[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014103897A1 - Method for producing alkali aluminosilicate glass - Google Patents

Method for producing alkali aluminosilicate glass Download PDF

Info

Publication number
WO2014103897A1
WO2014103897A1 PCT/JP2013/084160 JP2013084160W WO2014103897A1 WO 2014103897 A1 WO2014103897 A1 WO 2014103897A1 JP 2013084160 W JP2013084160 W JP 2013084160W WO 2014103897 A1 WO2014103897 A1 WO 2014103897A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
glass
silica sand
sio
aluminosilicate glass
Prior art date
Application number
PCT/JP2013/084160
Other languages
French (fr)
Japanese (ja)
Inventor
良太 安藤
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to CN201380068993.XA priority Critical patent/CN104884401A/en
Priority to KR1020157017115A priority patent/KR20150103007A/en
Priority to JP2014554395A priority patent/JPWO2014103897A1/en
Publication of WO2014103897A1 publication Critical patent/WO2014103897A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0018Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents

Definitions

  • the present invention relates to a method for producing alkali aluminosilicate glass.
  • glass used for a display of a liquid crystal display device requires strength, alkali aluminosilicate glass is used. Further, the glass is required to have high chemical resistance and durability, few bubbles in the glass, high homogeneity, and high flatness.
  • glass is manufactured by weighing and mixing predetermined raw materials including silica sand and putting them in a melting furnace.
  • the glass raw material charged in the melting furnace is heated from room temperature, heated to a maximum of about 1600 to 1700 ° C. in the melting furnace, melted, and vitrified.
  • the melting of the silica sand is delayed, the unmelted silica sand is trapped by the bubbles generated in the glass melt and gathers near the surface of the glass melt, whereby the surface of the glass melt and other parts A difference occurs in the composition ratio of the SiO 2 component in the glass, and the homogeneity of the glass decreases.
  • the melting point of quartz sand alone is as high as 1723 ° C., it is difficult to melt quartz sand alone by subsequent melting.
  • silica fine particles may aggregate to form coarse secondary particles, and the glass raw material may not be completely melted. If the silica fine particles agglomerate, the homogeneity of the molten glass is deteriorated, so that the homogeneity and flatness of the formed glass are lowered.
  • a glass raw material for granulating fine silica sand and fine alumina raw material For the purpose of improving the homogeneity of glass, a glass raw material for granulating fine silica sand and fine alumina raw material has been proposed.
  • the glass raw material for granulating fine silica sand and fine alumina raw material has a granulation step, and thus has a problem of cost.
  • the present invention provides a production method capable of obtaining an alkali aluminosilicate glass that is excellent in homogeneity with little generation of unmelted silica sand and fine bubbles in the glass without reducing the particle size of the silica sand. Objective.
  • the inventors of the present invention have made it possible to prevent unmelted silica sand of the glass raw material by reducing the ratio of the specific surface area of the aluminum compound-containing raw material contained in the glass raw material and the specific surface area of the silica sand, and to reduce the number of defects in the alkali aluminosilicate glass. As a result, the present invention was completed.
  • the present invention is as follows. 1. A method for producing an alkali aluminosilicate glass having an Al 2 O 3 content of more than 1 mol% by melting a glass raw material containing silica sand, an aluminum compound-containing raw material, and an alkali metal oxide-containing raw material. A method for producing an alkali aluminosilicate glass in which the ratio S W (Al) / S W (Si) of the specific surface area S W (Al) of the silica and the specific surface area S W (Si) of the silica sand is 6.0 or less. 2.
  • the ratio D 50 (Al) / D 90 (Si) of the volume-based integrated sieve 50% diameter D 50 (Al) of the aluminum compound-containing raw material to the volume-based integrated sieve 90% diameter D 90 (Si) of silica sand is A method for producing an alkali aluminosilicate glass that is greater than 0.15. 3.
  • the volume-based integrated sieve 90% diameter D 90 (Si) of silica sand is over 280 ⁇ m, and the volume-based integrated sieve 50% diameter D 50 (Al) and [D 90 (Si) -250 ⁇ m of the aluminum compound-containing material.
  • the ratio D 50 (Al) / [D 90 (Si) -250 ⁇ m] is a method for producing an alkali aluminosilicate glass having a ratio of 0.5 or more. 4).
  • the alkali aluminosilicate glass contains 50 to 80% of SiO 2 , Na 2 O, Li 2 O and K 2 O in total of 10% or more, and Al 2 O 3 of 5% or more in terms of mol% percentage. 5. Production of alkali aluminosilicate glass according to any one of items 1 to 4, wherein the total content of Na 2 O, Li 2 O and K 2 O) / (content of Al 2 O 3 ) ⁇ 2.5 Method.
  • the ratio of the specific surface area of the aluminum compound-containing raw material contained in the glass raw material and the specific surface area of the silica sand is a specific range, the specific surface area of the aluminum compound-containing raw material is increased, and By reducing the specific surface area of the silica sand, the eutectic reaction of SiO 2 and Na 2 O can be promoted.
  • FIG. 1 shows the phase diagram of SiO 2 , Na 2 O and Al 2 O 3 .
  • a portion surrounded by a circle is a portion where SiO 2 and Na 2 O are dissolved by a eutectic reaction.
  • 2A to 2C are schematic diagrams of an evaluation method for the amount of unmelted silica sand.
  • FIGS. 3A to 3D show the results of melting the glass raw material at an evaluation temperature of 1450 ° C. for 3 minutes, 5 minutes, 7.5 minutes, and 10 minutes.
  • 4 (a) and 4 (b) show the results of X-ray analysis of the glass raw material melted at 1450 ° C. for 5 minutes shown in FIG. 3 (b).
  • FIG. 5 shows the results of measuring the temperature of the glass material surface layer and the temperature inside the glass material.
  • FIG. 6 shows the result of analyzing the sensitivity (frequency) based on the particle size of SiO 2 contained in the glass raw material.
  • FIGS. 7 (a) to (c) show that the 50% diameter D 50 under the volume-based integrated sieve of Al 2 O 3 in the glass raw material is 82 ⁇ m, and the volume-based integrated sieve under the volumetric SiO 2 in the glass raw material is 90%.
  • the diameter D 90 96 .mu.m, each glass material to 324 ⁇ m or 354 ⁇ m, and dissolved for 10 minutes at rated temperature 1450 ° C. shows the results of measuring the unmelted SiO 2 amount.
  • FIG. 7 (a) to (c) show that the 50% diameter D 50 under the volume-based integrated sieve of Al 2 O 3 in the glass raw material is 82 ⁇ m, and the volume-based integrated sieve under the volumetric SiO 2 in the glass raw material is 90%.
  • FIG. 8 shows that the volume-based integrated sieve 50% diameter D 50 of Al 2 O 3 in the glass raw material is 82 ⁇ m, and the volume-based integrated sieve 90% diameter D 90 of SiO 2 in the glass raw material is 38 ⁇ m and 96 ⁇ m. , 284 ⁇ m, each glass material to 324 ⁇ m or 354 ⁇ m, and dissolved for 10 minutes at rated temperature 1450 ° C., shows the results of measuring the unmelted SiO 2 amount.
  • FIG. 9 shows the result of analyzing the sensitivity (frequency) using the particle diameter of Al 2 O 3 contained in the glass raw material.
  • FIG. 10 (a) to 10 (d) show that the 90% diameter D 90 below the volume-based integrated sieve of SiO 2 in the glass material is 354 ⁇ m, and 50% under the volume-based integrated sieve of Al 2 O 3 in the glass material.
  • the diameter D 50 104 ⁇ m, 82 ⁇ m, 55 ⁇ m, each glass raw materials to 4 [mu] m, and dissolved for 10 minutes at rated temperature 1450 ° C. shows the results of measuring the unmelted SiO 2 amount.
  • FIG. 11 shows that the 90% diameter D 90 under the volume basis of SiO 2 in the glass raw material is 354 ⁇ m, and the 50% diameter D 50 under the volume basis of Al 2 O 3 in the glass raw material is 104 ⁇ m and 82 ⁇ m.
  • FIG. 12 shows that the 90% diameter D 90 under the volume basis of SiO 2 in the glass raw material is 354 ⁇ m, and the 50% diameter D 50 under the volume basis of Al 2 O 3 in the glass raw material is 104 ⁇ m and 82 ⁇ m. , 55 ⁇ m and 4 ⁇ m are melted at an evaluation temperature of 1450 ° C. for 10 minutes, and the results of XRD analysis are shown.
  • FIG. 12 shows that the 90% diameter D 90 under the volume basis of SiO 2 in the glass raw material is 354 ⁇ m, and the 50% diameter D 50 under the volume basis of Al 2 O 3 in the glass raw material is 104 ⁇ m and 82 ⁇ m. , 55 ⁇ m and 4 ⁇ m are melted at an evaluation temperature of 1450 ° C. for 10 minutes, and the results of XRD analysis are shown.
  • FIG. 12 shows that the 90% diameter D 90 under the volume basis of SiO 2 in the glass raw material is 354 ⁇ m, and the 50% diameter D 50 under the volume basis of Al 2 O
  • FIG. 13 is a graph in which S W (Al) / S W (Si) is plotted on the horizontal axis and the amount of unmelted SiO 2 (wt%) is plotted on the vertical axis.
  • FIG. 14 is a graph in which D 50 (Al) / D 90 (Si) is plotted on the horizontal axis and the amount of unmelted SiO 2 (wt%) is plotted on the vertical axis.
  • FIG. 15 is a graph in which S W (Al) / [D 90 (Si) ⁇ 250 ⁇ m] is plotted on the horizontal axis and the amount of unmelted SiO 2 (wt%) is plotted on the vertical axis.
  • an alkali aluminosilicate glass is formed by melting a silicon source, an aluminum compound-containing raw material, an alkali metal oxide-containing raw material such as soda ash serving as an alkali metal source, and a glass raw material containing a magnesium source.
  • a glass raw material is manufactured as follows.
  • a glass raw material is prepared by mixing raw materials so as to have a composition of a target alkali aluminosilicate glass including a silicon source, an aluminum compound-containing raw material, soda ash, and a magnesium source.
  • the glass raw material and, if necessary, cullet having the same composition as that of the target alkali aluminosilicate glass are continuously fed into the melting furnace from the glass raw material inlet of the melting furnace, and 1600-1700 Melt at 0 ° C. to obtain molten glass.
  • cullet is glass waste discharged
  • a glass plate is formed so that the molten glass has a predetermined thickness by a known forming method such as a float method, a downdraw method, a fusion method, or a roll-out method.
  • the formed glass plate is gradually cooled and then cut into a predetermined size to obtain a plate-like alkali aluminosilicate glass.
  • Silica sand is used as the silicon source.
  • Examples of the aluminum compound-containing raw material include alumina and aluminum hydroxide. Any soda ash may be used as long as it is used for glass production.
  • Examples of the magnesium source include magnesium hydroxide and magnesium oxide.
  • the ratio S W (Al) / S W (Si) between the specific surface area S W (Al) of the aluminum compound-containing raw material and the specific surface area S W (Si) of the silica sand is 6.0 or less and 4.0 or less. Is preferable, and it is more preferable that it is 2.5 or less. If the ratio S W (Al) / S W (Si) of the specific surface area S W (Al) of the aluminum compound-containing raw material and the specific surface area S W (Si) of the silica sand is exceeded, the dissolution rate of SiO 2 becomes slow and unmelted. Silica sand increases and defects in the glass tend to occur.
  • the ratio of the aluminum compound-containing starting material of D 50 (Al) and silica sand of D 90 (Si), D 50 (Al) / D 90 (Si) is 0.15 greater, preferably at least 0.20, More preferably, it is 0.24 or more.
  • D 90 (Si) of silica sand is over 280 ⁇ m, and the ratio of D 50 (Al) and [D 90 (Si) -250 ⁇ m] of the aluminum compound-containing raw material is D 50 (Al) / [D 90 (Si) -250 ⁇ m. ] Is 0.5 or more, preferably 0.7 or more, and more preferably 0.9 or more.
  • D 50 (Al) of the aluminum compound-containing raw material is 50 ⁇ m or more, and D 90 (Si) of the silica sand is 400 ⁇ m or less.
  • D 50 (Al) of the aluminum compound-containing raw material is preferably 80 ⁇ m or more, more preferably 90 ⁇ m or more, and preferably 100 ⁇ m or more.
  • silica sand of D 90 (Si) is less than 380 .mu.m, more preferably at most 360 .mu.m, also preferably at 250 ⁇ m or more, and more preferably at least 280 .mu.m.
  • D 50 (Al) of the aluminum compound-containing raw material is less than 50 ⁇ m, unmelted silica sand increases and defects are likely to occur in the glass, and if D 90 (Si) of the silica sand exceeds 400 ⁇ m, unmelted silica sand Will increase, and defects in glass are more likely to occur. Further, with the D 90 (Si) of 250 ⁇ m or more quartz sand, it is possible to reduce the unmelted silica sand, disadvantages is less likely to occur in the glass.
  • FIG. 1 shows a phase diagram of silica sand (SiO 2 ), soda ash (Na 2 O) and Al 2 O 3 contained in the high alumina raw material.
  • a reaction product obtained by reacting Na 2 O and Al 2 O 3 has a high melting point and does not dissolve at first unless the temperature is high.
  • Na 2 O and SiO 2 react with each other to form a low melting point reaction product, an effect is obtained that the dissolution rate of SiO 2 is accelerated by the reaction product, but Na 2 O is converted to Al 2 O 3.
  • the dissolution rate of SiO 2 becomes slow.
  • the temperature rising rate of the glass raw material is slow, the reaction of Na 2 O and Al 2 O 3 proceeds, and the dissolution rate of SiO 2 is thought to be slow.
  • the reaction of Na 2 O and Al 2 O 3 is suppressed by increasing the specific surface area of the aluminum compound-containing raw material and decreasing the specific surface area of the silica sand, and SiO 2 and Na
  • the eutectic reaction of 2 O can be promoted.
  • the “specific surface area” in the present specification refers to a specific surface area obtained by measuring the particle size by particle size measurement and then calculating by the following formula (1) assuming a sphere.
  • Specific surface area ⁇ [4 ⁇ R 2 ⁇ (number of particles having a radius of R per 1 g)] (1)
  • R represents a radius when assuming a sphere.
  • the number per 1 g of particles having a radius R is determined by the following equation (2).
  • Number of particles having a radius of R per 1 g 1 g ⁇ volume frequency ratio of particles having a radius of R determined by particle size measurement / [density ⁇ (4/3) ⁇ R 3 ] (2)
  • the “particle diameter” in this specification is a sphere equivalent diameter, and specifically measured by a dry laser diffraction / scattering particle diameter / particle size distribution measuring apparatus (manufactured by Nikkiso Co., Ltd., Microtrac MT3300). The particle size in the particle size distribution of the powder.
  • the particle size D 50 (median particle size) refers to the particle size when the cumulative frequency is 50% on a volume basis in the particle size distribution of the powder measured by the laser diffraction method / scattering method.
  • the particle size D 90 refers to the particle size when the cumulative frequency is 90% on a volume basis in the particle size distribution of the powder measured by the laser diffraction method / scattering method.
  • the glass obtained by the production method of the present invention is an alkali aluminosilicate glass.
  • a preferable composition of the alkali aluminosilicate glass will be described.
  • Alkaline aluminosilicate glass is SiO 2 50-50%, Al 2 O 3 0-10%, B 2 O 3 0-4%, MgO 5-30%, ZrO in terms of mole percentage on oxide basis.
  • at least 1 selected from 2 , P 2 O 5 , TiO 2 and La 2 O 3 is contained in a total of 0.5 to 10% and Na 2 O is contained in 1 to 17%.
  • the content of SiO 2 is preferably 50 to 80%, more preferably 55 to 75%, and still more preferably 58 to 70%.
  • the content of Al 2 O 3 is 1% or more, preferably 1 to 10%, more preferably 1 to 7%, still more preferably 2 to 5%. When the content of Al 2 O 3 is less than 1%, strength, chemical resistance and durability are deteriorated.
  • the content of B 2 O 3 is preferably 0 to 4%, preferably 0.3 to 3%, more preferably 0.5 to 2%.
  • the content of MgO is preferably 5 to 30%, more preferably 10 to 28%, and further preferably 15 to 25%.
  • the alkali aluminosilicate glass preferably contains at least one selected from ZrO 2 , P 2 O 5 , TiO 2 and La 2 O 3 .
  • the alkali aluminosilicate glass can be whitened.
  • the total amount is preferably 0.5 to 10%.
  • the content of ZrO 2 in the alkali aluminosilicate glass is preferably 0 to 5%, more preferably 0.5 to 3%.
  • the content of P 2 O 5 in the alkali aluminosilicate glass is preferably 0 to 10%, more preferably 0.5 to 7%, and further preferably 1 to 6%.
  • the content of TiO 2 in the alkali aluminosilicate glass is preferably 0 to 10%, more preferably 0.5 to 7%, and further preferably 1 to 6%.
  • the content of La 2 O 3 in the alkali aluminosilicate glass is preferably 0 to 2%, more preferably 0.2 to 1%.
  • the strength of the glass by the subsequent ion exchange treatment can be increased.
  • the content of Na 2 O in the alkali aluminosilicate glass is preferably 1 to 17%, more preferably 3 to 11%, still more preferably 4 to 14%.
  • a desired surface compressive stress layer can be easily formed by ion exchange. Further, it is possible to improve the weather resistance by a 17% or less of Na 2 O.
  • composition of the alkali aluminosilicate glass obtained by the production method of the present invention include the following.
  • the total content of SiO 2 and Al 2 O 3 is 75% or less, the total content of Na 2 O and K 2 O is 12 to 25%, and the total content of MgO and CaO is 7 to 15%.
  • composition which is displayed at a certain glass (iii) mol%, a SiO 2 68 ⁇ 80%, the Al 2 O 3 5 ⁇ 10% , The a 2 O 5 ⁇ 15%, glass K 2 O 0 to 1%, the MgO 4 ⁇ 15% and a ZrO 2 containing 0 to 1%
  • composition 1 In terms of mol%, SiO 2 68.0%, Al 2 O 3 10.0%, MgO 8.0%, Na 2 O 14.0%
  • Specific surface area ⁇ [4 ⁇ R 2 ⁇ (number of particles having a radius of R per 1 g)] (1)
  • R represents a radius when assuming a sphere.
  • Example 1 3 (a) to 3 (d) show the results of melting the glass raw material at an evaluation temperature of 1450 ° C. for 3, 5, 7.5, and 10 minutes.
  • 3A to 3D the value represented by “%” is the ratio (%) of SiO 2 when SiO 2 before heating is 100%.
  • FIG. 3 (a) it was found that the melting of the upper and lower heat transfer portions of the glass raw material crest was fast, but the melting of the central portion was slow. Further, as shown in FIG. 3 (b), the center portion of the glass raw materials, it was found that many SiO 2 remaining dissolved.
  • FIG. 4A and 4B show the results of X-ray analysis of the glass raw material melted at 1450 ° C. for 5 minutes shown in FIG. 3B.
  • “Qz” indicates the undissolved residue of SiO 2 .
  • FIG. 4B it was found that NaAlSiO 4 was generated in the central portion of the glass raw material, and the undissolved residue (Qz) of SiO 2 was large.
  • FIG. 6 shows the result of analyzing the sensitivity (frequency) using the particle diameter of SiO 2 contained in the glass raw material.
  • the particle diameter of SiO 2 is 90% diameter D 90 ( ⁇ m) under a volume-based integrated sieve.
  • Tables 1 and 2 show the particle size distribution of SiO 2 .
  • Each glass raw material in which D 50 of Al 2 O 3 in the glass raw material is 82 ⁇ m and D 90 of SiO 2 in the glass raw material is 38 ⁇ m, 96 ⁇ m, 284 ⁇ m, 324 ⁇ m or 354 ⁇ m is melted at an evaluation temperature of 1450 ° C. for 10 minutes. The amount of unmelted SiO 2 was measured. The results are shown in FIGS.
  • silica sand having a small particle size has a high pulverization cost and carries over becomes a problem, it is considered preferable to use silica sand having a D 90 of SiO 2 of 250 ⁇ m or more.
  • FIG. 9 shows the result of analyzing the sensitivity (frequency) using the particle diameter of Al 2 O 3 contained in the glass raw material.
  • the particle size of Al 2 O 3 is D 50 ( ⁇ m).
  • Tables 3 and 4 show the particle size distribution of Al 2 O 3 .
  • FIGS. 10 (a) to 10 (d) The results of measuring the amount of unmelted SiO 2 are shown in FIGS. 10 (a) to 10 (d) and FIG. Moreover, the result of the XRD analysis is shown in FIG. In FIG. 12, “Qz” refers to the undissolved residue of SiO 2 , and “Cri” refers to the high-temperature crystal phase of Qz.
  • D 50 (Al) is D 50 ( ⁇ m) of the alumina-containing material
  • D 90 (Si) is D 90 ( ⁇ m) of silica sand
  • Sw (Al) is the specific surface area (calculation) of alumina (cm 2 / g)
  • Sw (Si) are specific surface areas (calculations) of quartz sand (cm 2 / g).
  • FIG. 13 is a graph in which S W (Al) / S W (Si) is plotted on the horizontal axis and the amount of unmelted SiO 2 (wt%) is plotted on the vertical axis.
  • Table 5 and FIG. 13 it is a method for producing an alkali aluminosilicate glass having an Al 2 O 3 content of more than 1 mol%, comprising a specific surface area S W (Al) of an aluminum compound-containing raw material and silica sand.
  • the ratio S W (Al) / S W (Si) of the specific surface area S W (Si) can be reduced and the occurrence of defects can be effectively suppressed. all right.
  • FIG. 14 is a graph in which D 50 (Al) / D 90 (Si) is plotted on the horizontal axis and the amount of unmelted SiO 2 (wt%) is plotted on the vertical axis.
  • the ratio of the aluminum compound-containing starting material of D 50 (Al) and silica sand of D 90 (Si), D 50 (Al) / D 90 (Si) is 0.15 greater
  • the amount of unmelted SiO 2 can be reduced and the occurrence of defects can be effectively suppressed.
  • FIG. 15 is a graph in which Sw (Al) / [D 90 (Si) ⁇ 250 ⁇ m] is plotted on the horizontal axis and the amount of unmelted SiO 2 (wt%) is plotted on the vertical axis.
  • D 90 (Si) of the silica sand is over 280 ⁇ m
  • the ratio of D 50 (Al) of the aluminum compound-containing raw material to [D 90 (Si) ⁇ 250 ⁇ m] D 50 (Al ) / [D 90 (Si) -250 ⁇ m] is 0.5 or more, it was found that the amount of unmelted SiO 2 can be reduced and the occurrence of defects can be effectively suppressed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Glass Compositions (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

The present invention relates to a method for producing alkali aluminosilicate glass having an Al2O3 content of more than 1% by mole by melting a glass starting material that contains silica sand, an aluminum compound-containing starting material and an alkali metal oxide-containing starting material. In this method for producing alkali aluminosilicate glass, the ratio of the specific surface area of the aluminum compound-containing starting material (SW(Al)) to the specific surface area of the silica sand (SW(Si)), namely SW(Al)/SW(Si) is 6.0 or less.

Description

アルカリアルミノシリケートガラスの製造方法Method for producing alkali aluminosilicate glass
 本発明は、アルカリアルミノシリケートガラスの製造方法に関する。 The present invention relates to a method for producing alkali aluminosilicate glass.
 液晶表示装置のディスプレイ等に用いられるガラスには、強度が要求されるため、アルカリアルミノシリケートガラスが用いられている。また、該ガラスには、耐薬品性、耐久性が高いこと、ガラス中に泡が少ないこと、均質性が高く、平坦度が高いことが要求される。 Since glass used for a display of a liquid crystal display device requires strength, alkali aluminosilicate glass is used. Further, the glass is required to have high chemical resistance and durability, few bubbles in the glass, high homogeneity, and high flatness.
 通常、ガラスは珪砂を含む所定の原料を秤量、混合し、溶融窯に投入して製造される。溶融窯に投入されたガラス原料は室温から昇温され、溶融窯の中で最高1600~1700℃程度にまで加熱されて溶解し、ガラス化される。 Usually, glass is manufactured by weighing and mixing predetermined raw materials including silica sand and putting them in a melting furnace. The glass raw material charged in the melting furnace is heated from room temperature, heated to a maximum of about 1600 to 1700 ° C. in the melting furnace, melted, and vitrified.
 珪砂およびアルミニウム化合物含有原料を含むガラス原料を溶解すると珪砂の溶け残りが問題となりやすい。珪砂の溶解に必要なソーダと珪砂の反応がアルミナによって阻害されて最終的に珪砂が溶け残るためである。珪砂が溶け残ると泡となり、ガラスに欠点(例えば、未溶解物または不均質等)が生じる原因となる。 When glass raw materials including silica sand and aluminum compound-containing raw materials are melted, undissolved silica sand tends to be a problem. This is because the reaction between soda and silica sand required for dissolution of the silica sand is inhibited by alumina, and the silica sand finally remains undissolved. If the silica sand is left undissolved, bubbles are formed, causing defects (for example, undissolved material or inhomogeneity) in the glass.
 ガラス原料を溶融させるための溶融窯における溶融ガラスの循環・滞留時間が不安定になると、清澄剤によって溶融窯内の溶融ガラスから泡が抜ける前に、溶融ガラスの一部が溶融窯から流出してしまう場合もある。また、ガラスの溶融が不均一なため、遅れて溶融した珪砂に対する清澄剤の効果が不十分となり、溶融ガラスから泡が十分に抜けないという事態が起きる。 When the circulation and residence time of the molten glass in the melting furnace for melting the glass raw material becomes unstable, a part of the molten glass flows out of the melting furnace before bubbles are released from the molten glass in the melting furnace by the refining agent. There is also a case. Moreover, since the melting of the glass is not uniform, the effect of the fining agent on the quartz sand that has been melted with a delay is insufficient, and a situation in which bubbles do not sufficiently escape from the molten glass occurs.
 また、珪砂の溶融が遅れると、未融解状態の珪砂がガラス融液中に発生した泡に捕促されてガラス融液の表層近くに集まり、これによりガラス融液の表層とそれ以外の部分とにおけるSiO成分の組成比に差が生じ、ガラスの均質性が低下する。しかしながら、珪砂単独の融点は1723℃と高温であるため、その後の溶解で珪砂単独を溶かすのは困難である。 In addition, if the melting of the silica sand is delayed, the unmelted silica sand is trapped by the bubbles generated in the glass melt and gathers near the surface of the glass melt, whereby the surface of the glass melt and other parts A difference occurs in the composition ratio of the SiO 2 component in the glass, and the homogeneity of the glass decreases. However, since the melting point of quartz sand alone is as high as 1723 ° C., it is difficult to melt quartz sand alone by subsequent melting.
 珪砂の溶け残りを防ぐために、珪砂の粒度を細かくする必要があった。しかしながら、細かい珪砂は、キャリーオーバーと呼ばれるガラス原料の飛散が問題となるほか、粉砕工程が必要となるためコストがかさむ問題がある。 In order to prevent undissolved silica sand, it was necessary to make the silica sand finer. However, fine silica sand has a problem of scattering of the glass raw material called carry-over and a problem of increasing cost because a pulverization process is required.
 また、粒度の小さい珪砂を含むガラス原料を溶融させると、珪砂の微粒子同士が凝集して粗大な二次粒子を形成する場合があり、ガラス原料が完全に溶融しない場合があった。珪砂の微粒子の凝集が起きると、溶融ガラスの均質性が悪くなるため、成形されたガラスの均質性、平坦度が低くなる。 Further, when a glass raw material containing silica sand having a small particle size is melted, silica fine particles may aggregate to form coarse secondary particles, and the glass raw material may not be completely melted. If the silica fine particles agglomerate, the homogeneity of the molten glass is deteriorated, so that the homogeneity and flatness of the formed glass are lowered.
 ガラスの均質性を向上させることを目的に、微粒な珪砂と微粒なアルミナ原料を造粒するガラス原料が提案されている。しかし、微粒な珪砂と微粒なアルミナ原料を造粒するガラス原料は、造粒工程を有するためコストがかかる問題がある。 For the purpose of improving the homogeneity of glass, a glass raw material for granulating fine silica sand and fine alumina raw material has been proposed. However, the glass raw material for granulating fine silica sand and fine alumina raw material has a granulation step, and thus has a problem of cost.
 したがって、本発明は、珪砂の粒度を細かくすることなく、未融解珪砂の発生が少なく均質性に優れ、しかもガラス中に泡が少ないアルカリアルミノシリケートガラスを得ることのできる製造方法を提供することを目的とする。 Therefore, the present invention provides a production method capable of obtaining an alkali aluminosilicate glass that is excellent in homogeneity with little generation of unmelted silica sand and fine bubbles in the glass without reducing the particle size of the silica sand. Objective.
 本発明者らは、ガラス原料に含まれるアルミニウム化合物含有原料の比表面積と珪砂の比表面積の比を特定範囲とすることによりガラス原料の珪砂の溶け残りを防ぎ、欠点の少ないアルカリアルミノシリケートガラスが得られることを見出し、本発明を完成させた。 The inventors of the present invention have made it possible to prevent unmelted silica sand of the glass raw material by reducing the ratio of the specific surface area of the aluminum compound-containing raw material contained in the glass raw material and the specific surface area of the silica sand, and to reduce the number of defects in the alkali aluminosilicate glass. As a result, the present invention was completed.
 すなわち、本発明は以下の通りである。
 1.珪砂、アルミニウム化合物含有原料およびアルカリ金属酸化物含有原料を含むガラス原料を溶解し、Al含有量が1モル%超であるアルカリアルミノシリケートガラスを製造する方法であって、アルミニウム化合物含有原料の比表面積S(Al)と珪砂の比表面積S(Si)の比S(Al)/S(Si)が6.0以下であるアルカリアルミノシリケートガラスの製造方法。
 2.珪砂、アルミニウム化合物含有原料およびアルカリ金属酸化物含有原料を含むガラス原料を溶解し、Al含有量が1モル%超であるアルカリアルミノシリケートガラスを製造する方法であって、
 アルミニウム化合物含有原料の体積基準の積算ふるい下50%径D50(Al)と珪砂の体積基準の積算ふるい下90%径D90(Si)の比D50(Al)/D90(Si)が0.15超であるアルカリアルミノシリケートガラスの製造方法。
 3.珪砂、アルミニウム化合物含有原料およびアルカリ金属酸化物含有原料を含むガラス原料を溶解し、Al含有量が1モル%超であるアルカリアルミノシリケートガラスを製造する方法であって、
 珪砂の体積基準の積算ふるい下90%径D90(Si)が280μm超であり、アルミニウム化合物含有原料の体積基準の積算ふるい下50%径D50(Al)と[D90(Si)-250μm]の比D50(Al)/[D90(Si)-250μm]が0.5以上であるアルカリアルミノシリケートガラスの製造方法。
 4.珪砂、アルミニウム化合物含有原料およびアルカリ金属酸化物含有原料を含むガラス原料を溶解し、Al含有量が1モル%超であるアルカリアルミノシリケートガラスを製造する方法であって、
 アルミニウム化合物含有原料の体積基準の積算ふるい下50%径D50(Al)が50μm以上であり、珪砂の体積基準の積算ふるい下90%径D90(Si)が400μm以下であるアルカリアルミノシリケートガラスの製造方法。
 5.前記アルカリアルミノシリケートガラスが、モル%百分率表示で、SiOを50~80%、NaO、LiOおよびKOを合計で10%以上、Alを5%以上含み、(NaO、LiOおよびKOの合計含有量)/(Alの含有量)<2.5である前項1~4のいずれか1項に記載のアルカリアルミノシリケートガラスの製造方法。
That is, the present invention is as follows.
1. A method for producing an alkali aluminosilicate glass having an Al 2 O 3 content of more than 1 mol% by melting a glass raw material containing silica sand, an aluminum compound-containing raw material, and an alkali metal oxide-containing raw material. A method for producing an alkali aluminosilicate glass in which the ratio S W (Al) / S W (Si) of the specific surface area S W (Al) of the silica and the specific surface area S W (Si) of the silica sand is 6.0 or less.
2. A method for producing an alkali aluminosilicate glass having an Al 2 O 3 content of more than 1 mol% by melting a glass raw material containing silica sand, an aluminum compound-containing raw material and an alkali metal oxide-containing raw material,
The ratio D 50 (Al) / D 90 (Si) of the volume-based integrated sieve 50% diameter D 50 (Al) of the aluminum compound-containing raw material to the volume-based integrated sieve 90% diameter D 90 (Si) of silica sand is A method for producing an alkali aluminosilicate glass that is greater than 0.15.
3. A method for producing an alkali aluminosilicate glass having an Al 2 O 3 content of more than 1 mol% by melting a glass raw material containing silica sand, an aluminum compound-containing raw material and an alkali metal oxide-containing raw material,
The volume-based integrated sieve 90% diameter D 90 (Si) of silica sand is over 280 μm, and the volume-based integrated sieve 50% diameter D 50 (Al) and [D 90 (Si) -250 μm of the aluminum compound-containing material. ] The ratio D 50 (Al) / [D 90 (Si) -250 μm] is a method for producing an alkali aluminosilicate glass having a ratio of 0.5 or more.
4). A method for producing an alkali aluminosilicate glass having an Al 2 O 3 content of more than 1 mol% by melting a glass raw material containing silica sand, an aluminum compound-containing raw material and an alkali metal oxide-containing raw material,
Alkaline aluminosilicate glass having a volume-based cumulative sieve 50% diameter D 50 (Al) of 50 μm or more and a silica-based raw material 90% diameter D 90 (Si) of 400 μm or less of the volumetric basis of silica sand. Manufacturing method.
5. The alkali aluminosilicate glass contains 50 to 80% of SiO 2 , Na 2 O, Li 2 O and K 2 O in total of 10% or more, and Al 2 O 3 of 5% or more in terms of mol% percentage. 5. Production of alkali aluminosilicate glass according to any one of items 1 to 4, wherein the total content of Na 2 O, Li 2 O and K 2 O) / (content of Al 2 O 3 ) <2.5 Method.
 本発明のアルカリアルミノシリケートガラスの製造方法によれば、ガラス原料に含まれるアルミニウム化合物含有原料の比表面積と珪砂の比表面積の比を特定範囲とし、アルミニウム化合物含有原料の比表面積を大きくし、且つ珪砂の比表面積を小さくすることにより、SiOおよびNaOの共融反応を促進することができる。 According to the method for producing an alkali aluminosilicate glass of the present invention, the ratio of the specific surface area of the aluminum compound-containing raw material contained in the glass raw material and the specific surface area of the silica sand is a specific range, the specific surface area of the aluminum compound-containing raw material is increased, and By reducing the specific surface area of the silica sand, the eutectic reaction of SiO 2 and Na 2 O can be promoted.
 また、SiOおよびNaOの共融反応を促進することにより、NaOとSiOとが最初に反応して得られる低融点の反応物によりSiOの溶解速度が促進されるという効果が得られ、珪砂の溶け残りを防ぎ、均質性に優れ、ガラス中に泡が少ないアルカリアルミノシリケートガラスを得ることができる。 Further, by promoting the eutectic reaction of SiO 2 and Na 2 O, the dissolution rate of SiO 2 is accelerated by the low melting point reaction product obtained by first reacting Na 2 O and SiO 2. Thus, it is possible to obtain an alkali aluminosilicate glass that prevents undissolved residue of silica sand, is excellent in homogeneity, and has few bubbles in the glass.
図1は、SiO、NaOおよびAlの相図を示す。丸で囲んだ部分がSiOおよびNaOが共融反応により溶解する部分である。FIG. 1 shows the phase diagram of SiO 2 , Na 2 O and Al 2 O 3 . A portion surrounded by a circle is a portion where SiO 2 and Na 2 O are dissolved by a eutectic reaction. 図2(a)~(c)は、未融解珪砂量の評価方法の模式図である。2A to 2C are schematic diagrams of an evaluation method for the amount of unmelted silica sand. 図3(a)~(d)は、評価温度を1450℃として3分間、5分間、7.5分間、10分間ガラス原料を溶解した結果を示す。FIGS. 3A to 3D show the results of melting the glass raw material at an evaluation temperature of 1450 ° C. for 3 minutes, 5 minutes, 7.5 minutes, and 10 minutes. 図4(a)および(b)は、図3(b)に示した1450℃にて5分間溶解したガラス原料をX線解析した結果を示す。4 (a) and 4 (b) show the results of X-ray analysis of the glass raw material melted at 1450 ° C. for 5 minutes shown in FIG. 3 (b). 図5はガラス原料表層の温度とガラス原料内部の温度を測定した結果を示す。FIG. 5 shows the results of measuring the temperature of the glass material surface layer and the temperature inside the glass material. 図6は、ガラス原料に含まれるSiOの粒径をふって、感度(頻度)を分析した結果を示す。FIG. 6 shows the result of analyzing the sensitivity (frequency) based on the particle size of SiO 2 contained in the glass raw material. 図7(a)~(c)は、ガラス原料中のAlの体積基準の積算ふるい下50%径D50を82μmとし、ガラス原料中のSiOの体積基準の積算ふるい下90%径D90を96μm、324μmまたは354μmとする各ガラス原料を、評価温度1450℃にて10分間溶解し、未融解SiO量を測定した結果を示す。FIGS. 7 (a) to (c) show that the 50% diameter D 50 under the volume-based integrated sieve of Al 2 O 3 in the glass raw material is 82 μm, and the volume-based integrated sieve under the volumetric SiO 2 in the glass raw material is 90%. the diameter D 90 96 .mu.m, each glass material to 324μm or 354μm, and dissolved for 10 minutes at rated temperature 1450 ° C., shows the results of measuring the unmelted SiO 2 amount. 図8は、ガラス原料中のAlの体積基準の積算ふるい下50%径D50を82μmとし、ガラス原料中のSiOの体積基準の積算ふるい下90%径D90を38μm、96μm、284μm、324μmまたは354μmとする各ガラス原料を、評価温度1450℃にて10分間溶解し、未融解SiO量を測定した結果を示す。FIG. 8 shows that the volume-based integrated sieve 50% diameter D 50 of Al 2 O 3 in the glass raw material is 82 μm, and the volume-based integrated sieve 90% diameter D 90 of SiO 2 in the glass raw material is 38 μm and 96 μm. , 284μm, each glass material to 324μm or 354μm, and dissolved for 10 minutes at rated temperature 1450 ° C., shows the results of measuring the unmelted SiO 2 amount. 図9は、ガラス原料に含まれるAlの粒径をふって、感度(頻度)を分析した結果を示す。FIG. 9 shows the result of analyzing the sensitivity (frequency) using the particle diameter of Al 2 O 3 contained in the glass raw material. 図10(a)~(d)は、ガラス原料中のSiOの体積基準の積算ふるい下90%径D90を354μmとし、ガラス原料中のAlの体積基準の積算ふるい下50%径D50を104μm、82μm、55μm、4μmとする各ガラス原料を、評価温度1450℃にて10分間溶解し、未融解SiO量を測定した結果を示す。10 (a) to 10 (d) show that the 90% diameter D 90 below the volume-based integrated sieve of SiO 2 in the glass material is 354 μm, and 50% under the volume-based integrated sieve of Al 2 O 3 in the glass material. the diameter D 50 104μm, 82μm, 55μm, each glass raw materials to 4 [mu] m, and dissolved for 10 minutes at rated temperature 1450 ° C., shows the results of measuring the unmelted SiO 2 amount. 図11は、ガラス原料中のSiOの体積基準の積算ふるい下90%径D90を354μmとし、ガラス原料中のAlの体積基準の積算ふるい下50%径D50を104μm、82μm、55μm、4μmとする各ガラス原料を、評価温度1450℃にて10分間溶解し、未融解SiO量を測定した結果を示す。FIG. 11 shows that the 90% diameter D 90 under the volume basis of SiO 2 in the glass raw material is 354 μm, and the 50% diameter D 50 under the volume basis of Al 2 O 3 in the glass raw material is 104 μm and 82 μm. , 55 μm and 4 μm are melted for 10 minutes at an evaluation temperature of 1450 ° C., and the amount of unmelted SiO 2 is measured. 図12は、ガラス原料中のSiOの体積基準の積算ふるい下90%径D90を354μmとし、ガラス原料中のAlの体積基準の積算ふるい下50%径D50を104μm、82μm、55μm、4μmとする各ガラス原料を、評価温度1450℃にて10分間溶解し、XRD解析した結果を示す。FIG. 12 shows that the 90% diameter D 90 under the volume basis of SiO 2 in the glass raw material is 354 μm, and the 50% diameter D 50 under the volume basis of Al 2 O 3 in the glass raw material is 104 μm and 82 μm. , 55 μm and 4 μm are melted at an evaluation temperature of 1450 ° C. for 10 minutes, and the results of XRD analysis are shown. 図13は、横軸にS(Al)/S(Si)を、縦軸に未融解のSiO量(wt%)をプロットしたグラフである。FIG. 13 is a graph in which S W (Al) / S W (Si) is plotted on the horizontal axis and the amount of unmelted SiO 2 (wt%) is plotted on the vertical axis. 図14は、横軸にD50(Al)/D90(Si)をプロットし、縦軸に未融解のSiO量(wt%)をプロットしたグラフである。FIG. 14 is a graph in which D 50 (Al) / D 90 (Si) is plotted on the horizontal axis and the amount of unmelted SiO 2 (wt%) is plotted on the vertical axis. 図15は、横軸にS(Al)/[D90(Si)-250μm]を、縦軸に未融解のSiO量(wt%)をプロットしたグラフである。FIG. 15 is a graph in which S W (Al) / [D 90 (Si) −250 μm] is plotted on the horizontal axis and the amount of unmelted SiO 2 (wt%) is plotted on the vertical axis.
 以下、本発明のアルカリアルミノシリケートガラスの製造方法について説明する。 Hereinafter, a method for producing the alkali aluminosilicate glass of the present invention will be described.
 本発明の製造方法において、アルカリアルミノシリケートガラスは、珪素源、アルミニウム化合物含有原料、アルカリ金属源となるソーダ灰などのアルカリ金属酸化物含有原料、およびマグネシウム源を含有するガラス原料を溶融し、成形することによって製造する。具体的には、たとえば以下のようにして製造する。
(i)珪素源、アルミニウム化合物含有原料、ソーダ灰、およびマグネシウム源を含み、目標とするアルカリアルミノシリケートガラスの組成となるように原料を混合してガラス原料を調製する。
(ii)前記ガラス原料、および必要に応じて、目標とするアルカリアルミノシリケートガラスの組成と同じ組成のカレットを、溶融窯のガラス原料投入口から溶融窯内に連続的に投入し、1600~1700℃にて溶融させ溶融ガラスとする。なお、カレットとは、ガラスの製造の過程等で排出されるガラス屑である。
(iii)前記溶融ガラスを、フロート法、ダウンドロー法、フュージョン法またはロールアウト法等の公知の成形法により所定の厚さとなるようにガラス板を成形する。
(iv)成形されたガラス板を徐冷した後、所定の大きさに切断し、板状のアルカリアルミノシリケートガラスを得る。
In the production method of the present invention, an alkali aluminosilicate glass is formed by melting a silicon source, an aluminum compound-containing raw material, an alkali metal oxide-containing raw material such as soda ash serving as an alkali metal source, and a glass raw material containing a magnesium source. To make. Specifically, for example, it is manufactured as follows.
(I) A glass raw material is prepared by mixing raw materials so as to have a composition of a target alkali aluminosilicate glass including a silicon source, an aluminum compound-containing raw material, soda ash, and a magnesium source.
(Ii) The glass raw material and, if necessary, cullet having the same composition as that of the target alkali aluminosilicate glass are continuously fed into the melting furnace from the glass raw material inlet of the melting furnace, and 1600-1700 Melt at 0 ° C. to obtain molten glass. In addition, cullet is glass waste discharged | emitted in the process of glass manufacture.
(Iii) A glass plate is formed so that the molten glass has a predetermined thickness by a known forming method such as a float method, a downdraw method, a fusion method, or a roll-out method.
(Iv) The formed glass plate is gradually cooled and then cut into a predetermined size to obtain a plate-like alkali aluminosilicate glass.
 珪素源としては、珪砂を用いる。アルミニウム化合物含有原料としては、例えば、アルミナおよび水酸化アルミニウムが挙げられる。ソーダ灰は、ガラスの製造に用いられるものであれば、どのようなものでもよい。マグネシウム源としては、例えば、水酸化マグネシウムおよび酸化マグネシウムが挙げられる。 Silica sand is used as the silicon source. Examples of the aluminum compound-containing raw material include alumina and aluminum hydroxide. Any soda ash may be used as long as it is used for glass production. Examples of the magnesium source include magnesium hydroxide and magnesium oxide.
 アルミニウム化合物含有原料の比表面積S(Al)と珪砂の比表面積S(Si)の比S(Al)/S(Si)が6.0以下であり、4.0以下であることが好ましく、2.5以下であることがより好ましい。アルミニウム化合物含有原料の比表面積S(Al)と珪砂の比表面積S(Si)の比S(Al)/S(Si)を超えると、SiOの溶解速度が遅くなり、未融解珪砂が増えて、ガラスに欠点が発生し易くなる。 The ratio S W (Al) / S W (Si) between the specific surface area S W (Al) of the aluminum compound-containing raw material and the specific surface area S W (Si) of the silica sand is 6.0 or less and 4.0 or less. Is preferable, and it is more preferable that it is 2.5 or less. If the ratio S W (Al) / S W (Si) of the specific surface area S W (Al) of the aluminum compound-containing raw material and the specific surface area S W (Si) of the silica sand is exceeded, the dissolution rate of SiO 2 becomes slow and unmelted. Silica sand increases and defects in the glass tend to occur.
 アルミニウム化合物含有原料のD50(Al)と珪砂のD90(Si)の比、D50(Al)/D90(Si)が0.15超であり、0.20以上であることが好ましく、0.24以上であることがより好ましい。 The ratio of the aluminum compound-containing starting material of D 50 (Al) and silica sand of D 90 (Si), D 50 (Al) / D 90 (Si) is 0.15 greater, preferably at least 0.20, More preferably, it is 0.24 or more.
 一方、アルミニウム化合物含有原料のD50(Al)と珪砂のD90(Si)の比、D50(Al)/D90(Si)が0.15以下であると、未融解珪砂が増えて、ガラスに欠点が発生し易くなる。 On the other hand, the ratio of the aluminum compound-containing starting material of D 50 (Al) and silica sand of D 90 (Si), if D 50 (Al) / D 90 (Si) is 0.15 or less, an increasing number of unmelted silica sand, Defects are likely to occur in glass.
 珪砂のD90(Si)が280μm超であり、アルミニウム化合物含有原料のD50(Al)と[D90(Si)-250μm]の比、D50(Al)/[D90(Si)-250μm]が0.5以上であり、0.7以上であることが好ましく、0.9以上であることがより好ましい。 D 90 (Si) of silica sand is over 280 μm, and the ratio of D 50 (Al) and [D 90 (Si) -250 μm] of the aluminum compound-containing raw material is D 50 (Al) / [D 90 (Si) -250 μm. ] Is 0.5 or more, preferably 0.7 or more, and more preferably 0.9 or more.
 アルミニウム化合物含有原料のD50(Al)と[D90(Si)-250μm]の比、D50(Al)/[D90(Si)-250μm]が0.5未満であると、未融解の珪砂量が増えて、ガラスに欠点が発生し易くなる。 The ratio of the aluminum compound-containing starting material of D 50 and (Al) [D 90 (Si ) -250μm], when D 50 (Al) / [D 90 (Si) -250μm] is less than 0.5, the unmelted The amount of silica sand increases and defects in the glass tend to occur.
 アルミニウム化合物含有原料のD50(Al)が50μm以上、かつ珪砂のD90(Si)が400μm以下である。アルミニウム化合物含有原料のD50(Al)は、80μm以上であることが好ましく、90μm以上であることがより好ましく、100μm以上であることが好ましい。また、珪砂のD90(Si)は380μm以下であることが好ましく、360μm以下であることがより好ましく、また、250μm以上であることが好ましく、280μm以上であることがより好ましい。 D 50 (Al) of the aluminum compound-containing raw material is 50 μm or more, and D 90 (Si) of the silica sand is 400 μm or less. D 50 (Al) of the aluminum compound-containing raw material is preferably 80 μm or more, more preferably 90 μm or more, and preferably 100 μm or more. It is preferable that silica sand of D 90 (Si) is less than 380 .mu.m, more preferably at most 360 .mu.m, also preferably at 250μm or more, and more preferably at least 280 .mu.m.
 アルミニウム化合物含有原料のD50(Al)が50μm未満であると、未融解珪砂が増えて、ガラスに欠点が発生し易くなり、珪砂のD90(Si)が400μm超であると、未融解珪砂が増えて、ガラスに欠点が発生し易くなり。また、珪砂のD90(Si)を250μm以上とすることにより、未融解珪砂を低減することができ、ガラスに欠点が発生しにくくなる。 If the D 50 (Al) of the aluminum compound-containing raw material is less than 50 μm, unmelted silica sand increases and defects are likely to occur in the glass, and if D 90 (Si) of the silica sand exceeds 400 μm, unmelted silica sand Will increase, and defects in glass are more likely to occur. Further, with the D 90 (Si) of 250μm or more quartz sand, it is possible to reduce the unmelted silica sand, disadvantages is less likely to occur in the glass.
 図1に、高アルミナ原料に含まれる珪砂(SiO)、ソーダ灰(NaO)およびAlの相図を示す。NaOとAlが反応した反応物は融点が高く、高温にならないと初期溶解しない。NaOとSiOとが最初に反応して低融点の反応物ができると、該反応物によりSiOの溶解速度が促進されるという効果が得られるが、NaOがAlとの反応で消費されると、このような効果が得られず、SiOの溶解速度が遅くなる。特にガラス原料の昇温速度が遅いとNaOとAlの反応が進み、SiOの溶解速度が遅くなると考えられる。 FIG. 1 shows a phase diagram of silica sand (SiO 2 ), soda ash (Na 2 O) and Al 2 O 3 contained in the high alumina raw material. A reaction product obtained by reacting Na 2 O and Al 2 O 3 has a high melting point and does not dissolve at first unless the temperature is high. When Na 2 O and SiO 2 react with each other to form a low melting point reaction product, an effect is obtained that the dissolution rate of SiO 2 is accelerated by the reaction product, but Na 2 O is converted to Al 2 O 3. When consumed in the reaction with the above, such an effect cannot be obtained, and the dissolution rate of SiO 2 becomes slow. In particular, when the temperature rising rate of the glass raw material is slow, the reaction of Na 2 O and Al 2 O 3 proceeds, and the dissolution rate of SiO 2 is thought to be slow.
 本発明の製造方法によれば、アルミニウム化合物含有原料の比表面積を大きくし、且つ珪砂の比表面積を小さくすることにより、NaOとAlが反応するのを抑え、SiOおよびNaOの共融反応を促進することができる。SiOおよびNaOの共融反応を促進することにより、NaOとSiOとが最初に反応して得られる低融点の反応物によりSiOの溶解速度が促進されるという効果が得られ、珪砂の溶け残りを防ぐことができる。 According to the production method of the present invention, the reaction of Na 2 O and Al 2 O 3 is suppressed by increasing the specific surface area of the aluminum compound-containing raw material and decreasing the specific surface area of the silica sand, and SiO 2 and Na The eutectic reaction of 2 O can be promoted. By promoting the eutectic reaction of SiO 2 and Na 2 O, there is an effect that the dissolution rate of SiO 2 is accelerated by a low melting point reaction product obtained by first reacting Na 2 O and SiO 2. And prevent undissolved silica sand.
 本明細書における「比表面積」とは粒度測定により粒度を測定した後、球と仮定して下式(1)により求めた表面積を比表面積とする。
比表面積=Σ[4πR×(半径がRである粒子の1gあたりの個数)]…(1)
 式(1)において、Rは球と仮定した際の半径を示す。
The “specific surface area” in the present specification refers to a specific surface area obtained by measuring the particle size by particle size measurement and then calculating by the following formula (1) assuming a sphere.
Specific surface area = Σ [4πR 2 × (number of particles having a radius of R per 1 g)] (1)
In the formula (1), R represents a radius when assuming a sphere.
 また、半径がRである粒子の1gあたりの個数は下式(2)により求める。
半径がRである粒子の1gあたりの個数=1g×粒度測定で求めた半径がRである粒子の体積頻度割合/[密度×(4/3)πR]…(2)
Further, the number per 1 g of particles having a radius R is determined by the following equation (2).
Number of particles having a radius of R per 1 g = 1 g × volume frequency ratio of particles having a radius of R determined by particle size measurement / [density × (4/3) πR 3 ] (2)
 また、本明細書における「粒径」とは球相当径であって、具体的には乾式のレーザー回折・散乱式粒径・粒度分布測定装置(日機装株式会社製、マイクロトラックMT3300)によって計測された粉体の粒度分布における粒径をいう。 The “particle diameter” in this specification is a sphere equivalent diameter, and specifically measured by a dry laser diffraction / scattering particle diameter / particle size distribution measuring apparatus (manufactured by Nikkiso Co., Ltd., Microtrac MT3300). The particle size in the particle size distribution of the powder.
 本明細書における粒径D50(メディアン粒径)とは、レーザー回折法/散乱法によって計測された粉体の粒度分布において、体積基準で累積頻度が50%のときの粒子径をいう。同様に、粒径D90とは、レーザー回折法/散乱法によって計測された粉体の粒度分布において、体積基準で累積頻度が90%のときの粒子径をいう。 In the present specification, the particle size D 50 (median particle size) refers to the particle size when the cumulative frequency is 50% on a volume basis in the particle size distribution of the powder measured by the laser diffraction method / scattering method. Similarly, the particle size D 90 refers to the particle size when the cumulative frequency is 90% on a volume basis in the particle size distribution of the powder measured by the laser diffraction method / scattering method.
(アルカリアルミノシリケートガラス)
 本発明の製造方法により得られるガラスはアルカリアルミノシリケートガラスである。以下、アルカリアルミノシリケートガラスの好ましい組成について説明する。
(Alkaline aluminosilicate glass)
The glass obtained by the production method of the present invention is an alkali aluminosilicate glass. Hereinafter, a preferable composition of the alkali aluminosilicate glass will be described.
 アルカリアルミノシリケートガラスは、酸化物基準のモル百分率表示でSiOを50~80%、Alを0~10%、Bを0~4%、MgOを5~30%、ZrO、P、TiOおよびLaから選ばれる少なくとも1を合計で0.5~10%、NaOを1~17%含有することが好ましい。 Alkaline aluminosilicate glass is SiO 2 50-50%, Al 2 O 3 0-10%, B 2 O 3 0-4%, MgO 5-30%, ZrO in terms of mole percentage on oxide basis. Preferably, at least 1 selected from 2 , P 2 O 5 , TiO 2 and La 2 O 3 is contained in a total of 0.5 to 10% and Na 2 O is contained in 1 to 17%.
 SiOの含有量は50~80%であることが好ましく、55~75%であることがより好ましく、58~70%であることがさらに好ましい。Alの含有量は、1%以上であり、1~10%であることが好ましく、1~7%であることがより好ましく、2~5%であることがさらに好ましい。Alの含有量が1%未満であると、強度、耐薬品性、耐久性が悪くなる。 The content of SiO 2 is preferably 50 to 80%, more preferably 55 to 75%, and still more preferably 58 to 70%. The content of Al 2 O 3 is 1% or more, preferably 1 to 10%, more preferably 1 to 7%, still more preferably 2 to 5%. When the content of Al 2 O 3 is less than 1%, strength, chemical resistance and durability are deteriorated.
 Bの含有量は0~4%であることが好ましく、0.3~3%であることが好ましく、0.5~2%であることがより好ましい。MgOの含有量は、5~30%であることが好ましく、10~28%であることがより好ましく、15~25%であることがさらに好ましい。 The content of B 2 O 3 is preferably 0 to 4%, preferably 0.3 to 3%, more preferably 0.5 to 2%. The content of MgO is preferably 5 to 30%, more preferably 10 to 28%, and further preferably 15 to 25%.
 アルカリアルミノシリケートガラスは、ZrO、P、TiOおよびLaから選ばれる少なくとも1種を含むことが好ましい。アルカリアルミノシリケートガラスが、ZrO、P、TiOおよびLaから選ばれる少なくとも1種を含むことにより、アルカリアルミノシリケートガラスに白みを持たせることができる。その合量は0.5~10%であることが好ましい。 The alkali aluminosilicate glass preferably contains at least one selected from ZrO 2 , P 2 O 5 , TiO 2 and La 2 O 3 . When the alkali aluminosilicate glass contains at least one selected from ZrO 2 , P 2 O 5 , TiO 2 and La 2 O 3 , the alkali aluminosilicate glass can be whitened. The total amount is preferably 0.5 to 10%.
 アルカリアルミノシリケートガラスにおけるZrOの含有量は、0~5%であることが好ましく、0.5~3%であることがより好ましい。アルカリアルミノシリケートガラスにおけるPの含有量は、0~10%であることが好ましく、0.5~7%であることがより好ましく、1~6%であることがさらに好ましい。 The content of ZrO 2 in the alkali aluminosilicate glass is preferably 0 to 5%, more preferably 0.5 to 3%. The content of P 2 O 5 in the alkali aluminosilicate glass is preferably 0 to 10%, more preferably 0.5 to 7%, and further preferably 1 to 6%.
 アルカリアルミノシリケートガラスにおけるTiOの含有量は、0~10%であることが好ましく、0.5~7%であることがより好ましく、1~6%であることがさらに好ましい。アルカリアルミノシリケートガラスにおけるLaの含有量は、0~2%であることが好ましく、0.2~1%であることがより好ましい。 The content of TiO 2 in the alkali aluminosilicate glass is preferably 0 to 10%, more preferably 0.5 to 7%, and further preferably 1 to 6%. The content of La 2 O 3 in the alkali aluminosilicate glass is preferably 0 to 2%, more preferably 0.2 to 1%.
 アルカリアルミノシリケートガラスがNaOを含有していることにより、その後のイオン交換処理によるガラスの強度を高めることができる。アルカリアルミノシリケートガラスにおけるNaOの含有量は、1~17%が好ましく、3~11%がより好ましく、4~14%がさらに好ましい。NaOの含有量を1%以上とすることによりイオン交換により所望の表面圧縮応力層を形成し易くなる。また、NaOを17%以下とすることにより耐候性を向上することができる。 When the alkali aluminosilicate glass contains Na 2 O, the strength of the glass by the subsequent ion exchange treatment can be increased. The content of Na 2 O in the alkali aluminosilicate glass is preferably 1 to 17%, more preferably 3 to 11%, still more preferably 4 to 14%. By making the content of Na 2 O 1% or more, a desired surface compressive stress layer can be easily formed by ion exchange. Further, it is possible to improve the weather resistance by a 17% or less of Na 2 O.
 本発明の製造方法により得られるアルカリアルミノシリケートガラスの組成としては、例えば、以下が挙げられる。
(i)モル%で表示した組成で、SiOを50~80%、Alを5~25%、LiOを0~10%、NaOを0~18%、KOを0~10%、MgOを0~15%、CaOを0~5%およびZrOを0~5%を含むガラス
(ii)モル%で表示した組成が、SiOを50~74%、Alを5~10%、NaOを6~14%、KOを3~11%、MgOを2~15%、CaOを0~6%およびZrOを0~5%含有し、SiOおよびAlの含有量の合計が75%以下、NaOおよびKOの含有量の合計が12~25%、MgOおよびCaOの含有量の合計が7~15%であるガラス
(iii)モル%で表示した組成が、SiOを68~80%、Alを5~10%、NaOを5~15%、KOを0~1%、MgOを4~15%およびZrOを0~1%含有するガラス
Examples of the composition of the alkali aluminosilicate glass obtained by the production method of the present invention include the following.
(I) a composition that is displayed in mol%, the SiO 2 50 ~ 80%, the Al 2 O 3 5 ~ 25% , the Li 2 O 0 ~ 10%, a Na 2 O 0 ~ 18%, K 2 O Is represented by a glass (ii) mol% containing 0-10%, MgO 0-15%, CaO 0-5% and ZrO 2 0-5%, SiO 2 50-74%, Al 2 O 3 5-10%, Na 2 O 6-14%, K 2 O 3-11%, MgO 2-15%, CaO 0-6% and ZrO 2 0-5% The total content of SiO 2 and Al 2 O 3 is 75% or less, the total content of Na 2 O and K 2 O is 12 to 25%, and the total content of MgO and CaO is 7 to 15%. a composition which is displayed at a certain glass (iii) mol%, a SiO 2 68 ~ 80%, the Al 2 O 3 5 ~ 10% , The a 2 O 5 ~ 15%, glass K 2 O 0 to 1%, the MgO 4 ~ 15% and a ZrO 2 containing 0 to 1%
[1]ガラス原料の調製
 以下に示す組成1のアルカリアルミノシリケートガラスとなるように、珪素源、アルミニウム化合物含有原料、ソーダ灰、マグネシウム源、およびその他の原料を調製してガラス原料とした。
組成1:モル%表示で、SiO 68.0%、Al 10.0%、MgO 8.0%、NaO 14.0%
[1] Preparation of Glass Raw Material A silicon source, an aluminum compound-containing raw material, soda ash, a magnesium source, and other raw materials were prepared as glass raw materials so as to be an alkali aluminosilicate glass having composition 1 shown below.
Composition 1: In terms of mol%, SiO 2 68.0%, Al 2 O 3 10.0%, MgO 8.0%, Na 2 O 14.0%
[2]未融解珪砂量の評価
 調製したガラス原料を用いて、図2(a)~(c)に示すように、以下の手順で初期反応での珪砂の溶け残り量を評価した。
(1)評価したい温度(以下、評価温度ともいう。)に設定した電気炉内で内寸150mm角のキャスタブル容器51内に入れたカレット52(ガラス層300g)を溶解する[図2(a)]。
(2)キャスタブル容器51を一旦抜き出して、125gのガラス原料53を山状となるように添加し、即、電気炉に戻す[図2(b)]。
(3)電気炉内で10分間ガラス原料53を溶解した後、キャスタブル容器51を取り出す[図2(c)]。溶解したガラス原料のうち、80×80×2.5mmの分析領域54をXRDにより分析する。
[2] Evaluation of Unmelted Silica Sand Amount Using the prepared glass raw material, as shown in FIGS. 2 (a) to (c), the undissolved amount of silica sand in the initial reaction was evaluated by the following procedure.
(1) The cullet 52 (glass layer 300 g) placed in a castable container 51 having an inner size of 150 mm square is melted in an electric furnace set to a temperature to be evaluated (hereinafter also referred to as an evaluation temperature) [FIG. ].
(2) The castable container 51 is once extracted, 125 g of glass raw material 53 is added in a mountain shape, and immediately returned to the electric furnace [FIG. 2 (b)].
(3) After melting the glass raw material 53 for 10 minutes in the electric furnace, the castable container 51 is taken out [FIG. 2 (c)]. Of the melted glass raw material, an analysis region 54 of 80 × 80 × 2.5 mm is analyzed by XRD.
[3]粒径および比表面積の測定
 SiOのD90、AlのD50、粒度、SiOの粒径をふった頻度(%)、Alの粒径をふった頻度(%)は、乾式のレーザー回折・散乱式粒径・粒度分布測定装置(日機装株式会社製、マイクロトラックMT3300)を用い、粒子径を測定して算出した。比表面積は、粒度測定により粒度を測定した後、球と仮定して下式(1)により求めた表面積を比表面積とした。
比表面積=Σ[4πR×(半径がRである粒子の1gあたりの個数)]…(1)
式(1)において、Rは球と仮定した際の半径を示す。また、半径がRである粒子の1gあたりの個数は下式(2)により求めた。
半径がRである粒子の1gあたりの個数=1g×粒度測定で求めた半径がRである粒子の体積頻度割合/[密度×(4/3)πR]…(2)
[3] Measurement of particle size and specific surface area D 90 of SiO 2 , D 50 of Al 2 O 3 , particle size, frequency of SiO 2 particle size (%), frequency of Al 2 O 3 particle size (%) Was calculated by measuring the particle diameter using a dry laser diffraction / scattering particle diameter / particle size distribution measuring apparatus (manufactured by Nikkiso Co., Ltd., Microtrac MT3300). The specific surface area was determined by measuring the particle size by particle size measurement, and then assuming the surface as a sphere, the specific surface area was defined as the specific surface area.
Specific surface area = Σ [4πR 2 × (number of particles having a radius of R per 1 g)] (1)
In the formula (1), R represents a radius when assuming a sphere. Further, the number per 1 g of particles having a radius R was determined by the following formula (2).
Number of particles having a radius of R per 1 g = 1 g × volume frequency ratio of particles having a radius of R determined by particle size measurement / [density × (4/3) πR 3 ] (2)
[実施例1]
 評価温度を1450℃として3分間、5分間、7.5分間、10分間ガラス原料を溶解した結果を図3(a)~(d)に示す。図3(a)~(d)において、「%」で表される値は、加熱前のSiOを100%とした時のSiOの割合(%)である。図3(a)に示すように、ガラス原料の山のうち、上下の熱の伝わりの速い部分の溶解は速いが、中心部分の溶解は遅いことがわかった。また、図3(b)に示すように、ガラス原料の中心部分には、多くのSiOが溶け残っていることがわかった。
[Example 1]
3 (a) to 3 (d) show the results of melting the glass raw material at an evaluation temperature of 1450 ° C. for 3, 5, 7.5, and 10 minutes. 3A to 3D, the value represented by “%” is the ratio (%) of SiO 2 when SiO 2 before heating is 100%. As shown in FIG. 3 (a), it was found that the melting of the upper and lower heat transfer portions of the glass raw material crest was fast, but the melting of the central portion was slow. Further, as shown in FIG. 3 (b), the center portion of the glass raw materials, it was found that many SiO 2 remaining dissolved.
 図4(a)および(b)に、図3(b)に示した1450℃にて5分間溶解したガラス原料をX線解析した結果を示す。図4(b)において、「Qz」とは、SiOの溶け残りを示す。図4(b)に示すように、ガラス原料の中心部分は、NaAlSiOが生成し、SiOの溶け残り(Qz)が多いことがわかった。 4A and 4B show the results of X-ray analysis of the glass raw material melted at 1450 ° C. for 5 minutes shown in FIG. 3B. In FIG. 4B, “Qz” indicates the undissolved residue of SiO 2 . As shown in FIG. 4B, it was found that NaAlSiO 4 was generated in the central portion of the glass raw material, and the undissolved residue (Qz) of SiO 2 was large.
 図5に評価温度1450℃におけるガラス原料表層の温度とガラス原料内部の温度を測定した結果を示す。図5に示すように、ガラス内部の温度は、常温度~800℃まで上がるのに100秒以上かかっていることがわかった。したがって、常温度~800℃まで100秒以上かかる昇温履歴であると、NaOとAlの反応が進み、SiOの溶解速度が遅くなることがわかった。 The result of having measured the temperature of the glass raw material surface layer in the evaluation temperature of 1450 degreeC in FIG. 5, and the temperature inside a glass raw material is shown. As shown in FIG. 5, it was found that the temperature inside the glass took 100 seconds or more to rise from the normal temperature to 800 ° C. Accordingly, it was found that when the temperature rising history takes 100 seconds or more from normal temperature to 800 ° C., the reaction between Na 2 O and Al 2 O 3 proceeds, and the dissolution rate of SiO 2 decreases.
[実施例2]
 ガラス原料に含まれるSiOの粒径をふって、感度(頻度)を分析した結果を図6に示す。図6において、SiOの粒径は体積基準の積算ふるい下90%径D90(μm)である。表1および表2にSiOの粒度分布を示す。
[Example 2]
FIG. 6 shows the result of analyzing the sensitivity (frequency) using the particle diameter of SiO 2 contained in the glass raw material. In FIG. 6, the particle diameter of SiO 2 is 90% diameter D 90 (μm) under a volume-based integrated sieve. Tables 1 and 2 show the particle size distribution of SiO 2 .
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 ガラス原料中のAlのD50を82μmとし、ガラス原料中のSiOのD90を38μm、96μm、284μm、324μmまたは354μmとする各ガラス原料を、評価温度1450℃にて10分間溶解し、未融解SiO量を測定した。その結果を図7および図8に示す。 Each glass raw material in which D 50 of Al 2 O 3 in the glass raw material is 82 μm and D 90 of SiO 2 in the glass raw material is 38 μm, 96 μm, 284 μm, 324 μm or 354 μm is melted at an evaluation temperature of 1450 ° C. for 10 minutes. The amount of unmelted SiO 2 was measured. The results are shown in FIGS.
 図7および図8に示すように、ガラス原料に含まれるSiOの粒径が小さいと、SiOの溶け残りを減らすことができる。しかしながら、粒径の小さい珪砂は、粉砕コストが高く、キャリーオーバーが問題となるため、SiOのD90が250μm以上の珪砂を用いることが好ましいと考えられる。 As shown in FIGS. 7 and 8, when the particle size of SiO 2 contained in the glass raw material is small, the undissolved residue of SiO 2 can be reduced. However, since silica sand having a small particle size has a high pulverization cost and carries over becomes a problem, it is considered preferable to use silica sand having a D 90 of SiO 2 of 250 μm or more.
[実施例3]
 ガラス原料に含まれるAlの粒径をふって、感度(頻度)を分析した結果を図9に示す。図9において、Alの粒径はD50(μm)である。表3および表4にAlの粒度分布を示す。
[Example 3]
FIG. 9 shows the result of analyzing the sensitivity (frequency) using the particle diameter of Al 2 O 3 contained in the glass raw material. In FIG. 9, the particle size of Al 2 O 3 is D 50 (μm). Tables 3 and 4 show the particle size distribution of Al 2 O 3 .
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 ガラス原料中のSiOのD90を354μmとし、ガラス原料中のAlのD50を104μm、82μm、55μm、4μmとする各ガラス原料を、評価温度1450℃にて10分間溶解した。 Each glass raw material in which D 90 of SiO 2 in the glass raw material was 354 μm and D 50 of Al 2 O 3 in the glass raw material was 104 μm, 82 μm, 55 μm, and 4 μm was melted at an evaluation temperature of 1450 ° C. for 10 minutes.
 未融解SiO量を測定した結果を図10(a)~(d)および図11に示す。また、XRD解析した結果を図12に示す。図12において、「Qz」とはSiOの溶け残りを指し、「Cri」とはQzの高温結晶相を指す。 The results of measuring the amount of unmelted SiO 2 are shown in FIGS. 10 (a) to 10 (d) and FIG. Moreover, the result of the XRD analysis is shown in FIG. In FIG. 12, “Qz” refers to the undissolved residue of SiO 2 , and “Cri” refers to the high-temperature crystal phase of Qz.
 図10~図12に示す結果から、ガラス原料中のAlのD50を高くし、粒度を上げることにより、SiOの溶け残りを低減できることがわかった。 From the results shown in FIGS. 10 to 12, it was found that the undissolved residue of SiO 2 can be reduced by increasing the D 50 of Al 2 O 3 in the glass raw material and increasing the particle size.
 これまでの結果を表5および図13~15に示す。表5において、D50(Al)はアルミナ含有物のD50(μm)、D90(Si)は珪砂のD90(μm)、Sw(Al)はアルミナの比表面積(計算)(cm/g)、Sw(Si)は珪砂の比表面積(計算)(cm/g)である。 The results thus far are shown in Table 5 and FIGS. In Table 5, D 50 (Al) is D 50 (μm) of the alumina-containing material, D 90 (Si) is D 90 (μm) of silica sand, and Sw (Al) is the specific surface area (calculation) of alumina (cm 2 / g) and Sw (Si) are specific surface areas (calculations) of quartz sand (cm 2 / g).
 表5において、「Cri」および「Qz」は未融解のSiO量(wt%)であり、これらの合計は9wt%以下であることが好ましい。また、例1~5、7~9は実施例、例6は比較例である。 In Table 5, “Cri” and “Qz” are unmelted amounts of SiO 2 (wt%), and the total of these is preferably 9 wt% or less. Examples 1 to 5 and 7 to 9 are examples, and example 6 is a comparative example.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 図13は、横軸にS(Al)/S(Si)を、縦軸に未融解のSiO量(wt%)をプロットしたグラフである。表5および図13に示すように、Al含有量が1モル%超であるアルカリアルミノシリケートガラスを製造する方法であって、アルミニウム化合物含有原料の比表面積S(Al)と珪砂の比表面積S(Si)の比S(Al)/S(Si)を6.0以下とすることにより、未融解のSiO量を低減し、欠点の発生を効果的に抑制できることがわかった。 FIG. 13 is a graph in which S W (Al) / S W (Si) is plotted on the horizontal axis and the amount of unmelted SiO 2 (wt%) is plotted on the vertical axis. As shown in Table 5 and FIG. 13, it is a method for producing an alkali aluminosilicate glass having an Al 2 O 3 content of more than 1 mol%, comprising a specific surface area S W (Al) of an aluminum compound-containing raw material and silica sand. By setting the ratio S W (Al) / S W (Si) of the specific surface area S W (Si) to 6.0 or less, the amount of unmelted SiO 2 can be reduced and the occurrence of defects can be effectively suppressed. all right.
 図14は、横軸にD50(Al)/D90(Si)をプロットし、縦軸に未融解のSiO量(wt%)をプロットしたグラフである。表5および図14に示すように、アルミニウム化合物含有原料のD50(Al)と珪砂のD90(Si)の比、D50(Al)/D90(Si)が0.15超であることにより、未融解のSiO量を低減し、欠点の発生を効果的に抑制できることがわかった。 FIG. 14 is a graph in which D 50 (Al) / D 90 (Si) is plotted on the horizontal axis and the amount of unmelted SiO 2 (wt%) is plotted on the vertical axis. As shown in Table 5 and FIG. 14, the ratio of the aluminum compound-containing starting material of D 50 (Al) and silica sand of D 90 (Si), D 50 (Al) / D 90 (Si) is 0.15 greater Thus, it was found that the amount of unmelted SiO 2 can be reduced and the occurrence of defects can be effectively suppressed.
 図15は、横軸にSw(Al)/[D90(Si)-250μm]を、縦軸に未融解のSiO量(wt%)をプロットしたグラフである。表5および図15に示すように、珪砂のD90(Si)が280μm超であり、アルミニウム化合物含有原料のD50(Al)と[D90(Si)-250μm]の比、D50(Al)/[D90(Si)-250μm]が0.5以上であることにより、未融解のSiO量を低減し、欠点の発生を効果的に抑制できることがわかった。 FIG. 15 is a graph in which Sw (Al) / [D 90 (Si) −250 μm] is plotted on the horizontal axis and the amount of unmelted SiO 2 (wt%) is plotted on the vertical axis. As shown in Table 5 and FIG. 15, D 90 (Si) of the silica sand is over 280 μm, and the ratio of D 50 (Al) of the aluminum compound-containing raw material to [D 90 (Si) −250 μm], D 50 (Al ) / [D 90 (Si) -250 μm] is 0.5 or more, it was found that the amount of unmelted SiO 2 can be reduced and the occurrence of defects can be effectively suppressed.
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更および変形が可能であることは、当業者にとって明らかである。なお本出願は、2012年12月27日付で出願された日本特許出願(特願2012-285512)に基づいており、その全体が引用により援用される。 Although the present invention has been described in detail using specific embodiments, it will be apparent to those skilled in the art that various modifications and variations can be made without departing from the spirit and scope of the invention. This application is based on a Japanese patent application filed on December 27, 2012 (Japanese Patent Application No. 2012-285512), which is incorporated by reference in its entirety.
51 キャスタブル容器
52 カレット
53 ガラス原料
54 分析領域
51 Castable container 52 Caret 53 Glass raw material 54 Analysis area

Claims (5)

  1.  珪砂、アルミニウム化合物含有原料およびアルカリ金属酸化物含有原料を含むガラス原料を溶解し、Al含有量が1モル%超であるアルカリアルミノシリケートガラスを製造する方法であって、アルミニウム化合物含有原料の比表面積S(Al)と珪砂の比表面積S(Si)の比、S(Al)/S(Si)が6.0以下であるアルカリアルミノシリケートガラスの製造方法。 A method for producing an alkali aluminosilicate glass having an Al 2 O 3 content of more than 1 mol% by melting a glass raw material containing silica sand, an aluminum compound-containing raw material, and an alkali metal oxide-containing raw material. A method for producing an alkali aluminosilicate glass in which the ratio of the specific surface area S W (Al) to the specific surface area S W (Si) of silica sand, S W (Al) / S W (Si) is 6.0 or less.
  2.  珪砂、アルミニウム化合物含有原料およびアルカリ金属酸化物含有原料を含むガラス原料を溶解し、Al含有量が1モル%超であるアルカリアルミノシリケートガラスを製造する方法であって、
     アルミニウム化合物含有原料の体積基準の積算ふるい下50%径D50(Al)と珪砂の体積基準の積算ふるい下90%径D90(Si)の比、D50(Al)/D90(Si)が0.15超であるアルカリアルミノシリケートガラスの製造方法。
    A method for producing an alkali aluminosilicate glass having an Al 2 O 3 content of more than 1 mol% by melting a glass raw material containing silica sand, an aluminum compound-containing raw material and an alkali metal oxide-containing raw material,
    Ratio of 50% diameter D 50 (Al) under the volume-based integrated sieve of the aluminum compound-containing raw material to 90% diameter D 90 (Si) under the volume-based integrated sieve of the silica sand, D 50 (Al) / D 90 (Si) A method for producing an alkali aluminosilicate glass having a value exceeding 0.15.
  3.  珪砂、アルミニウム化合物含有原料およびアルカリ金属酸化物含有原料を含むガラス原料を溶解し、Al含有量が1モル%超であるアルカリアルミノシリケートガラスを製造する方法であって、
     珪砂の体積基準の積算ふるい下90%径D90(Si)が280μm超であり、アルミニウム化合物含有原料の体積基準の積算ふるい下50%径D50(Al)と[D90(Si)-250μm]の比、D50(Al)/[D90(Si)-250μm]が0.5以上であるアルカリアルミノシリケートガラスの製造方法。
    A method for producing an alkali aluminosilicate glass having an Al 2 O 3 content of more than 1 mol% by melting a glass raw material containing silica sand, an aluminum compound-containing raw material and an alkali metal oxide-containing raw material,
    The volume-based integrated sieve 90% diameter D 90 (Si) of silica sand is over 280 μm, and the volume-based integrated sieve 50% diameter D 50 (Al) and [D 90 (Si) -250 μm of the aluminum compound-containing material. The ratio of D 50 (Al) / [D 90 (Si) -250 μm] is 0.5 or more, and the method for producing an alkali aluminosilicate glass is as follows.
  4.  珪砂、アルミニウム化合物含有原料およびアルカリ金属酸化物含有原料を含むガラス原料を溶解し、Al含有量が1モル%超であるアルカリアルミノシリケートガラスを製造する方法であって、
     アルミニウム化合物含有原料の体積基準の積算ふるい下50%径D50(Al)が50μm以上であり、珪砂の体積基準の積算ふるい下90%径D90(Si)が400μm以下であるアルカリアルミノシリケートガラスの製造方法。
    A method for producing an alkali aluminosilicate glass having an Al 2 O 3 content of more than 1 mol% by melting a glass raw material containing silica sand, an aluminum compound-containing raw material and an alkali metal oxide-containing raw material,
    Alkaline aluminosilicate glass having a volume-based cumulative sieve 50% diameter D 50 (Al) of 50 μm or more and a silica-based raw material 90% diameter D 90 (Si) of 400 μm or less of the volumetric basis of silica sand. Manufacturing method.
  5.  前記アルカリアルミノシリケートガラスが、モル%百分率表示で、SiOを50~80%、NaO、LiOおよびKOを合計で10%以上、Alを5%以上含み、(NaO、LiOおよびKOの合計含有量)/(Alの含有量)<2.5である請求項1~4のいずれか1項に記載のアルカリアルミノシリケートガラスの製造方法。 The alkali aluminosilicate glass contains 50 to 80% of SiO 2 , Na 2 O, Li 2 O and K 2 O in total of 10% or more, and Al 2 O 3 of 5% or more in terms of mol% percentage. The total content of Na 2 O, Li 2 O and K 2 O) / (content of Al 2 O 3 ) <2.5, wherein the alkali aluminosilicate glass according to any one of claims 1 to 4 Production method.
PCT/JP2013/084160 2012-12-27 2013-12-19 Method for producing alkali aluminosilicate glass WO2014103897A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380068993.XA CN104884401A (en) 2012-12-27 2013-12-19 Method for producing alkali aluminosilicate glass
KR1020157017115A KR20150103007A (en) 2012-12-27 2013-12-19 Method for producing alkali aluminosilicate glass
JP2014554395A JPWO2014103897A1 (en) 2012-12-27 2013-12-19 Method for producing alkali aluminosilicate glass

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012285512 2012-12-27
JP2012-285512 2012-12-27

Publications (1)

Publication Number Publication Date
WO2014103897A1 true WO2014103897A1 (en) 2014-07-03

Family

ID=51020984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084160 WO2014103897A1 (en) 2012-12-27 2013-12-19 Method for producing alkali aluminosilicate glass

Country Status (5)

Country Link
JP (1) JPWO2014103897A1 (en)
KR (1) KR20150103007A (en)
CN (1) CN104884401A (en)
TW (1) TW201431817A (en)
WO (1) WO2014103897A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018070430A (en) * 2016-11-02 2018-05-10 日本電気硝子株式会社 Method for manufacturing alumino silicate glass
WO2018088503A1 (en) * 2016-11-14 2018-05-17 旭硝子株式会社 Production method for molten glass and production method for glass article

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010202413A (en) * 2007-06-27 2010-09-16 Asahi Glass Co Ltd Method for producing glass, method for producing glass raw material, and glass raw material
JP2012036075A (en) * 2010-07-12 2012-02-23 Nippon Electric Glass Co Ltd Method for producing silicate glass
WO2012039327A1 (en) * 2010-09-24 2012-03-29 旭硝子株式会社 Process for production of glass raw material granules, and process for production of glass product
WO2013012040A1 (en) * 2011-07-19 2013-01-24 旭硝子株式会社 Manufacturing method for molten glass and manufacturing method for glass article

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6682650B2 (en) * 2001-06-05 2004-01-27 Japan Cooperation Center, Petroleum Zeolite catalyst carrier and hydrogenation catalyst using same
US7250114B2 (en) * 2003-05-30 2007-07-31 Lam Research Corporation Methods of finishing quartz glass surfaces and components made by the methods
US7666511B2 (en) * 2007-05-18 2010-02-23 Corning Incorporated Down-drawable, chemically strengthened glass for cover plate
JP5699434B2 (en) * 2009-04-02 2015-04-08 旭硝子株式会社 Glass for information recording medium substrate, glass substrate for information recording medium and magnetic disk

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010202413A (en) * 2007-06-27 2010-09-16 Asahi Glass Co Ltd Method for producing glass, method for producing glass raw material, and glass raw material
JP2012036075A (en) * 2010-07-12 2012-02-23 Nippon Electric Glass Co Ltd Method for producing silicate glass
WO2012039327A1 (en) * 2010-09-24 2012-03-29 旭硝子株式会社 Process for production of glass raw material granules, and process for production of glass product
WO2013012040A1 (en) * 2011-07-19 2013-01-24 旭硝子株式会社 Manufacturing method for molten glass and manufacturing method for glass article

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018070430A (en) * 2016-11-02 2018-05-10 日本電気硝子株式会社 Method for manufacturing alumino silicate glass
WO2018088503A1 (en) * 2016-11-14 2018-05-17 旭硝子株式会社 Production method for molten glass and production method for glass article
KR20190082781A (en) 2016-11-14 2019-07-10 에이지씨 가부시키가이샤 Process for producing molten glass and process for producing glass article
JPWO2018088503A1 (en) * 2016-11-14 2019-10-03 Agc株式会社 Method for producing molten glass and method for producing glass article
TWI742195B (en) * 2016-11-14 2021-10-11 日商Agc股份有限公司 Manufacturing method of molten glass and manufacturing method of glass articles
KR102413987B1 (en) 2016-11-14 2022-06-29 에이지씨 가부시키가이샤 Method for manufacturing molten glass and manufacturing method for glass articles

Also Published As

Publication number Publication date
KR20150103007A (en) 2015-09-09
CN104884401A (en) 2015-09-02
TW201431817A (en) 2014-08-16
JPWO2014103897A1 (en) 2017-01-12

Similar Documents

Publication Publication Date Title
JP5267464B2 (en) Method for producing alkali-free glass
CN109608047B (en) High-crystallinity nepheline transparent glass ceramics and preparation method thereof
CN108341595B (en) Composition for glass, glass with low inclusion content, preparation method and application thereof
CN110255895B (en) Alkali-containing borosilicate glass and preparation method thereof
KR101153751B1 (en) Method for production of non-alkaline glass
WO2024017037A1 (en) Reinforced microcrystalline glass, glass device and electronic apparatus
KR102291291B1 (en) Method for manufacturing alkali-free glass
JP2015098430A (en) Borosilicate glass for medicament container
JP2016113363A (en) Production method of silicate glass, silicate glass, and silica raw material for silicate glass
JP5097295B2 (en) Manufacturing method of glass substrate for liquid crystal display device
TW201507988A (en) Glass composition for chemically strengthened alkali-aluminosilicate glass and method for the manufacture thereof
CN107721152B (en) Clarifying agent for touch screen cover plate glass and preparation method for touch screen cover plate glass
CN109437555B (en) Aluminosilicate glass, preparation method thereof, cover plate and display device
CN105481247B (en) A kind of alumina silicate glass composition, alumina silicate glass and its preparation method and application
WO2014103897A1 (en) Method for producing alkali aluminosilicate glass
JPWO2017146065A1 (en) Glass raw material granulated body and method for producing the same
WO2017115728A1 (en) Method for manufacturing aluminoborosilicate glass for drug containers
JP2017030975A (en) Alkali-free glass and manufacturing method therefor
JPWO2017110927A1 (en) Mixed raw material for silicate glass and method for producing tube glass using the same
WO2022181812A1 (en) Chemically strengthened glass production method and chemically strengthened glass
JP6562240B2 (en) Manufacturing method of silicate glass and silica raw material for silicate glass
WO2018116709A1 (en) Borosilicate glass for medical containers
JP6341447B2 (en) Method for producing silicate glass
JP6981426B2 (en) Manufacturing method of molten glass and manufacturing method of glass articles
JP2017048095A (en) Production method of glass

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13868595

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014554395

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157017115

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13868595

Country of ref document: EP

Kind code of ref document: A1