreases.
- the voltage from the battery 51 is normally 12V and the case where the voltage is lowered to 9V has been described.
- the voltage from the battery 51 may rise over 12V to about 16V even in normal times. For example, when the engine is started, since the battery is charged, its output voltage rises. In recent vehicles such as hybrid cars, charging is performed even during deceleration, and the output voltage of the battery increases.
- the protection circuit 31 provided in the power supply device 200 can prevent a voltage higher than a predetermined output voltage from being supplied to the load circuit 52.
- the protection circuit 31 includes a transistor (not shown) and a Zener diode (not shown). By setting the Zener voltage of the Zener diode to an appropriate value, the output voltage at the output terminal 12 is regulated. The voltage value (13V) is not exceeded.
- the power supply device 200 of the present invention described so far has been described on the assumption that the battery 51 is mounted on the vehicle. Therefore, the power supply device 200 configured in this way can operate the electronic devices in the vehicle without any trouble even at low temperatures.
- the power supply device 200 of the present invention is not limited to a battery mounted on a vehicle, but can be applied to a battery mounted on various devices other than the vehicle.
- the power supply device 100 according to the first embodiment of the present invention or the power supply device 200 according to the second embodiment supplies the booster circuit 3 even when the voltage output from the battery 51 decreases. To a sufficiently high voltage. Therefore, even when the voltage output from the battery 51 is reduced, the power for driving the load circuit 52 can be stably supplied.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
- Continuous-Control Power Sources That Use Transistors (AREA)
Abstract
[Problem] To provide a power supply device capable of reliably supplying power to a load circuit even in a case in which output voltage of a battery has decreased. [Solution] The invention is provided with: a first FET (1a) in which a drain (D1) is connected to an input terminal (11), a source (S1) is connected to an output terminal (12), and which is off in a state in which the same voltage is supplied to the drain (D1) and a gate (G1); a boosting circuit (3) which boosts output voltage from the output terminal (12); and a control circuit (4) which is connected to the boosting circuit (3) and a load circuit (52). It is possible to set the invention on in a state in which the same voltage is supplied to a drain (D2) and a gate (G2), and the invention is set so that: a second FET (2a), which can be controlled by the control circuit (4), is connected to the first FET (1a); at a start time of power supply to the load circuit (52), the second FET (2a) is set on; and voltage is supplied to the boosting circuit (3) via the second FET (2a).
Description
本発明は電源供給装置に係り、特に車載用バッテリに接続された電源供給装置に係わる。
The present invention relates to a power supply device, and more particularly to a power supply device connected to an in-vehicle battery.
従来より、自動車等に搭載されている電子機器には、車載用バッテリから電源が供給されている。また、車載用バッテリには、電子機器内の負荷回路を駆動するための電源供給装置が接続されている。
Conventionally, power is supplied from an in-vehicle battery to an electronic device mounted on an automobile or the like. In addition, a power supply device for driving a load circuit in the electronic device is connected to the in-vehicle battery.
電源供給装置では、近年、FET(Field Effect Transistor(電界効果トランジスタ))を使用して負荷回路を駆動するための電源を供給し、制御するように構成されている。特に、エンハンスメント型FETは、スイッチング動作を容易に行えるため、車載電子機器内の電源供給装置に用いられるようになっている。また、FETの駆動用に昇圧回路が用いられるようになっている。特許文献1には、電源供給装置のFETを駆動するため、昇圧回路を利用した車載電子機器が開示されている。
In recent years, the power supply device is configured to supply and control power for driving a load circuit using an FET (Field Effect Transistor). In particular, enhancement-type FETs can be easily switched, so that they are used for power supply devices in in-vehicle electronic devices. In addition, a booster circuit is used for driving the FET. Patent Document 1 discloses an in-vehicle electronic device that uses a booster circuit to drive an FET of a power supply device.
図5に、特許文献1に開示された電子制御装置941のための電源供給装置900を、第1従来例として示す。尚、今後、従来例の各回路で、FETのゲートに適正な電圧が印加されており、FETのドレイン・ソース間の電圧降下が0.4V程度の時の状態を、FETがオンの状態であるとして話を進める。また、FETのドレインとゲートにほぼ同一の電圧が印加されているか、FETのドレイン・ソース間の電圧降下が2V程度の時の状態をFETがオフの状態であるとして話を進める。
FIG. 5 shows a power supply device 900 for the electronic control device 941 disclosed in Patent Document 1 as a first conventional example. In the future, in each conventional circuit, an appropriate voltage is applied to the gate of the FET, and the voltage drop between the drain and source of the FET is about 0.4 V. Proceed as if there is. Further, the discussion will be made assuming that the FET is in an off state when substantially the same voltage is applied to the drain and the gate of the FET or when the voltage drop between the drain and the source of the FET is about 2V.
電源供給装置900には、バッテリ903に接続された電源端子905と、電源端子905に接続されたFET921が備えられている。FET921を駆動するには、ゲートの電圧をソースの電圧より所定電圧(約3V)以上高くする必要があり、そのために、FET921のゲートには昇圧回路943の出力端が接続されている。
The power supply apparatus 900 includes a power supply terminal 905 connected to the battery 903 and an FET 921 connected to the power supply terminal 905. In order to drive the FET 921, the gate voltage needs to be higher than the source voltage by a predetermined voltage (about 3 V). For this purpose, the output terminal of the booster circuit 943 is connected to the gate of the FET 921.
昇圧回路943は、バッテリ903の電圧VBよりも所定電圧以上高い電圧を生成して、その生成した昇圧電圧をFET921のゲートに印加することによりFET921をオンさせるように構成されている。
The booster circuit 943 is configured to generate a voltage higher than the voltage VB of the battery 903 by a predetermined voltage or more and apply the generated boosted voltage to the gate of the FET 921 to turn on the FET 921.
図5に示した電源供給装置900における動作をわかりやすく説明するために、FETと昇圧回路を用いた一般的な従来の電源供給装置の構成を、第2従来例として図6に示す。
In order to explain the operation of the power supply apparatus 900 shown in FIG. 5 in an easy-to-understand manner, the configuration of a general conventional power supply apparatus using an FET and a booster circuit is shown in FIG.
図6に示すように、従来の車載用の電源供給装置800は、バッテリ851に接続される入力端子811と、FET回路801と、負荷回路852が接続される出力端子812と、昇圧回路803と、制御回路804とから構成されている。
As shown in FIG. 6, a conventional on-vehicle power supply device 800 includes an input terminal 811 connected to a battery 851, an FET circuit 801, an output terminal 812 connected to a load circuit 852, and a booster circuit 803. And a control circuit 804.
FET回路801においては、保護用のダイオード801cのアノードが入力端子811に接続され、保護用のダイオード801cのカソードが、FET801aのドレインD0に接続され、FET801aのソースS0が出力端子812に接続されている。また、抵抗801bと保護用のダイオード801dとが直列接続されて、FET801aのゲートG0と入力端子811との間に接続されている。
In the FET circuit 801, the anode of the protective diode 801c is connected to the input terminal 811, the cathode of the protective diode 801c is connected to the drain D0 of the FET 801a, and the source S0 of the FET 801a is connected to the output terminal 812. Yes. A resistor 801b and a protective diode 801d are connected in series, and are connected between the gate G0 of the FET 801a and the input terminal 811.
昇圧回路803には、出力端子812からの出力電圧Voutが電源電圧として供給され、その出力端は、FET801aのゲートG0に接続されている。尚、昇圧回路803は、動作時の内部損失が過大にならないように7V以上で動作するように設計されている。また、制御回路804は、昇圧回路803の動作を制御すると共に、負荷回路852の動作を制御するために設けられている。尚、FET801aとしては、エンハンスメント型FETを使用しており、また、負荷回路852としては、約3A以上の電流が流れる回路を想定している。
The booster circuit 803 is supplied with the output voltage Vout from the output terminal 812 as a power supply voltage, and its output terminal is connected to the gate G0 of the FET 801a. Note that the booster circuit 803 is designed to operate at 7 V or higher so that internal loss during operation does not become excessive. The control circuit 804 is provided for controlling the operation of the booster circuit 803 and controlling the operation of the load circuit 852. Note that an enhancement type FET is used as the FET 801a, and a circuit through which a current of about 3 A or more flows is assumed as the load circuit 852.
FET801aをオンするには、FET801aのゲートGの電圧を、ソースSの電圧より所定電圧(約3V)以上高くする必要がある。そのため、昇圧回路803を動作させ、昇圧回路803から出力される電圧をFET801aのゲートに印加するように構成されている。昇圧回路803では、昇圧回路803に供給される電圧を、約2倍の大きさの電圧に昇圧して出力するように構成されている。
In order to turn on the FET 801a, the voltage of the gate G of the FET 801a needs to be higher than the voltage of the source S by a predetermined voltage (about 3V) or more. Therefore, the booster circuit 803 is operated, and the voltage output from the booster circuit 803 is applied to the gate of the FET 801a. The booster circuit 803 is configured to boost the voltage supplied to the booster circuit 803 to a voltage approximately twice as large as the voltage output.
電源供給装置800において、バッテリ851の電源電圧が通常の12Vである場合の動作について図7(a)、図7(b)を用いて説明する。
Operation in the power supply apparatus 800 when the power supply voltage of the battery 851 is a normal 12V will be described with reference to FIGS. 7 (a) and 7 (b).
図7(a)は、FET801aがオンする前の状態を表している。図7(a)において、昇圧回路803には、電源電圧として9Vが供給されているため、倍電圧発生回路である昇圧回路803の出力端には、9Vの2倍の18Vが出力される。従って、ソースS0に対するゲートG0の電圧が9Vとなることによって、FET801aをオンとすることができる。
FIG. 7A shows a state before the FET 801a is turned on. In FIG. 7A, since 9V is supplied to the booster circuit 803 as the power supply voltage, 18V, which is twice 9V, is output to the output terminal of the booster circuit 803 which is a voltage doubler generation circuit. Accordingly, when the voltage of the gate G0 with respect to the source S0 becomes 9V, the FET 801a can be turned on.
FET801aがオンとなった場合の状態を図7(b)に示す。FET801aがオンとなっている時、出力端子812における出力電圧Voutは10.6Vとなる。図7(b)において、FET801aのゲートG0に21.2Vが印加されているため、FET801aはオンとなった状態を保つことができる。尚、負荷回路852が動作可能となる出力電圧(Vout)としては、7V以上13V未満を想定している。上記の通り、入力端子811における電圧Vinが通常の電圧12Vであれば、特に問題はない。
FIG. 7B shows a state when the FET 801a is turned on. When the FET 801a is on, the output voltage Vout at the output terminal 812 is 10.6V. In FIG. 7B, since 21.2 V is applied to the gate G0 of the FET 801a, the FET 801a can be kept on. Note that the output voltage (Vout) at which the load circuit 852 can operate is assumed to be 7 V or more and less than 13 V. As described above, there is no particular problem if the voltage Vin at the input terminal 811 is the normal voltage 12V.
しかしながら、図5又は図6に示す従来の電源供給装置900又は800には、入力端子811における電圧が、例えば9Vまで下がった場合、以下のような問題が発生する。
However, the conventional power supply apparatus 900 or 800 shown in FIG. 5 or 6 has the following problem when the voltage at the input terminal 811 drops to, for example, 9V.
図6に示す電源供給装置800において、入力端子811における電圧Vinが9Vまで下がった時の、負荷回路852への電源供給開始時前後の状態を、図7(c)に示す。
FIG. 7C shows the state before and after the start of power supply to the load circuit 852 when the voltage Vin at the input terminal 811 is lowered to 9 V in the power supply apparatus 800 shown in FIG.
昇圧回路803は、Voutが7V以上の電圧で動作するように設計されている。入力端子811における電圧が9Vまで下がった時、出力端子812における出力電圧Vout即ち昇圧回路803の電源電圧は、6Vまで下がってしまう。昇圧回路803は、7V以上で動作するように設計されているので、Voutが6Vまで下がった場合、昇圧回路803は動作できなくなってしまう。そのため、昇圧回路803から、FET801aがオンするために必要な電圧が、FET801aのゲートG0に印加されず、FET801aの状態は変化せずに、図7(c)に示す状態のままである。従って、FET801aをオンさせることができない状態となっている。
The booster circuit 803 is designed to operate with a voltage of Vout of 7V or higher. When the voltage at the input terminal 811 decreases to 9V, the output voltage Vout at the output terminal 812, that is, the power supply voltage of the booster circuit 803 decreases to 6V. Since the booster circuit 803 is designed to operate at 7 V or higher, the booster circuit 803 cannot operate when Vout decreases to 6 V. Therefore, the voltage necessary for turning on the FET 801a from the booster circuit 803 is not applied to the gate G0 of the FET 801a, and the state of the FET 801a remains unchanged and remains as shown in FIG. Therefore, the FET 801a cannot be turned on.
従って、バッテリ851からの電圧、即ち入力端子811における電圧Vinが、9Vとなった場合、FET801aをオンさせることができなくなる。よって、入力端子811における電圧Vinが低下した場合、負荷回路852に電源を供給することができなくなってしまうという問題が、従来技術の電源供給装置800にはあった。
Therefore, when the voltage from the battery 851, that is, the voltage Vin at the input terminal 811 becomes 9V, the FET 801a cannot be turned on. Therefore, when the voltage Vin at the input terminal 811 decreases, the conventional power supply apparatus 800 has a problem in that power cannot be supplied to the load circuit 852.
本発明は、このような従来技術の実情に鑑みてなされたもので、その目的は、バッテリから出力される電圧が低下した場合においても、負荷回路を駆動するための電源を安定して供給することができる電源供給装置を提供することにある。
The present invention has been made in view of the actual situation of the prior art, and an object of the present invention is to stably supply power for driving the load circuit even when the voltage output from the battery is lowered. It is an object of the present invention to provide a power supply device that can perform the above-described operation.
この課題を解決するために、本発明の電源供給装置は、バッテリから電源が供給される入力端子と、負荷回路が接続される出力端子と、前記入力端子にドレインが接続され、前記出力端子にソースが接続された第1FETと、前記出力端子に接続され、前記出力端子からの出力電圧を昇圧する昇圧回路と、前記昇圧回路及び前記負荷回路に接続された制御回路と、を備え、前記第1FETは、前記第1FETのドレインとゲートに同一電圧が供給されている状態ではオフとなっている素子であり、前記昇圧回路によって昇圧された電圧を前記第1FETのゲートに印加して前記第1FETをオンさせることによって前記負荷回路に電源を供給する電源供給装置であって、前記制御回路により制御可能とされる第2FETを設け、前記第2FETのドレインを前記第1FETのドレインに接続すると共に、前記第2FETのソースを前記第1FETのソースに接続し、前記第2FETは、前記第2FETのドレインとゲートに同一電圧が供給されている状態ではオンとしておくことが可能な素子であり、前記負荷回路への電源供給開始時より前に、前記第2FETをオンとしておくと共に、前記電源供給開始時に、前記第2FETを介して前記昇圧回路に電圧を供給するようにしたという特徴を有する。
In order to solve this problem, the power supply device of the present invention includes an input terminal to which power is supplied from a battery, an output terminal to which a load circuit is connected, a drain connected to the input terminal, and the output terminal. A first FET to which a source is connected; a booster circuit that is connected to the output terminal and boosts an output voltage from the output terminal; and a control circuit that is connected to the booster circuit and the load circuit. The 1FET is an element that is turned off when the same voltage is supplied to the drain and gate of the first FET, and a voltage boosted by the booster circuit is applied to the gate of the first FET. A power supply device for supplying power to the load circuit by turning on the second FET, the second FET being controllable by the control circuit, and the second F The drain of T is connected to the drain of the first FET, the source of the second FET is connected to the source of the first FET, and the second FET has the same voltage supplied to the drain and gate of the second FET Is an element that can be turned on, and before turning on the power supply to the load circuit, the second FET is turned on, and when the power supply is started, the booster circuit is connected to the load circuit via the second FET. It has a feature that voltage is supplied.
このように構成された電源供給装置は、負荷回路への電源供給開始時に第2FETをオンとしておくと共に、第2FETを介して昇圧回路に電圧を供給するようにしたため、昇圧回路へ供給する電圧を十分高い電圧にすることができる。そのため、バッテリから出力される電圧が低下した場合においても、第1FETをオンすることができるので、負荷回路を駆動するための電源を安定して供給することができる。
The power supply device configured as described above turns on the second FET when power supply to the load circuit is started and supplies the voltage to the booster circuit via the second FET. A sufficiently high voltage can be obtained. Therefore, even when the voltage output from the battery decreases, the first FET can be turned on, so that it is possible to stably supply power for driving the load circuit.
また、上記の構成において、前記負荷回路への電源供給開始時より前に、前記第1FET及び前記第2FETに前記バッテリから電圧が供給されていて、前記負荷回路への電源供給開始時に、前記制御回路からの第1制御信号によって前記昇圧回路を動作させて前記第1FETをオンすると共に、前記負荷回路を動作可能としたという特徴を有する。
Further, in the above configuration, the voltage is supplied from the battery to the first FET and the second FET before the start of power supply to the load circuit, and the control is performed when the power supply to the load circuit is started. The booster circuit is operated by a first control signal from the circuit to turn on the first FET, and the load circuit can be operated.
このように構成された電源供給装置は、負荷回路への電源供給開始時に、制御回路からの第1制御信号によって昇圧回路及び負荷回路を制御するようにしたので、電源供給開始の時期を明確に定めることができる。
The power supply device configured as described above controls the booster circuit and the load circuit with the first control signal from the control circuit when the power supply to the load circuit is started. Can be determined.
また、上記の構成において、前記第1FETがオンした後に、前記制御回路からの第2制御信号によって前記第2FETをオフするようにしたという特徴を有する。
In the above-described configuration, the second FET is turned off by a second control signal from the control circuit after the first FET is turned on.
このように構成された電源供給装置は、前記第1FETががオンした後に、第2FETをオフするようにしたので、負荷回路への電源供給開始後に必要のない第2FETには、電流を流さないようにすることができる。
Since the power supply device configured as described above turns off the second FET after the first FET is turned on, no current flows through the second FET that is not necessary after the power supply to the load circuit is started. Can be.
前記第1FETはエンハンスメント型FETであり、前記第2FETはデプレッション型FETであって、前記エンハンスメント型FETのドレインとゲートが抵抗を介して接続されており、前記デプレッション型FETのドレインとゲートが抵抗を介して接続されているという特徴を有する。
The first FET is an enhancement type FET, the second FET is a depletion type FET, and the drain and gate of the enhancement type FET are connected via a resistor, and the drain and gate of the depletion type FET have a resistance. It has the characteristic that it is connected via.
このように構成された電源供給装置は、第2FETとしてデプレッション型FETを使用するようにしたので、負荷回路への電源供給開始時に、第2FETをオンとしておくことができ、第2FETの電圧降下が小さい状態で昇圧回路に電圧を供給することができる。
Since the power supply device configured as described above uses a depletion type FET as the second FET, the second FET can be turned on when the power supply to the load circuit is started, and the voltage drop of the second FET is reduced. A voltage can be supplied to the booster circuit in a small state.
また、上記の構成において、前記デプレッション型FETは、MOS・FETであるという特徴を有する。
Further, in the above configuration, the depletion type FET is characterized by being a MOS • FET.
このように構成された電源供給装置は、デプレッション型FETとして、MOS・FETを使用しているため、ソースに対するゲートの電圧を、負の電圧から正の電圧まで使用することができる。そのため、低い電圧で第2FETのオン・オフを制御できるので、使い勝手が良く、負荷回路への電源供給開始時に、昇圧回路に容易に電源を供給することができる。
Since the power supply device configured as described above uses a MOS • FET as a depletion type FET, the gate voltage with respect to the source can be used from a negative voltage to a positive voltage. For this reason, since the ON / OFF of the second FET can be controlled with a low voltage, it is easy to use, and power can be easily supplied to the booster circuit when power supply to the load circuit is started.
また、上記の構成において、車両に搭載されたバッテリに接続されているという特徴を有する。
Also, the above configuration has a feature that it is connected to a battery mounted on the vehicle.
このように構成された電源供給装置は、低温時などで車両に搭載されたバッテリの電圧が低下した場合においても車両内の電子機器を支障なく動作させることができる。
The power supply device configured as described above can operate the electronic devices in the vehicle without any trouble even when the voltage of the battery mounted on the vehicle decreases at a low temperature or the like.
本発明の電源供給装置は、バッテリから出力される電圧が低下した場合においても、負荷回路を駆動するための電源を安定して供給することができる。
The power supply device of the present invention can stably supply power for driving the load circuit even when the voltage output from the battery drops.
以下、本発明の実施形態について、図面を参照しながら説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
尚、今後、エンハンスメント型FETに対し、そのドレインに電源が供給され、ゲートに適正な電圧が印加されているという条件の下で、ドレイン・ソース間の電圧降下が0.4V程度となっている時を、エンハンスメント型FETがオンしているとして話を進める。また、エンハンスメント型FETのドレインに電源が供給され、ドレインとゲートにほぼ同一の電圧が印加されている場合は、ドレイン及びソースの電圧値に関わらずエンハンスメント型FETがオフしているとして話を進める。また、デプレッション型FETに対し、そのドレインに電源が供給されている状態で、ゲートにFETをオフするための適正な電圧が印加されていない場合を、そのデプレッション型FETがオンしているとする。また、そのドレインに電源が供給され、ゲートにFETをオフするための適正な電圧が印加されている場合をデプレッション型FETがオフしているとして話を進める。
In the future, the voltage drop between the drain and the source is about 0.4 V under the condition that power is supplied to the drain of the enhancement type FET and an appropriate voltage is applied to the gate. Let's talk about time as if the enhancement FET is on. In addition, when power is supplied to the drain of the enhancement type FET and substantially the same voltage is applied to the drain and the gate, it is assumed that the enhancement type FET is off regardless of the drain and source voltage values. . In addition, when the depletion type FET is supplied with power to its drain and the appropriate voltage for turning off the FET is not applied to the gate, the depletion type FET is turned on. . Further, the case where power is supplied to the drain and an appropriate voltage for turning off the FET is applied to the gate is assumed to be that the depletion type FET is turned off.
バッテリの出力電圧は、12Vが通常の出力電圧であるとして話を進めるが、その電圧値は、9Vから約16Vまで変化する可能性があるとして話を進める。また、負荷回路及び昇圧回路は、その電源電圧が7V以上13V以下で動作可能であるとし、負荷回路及び昇圧回路へは、7Vから13Vまでの電源電圧が供給されるとして話を進める。また、負荷回路への電源供給とは、制御回路からの制御信号により負荷回路を駆動させるようにした場合の電源供給を指し、ただ単に出力端子に電圧が供給されているだけの状態では、負荷回路へ電源供給しているとは言わない。
The battery output voltage is assumed to be a normal output voltage of 12V, but the voltage value will change from 9V to about 16V. Further, it is assumed that the load circuit and the booster circuit can operate at a power supply voltage of 7V to 13V, and that the power supply voltage from 7V to 13V is supplied to the load circuit and the booster circuit. The power supply to the load circuit refers to the power supply when the load circuit is driven by the control signal from the control circuit. In the state where the voltage is simply supplied to the output terminal, It does not say that it is supplying power to the circuit.
制御回路から昇圧回路および負荷回路への第1制御信号SG1として、スタンバイ信号SG1off、スタンバイ解除信号SG1onの名称を使用する。スタンバイ信号SG1off、は対象の回路の動作を停止させておくための制御信号であり、スタンバイ解除信号SG1onは、動作を停止している対象の回路を立ち上げて動作させるための信号である。
The names of the standby signal SG1off and the standby release signal SG1on are used as the first control signal SG1 from the control circuit to the booster circuit and the load circuit. The standby signal SG1off is a control signal for stopping the operation of the target circuit, and the standby release signal SG1on is a signal for starting up and operating the target circuit whose operation is stopped.
また、制御回路からデプレッション型FETへの制御信号として、第2制御信号SG2の名称を使用する。第2制御信号SG2はデプレッション型FETをオフとするための制御信号である。逆に、デプレッション型FETをオンとするためには、第2制御信号SG2を出力せず、制御回路とデプレッション型FETとの接続を開放状態とすることにより実現できるとして話を進める。
Also, the name of the second control signal SG2 is used as a control signal from the control circuit to the depletion type FET. The second control signal SG2 is a control signal for turning off the depletion type FET. On the other hand, in order to turn on the depletion type FET, the second control signal SG2 is not output, and the description will be made on the assumption that the connection between the control circuit and the depletion type FET can be opened.
〔第1実施形態〕
図1は、本発明の第1実施形態に係る電源供給装置100の構成を示す回路図であり、第1実施形態に係る第1FET回路1と、第2FET回路2と、これらの回路と他のブロックとの関係を示す回路図である。 [First Embodiment]
FIG. 1 is a circuit diagram showing a configuration of apower supply apparatus 100 according to the first embodiment of the present invention. The first FET circuit 1, the second FET circuit 2, and these circuits according to the first embodiment It is a circuit diagram which shows the relationship with a block.
図1は、本発明の第1実施形態に係る電源供給装置100の構成を示す回路図であり、第1実施形態に係る第1FET回路1と、第2FET回路2と、これらの回路と他のブロックとの関係を示す回路図である。 [First Embodiment]
FIG. 1 is a circuit diagram showing a configuration of a
本発明の第1実施形態に係る電源供給装置100の構成について、図1を用いて説明する。
The configuration of the power supply apparatus 100 according to the first embodiment of the present invention will be described with reference to FIG.
図1に示すように、電源供給装置100は、バッテリ51から電源が供給される入力端子11と、負荷回路52が接続される出力端子12と、入力端子11にドレインD1が接続され、出力端子12にソースS1が接続された第1FET1aを有している。また、第1FET1aのドレインD1とゲートG1との間には、抵抗1bが接続されていて、第1FET1aと抵抗1bとで第1FET回路1を構成している。尚、第1FET1aは、エンハンスメント型FETである。
As shown in FIG. 1, the power supply device 100 includes an input terminal 11 to which power is supplied from a battery 51, an output terminal 12 to which a load circuit 52 is connected, a drain D1 connected to the input terminal 11, and an output terminal. 12 includes a first FET 1a to which a source S1 is connected. A resistor 1b is connected between the drain D1 and the gate G1 of the first FET 1a, and the first FET circuit 1 is constituted by the first FET 1a and the resistor 1b. The first FET 1a is an enhancement type FET.
第1FET1aには第2FET2aが接続されている。第2FET2aは、デプレッション型FETである。第2FET2aであるデプレッション型FETのドレインD2が第1FET1aであるエンハンスメント型FETのドレインD1に接続され、デプレッション型FETのソースS2がエンハンスメント型FETのソースS1に接続されている。また、第2FET2aのドレインD2とゲートG2との間には、抵抗2bが接続されていて、第2FET2aと抵抗2bとで第2FET回路2を構成している。尚、今後、第1FET1aをエンハンスメント型FET1aと称し、第2FET2aをデプレッション型FET2aと称する。
The second FET 2a is connected to the first FET 1a. The second FET 2a is a depletion type FET. The drain D2 of the depletion type FET that is the second FET 2a is connected to the drain D1 of the enhancement type FET that is the first FET 1a, and the source S2 of the depletion type FET is connected to the source S1 of the enhancement type FET. A resistor 2b is connected between the drain D2 and the gate G2 of the second FET 2a, and the second FET 2a and the resistor 2b constitute the second FET circuit 2. In the future, the first FET 1a will be referred to as an enhancement type FET 1a, and the second FET 2a will be referred to as a depletion type FET 2a.
発明の第1実施形態に係る電源供給装置100は、出力端子12に接続され、出力端子12からの出力電圧を昇圧する昇圧回路3と、昇圧回路3を制御する制御回路4とを備えている。昇圧回路3は、昇圧された電圧をエンハンスメント型FET1aのゲートG1に印加するように、その出力端がエンハンスメント型FET1aのゲートG1に接続されている。
The power supply apparatus 100 according to the first embodiment of the invention includes a booster circuit 3 that is connected to the output terminal 12 and boosts an output voltage from the output terminal 12, and a control circuit 4 that controls the booster circuit 3. . The booster circuit 3 has its output terminal connected to the gate G1 of the enhancement type FET 1a so that the boosted voltage is applied to the gate G1 of the enhancement type FET 1a.
制御回路4は、昇圧回路3を制御するために昇圧回路3に接続されていると共に、デプレッション型FET2aを制御可能とするためにデプレッション型FET2aのゲートG2にも接続されている。また、制御回路4は、負荷回路52にも接続されており、昇圧回路3を制御すると同時に負荷回路52も制御するように構成されている。尚、制御回路4の電源電圧は、バッテリ51から別系統でレギュレータ(図示せず)を介して常に供給されている。また、制御回路4の電源電圧値としては、5Vを用いるように構成されている。
The control circuit 4 is connected to the booster circuit 3 in order to control the booster circuit 3, and is also connected to the gate G2 of the depletion type FET 2a in order to control the depletion type FET 2a. The control circuit 4 is also connected to the load circuit 52, and is configured to control the load circuit 52 simultaneously with controlling the booster circuit 3. The power supply voltage of the control circuit 4 is always supplied from the battery 51 via a regulator (not shown) in a separate system. Further, the power supply voltage value of the control circuit 4 is configured to use 5V.
次に、本発明の第1実施形態に係る電源供給装置100の動作について、図1を用いて説明する。
Next, the operation of the power supply apparatus 100 according to the first embodiment of the present invention will be described with reference to FIG.
エンハンスメント型FET1aは、エンハンスメント型FET1aのドレインD1とゲートG1に同一電圧が供給されている状態ではオフとなっている素子である。また、デプレッション型FET2aは、デプレッション型FET2aのドレインD2とゲートG2に同一電圧が供給されている状態ではオンとしておくことが可能な素子である。この状態で、デプレッション型FET2aのゲートG2に制御回路4から第2制御信号SG2が印加されていない時、即ちデプレッション型FET2aのゲートG2と制御回路4との接続が開放状態の時、デプレッション型FET2aはオンとなっている。
The enhancement type FET 1a is an element that is turned off when the same voltage is supplied to the drain D1 and the gate G1 of the enhancement type FET 1a. The depletion type FET 2a is an element that can be turned on when the same voltage is supplied to the drain D2 and the gate G2 of the depletion type FET 2a. In this state, when the second control signal SG2 is not applied from the control circuit 4 to the gate G2 of the depletion type FET 2a, that is, when the connection between the gate G2 of the depletion type FET 2a and the control circuit 4 is open, the depletion type FET 2a Is on.
負荷回路52への電源供給開始時より前には、エンハンスメント型FET1aのドレインD1とゲートG1に、バッテリ51から同一電圧が供給されていると同時に、デプレッション型FET2aのドレインD2とゲートG2にも同一電圧が供給されている。また、負荷回路52への電源供給開始時より前には、デプレッション型FET2aのゲートG2に制御回路4からの第2制御信号SG2が印加されていない。従って、エンハンスメント型FET1aはオフの状態であり、デプレッション型FET2aはオンの状態である。
Before the start of power supply to the load circuit 52, the same voltage is supplied from the battery 51 to the drain D1 and the gate G1 of the enhancement type FET 1a, and at the same time, the same is applied to the drain D2 and the gate G2 of the depletion type FET 2a. Voltage is being supplied. Prior to the start of power supply to the load circuit 52, the second control signal SG2 from the control circuit 4 is not applied to the gate G2 of the depletion type FET 2a. Therefore, the enhancement type FET 1a is in an off state and the depletion type FET 2a is in an on state.
また負荷回路52への電源供給開始時より前には、制御回路4から第1制御信号SG1として、スタンバイ信号SG1offが、昇圧回路3に供給されている。尚、制御回路4からは、昇圧回路3に第1制御信号SG1を供給すると同時に、負荷回路52にも同一の第1制御信号SG1が供給される。従って、負荷回路52への電源供給開始時より前には、昇圧回路3及び負荷回路52にはスタンバイ信号SG1offが供給されており、昇圧回路3及び負荷回路52の動作が停止されている。
Further, before the start of power supply to the load circuit 52, the standby signal SG1off is supplied from the control circuit 4 to the booster circuit 3 as the first control signal SG1. The control circuit 4 supplies the first control signal SG1 to the booster circuit 3 and the same first control signal SG1 to the load circuit 52 at the same time. Therefore, before the start of power supply to the load circuit 52, the standby signal SG1off is supplied to the booster circuit 3 and the load circuit 52, and the operations of the booster circuit 3 and the load circuit 52 are stopped.
次に、負荷回路52へ電源供給を開始しようとする場合、制御回路4から第1制御信号SG1として、スタンバイ解除信号SG1onが出力され、昇圧回路3及び負荷回路52を動作可能の状態とする。
Next, when the power supply to the load circuit 52 is to be started, the standby release signal SG1on is output as the first control signal SG1 from the control circuit 4, and the booster circuit 3 and the load circuit 52 are made operable.
負荷回路52への電源供給開始時には、前述したように、デプレッション型FET2aがオン状態となっているため、昇圧回路3には、デプレッション型FET2aを介して電圧が供給されている。この状態で、制御回路4から昇圧回路3にスタンバイ解除信号SG1onが供給される。
At the start of power supply to the load circuit 52, as described above, since the depletion type FET 2a is in an on state, a voltage is supplied to the booster circuit 3 via the depletion type FET 2a. In this state, the standby release signal SG1on is supplied from the control circuit 4 to the booster circuit 3.
スタンバイ解除信号SG1onが供給された昇圧回路3は、デプレッション型FET2aを介して供給された電圧を昇圧して、エンハンスメント型FET1aのゲートG1に印加し、エンハンスメント型FETをオンさせる。
The booster circuit 3 to which the standby release signal SG1on is supplied boosts the voltage supplied via the depletion type FET 2a and applies it to the gate G1 of the enhancement type FET 1a to turn on the enhancement type FET.
本発明の第1実施形態の昇圧回路3は、チャージポンプ回路と呼ばれる回路で構成されており、供給された電圧を2倍の電圧に昇圧する機能を有している。チャージポンプ回路の内部には、発振回路(図示せず)と、その発振回路の発振によって順次充放電される多段のキャパシタ群(図示せず)とが備えられている。そして、キャパシタ群の最終段のキャパシタに蓄えられた電圧が、昇圧回路3の出力端から出力されるように構成されている。尚、このような回路構成は周知の回路構成であるため、詳細な説明を省略する。
The booster circuit 3 according to the first embodiment of the present invention is configured by a circuit called a charge pump circuit, and has a function of boosting the supplied voltage to twice the voltage. The charge pump circuit includes an oscillation circuit (not shown) and a multistage capacitor group (not shown) that is sequentially charged and discharged by the oscillation of the oscillation circuit. The voltage stored in the last capacitor of the capacitor group is output from the output terminal of the booster circuit 3. Since such a circuit configuration is a well-known circuit configuration, detailed description thereof is omitted.
エンハンスメント型FET1aがオンした後は、エンハンスメント型FET1aを介して出力端子12に出力電圧Voutが出力される。出力電圧Voutは、スタンバイ解除信号SG1onが供給されている負荷回路52に供給され、負荷回路52が、その動作を開始する。また、昇圧回路3にエンハンスメント型FET1aを介して電圧が供給され、その供給された電圧を昇圧して、エンハンスメント型FET1aのゲートG1に印加し続ける。
After the enhancement type FET 1a is turned on, the output voltage Vout is output to the output terminal 12 via the enhancement type FET 1a. The output voltage Vout is supplied to the load circuit 52 to which the standby release signal SG1on is supplied, and the load circuit 52 starts its operation. Further, a voltage is supplied to the booster circuit 3 via the enhancement type FET 1a, and the supplied voltage is boosted and continuously applied to the gate G1 of the enhancement type FET 1a.
エンハンスメント型FET1aがオンした後には、制御回路4からの第2制御信号SG2によってデプレッション型FET2aをオフする。第2制御信号SG2として、0Vの電圧をデプレッション型FET2aのゲートG2に印加することで、デプレッション型FET2aをオフすることができる。
After the enhancement type FET 1a is turned on, the depletion type FET 2a is turned off by the second control signal SG2 from the control circuit 4. By applying a voltage of 0V to the gate G2 of the depletion type FET 2a as the second control signal SG2, the depletion type FET 2a can be turned off.
上述したとおり、本発明の第1実施形態の電源供給装置100は、負荷回路52への電源供給開始時に、既にオンしているデプレッション型FET2aを介して昇圧回路3に電圧を供給するようにした。デプレッション型FET2aのオン時の電圧降下は、約0.4Vである。従って、本発明の第1実施形態の電源供給装置100は、第2従来例の昇圧回路803が、電圧降下が約2Vあるエンハンスメント型FET801aの出力電圧を供給されていた場合に比較して、約1.6V高い電圧を昇圧回路3に供給することができる。よって、バッテリ51から出力される電圧が低下した場合においても、昇圧回路へ供給する電圧を、必要とされる電圧にすることができ、エンハンスメント型FET1aをオンすることができる。そのため、負荷回路52への電源を安定して供給することができる。
As described above, the power supply device 100 according to the first embodiment of the present invention supplies the voltage to the booster circuit 3 via the depletion type FET 2a that is already turned on when the power supply to the load circuit 52 is started. . The voltage drop when the depletion type FET 2a is on is about 0.4V. Therefore, the power supply apparatus 100 according to the first embodiment of the present invention has a booster circuit 803 of the second conventional example, which is approximately the same as when the output voltage of the enhancement type FET 801a having a voltage drop of approximately 2 V is supplied. A voltage higher by 1.6 V can be supplied to the booster circuit 3. Therefore, even when the voltage output from the battery 51 decreases, the voltage supplied to the booster circuit can be set to the required voltage, and the enhancement FET 1a can be turned on. Therefore, the power to the load circuit 52 can be stably supplied.
〔第2実施形態〕
次に、本発明の第2実施形態について、図2乃至図4を用いて説明する。 [Second Embodiment]
Next, a second embodiment of the present invention will be described with reference to FIGS.
次に、本発明の第2実施形態について、図2乃至図4を用いて説明する。 [Second Embodiment]
Next, a second embodiment of the present invention will be described with reference to FIGS.
図2は、本発明の第2実施形態に係る電源供給装置200の第3FET回路21と第4FET回路22の構成、及びこれらの回路と他のブロックとの関係を示す回路図である。尚、昇圧回路3及び制御回路4等については、その働きが第1実施形態と同一であるものについては、第1実施形態と同じ符号を使用する。
FIG. 2 is a circuit diagram showing the configuration of the third FET circuit 21 and the fourth FET circuit 22 of the power supply apparatus 200 according to the second embodiment of the present invention, and the relationship between these circuits and other blocks. For the booster circuit 3, the control circuit 4, and the like, the same reference numerals as those in the first embodiment are used for those having the same functions as those in the first embodiment.
本発明の第2実施形態に係る電源供給装置200のブロック構成について、図2を用いて説明する。尚、本発明の第2実施形態に係る電源供給装置200は、本発明の第1実施形態に係る電源供給装置100に対し、実際の製品構成により近い構成を有した実施形態である。
The block configuration of the power supply apparatus 200 according to the second embodiment of the present invention will be described with reference to FIG. The power supply device 200 according to the second embodiment of the present invention is an embodiment having a configuration closer to the actual product configuration than the power supply device 100 according to the first embodiment of the present invention.
図2に示すように、電源供給装置200は、バッテリ51が接続される入力端子11と、第3FET回路21と、負荷回路52が接続される出力端子12と、第4FET回路22と、昇圧回路3と、制御回路4と、保護回路31とを備えている。
As shown in FIG. 2, the power supply device 200 includes an input terminal 11 to which a battery 51 is connected, a third FET circuit 21, an output terminal 12 to which a load circuit 52 is connected, a fourth FET circuit 22, and a booster circuit. 3, a control circuit 4, and a protection circuit 31.
第3FET回路21は、入力端子11と出力端子12との間に接続されている。昇圧回路3は、出力端子12に接続されていると共に、出力端子12からの出力電圧Voutが、電源電圧として供給されていて、出力端子12からの出力電圧Voutを昇圧して第3FET回路21に供給するように構成されている。また、保護回路31が、出力端子12と第3FET回路21とグランドとの間に接続されている。
The third FET circuit 21 is connected between the input terminal 11 and the output terminal 12. The booster circuit 3 is connected to the output terminal 12 and the output voltage Vout from the output terminal 12 is supplied as a power supply voltage. The booster circuit 3 boosts the output voltage Vout from the output terminal 12 to the third FET circuit 21. It is configured to supply. A protection circuit 31 is connected between the output terminal 12, the third FET circuit 21, and the ground.
装置内の回路の動作を制御するため、制御回路4が備えられている。制御回路4は、昇圧回路3を制御するために昇圧回路3に接続されている。また、制御回路4は、負荷回路52にも接続されており、昇圧回路3を制御すると同時に負荷回路52も制御するように構成されている。尚、制御回路4の電源電圧は、バッテリ51から別系統でレギュレータ(図示せず)を介して常に供給されている。また、制御回路4の電源電圧値としては、5Vを用いるように構成されている。
A control circuit 4 is provided to control the operation of the circuit in the apparatus. The control circuit 4 is connected to the booster circuit 3 in order to control the booster circuit 3. The control circuit 4 is also connected to the load circuit 52, and is configured to control the load circuit 52 simultaneously with controlling the booster circuit 3. The power supply voltage of the control circuit 4 is always supplied from the battery 51 via a regulator (not shown) in a separate system. Further, the power supply voltage value of the control circuit 4 is configured to use 5V.
本発明の第2実施形態に係る電源供給装置200では、第3FET回路21に並列に第4FET回路22が接続されている。第4FET回路22にも、第4FET回路22を制御するため制御回路4が接続されている。
In the power supply apparatus 200 according to the second embodiment of the present invention, the fourth FET circuit 22 is connected in parallel to the third FET circuit 21. The control circuit 4 is also connected to the fourth FET circuit 22 in order to control the fourth FET circuit 22.
電源供給装置200の回路構成について、第3FET回路21と第4FET回路22を中心に、図2を用いて詳細に説明する。
The circuit configuration of the power supply device 200 will be described in detail with reference to FIG. 2, focusing on the third FET circuit 21 and the fourth FET circuit 22.
図2に示すように、第3FET回路21は、入力端子11と出力端子12との間に接続されたエンハンスメント型FET21aと、抵抗21bと、ダイオード21c及びダイオード21dとを有している。
As shown in FIG. 2, the third FET circuit 21 includes an enhancement type FET 21a connected between the input terminal 11 and the output terminal 12, a resistor 21b, a diode 21c, and a diode 21d.
保護回路31は、出力端子12とエンハンスメント型FET1aのゲートG1とグランドとの間に接続されている。保護回路31は、ツェナーダイオード(図示せず)を用いて構成されており、出力端子12における出力電圧Voutが所定の電圧を超えないように制御するための回路である。尚、第2実施形態における保護回路31の構成は周知であるため、詳細な説明を省略する。
The protection circuit 31 is connected between the output terminal 12 and the gate G1 of the enhancement type FET 1a and the ground. The protection circuit 31 is configured using a Zener diode (not shown), and is a circuit for controlling the output voltage Vout at the output terminal 12 so as not to exceed a predetermined voltage. In addition, since the structure of the protection circuit 31 in 2nd Embodiment is known, detailed description is abbreviate | omitted.
第3FET回路21では、入力端子11にダイオード21cのアノードが接続され、ダイオード21cのカソードにエンハンスメント型FET21aのドレインD3が接続され、エンハンスメント型FET21aのソースS3が出力端子12に接続されている。エンハンスメント型FET21aのゲートG3は、ダイオード21dと抵抗21bとの直列接続回路を介して入力端子11に接続されていると共に、昇圧回路3の出力端に接続されている。
In the third FET circuit 21, the anode of the diode 21c is connected to the input terminal 11, the drain D3 of the enhancement type FET 21a is connected to the cathode of the diode 21c, and the source S3 of the enhancement type FET 21a is connected to the output terminal 12. A gate G3 of the enhancement type FET 21a is connected to the input terminal 11 through a series connection circuit of a diode 21d and a resistor 21b, and is connected to the output terminal of the booster circuit 3.
ダイオード21c及びダイオード21dは、逆接続防止用のダイオードである。これらのダイオードは、バッテリ51の電源出力の端子及びグランドの端子が、電源供給装置200の入力端子11及びグランドの端子に、逆に接続された場合に、電源供給装置200及び負荷回路52が破壊されないように挿入されている。尚、入力端子11にバッテリ51からの電圧が供給された時、ダイオード21c及びダイオード21dの各アノード・カソード間には、約1Vの電圧降下が発生する。
The diode 21c and the diode 21d are diodes for preventing reverse connection. These diodes break down the power supply device 200 and the load circuit 52 when the power output terminal and the ground terminal of the battery 51 are connected to the input terminal 11 and the ground terminal of the power supply device 200 in reverse. Has been inserted so as not to. When the voltage from the battery 51 is supplied to the input terminal 11, a voltage drop of about 1 V occurs between the anode and cathode of the diode 21c and the diode 21d.
昇圧回路3から出力された電圧は、FET21aのゲートG3に印加される。また、昇圧回路3は、制御回路4に接続されており、制御回路4からの第1制御信号SG1によって制御される。昇圧回路3は、負荷回路52への駆動電源供給開始時より前には、第1制御信号SG1として、スタンバイ信号SG1offが制御回路4から入力されており、回路の動作を停止している。また、昇圧回路3は、昇圧回路3に供給される電源電圧が7V以上で、かつ、制御回路4からのスタンバイ解除信号SG1onが入力された後に昇圧動作を行なうように設定されている。
The voltage output from the booster circuit 3 is applied to the gate G3 of the FET 21a. The booster circuit 3 is connected to the control circuit 4 and is controlled by the first control signal SG1 from the control circuit 4. Prior to the start of the supply of drive power to the load circuit 52, the booster circuit 3 receives the standby signal SG1off from the control circuit 4 as the first control signal SG1, and stops the operation of the circuit. The booster circuit 3 is set to perform a boost operation after the power supply voltage supplied to the booster circuit 3 is 7 V or more and the standby release signal SG1on from the control circuit 4 is input.
第4FET回路22は、デプレッション型FET22aと、抵抗22bと、ツェナーダイオード22cと、を有している。デプレッション型FET22aは、ドレインD4が、エンハンスメント型FET21aのドレインD3に接続され、ソースS4がエンハンスメント型FET21aのソースS3に接続されている。
The fourth FET circuit 22 has a depletion type FET 22a, a resistor 22b, and a Zener diode 22c. The depletion type FET 22a has a drain D4 connected to the drain D3 of the enhancement type FET 21a and a source S4 connected to the source S3 of the enhancement type FET 21a.
一般的に、デプレッション型FETは、ソースの電圧に対してゲートの電圧が低い時でもオンする動作領域を有している。例えば、ゲートの電圧がソースの電圧に対して2V程度低くてもオンする。そのため、デプレッション型FETをオフとするには、ソースの電圧に対してゲートの電圧を所定電圧(約3V)以上低くなるように設定すればオフとすることができる。例えば、デプレッション型FETのソースの電圧が所定電圧(約3V)以上である時、ゲートの電圧を0Vとすることでオフとすることができる。
In general, a depletion type FET has an operation region that is turned on even when the gate voltage is lower than the source voltage. For example, it is turned on even if the gate voltage is about 2 V lower than the source voltage. Therefore, the depletion type FET can be turned off by setting the gate voltage to be lower than the source voltage by a predetermined voltage (about 3 V) or more. For example, when the source voltage of the depletion type FET is equal to or higher than a predetermined voltage (about 3 V), the gate voltage can be set to 0 V to turn it off.
また、一般的に、デプレッション型FETには、エンハンスメント型FETのような数A以上の大電流を流すことができる素子が少なく、1A程度の電流しか流せない。従って、デプレッション型FETを介して大電流を流すような使用方法が用いられることは少ない。また、そのようなデプレッション型FETは、存在しても非常に高価である可能性が高く、一般的に用いられない。
In general, a depletion type FET has few elements capable of flowing a large current of several A or more like an enhancement type FET, and can only supply a current of about 1 A. Therefore, a method of using a large current through the depletion type FET is rarely used. Further, such a depletion type FET is likely to be very expensive even if it exists, and is not generally used.
本発明の第2実施形態の第4FET回路22には、デプレッション型FET22aとして、デプレッション型MOS・FET(Metal Oxide Semiconductor・Field Effect Transistor)が使用される。デプレッション型MOS・FETは、ソースに対するゲートの電圧として、負の電圧から正の電圧まで使用することができるため、使い勝手が良いという特徴がある。
In the fourth FET circuit 22 of the second embodiment of the present invention, a depletion type MOS • FET (Metal • Oxide • Semiconductor • Field • Effect • Transistor) is used as the depletion type FET 22a. The depletion type MOS • FET can be used from a negative voltage to a positive voltage as a gate voltage with respect to the source, and is therefore easy to use.
抵抗22bは、デプレッション型FET22aのドレインD4とゲートG4との間に接続されている。また、ツェナーダイオード22cは、デプレッション型FET22aのゲートG4とグランドとの間に接続されている。ツェナーダイオード22cは、ある閾値(ツェナー電圧)以上の高い電圧が外部からゲートG4に印加されても、デプレッション型FET22aのゲートG4に閾値以上の電圧が掛からないように、そのツェナー電圧値が設定されている。尚、本発明の第2実施形態の電源供給装置200では、ツェナー電圧値は、17.5Vに設定されている。
The resistor 22b is connected between the drain D4 and the gate G4 of the depletion type FET 22a. The zener diode 22c is connected between the gate G4 of the depletion type FET 22a and the ground. The Zener diode 22c has a Zener voltage value set so that a voltage higher than the threshold is not applied to the gate G4 of the depletion type FET 22a even when a high voltage higher than a certain threshold (Zener voltage) is externally applied to the gate G4. ing. In the power supply device 200 according to the second embodiment of the present invention, the Zener voltage value is set to 17.5V.
デプレッション型FET22aのゲートG4には、制御回路4の出力端が接続されている。制御回路4からは、デプレッション型FET22aをオフさせるための第2制御信号SG2が出力されるように構成されている。例えば、制御回路4から第2制御信号SG2として、0Vをデプレッション型FET22aのゲートG2に印加すると、デプレッション型FET22aはオフとなる。
The output terminal of the control circuit 4 is connected to the gate G4 of the depletion type FET 22a. The control circuit 4 is configured to output a second control signal SG2 for turning off the depletion type FET 22a. For example, when 0V is applied to the gate G2 of the depletion type FET 22a as the second control signal SG2 from the control circuit 4, the depletion type FET 22a is turned off.
また、逆に制御回路4から第2制御信号SG2が出力されず、開放状態とすれば、制御回路4とデプレッション型FET2aのゲートG2とは切り離される。抵抗22bが、デプレッション型FET22aのドレインD4とゲートG4との間に接続されているので、ゲートG4にはドレインD4と同じ電圧が印加され、デプレッション型FET2aはオンとなる。
Conversely, if the second control signal SG2 is not output from the control circuit 4 and is opened, the control circuit 4 and the gate G2 of the depletion type FET 2a are disconnected. Since the resistor 22b is connected between the drain D4 and the gate G4 of the depletion type FET 22a, the same voltage as the drain D4 is applied to the gate G4, and the depletion type FET 2a is turned on.
次に、本発明の第2実施形態に係る電源供給装置200の動作について、図2、図3及び図4を用いて説明する。
Next, the operation of the power supply apparatus 200 according to the second embodiment of the present invention will be described with reference to FIGS.
図2に示す電源供給装置200の、バッテリ51の電圧が通常状態(約12V)である時の、負荷回路52への電源供給が開始される前から電源が供給されるまでの動作について、図3(a)、図3(b)を用いて説明する。また、バッテリ51の電圧が低下した場合の電源供給装置200の動作について、図4(a)、図4(b)を用いて説明する。尚、要求される出力電圧(Vout)としては、7V以上13V未満を想定している。
The operation of the power supply apparatus 200 shown in FIG. 2 from when the power supply to the load circuit 52 is started until the power is supplied when the voltage of the battery 51 is in a normal state (about 12 V) is shown in FIG. This will be described with reference to 3 (a) and FIG. 3 (b). The operation of the power supply device 200 when the voltage of the battery 51 is lowered will be described with reference to FIGS. 4 (a) and 4 (b). The required output voltage (Vout) is assumed to be 7V or more and less than 13V.
負荷回路52への電源供給開始時より前の状態では、図3(a)に示すように、エンハンスメント型FET21aにはダイオード21cを介して電圧Vinが供給されている。ダイオード21cの両端間には約1Vの電圧降下があるため、エンハンスメント型FET21aのドレインD3には電圧11Vが掛かっているが、制御回路4から昇圧回路3にはスタンバイ信号SG1offが入力されている。そのため、エンハンスメント型FET21aのゲートG3には昇圧回路3から電圧が印加されず、エンハンスメント型FET21aはオフとなっている。
In the state before the start of power supply to the load circuit 52, as shown in FIG. 3A, the enhancement type FET 21a is supplied with the voltage Vin via the diode 21c. Since there is a voltage drop of about 1V between both ends of the diode 21c, the voltage 11V is applied to the drain D3 of the enhancement type FET 21a, but the standby signal SG1off is input from the control circuit 4 to the booster circuit 3. Therefore, no voltage is applied from the booster circuit 3 to the gate G3 of the enhancement type FET 21a, and the enhancement type FET 21a is turned off.
この時、デプレッション型FET22aのドレインD4にはダイオード21cを介して、そして、ゲートG4にはダイオード21d及び抵抗22bを介して電源が供給されている。また、制御回路4からはデプレッション型FET22aをオフさせるための信号が出力されておらず、デプレッション型FET22aのゲートG4と切り離されている。そのため、デプレッション型FET22aのゲートG4の電圧は、デプレッション型FET22aのドレインD4の電圧と同一であるため、デプレッション型FET22aはオンとなっている。
At this time, power is supplied to the drain D4 of the depletion type FET 22a via the diode 21c, and to the gate G4 via the diode 21d and the resistor 22b. The control circuit 4 does not output a signal for turning off the depletion type FET 22a, and is disconnected from the gate G4 of the depletion type FET 22a. Therefore, since the voltage of the gate G4 of the depletion type FET 22a is the same as the voltage of the drain D4 of the depletion type FET 22a, the depletion type FET 22a is on.
デプレッション型FET22aがオンとなっているため、デプレッション型FET22aのドレインD4とソースS4との間の電圧降下は、0.4Vとなっている。そのため、出力端子12には、出力電圧Voutとして、デプレッション型FET22aを介した電圧10.6Vが出力される。
Since the depletion type FET 22a is on, the voltage drop between the drain D4 and the source S4 of the depletion type FET 22a is 0.4V. Therefore, the output terminal 12 outputs a voltage of 10.6 V via the depletion type FET 22a as the output voltage Vout.
負荷回路52への電源供給開始時より前の状態では、前述したように制御回路4から昇圧回路3及び負荷回路52にスタンバイ信号SG1offが入力されている。そのため、エンハンスメント型FET21aのゲートG3にはエンハンスメント型FET21aをオンするための適正な電圧が印加されていない。従って、エンハンスメント型FET21aは、まだオフである。
In the state before the start of power supply to the load circuit 52, the standby signal SG1off is input from the control circuit 4 to the booster circuit 3 and the load circuit 52 as described above. Therefore, an appropriate voltage for turning on the enhancement type FET 21a is not applied to the gate G3 of the enhancement type FET 21a. Therefore, the enhancement type FET 21a is still off.
次に、負荷回路52への電源供給を開始するため、制御回路4から昇圧回路3及び負荷回路52にスタンバイ解除信号SG1onが入力される。制御回路4から昇圧回路3及び負荷回路52にスタンバイ解除信号SG1onが入力された後の状態を図3(b)に示す。昇圧回路3からは、10.6Vの倍の電圧である21.2Vが出力され、エンハンスメント型FET21aのゲートG3に印加される。21.2VがゲートG1に印加されれば、エンハンスメント型FET21aがオンし、出力端子12には、エンハンスメント型FET21aを介して電圧が出力される。尚、エンハンスメント型FET21aがオンした後では、その電圧降下が0.4Vであるため、出力端子12には、10.6Vが出力される。
Next, in order to start power supply to the load circuit 52, the standby release signal SG1on is input from the control circuit 4 to the booster circuit 3 and the load circuit 52. FIG. 3B shows a state after the standby release signal SG1on is input from the control circuit 4 to the booster circuit 3 and the load circuit 52. The booster circuit 3 outputs 21.2V, which is twice the voltage of 10.6V, and is applied to the gate G3 of the enhancement type FET 21a. When 21.2 V is applied to the gate G1, the enhancement type FET 21a is turned on, and a voltage is output to the output terminal 12 via the enhancement type FET 21a. Since the voltage drop is 0.4V after the enhancement type FET 21a is turned on, 10.6V is output to the output terminal 12.
デプレッション型FET22aは、昇圧回路3を起動させることが終了したら、その後オフとしておく。尚、デプレッション型FET2aは数Aの大電流を流すことができないが、昇圧回路3に必要な電流を流すことは可能であるため、昇圧回路3を立ち上げるために使用することには問題はない。
The depletion type FET 22a is turned off after the booster circuit 3 has been started. Although the depletion type FET 2a cannot flow a large current of several A, it can flow a necessary current to the booster circuit 3. Therefore, there is no problem in using it for starting up the booster circuit 3. .
デプレッション型FET22aをオフとするには、デプレッション型FET22aのゲートG4に第2制御信号SG2を印加する。具体的には、制御回路4から、0Vをデプレッション型FET2aのゲートG2に印加する。このため、デプレッション型FET2aのゲートG2には、ソースS2に対して10.6V低い電圧が印加されることになる。よって、デプレッション型FET2aはオフとなる。
To turn off the depletion type FET 22a, the second control signal SG2 is applied to the gate G4 of the depletion type FET 22a. Specifically, 0 V is applied from the control circuit 4 to the gate G2 of the depletion type FET 2a. For this reason, a voltage 10.6V lower than the source S2 is applied to the gate G2 of the depletion type FET 2a. Therefore, the depletion type FET 2a is turned off.
次に、入力端子11における電圧Vin即ちバッテリ51からの電圧が、低温等の理由によって、通常の電圧12Vより低い電圧、例として9Vまで下がった場合の電源供給装置200の動作を説明する。
Next, the operation of the power supply device 200 when the voltage Vin at the input terminal 11, that is, the voltage from the battery 51 is lowered to a voltage lower than the normal voltage 12 V, for example, 9 V, for example, due to low temperature or the like will be described.
図4(a)、(b)は、図2に示す電源供給装置200において、入力端子11における電圧が9Vまで下がった時の、負荷回路52を駆動するための電源供給開始時前後の状態を示している。
4A and 4B show the states before and after the start of power supply for driving the load circuit 52 when the voltage at the input terminal 11 is lowered to 9 V in the power supply apparatus 200 shown in FIG. Show.
負荷回路52への電源供給開始時より前の状態では、図4(a)に示すように、エンハンスメント型FET21aにはダイオード21cを介して電圧Vinが供給されている。ダイオード21cの両端間には約1Vの電圧降下があるため、エンハンスメント型FET21aのドレインD3には電圧8Vが掛かっている。しかし、制御回路4から昇圧回路3及び負荷回路52にはスタンバイ信号SG1offが入力されているため、エンハンスメント型FET21aのゲートG3には昇圧回路3から電圧が印加されず、エンハンスメント型FET21aはオフとなっている。
In a state before the start of power supply to the load circuit 52, as shown in FIG. 4A, the enhancement type FET 21a is supplied with the voltage Vin via the diode 21c. Since there is a voltage drop of about 1V across the diode 21c, a voltage of 8V is applied to the drain D3 of the enhancement type FET 21a. However, since the standby signal SG1off is input from the control circuit 4 to the booster circuit 3 and the load circuit 52, no voltage is applied from the booster circuit 3 to the gate G3 of the enhancement type FET 21a, and the enhancement type FET 21a is turned off. ing.
この時、デプレッション型FET22aのドレインD4には、ダイオード21cを介して電圧が供給され、ゲートG4には、ダイオード21c及び抵抗22bを介して電圧が供給されている。従って、デプレッション型FET22aのドレインD4とゲートG4には、エンハンスメント型FET21aと同様に、電圧8Vが掛かっている。また、制御回路4からはデプレッション型FET22aをオフさせるための信号が出力されておらず、デプレッション型FET22aのゲートG4と切り離されている。そのため、デプレッション型FET22aのゲートG4の電圧は、デプレッション型FET22aのドレインD4の電圧と同一であるため、デプレッション型FET22aはオンとなっている。
At this time, a voltage is supplied to the drain D4 of the depletion type FET 22a through the diode 21c, and a voltage is supplied to the gate G4 through the diode 21c and the resistor 22b. Accordingly, the voltage 8V is applied to the drain D4 and the gate G4 of the depletion type FET 22a, similarly to the enhancement type FET 21a. The control circuit 4 does not output a signal for turning off the depletion type FET 22a, and is disconnected from the gate G4 of the depletion type FET 22a. Therefore, since the voltage of the gate G4 of the depletion type FET 22a is the same as the voltage of the drain D4 of the depletion type FET 22a, the depletion type FET 22a is on.
デプレッション型FET22aがオンとなっているため、デプレッション型FET22aのドレインD4とソースS4との間の電圧降下は、0.4Vとなっている。そのため、出力端子12には出力電圧Voutとして、デプレッション型FET22aを介した電圧7.6Vが出力される。
Since the depletion type FET 22a is on, the voltage drop between the drain D4 and the source S4 of the depletion type FET 22a is 0.4V. Therefore, the output terminal 12 outputs a voltage 7.6 V via the depletion type FET 22a as the output voltage Vout.
負荷回路52への電源供給開始時より前の状態では、制御回路4から昇圧回路3及び負荷回路52にスタンバイ信号SG1offが入力されている。そのため、エンハンスメント型FET21aのゲートにエンハンスメント型FET21aをオンするための適正な電圧が印加されていない。従って、エンハンスメント型FET21aは、まだオフである。
In a state before the start of power supply to the load circuit 52, the standby signal SG1off is input from the control circuit 4 to the booster circuit 3 and the load circuit 52. Therefore, an appropriate voltage for turning on the enhancement type FET 21a is not applied to the gate of the enhancement type FET 21a. Therefore, the enhancement type FET 21a is still off.
次に、負荷回路52への電源供給を開始するため、制御回路4から昇圧回路3及び負荷回路52にスタンバイ解除信号SG1onが入力される。制御回路4から昇圧回路3及び負荷回路52にスタンバイ解除信号SG1onが入力された後の状態を図4(b)に示す。昇圧回路3からは、7.6Vの倍の電圧である15.2Vが出力され、エンハンスメント型FET21aのゲートG3に印加される。15.2VがゲートG3に印加されれば、エンハンスメント型FET21aがオンし、出力端子12には、エンハンスメント型FET21aを介して電圧が出力される。尚、エンハンスメント型FET21aがオンした後では、その電圧降下が0.4Vであるため、出力端子12には、7.6Vが出力される。
Next, in order to start power supply to the load circuit 52, the standby release signal SG1on is input from the control circuit 4 to the booster circuit 3 and the load circuit 52. FIG. 4B shows a state after the standby release signal SG1on is input from the control circuit 4 to the booster circuit 3 and the load circuit 52. The booster circuit 3 outputs 15.2V, which is twice the voltage of 7.6V, and is applied to the gate G3 of the enhancement type FET 21a. When 15.2 V is applied to the gate G3, the enhancement type FET 21a is turned on, and a voltage is output to the output terminal 12 via the enhancement type FET 21a. Note that, after the enhancement type FET 21a is turned on, the voltage drop is 0.4V, so 7.6V is output to the output terminal 12.
エンハンスメント型FET21aがオンした後に、デプレッション型FET22aをオフとする動作については、入力端子11における電圧が12Vの時と同様であるため、説明を省略する。
Since the operation to turn off the depletion type FET 22a after the enhancement type FET 21a is turned on is the same as when the voltage at the input terminal 11 is 12V, the description is omitted.
このように、本発明の電源供給装置200は、バッテリ51からの電圧が、9Vまで低下した場合においても、出力端子12における出力電圧Voutは、昇圧回路3が動作可能な電圧である7.6Vとすることができる。従って、バッテリ51からの電圧が、9Vまで低下した場合においても、バッテリ51のからの電圧が12Vの時と同様の動作を期待できる。尚、本発明の電源供給装置200では、例として、昇圧回路3が動作可能な電圧が7V以上であるとして話を進めてきた。しかし、昇圧回路3の動作電圧が、例えば、もっと低い電圧からであった場合、バッテリ51からの電圧についても、より低い電圧に対応できることは勿論である。
As described above, in the power supply device 200 of the present invention, even when the voltage from the battery 51 is reduced to 9V, the output voltage Vout at the output terminal 12 is 7.6V, which is the voltage at which the booster circuit 3 can operate. It can be. Therefore, even when the voltage from the battery 51 drops to 9V, the same operation as when the voltage from the battery 51 is 12V can be expected. In the power supply device 200 of the present invention, as an example, the discussion has been made assuming that the voltage at which the booster circuit 3 can operate is 7 V or more. However, when the operating voltage of the booster circuit 3 is from a lower voltage, for example, the voltage from the battery 51 can of course correspond to a lower voltage.
このように、本発明の第2実施形態の電源供給装置200は、バッテリ51からの電圧が低下した場合においても、負荷回路52への電源を、安定して供給することができる。
As described above, the power supply apparatus 200 according to the second embodiment of the present invention can stably supply power to the load circuit 52 even when the voltage from the battery 51 decreases.
これまで、バッテリ51のからの電圧が通常時に12Vの場合、及び9Vまで低下した場合についての説明をした。しかし、バッテリ51のからの電圧は、通常時においても、12Vを超えて、約16Vまで上昇する可能性がある。例えば、エンジンを始動した時には、バッテリには充電が行なわれるため、その出力電圧が上昇する。また、最近のハイブリッドカー等の車両では、減速時にも充電が行なわれ、バッテリの出力電圧が上昇する。
So far, the case where the voltage from the battery 51 is normally 12V and the case where the voltage is lowered to 9V has been described. However, the voltage from the battery 51 may rise over 12V to about 16V even in normal times. For example, when the engine is started, since the battery is charged, its output voltage rises. In recent vehicles such as hybrid cars, charging is performed even during deceleration, and the output voltage of the battery increases.
本発明の第1実施形態及び2の電源供給装置100及び200においても、バッテリの出力電圧が上昇した場合、出力端子12には、規定の13Vを超える可能性がある。しかし、電源供給装置200に設けたような保護回路31によって、所定の出力電圧以上の電圧が負荷回路52に供給されないようにすることができる。保護回路31では、トランジスタ(図示せず)と、ツェナーダイオード(図示せず)で構成されており、ツェナーダイオードのツェナー電圧を適切な値に設定することで、出力端子12における出力電圧が、規定の電圧値(13V)を超えないように構成されている。
Also in the power supply devices 100 and 200 of the first embodiment and the second embodiment of the present invention, when the output voltage of the battery rises, the output terminal 12 may exceed the specified 13V. However, the protection circuit 31 provided in the power supply device 200 can prevent a voltage higher than a predetermined output voltage from being supplied to the load circuit 52. The protection circuit 31 includes a transistor (not shown) and a Zener diode (not shown). By setting the Zener voltage of the Zener diode to an appropriate value, the output voltage at the output terminal 12 is regulated. The voltage value (13V) is not exceeded.
このように、保護回路31を設けることにより、負荷回路52へ、所定電圧を超えるような過大な電圧が供給されることを防止することができる。
Thus, by providing the protection circuit 31, it is possible to prevent an excessive voltage exceeding a predetermined voltage from being supplied to the load circuit 52.
これまで説明してきた本発明の電源供給装置200は、バッテリ51が車両に搭載されていることを前提として説明している。そのため、このように構成された電源供給装置200は、低温時においても車両内の電子機器を支障なく動作させることができる。しかし、本発明の電源供給装置200は、車両に搭載されたバッテリに留まらず、車両以外の種々の機器に搭載されているバッテリにも適用できることは言うまでもない。
The power supply device 200 of the present invention described so far has been described on the assumption that the battery 51 is mounted on the vehicle. Therefore, the power supply device 200 configured in this way can operate the electronic devices in the vehicle without any trouble even at low temperatures. However, it goes without saying that the power supply device 200 of the present invention is not limited to a battery mounted on a vehicle, but can be applied to a battery mounted on various devices other than the vehicle.
以上説明したように、本発明の第1実施形態の電源供給装置100、又は第2実施形態の電源供給装置200は、バッテリ51から出力される電圧が低下した場合においても、昇圧回路3へ供給する電圧を十分高い電圧にすることができる。そのため、バッテリ51から出力される電圧が低下した場合においても、負荷回路52を駆動するための電源を安定して供給することができる。
As described above, the power supply device 100 according to the first embodiment of the present invention or the power supply device 200 according to the second embodiment supplies the booster circuit 3 even when the voltage output from the battery 51 decreases. To a sufficiently high voltage. Therefore, even when the voltage output from the battery 51 is reduced, the power for driving the load circuit 52 can be stably supplied.
1 第1FET回路
1a エンハンスメント型FET
1b 抵抗
2 第2FET回路
2a デプレッション型FET
2b 抵抗
3 昇圧回路
4 制御回路
11 入力端子
12 出力端子
21 第3FET回路
21a エンハンスメント型FET
21b 抵抗
21c ダイオード 21d ダイオード
22 第4FET回路
22a デプレッション型FET
22b 抵抗
22c ツェナーダイオード
31 保護回路
51 バッテリ
52 負荷回路
200 電源供給装置 11st FET circuit 1a Enhancement type FET
1b resistor 2 second FET circuit 2a depletion type FET
2b Resistance 3 Booster circuit 4 Control circuit 11 Input terminal 12 Output terminal 21 Third FET circuit 21a Enhancement type FET
21b resistor 21c diode 21d diode 22 4th FET circuit 22a depletion type FET
22b Resistor 22c Zener diode 31 Protection circuit 51 Battery 52 Load circuit 200 Power supply device
1a エンハンスメント型FET
1b 抵抗
2 第2FET回路
2a デプレッション型FET
2b 抵抗
3 昇圧回路
4 制御回路
11 入力端子
12 出力端子
21 第3FET回路
21a エンハンスメント型FET
21b 抵抗
21c ダイオード 21d ダイオード
22 第4FET回路
22a デプレッション型FET
22b 抵抗
22c ツェナーダイオード
31 保護回路
51 バッテリ
52 負荷回路
200 電源供給装置 1
Claims (6)
- バッテリから電源が供給される入力端子と、負荷回路が接続される出力端子と、前記入力端子にドレインが接続され、前記出力端子にソースが接続された第1FETと、前記出力端子に接続され、前記出力端子からの出力電圧を昇圧する昇圧回路と、前記昇圧回路及び前記負荷回路に接続された制御回路と、を備え、
前記第1FETは、前記第1FETのドレインとゲートに同一電圧が供給されている状態ではオフとなっている素子であり、前記昇圧回路によって昇圧された電圧を前記第1FETのゲートに印加して前記第1FETをオンさせることによって前記負荷回路に電源を供給する電源供給装置であって、
前記制御回路により制御可能とされる第2FETを設け、前記第2FETのドレインを前記第1FETのドレインに接続すると共に、前記第2FETのソースを前記第1FETのソースに接続し、
前記第2FETは、前記第2FETのドレインとゲートに同一電圧が供給されている状態ではオンとしておくことが可能な素子であり、
前記負荷回路への電源供給開始時より前に、前記第2FETをオンとしておくと共に、前記電源供給開始時に、前記第2FETを介して前記昇圧回路に電圧を供給するようにしたことを特徴とする電源供給装置。 An input terminal to which power is supplied from a battery, an output terminal to which a load circuit is connected, a drain connected to the input terminal, a first FET having a source connected to the output terminal, and a connection to the output terminal, A booster circuit for boosting an output voltage from the output terminal, and a control circuit connected to the booster circuit and the load circuit,
The first FET is an element that is turned off when the same voltage is supplied to the drain and the gate of the first FET, and the voltage boosted by the booster circuit is applied to the gate of the first FET. A power supply device that supplies power to the load circuit by turning on a first FET,
Providing a second FET that can be controlled by the control circuit, connecting the drain of the second FET to the drain of the first FET, and connecting the source of the second FET to the source of the first FET;
The second FET is an element that can be turned on when the same voltage is supplied to the drain and gate of the second FET,
The second FET is turned on before the start of power supply to the load circuit, and the voltage is supplied to the booster circuit via the second FET at the start of power supply. Power supply device. - 前記負荷回路への電源供給開始時より前に、前記第1FET及び前記第2FETに前記バッテリから電圧が供給されていて、
前記負荷回路への電源供給開始時に、前記制御回路からの第1制御信号によって前記昇圧回路を動作させて前記第1FETをオンすると共に、前記負荷回路を動作可能としたことを特徴とする請求項1記載の電源供給装置。 Before the start of power supply to the load circuit, the voltage is supplied from the battery to the first FET and the second FET,
2. The power supply circuit to the load circuit, wherein the boost circuit is operated by a first control signal from the control circuit to turn on the first FET, and the load circuit is operable. The power supply device according to 1. - 前記第1FETがオンした後に、前記制御回路からの第2制御信号によって前記第2FETをオフするようにしたことを特徴とする請求項1又は請求項2に記載の電源供給装置。 The power supply device according to claim 1 or 2, wherein the second FET is turned off by a second control signal from the control circuit after the first FET is turned on.
- 前記第1FETはエンハンスメント型FETであり、前記第2FETはデプレッション型FETであって、
前記エンハンスメント型FETのドレインとゲートが抵抗を介して接続されており、前記デプレッション型FETのドレインとゲートが抵抗を介して接続されていることを特徴とする請求項1乃至請求項3のいずれかに記載の電源供給装置。 The first FET is an enhancement type FET, and the second FET is a depletion type FET,
The drain and gate of the enhancement type FET are connected via a resistor, and the drain and gate of the depletion type FET are connected via a resistor. The power supply device described in 1. - 前記デプレッション型FETは、MOS・FETであることを特徴とする請求項4に記載の電源供給装置。 The power supply device according to claim 4, wherein the depletion type FET is a MOS-FET.
- 車両に搭載されたバッテリに接続されていることを特徴とする請求項1乃至請求項5のいずれかに記載の電源供給装置。 The power supply device according to any one of claims 1 to 5, wherein the power supply device is connected to a battery mounted on the vehicle.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-287165 | 2012-12-28 | ||
JP2012287165A JP2016033691A (en) | 2012-12-28 | 2012-12-28 | Power supply device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014104332A1 true WO2014104332A1 (en) | 2014-07-03 |
Family
ID=51021396
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/085190 WO2014104332A1 (en) | 2012-12-28 | 2013-12-27 | Power supply device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2016033691A (en) |
WO (1) | WO2014104332A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109286237A (en) * | 2018-11-12 | 2019-01-29 | 艾体威尔电子技术(北京)有限公司 | A kind of circuit for controlling the access of low-power consumption backup battery or being detached from |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003108243A (en) * | 2001-09-11 | 2003-04-11 | Semikron Elektron Gmbh | Circuit apparatus for voltage control |
JP2007082374A (en) * | 2005-09-16 | 2007-03-29 | Denso Corp | Protection circuit on reverse connection of power supply |
JP2009199435A (en) * | 2008-02-22 | 2009-09-03 | Nec Corp | Regulator circuit |
-
2012
- 2012-12-28 JP JP2012287165A patent/JP2016033691A/en active Pending
-
2013
- 2013-12-27 WO PCT/JP2013/085190 patent/WO2014104332A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003108243A (en) * | 2001-09-11 | 2003-04-11 | Semikron Elektron Gmbh | Circuit apparatus for voltage control |
JP2007082374A (en) * | 2005-09-16 | 2007-03-29 | Denso Corp | Protection circuit on reverse connection of power supply |
JP2009199435A (en) * | 2008-02-22 | 2009-09-03 | Nec Corp | Regulator circuit |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109286237A (en) * | 2018-11-12 | 2019-01-29 | 艾体威尔电子技术(北京)有限公司 | A kind of circuit for controlling the access of low-power consumption backup battery or being detached from |
CN109286237B (en) * | 2018-11-12 | 2024-03-22 | 艾体威尔电子技术(北京)有限公司 | Circuit for controlling low-power-consumption backup battery to be connected or disconnected |
Also Published As
Publication number | Publication date |
---|---|
JP2016033691A (en) | 2016-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4479797B2 (en) | Electronic control unit | |
US7560904B2 (en) | Method and system of managing power distribution in switch based circuits | |
US9214824B2 (en) | Charging control circuit | |
US9843184B2 (en) | Voltage conversion apparatus | |
CN102177644B (en) | Vehicular power unit | |
JP4855153B2 (en) | POWER SUPPLY DEVICE, REGULATOR CIRCUIT, CHARGE PUMP CIRCUIT AND ELECTRONIC DEVICE USING THEM | |
WO2017169395A1 (en) | Power supply system | |
WO2007010801A1 (en) | Step-up/down switching regulator, its control circuit, and electronic apparatus using same | |
JP2007267537A (en) | Semiconductor integrated circuit and electronic system | |
US11052771B2 (en) | Vehicle-mounted power supply device | |
US9762116B2 (en) | Voltage conversion apparatus | |
WO2020195257A1 (en) | In-vehicle power supply device | |
JP5309535B2 (en) | Electric power steering device | |
CN103226369A (en) | Power circuit | |
US10410815B2 (en) | Driver circuit for the operation of a relay | |
WO2015145733A1 (en) | Vehicle-mounted device | |
WO2013187269A1 (en) | Switching power source device | |
JP6112004B2 (en) | Auxiliary power supply | |
WO2014104332A1 (en) | Power supply device | |
WO2020008732A1 (en) | Boosting power supply circuit | |
JP6375977B2 (en) | Power supply | |
JP6031672B2 (en) | In-vehicle power supply device and in-vehicle power supply unit using the same | |
JP2015035937A (en) | Dc-dc converter | |
JP2013247823A (en) | Semiconductor device | |
JP2018074874A (en) | Electronic control device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13867494 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13867494 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |