WO2014103225A1 - Electric linear actuator and output shaft vibration-type electric device with said electric linear actuator - Google Patents
Electric linear actuator and output shaft vibration-type electric device with said electric linear actuator Download PDFInfo
- Publication number
- WO2014103225A1 WO2014103225A1 PCT/JP2013/007325 JP2013007325W WO2014103225A1 WO 2014103225 A1 WO2014103225 A1 WO 2014103225A1 JP 2013007325 W JP2013007325 W JP 2013007325W WO 2014103225 A1 WO2014103225 A1 WO 2014103225A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- component
- output
- movable block
- block
- pair
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K33/00—Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
- H02K33/16—Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with polarised armatures moving in alternate directions by reversal or energisation of a single coil system
Definitions
- the present invention relates to an electric linear actuator and an output shaft vibration type electric apparatus having the electric linear actuator.
- Conventional electric linear actuators can be classified into three types as an example from the aspect of drive system.
- three types of conventional electric linear actuators are shown as a first conventional actuator 910, a second conventional actuator 920, and a third conventional actuator 930, respectively.
- FIG. 22 shows an example of the first conventional actuator 910.
- the first conventional actuator 910 includes a case 911, a stator 912, a mover 916, and a mover spring 917.
- the case 911 houses the output shaft 918, the stator 912, the mover 916, and the mover spring 917 of the electric device.
- the stator 912 is fixed to the case 911.
- the stator 912 includes a coil 913, two permanent magnets 914, and four yokes 915.
- the coil 913, each permanent magnet 914, and each yoke 915 have an annular shape.
- the mover 916 is fixed to the output shaft 918.
- the mover spring 917 is disposed between the case 911 and the mover 916.
- the mover spring 917 applies a force acting in the axial direction of the output shaft 918 to the mover 916.
- the first conventional actuator 910 reciprocates the mover 916 and the output shaft 918 by switching the direction of the current supplied to the coil 913.
- the first conventional actuator 910 generates undesirable vibration due to the inertial force of the mover 916.
- Patent Document 1 discloses an example of a first conventional actuator 910.
- the second conventional actuator 920 includes a technique for reducing undesirable vibration of the mover 916.
- FIG. 23 shows an example of the second conventional actuator 920.
- the second conventional actuator 920 is different from the first conventional actuator 910 in that it includes a weight 921, an intermediate spring 922, and a weight spring 923, and has substantially the same configuration as the first conventional actuator 910 in other points.
- the weight 921 is arranged around a part of the output shaft 918.
- the weight 921 moves relative to the output shaft 918 in the axial direction.
- the intermediate spring 922 is disposed between the mover 916 and the weight 921.
- the intermediate spring 922 applies a force acting in the axial direction of the output shaft 918 to the mover 916 and the weight 921.
- the weight spring 923 is disposed between the case 911 and the weight 921.
- the weight spring 923 applies a force acting in the axial direction of the output shaft 918 to the weight 921.
- the second conventional actuator 920 supplies the coil 913 with a current having a frequency near the natural frequency in the second vibration mode. By supplying this current to the coil 913, the second conventional actuator 920 causes the mover 916 and the weight 921 to reciprocate in opposite phases. For this reason, the undesirable vibration of the mover 916 is reduced. However, the second conventional actuator 920 is larger in size than the first conventional actuator 910 due to the presence of the weight 921. Note that Patent Document 2 discloses an example of the second conventional actuator 920.
- the third conventional actuator 930 includes technology that enables miniaturization and high efficiency.
- FIG. 24 shows an example of the third conventional actuator 930.
- the third conventional actuator 930 includes an electromagnetic core block 931, two magnetic blocks 934, a block coupling component 937, a first coupling component 938, and a second coupling component 939.
- the electromagnetic core block 931 is attached to the block coupling component 937.
- the electromagnetic core block 931 has a core 932 and a coil 933.
- Each magnetic block 934 is attached to a block coupling component 937.
- Each magnetic block 934 reciprocates in the left-right direction in FIG.
- the two magnetic blocks 934 are arranged in parallel along a direction (direction perpendicular to the drawing) perpendicular to the direction of reciprocal movement of each magnetic block 934.
- FIG. 24 shows one of the two magnetic blocks 934.
- the other magnetic block 934 (not shown) exists on the depth side of one magnetic block 934 in a direction perpendicular to the drawing.
- Each magnetic block 934 includes a permanent magnet 935 and a back yoke 936.
- the permanent magnet 935 faces the electromagnetic core block 931 through a gap.
- the first connecting component 938 is disposed on one end side of each magnetic block 934 in the reciprocating direction of the magnetic block 934.
- the first connecting component 938 connects one magnetic block 934 and the other magnetic block 934 to each other.
- the second connecting component 939 is disposed on the other end side of each magnetic block 934 in the direction of reciprocal movement of the magnetic block 934.
- the second connecting component 939 connects one magnetic block 934 and the other magnetic block 934 to each other.
- the third conventional actuator 930 reciprocates the two magnetic blocks 934 in opposite phases by supplying current to the coil 933. For this reason, the undesirable vibration of the magnetic block 934 is reduced.
- the third conventional actuator 930 two magnetic blocks 934 are arranged in parallel. For this reason, compared with the second conventional actuator 920, the dimension in the direction of reciprocation can be reduced.
- Patent Document 3 discloses an example of a third conventional actuator 930.
- JP 2002-176758 A Japanese Patent No. 3475949 Japanese Patent No. 4487650
- the electric linear actuator can be used for an output shaft vibration type electric device.
- the output shaft vibration type electric device reciprocates the output shaft by an electric linear actuator.
- Patent Documents 1 and 2 disclose an electric toothbrush as an example of an output shaft vibration type electric device.
- FIG. 25 shows an electric oral hygiene device 940 as an example of the output shaft vibration type device.
- the electric oral hygiene device 940 includes an electric linear actuator 941, an output shaft 943, a device functional component 944, and a main body case 945 as a drive source.
- the main body case 945 houses the electric linear actuator 941.
- the electric linear actuator 941 is different from the third conventional actuator 930 in that it has an output functional component 942, and has substantially the same configuration as the third conventional actuator 930 in other points.
- the output functional component 942 is attached to one magnetic block 934 via a block coupling component 937.
- the output functional component 942 is formed as a component for mounting the output shaft 943.
- the output shaft 943 is attached to the output functional component 942.
- the device functional component 944 is attached to the output shaft 943.
- Each magnetic block 934 reciprocates in the protruding direction (left direction in FIG. 24) and the retracting direction (right direction in FIG. 24).
- the first connecting component 938 is disposed on the protruding direction side with respect to each magnetic block 934.
- the first connecting component 938 connects one magnetic block 934 and the other magnetic block 934 to each other.
- the second connecting component 939 is disposed on the retracting direction side with respect to each magnetic block 934.
- the second connecting component 939 connects one magnetic block 934 and the other magnetic block 934 to each other.
- the electric oral hygiene device 940 includes the following problems.
- One magnetic block 934 is attached with an output shaft 943 via a block coupling component 937 and an output functional component 942.
- the weight of one magnetic block 934 and the weight of the other magnetic block 934 are unbalanced.
- an undesired vibration is generated as one magnetic block 934 reciprocates.
- the electric oral hygiene apparatus was assumed here as an output shaft vibration type electric apparatus, and the subject of the electric linear actuator was mentioned, the same subject is the electric drive of output shaft vibration type electric apparatuses other than an electric oral hygiene apparatus. It also exists in linear actuators.
- the present invention was created based on the above background, and provides an electric linear actuator capable of reducing undesirable vibrations, and an output shaft vibration type electric apparatus having the electric linear actuator. Objective.
- One embodiment of the present invention is an electric linear actuator that drives an output shaft of an output shaft vibration type electric device.
- the electric linear actuator includes a fixed block, an output movable block, an even movable block, a block coupling component, an output functional component, and an even functional component, and reciprocates in a protruding direction and a retracting direction defined as a movable direction. Configured to do.
- the output movable block and the even movable block are arranged in parallel along a direction orthogonal to the movable direction.
- the block coupling component is coupled to the fixed block, the output movable block, and the even movable block.
- the output movable block and the pair movable block reciprocate in the movable direction in opposite phases with each other by an electromagnetic force acting between the fixed block and the stationary movable block.
- the output functional component is coupled to the output movable block and the output shaft.
- the kinematic function component includes a kinematic component main body coupled to the kinematic movable block, and a kinematic component adjusting unit integrally formed with the kinematic component main body using the same material as the kinematic component main body.
- the kinematic part adjustment unit is disposed closer to the drawing direction than the kinematic movable block.
- the electric linear actuator includes an output movable block, a pair movable block, a block coupling component, an output functional component, and a pair functional component, and reciprocates in a projecting direction and a retracting direction defined as a movable direction. It is configured.
- the output movable block and the even movable block are arranged in parallel along a direction orthogonal to the movable direction.
- the block coupling component is coupled to the output movable block and the pair movable block.
- the output movable block and the pair movable block reciprocate in the movable direction in opposite phases with each other by an electromagnetic force acting between the output movable block and the pair movable block.
- the output functional component is coupled to the output movable block and the output shaft.
- the kinematic function component includes a kinematic component main body coupled to the kinematic movable block, and a kinematic component adjusting unit integrally formed with the kinematic component main body using the same material as the kinematic component main body.
- the kinematic part adjustment unit is disposed closer to the drawing direction than the kinematic movable block.
- the electric linear actuator further includes an additional adjustment component coupled to the counter component adjustment unit.
- the additional adjustment component is disposed closer to the pair movable block than the pair component adjustment unit in the movable direction.
- the weight of the paired component main body is larger than the weight of the paired component adjusting unit.
- the output functional component includes an output component main body coupled to the output movable block, and an output shaft coupling coupled to the output component main body and the output shaft.
- the electric linear actuator includes a first segmented region and a second segmented region which are segmented along a coupling portion center line of the coupling portion for the output shaft extending in the axial direction of the output shaft in a front view of the electric linear actuator. Includes segmented areas.
- it is preferable that at least the kinematic movable block is disposed in the first segmented region.
- bond part containing the said kinematic movable block and the said kinematic function component is located in the said 1st division area.
- the output shaft vibration type electric device includes the electric linear actuator and the output shaft.
- the output shaft is coupled to the output functional component.
- the output shaft vibration type electric device has, for example, an electric oral hygiene device.
- the electric linear actuator and the output shaft vibration type electric device can reduce undesirable vibrations.
- FIG. 5 is a view relating to the electric linear actuator of the first embodiment and is a cross-sectional view taken along line XA-XA in FIG. The side view by the side of the protrusion direction in the electric linear actuator of 1st Embodiment.
- FIG. 18 is a view relating to the electric linear actuator of the first embodiment, and is a cross-sectional view taken along line XB-XB in FIG. 17.
- FIG. 18 is a diagram relating to the electric linear actuator of the first embodiment, and is a cross-sectional view taken along line XC-XC in FIG. 17.
- the fragmentary sectional view of the electric linear actuator of 2nd Embodiment The partial front view of the electric linear actuator of 3rd Embodiment. Sectional drawing of a 1st conventional actuator. Sectional drawing of a 2nd conventional actuator. The front view of a 3rd conventional actuator. The front view of a virtual electric oral hygiene apparatus.
- the output shaft vibration type electric device 10 has a form of an electric toothbrush as an electric oral hygiene device.
- the output shaft vibration type electric device 10 has a plurality of components.
- a plurality of components of the output shaft vibration type electric device 10 include an electric device main body 11, an apparatus functional component 12, a circuit board 13, a control unit 14, a battery 15, an elastic component 16 (see FIG. 16), and a fastening component 17 (FIG. 16). Reference) and an electric linear actuator 40.
- the output shaft vibration type electric device 10 has a structure capable of coupling and separating the electric device main body 11 and the device functional component 12 from each other.
- the output shaft vibration type electric device 10 reciprocates the device functional component 12 by the electric linear actuator 40.
- the electric device main body 11 has a vertically long shape.
- the electric device main body 11 has an output shaft 20 and a main body case 30.
- the electric device main body 11 reciprocates the output shaft 20 by the electric linear actuator 40.
- the main body case 30 is made of a resin material.
- the main body case 30 has a vertically long shape.
- the main body case 30 has a case peripheral wall portion 31 and a case internal space 38 (see FIG. 16).
- the main body case 30 forms a case internal space 38 inside the case peripheral wall portion 31.
- the main body case 30 houses the circuit board 13, the control unit 14, the battery 15, and the electric linear actuator 40 in the case internal space 38.
- the main body case 30 accommodates a primary battery or a secondary battery as the battery 15.
- the main body case 30 has a structure in which the battery 15 can be attached and detached.
- the device functional part 12 has a form of a toothbrush type attachment.
- the device functional component 12 has a vertically long shape.
- the device functional component 12 has a structure that can be coupled to and separated from the output shaft 20.
- the device functional component 12 reciprocates with respect to the electric device main body 11 according to the reciprocating motion of the output shaft 20.
- the device functional component 12 defines a form as an electric toothbrush in the output shaft vibration type electric device 10.
- Each component of the electric linear actuator 40 defines a movable direction DX, a height direction DY, a width direction DZ, and a planar direction.
- the movable direction DX indicates the bidirectional motion output by the electric linear actuator 40.
- the height direction DY indicates a bidirectional direction orthogonal to the movable direction DX in the front view (FIG. 5) of the electric linear actuator 40.
- the width direction DZ indicates a bidirectional direction orthogonal to the movable direction DX and the height direction DY.
- the plane direction indicates all directions orthogonal to the movable direction DX.
- the planar direction includes a height direction DY and a width direction DZ.
- the protruding direction DXL indicates a direction in which the output shaft 20 is pushed out of the electric linear actuator 40 when the electric linear actuator 40 is viewed from the front.
- the pull-in direction DXR indicates a direction in which the output shaft 20 is pulled into the electric linear actuator 40 when the electric linear actuator 40 is viewed from the front.
- One side in the height direction DY indicates the top surface direction DYT.
- the other of the height direction DY indicates a bottom surface direction DYB.
- the top surface direction DYT indicates a direction from the bottom side to the top side in the front view of the electric linear actuator 40.
- the bottom surface direction DYB indicates a direction from the top side to the bottom side in the front view of the electric linear actuator 40.
- the width direction DZ indicates the front direction DZF.
- the other of the width direction DZ shows the back direction DZR.
- the front direction DZF indicates a direction from the back side to the front side in a side view of the electric linear actuator 40.
- the back direction DZR indicates a direction from the front side to the back side in the side view of the electric linear actuator 40.
- the electric linear actuator 40 has a longitudinal portion in the movable direction DX.
- the electric linear actuator 40 has a short portion in the width direction DZ.
- the electric linear actuator 40 has a plurality of components.
- the plurality of components of the electric linear actuator 40 include a fixed block 50, an output movable block 60, a pair movable block 70, a protruding side connecting component 80, and a drawing side connecting component 90.
- the plurality of components of the electric linear actuator 40 further include a block coupling component 100, an output functional component 200, an even functional component 300, an additional adjustment component 400, a plurality of fastening components 41, and a plurality of fastening components 42.
- the electric linear actuator 40 is coupled to the output shaft 20 in the output functional component 200.
- the electric linear actuator 40 reciprocates the output movable block 60 in the movable direction DX by an electromagnetic force acting between the fixed block 50 and the output movable block 60.
- the electric linear actuator 40 outputs the reciprocating motion in the movable direction DX by the reciprocating motion of the output movable block 60.
- the electric linear actuator 40 reciprocates the output shaft 20 in the movable direction DX by outputting a reciprocating motion in the movable direction DX.
- the electric linear actuator 40 has a plurality of function coupling portions having an integrated relationship.
- the integration relationship in the functional coupling part is formed by coupling parts.
- Each functional coupling part has a structure capable of moving relative to other functional coupling parts in units of functional coupling parts.
- the integration of the function coupling portions allows each component to move relatively among the plurality of components included in each function coupling portion.
- the fixed block 50, the output movable block 60, the pair movable block 70, the projecting side coupling component 80, and the drawing side coupling component 90 each form a function coupling portion.
- the output movable block 60 and the even movable block 70 are arranged in parallel along the width direction DZ.
- the output movable block 60 and the pair movable block 70 have a gap in the width direction DZ.
- the fixed block 50 and the output movable block 60 form a linear motor.
- the fixed block 50 and the pair movable block 70 form a linear motor.
- the output movable block 60 and the pair movable block 70 reciprocate in the movable direction DX with opposite phases.
- the block coupling component 100 is coupled to the fixed block 50, the output movable block 60, the pair movable block 70, the protruding side coupling component 80, the drawing side coupling component 90, the output functional component 200, and the pair functional component 300.
- the block coupling component 100 allows translation of the output movable block 60 and the even movable block 70 with respect to the fixed block 50.
- the output shaft 20 is made of a metal material.
- the output shaft 20 is arranged on the projecting direction DXL side with respect to the block coupling component 100 in the movable direction DX.
- the output shaft 20 is coupled to the output functional component 200.
- the center line of the output shaft 20 is parallel to the movable direction DX.
- the output shaft 20 includes a shaft base portion 21, a shaft tip portion 22, and a fitting groove 23.
- the output shaft 20 is coupled to the output functional component 200 at the shaft base portion 21.
- the output shaft 20 is coupled to the device functional component 12 at the shaft tip portion 22.
- the output shaft 20 reciprocates the device functional component 12 by the output of the electric linear actuator 40.
- the configuration of the fixed block 50 will be described.
- the fixed block 50 is disposed at an intermediate portion of the block coupling component 100 in the movable direction DX.
- the fixed block 50 is disposed at a position on the bottom surface direction DYB side of the output movable coupling portion 120 and the pair movable coupling portion 130 in the height direction DY.
- the fixed block 50 is disposed from a position on the front direction DZF side to a position on the back direction DZR side of the block coupling component 100.
- the fixed block 50 has a block shape.
- the fixed block 50 has a longitudinal portion in the movable direction DX.
- the fixed block 50 has a short portion in the width direction DZ.
- the fixed block 50 has a plurality of components.
- the plurality of components of the fixed block 50 include a core 51, a coil 52, an insulating component 53, and a support component 54.
- the fixed block 50 has a structure in which a plurality of components are coupled to each other.
- the plurality of components of the fixed block 50 form an integrated function by having an integrated relationship.
- the fixed block 50 is coupled to the fixing coupling portion 110 of the block coupling component 100 by a plurality of fastening components 42.
- the fixing block 50 and the fixing coupling part 110 have an integrated relationship.
- the core 51 is made of a magnetic material.
- the core 51 has a block shape in which slits are formed.
- the core 51 is disposed on the top surface of the support component 54.
- the core 51 is coupled to the support component 54.
- the core 51 has a maximum magnetic flux density suitable for driving the output movable block 60 and the pair movable block 70 in resonance.
- the coil 52 is made of a conductive material.
- the coil 52 is wound around the core 51.
- the coil 52 is electrically connected to the circuit board 13 (see FIG. 1) by a lead wire (not shown).
- the coil 52 is supplied with current from the circuit board 13.
- the coil 52 has a number of turns suitable for reciprocating the output movable block 60 and the pair movable block 70.
- the insulating component 53 is made of a non-conductive material.
- the insulating component 53 has a shape that covers the teeth of the core 51.
- the insulating component 53 is coupled to the teeth of the core 51.
- the insulating component 53 is disposed between the core 51 and the coil 52 (see FIG. 7).
- the insulating component 53 insulates the coil 52 from the core 51.
- the support component 54 is made of a resin material.
- the support component 54 has a shape similar to a flat plate shape.
- the support component 54 is disposed at a position on the bottom block direction DYB side of the fixed block 50.
- the support component 54 is coupled to the fixing coupling portion 110 by a plurality of fastening components 42.
- the configuration of the output movable block 60 will be described.
- the output movable block 60 is disposed between the protruding side support part 140 and the drawing side support part 150 in the movable direction DX.
- the output movable block 60 is disposed between the fixed coupling portion 110 and the output movable coupling portion 120 in the height direction DY.
- the output movable block 60 is arranged in the front direction DZF side with respect to the center line in the width direction DZ of the block coupling component 100 in the width direction DZ.
- the output movable block 60 has a rectangular shape.
- the output movable block 60 has a plurality of components.
- the plurality of components of the output movable block 60 include an output permanent magnet 61 and an output back yoke 62.
- the output movable block 60 has a structure in which a plurality of components are coupled to each other.
- the plurality of components of the output movable block 60 have an integrated relationship.
- the output movable block 60 is coupled to the output movable coupling portion 120 of the block coupling component 100 by a plurality of fastening components 41.
- the output movable block 60 and the output movable coupling portion 120 have an integrated relationship.
- the output permanent magnet 61 has a flat plate shape.
- the output permanent magnet 61 is coupled to the output back yoke 62 with an adhesive.
- the output permanent magnet 61 faces the fixed block 50 in the height direction DY (see FIG. 5).
- the output permanent magnet 61 forms an output-side gap 63 as a gap with the fixed block 50.
- the output permanent magnet 61 moves relative to the fixed block 50 in the movable direction DX under the influence of the magnetic field formed by the fixed block 50.
- the output permanent magnet 61 has a structure that moves in the movable direction DX by a phase opposite to that of the pair movable block 70.
- the output back yoke 62 is made of a magnetic material.
- the output back yoke 62 has a flat plate shape.
- the output back yoke 62 is coupled to the output movable coupling portion 120 of the block coupling component 100 by a plurality of fastening components 41.
- the output back yoke 62 increases the attractive force or attractive force of the output permanent magnet 61.
- the configuration of the kinematic movable block 70 will be described. 3 and 5 to 7 will be mainly referred to for the explanation of the kinematic movable block 70.
- the pair movable block 70 is disposed between the protruding side support part 140 and the drawing side support part 150 in the movable direction DX.
- the pair movable block 70 is disposed between the fixed coupling portion 110 and the pair movable coupling portion 130 in the height direction DY.
- the pair movable block 70 is disposed in the width direction DZ at a position closer to the back surface direction DZR than the center line of the block coupling component 100 in the width direction DZ.
- the even-moving block 70 has a rectangular shape.
- the pair movable block 70 has a plurality of components.
- the plurality of components of the pair movable block 70 include a pair permanent magnet 71 and a pair back yoke 72.
- the even-moving block 70 has a structure in which a plurality of components are coupled to each other.
- the plurality of components of the kinematic movable block 70 have an integrated relationship.
- the couple movable block 70 is coupled to the couple movable coupling portion 130 of the block coupling component 100 by a plurality of fastening components 41.
- the pair movable block 70 and the pair for pair movable 130 have an integrated relationship.
- the pair permanent magnet 71 has a flat plate shape.
- the pair permanent magnet 71 is coupled to the pair back yoke 72 by an adhesive.
- the pair permanent magnet 71 faces the fixed block 50 in the height direction DY (see FIG. 6).
- the even-numbered permanent magnet 71 forms a gap-side gap 73 as a gap with the fixed block 50.
- the pair permanent magnet 71 moves relative to the fixed block 50 in the movable direction DX under the influence of the magnetic field formed by the fixed block 50.
- the pair permanent magnet 71 has a structure that moves in the movable direction DX by a phase opposite to that of the output movable block 60.
- the pair back yoke 72 is made of a magnetic material.
- the pair back yoke 72 has a flat plate shape.
- the pair back yoke 72 is coupled to the pair movable coupling portion 130 of the block coupling component 100 by a plurality of fastening components 41.
- the pair back yoke 72 increases the attracting force or attractive force of the pair permanent magnet 71.
- the structure of the protrusion side connection component 80 is demonstrated.
- the protruding side connecting component 80 is arranged at a position closer to the protruding direction DXL than the block coupling component 100 in the movable direction DX.
- the protrusion-side connecting component 80 is disposed from the position on the top surface direction DYT side to the position on the bottom surface direction DYB side of the block coupling component 100.
- the protruding-side connecting component 80 is disposed from a location on the front direction DZF side to a location on the back direction DZR side of the block coupling component 100.
- the protruding side connecting part 80 is made of a resin material.
- the protrusion side connection component 80 has a shape similar to an annular shape.
- the protrusion side connection component 80 has a shape similar to a shape in which a part of a complete circular ring is cut out as an example of a shape similar to a circular shape.
- the protrusion-side connecting component 80 has an asymmetric shape with respect to the center line in the width direction DZ in a side view on the protrusion direction DXL side.
- the protruding side connecting part 80 includes a connecting part output side end 81, a connecting part pair side end 82, a connecting part space 83, and a connecting part separation part 84.
- the protrusion-side connecting component 80 has a structure capable of resonance driving the output movable block 60 and the pair movable block 70.
- the connecting part output side end 81 is connected to the output movable connecting part 120 of the block connecting part 100.
- the connecting component pair-side end 82 is coupled to the pair movable coupling portion 130 of the block coupling component 100.
- the connecting part space 83 is formed on the inner peripheral side of the protruding side connecting part 80 having an annular shape or a shape similar to the annular shape.
- the connecting part separating portion 84 is formed between the connecting part output side end 81 and the connecting part pair side end 82.
- the configuration of the pull-in side connecting component 90 will be described.
- the pull-in side connection component 90 is arranged at a position closer to the pull-in direction DXR than the block coupling component 100 in the movable direction DX.
- the lead-in side connecting component 90 is arranged in the height direction DY from the location on the top surface direction DYT side to the location on the bottom surface direction DYB side of the block coupling component 100.
- the lead-in side connection component 90 is arranged from the location on the front direction DZF side to the location on the back direction DZR side of the block coupling component 100.
- the lead-in side connection component 90 is formed of a resin material.
- the lead-in side connection component 90 has a shape similar to an annular shape.
- the drawing-side connecting component 90 has a shape similar to a shape in which a part of a complete circular ring is cut out as an example of a shape similar to a circular shape.
- the drawing-in side connecting component 90 has a symmetrical shape with respect to the center line in the width direction DZ in a side view on the protruding direction DXL side.
- the pull-in side connection component 90 includes a connection component output side end 91, a connection component pair-side end 92, a connection component space 93, and a connection component separation portion 94.
- the pull-in side connecting component 90 has a structure capable of resonance driving the output movable block 60 and the pair movable block 70.
- the connecting component output side end 91 is connected to the output movable connecting portion 120 of the block connecting component 100.
- the coupling component pair-side end 92 is coupled to the pair-moving coupling portion 130 of the block coupling component 100.
- the connecting part space 93 is formed on the inner peripheral side of the pull-in side connecting part 90.
- the connecting part separating portion 94 is formed between the connecting part output side end 91 and the connecting part pair side end 92.
- Each of the connecting parts 80 and 90 has a structure based on the following design concept.
- the protruding side connecting component 80 is adjacent to the output functional component 200 in the movable direction DX. For this reason, when the output movable block 60 and the pair movable block 70 reciprocate, the protrusion side connection component 80 has a possibility of contacting with the output functional component 200. For this reason, the protrusion side connection component 80 has a connection part contact-inhibition structure.
- the protrusion-side connecting component 80 is less likely to come into contact with the output functional component 200 by having the connecting portion contact suppressing structure.
- the connection part contact suppression structure has, as an example, the thickness of the protruding side connection part 80 included in the appropriate thickness range.
- the appropriate thickness range of the protrusion side connection component 80 has thickness thinner than the thickness of the drawing side connection component 90 as an example.
- the thickness of the projecting side connecting component 80 can be defined by the distance between the surface on the projecting direction DXL side and the surface on the retracting side of the projecting side connecting component 80 in the movable direction DX.
- the thickness of the drawing-side connecting component 90 can be defined by the distance between the surface on the protruding direction DXL side and the drawing-side surface of the drawing-side connecting component 90 in the movable direction DX.
- the protruding side connecting part 80 is assumed to have the same thickness as the drawing side connecting part 90 or thicker than the drawing side connecting part 90 because the thickness is smaller than the drawing side connecting part 90. As a result, a room for securing a gap with the output functional component 200 is increased. For this reason, the thickness of the protrusion side connection component 80 included in the appropriate thickness range contributes to the formation of the connection portion contact suppression structure.
- the thickness of the protruding side connecting part 80 affects the spring constant of the protruding side connecting part 80.
- the spring constant of the projecting side connecting component 80 affects the resonance drive of the output movable block 60 and the pair movable block 70. For this reason, when priority is given to setting the preferable spring constant of the protrusion side connection component 80 to include the thickness of the protrusion side connection component 80 in an appropriate thickness range, the preferable form of resonance drive may not be obtained. Occurs.
- the preferable form of the connection part contact suppression structure is obtained by making the thickness of the protrusion side connection component 80 thinner. For this reason, the design which improves the effect of the connection part contact suppression structure makes the spring constant of the protrusion side connection component 80 smaller.
- the resonance drive of the output movable block 60 and the pair movable block 70 is affected by the spring constant of the projecting side connecting part 80 and the spring constant of the drawing side connecting part 90.
- a preferable form of resonance driving can be obtained by adjusting the thickness of the drawing-side connecting component 90. it can.
- the protruding side connecting part 80 and the drawing side connecting part 90 have a thickness reflecting the above design concept.
- the thickness of the protrusion side connection component 80 contributes to forming the preferable form of a connection part contact-inhibition structure.
- the thickness of the pull-in side connecting component 90 is thicker than the thickness of the protruding side connecting component 80.
- the thickness of the pull-in side connecting component 90 compensates for a decrease in the spring constant of the protruding side connecting component 80 due to the thin thickness of the protruding side connecting component 80.
- the lead-in side coupling component 90 has a spring constant that forms a preferred form of resonant drive.
- the thickness of the lead-in side connection component 90 contributes to securing this spring constant.
- the spring constant of the projecting side connecting part 80 and the spring constant of the drawing side connecting part 90 form a preferable form of resonance driving.
- the protruding side connecting part 80 and the drawing side connecting part 90 have different shapes, thereby forming a preferable form of the connecting portion contact suppression structure and a preferable form of resonance driving.
- the block coupling component 100 is made of a resin material.
- the block coupling component 100 has a structure in which a plurality of component constituent parts are integrally formed of the same resin material.
- the plurality of component parts of the block coupling component 100 include two fixed coupling portions 110, an output movable coupling portion 120, a pair movable coupling portion 130, two projecting side support portions 140, and two pull-in side support portions 150. including.
- the plurality of component constituent parts of the block coupling component 100 further includes two output side resin inlet portions 121, an output side resin flow passage portion 122, an output protruding side connecting portion 123, and an output drawing side connecting portion 124.
- the plurality of component constituent parts of the block coupling component 100 further include two even-side resin inlet portions 131, an even-side resin flow passage portion 132, an even-projection-side connection portion 133, and an even-piece pull-in side connection portion 134.
- the block coupling component 100 has a plurality of functional parts. Each functional part has a structure capable of moving relative to other functional parts with the functional part as a unit.
- the fixed coupling portion 110, the output movable coupling portion 120, and the even-moving coupling portion 130 each form a functional part.
- the fixing coupling part 110 on the projecting direction DXL side is arranged at a position on the projecting direction DXL side with respect to the center line of the movable direction DX of the block coupling component 100 in the movable direction DX.
- the fixing coupling portion 110 on the pulling direction DXR side is disposed in the movable direction DX at a position closer to the pulling direction DXR side than the center line of the movable direction DX of the block coupling component 100.
- Each fixing coupling portion 110 is disposed at a position on the bottom surface direction DYB side of the block coupling component 100 in the height direction DY.
- Each fixing coupling portion 110 is arranged from the position on the front direction DZF side to the position on the back direction DZR side of the block coupling component 100 in the width direction DZ.
- Each fixing coupling part 110 has a block shape.
- the fixing coupling portion 110 on the protruding direction DXL side and the fixing coupling portion 110 on the drawing direction DXR side face each other in the movable direction DX.
- the fixing coupling portion 110 on the protruding direction DXL side is continuous with the protruding side support portion 140.
- the fixing coupling portion 110 on the drawing direction DXR side is continuous with the drawing-side support portion 150.
- Each fixing coupling portion 110 has a structure in which the fixing block 50 is sandwiched.
- Each fixing coupling portion 110 has a coupling portion support surface 111.
- the joint support surface 111 has a planar shape.
- the output movable coupling portion 120 is disposed between the protruding side connecting component 80 and the drawing side connecting component 90 in the movable direction DX.
- the output movable coupling portion 120 is disposed at a position on the top surface direction DYT side of the block coupling component 100 in the height direction DY.
- the output movable coupling portion 120 is disposed at a location closer to the front direction DZF than the center line of the block coupling component 100 in the width direction DZ.
- the output movable coupling portion 120 is integrally formed with two output side resin inlet portions 121, an output side resin flow passage portion 122, an output projecting side connecting portion 123, and an output drawing side connecting portion 124.
- the output movable coupling portion 120, the two output side resin inlet portions 121, the output side resin flow passage portion 122, the output protruding side connecting portion 123, and the output drawing side connecting portion 124 form one functional part.
- the output side resin inlet 121 has a rectangular shape.
- the output side resin inlet 121 has a longitudinal portion in the movable direction DX.
- the output side resin inlet part 121 is formed on the output side resin flow path part 122.
- the output side resin inlet portion 121 on the protruding direction DXL side and the output side resin inlet portion 121 on the drawing direction DXR side are formed with a gap in the movable direction DX.
- the output side resin flow path part 122 has a rectangular shape longer than the output side resin inlet part 121.
- the output side resin flow path part 122 has a longitudinal part in the movable direction DX.
- the output side resin flow path part 122 is formed on the output movable coupling part 120.
- the output-side resin flow path portion 122 is formed from the end portion on the protruding direction DXL side to the end portion on the pull-in direction DXR side of the output movable coupling portion 120.
- the output protruding side connecting portion 123 has a shape similar to a flat plate shape.
- the output protrusion side connection part 123 has a longitudinal part in the width direction DZ.
- the output protrusion side connection part 123 is continuous with the end part on the protrusion direction DXL side of the output side resin flow path part 122.
- the output protruding side connecting portion 123 connects the output side resin flow path portion 122, the protruding side support portion 140, and the protruding side connecting component 80 to each other.
- the output protrusion side connection part 123 has a planar shape at the top.
- the planar shape of the output projecting side connecting portion 123 forms a smooth flow of the resin material from the output side resin flow channel portion 122 to the projecting side supporting portion 140 and the projecting side connecting component 80 when the block coupling component 100 is molded. Contribute to that.
- the output lead-in side connecting portion 124 has a shape similar to a flat plate shape.
- the output drawing side connection part 124 has a longitudinal part in the width direction DZ.
- the output drawing side connecting portion 124 is continuous with the end portion on the drawing direction DXR side of the output side resin flow passage portion 122.
- the output drawing side connecting part 124 connects the output side resin flow path part 122, the drawing side support part 150, and the drawing side connecting part 90 to each other.
- the output drawing side connection part 124 has a planar shape at the top.
- the planar shape of the output drawing side connecting portion 124 forms a smooth flow of the resin material from the output side resin flow channel portion 122 to the drawing side supporting portion 150 and the drawing side connecting component 90 when the block coupling component 100 is molded. Contribute to that.
- the coupling part for movable pair 130 is arranged between the protruding side connecting part 80 and the drawing side connecting part 90 in the moving direction DX.
- the couple movable coupling part 130 is disposed at a position on the top surface direction DYT side of the block coupling component 100 in the height direction DY.
- the pair of movable couples 130 is disposed in the width direction DZ at a position closer to the back surface direction DZR than the center line of the block connection component 100 in the width direction DZ.
- the couple-moving coupling part 130 is integrally formed with two pair-side resin inlet parts 131, a pair-side resin flow path part 132, a pair projection-side connection part 133, and a pair drawing-in side connection part 134.
- the pair of movable couples 130, the pair of resin inlets 131, the pair of resin flow passages 132, the pair of protruding protrusions 133, and the pair of pulling-in connections 134 form one functional part.
- the even-side resin inlet 131 has a rectangular shape.
- the even-side resin inlet portion 131 has a longitudinal portion in the movable direction DX.
- the even-side resin inlet portion 131 is formed on the even-side resin flow path portion 132.
- the even-side resin inlet portion 131 on the protruding direction DXL side and the even-side resin inlet portion 131 on the drawing direction DXR side are formed with an interval in the movable direction DX.
- the even-side resin flow path part 132 has a longer rectangular shape than the even-side resin inlet part 131.
- the even-side resin flow path portion 132 has a longitudinal portion in the movable direction DX.
- the even-side resin flow path portion 132 is formed on the couple-moving coupling portion 130.
- the pair-side resin flow path portion 132 is formed from the end portion on the protruding direction DXL side to the end portion on the pull-in direction DXR side of the pair-moving coupling portion 130.
- the even number protrusion side connecting part 133 has a shape similar to a flat plate shape.
- the even number protrusion side coupling part 133 has a longitudinal portion in the width direction DZ.
- the even-numbered protrusion side connecting portion 133 is continuous with the end portion on the protruding direction DXL side of the even-side resin flow path portion 132.
- the even-numbered protrusion-side connecting portion 133 connects the even-side resin flow path portion 132, the protruding-side support portion 140, and the protruding-side connecting component 80 to each other.
- the even number protrusion side coupling part 133 has a planar shape at the top.
- the planar shape of the even-numbered protrusion-side connecting portion 133 forms a smooth flow of the resin material from the pair-side resin flow path portion 132 to the protruding-side support portion 140 and the protruding-side connecting component 80 when the block coupling component 100 is molded. Contribute to that.
- the even number drawing side connecting part 134 has a shape similar to a flat plate shape.
- the even number drawing side connection part 134 has a longitudinal part in the width direction DZ.
- the even number drawing side connecting part 134 is continuous with the end part on the drawing direction DXR side of the pair side resin flow path part 132.
- the even-numbered protrusion-side connecting portion 133 connects the pair-side resin flow path portion 132, the drawing-side support portion 150, and the drawing-side connecting component 90 to each other.
- the pair drawing side connection part 134 has a planar shape at the top.
- the planar shape of the even-number pull-in side connecting portion 134 forms a smooth flow of the resin material from the pair-side resin flow path portion 132 to the pull-in side supporting portion 150 and the pull-in side connecting component 90 when the block coupling component 100 is molded. Contribute to that.
- the structure of the protrusion side support part 140 is demonstrated.
- the description regarding the protrusion side support part 140 mainly refers to FIG. 3, FIG. 7, FIG. 11, and FIG.
- the protruding side support part 140 is disposed between the fixing coupling part 110 on the protruding direction DXL side and the protruding side connecting part 80 in the movable direction DX.
- the protruding side support part 140 includes a protruding side deformable part 141 and a protruding side connecting part 142.
- the protrusion side support part 140 on the front direction DZF side is arranged at a position on the bottom surface direction DYB side of the output protrusion side coupling part 123 in the height direction DY.
- the protrusion-side support part 140 on the front direction DZF side is disposed in a position on the front direction DZF side with respect to the center line in the width direction DZ of the block coupling component 100 in the width direction DZ.
- the protrusion side support part 140 on the back surface direction DZR side is disposed at a position on the bottom surface direction DYB side of the pair protrusion protrusion side coupling part 133 in the height direction DY.
- the protrusion-side support part 140 on the back surface direction DZR side is disposed in a position on the back surface direction DZR side with respect to the center line in the width direction DZ of the block coupling component 100 in the width direction DZ.
- the projecting side deformable portion 141 has a thin plate shape.
- the protrusion-side deformable portion 141 has a longitudinal portion in the height direction DY.
- the protruding side deformable portion 141 has a short portion in the width direction DZ.
- the protrusion-side deformation portion 141 has a structure in which the deformation amount in the longitudinal direction is smaller than the deformation amount in the movable direction DX.
- the protrusion-side deformation portions 141 are deformed independently of each other in the movable direction DX.
- the front-side DZF-side protruding side deformable portion 141 is coupled to the output protruding side connecting portion 123.
- the protrusion-side deforming portion 141 on the front direction DZF side defines the position of the portion on the protrusion direction DXL side of the output movable coupling portion 120 with respect to the fixing coupling portion 110 in the height direction DY.
- the protrusion-side deforming portion 141 on the front direction DZF side allows translation of the output movable block 60 with respect to the fixed block 50 in the movable direction DX.
- the protrusion-side deformed portion 141 on the back side DZR side is coupled to the even-numbered protrusion-side connecting portion 133.
- the protrusion-side deforming portion 141 on the back surface direction DZR side defines the position of the portion on the protrusion direction DXL side of the couple movable coupling portion 130 with respect to the fixing coupling portion 110 in the height direction DY.
- the protrusion-side deforming portion 141 on the back direction DZR side allows translation of the even-numbered movable block 70 relative to the fixed block 50 in the movable direction DX.
- the protruding side connecting portion 142 has a rectangular shape.
- the front-side DZF-side protruding side connecting portion 142 connects the fixing coupling portion 110 on the protruding direction DXL side and the front-side DZF-side protruding side deformable portion 141 to each other.
- the protrusion-side connecting portion 142 on the back surface direction DZR side connects the fixing coupling portion 110 on the protrusion direction DXL side and the protrusion-side deformable portion 141 on the back surface direction DZR side.
- the structure of the drawing-in side support part 150 will be described. The description regarding the drawing-in side support part 150 will mainly refer to FIGS. 3, 7, 10, and 13.
- the drawing-side support part 150 is arranged between the fixing coupling part 110 on the drawing direction DXR side and the drawing-side connecting component 90 in the movable direction DX.
- the pull-in side support part 150 includes a pull-in side deformation part 151 and a pull-in side connection part 152.
- the front-side DZF-side drawing-side support 150 is arranged at a location on the bottom side DYB side of the output drawing-side connecting portion 124 in the height direction DY.
- the lead-in side support part 150 on the front direction DZF side is arranged at a position on the front direction DZF side with respect to the center line in the width direction DZ of the block coupling component 100 in the width direction DZ.
- the pull-in side support part 150 on the back surface direction DZR side is disposed at a position on the bottom surface direction DYB side of the pair pull-in side connecting part 134 in the height direction DY.
- the drawing-side support 150 on the back side DZR side is arranged in the back side DZR side of the block connecting component 100 with respect to the center line in the width direction DZ in the width direction DZ.
- the pull-in side deformed portion 151 has a thin plate shape.
- the drawing-side deformable portion 151 has a longitudinal portion in the height direction DY.
- the pull-in side deformed portion 151 has a short portion in the width direction DZ.
- the pull-in side deformation portion 151 has a structure in which the deformation amount in the longitudinal direction is smaller than the deformation amount in the movable direction DX.
- the pull-in side deformation portions 151 are deformed independently of each other in the movable direction DX.
- the pull-in side deformation portion 151 on the front direction DZF side is coupled to the output pull-in side connection portion 124.
- the front-side DZF-side pull-in side deformation portion 151 defines the position of the portion on the pull-in direction DXR side of the output movable coupling portion 120 with respect to the fixing coupling portion 110 in the height direction DY.
- the pull-in side deformation portion 151 on the front direction DZF side allows translation of the output movable block 60 with respect to the fixed block 50 in the movable direction DX.
- the pull-in side deformed portion 151 on the back side direction DZR side is coupled to the pair pull-in side connecting portion 134.
- the drawing-side deforming portion 151 on the back side DZR side defines the position of the portion on the drawing direction DXR side of the pair of movable coupling portions 130 with respect to the fixing coupling portion 110 in the height direction DY.
- the retracting side deforming portion 151 on the back side direction DZR side allows translation of the even-numbered movable block 70 relative to the fixed block 50 in the movable direction DX.
- the lead-in side connection part 152 has a rectangular shape.
- the front-side DZF-side pull-in side connecting part 152 connects the fixing coupling part 110 on the front-side direction DXR side and the front-side DZF-side pull-in side deforming part 151 to each other.
- the drawing-side connecting portion 152 on the back side DZR side connects the fixing coupling portion 110 on the drawing direction DXR side and the drawing side deforming portion 151 on the back side DZR side.
- the protrusion side support part 140 and the drawing side support part 150 have the following functions.
- the protrusion-side support part 140 on the front direction DZF side and the pull-in side support part 150 on the front direction DZF side define the position of the output movable block 60 in the height direction DY with respect to the fixed block 50.
- the protrusion-side support part 140 and the retracting-side support part 150 on the front direction DZF side define the position of the output movable block 60 in the height direction DY, thereby forming an output-side gap 63.
- the rear side support part 140 on the rear side DZR side and the rear side support part 150 on the rear side DZR side define the position of the pair movable block 70 in the height direction DY with respect to the fixed block 50.
- the protrusion-side support part 140 and the retracting-side support part 150 on the back side direction DZR side define the position of the pair movable block 70 in the height direction DY, thereby forming the pair side gap 73.
- the front-side direction DZF-side protruding side deformable portion 141 and the front-side direction DZF-side retracting-side deformable portion 151 restrict the movement direction of the output movable block 60 relative to the fixed block 50 to the movable direction DX. For this reason, the output movable block 60 translates in the movable direction DX by the electromagnetic force acting between the fixed block 50.
- the rear-surface-direction DZR-side projecting-side deformable portion 141 and the back-surface-direction DZR-side retracting-side deformable portion 151 restrict the movement direction of the even-numbered movable block 70 relative to the fixed block 50 to the movable direction DX. For this reason, the pair movable block 70 is translated in the movable direction DX by the electromagnetic force acting between the fixed block 50.
- the configuration of the output functional component 200 will be described.
- the output functional component 200 is disposed at a position closer to the protruding direction DXL than the counter-functional component 300 in the movable direction DX.
- the output functional component 200 is disposed at a position closer to the top surface direction DYT than the block coupling component 100 in the height direction DY.
- the functional component 200 for output is arrange
- the output functional component 200 is made of a resin material.
- the output functional component 200 has a longitudinal portion in the movable direction DX.
- the output functional component 200 has a short portion in the width direction DZ.
- the output functional component 200 is coupled to the output movable coupling portion 120 by a plurality of fastening components 41.
- the output functional component 200 and the output movable coupling portion 120 have an integrated relationship.
- the output functional component 200 has a structure in which a plurality of component components are integrally formed of the same resin material.
- the plurality of component components of the output functional component 200 include an output component main body 210, an output shaft coupling unit 220, an output component reinforcing unit 230, an internal structure protection unit 240, a load receiving unit 250, and a component receiving unit 260. .
- the output component main body 210 has a flat plate shape.
- the output component main body part 210 is disposed on the top surfaces of the output movable coupling part 120 and the pair movable coupling part 130.
- the output part main body 210 is coupled to the output movable coupling part 120 by a plurality of fastening parts 41.
- the output component main body 210 forms a basic portion of the output functional component 200.
- the output shaft coupling portion 220 is disposed at a position closer to the projecting direction DXL than the projecting side connecting component 80 in the movable direction DX.
- the output shaft coupling portion 220 is continuous with the output component main body portion 210 and the output component reinforcing portion 230.
- the output shaft coupling portion 220 includes a coupling portion base portion 221, a coupling portion base surface 222, a coupling portion peripheral wall portion 223, and a coupling portion inner space 224.
- the joint base portion 221 has a flat plate shape.
- the coupling portion base 221 is continuous with the end portion on the protruding direction DXL side of the output component main body portion 210 and the end portion on the protruding direction DXL side of the output component reinforcing portion 230.
- the coupling portion base portion 221 forms a gap with the protruding side connecting component 80.
- the coupling portion base portion 221 faces the protruding side support portion 140 via the connecting part space 83 in the movable direction DX.
- the joint base surface 222 has a planar shape.
- the coupling portion base surface 222 is formed in a portion of the coupling portion base portion 221 on the protruding direction DXL side.
- the joint base surface 222 is parallel to the planar direction.
- the connecting portion peripheral wall portion 223 has a column shape.
- the connecting portion peripheral wall portion 223 is continuous with the connecting portion base portion 221.
- the connecting portion peripheral wall portion 223 protrudes from the connecting portion base surface 222 in the protruding direction DXL.
- the coupling portion peripheral wall portion 223 forms a coupling portion inner space 224 (see FIG. 7).
- the coupling portion peripheral wall portion 223 accommodates the shaft base portion 21 in the coupling portion inner space 224.
- the coupling portion peripheral wall portion 223 is coupled to the shaft base portion 21.
- the coupling portion peripheral wall portion 223 has a structure surrounding the outer periphery of the shaft base portion 21.
- the output part reinforcing part 230 is continuous with the output part main body part 210.
- the output component reinforcing portion 230 includes an output side reinforcing portion 231 and an even number side reinforcing portion 232.
- the output component reinforcing portion 230 has a structure for reinforcing the output component main body portion 210, a structure for reinforcing the output shaft coupling portion 220, and a structure for reinforcing the connection portion between the output component main body portion 210 and the output shaft coupling portion 220.
- the output part reinforcement part 230 has a gap confirmation structure and a reinforcement part contact suppression structure.
- the output side reinforcing portion 231 is arranged from the end portion on the pulling direction DXR side to the end portion on the protruding direction DXL side of the output component main body portion 210 in the movable direction DX.
- the output-side reinforcing portion 231 is disposed at a position closer to the front direction DZF than the block coupling component 100 in the width direction DZ.
- the output-side reinforcing portion 231 is continuous with the portion on the front direction DZF side of the output component main body portion 210.
- the pair-side reinforcing portion 232 is disposed at a position on the projecting direction DXL side of the output component main body 210 in the movable direction DX.
- the pair-side reinforcing portion 232 is disposed at a position on the back surface direction DZR side of the block coupling component 100 in the width direction DZ.
- the pair-side reinforcing portion 232 is continuous with the portion of the output component main body portion 210 on the back direction DZR side.
- the gap confirmation structure will be described. Refer mainly to FIG. 5 and FIG. 6 for the description regarding the gap confirmation structure.
- the gap confirmation structure has an output-side gap confirmation structure for confirming the output-side gap 63 (FIG. 5) and an even-side gap confirmation structure for confirming the even-side gap 73 (FIG. 6). If the output-side gap confirmation structure does not exist, it is difficult to confirm the size and shape of the output-side gap 63 after the output functional component 200 is coupled to the block coupling component 100 in the manufacturing process. In the manufacturing process, it is difficult to confirm the size and shape of the even-side gap 73 after the paired functional component 300 is coupled to the block coupling component 100 when the opposed-side gap confirmation structure does not exist.
- the output side gap confirmation structure has a structure in which the output side gap 63 is exposed to the outside of the electric linear actuator 40 when the electric linear actuator 40 is viewed from the front.
- the output-side gap confirmation structure has a structure in which the edge of the output-side reinforcing portion 231 adjacent to the output movable block 60 is formed at a position closer to the top surface direction DYT than the output-side gap 63. For this reason, the output side gap confirmation structure improves the workability regarding the confirmation of the output side gap 63 after the output functional component 200 is coupled to the block coupling component 100.
- the even-side gap confirmation structure has a structure in which the opposite-side gap 73 is exposed to the outside of the electric linear actuator 40 in the rear view of the electric linear actuator 40.
- the pair-side gap confirmation structure has a structure in which the pair-side reinforcing portion 232 is not disposed at a location adjacent to the pair movable block 70. For this reason, the pair-side gap confirmation structure improves workability regarding confirmation of the pair-side gap 73 after the pair-side functional component 300 is coupled to the block coupling component 100.
- the reinforcing portion contact suppression structure will be described. Refer to FIGS. 4 to 6 mainly for the description of the reinforcing portion contact suppression structure.
- the electric linear actuator 40 has a possibility that the pair-side reinforcing portion 232 comes into contact with at least one of the pair movable block 70 and the pair movable pair 130. The reason can be described as follows.
- the even-side reinforcing portion 232 has an integrated relationship with the output movable block 60 and the output movable coupling portion 120. For this reason, the pair-side reinforcing portion 232 moves in the same phase as the output movable block 60 and the output movable coupling portion 120. On the other hand, the pair-side reinforcing portion 232 moves in a phase opposite to that of the pair-movable block 70 and the pair-moving coupling portion 130. For this reason, when the pair-side reinforcing portion 232 moves in the movable direction DX, the pair-side reinforcing portion 232 may come into contact with at least one of the pair movable block 70 and the pair movable pair 130.
- the reinforcement part contact suppression structure has a structure that suppresses contact between the pair-side reinforcing part 232, the pair-movable block 70, and the pair-moving coupling part 130.
- the reinforcement part contact suppression structure has the length of the pair side reinforcement part 232 included in an appropriate length range as an example.
- the length of the pair-side reinforcing portion 232 is defined by the distance from the end portion on the protruding direction DXL side of the pair-side reinforcing portion 232 in the movable direction DX to the end portion on the pull-in direction DXR side of the pair-side reinforcing portion 232. be able to.
- the reinforcement part contact suppression structure has the length of the pair side reinforcement part 232 shorter than the length of the output side reinforcement part 231 as an example of the length included in the appropriate length range.
- the reinforcing portion contact suppression structure has a length from the coupling portion base portion 221 to a location closer to the protruding direction DXL than the pair movable block 70.
- the reinforcing portion contact suppression structure has a length from the coupling portion base portion 221 to a location adjacent to the protruding side connecting component 80.
- Reinforcing part contact suppression structure has the following effects. Since the pair-side reinforcing portion 232 has a length included in the appropriate length range, a space (hereinafter referred to as “contact suppression space”) is formed between the pair-movable block 70 and the pair-moving coupling portion 130. Since the pair-side reinforcing portion 232 has the length of the pair-side reinforcing portion 232 that is shorter than the length of the output-side reinforcing portion 231, a larger contact suppression space is formed. Since the pair-side reinforcing portion 232 has a length from the coupling portion base portion 221 to a portion on the protruding direction DXL side with respect to the pair movable block 70, a larger contact suppression space is formed.
- the pair-side reinforcing portion 232 has a length from the coupling portion base portion 221 to a portion adjacent to the protruding-side connecting component 80, a larger contact suppression space is formed. For this reason, the pair-side reinforcing portion 232 is unlikely to come into contact with the pair-movable block 70 and the pair-moving coupling portion 130 when reciprocating in the movable direction DX.
- the configuration of the internal structure protection unit 240 will be described.
- the internal structure protection unit 240 has a structure that suppresses damage to the internal structure of the electric linear actuator 40 due to the force acting on the output shaft 20.
- the internal structure protection unit 240 receives the force acting on the output shaft 20 in cooperation with the main body side protection unit 32 of the main body case 30, thereby suppressing damage to the internal structure.
- the internal structure of the electric linear actuator 40 includes a block coupling component 100, a component formed integrally with the block coupling component 100, and a component coupled to the block coupling component 100 inside the block coupling component 100.
- the internal structure protection unit 240 has a structure integrated with the output functional component 200 as an example.
- the internal structure protection unit 240 includes a push movement restriction part 241, a pulling movement restriction part 242, a first rotation restriction part 243, and a second rotation restriction part 244.
- the main body side protection part 32 forms a part of the main body case 30.
- the main body side protection part 32 is integrally formed of the same material as the case peripheral wall part 31.
- the main body side protection unit 32 includes a main body side push restricting portion 33, a main body side pulling restricting portion 34, and a main body side rotation restricting portion 35.
- the main body side rotation restricting portion 35 includes a main body side first restricting portion 35A and a main body side second restricting portion 35B (see FIG. 18).
- the push movement restricting portion 241 has a structure shown in FIG. 17 as an example.
- the push movement restricting portion 241 is continuous with the end portion on the bottom surface direction DYB side of the output side reinforcing portion 231.
- the push movement restricting portion 241 is coupled to the output side reinforcing portion 231.
- the push movement restricting portion 241 is disposed at a position closer to the protruding direction DXL than the main body push restricting portion 33 in the movable direction DX.
- the push movement restricting portion 241 faces the main body push restricting portion 33 in the movable direction DX.
- the push movement restricting portion 241 forms a gap with the main body side push restricting portion 33.
- the push movement restricting portion 241 When the load that moves the output shaft 20 in the pull-in direction DXR acts on the output shaft 20, the push movement restricting portion 241 receives the load acting on the output shaft 20 by contacting with the main body side push restricting portion 33. In other words, the push movement restricting portion 241 receives a load in the push direction from the output shaft 20 to the block coupling component 100 by contacting the main body case 30 (here, the main body side push restricting portion 33). For this reason, damage to the internal structure of the electric linear actuator 40 due to the load in the pull-in direction DXR (push-in direction) acting on the output shaft 20 is suppressed.
- the gap between the push movement restricting portion 241 and the main body side push restricting portion 33 is such that the push movement restricting portion 241 and the main body side push restricting portion 33 come into contact with each other before the internal structure is damaged due to the load in the pull-in direction DXR. It has a size within the range.
- the pulling movement restricting unit 242 has a structure shown in FIG. 17 as an example.
- the drawing movement restricting portion 242 is continuous with the end portion on the bottom surface direction DYB side of the output side reinforcing portion 231.
- the drawing movement restricting portion 242 is coupled to the output side reinforcing portion 231.
- the pulling movement restricting portion 242 is disposed at a position closer to the pulling direction DXR than the main body pulling restricting portion 34 in the movable direction DX.
- the pulling movement restricting portion 242 faces the pulling movement restricting portion 242 in the movable direction DX.
- the pulling movement restricting portion 242 forms a gap with the main body side pulling restricting portion 34.
- the pulling movement restricting portion 242 When the load that moves the output shaft 20 in the protruding direction DXL acts on the output shaft 20, the pulling movement restricting portion 242 receives the load acting on the output shaft 20 by contacting with the body-side pulling restricting portion 34. In other words, the pulling movement restricting portion 242 receives a load in the pulling direction from the block coupling component 100 to the output shaft 20 by contacting the main body case 30 (here, the main body side pulling restricting portion 34). For this reason, it is suppressed that the internal structure of the electric linear actuator 40 is damaged due to the load in the protruding direction DXL (pulling direction) acting on the output shaft 20.
- the clearance between the pulling movement restricting portion 242 and the main body side pulling restricting portion 34 is such that the pulling movement restricting portion 242 and the main body side pulling restricting portion 34 come into contact with each other before the internal structure is damaged due to the load in the protruding direction DXL. It has a size within the range.
- the first rotation restricting portion 243 has a structure shown in FIG. 18 as an example.
- the first rotation restricting portion 243 is formed on the outer peripheral portion of the component receiving portion 260.
- the first rotation restricting portion 243 has a planar outer surface.
- the first rotation restricting portion 243 faces the main body side first restricting portion 35A in the planar direction.
- the first rotation restricting portion 243 forms a gap with the main body side first restricting portion 35A.
- the first rotation restricting portion 243 makes contact with the main body side first restricting portion 35 ⁇ / b> A, thereby generating the rotational force that acts on the output shaft 20. receive. For this reason, it is suppressed that the internal structure of the electric linear actuator 40 is damaged due to the rotational force acting on the output shaft 20.
- the clearance between the first rotation restricting portion 243 and the main body side first restricting portion 35 ⁇ / b> A causes the first rotation restricting portion 243 and the main body side first restriction before the internal structure is damaged due to the rotational force of the output shaft 20.
- the portions 35A have a size within a range where they are in contact with each other.
- the second rotation restricting portion 244 has a structure shown in FIG. 18 as an example.
- the second rotation restricting portion 244 is formed on the outer peripheral portion of the coupling portion peripheral wall portion 223.
- the second rotation restricting portion 244 has a planar outer surface.
- the second rotation restricting portion 244 faces the main body side second restricting portion 35B in the plane direction.
- the second rotation restricting portion 244 forms a gap with the main body side second restricting portion 35B.
- the second rotation restricting portion 244 comes into contact with the main body-side second restricting portion 35 ⁇ / b> B, thereby generating the rotational force that acts on the output shaft 20. receive. For this reason, it is suppressed that the internal structure of the electric linear actuator 40 is damaged due to the rotational force acting on the output shaft 20.
- the gap between the second rotation restricting portion 244 and the main body side second restricting portion 35B causes the second rotation restricting portion 244 and the main body side second restricting portion before the internal structure is damaged due to the rotational force of the output shaft 20.
- the portions 35B have a size within a range where they contact each other.
- the gap between the second rotation restricting portion 244 and the main body side second restricting portion 35B has a size corresponding to the gap between the first rotation restricting portion 243 and the main body side first restricting portion 35A.
- the gaps having a corresponding relationship include the amount of rotation until the first rotation restricting portion 243 and the main body side first restricting portion 35A come into contact with each other, and the second rotation restricting portion 244 and the main body side second restricting portion 35B in contact with each other. The amount of rotation until it is made substantially equal.
- the extraction movement restricting portion 242 also has a function as a rotation restricting portion that receives the rotational force of the output shaft 20.
- the pulling movement restricting portion 242 has a structure shown in FIG. 19 as an example.
- the drawing movement restricting portion 242 has a planar outer surface.
- the drawing movement restricting portion 242 faces the main body side rotation restricting portion 35 in the plane direction.
- the pull-out movement restricting portion 242 forms a gap with the main body side rotation restricting portion 35.
- the pulling movement restricting portion 242 When the force that rotates the output shaft 20 around the center line is applied to the output shaft 20, the pulling movement restricting portion 242 receives the rotational force that acts on the output shaft 20 by contacting the main body side rotation restricting portion 35. For this reason, it is suppressed that the internal structure of the electric linear actuator 40 is damaged due to the rotational force acting on the output shaft 20.
- the clearance between the pulling movement restricting portion 242 and the main body side rotation restricting portion 35 is such that the pulling movement restricting portion 242 and the main body side rotation restricting portion 35 are mutually connected before the internal structure is damaged due to the rotational force of the output shaft 20. It has a size within the contact area.
- the gap between the extraction movement restricting portion 242 and the main body side rotation restricting portion 35 has a size corresponding to the gap between the first rotation restricting portion 243 and the main body side first restricting portion 35A.
- the gaps having a corresponding relationship are the amount of rotation until the first rotation restricting portion 243 and the main body side first restricting portion 35A come into contact with each other, and until the extraction movement restricting portion 242 and the main body side rotation restricting portion 35 come into contact with each other. Is substantially equal to the rotation amount.
- the configuration of the load receiving unit 250 will be described. Refer to FIGS. 4 to 6 and FIG. 16 mainly for the description of the load receiving unit 250.
- the load receiving portion 250 has an annular shape.
- the outer peripheral surface of the load receiving portion 250 has a curved surface similar to a spherical surface.
- a curved surface similar to a spherical surface is similar to an outer peripheral surface formed by one round of a band-shaped portion including a maximum diameter portion of a sphere.
- the load receiving portion 250 is coupled to the coupling portion peripheral wall portion 223.
- the load receiving portion 250 is formed on the outer periphery of the coupling portion peripheral wall portion 223.
- the load receiving portion 250 protrudes from the coupling portion peripheral wall portion 223 in the planar direction.
- the load receiving portion 250 has a structure that receives a load acting on the output shaft 20. When receiving a load that tilts the output shaft 20 with respect to the center line of the main body case 30, the load receiving portion 250 receives this load by contacting the case load receiving portion 37 of the main body case 30. Since the load receiving portion 250 has a curved surface similar to a spherical surface, it is difficult to form a nonuniform surface pressure distribution on the case load receiving portion 37.
- the structure of the component receiving part 260 is demonstrated. Refer to FIGS. 4 to 6 and FIG. 16 mainly for the description of the component receiving portion 260.
- the component receiving part 260 has a shape similar to an annular shape.
- the component receiving part 260 is coupled to the coupling part peripheral wall part 223.
- the component receiving portion 260 is formed on the outer periphery of the coupling portion peripheral wall portion 223.
- the component receiving portion 260 protrudes from the coupling portion peripheral wall portion 223 in the planar direction.
- the component receiving part 260 is formed at a location closer to the protruding direction DXL in the movable direction DX than the load receiving part 250.
- the component receiving portion 260 is formed at a position on the most protruding direction DXL side of the electric linear actuator 40 in the movable direction DX.
- the component receiving unit 260 has a component receiving surface 261.
- the component receiving portion 260 has a structure that supports the elastic component 16 of the electric device main body 11 by the component receiving surface 261.
- the elastic component 16 is made of an elastic material.
- the elastic part 16 has a shape similar to a cylindrical shape.
- the elastic component 16 is fitted in the fitting groove 23 of the output shaft 20.
- the elastic component 16 has a structure that seals a portion between the opening portion of the main body case 30 and the output shaft 20.
- the component receiving surface 261 has a planar shape.
- the component receiving surface 261 is parallel to the planar direction.
- the component receiving surface 261 forms a surface of a portion on the protruding direction DXL side in the component receiving portion 260.
- the component receiving surface 261 is in contact with the elastic component 16.
- the component receiving surface 261 supports the elastic component 16 from the drawing direction DXR side, thereby restricting the elastic component 16 from moving to the drawing direction DXR side with respect to the output shaft 20.
- the parts receiver 260 has the following effects.
- the component receiver 260 supports the elastic component 16. For this reason, it is suppressed that the sealing performance of the main body case 30 falls because the position of the elastic component 16 with respect to the output shaft 20 changes.
- the component receiving portion 260 has an advantageous effect as compared with the structure of the comparative example that supports the elastic component 16.
- the structure of the comparative example supports the elastic component 16 with a retaining ring.
- the structure of the comparative example has a retaining ring fitting groove on the output shaft 20 into which a retaining ring is fitted.
- the retaining ring fitting groove is formed closer to the drawing direction DXR than the fitting groove 23.
- the retaining ring is fitted into the retaining ring fitting groove.
- the retaining ring supports the elastic component 16 from the drawing direction DXR side.
- the structure of the comparative example requires a retaining ring and a retaining ring fitting groove.
- the component receiving part 260 makes it possible to omit the retaining ring and the retaining ring fitting groove. Since the output shaft vibration type electric device 10 has the component receiving portion 260, the retaining ring and the retaining ring fitting groove are omitted. For this reason, the man-hour of the process with respect to the output shaft 20 is reduced. Moreover, the process of fitting the retaining ring with the retaining ring fitting groove is reduced. For this reason, the component receiving part 260 contributes to the improvement of the manufacturing efficiency of the output shaft vibration type electric apparatus 10.
- the configuration of the kinematic function component 300 will be described.
- the kinematic function component 300 is arranged at a position closer to the drawing direction DXR than the output function component 200 in the movable direction DX.
- the paired functional component 300 is arranged at a location on the top surface direction DYT side of the block coupling component 100 in the height direction DY.
- the functional component 300 for pairs is arranged in the width direction DZ from a location on the front direction DZF side to a location on the back direction DZR side of the block coupling component 100.
- the functional component 300 for a pair is made of a metal material.
- the paired functional component 300 has a longitudinal portion in the movable direction DX.
- the even-numbered functional component 300 has a short portion in the width direction DZ.
- the paired functional component 300 is coupled to the pair movable coupling portion 130 by a plurality of fastening components 41.
- the paired functional component 300 and the pair movable joint 130 have an integrated relationship.
- the kinematic function component 300 has a structure in which a plurality of component components are integrally formed of the same metal material.
- the plurality of component component parts of the kinematic function component 300 includes a kinematic component main body 310 and a kinematic component adjusting unit 320.
- the paired functional component 300 has a structure divided into a paired component main body 310 and a paired component adjusting unit 320.
- the functional component 300 for pairs is formed by bending a plate material.
- the kinematic pair functional component 300 forms a vibration reduction structure together with the additional adjustment component 400.
- the kinematic part main body 310 has a flat plate shape.
- the paired component main body 310 is disposed on the top surfaces of the output movable coupling portion 120 and the pair movable coupling portion 130.
- the output component main body 210 is coupled to the pair movable coupling unit 130 by a plurality of fastening components 41.
- the kinematic part main body 310 forms the basic part of the kinematic function component 300.
- the kinematic part adjustment unit 320 has a flat plate shape.
- the kinematic part adjustment unit 320 is arranged at a position closer to the drawing direction DXR than the drawing side connecting part 90 in the movable direction DX. That is, the even-part adjusting unit 320 is arranged on the drawing direction DXR side with respect to the pair movable block 70.
- the even-part adjusting unit 320 faces the drawing-side connecting component 90 through a gap in the movable direction DX.
- the even-part adjusting unit 320 is coupled to the additional adjusting part 400.
- the even-part adjusting unit 320 has a structure for balancing the weight of the function coupling unit including the output movable block 60 and the weight of the functional coupling unit including the pair movable block 70.
- the additional adjustment component 400 is made of a metal material.
- the additional adjustment component 400 has a cylindrical shape.
- the additional adjustment component 400 is formed separately from the pair function component 300.
- the additional adjustment component 400 is coupled to the counter component adjustment unit 320 by bonding.
- the additional adjustment component 400 is disposed at a position closer to the projecting direction DXL than the counter component adjustment unit 320 in the movable direction DX.
- a part of the additional adjustment component 400 is disposed in the connection component space 93.
- the additional adjustment component 400 has a structure for balancing the weight of the function coupling portion including the output movable block 60 and the weight of the function coupling portion including the even-number movable block 70.
- the vibration reducing structure will be described.
- the vibration reduction structure has a first vibration reduction structure and a second vibration reduction structure.
- undesirable vibrations may occur in the electric linear actuator 40. The reason is described below.
- the output movable block 60 is coupled to the output functional component 200.
- the output functional component 200 is coupled to the output shaft 20.
- the output movable block 60 receives a load from the output functional component 200 and the output shaft 20.
- the first vibration reducing structure balances the load applied to the output movable block 60 and the pair movable block 70. In other words, when there is no first vibration reduction structure, the load applied to the output movable block 60 and the pair movable block 70 may become unbalanced. When the load applied to the output movable block 60 and the pair movable block 70 is unbalanced, an undesirable vibration may occur in the electric linear actuator 40 due to the inertial force of the output movable block 60.
- the first vibration reduction structure balances the load applied to the functional coupling unit including the output movable block 60 and the load applied to the functional coupling unit including the even-moving movable block 70, so that the electric linear actuator 40 Suppresses undesirable vibrations.
- the first vibration reduction structure is formed by an even-numbered functional component 300 and an additional adjustment component 400.
- the functional component 300 for the pair is coupled to the pair movable block 70, whereby the load applied to the functional coupling portion including the output movable block 60 and the load applied to the functional coupling portion including the pair movable block 70 are To balance.
- the first vibration reduction structure balances the weight of the functional coupling portion including the output movable block 60 and the weight of the functional coupling portion including the even-moving movable block 70, thereby reducing the load applied to both functional coupling portions.
- the first vibration reduction structure eliminates the weight imbalance caused by the weight of the output shaft 20 mainly by the counter-part adjustment unit 320 and the additional adjustment component 400.
- the output movable block 60, the output movable coupling portion 120, the output functional component 200, and the output shaft 20 form one functional coupling portion.
- the pair movable block 70, the pair movable coupling portion 130, the pair functional component 300, and the additional adjustment component 400 form one functional coupling portion.
- the functional coupling portion including the output movable block 60 and the functional coupling portion including the pair movable block 70 are balanced in the load acting on each functional coupling portion due to the presence of the first vibration reduction structure. For this reason, when the output movable block 60 and the pair movable block 70 reciprocate, the electric linear actuator 40 hardly generates undesirable vibrations.
- the electric linear actuator 40 can generate a moment (hereinafter, “output side moment”) by the reciprocating motion of the output movable block 60. This output side moment affects the magnitude of the unwanted vibration. Further, the electric linear actuator 40 can generate a moment (hereinafter referred to as “an even-side moment”) by the reciprocating motion of the even-movable movable block 70. This counter-moment affects the magnitude of unwanted vibration.
- the second vibration reduction structure suppresses undesired vibration that may occur due to the output side moment and the even side moment. In other words, when there is no second vibration reducing structure, there is a possibility that undesirable vibrations may occur in the electric linear actuator 40 due to the output side moment and the even side moment.
- the second vibration reduction structure reduces unwanted vibration caused by each moment by reducing the distance between the center of gravity of the function coupling unit including the output movable block 60 and the center of gravity of the function coupling unit including the even-numbered movable block 70.
- the second vibration reduction structure offsets the distance by making the total weight of the pair adjustment component 320 and the additional adjustment component 400 larger than the weight of the pair main body 310. ing.
- the second vibration reduction structure increases the degree to which the output side moment and the even side moment cancel each other. For this reason, when the output movable block 60 and the pair movable block 70 reciprocate, the electric linear actuator 40 hardly generates undesirable vibrations.
- the center of gravity of each of the function coupling portions has the following relationship as an example.
- the electric linear actuator 40 is along the center line of the coupling portion of the output shaft coupling portion 220 extending in the axial direction of the output shaft 20 in the front view (see FIG. 5) or the rear view (see FIG. 6) of the electric linear actuator 40. It includes a first segmented region and a second segmented region that are segmented. In FIG. 6, the first segment region is located on the top surface direction DYT side with respect to the coupling portion center line in the height direction DY. The second segmented region is located on the bottom surface direction DYB side with respect to the coupling portion center line in the height direction DY.
- At least the even-numbered movable block 70 is arranged in the first section area.
- the output movable block 60 and the even movable block 70 are arranged in the first segment area.
- the center of gravity of the function coupling unit including the output movable block 60 and the center of gravity of the function coupling unit including the pair movable block 70 are located in the first segment area. That is, it is preferable that the centers of gravity of both functional coupling portions are close to each other in the first segmented region.
- the main body case 30 includes a plurality of case side coupling portions 36 and a plurality of fastening parts 17.
- the case side coupling portion 36 has a planar outer surface.
- the outer surface of the case side coupling portion 36 has a shape parallel to the coupling portion support surface 111 (see FIG. 4) of the fixing coupling portion 110.
- the outer surface of the case side coupling portion 36 is in surface contact with the coupling portion support surface 111.
- the fixing coupling portion 110 on the protruding direction DXL side is coupled to one case side coupling portion 36 by the fastening component 17.
- the fixing coupling portion 110 on the drawing direction DXR side is coupled to the other case side coupling portion 36 by the fastening component 17.
- the fixing coupling part 110 and the case side coupling part 36 have an integrated relationship.
- the fixing coupling part 110 and the fixing block 50 have an integrated relationship. For this reason, the fixing block 50, the fixing coupling portion 110, and the case side coupling portion 36 have an integrated relationship.
- the relationship between the fixing coupling portion 110 and the case side coupling portion 36 restricts the electric linear actuator 40 from being separated from the main body case 30 when a load is applied to the output shaft 20.
- the output shaft 20 receives a load including a component in a planar direction.
- the load received by the output shaft 20 is transmitted to the components of the electric linear actuator 40.
- the load received by the components of the electric linear actuator 40 acts in a direction in which the electric linear actuator 40 is tilted with respect to the center line of the main body case 30.
- the coupling relationship between the coupling part 110 for fixing and the case side coupling part 36 receives a load acting on the components of the electric linear actuator 40.
- FIG. 1 the coupling relationship between the fixing coupling portion 110 and the case side coupling portion 36 contributes to increasing the rigidity of the electric linear actuator 40 with respect to the load acting on the output shaft 20.
- the fixed block 50 forms a magnetic field when current is supplied from the control unit 14 to the coil 52.
- the output movable block 60 reciprocates in the movable direction DX by an electromagnetic force acting between the fixed block 50.
- the pair movable block 70 reciprocates in the movable direction DX by an electromagnetic force acting between the fixed block 50.
- the output movable block 60 and the pair movable block 70 reciprocate in opposite phases.
- the output functional component 200 reciprocates integrally with the output movable block 60.
- the output shaft 20 reciprocates integrally with the output functional component 200.
- the electric linear actuator 40 reciprocates the output shaft 20 by outputting the reciprocating motion of the output movable block 60.
- the electric linear actuator 40 has the following effects.
- the electric linear actuator 40 has a protruding side connecting part 80 and a drawing side connecting part 90.
- the protruding side connecting part 80 and the drawing side connecting part 90 have different shapes. According to this structure, the freedom degree regarding the structure of each connection component 80 and 90 is raised. For this reason, it is compatible to form a preferable form of resonance driving and to prevent the electric linear actuator 40 from being enlarged due to the structure of the connecting parts 80 and 90.
- the thickness of the protruding side connecting part 80 is thinner than the thickness of the drawing side connecting part 90. According to this configuration, the protruding side connecting component 80 is unlikely to contact the output functional component 200. For this reason, the protrusion side connection component 80 is hard to be damaged.
- the protruding side connecting component 80 has an asymmetric shape with respect to the center line in the width direction DZ in a side view of the electric linear actuator 40 on the protruding direction DXL side. According to this structure, the freedom degree regarding the structure of the protrusion side connection component 80 is raised. For this reason, ensuring the preferable intensity
- the electric linear actuator 40 has an even-numbered functional component 300. According to this configuration, the load of the output movable block 60 and the pair movable block 70 can be balanced. For this reason, generation
- the electric linear actuator 40 has a block coupling component 100.
- the block coupling component 100 has a structure in which a plurality of constituent parts are integrally formed of a resin material.
- the protruding side connecting part 80 and the drawing side connecting part 90 are integrally formed with the block connecting part 100 by a resin material. According to this configuration, the productivity of the block coupling component 100, the protruding side coupling component 80, and the drawing side coupling component 90 is improved.
- the block coupling component 100 has a coupling portion support surface 111.
- the coupling portion support surface 111 is coupled to the case side coupling portion 36 of the main body case 30.
- the joint support surface 111 receives the load of the output shaft 20 in cooperation with the case side joint 36. According to this configuration, a load acting on the output shaft 20 from the outside is received by the coupling portion support surface 111 and the case side coupling portion 36. For this reason, it is suppressed that the electric linear actuator 40 inclines with respect to the centerline of the main body case 30 resulting from the load which acts on the output shaft 20.
- the output functional component 200 includes an output shaft coupling portion 220. According to this configuration, the output shaft 20 is coupled by the output shaft coupling portion 220. For this reason, the output shaft 20 is appropriately held.
- the output shaft coupling portion 220 has a coupling portion peripheral wall portion 223.
- the coupling portion peripheral wall portion 223 has a structure that supports the outer peripheral portion of the output shaft 20. According to this configuration, the area of the portion that holds the output shaft 20 is increased. For this reason, the effect that the output shaft 20 is appropriately held is further enhanced.
- the connecting portion peripheral wall portion 223 protrudes from the connecting portion base surface 222 toward the protruding direction DXL. According to this configuration, the range of adjustment related to the length of the coupling portion peripheral wall portion 223 in the movable direction DX is increased. For this reason, it is possible to further enhance the effect of appropriately holding the output shaft 20.
- the output functional component 200 has a load receiving portion 250. According to this configuration, the load acting on the output shaft 20 from the outside is received by the load receiving portion 250 and the case load receiving portion 37. For this reason, it is suppressed that the electric linear actuator 40 inclines with respect to the centerline of the main body case 30 resulting from the load which acts on the output shaft 20.
- FIG. 10 The output functional component 200 has a load receiving portion 250. According to this configuration, the load acting on the output shaft 20 from the outside is received by the load receiving portion 250 and the case load receiving portion 37. For this reason, it is suppressed that the electric linear actuator 40 inclines with respect to the centerline of the main body case 30 resulting from the load which acts on the output shaft 20.
- the load receiving portion 250 has a curved surface similar to a spherical surface. According to this configuration, it is difficult for the load receiving portion 250 to form a nonuniform surface pressure distribution on the case load receiving portion 37. For this reason, the load acting on the output shaft 20 is stably received by the load receiving portion 250.
- the output functional component 200 has a component receiving portion 260. According to this configuration, the elastic component 16 of the electric device main body 11 is restricted from moving with respect to the output shaft 20. For this reason, the fall of the sealing performance by the elastic component 16 is suppressed.
- the output functional component 200 has an output component reinforcing portion 230.
- the output component reinforcing portion 230 has a structure that reinforces the output component main body portion 210 and the output shaft coupling portion 220. According to this configuration, the output functional component 200 is prevented from being damaged due to the load acting on the output shaft 20.
- the output functional component 200 includes an output side reinforcing portion 231 as the output component reinforcing portion 230.
- the output side reinforcing portion 231 is adjacent to the output movable block 60.
- the output side reinforcement portion 231 moves integrally with the output movable block 60. For this reason, there is little possibility that the output side reinforcement part 231 contacts the output movable block 60. For this reason, the physique of the output side reinforcement part 231 can be enlarged. For this reason, the output-side reinforcing portion 231 contributes to increasing the strength of the output functional component 200.
- the output functional component 200 includes a pair-side reinforcing portion 232 as the output component reinforcing portion 230.
- the pair-side reinforcing portion 232 is adjacent to the pair movable block 70. According to this configuration, the strength of the output functional component 200 is increased.
- the output functional component 200 has a push movement restricting portion 241 as the internal structure protecting portion 240.
- the push movement restricting portion 241 receives a load in the push direction from the output shaft 20 to the block coupling component 100 by contacting the main body side push restricting portion 33 of the main body case 30. According to this configuration, damage to the internal structure of the electric linear actuator 40 due to the load acting on the output shaft 20 is suppressed.
- the output functional component 200 has a drawing movement restricting portion 242 as the internal structure protecting portion 240.
- the pulling movement restricting portion 242 receives a load in the pulling direction from the block coupling component 100 to the output shaft 20 by contacting the main body side pulling restricting portion 34 of the main body case 30. According to this configuration, damage to the internal structure of the electric linear actuator 40 due to the load acting on the output shaft 20 is suppressed.
- the output functional component 200 has a first rotation restricting portion 243 as the internal structure protecting portion 240.
- the first rotation restricting portion 243 receives a rotational force acting on the output shaft 20 by contacting the main body side first restricting portion 35 ⁇ / b> A of the main body case 30. According to this configuration, damage to the internal structure of the electric linear actuator 40 due to the rotational force acting on the output shaft 20 is suppressed.
- the even-numbered functional component 300 includes an even-numbered component main body 310 and an even-numbered component adjusting unit 320.
- the kinematic component main part 310 and the kinematic component adjusting unit 320 are integrally formed of the same material. According to this structure, the man-hour at the time of manufacture is reduced compared with the case where the kinematic component main-body part 310 and the kinematic component adjustment part 320 are formed separately.
- the electric linear actuator 40 has an additional adjustment component 400.
- the additional adjustment component 400 is coupled to the even component adjustment unit 320. According to this configuration, the position of the center of gravity of the kinematic movable block 70 can be adjusted by changing the weight of the additional adjustment component 400. For this reason, the freedom degree regarding adjusting a gravity center position is raised.
- the additional adjustment component 400 is arranged at a position closer to the pair movable block 70 than the pair adjustment component 320 in the movable direction DX. According to this configuration, the physique in the longitudinal direction of the electric linear actuator 40 becomes smaller as compared with the case where the additional adjustment component 400 is disposed at a position closer to the drawing direction DXR than the counter component adjustment unit 320.
- the weight of the additional adjustment component 400 is larger than the weight of the even component main body 310. According to this configuration, the distance between the center of gravity of the function coupling unit including the output movable block 60 and the center of gravity of the function coupling including the even-numbered movable block 70 can be reduced. For this reason, generation
- the electric linear actuator 40 of the second embodiment differs from the electric linear actuator 40 of the first embodiment in the following points, and has the same configuration as the electric linear actuator 40 of the first embodiment in other points.
- the electric linear actuator 40 of the first embodiment has a configuration shown in FIG.
- the electric linear actuator 40 of 2nd Embodiment has the structure shown by FIG.
- the same reference numerals are given to the same components as those of the electric linear actuator 40 of the first embodiment, and a part or all of the description of the common components is omitted.
- the output shaft coupling portion 220 of the electric linear actuator 40 has a coupling portion extension 225.
- the connecting portion extension 225 has a column shape.
- the joint extension 225 is continuous with the joint base 221.
- the connecting portion extension 225 protrudes from the surface of the connecting portion base portion 221 opposite to the connecting portion base surface 222 toward the pull-in direction DXR.
- the connecting portion extension 225 is located in a connecting part space 83 formed on the inner peripheral side of the protruding side connecting part 80. That is, a part of the output shaft coupling portion 220 is disposed in the connecting part space 83.
- the joint extension 225 forms a part of the joint inner space 224.
- the coupling portion inner space 224 is formed across the coupling portion peripheral wall portion 223, the coupling portion base portion 221, and the coupling portion extension 225.
- the connecting portion peripheral wall portion 223, the connecting portion base portion 221 and the connecting portion extension portion 225 accommodate the shaft base portion 21 in the connecting portion inner space 224.
- the connecting part peripheral wall part 223, the connecting part base part 221, and the connecting part extension part 225 are connected to the shaft base part 21.
- the connecting part peripheral wall part 223, the connecting part base part 221, and the connecting part extension part 225 have a structure surrounding the outer periphery of the shaft base part 21.
- the electric linear actuator 40 of the second embodiment has the same effects as the effects (1) to (22) of the electric linear actuator 40 of the first embodiment. Moreover, the electric linear actuator 40 of 2nd Embodiment has the following effects.
- the output functional component 200 includes a coupling portion extension 225. According to this configuration, the area of the portion that holds the output shaft 20 in the output shaft coupling portion 220 becomes larger. For this reason, the effect that the output shaft 20 is appropriately held is further enhanced.
- the electric linear actuator 40 of the third embodiment is different from the electric linear actuator 40 of the first embodiment in the following points, and has the same configuration as the electric linear actuator 40 of the first embodiment in other points.
- the electric linear actuator 40 of the first embodiment has a configuration shown in FIG.
- the vibration reduction structure according to the first embodiment includes an even-part adjusting unit 320 and an additional adjusting component 400.
- the electric linear actuator 40 of 3rd Embodiment has the structure shown by FIG.
- the additional adjustment component 400 is omitted, and the first deformation adjustment unit 330 is provided.
- the same reference numerals are given to the same components as those of the electric linear actuator 40 of the first embodiment, and a part or all of the description of the common components is omitted.
- the description of the electric linear actuator 40 according to the third embodiment will mainly refer to FIG.
- This electric linear actuator 40 omits the additional adjustment component 400 of the first embodiment.
- the kinematic component 300 has a first deformation adjustment unit 330 instead of the kinematic component adjustment unit 320.
- the first deformation adjustment unit 330 also functions as an even component adjustment unit.
- transformation adjustment part 330 has thickness thicker than the thickness of the pair component adjustment part 320 of 1st Embodiment.
- the first deformation adjusting unit 330 has a weight larger than that of the paired component main body 310.
- transformation adjustment part 330 has a weight larger than the weight of the pair component adjustment part 320 of 1st Embodiment.
- the first deformation adjustment unit 330 has the same weight as the combined weight of the counter component adjustment unit 320 of the first embodiment and the weight of the additional adjustment component 400 of the first embodiment.
- the functional component 300 for pairs of the third embodiment forms a first vibration reduction structure and a second vibration reduction structure similar to the first vibration reduction structure and the second vibration reduction structure of the first embodiment. This indicates that it is not essential to use the additional adjustment component 400 to form the first vibration reduction structure and the second vibration reduction structure.
- the first vibration reduction structure can be formed by various structures that balance the weight of the functional coupling portion including the output movable block 60 and the weight of the functional coupling portion including the pair movable block 70.
- the second vibration reduction structure can be formed by various structures that reduce the distance between the center of gravity of the function coupling unit including the output movable block 60 and the center of gravity of the function coupling unit including the pair movable block 70.
- the electric linear actuator 40 of the third embodiment has the same effects as the effects (1) to (22) produced by the electric linear actuator 40 of the first embodiment. Moreover, the electric linear actuator 40 of 3rd Embodiment has the following effects.
- the electric linear actuator 40 omits the additional adjustment component 400 of the first embodiment. According to this structure, the man-hour at the time of manufacture is reduced. For this reason, it is compatible to form a vibration reducing structure and to improve manufacturing efficiency.
- the electric linear actuator 40 of the fourth embodiment is different from the electric linear actuator 40 of the first embodiment in the following points, and has the same configuration as the electric linear actuator 40 of the first embodiment in other points.
- the electric linear actuator 40 of the first embodiment has a configuration shown in FIG.
- the electric linear actuator 40 of the first embodiment has a first vibration reduction structure and a second vibration reduction structure.
- the electric linear actuator 40 of 4th Embodiment has the structure shown by FIG.
- the electric linear actuator 40 of the fourth embodiment has a first vibration reduction structure and a third vibration reduction structure.
- the same reference numerals are given to the same components as those of the electric linear actuator 40 of the first embodiment, and a part or all of the description of the common components is omitted.
- the kinematic function component 300 includes a second deformation adjustment unit 340 instead of the kinematic component adjustment unit 320.
- the second deformation adjusting unit 340 also functions as an even component adjusting unit.
- the second deformation adjusting unit 340 forms a third vibration reducing structure.
- the structure of the second deformation adjustment unit 340 corresponds to a structure in which the insertion hole (see FIG. 7) of the paired component adjustment unit 320 to which the additional adjustment component 400 of the first embodiment is coupled is filled.
- the second deformation adjustment unit 340 has the same thickness as the kinematic component adjustment unit 320.
- the second deformation adjusting unit 340 has a weight smaller than that of the paired component main body 310.
- the third vibration reducing structure is not preferable due to the moment of the kinematic side by reducing the distance between the center of gravity of the function coupling unit including the kinematic movable block 70 (hereinafter referred to as the barycenter of the even side) and the center point of the kinematic side moment. Reduce the occurrence of vibration.
- the center point of the even-numbered moment is included in the range where the even-number pulling-in side coupling portion 134 (see FIG. 10) is arranged.
- the third vibration reducing structure offsets the distance to reduce the counter-side moment by making the weight of the paired component main body 310 larger than the weight of the second deformation adjusting unit 340. In this configuration, when the output movable block 60 and the pair movable block 70 reciprocate, undesirable vibrations are unlikely to occur in the electric linear actuator 40.
- the even-point centroid and the center point of the even-side moment have the following relationship as an example.
- the even-moving block 70 is disposed in the first segment area.
- the center of gravity of the function coupling portion including the kinematic movable block 70 (the even-side centroid) is located in the first segmented region. Since the even-side gravity center is located in the first segmented region, the distance between the even-side gravity center and the center point of the even-side moment is reduced.
- the electric linear actuator 40 of the fourth embodiment has the same effects as the effects (1) to (21) of the electric linear actuator 40 of the first embodiment. Moreover, the electric linear actuator 40 of 4th Embodiment has the following effects.
- the even-numbered functional component 300 includes a second deformation adjustment unit 340.
- the second deformation adjustment unit 340 forms a third vibration reduction structure.
- the third vibration reduction structure reduces the counter-moment at the time of the reciprocating motion of the electric linear actuator 40 and suppresses the generation of undesirable vibrations.
- the output shaft vibration type electric device includes other embodiments different from the first to fourth embodiments.
- Other embodiments have, as an example, forms as modifications of the first to Xth embodiments shown below. Note that the following modifications can be combined with each other within a technically consistent range.
- the electric linear actuator 40 of the first to fourth embodiments forms a preferable form of resonance driving by adjusting the thickness of the protruding side connecting part 80 and the thickness of the drawing side connecting part 90.
- the structure for forming a preferable form of resonance driving is not limited to the contents exemplified in each embodiment.
- the electric linear actuator according to the modification includes a path length of the connection component output side end 81 and the connection component pair side end 82, and a path length of the connection component output side end 91 and the connection component pair side end 92. Adjust.
- the projecting side connecting component and the drawing side connecting component of this modification form a preferable form of resonance driving by having different path lengths. That is, the projecting side connecting component and the drawing side connecting component have different shapes, thereby forming a preferable form of resonance driving.
- the electric linear actuator 40 of the first embodiment to the fourth embodiment has a protruding side connecting component 80.
- the structure of the electric linear actuator 40 is not limited to the content exemplified in each embodiment.
- the electric linear actuator 40 of a modification has a deformation
- the deformed protruding side connecting component has a function according to the function of the protruding side connecting component 80 and has a structure different from that of the protruding side connecting component 80.
- the electric linear actuator 40 of the first to fourth embodiments has a pull-in side connecting component 90.
- the structure of the electric linear actuator 40 is not limited to the content exemplified in each embodiment.
- the electric linear actuator 40 of a modification has a deformation
- the deformation drawing side connecting component has a function according to the function of the drawing side connecting component 90 and has a structure different from that of the drawing side connecting component 90.
- the protruding-side connecting component 80 is integrally formed with the block coupling component 100 using the same resin material.
- the structure of the protrusion side connection component 80 is not restricted to the content illustrated by each embodiment.
- the protrusion-side connecting component 80 of the modification is formed separately from the block coupling component 100 and then coupled to the block coupling component 100.
- the projecting side connecting component 80 of this modification is formed of the same material as the block coupling component 100 or a different material.
- the lead-in side connecting component 90 is integrally formed with the block coupling component 100 using the same resin material.
- the structure of the drawing-in side connection component 90 is not limited to the content exemplified in each embodiment.
- the lead-in side coupling component 90 of the modification is formed separately from the block coupling component 100 and then coupled to the block coupling component 100.
- the lead-in side coupling component 90 of this modification is formed of the same or different resin material as the block coupling component 100.
- the block coupling component 100 according to the first to fourth embodiments includes a coupling unit 110 for fixing.
- the structure of the block coupling component 100 is not limited to the content exemplified in each embodiment.
- the block coupling component 100 according to the modification includes a deformation fixing coupling portion instead of the fixing coupling portion 110.
- the deformation fixing coupling part has a function according to the function of the fixing coupling part 110 and has a structure different from that of the fixing coupling part 110.
- the block coupling component 100 of the first to fourth embodiments has a movable output coupling portion 120.
- the structure of the block coupling component 100 is not limited to the content exemplified in each embodiment.
- the block coupling component 100 according to the modification has a modified output movable coupling portion instead of the output movable coupling portion 120.
- the deformable output movable coupling portion has a function according to the function of the output movable coupling portion 120 and has a structure different from that of the output movable coupling portion 120.
- the block coupling component 100 of the first embodiment to the fourth embodiment has a pair 130 for coupling with movable pairs.
- the structure of the block coupling component 100 is not limited to the content exemplified in each embodiment.
- the block coupling component 100 of the modified example has a modified pair movable coupling part instead of the pair movable coupling part 130.
- the deformation pair movable coupling part has a function according to the function of the pair movable coupling part 130, and has a structure different from that of the pair movable coupling part 130.
- the block coupling component 100 according to the first to fourth embodiments has a protruding side support portion 140.
- the structure of the block coupling component 100 is not limited to the content exemplified in each embodiment.
- the block coupling component 100 according to the modification includes a modified protrusion-side support portion instead of the protrusion-side support portion 140.
- the deformation protrusion side support portion has a function according to the function of the protrusion side support portion 140 and has a structure different from that of the protrusion side support portion 140.
- the block coupling component 100 of the first to fourth embodiments has a pull-in side support part 150.
- the structure of the block coupling component 100 is not limited to the content exemplified in each embodiment.
- the block coupling component 100 according to the modified example includes a modified retracting side support portion instead of the retracting side support portion 150.
- the deformation pull-in side support portion has a function according to the function of the pull-in side support portion 150 and has a structure different from that of the pull-in side support portion 150.
- the block coupling component 100 of the first to fourth embodiments has two output side resin inlet portions 121.
- the structure of the block coupling component 100 is not limited to the content exemplified in each embodiment.
- the block coupling component 100 of the modified example at least one of the two output side resin inlet portions 121 is omitted.
- the block coupling component 100 of another modification has a deformation
- the deformed output side resin inlet portion has a function according to the function of the output side resin inlet portion 121 and has a structure different from that of the output side resin inlet portion 121.
- the block coupling component 100 of the first embodiment to the fourth embodiment has an output side resin flow path portion 122.
- the structure of the block coupling component 100 is not limited to the content exemplified in each embodiment.
- the output side resin flow path part 122 is omitted.
- the block coupling component 100 of another modification has a deformation
- the deformation output side resin flow path part has a function according to the function of the output side resin flow path part 122, and has a structure different from that of the output side resin flow path part 122.
- the block coupling component 100 of the first embodiment to the fourth embodiment has an output protruding side connecting portion 123.
- the structure of the block coupling component 100 is not limited to the content exemplified in each embodiment.
- the output protruding side connecting portion 123 is omitted.
- the block coupling component 100 of another modification has a deformation
- the modified output protruding side connecting portion has a function according to the function of the output protruding side connecting portion 123 and has a structure different from that of the output protruding side connecting portion 123.
- the block coupling component 100 of the first embodiment to the fourth embodiment has an output drawing side connecting portion 124.
- the structure of the block coupling component 100 is not limited to the content exemplified in each embodiment.
- the output lead-in side connecting portion 124 is omitted.
- the block coupling component 100 of another modification has a deformation
- the modified output lead-in side connecting portion has a function according to the function of the output lead-in side connecting portion 124 and has a structure different from that of the output lead-in side connecting portion 124.
- the block coupling component 100 of the first embodiment to the fourth embodiment has two even-side resin inlet portions 131.
- the structure of the block coupling component 100 is not limited to the content exemplified in each embodiment.
- the block coupling component 100 of the modification at least one of the two counter-side resin inlet portions 131 is omitted.
- the block coupling component 100 of another modification has a deformation
- the deformed even-side resin inlet portion has a function according to the function of the even-side resin inlet portion 131 and has a structure different from that of the even-numbered resin inlet portion 131.
- the block coupling component 100 of the first embodiment to the fourth embodiment has an even-side resin flow path portion 132.
- the structure of the block coupling component 100 is not limited to the content exemplified in each embodiment.
- the even-side resin flow path portion 132 is omitted.
- the block coupling component 100 of another modification has a deformation
- the deformed pair-side resin flow path portion has a function according to the function of the pair-side resin flow path portion 132 and has a structure different from that of the pair-side resin flow path portion 132.
- the block coupling component 100 of the first embodiment to the fourth embodiment has an even-projecting-side coupling portion 133.
- the structure of the block coupling component 100 is not limited to the content exemplified in each embodiment.
- the even-projecting side coupling portion 133 is omitted.
- the block coupling component 100 of another modification has a deformation
- the deformed pair projecting side connecting portion has a function according to the function of the pair projecting side connecting portion 133 and has a structure different from that of the pair projecting side connecting portion 133.
- the block coupling component 100 of the first embodiment to the fourth embodiment has a pair pull-in side connecting portion 134.
- the structure of the block coupling component 100 is not limited to the content exemplified in each embodiment.
- the pair pull-in side connecting portion 134 is omitted.
- the block coupling component 100 of another modification has a deformation
- the modified pair pull-in side connecting portion has a function according to the function of the pair pull-in side connecting portion 134 and has a structure different from that of the pair pull-in side connecting portion 134.
- the output functional component 200 of the first to fourth embodiments is made of a resin material.
- the material of the output functional component 200 is not limited to the content exemplified in each embodiment.
- the output functional component 200 of the modified example is formed of a metal material as an example.
- the output functional component 200 is coupled to the output movable block 60 via the output movable coupling portion 120.
- the combination form of the output functional component 200 is not limited to the contents exemplified in each embodiment.
- the output functional component 200 of the modification is directly coupled to the output movable block 60. That is, the output functional component 200 may be operably coupled to the output movable block 60.
- the output functional component 200 of the first to fourth embodiments has an output component main body 210.
- the structure of the output functional component 200 is not limited to the content exemplified in each embodiment.
- the output functional component 200 according to the modified example has a modified output component main body instead of the output component main body 210 as an example.
- the modified output component main body has a function according to the function of the output component main body 210 and has a structure different from that of the output component main body 210.
- the output functional component 200 of the first to fourth embodiments has an output shaft coupling portion 220.
- the structure of the output functional component 200 is not limited to the content exemplified in each embodiment.
- the output functional component 200 of the modified example omits the output shaft coupling portion 220.
- the output functional component 200 of another modification has a deformation
- the modified output shaft coupling portion has a function according to the function of the output shaft coupling portion 220 and has a structure different from that of the output shaft coupling portion 220.
- the output functional component 200 includes an output side reinforcing portion 231 as the output component reinforcing portion 230.
- the structure of the output functional component 200 is not limited to the content exemplified in each embodiment.
- the output functional component 200 of the modified example omits the output side reinforcing portion 231.
- the output functional component 200 of another modification has a deformation
- the deformed output side reinforcing portion has a function according to the function of the output side reinforcing portion 231 and has a structure different from that of the output side reinforcing portion 231.
- the deformation output side reinforcing portion is configured to reinforce only the output component main body portion 210 or only the output shaft coupling portion 220.
- the output side reinforcing portion 231 may be configured to reinforce at least one of the output component main body portion 210 and the output shaft coupling portion 220.
- the output functional component 200 according to the first to fourth embodiments includes a counter-side reinforcing portion 232 as the output component reinforcing portion 230.
- the structure of the output functional component 200 is not limited to the content exemplified in each embodiment.
- the counter-side reinforcing portion 232 is omitted.
- the output functional component 200 of another modified example has a modified pair-side reinforcing portion instead of the pair-side reinforcing portion 232 as an example.
- the deformed pair-side reinforcing portion has a function according to the function of the pair-side reinforcing portion 232 and has a structure different from that of the pair-side reinforcing portion 232.
- the output functional component 200 includes a push movement restricting portion 241 as the internal structure protecting portion 240.
- the structure of the output functional component 200 is not limited to the content exemplified in each embodiment.
- the push movement restricting portion 241 is omitted.
- the output functional component 200 of another modification has a deformation
- the deformation push movement restricting portion has a function according to the function of the push movement restricting portion 241 and has a structure different from that of the push movement restricting portion 241.
- the output functional component 200 according to the first embodiment to the fourth embodiment has a pulling movement restricting portion 242 as the internal structure protecting portion 240.
- the structure of the output functional component 200 is not limited to the content exemplified in each embodiment.
- the extraction movement restricting portion 242 is omitted.
- the output functional component 200 of another modification has a deformation
- the deformation pulling movement restricting portion has a function according to the function of the pulling movement restricting portion 242, and has a structure different from that of the pulling movement restricting portion 242.
- the output functional component 200 of the first to fourth embodiments has a first rotation restricting portion 243 as the internal structure protecting portion 240.
- the structure of the output functional component 200 is not limited to the content exemplified in each embodiment.
- the first rotation restricting portion 243 is omitted.
- the output functional component 200 of another modified example has a modified first rotation restricting portion instead of the first rotation restricting portion 243 as an example.
- the modified first rotation restricting portion has a function according to the function of the first rotation restricting portion 243 and has a structure different from that of the first rotation restricting portion 243.
- the output functional component 200 includes the second rotation restricting portion 244 as the internal structure protecting portion 240.
- the structure of the output functional component 200 is not limited to the content exemplified in each embodiment.
- the second rotation restricting portion 244 is omitted.
- the output functional component 200 of another modified example has a modified second rotation restricting portion instead of the second rotation restricting portion 244 as an example.
- the modified second rotation restricting portion has a function according to the function of the second rotation restricting portion 244 and has a structure different from that of the second rotation restricting portion 244.
- the output functional component 200 of the first to fourth embodiments has a load receiving portion 250.
- the structure of the output functional component 200 is not limited to the content exemplified in each embodiment.
- the load receiving unit 250 is omitted.
- the output functional component 200 of another modification has a deformation
- the deformed load receiving unit has a function according to the function of the load receiving unit 250 and has a structure different from that of the load receiving unit 250.
- the output functional component 200 of the first to fourth embodiments has a component receiving portion 260.
- the structure of the output functional component 200 is not limited to the content exemplified in each embodiment.
- the component receiving portion 260 is omitted.
- the output functional component 200 of another modified example has a modified component receiving part instead of the component receiving part 260 as an example.
- the deformed component receiving unit has a function according to the function of the component receiving unit 260 and has a structure different from that of the component receiving unit 260.
- the push movement restricting portion 241 forms a gap with the main body side push restricting portion 33.
- the structure of the push movement restricting unit 241 is not limited to the content exemplified in each embodiment.
- the push movement restricting portion 241 of the modified example does not form a gap with the main body side push restricting portion 33.
- the pulling movement restricting portion 242 forms a gap with the main body pulling restricting portion 34.
- the structure of the extraction movement restricting unit 242 is not limited to the content exemplified in each embodiment.
- the pulling movement restricting portion 242 of the modified example does not form a gap with the main body side pulling restricting portion 34.
- the pulling movement restricting portion 242 of the first to fourth embodiments forms a gap with the main body side rotation restricting portion 35.
- the structure of the extraction movement restricting unit 242 is not limited to the content exemplified in each embodiment.
- the pulling movement restricting portion 242 of the modified example does not form a gap with the main body side rotation restricting portion 35.
- the first rotation restricting portion 243 forms a gap with the main body side first restricting portion 35A.
- the structure of the 1st rotation control part 243 is not restricted to the content illustrated by each embodiment.
- the first rotation restricting portion 243 of the modified example does not form a gap with the main body side first restricting portion 35A.
- the second rotation restricting portion 244 forms a gap with the main body side second restricting portion 35B.
- the structure of the 2nd rotation control part 244 is not restricted to the content illustrated by each embodiment.
- the modified second rotation restricting portion 244 does not form a gap with the main body side second restricting portion 35B.
- the gap between the pulling movement restricting portion 242 and the main body side rotation restricting portion 35 in the first to fourth embodiments corresponds to the gap between the first rotation restricting portion 243 and the main body side first restricting portion 35A.
- the size of the gap formed by each restricting portion 242, 35 is not limited to the content exemplified in each embodiment.
- the gap formed by the restricting portions 242 and 35 of the modification has a size that does not correspond to the gap between the restricting portions 243 and 35A.
- the gaps having a non-corresponding relationship are the amounts of rotation until the extraction movement restricting portion 242 and the main body side rotation restricting portion 35 come into contact with each other, and the first rotation restricting portion 243 and the main body side first restricting portion 35A are in contact with each other. Increase or decrease the amount of rotation up to
- the gap between the second rotation restricting portion 244 and the main body side second restricting portion 35B in the first to fourth embodiments corresponds to the gap between the first rotation restricting portion 243 and the main body side first restricting portion 35A.
- the gap formed by the restricting portions 244 and 35B of the modification has a size that does not correspond to the gap between the restricting portions 243 and 35A.
- Each gap having a non-corresponding relationship indicates the amount of rotation until the second rotation restricting portion 244 and the main body side second restricting portion 35B contact each other, and the first rotation restricting portion 243 and the main body side first restricting portion 35A are mutually connected. Make it larger or smaller than the amount of rotation until contact.
- the functional component 300 for a pair according to the first to fourth embodiments is made of a metal material.
- the material of the functional component 300 for pairs is not limited to the content illustrated in each embodiment.
- the paired functional component 300 of the modification is formed of a resin material as an example.
- the functional component 300 for a pair according to the first to fourth embodiments is coupled to the pair movable block 70 via the pair movable coupling portion 130.
- the combination form of the functional component 300 for pairs is not restricted to the content illustrated by each embodiment.
- the functional component 300 for a pair of modifications is directly coupled to the pair movable block 70.
- the functional component 300 for a pair according to the first to fourth embodiments includes a paired component main body 310.
- the structure of the kinematic function component 300 is not limited to the content exemplified in each embodiment.
- the functional component 300 for a pair of modifications includes a modified body part for a pair of parts instead of the body part 310 for a pair.
- the deformed pair component body has a function according to the function of the pair component body 310 and has a structure different from that of the pair component body 310.
- the functional component 300 for a pair according to the first to fourth embodiments includes a pair component adjusting unit 320.
- the structure of the kinematic function component 300 is not limited to the content exemplified in each embodiment.
- the functional component 300 for a pair of modifications has a modified pair adjustment part instead of the pair adjustment part 320.
- the modified kinematic part adjustment unit has a function according to the function of the kinematic part adjustment unit 320 and has a structure different from that of the kinematic part adjustment unit 320.
- the additional adjustment component 400 of the first to third embodiments is made of a metal material.
- the material of the additional adjustment component 400 is not limited to the content exemplified in each embodiment.
- the additional adjustment component 400 of the modification is formed of a resin material.
- the additional adjustment component 400 of the first to third embodiments is coupled to the counter component adjustment unit 320 by bonding.
- the method of coupling the additional adjustment component 400 is not limited to the content exemplified in each embodiment.
- the additional adjustment component 400 according to the modification is coupled to the mating component adjustment unit 320 by press-fitting or fastening components.
- the additional adjustment component 400 of the first to third embodiments is arranged at a position on the protruding direction DXL side with respect to the paired component adjustment unit 320.
- the arrangement form of the additional adjustment component 400 is not limited to the content exemplified in each embodiment.
- the additional adjustment component 400 of the modification is a portion on the pulling direction DXR side with respect to the even component adjusting portion 320, or a portion on both the protruding direction DXL side and the pulling direction DXR side with respect to the even component adjusting portion 320. Placed in.
- the electric linear actuator 40 of the first to fourth embodiments causes the output movable block 60 and the pair movable block 70 to reciprocate by supplying current to the coil 52 of the fixed block 50.
- the configuration for reciprocating the output movable block 60 and the pair movable block 70 is not limited to the contents exemplified in each embodiment.
- the electric linear actuator according to the modification has one of the following forms (a) to (c) as an example.
- the first deformation linear actuator has a first deformation fixed block, a first deformation output movable block, and a first deformation pair block instead of the fixed block 50, the output movable block 60, and the pair movable block 70.
- the first deformation fixed block has a permanent magnet and a back yoke.
- the first deformation fixed block is different from the output movable block 60 or the pair movable block 70 in that it is fixed to the main body case 30, and has a structure similar to the output movable block 60 or the pair movable block 70 in other points.
- the first deformation output movable block has a coil and a core.
- the first deformable output movable block is different from the fixed block 50 in that it reciprocates in the movable direction DX with respect to the main body case 30, and has a configuration similar to the fixed block 50 in other points.
- the first deformation pair movable block has a coil and a core.
- the first deformable pair movable block differs from the fixed block 50 in that it reciprocates in the movable direction DX with respect to the main body case 30, and has a configuration similar to the fixed block 50 in other points.
- the first deformation linear actuator supplies current to the first deformation output movable block and the first deformation pair movable block when outputting the reciprocating motion.
- Each movable block reciprocates in the movable direction DX with respect to the first deformation fixed block by an electromagnetic force acting between the first deformation fixed block and the first deformation fixed block.
- the first deformation output movable block and the first deformation pair movable block reciprocate in the movable direction DX with opposite phases.
- the second deformation linear actuator has a second deformation output movable block instead of the output movable block 60.
- the fixed block 50 is omitted.
- the second deformation output movable block has a coil and a core.
- the second deformation output movable block differs from the fixed block 50 in that it reciprocates in the movable direction DX with respect to the main body case 30, and has a configuration similar to the fixed block 50 in other points.
- the second deformation linear actuator supplies a current to the second deformation output movable block when outputting the reciprocating motion.
- the second deformation output movable block and the pair movable block 70 reciprocate in the movable direction DX by an electromagnetic force acting between the movable blocks.
- the second deformable output movable block and the pair movable block 70 reciprocate in the movable direction DX with opposite phases.
- the third deformation linear actuator has a third deformation pair movable block instead of the pair movement block 70.
- the fixed block 50 is omitted.
- the third deformable pair movable block has a coil and a core.
- the third deformable pair movable block differs from the fixed block 50 in that it reciprocates in the movable direction DX with respect to the main body case 30, and has a configuration similar to the fixed block 50 in other points.
- the third deformation linear actuator When the third deformation linear actuator outputs a reciprocating motion, it supplies a current to the third deformation pair movable block.
- the output movable block 60 and the third deformation pair movable block reciprocate in the movable direction DX by an electromagnetic force acting between the movable blocks.
- the output movable block 60 and the third deformable pair movable block reciprocate in the movable direction DX with phases opposite to each other.
- the output shaft vibration type electric device 10 of the first to fourth embodiments has an elastic component 16 as a single component.
- the elastic part of the modified example is formed by at least two parts.
- the elastic part of a modification has a 1st elastic part and a 2nd elastic part as an example.
- the first elastic part has substantially the same structure as the lower part of the inner cylindrical part in the elastic part 16.
- the second elastic part has substantially the same structure as the remaining part other than the lower part of the inner cylindrical part in the elastic part 16.
- the inner cylindrical portion of the elastic component 16 indicates a cylindrical portion that contacts the output shaft 20.
- the output shaft vibration type electric device 10 of the first to fourth embodiments has a form of an electric toothbrush as an electric oral hygiene device.
- the form as the electric oral hygiene apparatus in the output shaft vibration type electric apparatus 10 is not limited to the contents exemplified in each embodiment.
- the output shaft vibration type electric device of the modification has a form of an electric interdental brush, an electric stain removing device, or an electric tongue brush.
- the output shaft vibration type electric device 10 of the first to fourth embodiments has the form of an electric oral hygiene device.
- the form of the output shaft vibration type electric apparatus 10 is not limited to the content exemplified in each embodiment.
- the output shaft vibration type electric device of the modification has a form of an electric razor or an electric massage device.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Reciprocating, Oscillating Or Vibrating Motors (AREA)
- Brushes (AREA)
Abstract
This electric linear actuator (40) comprises a fixed block (50), an output movable block (60), a pair movable block (70), a projection-side connecting component (80), a retraction-side connecting component (90), a block coupling component (100), an output functional component (200), and a pair functional component (300). The pair functional component (300) includes a pair component main body (310) coupled to the pair movable block (70), and a pair component adjusting unit (320) formed integrally with the pair component main body (310) from the same material as the pair component main body (310). The pair component adjusting unit (320) is arranged further in the retraction direction (DXR) than the pair movable block (70).
Description
本発明は、電動リニアアクチュエーター、およびこの電動リニアアクチュエーターを有する出力軸振動型電動装置に関する。
The present invention relates to an electric linear actuator and an output shaft vibration type electric apparatus having the electric linear actuator.
従来の電動リニアアクチュエーターは、駆動方式の側面から、一例として3種類に分類することができる。以下の説明において、3種類の従来の電動リニアアクチュエーターは、それぞれ第1従来アクチュエーター910、第2従来アクチュエーター920、および第3従来アクチュエーター930として示される。
Conventional electric linear actuators can be classified into three types as an example from the aspect of drive system. In the following description, three types of conventional electric linear actuators are shown as a first conventional actuator 910, a second conventional actuator 920, and a third conventional actuator 930, respectively.
図22は、第1従来アクチュエーター910の一例を示す。第1従来アクチュエーター910は、ケース911、固定子912、可動子916、および可動子用ばね917を有する。
FIG. 22 shows an example of the first conventional actuator 910. The first conventional actuator 910 includes a case 911, a stator 912, a mover 916, and a mover spring 917.
ケース911は、電動装置の出力軸918、固定子912、可動子916、および可動子用ばね917を収容する。固定子912は、ケース911に固定される。固定子912は、コイル913、2個の永久磁石914、および4個のヨーク915を有する。コイル913、各永久磁石914、および各ヨーク915は、それぞれ円環形状を有する。可動子916は、出力軸918に固定される。可動子用ばね917は、ケース911と可動子916との間に配置される。可動子用ばね917は、出力軸918の軸方向に作用する力を可動子916に付与する。
The case 911 houses the output shaft 918, the stator 912, the mover 916, and the mover spring 917 of the electric device. The stator 912 is fixed to the case 911. The stator 912 includes a coil 913, two permanent magnets 914, and four yokes 915. The coil 913, each permanent magnet 914, and each yoke 915 have an annular shape. The mover 916 is fixed to the output shaft 918. The mover spring 917 is disposed between the case 911 and the mover 916. The mover spring 917 applies a force acting in the axial direction of the output shaft 918 to the mover 916.
第1従来アクチュエーター910は、コイル913に供給する電流の方向を切り替えることにより、可動子916および出力軸918を往復運動させる。しかし、第1従来アクチュエーター910は、可動子916の慣性力に起因して好ましくない振動を発生する。なお、特許文献1は、第1従来アクチュエーター910の一例を開示している。
The first conventional actuator 910 reciprocates the mover 916 and the output shaft 918 by switching the direction of the current supplied to the coil 913. However, the first conventional actuator 910 generates undesirable vibration due to the inertial force of the mover 916. Note that Patent Document 1 discloses an example of a first conventional actuator 910.
第2従来アクチュエーター920は、可動子916の好ましくない振動を低減する技術を含む。図23は、第2従来アクチュエーター920の一例を示す。第2従来アクチュエーター920は、おもり921、中間ばね922、おもり用ばね923を有する点において第1従来アクチュエーター910と相違し、その他の点において第1従来アクチュエーター910と実質的に同じ構成を有する。
The second conventional actuator 920 includes a technique for reducing undesirable vibration of the mover 916. FIG. 23 shows an example of the second conventional actuator 920. The second conventional actuator 920 is different from the first conventional actuator 910 in that it includes a weight 921, an intermediate spring 922, and a weight spring 923, and has substantially the same configuration as the first conventional actuator 910 in other points.
おもり921は、出力軸918の一部の周囲に配置される。おもり921は、軸方向において出力軸918に対して移動する。中間ばね922は、可動子916とおもり921との間に配置される。中間ばね922は、出力軸918の軸方向に作用する力を可動子916およびおもり921に付与する。おもり用ばね923は、ケース911とおもり921との間に配置される。おもり用ばね923は、出力軸918の軸方向に作用する力をおもり921に付与する。
The weight 921 is arranged around a part of the output shaft 918. The weight 921 moves relative to the output shaft 918 in the axial direction. The intermediate spring 922 is disposed between the mover 916 and the weight 921. The intermediate spring 922 applies a force acting in the axial direction of the output shaft 918 to the mover 916 and the weight 921. The weight spring 923 is disposed between the case 911 and the weight 921. The weight spring 923 applies a force acting in the axial direction of the output shaft 918 to the weight 921.
第2従来アクチュエーター920は、第2次の振動モードにおける固有振動数付近の周波数の電流をコイル913に供給する。第2従来アクチュエーター920は、この電流をコイル913に供給することにより、可動子916およびおもり921を互いに反対の位相により往復運動させる。このため、可動子916の好ましくない振動が低減される。しかし、第2従来アクチュエーター920は、おもり921が存在していることに起因して、第1従来アクチュエーター910と比較して体格が大きくなる。なお、特許文献2は、第2従来アクチュエーター920の一例を開示している。
The second conventional actuator 920 supplies the coil 913 with a current having a frequency near the natural frequency in the second vibration mode. By supplying this current to the coil 913, the second conventional actuator 920 causes the mover 916 and the weight 921 to reciprocate in opposite phases. For this reason, the undesirable vibration of the mover 916 is reduced. However, the second conventional actuator 920 is larger in size than the first conventional actuator 910 due to the presence of the weight 921. Note that Patent Document 2 discloses an example of the second conventional actuator 920.
第3従来アクチュエーター930は、小型化および高効率化を可能にする技術を含む。図24は、第3従来アクチュエーター930の一例を示す。第3従来アクチュエーター930は、電磁コアブロック931、2個の磁性ブロック934、ブロック結合部品937、第1連結部品938、および第2連結部品939を有する。
The third conventional actuator 930 includes technology that enables miniaturization and high efficiency. FIG. 24 shows an example of the third conventional actuator 930. The third conventional actuator 930 includes an electromagnetic core block 931, two magnetic blocks 934, a block coupling component 937, a first coupling component 938, and a second coupling component 939.
電磁コアブロック931は、ブロック結合部品937に取り付けられる。電磁コアブロック931は、コア932およびコイル933を有する。各磁性ブロック934は、ブロック結合部品937に取り付けられる。各磁性ブロック934は、図24において、左右方向に往復運動する。2個の磁性ブロック934は、各磁性ブロック934の往復運動の方向と直交する方向(図面に垂直な方向)に沿って並列的に配置される。図24は、2個の磁性ブロック934のうちの一方の磁性ブロック934を示している。他方の磁性ブロック934(図示略)は、図面に垂直な方向において、一方の磁性ブロック934の奥行側に存在する。各磁性ブロック934は、永久磁石935およびバックヨーク936を有する。永久磁石935は、隙間を介して電磁コアブロック931と対向する。
The electromagnetic core block 931 is attached to the block coupling component 937. The electromagnetic core block 931 has a core 932 and a coil 933. Each magnetic block 934 is attached to a block coupling component 937. Each magnetic block 934 reciprocates in the left-right direction in FIG. The two magnetic blocks 934 are arranged in parallel along a direction (direction perpendicular to the drawing) perpendicular to the direction of reciprocal movement of each magnetic block 934. FIG. 24 shows one of the two magnetic blocks 934. The other magnetic block 934 (not shown) exists on the depth side of one magnetic block 934 in a direction perpendicular to the drawing. Each magnetic block 934 includes a permanent magnet 935 and a back yoke 936. The permanent magnet 935 faces the electromagnetic core block 931 through a gap.
第1連結部品938は、磁性ブロック934の往復運動の方向において各磁性ブロック934の一方の端部側に配置される。第1連結部品938は、一方の磁性ブロック934と他方の磁性ブロック934とを互いに連結する。第2連結部品939は、磁性ブロック934の往復運動の方向において各磁性ブロック934の他方の端部側に配置される。第2連結部品939は、一方の磁性ブロック934と他方の磁性ブロック934とを互いに連結する。
The first connecting component 938 is disposed on one end side of each magnetic block 934 in the reciprocating direction of the magnetic block 934. The first connecting component 938 connects one magnetic block 934 and the other magnetic block 934 to each other. The second connecting component 939 is disposed on the other end side of each magnetic block 934 in the direction of reciprocal movement of the magnetic block 934. The second connecting component 939 connects one magnetic block 934 and the other magnetic block 934 to each other.
第3従来アクチュエーター930は、コイル933に電流を供給することにより、2個の磁性ブロック934を互いに反対の位相により往復運動させる。このため、磁性ブロック934の好ましくない振動が低減される。第3従来アクチュエーター930では、2個の磁性ブロック934が並列的に配置されている。このため、第2従来アクチュエーター920と比較して、往復運動の方向の寸法を小さくすることが可能になる。なお、特許文献3は、第3従来アクチュエーター930の一例を開示している。
The third conventional actuator 930 reciprocates the two magnetic blocks 934 in opposite phases by supplying current to the coil 933. For this reason, the undesirable vibration of the magnetic block 934 is reduced. In the third conventional actuator 930, two magnetic blocks 934 are arranged in parallel. For this reason, compared with the second conventional actuator 920, the dimension in the direction of reciprocation can be reduced. Note that Patent Document 3 discloses an example of a third conventional actuator 930.
電動リニアアクチュエーターは、出力軸振動型電動装置に用いることができる。出力軸振動型電動装置は、出力軸を電動リニアアクチュエーターにより往復運動させる。特許文献1および2は、出力軸振動型電動装置の一例としての電動歯ブラシを開示している。
The electric linear actuator can be used for an output shaft vibration type electric device. The output shaft vibration type electric device reciprocates the output shaft by an electric linear actuator. Patent Documents 1 and 2 disclose an electric toothbrush as an example of an output shaft vibration type electric device.
本願発明者は、第3従来アクチュエーター930に類似する構造を有する電動リニアアクチュエーターを出力軸振動型電動装置に用いることを検討した。図25は、この出力軸振動型装置の一例としての電動口腔衛生装置940を示す。
The inventor of the present application examined the use of an electric linear actuator having a structure similar to the third conventional actuator 930 for the output shaft vibration type electric device. FIG. 25 shows an electric oral hygiene device 940 as an example of the output shaft vibration type device.
電動口腔衛生装置940は、駆動源としての電動リニアアクチュエーター941、出力軸943、装置機能部品944、および本体ケース945を有する。本体ケース945は、電動リニアアクチュエーター941を収容する。電動リニアアクチュエーター941は、出力用機能部品942を有する点において第3従来アクチュエーター930と相違し、その他の点において第3従来アクチュエーター930と実質的に同じ構成を有する。
The electric oral hygiene device 940 includes an electric linear actuator 941, an output shaft 943, a device functional component 944, and a main body case 945 as a drive source. The main body case 945 houses the electric linear actuator 941. The electric linear actuator 941 is different from the third conventional actuator 930 in that it has an output functional component 942, and has substantially the same configuration as the third conventional actuator 930 in other points.
出力用機能部品942は、ブロック結合部品937を介して一方の磁性ブロック934に取り付けられる。出力用機能部品942は、出力軸943を取り付けるための部品として形成される。出力軸943は、出力用機能部品942に取り付けられる。装置機能部品944は、出力軸943に取り付けられる。
The output functional component 942 is attached to one magnetic block 934 via a block coupling component 937. The output functional component 942 is formed as a component for mounting the output shaft 943. The output shaft 943 is attached to the output functional component 942. The device functional component 944 is attached to the output shaft 943.
各磁性ブロック934は、突出方向(図24において左方向)と引込方向(図24において右方向)に往復運動する。第1連結部品938は、各磁性ブロック934に対して突出方向側に配置される。第1連結部品938は、一方の磁性ブロック934と他方の磁性ブロック934とを互いに連結する。第2連結部品939は、各磁性ブロック934に対して引込方向側に配置される。第2連結部品939は、一方の磁性ブロック934と他方の磁性ブロック934とを互いに連結する。
Each magnetic block 934 reciprocates in the protruding direction (left direction in FIG. 24) and the retracting direction (right direction in FIG. 24). The first connecting component 938 is disposed on the protruding direction side with respect to each magnetic block 934. The first connecting component 938 connects one magnetic block 934 and the other magnetic block 934 to each other. The second connecting component 939 is disposed on the retracting direction side with respect to each magnetic block 934. The second connecting component 939 connects one magnetic block 934 and the other magnetic block 934 to each other.
本願発明者は、電動口腔衛生装置940が次の課題を含むことを見出した。
一方の磁性ブロック934は、ブロック結合部品937および出力用機能部品942を介して出力軸943が取り付けられる。このため、電動口腔衛生装置940では、一方の磁性ブロック934の重量と他方の磁性ブロック934の重量とがアンバランスになる。このため、一方の磁性ブロック934の往復運動にともない好ましくない振動が生じる。なお、ここでは、出力軸振動型電動装置として電動口腔衛生装置を想定し、その電動リニアアクチュエーターの課題について言及したが、同様の課題は、電動口腔衛生装置以外の出力軸振動型電動装置の電動リニアアクチュエーターにも存在する。 The inventor of the present application has found that the electricoral hygiene device 940 includes the following problems.
Onemagnetic block 934 is attached with an output shaft 943 via a block coupling component 937 and an output functional component 942. For this reason, in the electric oral hygiene apparatus 940, the weight of one magnetic block 934 and the weight of the other magnetic block 934 are unbalanced. For this reason, an undesired vibration is generated as one magnetic block 934 reciprocates. In addition, although the electric oral hygiene apparatus was assumed here as an output shaft vibration type electric apparatus, and the subject of the electric linear actuator was mentioned, the same subject is the electric drive of output shaft vibration type electric apparatuses other than an electric oral hygiene apparatus. It also exists in linear actuators.
一方の磁性ブロック934は、ブロック結合部品937および出力用機能部品942を介して出力軸943が取り付けられる。このため、電動口腔衛生装置940では、一方の磁性ブロック934の重量と他方の磁性ブロック934の重量とがアンバランスになる。このため、一方の磁性ブロック934の往復運動にともない好ましくない振動が生じる。なお、ここでは、出力軸振動型電動装置として電動口腔衛生装置を想定し、その電動リニアアクチュエーターの課題について言及したが、同様の課題は、電動口腔衛生装置以外の出力軸振動型電動装置の電動リニアアクチュエーターにも存在する。 The inventor of the present application has found that the electric
One
本発明は、以上の背景をもとに創作されたものであり、好ましくない振動を低減することが可能な電動リニアアクチュエーター、およびこの電動リニアアクチュエーターを有する出力軸振動型電動装置を提供することを目的とする。
The present invention was created based on the above background, and provides an electric linear actuator capable of reducing undesirable vibrations, and an output shaft vibration type electric apparatus having the electric linear actuator. Objective.
本発明の一態様は、出力軸振動型電動装置の出力軸を駆動する電動リニアアクチュエーターである。前記電動リニアアクチュエーターは、固定ブロック、出力可動ブロック、対偶可動ブロック、ブロック結合部品、出力用機能部品、および対偶用機能部品を備えるとともに、可動方向として規定される突出方向および引込方向に往復運動を行うように構成されている。前記可動方向と直交する方向に沿って前記出力可動ブロックおよび前記対偶可動ブロックが並列的に配置されている。前記ブロック結合部品は、前記固定ブロック、前記出力可動ブロック、および前記対偶可動ブロックと結合されている。前記出力可動ブロックおよび前記対偶可動ブロックは、前記固定ブロックとの間において作用する電磁気力により、互いに反対の位相で前記可動方向に往復運動する。前記出力用機能部品は、前記出力可動ブロックおよび前記出力軸と結合されている。前記対偶用機能部品は、前記対偶可動ブロックと結合された対偶部品本体部と、前記対偶部品本体部と同一材料により前記対偶部品本体部と一体的に形成された対偶部品調整部とを含む。前記対偶部品調整部は、前記対偶可動ブロックよりも前記引込方向側に配置されている。
One embodiment of the present invention is an electric linear actuator that drives an output shaft of an output shaft vibration type electric device. The electric linear actuator includes a fixed block, an output movable block, an even movable block, a block coupling component, an output functional component, and an even functional component, and reciprocates in a protruding direction and a retracting direction defined as a movable direction. Configured to do. The output movable block and the even movable block are arranged in parallel along a direction orthogonal to the movable direction. The block coupling component is coupled to the fixed block, the output movable block, and the even movable block. The output movable block and the pair movable block reciprocate in the movable direction in opposite phases with each other by an electromagnetic force acting between the fixed block and the stationary movable block. The output functional component is coupled to the output movable block and the output shaft. The kinematic function component includes a kinematic component main body coupled to the kinematic movable block, and a kinematic component adjusting unit integrally formed with the kinematic component main body using the same material as the kinematic component main body. The kinematic part adjustment unit is disposed closer to the drawing direction than the kinematic movable block.
本発明の他の態様は、出力軸振動型電動装置の出力軸を駆動する電動リニアアクチュエーターである。前記電動リニアアクチュエーターは、出力可動ブロック、対偶可動ブロック、ブロック結合部品、出力用機能部品、および対偶用機能部品を備えるとともに、可動方向として規定される突出方向および引込方向に往復運動を行うように構成されている。前記可動方向と直交する方向に沿って前記出力可動ブロックおよび前記対偶可動ブロックが並列的に配置されている。前記ブロック結合部品は、前記出力可動ブロックおよび前記対偶可動ブロックと結合されている。前記出力可動ブロックおよび前記対偶可動ブロックは、前記出力可動ブロックおよび前記対偶可動ブロックの間において作用する電磁気力により、互いに反対の位相で前記可動方向に往復運動する。前記出力用機能部品は、前記出力可動ブロックおよび前記出力軸と結合されている。前記対偶用機能部品は、前記対偶可動ブロックと結合された対偶部品本体部と、前記対偶部品本体部と同一材料により前記対偶部品本体部と一体的に形成された対偶部品調整部とを含む。前記対偶部品調整部は、前記対偶可動ブロックよりも前記引込方向側に配置されている。
Another aspect of the present invention is an electric linear actuator that drives an output shaft of an output shaft vibration type electric device. The electric linear actuator includes an output movable block, a pair movable block, a block coupling component, an output functional component, and a pair functional component, and reciprocates in a projecting direction and a retracting direction defined as a movable direction. It is configured. The output movable block and the even movable block are arranged in parallel along a direction orthogonal to the movable direction. The block coupling component is coupled to the output movable block and the pair movable block. The output movable block and the pair movable block reciprocate in the movable direction in opposite phases with each other by an electromagnetic force acting between the output movable block and the pair movable block. The output functional component is coupled to the output movable block and the output shaft. The kinematic function component includes a kinematic component main body coupled to the kinematic movable block, and a kinematic component adjusting unit integrally formed with the kinematic component main body using the same material as the kinematic component main body. The kinematic part adjustment unit is disposed closer to the drawing direction than the kinematic movable block.
前記電動リニアアクチュエーターは更に、前記対偶部品調整部と結合された付加調整部品を備えることが好ましい。
前記電動リニアアクチュエーターでは、前記付加調整部品は、前記可動方向において前記対偶部品調整部よりも前記対偶可動ブロック側に配置されていることが好ましい。 Preferably, the electric linear actuator further includes an additional adjustment component coupled to the counter component adjustment unit.
In the electric linear actuator, it is preferable that the additional adjustment component is disposed closer to the pair movable block than the pair component adjustment unit in the movable direction.
前記電動リニアアクチュエーターでは、前記付加調整部品は、前記可動方向において前記対偶部品調整部よりも前記対偶可動ブロック側に配置されていることが好ましい。 Preferably, the electric linear actuator further includes an additional adjustment component coupled to the counter component adjustment unit.
In the electric linear actuator, it is preferable that the additional adjustment component is disposed closer to the pair movable block than the pair component adjustment unit in the movable direction.
前記電動リニアアクチュエーターでは、前記対偶部品本体部の重量は、前記対偶部品調整部の重量よりも大きいことが好ましい。
前記電動リニアアクチュエーターでは、前記出力用機能部品は、前記出力可動ブロックと結合された出力部品本体部と、前記出力部品本体部および前記出力軸と結合された出力軸用結合部とを含むことが好ましい。この構成において、前記電動リニアアクチュエーターは、前記電動リニアアクチュエーターの正面視において前記出力軸の軸方向に延びる前記出力軸用結合部の結合部中心線に沿って区分される第1区分領域および第2区分領域を含む。この場合、前記第1区分領域に、少なくとも前記対偶可動ブロックが配置されることが好ましい。また、前記対偶可動ブロックと前記対偶用機能部品とを含む機能結合部の重心が前記第1区分領域内に位置していることが好ましい。 In the electric linear actuator, it is preferable that the weight of the paired component main body is larger than the weight of the paired component adjusting unit.
In the electric linear actuator, the output functional component includes an output component main body coupled to the output movable block, and an output shaft coupling coupled to the output component main body and the output shaft. preferable. In this configuration, the electric linear actuator includes a first segmented region and a second segmented region which are segmented along a coupling portion center line of the coupling portion for the output shaft extending in the axial direction of the output shaft in a front view of the electric linear actuator. Includes segmented areas. In this case, it is preferable that at least the kinematic movable block is disposed in the first segmented region. Moreover, it is preferable that the gravity center of the function coupling | bond part containing the said kinematic movable block and the said kinematic function component is located in the said 1st division area.
前記電動リニアアクチュエーターでは、前記出力用機能部品は、前記出力可動ブロックと結合された出力部品本体部と、前記出力部品本体部および前記出力軸と結合された出力軸用結合部とを含むことが好ましい。この構成において、前記電動リニアアクチュエーターは、前記電動リニアアクチュエーターの正面視において前記出力軸の軸方向に延びる前記出力軸用結合部の結合部中心線に沿って区分される第1区分領域および第2区分領域を含む。この場合、前記第1区分領域に、少なくとも前記対偶可動ブロックが配置されることが好ましい。また、前記対偶可動ブロックと前記対偶用機能部品とを含む機能結合部の重心が前記第1区分領域内に位置していることが好ましい。 In the electric linear actuator, it is preferable that the weight of the paired component main body is larger than the weight of the paired component adjusting unit.
In the electric linear actuator, the output functional component includes an output component main body coupled to the output movable block, and an output shaft coupling coupled to the output component main body and the output shaft. preferable. In this configuration, the electric linear actuator includes a first segmented region and a second segmented region which are segmented along a coupling portion center line of the coupling portion for the output shaft extending in the axial direction of the output shaft in a front view of the electric linear actuator. Includes segmented areas. In this case, it is preferable that at least the kinematic movable block is disposed in the first segmented region. Moreover, it is preferable that the gravity center of the function coupling | bond part containing the said kinematic movable block and the said kinematic function component is located in the said 1st division area.
本発明の別の態様は、出力軸振動型電動装置である。前記出力軸振動型電動装置は、前記電動リニアアクチュエーターおよび前記出力軸を備える。前記出力軸は、前記出力用機能部品と結合されている。
Another aspect of the present invention is an output shaft vibration type electric device. The output shaft vibration type electric device includes the electric linear actuator and the output shaft. The output shaft is coupled to the output functional component.
前記出力軸振動型電動装置は、例えば電動口腔衛生装置の形態を有する。
The output shaft vibration type electric device has, for example, an electric oral hygiene device.
本電動リニアアクチュエーターおよび本出力軸振動型電動装置は、好ましくない振動を低減することができる。
The electric linear actuator and the output shaft vibration type electric device can reduce undesirable vibrations.
(第1実施形態)
出力軸振動型電動装置10の構成について説明する。
出力軸振動型電動装置10に関する説明は、主として図1および図16を参照する。出力軸振動型電動装置10は、一例として、電動口腔衛生装置としての電動歯ブラシの形態を有する。出力軸振動型電動装置10は、複数の構成部品を有する。出力軸振動型電動装置10の複数の構成部品は、電動装置本体11、装置機能部品12、回路基板13、制御部14、電池15、弾性部品16(図16参照)、締結部品17(図16参照)、および電動リニアアクチュエーター40を含む。出力軸振動型電動装置10は、電動装置本体11および装置機能部品12を互いに結合および分離することが可能な構造を有する。出力軸振動型電動装置10は、電動リニアアクチュエーター40により装置機能部品12を往復運動させる。 (First embodiment)
The configuration of the output shaft vibration typeelectric device 10 will be described.
The description regarding the output shaft vibration typeelectric apparatus 10 will mainly refer to FIGS. 1 and 16. As an example, the output shaft vibration type electric device 10 has a form of an electric toothbrush as an electric oral hygiene device. The output shaft vibration type electric device 10 has a plurality of components. A plurality of components of the output shaft vibration type electric device 10 include an electric device main body 11, an apparatus functional component 12, a circuit board 13, a control unit 14, a battery 15, an elastic component 16 (see FIG. 16), and a fastening component 17 (FIG. 16). Reference) and an electric linear actuator 40. The output shaft vibration type electric device 10 has a structure capable of coupling and separating the electric device main body 11 and the device functional component 12 from each other. The output shaft vibration type electric device 10 reciprocates the device functional component 12 by the electric linear actuator 40.
出力軸振動型電動装置10の構成について説明する。
出力軸振動型電動装置10に関する説明は、主として図1および図16を参照する。出力軸振動型電動装置10は、一例として、電動口腔衛生装置としての電動歯ブラシの形態を有する。出力軸振動型電動装置10は、複数の構成部品を有する。出力軸振動型電動装置10の複数の構成部品は、電動装置本体11、装置機能部品12、回路基板13、制御部14、電池15、弾性部品16(図16参照)、締結部品17(図16参照)、および電動リニアアクチュエーター40を含む。出力軸振動型電動装置10は、電動装置本体11および装置機能部品12を互いに結合および分離することが可能な構造を有する。出力軸振動型電動装置10は、電動リニアアクチュエーター40により装置機能部品12を往復運動させる。 (First embodiment)
The configuration of the output shaft vibration type
The description regarding the output shaft vibration type
電動装置本体11は、縦長形状を有する。電動装置本体11は、出力軸20および本体ケース30を有する。電動装置本体11は、電動リニアアクチュエーター40により出力軸20を往復運動させる。
The electric device main body 11 has a vertically long shape. The electric device main body 11 has an output shaft 20 and a main body case 30. The electric device main body 11 reciprocates the output shaft 20 by the electric linear actuator 40.
本体ケース30は、樹脂材料により形成されている。本体ケース30は、縦長形状を有する。本体ケース30は、ケース周壁部31およびケース内部空間38(図16参照)を有する。本体ケース30は、ケース周壁部31の内部にケース内部空間38を形成している。本体ケース30は、ケース内部空間38に回路基板13、制御部14、電池15、および電動リニアアクチュエーター40を収容している。本体ケース30は、電池15として1次電池または2次電池を収容している。本体ケース30は、電池15の取り付けおよび取り外しが可能な構造を有する。
The main body case 30 is made of a resin material. The main body case 30 has a vertically long shape. The main body case 30 has a case peripheral wall portion 31 and a case internal space 38 (see FIG. 16). The main body case 30 forms a case internal space 38 inside the case peripheral wall portion 31. The main body case 30 houses the circuit board 13, the control unit 14, the battery 15, and the electric linear actuator 40 in the case internal space 38. The main body case 30 accommodates a primary battery or a secondary battery as the battery 15. The main body case 30 has a structure in which the battery 15 can be attached and detached.
装置機能部品12は、歯ブラシ型アタッチメントの形態を有する。装置機能部品12は、縦長形状を有する。装置機能部品12は、出力軸20との結合および分離が可能な構造を有する。装置機能部品12は、出力軸20の往復運動に応じて電動装置本体11に対して往復運動する。装置機能部品12は、出力軸振動型電動装置10における電動歯ブラシとしての形態を規定している。
The device functional part 12 has a form of a toothbrush type attachment. The device functional component 12 has a vertically long shape. The device functional component 12 has a structure that can be coupled to and separated from the output shaft 20. The device functional component 12 reciprocates with respect to the electric device main body 11 according to the reciprocating motion of the output shaft 20. The device functional component 12 defines a form as an electric toothbrush in the output shaft vibration type electric device 10.
電動リニアアクチュエーター40の構成について説明する。
電動リニアアクチュエーター40に関する説明は、主として図2を参照する。電動リニアアクチュエーター40の各構成部品は、可動方向DX、高さ方向DY、幅方向DZ、および平面方向を規定する。可動方向DXは、電動リニアアクチュエーター40が出力する運動の双方向を示す。高さ方向DYは、電動リニアアクチュエーター40の正面視(図5)において、可動方向DXに直交する双方向を示す。幅方向DZは、可動方向DXおよび高さ方向DYに直交する双方向を示す。平面方向は、可動方向DXに直交する全部の方向を示す。平面方向は、高さ方向DYおよび幅方向DZを含む。 The configuration of the electriclinear actuator 40 will be described.
Refer mainly to FIG. 2 for the description regarding the electriclinear actuator 40. FIG. Each component of the electric linear actuator 40 defines a movable direction DX, a height direction DY, a width direction DZ, and a planar direction. The movable direction DX indicates the bidirectional motion output by the electric linear actuator 40. The height direction DY indicates a bidirectional direction orthogonal to the movable direction DX in the front view (FIG. 5) of the electric linear actuator 40. The width direction DZ indicates a bidirectional direction orthogonal to the movable direction DX and the height direction DY. The plane direction indicates all directions orthogonal to the movable direction DX. The planar direction includes a height direction DY and a width direction DZ.
電動リニアアクチュエーター40に関する説明は、主として図2を参照する。電動リニアアクチュエーター40の各構成部品は、可動方向DX、高さ方向DY、幅方向DZ、および平面方向を規定する。可動方向DXは、電動リニアアクチュエーター40が出力する運動の双方向を示す。高さ方向DYは、電動リニアアクチュエーター40の正面視(図5)において、可動方向DXに直交する双方向を示す。幅方向DZは、可動方向DXおよび高さ方向DYに直交する双方向を示す。平面方向は、可動方向DXに直交する全部の方向を示す。平面方向は、高さ方向DYおよび幅方向DZを含む。 The configuration of the electric
Refer mainly to FIG. 2 for the description regarding the electric
可動方向DXの一方は、突出方向DXLを示す。可動方向DXの他方は、引込方向DXRを示す。突出方向DXLは、電動リニアアクチュエーター40の正面視において出力軸20が電動リニアアクチュエーター40から押し出される方向を示す。引込方向DXRは、電動リニアアクチュエーター40の正面視において出力軸20が電動リニアアクチュエーター40に引き込まれる方向を示す。
One side of the movable direction DX indicates the protruding direction DXL. The other of the movable directions DX indicates a pull-in direction DXR. The protruding direction DXL indicates a direction in which the output shaft 20 is pushed out of the electric linear actuator 40 when the electric linear actuator 40 is viewed from the front. The pull-in direction DXR indicates a direction in which the output shaft 20 is pulled into the electric linear actuator 40 when the electric linear actuator 40 is viewed from the front.
高さ方向DYの一方は、頂面方向DYTを示す。高さ方向DYの他方は、底面方向DYBを示す。頂面方向DYTは、電動リニアアクチュエーター40の正面視において底部側から頂部側に向かう方向を示す。底面方向DYBは、電動リニアアクチュエーター40の正面視において頂部側から底部側に向かう方向を示す。
One side in the height direction DY indicates the top surface direction DYT. The other of the height direction DY indicates a bottom surface direction DYB. The top surface direction DYT indicates a direction from the bottom side to the top side in the front view of the electric linear actuator 40. The bottom surface direction DYB indicates a direction from the top side to the bottom side in the front view of the electric linear actuator 40.
幅方向DZの一方は、正面方向DZFを示す。幅方向DZの他方は、背面方向DZRを示す。正面方向DZFは、電動リニアアクチュエーター40の側面視において背面側から正面側に向かう方向を示す。背面方向DZRは、電動リニアアクチュエーター40の側面視において正面側から背面側に向かう方向を示す。
One side of the width direction DZ indicates the front direction DZF. The other of the width direction DZ shows the back direction DZR. The front direction DZF indicates a direction from the back side to the front side in a side view of the electric linear actuator 40. The back direction DZR indicates a direction from the front side to the back side in the side view of the electric linear actuator 40.
電動リニアアクチュエーター40は、可動方向DXにおいて長手部分を有する。電動リニアアクチュエーター40は、幅方向DZにおいて短手部分を有する。電動リニアアクチュエーター40は、複数の構成部品を有する。電動リニアアクチュエーター40の複数の構成部品は、固定ブロック50、出力可動ブロック60、対偶可動ブロック70、突出側連結部品80、引込側連結部品90を含む。電動リニアアクチュエーター40の複数の構成部品は、ブロック結合部品100、出力用機能部品200、対偶用機能部品300、付加調整部品400、複数の締結部品41、および複数の締結部品42をさらに含む。電動リニアアクチュエーター40は、出力用機能部品200において出力軸20と結合される。電動リニアアクチュエーター40は、固定ブロック50と出力可動ブロック60との間において作用する電磁気力により、可動方向DXにおいて出力可動ブロック60を往復運動させる。電動リニアアクチュエーター40は、出力可動ブロック60の往復運動により可動方向DXの往復運動を出力する。電動リニアアクチュエーター40は、可動方向DXの往復運動を出力することにより、出力軸20を可動方向DXにおいて往復運動させる。
The electric linear actuator 40 has a longitudinal portion in the movable direction DX. The electric linear actuator 40 has a short portion in the width direction DZ. The electric linear actuator 40 has a plurality of components. The plurality of components of the electric linear actuator 40 include a fixed block 50, an output movable block 60, a pair movable block 70, a protruding side connecting component 80, and a drawing side connecting component 90. The plurality of components of the electric linear actuator 40 further include a block coupling component 100, an output functional component 200, an even functional component 300, an additional adjustment component 400, a plurality of fastening components 41, and a plurality of fastening components 42. The electric linear actuator 40 is coupled to the output shaft 20 in the output functional component 200. The electric linear actuator 40 reciprocates the output movable block 60 in the movable direction DX by an electromagnetic force acting between the fixed block 50 and the output movable block 60. The electric linear actuator 40 outputs the reciprocating motion in the movable direction DX by the reciprocating motion of the output movable block 60. The electric linear actuator 40 reciprocates the output shaft 20 in the movable direction DX by outputting a reciprocating motion in the movable direction DX.
電動リニアアクチュエーター40の各構成部品の関係について説明する。
各構成部品の関係に関する説明は、主として図3を参照する。電動リニアアクチュエーター40は、一体化された関係を有する複数の機能結合部を有する。機能結合部における一体化の関係は、部品同士の結合により形成される。個々の機能結合部は、機能結合部を単位として他の機能結合部と相対的に運動することが可能な構造を有する。機能結合部の一体化は、それぞれの機能結合部に含まれる複数の構成部品において、各構成部品が相対的に運動することを許容する。固定ブロック50、出力可動ブロック60、対偶可動ブロック70、突出側連結部品80、および引込側連結部品90は、それぞれ機能結合部を形成している。 The relationship between the components of the electriclinear actuator 40 will be described.
Refer mainly to FIG. 3 for the description regarding the relationship of each component. The electriclinear actuator 40 has a plurality of function coupling portions having an integrated relationship. The integration relationship in the functional coupling part is formed by coupling parts. Each functional coupling part has a structure capable of moving relative to other functional coupling parts in units of functional coupling parts. The integration of the function coupling portions allows each component to move relatively among the plurality of components included in each function coupling portion. The fixed block 50, the output movable block 60, the pair movable block 70, the projecting side coupling component 80, and the drawing side coupling component 90 each form a function coupling portion.
各構成部品の関係に関する説明は、主として図3を参照する。電動リニアアクチュエーター40は、一体化された関係を有する複数の機能結合部を有する。機能結合部における一体化の関係は、部品同士の結合により形成される。個々の機能結合部は、機能結合部を単位として他の機能結合部と相対的に運動することが可能な構造を有する。機能結合部の一体化は、それぞれの機能結合部に含まれる複数の構成部品において、各構成部品が相対的に運動することを許容する。固定ブロック50、出力可動ブロック60、対偶可動ブロック70、突出側連結部品80、および引込側連結部品90は、それぞれ機能結合部を形成している。 The relationship between the components of the electric
Refer mainly to FIG. 3 for the description regarding the relationship of each component. The electric
電動リニアアクチュエーター40では、出力可動ブロック60および対偶可動ブロック70が幅方向DZに沿って並列的に配置されている。出力可動ブロック60および対偶可動ブロック70は、幅方向DZにおいて隙間を有する。固定ブロック50および出力可動ブロック60は、リニアモーターを形成している。固定ブロック50および対偶可動ブロック70は、リニアモーターを形成している。出力可動ブロック60および対偶可動ブロック70は、互いに反対の位相により可動方向DXにおいて往復運動する。
In the electric linear actuator 40, the output movable block 60 and the even movable block 70 are arranged in parallel along the width direction DZ. The output movable block 60 and the pair movable block 70 have a gap in the width direction DZ. The fixed block 50 and the output movable block 60 form a linear motor. The fixed block 50 and the pair movable block 70 form a linear motor. The output movable block 60 and the pair movable block 70 reciprocate in the movable direction DX with opposite phases.
ブロック結合部品100は、固定ブロック50、出力可動ブロック60、対偶可動ブロック70、突出側連結部品80、引込側連結部品90、出力用機能部品200、および対偶用機能部品300と結合している。ブロック結合部品100は、固定ブロック50に対する出力可動ブロック60および対偶可動ブロック70の並進を許容する。
The block coupling component 100 is coupled to the fixed block 50, the output movable block 60, the pair movable block 70, the protruding side coupling component 80, the drawing side coupling component 90, the output functional component 200, and the pair functional component 300. The block coupling component 100 allows translation of the output movable block 60 and the even movable block 70 with respect to the fixed block 50.
出力軸20は、金属材料により形成されている。出力軸20は、可動方向DXにおいて、ブロック結合部品100に対して突出方向DXL側に配置されている。出力軸20は、出力用機能部品200と結合されている。出力軸20の中心線は、可動方向DXに平行している。出力軸20は、軸基礎部21、軸先端部22、および嵌合溝23を有する。出力軸20は、軸基礎部21において出力用機能部品200と結合されている。出力軸20は、軸先端部22において装置機能部品12と結合されている。出力軸20は、電動リニアアクチュエーター40の出力により装置機能部品12を往復運動させる。
The output shaft 20 is made of a metal material. The output shaft 20 is arranged on the projecting direction DXL side with respect to the block coupling component 100 in the movable direction DX. The output shaft 20 is coupled to the output functional component 200. The center line of the output shaft 20 is parallel to the movable direction DX. The output shaft 20 includes a shaft base portion 21, a shaft tip portion 22, and a fitting groove 23. The output shaft 20 is coupled to the output functional component 200 at the shaft base portion 21. The output shaft 20 is coupled to the device functional component 12 at the shaft tip portion 22. The output shaft 20 reciprocates the device functional component 12 by the output of the electric linear actuator 40.
固定ブロック50の構成について説明する。
固定ブロック50に関する説明は、主として図3および図5~図7を参照する。固定ブロック50は、可動方向DXにおいて、ブロック結合部品100の中間部分に配置されている。固定ブロック50は、高さ方向DYにおいて、出力可動用結合部120および対偶可動用結合部130の底面方向DYB側の箇所に配置されている。固定ブロック50は、幅方向DZにおいて、ブロック結合部品100の正面方向DZF側の箇所から背面方向DZR側の箇所にわたり配置されている。 The configuration of the fixedblock 50 will be described.
For the description of the fixedblock 50, reference is mainly made to FIG. 3 and FIGS. The fixed block 50 is disposed at an intermediate portion of the block coupling component 100 in the movable direction DX. The fixed block 50 is disposed at a position on the bottom surface direction DYB side of the output movable coupling portion 120 and the pair movable coupling portion 130 in the height direction DY. In the width direction DZ, the fixed block 50 is disposed from a position on the front direction DZF side to a position on the back direction DZR side of the block coupling component 100.
固定ブロック50に関する説明は、主として図3および図5~図7を参照する。固定ブロック50は、可動方向DXにおいて、ブロック結合部品100の中間部分に配置されている。固定ブロック50は、高さ方向DYにおいて、出力可動用結合部120および対偶可動用結合部130の底面方向DYB側の箇所に配置されている。固定ブロック50は、幅方向DZにおいて、ブロック結合部品100の正面方向DZF側の箇所から背面方向DZR側の箇所にわたり配置されている。 The configuration of the fixed
For the description of the fixed
固定ブロック50は、ブロック形状を有する。固定ブロック50は、可動方向DXにおいて長手部分を有する。固定ブロック50は、幅方向DZにおいて短手部分を有する。固定ブロック50は、複数の構成部品を有する。固定ブロック50の複数の構成部品は、コア51、コイル52、絶縁部品53、および支持部品54を含む。固定ブロック50は、複数の構成部品が互いに結合された構造を有する。固定ブロック50の複数の構成部品は、一体化された関係を有することにより、1つの機能結合部を形成している。固定ブロック50は、複数の締結部品42によりブロック結合部品100の固定用結合部110と結合されている。固定ブロック50および固定用結合部110は、一体化された関係を有する。
The fixed block 50 has a block shape. The fixed block 50 has a longitudinal portion in the movable direction DX. The fixed block 50 has a short portion in the width direction DZ. The fixed block 50 has a plurality of components. The plurality of components of the fixed block 50 include a core 51, a coil 52, an insulating component 53, and a support component 54. The fixed block 50 has a structure in which a plurality of components are coupled to each other. The plurality of components of the fixed block 50 form an integrated function by having an integrated relationship. The fixed block 50 is coupled to the fixing coupling portion 110 of the block coupling component 100 by a plurality of fastening components 42. The fixing block 50 and the fixing coupling part 110 have an integrated relationship.
コア51は、磁性材料により形成されている。コア51は、スリットが形成されたブロック形状を有する。コア51は、支持部品54の頂面上に配置されている。コア51は、支持部品54と結合されている。コア51は、出力可動ブロック60および対偶可動ブロック70を共振駆動させることに適した最大磁束密度を有する。
The core 51 is made of a magnetic material. The core 51 has a block shape in which slits are formed. The core 51 is disposed on the top surface of the support component 54. The core 51 is coupled to the support component 54. The core 51 has a maximum magnetic flux density suitable for driving the output movable block 60 and the pair movable block 70 in resonance.
コイル52は、導電性材料により形成されている。コイル52は、コア51に巻き付けられている。コイル52は、リード線(図示略)により回路基板13(図1参照)と電気的に接続されている。コイル52は、回路基板13から電流の供給を受ける。コイル52は、出力可動ブロック60および対偶可動ブロック70を往復運動させることに適した巻き数を有する。
The coil 52 is made of a conductive material. The coil 52 is wound around the core 51. The coil 52 is electrically connected to the circuit board 13 (see FIG. 1) by a lead wire (not shown). The coil 52 is supplied with current from the circuit board 13. The coil 52 has a number of turns suitable for reciprocating the output movable block 60 and the pair movable block 70.
絶縁部品53は、非導電性材料により形成されている。絶縁部品53は、コア51のティースを被覆する形状を有する。絶縁部品53は、コア51のティースと結合されている。絶縁部品53は、コア51とコイル52との間に配置されている(図7参照)。絶縁部品53は、コイル52をコア51と絶縁している。
The insulating component 53 is made of a non-conductive material. The insulating component 53 has a shape that covers the teeth of the core 51. The insulating component 53 is coupled to the teeth of the core 51. The insulating component 53 is disposed between the core 51 and the coil 52 (see FIG. 7). The insulating component 53 insulates the coil 52 from the core 51.
支持部品54は、樹脂材料により形成されている。支持部品54は、平板形状に類似する形状を有する。支持部品54は、固定ブロック50のうちの底面方向DYB側の箇所に配置されている。支持部品54は、複数の締結部品42により固定用結合部110と結合されている。
The support component 54 is made of a resin material. The support component 54 has a shape similar to a flat plate shape. The support component 54 is disposed at a position on the bottom block direction DYB side of the fixed block 50. The support component 54 is coupled to the fixing coupling portion 110 by a plurality of fastening components 42.
出力可動ブロック60の構成について説明する。
出力可動ブロック60に関する説明は、主として図3および図5~図7を参照する。出力可動ブロック60は、可動方向DXにおいて、突出側支持部140と引込側支持部150との間に配置されている。出力可動ブロック60は、高さ方向DYにおいて、固定用結合部110と出力可動用結合部120との間に配置されている。出力可動ブロック60は、幅方向DZにおいて、ブロック結合部品100の幅方向DZの中心線よりも正面方向DZF側の箇所に配置されている。 The configuration of the outputmovable block 60 will be described.
For the description of the outputmovable block 60, reference is mainly made to FIG. 3 and FIGS. The output movable block 60 is disposed between the protruding side support part 140 and the drawing side support part 150 in the movable direction DX. The output movable block 60 is disposed between the fixed coupling portion 110 and the output movable coupling portion 120 in the height direction DY. The output movable block 60 is arranged in the front direction DZF side with respect to the center line in the width direction DZ of the block coupling component 100 in the width direction DZ.
出力可動ブロック60に関する説明は、主として図3および図5~図7を参照する。出力可動ブロック60は、可動方向DXにおいて、突出側支持部140と引込側支持部150との間に配置されている。出力可動ブロック60は、高さ方向DYにおいて、固定用結合部110と出力可動用結合部120との間に配置されている。出力可動ブロック60は、幅方向DZにおいて、ブロック結合部品100の幅方向DZの中心線よりも正面方向DZF側の箇所に配置されている。 The configuration of the output
For the description of the output
出力可動ブロック60は、長方形状を有する。出力可動ブロック60は、複数の構成部品を有する。出力可動ブロック60の複数の構成部品は、出力用永久磁石61および出力用バックヨーク62を含む。出力可動ブロック60は、複数の構成部品が互いに結合された構造を有する。出力可動ブロック60の複数の構成部品は、一体化された関係を有する。出力可動ブロック60は、複数の締結部品41によりブロック結合部品100の出力可動用結合部120と結合されている。出力可動ブロック60および出力可動用結合部120は、一体化された関係を有する。
The output movable block 60 has a rectangular shape. The output movable block 60 has a plurality of components. The plurality of components of the output movable block 60 include an output permanent magnet 61 and an output back yoke 62. The output movable block 60 has a structure in which a plurality of components are coupled to each other. The plurality of components of the output movable block 60 have an integrated relationship. The output movable block 60 is coupled to the output movable coupling portion 120 of the block coupling component 100 by a plurality of fastening components 41. The output movable block 60 and the output movable coupling portion 120 have an integrated relationship.
出力用永久磁石61は、平板形状を有する。出力用永久磁石61は、接着剤により出力用バックヨーク62と結合されている。出力用永久磁石61は、高さ方向DYにおいて、固定ブロック50と対向している(図5参照)。出力用永久磁石61は、固定ブロック50との間に隙間としての出力側ギャップ63を形成している。出力用永久磁石61は、固定ブロック50が形成する磁界の影響を受けて、可動方向DXにおいて固定ブロック50に対して移動する。出力用永久磁石61は、対偶可動ブロック70と反対の位相により可動方向DXに移動する構造を有する。
The output permanent magnet 61 has a flat plate shape. The output permanent magnet 61 is coupled to the output back yoke 62 with an adhesive. The output permanent magnet 61 faces the fixed block 50 in the height direction DY (see FIG. 5). The output permanent magnet 61 forms an output-side gap 63 as a gap with the fixed block 50. The output permanent magnet 61 moves relative to the fixed block 50 in the movable direction DX under the influence of the magnetic field formed by the fixed block 50. The output permanent magnet 61 has a structure that moves in the movable direction DX by a phase opposite to that of the pair movable block 70.
出力用バックヨーク62は、磁性材料により形成されている。出力用バックヨーク62は、平板形状を有する。出力用バックヨーク62は、複数の締結部品41によりブロック結合部品100の出力可動用結合部120と結合されている。出力用バックヨーク62は、出力用永久磁石61の吸着力または吸引力を増大させる。
The output back yoke 62 is made of a magnetic material. The output back yoke 62 has a flat plate shape. The output back yoke 62 is coupled to the output movable coupling portion 120 of the block coupling component 100 by a plurality of fastening components 41. The output back yoke 62 increases the attractive force or attractive force of the output permanent magnet 61.
対偶可動ブロック70の構成について説明する。
対偶可動ブロック70に関する説明は、主として図3および図5~図7を参照する。対偶可動ブロック70は、可動方向DXにおいて、突出側支持部140と引込側支持部150との間に配置されている。対偶可動ブロック70は、高さ方向DYにおいて、固定用結合部110と対偶可動用結合部130との間に配置されている。対偶可動ブロック70は、幅方向DZにおいて、ブロック結合部品100の幅方向DZの中心線よりも背面方向DZR側の箇所に配置されている。 The configuration of the kinematicmovable block 70 will be described.
3 and 5 to 7 will be mainly referred to for the explanation of the kinematicmovable block 70. The pair movable block 70 is disposed between the protruding side support part 140 and the drawing side support part 150 in the movable direction DX. The pair movable block 70 is disposed between the fixed coupling portion 110 and the pair movable coupling portion 130 in the height direction DY. The pair movable block 70 is disposed in the width direction DZ at a position closer to the back surface direction DZR than the center line of the block coupling component 100 in the width direction DZ.
対偶可動ブロック70に関する説明は、主として図3および図5~図7を参照する。対偶可動ブロック70は、可動方向DXにおいて、突出側支持部140と引込側支持部150との間に配置されている。対偶可動ブロック70は、高さ方向DYにおいて、固定用結合部110と対偶可動用結合部130との間に配置されている。対偶可動ブロック70は、幅方向DZにおいて、ブロック結合部品100の幅方向DZの中心線よりも背面方向DZR側の箇所に配置されている。 The configuration of the kinematic
3 and 5 to 7 will be mainly referred to for the explanation of the kinematic
対偶可動ブロック70は、長方形状を有する。対偶可動ブロック70は、複数の構成部品を有する。対偶可動ブロック70の複数の構成部品は、対偶用永久磁石71および対偶用バックヨーク72を含む。対偶可動ブロック70は、複数の構成部品が互いに結合された構造を有する。対偶可動ブロック70の複数の構成部品は、一体化された関係を有する。対偶可動ブロック70は、複数の締結部品41によりブロック結合部品100の対偶可動用結合部130と結合されている。対偶可動ブロック70および対偶可動用結合部130は、一体化された関係を有する。
The even-moving block 70 has a rectangular shape. The pair movable block 70 has a plurality of components. The plurality of components of the pair movable block 70 include a pair permanent magnet 71 and a pair back yoke 72. The even-moving block 70 has a structure in which a plurality of components are coupled to each other. The plurality of components of the kinematic movable block 70 have an integrated relationship. The couple movable block 70 is coupled to the couple movable coupling portion 130 of the block coupling component 100 by a plurality of fastening components 41. The pair movable block 70 and the pair for pair movable 130 have an integrated relationship.
対偶用永久磁石71は、平板形状を有する。対偶用永久磁石71は、接着剤により対偶用バックヨーク72と結合されている。対偶用永久磁石71は、高さ方向DYにおいて、固定ブロック50と対向している(図6参照)。対偶用永久磁石71は、固定ブロック50との間に隙間としての対偶側ギャップ73を形成している。対偶用永久磁石71は、固定ブロック50が形成する磁界の影響を受けて、可動方向DXにおいて固定ブロック50に対して移動する。対偶用永久磁石71は、出力可動ブロック60と反対の位相により可動方向DXに移動する構造を有する。
The pair permanent magnet 71 has a flat plate shape. The pair permanent magnet 71 is coupled to the pair back yoke 72 by an adhesive. The pair permanent magnet 71 faces the fixed block 50 in the height direction DY (see FIG. 6). The even-numbered permanent magnet 71 forms a gap-side gap 73 as a gap with the fixed block 50. The pair permanent magnet 71 moves relative to the fixed block 50 in the movable direction DX under the influence of the magnetic field formed by the fixed block 50. The pair permanent magnet 71 has a structure that moves in the movable direction DX by a phase opposite to that of the output movable block 60.
対偶用バックヨーク72は、磁性材料により形成されている。対偶用バックヨーク72は、平板形状を有する。対偶用バックヨーク72は、複数の締結部品41によりブロック結合部品100の対偶可動用結合部130と結合されている。対偶用バックヨーク72は、対偶用永久磁石71の吸着力または吸引力を増大させる。
The pair back yoke 72 is made of a magnetic material. The pair back yoke 72 has a flat plate shape. The pair back yoke 72 is coupled to the pair movable coupling portion 130 of the block coupling component 100 by a plurality of fastening components 41. The pair back yoke 72 increases the attracting force or attractive force of the pair permanent magnet 71.
突出側連結部品80の構成について説明する。
突出側連結部品80に関する説明は、主として図10~図12を参照する。突出側連結部品80は、可動方向DXにおいて、ブロック結合部品100よりも突出方向DXL側の箇所に配置されている。突出側連結部品80は、高さ方向DYにおいて、ブロック結合部品100の頂面方向DYT側の箇所から底面方向DYB側の箇所にわたり配置されている。突出側連結部品80は、幅方向DZにおいて、ブロック結合部品100の正面方向DZF側の箇所から背面方向DZR側の箇所にわたり配置されている。 The structure of the protrusionside connection component 80 is demonstrated.
For the description of the protrudingside connecting part 80, reference is mainly made to FIGS. The protruding side connecting component 80 is arranged at a position closer to the protruding direction DXL than the block coupling component 100 in the movable direction DX. In the height direction DY, the protrusion-side connecting component 80 is disposed from the position on the top surface direction DYT side to the position on the bottom surface direction DYB side of the block coupling component 100. In the width direction DZ, the protruding-side connecting component 80 is disposed from a location on the front direction DZF side to a location on the back direction DZR side of the block coupling component 100.
突出側連結部品80に関する説明は、主として図10~図12を参照する。突出側連結部品80は、可動方向DXにおいて、ブロック結合部品100よりも突出方向DXL側の箇所に配置されている。突出側連結部品80は、高さ方向DYにおいて、ブロック結合部品100の頂面方向DYT側の箇所から底面方向DYB側の箇所にわたり配置されている。突出側連結部品80は、幅方向DZにおいて、ブロック結合部品100の正面方向DZF側の箇所から背面方向DZR側の箇所にわたり配置されている。 The structure of the protrusion
For the description of the protruding
突出側連結部品80は、樹脂材料により形成されている。突出側連結部品80は、円環形状に類似する形状を有する。突出側連結部品80は、円環形状に類似する形状の一例として、完全な円環の一部が切り欠かれた形状に類似する形状を有する。突出側連結部品80は、突出方向DXL側の側面視において幅方向DZの中心線に対して非対称の形状を有する。突出側連結部品80は、連結部品出力側端部81、連結部品対偶側端部82、連結部品空間83、および連結部品離間部84を有する。突出側連結部品80は、出力可動ブロック60および対偶可動ブロック70を共振駆動させることが可能な構造を有する。
The protruding side connecting part 80 is made of a resin material. The protrusion side connection component 80 has a shape similar to an annular shape. The protrusion side connection component 80 has a shape similar to a shape in which a part of a complete circular ring is cut out as an example of a shape similar to a circular shape. The protrusion-side connecting component 80 has an asymmetric shape with respect to the center line in the width direction DZ in a side view on the protrusion direction DXL side. The protruding side connecting part 80 includes a connecting part output side end 81, a connecting part pair side end 82, a connecting part space 83, and a connecting part separation part 84. The protrusion-side connecting component 80 has a structure capable of resonance driving the output movable block 60 and the pair movable block 70.
連結部品出力側端部81は、ブロック結合部品100の出力可動用結合部120と結合されている。連結部品対偶側端部82は、ブロック結合部品100の対偶可動用結合部130と結合されている。連結部品空間83は、円環形状または円環形状に類似する形状を有する突出側連結部品80の内周側に形成されている。連結部品離間部84は、連結部品出力側端部81と連結部品対偶側端部82との間に形成されている。
The connecting part output side end 81 is connected to the output movable connecting part 120 of the block connecting part 100. The connecting component pair-side end 82 is coupled to the pair movable coupling portion 130 of the block coupling component 100. The connecting part space 83 is formed on the inner peripheral side of the protruding side connecting part 80 having an annular shape or a shape similar to the annular shape. The connecting part separating portion 84 is formed between the connecting part output side end 81 and the connecting part pair side end 82.
引込側連結部品90の構成について説明する。
引込側連結部品90に関する説明は、主として図10、図11、および図13を参照する。引込側連結部品90は、可動方向DXにおいて、ブロック結合部品100よりも引込方向DXR側の箇所に配置されている。引込側連結部品90は、高さ方向DYにおいて、ブロック結合部品100の頂面方向DYT側の箇所から底面方向DYB側の箇所にわたり配置されている。引込側連結部品90は、幅方向DZにおいて、ブロック結合部品100の正面方向DZF側の箇所から背面方向DZR側の箇所にわたり配置されている。 The configuration of the pull-inside connecting component 90 will be described.
For the description of the pull-inside connecting component 90, reference is mainly made to FIG. 10, FIG. 11, and FIG. The pull-in side connection component 90 is arranged at a position closer to the pull-in direction DXR than the block coupling component 100 in the movable direction DX. The lead-in side connecting component 90 is arranged in the height direction DY from the location on the top surface direction DYT side to the location on the bottom surface direction DYB side of the block coupling component 100. In the width direction DZ, the lead-in side connection component 90 is arranged from the location on the front direction DZF side to the location on the back direction DZR side of the block coupling component 100.
引込側連結部品90に関する説明は、主として図10、図11、および図13を参照する。引込側連結部品90は、可動方向DXにおいて、ブロック結合部品100よりも引込方向DXR側の箇所に配置されている。引込側連結部品90は、高さ方向DYにおいて、ブロック結合部品100の頂面方向DYT側の箇所から底面方向DYB側の箇所にわたり配置されている。引込側連結部品90は、幅方向DZにおいて、ブロック結合部品100の正面方向DZF側の箇所から背面方向DZR側の箇所にわたり配置されている。 The configuration of the pull-in
For the description of the pull-in
引込側連結部品90は、樹脂材料により形成されている。引込側連結部品90は、円環形状に類似する形状を有する。引込側連結部品90は、円環形状に類似する形状の一例として、完全な円環の一部が切り欠かれた形状に類似する形状を有する。引込側連結部品90は、突出方向DXL側の側面視において幅方向DZの中心線に対して対称の形状を有する。引込側連結部品90は、連結部品出力側端部91、連結部品対偶側端部92、連結部品空間93、および連結部品離間部94を有する。引込側連結部品90は、出力可動ブロック60および対偶可動ブロック70を共振駆動させることが可能な構造を有する。
The lead-in side connection component 90 is formed of a resin material. The lead-in side connection component 90 has a shape similar to an annular shape. The drawing-side connecting component 90 has a shape similar to a shape in which a part of a complete circular ring is cut out as an example of a shape similar to a circular shape. The drawing-in side connecting component 90 has a symmetrical shape with respect to the center line in the width direction DZ in a side view on the protruding direction DXL side. The pull-in side connection component 90 includes a connection component output side end 91, a connection component pair-side end 92, a connection component space 93, and a connection component separation portion 94. The pull-in side connecting component 90 has a structure capable of resonance driving the output movable block 60 and the pair movable block 70.
連結部品出力側端部91は、ブロック結合部品100の出力可動用結合部120と結合されている。連結部品対偶側端部92は、ブロック結合部品100の対偶可動用結合部130と結合されている。連結部品空間93は、引込側連結部品90の内周側に形成されている。連結部品離間部94は、連結部品出力側端部91と連結部品対偶側端部92との間に形成されている。
The connecting component output side end 91 is connected to the output movable connecting portion 120 of the block connecting component 100. The coupling component pair-side end 92 is coupled to the pair-moving coupling portion 130 of the block coupling component 100. The connecting part space 93 is formed on the inner peripheral side of the pull-in side connecting part 90. The connecting part separating portion 94 is formed between the connecting part output side end 91 and the connecting part pair side end 92.
各連結部品80,90は、以下の設計思想に基づく構造を有する。
突出側連結部品80は、可動方向DXにおいて出力用機能部品200と隣り合う。このため、突出側連結部品80は、出力可動ブロック60および対偶可動ブロック70が往復運動するとき、出力用機能部品200と接触するおそれを有する。このため、突出側連結部品80は、連結部接触抑制構造を有する。突出側連結部品80は、連結部接触抑制構造を有することにより、出力用機能部品200と接触しにくい。 Each of the connecting parts 80 and 90 has a structure based on the following design concept.
The protrudingside connecting component 80 is adjacent to the output functional component 200 in the movable direction DX. For this reason, when the output movable block 60 and the pair movable block 70 reciprocate, the protrusion side connection component 80 has a possibility of contacting with the output functional component 200. For this reason, the protrusion side connection component 80 has a connection part contact-inhibition structure. The protrusion-side connecting component 80 is less likely to come into contact with the output functional component 200 by having the connecting portion contact suppressing structure.
突出側連結部品80は、可動方向DXにおいて出力用機能部品200と隣り合う。このため、突出側連結部品80は、出力可動ブロック60および対偶可動ブロック70が往復運動するとき、出力用機能部品200と接触するおそれを有する。このため、突出側連結部品80は、連結部接触抑制構造を有する。突出側連結部品80は、連結部接触抑制構造を有することにより、出力用機能部品200と接触しにくい。 Each of the connecting
The protruding
連結部接触抑制構造は、一例として、適正厚さ範囲に含まれる突出側連結部品80の厚さを有する。突出側連結部品80の適正厚さ範囲は、一例として、引込側連結部品90の厚さよりも薄い厚さを有する。突出側連結部品80の厚さは、可動方向DXにおける突出側連結部品80の突出方向DXL側の面と引込側の面との距離により規定することができる。引込側連結部品90の厚さは、可動方向DXにおける引込側連結部品90の突出方向DXL側の面と引込側の面との距離により規定することができる。
The connection part contact suppression structure has, as an example, the thickness of the protruding side connection part 80 included in the appropriate thickness range. The appropriate thickness range of the protrusion side connection component 80 has thickness thinner than the thickness of the drawing side connection component 90 as an example. The thickness of the projecting side connecting component 80 can be defined by the distance between the surface on the projecting direction DXL side and the surface on the retracting side of the projecting side connecting component 80 in the movable direction DX. The thickness of the drawing-side connecting component 90 can be defined by the distance between the surface on the protruding direction DXL side and the drawing-side surface of the drawing-side connecting component 90 in the movable direction DX.
突出側連結部品80は、引込側連結部品90よりも厚さが薄いことにより、引込側連結部品90と同じ厚さ、または引込側連結部品90よりも厚い厚さを有すると仮定した場合と比較して、出力用機能部品200との隙間を確保する余地が大きくなる。このため、適正厚さ範囲に含まれる突出側連結部品80の厚さは、連結部接触抑制構造を形成することに寄与している。
Compared to the case where the protruding side connecting part 80 is assumed to have the same thickness as the drawing side connecting part 90 or thicker than the drawing side connecting part 90 because the thickness is smaller than the drawing side connecting part 90. As a result, a room for securing a gap with the output functional component 200 is increased. For this reason, the thickness of the protrusion side connection component 80 included in the appropriate thickness range contributes to the formation of the connection portion contact suppression structure.
突出側連結部品80の厚さは、突出側連結部品80のばね定数に影響を及ぼす。突出側連結部品80のばね定数は、出力可動ブロック60および対偶可動ブロック70の共振駆動に影響を及ぼす。このため、突出側連結部品80の厚さを適正厚さ範囲に含めることが、突出側連結部品80の好ましいばね定数を設定することに優先される場合、共振駆動の好ましい形態が得られないおそれが生じる。連結部接触抑制構造の好ましい形態は、突出側連結部品80の厚さをより薄くすることにより得られる。このため、連結部接触抑制構造の効果を高める設計は、突出側連結部品80のばね定数をより小さくする。
The thickness of the protruding side connecting part 80 affects the spring constant of the protruding side connecting part 80. The spring constant of the projecting side connecting component 80 affects the resonance drive of the output movable block 60 and the pair movable block 70. For this reason, when priority is given to setting the preferable spring constant of the protrusion side connection component 80 to include the thickness of the protrusion side connection component 80 in an appropriate thickness range, the preferable form of resonance drive may not be obtained. Occurs. The preferable form of the connection part contact suppression structure is obtained by making the thickness of the protrusion side connection component 80 thinner. For this reason, the design which improves the effect of the connection part contact suppression structure makes the spring constant of the protrusion side connection component 80 smaller.
一方、出力可動ブロック60および対偶可動ブロック70の共振駆動は、突出側連結部品80のばね定数および引込側連結部品90のばね定数の影響を受ける。このため、突出側連結部品80の厚さと適正厚さ範囲との関係が優先して設計される場合、引込側連結部品90の厚さを調整することにより、共振駆動の好ましい形態を得ることができる。
On the other hand, the resonance drive of the output movable block 60 and the pair movable block 70 is affected by the spring constant of the projecting side connecting part 80 and the spring constant of the drawing side connecting part 90. For this reason, when the relationship between the thickness of the protrusion-side connecting component 80 and the appropriate thickness range is designed with priority, a preferable form of resonance driving can be obtained by adjusting the thickness of the drawing-side connecting component 90. it can.
突出側連結部品80および引込側連結部品90は、上記の設計思想を反映した厚さを有する。突出側連結部品80の厚さは、連結部接触抑制構造の好ましい形態を形成することに寄与している。引込側連結部品90の厚さは、突出側連結部品80の厚さよりも厚い。引込側連結部品90の厚さは、突出側連結部品80の厚さが薄いことによる突出側連結部品80のばね定数の低下を補償している。引込側連結部品90は、共振駆動の好ましい形態を形成するばね定数を有する。引込側連結部品90の厚さは、このばね定数を確保することに寄与している。突出側連結部品80のばね定数および引込側連結部品90のばね定数は、共振駆動の好ましい形態を形成している。
The protruding side connecting part 80 and the drawing side connecting part 90 have a thickness reflecting the above design concept. The thickness of the protrusion side connection component 80 contributes to forming the preferable form of a connection part contact-inhibition structure. The thickness of the pull-in side connecting component 90 is thicker than the thickness of the protruding side connecting component 80. The thickness of the pull-in side connecting component 90 compensates for a decrease in the spring constant of the protruding side connecting component 80 due to the thin thickness of the protruding side connecting component 80. The lead-in side coupling component 90 has a spring constant that forms a preferred form of resonant drive. The thickness of the lead-in side connection component 90 contributes to securing this spring constant. The spring constant of the projecting side connecting part 80 and the spring constant of the drawing side connecting part 90 form a preferable form of resonance driving.
このように、突出側連結部品80および引込側連結部品90は、互いに異なる形状を有することにより、連結部接触抑制構造の好ましい形態、および共振駆動の好ましい形態を形成している。
As described above, the protruding side connecting part 80 and the drawing side connecting part 90 have different shapes, thereby forming a preferable form of the connecting portion contact suppression structure and a preferable form of resonance driving.
ブロック結合部品100の構成について説明する。
ブロック結合部品100に関する説明は、主として図10および図11を参照する。ブロック結合部品100は、樹脂材料により形成されている。ブロック結合部品100は、複数の部品構成部分が同一の樹脂材料により一体的に形成された構造を有する。ブロック結合部品100の複数の部品構成部分は、2つの固定用結合部110、出力可動用結合部120、対偶可動用結合部130、2つの突出側支持部140、および2つの引込側支持部150を含む。ブロック結合部品100の複数の部品構成部分は、2つの出力側樹脂入口部121、出力側樹脂流路部122、出力突出側連結部123、および出力引込側連結部124をさらに含む。ブロック結合部品100の複数の部品構成部分は、2つの対偶側樹脂入口部131、対偶側樹脂流路部132、対偶突出側連結部133、対偶引込側連結部134をさらに含む。 The configuration of theblock coupling component 100 will be described.
Refer mainly to FIG. 10 and FIG. 11 for the description regarding theblock coupling component 100. FIG. The block coupling component 100 is made of a resin material. The block coupling component 100 has a structure in which a plurality of component constituent parts are integrally formed of the same resin material. The plurality of component parts of the block coupling component 100 include two fixed coupling portions 110, an output movable coupling portion 120, a pair movable coupling portion 130, two projecting side support portions 140, and two pull-in side support portions 150. including. The plurality of component constituent parts of the block coupling component 100 further includes two output side resin inlet portions 121, an output side resin flow passage portion 122, an output protruding side connecting portion 123, and an output drawing side connecting portion 124. The plurality of component constituent parts of the block coupling component 100 further include two even-side resin inlet portions 131, an even-side resin flow passage portion 132, an even-projection-side connection portion 133, and an even-piece pull-in side connection portion 134.
ブロック結合部品100に関する説明は、主として図10および図11を参照する。ブロック結合部品100は、樹脂材料により形成されている。ブロック結合部品100は、複数の部品構成部分が同一の樹脂材料により一体的に形成された構造を有する。ブロック結合部品100の複数の部品構成部分は、2つの固定用結合部110、出力可動用結合部120、対偶可動用結合部130、2つの突出側支持部140、および2つの引込側支持部150を含む。ブロック結合部品100の複数の部品構成部分は、2つの出力側樹脂入口部121、出力側樹脂流路部122、出力突出側連結部123、および出力引込側連結部124をさらに含む。ブロック結合部品100の複数の部品構成部分は、2つの対偶側樹脂入口部131、対偶側樹脂流路部132、対偶突出側連結部133、対偶引込側連結部134をさらに含む。 The configuration of the
Refer mainly to FIG. 10 and FIG. 11 for the description regarding the
ブロック結合部品100は、複数の機能部分を有する。個々の機能部分は、機能部分を単位として他の機能部分と相対的に運動することが可能な構造を有する。固定用結合部110、出力可動用結合部120、および対偶可動用結合部130は、それぞれ機能部分を形成している。
The block coupling component 100 has a plurality of functional parts. Each functional part has a structure capable of moving relative to other functional parts with the functional part as a unit. The fixed coupling portion 110, the output movable coupling portion 120, and the even-moving coupling portion 130 each form a functional part.
突出方向DXL側の固定用結合部110は、可動方向DXにおいて、ブロック結合部品100の可動方向DXの中心線よりも突出方向DXL側の箇所に配置されている。引込方向DXR側の固定用結合部110は、可動方向DXにおいて、ブロック結合部品100の可動方向DXの中心線よりも引込方向DXR側の箇所に配置されている。各固定用結合部110は、高さ方向DYにおいて、ブロック結合部品100の底面方向DYB側の箇所に配置されている。各固定用結合部110は、幅方向DZにおいて、ブロック結合部品100の正面方向DZF側の箇所から背面方向DZR側の箇所にわたり配置されている。
The fixing coupling part 110 on the projecting direction DXL side is arranged at a position on the projecting direction DXL side with respect to the center line of the movable direction DX of the block coupling component 100 in the movable direction DX. The fixing coupling portion 110 on the pulling direction DXR side is disposed in the movable direction DX at a position closer to the pulling direction DXR side than the center line of the movable direction DX of the block coupling component 100. Each fixing coupling portion 110 is disposed at a position on the bottom surface direction DYB side of the block coupling component 100 in the height direction DY. Each fixing coupling portion 110 is arranged from the position on the front direction DZF side to the position on the back direction DZR side of the block coupling component 100 in the width direction DZ.
各固定用結合部110は、ブロック形状を有する。突出方向DXL側の固定用結合部110および引込方向DXR側の固定用結合部110は、可動方向DXにおいて互いに対向している。突出方向DXL側の固定用結合部110は、突出側支持部140と連続している。引込方向DXR側の固定用結合部110は、引込側支持部150と連続している。各固定用結合部110は、固定ブロック50を挟み込む構造を有する。各固定用結合部110は、結合部支持面111を有する。結合部支持面111は、平面形状を有する。
Each fixing coupling part 110 has a block shape. The fixing coupling portion 110 on the protruding direction DXL side and the fixing coupling portion 110 on the drawing direction DXR side face each other in the movable direction DX. The fixing coupling portion 110 on the protruding direction DXL side is continuous with the protruding side support portion 140. The fixing coupling portion 110 on the drawing direction DXR side is continuous with the drawing-side support portion 150. Each fixing coupling portion 110 has a structure in which the fixing block 50 is sandwiched. Each fixing coupling portion 110 has a coupling portion support surface 111. The joint support surface 111 has a planar shape.
出力可動用結合部120は、可動方向DXにおいて、突出側連結部品80と引込側連結部品90との間に配置されている。出力可動用結合部120は、高さ方向DYにおいて、ブロック結合部品100の頂面方向DYT側の箇所に配置されている。出力可動用結合部120は、幅方向DZにおいて、ブロック結合部品100の幅方向DZの中心線よりも正面方向DZF側の箇所に配置されている。
The output movable coupling portion 120 is disposed between the protruding side connecting component 80 and the drawing side connecting component 90 in the movable direction DX. The output movable coupling portion 120 is disposed at a position on the top surface direction DYT side of the block coupling component 100 in the height direction DY. In the width direction DZ, the output movable coupling portion 120 is disposed at a location closer to the front direction DZF than the center line of the block coupling component 100 in the width direction DZ.
出力可動用結合部120は、2つの出力側樹脂入口部121、出力側樹脂流路部122、出力突出側連結部123、および出力引込側連結部124と一体的に形成されている。出力可動用結合部120、2つの出力側樹脂入口部121、出力側樹脂流路部122、出力突出側連結部123、および出力引込側連結部124は、1つの機能部分を形成している。
The output movable coupling portion 120 is integrally formed with two output side resin inlet portions 121, an output side resin flow passage portion 122, an output projecting side connecting portion 123, and an output drawing side connecting portion 124. The output movable coupling portion 120, the two output side resin inlet portions 121, the output side resin flow passage portion 122, the output protruding side connecting portion 123, and the output drawing side connecting portion 124 form one functional part.
出力側樹脂入口部121は、長方形状を有する。出力側樹脂入口部121は、可動方向DXにおいて長手部分を有する。出力側樹脂入口部121は、出力側樹脂流路部122上に形成されている。突出方向DXL側の出力側樹脂入口部121および引込方向DXR側の出力側樹脂入口部121は、可動方向DXにおいて間隔を空けて形成されている。
The output side resin inlet 121 has a rectangular shape. The output side resin inlet 121 has a longitudinal portion in the movable direction DX. The output side resin inlet part 121 is formed on the output side resin flow path part 122. The output side resin inlet portion 121 on the protruding direction DXL side and the output side resin inlet portion 121 on the drawing direction DXR side are formed with a gap in the movable direction DX.
出力側樹脂流路部122は、出力側樹脂入口部121よりも長い長方形状を有する。出力側樹脂流路部122は、可動方向DXにおいて長手部分を有する。出力側樹脂流路部122は、出力可動用結合部120上に形成されている。出力側樹脂流路部122は、出力可動用結合部120の突出方向DXL側の端部から引込方向DXR側の端部までにわたり形成されている。
The output side resin flow path part 122 has a rectangular shape longer than the output side resin inlet part 121. The output side resin flow path part 122 has a longitudinal part in the movable direction DX. The output side resin flow path part 122 is formed on the output movable coupling part 120. The output-side resin flow path portion 122 is formed from the end portion on the protruding direction DXL side to the end portion on the pull-in direction DXR side of the output movable coupling portion 120.
出力突出側連結部123は、平板形状に類似する形状を有する。出力突出側連結部123は、幅方向DZにおいて長手部分を有する。出力突出側連結部123は、出力側樹脂流路部122の突出方向DXL側の端部と連続している。出力突出側連結部123は、出力側樹脂流路部122と突出側支持部140および突出側連結部品80とを互いに連結している。出力突出側連結部123は、頂部において平面形状を有する。出力突出側連結部123の平面形状は、ブロック結合部品100の成形時において、出力側樹脂流路部122から突出側支持部140および突出側連結部品80への樹脂材料の滑らかな流れを形成することに貢献する。
The output protruding side connecting portion 123 has a shape similar to a flat plate shape. The output protrusion side connection part 123 has a longitudinal part in the width direction DZ. The output protrusion side connection part 123 is continuous with the end part on the protrusion direction DXL side of the output side resin flow path part 122. The output protruding side connecting portion 123 connects the output side resin flow path portion 122, the protruding side support portion 140, and the protruding side connecting component 80 to each other. The output protrusion side connection part 123 has a planar shape at the top. The planar shape of the output projecting side connecting portion 123 forms a smooth flow of the resin material from the output side resin flow channel portion 122 to the projecting side supporting portion 140 and the projecting side connecting component 80 when the block coupling component 100 is molded. Contribute to that.
出力引込側連結部124は、平板形状に類似する形状を有する。出力引込側連結部124は、幅方向DZにおいて長手部分を有する。出力引込側連結部124は、出力側樹脂流路部122の引込方向DXR側の端部と連続している。出力引込側連結部124は、出力側樹脂流路部122と引込側支持部150および引込側連結部品90とを互いに連結している。出力引込側連結部124は、頂部において平面形状を有する。出力引込側連結部124の平面形状は、ブロック結合部品100の成形時において、出力側樹脂流路部122から引込側支持部150および引込側連結部品90への樹脂材料の滑らかな流れを形成することに貢献する。
The output lead-in side connecting portion 124 has a shape similar to a flat plate shape. The output drawing side connection part 124 has a longitudinal part in the width direction DZ. The output drawing side connecting portion 124 is continuous with the end portion on the drawing direction DXR side of the output side resin flow passage portion 122. The output drawing side connecting part 124 connects the output side resin flow path part 122, the drawing side support part 150, and the drawing side connecting part 90 to each other. The output drawing side connection part 124 has a planar shape at the top. The planar shape of the output drawing side connecting portion 124 forms a smooth flow of the resin material from the output side resin flow channel portion 122 to the drawing side supporting portion 150 and the drawing side connecting component 90 when the block coupling component 100 is molded. Contribute to that.
対偶可動用結合部130は、可動方向DXにおいて、突出側連結部品80と引込側連結部品90との間に配置されている。対偶可動用結合部130は、高さ方向DYにおいて、ブロック結合部品100の頂面方向DYT側の箇所に配置されている。対偶可動用結合部130は、幅方向DZにおいて、ブロック結合部品100の幅方向DZの中心線よりも背面方向DZR側の箇所に配置されている。
The coupling part for movable pair 130 is arranged between the protruding side connecting part 80 and the drawing side connecting part 90 in the moving direction DX. The couple movable coupling part 130 is disposed at a position on the top surface direction DYT side of the block coupling component 100 in the height direction DY. The pair of movable couples 130 is disposed in the width direction DZ at a position closer to the back surface direction DZR than the center line of the block connection component 100 in the width direction DZ.
対偶可動用結合部130は、2つの対偶側樹脂入口部131、対偶側樹脂流路部132、対偶突出側連結部133、および対偶引込側連結部134と一体的に形成されている。対偶可動用結合部130、2つの対偶側樹脂入口部131、対偶側樹脂流路部132、対偶突出側連結部133、および対偶引込側連結部134は、1つの機能部分を形成している。
The couple-moving coupling part 130 is integrally formed with two pair-side resin inlet parts 131, a pair-side resin flow path part 132, a pair projection-side connection part 133, and a pair drawing-in side connection part 134. The pair of movable couples 130, the pair of resin inlets 131, the pair of resin flow passages 132, the pair of protruding protrusions 133, and the pair of pulling-in connections 134 form one functional part.
対偶側樹脂入口部131は、長方形状を有する。対偶側樹脂入口部131は、可動方向DXにおいて長手部分を有する。対偶側樹脂入口部131は、対偶側樹脂流路部132上に形成されている。突出方向DXL側の対偶側樹脂入口部131および引込方向DXR側の対偶側樹脂入口部131は、可動方向DXにおいて間隔を空けて形成されている。
The even-side resin inlet 131 has a rectangular shape. The even-side resin inlet portion 131 has a longitudinal portion in the movable direction DX. The even-side resin inlet portion 131 is formed on the even-side resin flow path portion 132. The even-side resin inlet portion 131 on the protruding direction DXL side and the even-side resin inlet portion 131 on the drawing direction DXR side are formed with an interval in the movable direction DX.
対偶側樹脂流路部132は、対偶側樹脂入口部131よりも長い長方形状を有する。対偶側樹脂流路部132は、可動方向DXにおいて長手部分を有する。対偶側樹脂流路部132は、対偶可動用結合部130上に形成されている。対偶側樹脂流路部132は、対偶可動用結合部130の突出方向DXL側の端部から引込方向DXR側の端部までにわたり形成されている。
The even-side resin flow path part 132 has a longer rectangular shape than the even-side resin inlet part 131. The even-side resin flow path portion 132 has a longitudinal portion in the movable direction DX. The even-side resin flow path portion 132 is formed on the couple-moving coupling portion 130. The pair-side resin flow path portion 132 is formed from the end portion on the protruding direction DXL side to the end portion on the pull-in direction DXR side of the pair-moving coupling portion 130.
対偶突出側連結部133は、平板形状に類似する形状を有する。対偶突出側連結部133は、幅方向DZにおいて長手部分を有する。対偶突出側連結部133は、対偶側樹脂流路部132の突出方向DXL側の端部と連続している。対偶突出側連結部133は、対偶側樹脂流路部132と突出側支持部140および突出側連結部品80とを互いに連結している。対偶突出側連結部133は、頂部において平面形状を有する。対偶突出側連結部133の平面形状は、ブロック結合部品100の成形時において、対偶側樹脂流路部132から突出側支持部140および突出側連結部品80への樹脂材料の滑らかな流れを形成することに貢献する。
The even number protrusion side connecting part 133 has a shape similar to a flat plate shape. The even number protrusion side coupling part 133 has a longitudinal portion in the width direction DZ. The even-numbered protrusion side connecting portion 133 is continuous with the end portion on the protruding direction DXL side of the even-side resin flow path portion 132. The even-numbered protrusion-side connecting portion 133 connects the even-side resin flow path portion 132, the protruding-side support portion 140, and the protruding-side connecting component 80 to each other. The even number protrusion side coupling part 133 has a planar shape at the top. The planar shape of the even-numbered protrusion-side connecting portion 133 forms a smooth flow of the resin material from the pair-side resin flow path portion 132 to the protruding-side support portion 140 and the protruding-side connecting component 80 when the block coupling component 100 is molded. Contribute to that.
対偶引込側連結部134は、平板形状に類似する形状を有する。対偶引込側連結部134は、幅方向DZにおいて長手部分を有する。対偶引込側連結部134は、対偶側樹脂流路部132の引込方向DXR側の端部と連続している。対偶突出側連結部133は、対偶側樹脂流路部132と引込側支持部150および引込側連結部品90とを互いに連結している。対偶引込側連結部134は、頂部において平面形状を有する。対偶引込側連結部134の平面形状は、ブロック結合部品100の成形時において、対偶側樹脂流路部132から引込側支持部150および引込側連結部品90への樹脂材料の滑らかな流れを形成することに貢献する。
The even number drawing side connecting part 134 has a shape similar to a flat plate shape. The even number drawing side connection part 134 has a longitudinal part in the width direction DZ. The even number drawing side connecting part 134 is continuous with the end part on the drawing direction DXR side of the pair side resin flow path part 132. The even-numbered protrusion-side connecting portion 133 connects the pair-side resin flow path portion 132, the drawing-side support portion 150, and the drawing-side connecting component 90 to each other. The pair drawing side connection part 134 has a planar shape at the top. The planar shape of the even-number pull-in side connecting portion 134 forms a smooth flow of the resin material from the pair-side resin flow path portion 132 to the pull-in side supporting portion 150 and the pull-in side connecting component 90 when the block coupling component 100 is molded. Contribute to that.
突出側支持部140の構成について説明する。
突出側支持部140に関する説明は、主として図3、図7、図11、および図12を参照する。突出側支持部140は、可動方向DXにおいて、突出方向DXL側の固定用結合部110と突出側連結部品80との間に配置されている。突出側支持部140は、突出側変形部141および突出側連結部142を有する。 The structure of the protrusionside support part 140 is demonstrated.
The description regarding the protrusionside support part 140 mainly refers to FIG. 3, FIG. 7, FIG. 11, and FIG. The protruding side support part 140 is disposed between the fixing coupling part 110 on the protruding direction DXL side and the protruding side connecting part 80 in the movable direction DX. The protruding side support part 140 includes a protruding side deformable part 141 and a protruding side connecting part 142.
突出側支持部140に関する説明は、主として図3、図7、図11、および図12を参照する。突出側支持部140は、可動方向DXにおいて、突出方向DXL側の固定用結合部110と突出側連結部品80との間に配置されている。突出側支持部140は、突出側変形部141および突出側連結部142を有する。 The structure of the protrusion
The description regarding the protrusion
正面方向DZF側の突出側支持部140は、高さ方向DYにおいて、出力突出側連結部123の底面方向DYB側の箇所に配置されている。正面方向DZF側の突出側支持部140は、幅方向DZにおいて、ブロック結合部品100の幅方向DZの中心線よりも正面方向DZF側の箇所に配置されている。
The protrusion side support part 140 on the front direction DZF side is arranged at a position on the bottom surface direction DYB side of the output protrusion side coupling part 123 in the height direction DY. The protrusion-side support part 140 on the front direction DZF side is disposed in a position on the front direction DZF side with respect to the center line in the width direction DZ of the block coupling component 100 in the width direction DZ.
背面方向DZR側の突出側支持部140は、高さ方向DYにおいて、対偶突出側連結部133の底面方向DYB側の箇所に配置されている。背面方向DZR側の突出側支持部140は、幅方向DZにおいて、ブロック結合部品100の幅方向DZの中心線よりも背面方向DZR側の箇所に配置されている。
The protrusion side support part 140 on the back surface direction DZR side is disposed at a position on the bottom surface direction DYB side of the pair protrusion protrusion side coupling part 133 in the height direction DY. The protrusion-side support part 140 on the back surface direction DZR side is disposed in a position on the back surface direction DZR side with respect to the center line in the width direction DZ of the block coupling component 100 in the width direction DZ.
突出側変形部141は、薄板形状を有する。突出側変形部141は、高さ方向DYにおいて長手部分を有する。突出側変形部141は、幅方向DZにおいて短手部分を有する。突出側変形部141は、長手方向の変形量が可動方向DXの変形量よりも小さい構造を有する。突出側変形部141は、互いに独立して可動方向DXに変形する。
The projecting side deformable portion 141 has a thin plate shape. The protrusion-side deformable portion 141 has a longitudinal portion in the height direction DY. The protruding side deformable portion 141 has a short portion in the width direction DZ. The protrusion-side deformation portion 141 has a structure in which the deformation amount in the longitudinal direction is smaller than the deformation amount in the movable direction DX. The protrusion-side deformation portions 141 are deformed independently of each other in the movable direction DX.
正面方向DZF側の突出側変形部141は、出力突出側連結部123と結合されている。正面方向DZF側の突出側変形部141は、高さ方向DYにおいて、固定用結合部110に対する出力可動用結合部120の突出方向DXL側の部分の位置を規定している。正面方向DZF側の突出側変形部141は、可動方向DXにおける固定ブロック50に対する出力可動ブロック60の並進を許容する。
The front-side DZF-side protruding side deformable portion 141 is coupled to the output protruding side connecting portion 123. The protrusion-side deforming portion 141 on the front direction DZF side defines the position of the portion on the protrusion direction DXL side of the output movable coupling portion 120 with respect to the fixing coupling portion 110 in the height direction DY. The protrusion-side deforming portion 141 on the front direction DZF side allows translation of the output movable block 60 with respect to the fixed block 50 in the movable direction DX.
背面方向DZR側の突出側変形部141は、対偶突出側連結部133と結合されている。背面方向DZR側の突出側変形部141は、高さ方向DYにおいて、固定用結合部110に対する対偶可動用結合部130の突出方向DXL側の部分の位置を規定している。背面方向DZR側の突出側変形部141は、可動方向DXにおける固定ブロック50に対する対偶可動ブロック70の並進を許容する。
The protrusion-side deformed portion 141 on the back side DZR side is coupled to the even-numbered protrusion-side connecting portion 133. The protrusion-side deforming portion 141 on the back surface direction DZR side defines the position of the portion on the protrusion direction DXL side of the couple movable coupling portion 130 with respect to the fixing coupling portion 110 in the height direction DY. The protrusion-side deforming portion 141 on the back direction DZR side allows translation of the even-numbered movable block 70 relative to the fixed block 50 in the movable direction DX.
突出側連結部142は、長方形状を有する。正面方向DZF側の突出側連結部142は、突出方向DXL側の固定用結合部110と正面方向DZF側の突出側変形部141とを互いに連結している。背面方向DZR側の突出側連結部142は、突出方向DXL側の固定用結合部110と背面方向DZR側の突出側変形部141とを互いに連結している。
The protruding side connecting portion 142 has a rectangular shape. The front-side DZF-side protruding side connecting portion 142 connects the fixing coupling portion 110 on the protruding direction DXL side and the front-side DZF-side protruding side deformable portion 141 to each other. The protrusion-side connecting portion 142 on the back surface direction DZR side connects the fixing coupling portion 110 on the protrusion direction DXL side and the protrusion-side deformable portion 141 on the back surface direction DZR side.
引込側支持部150の構成について説明する。
引込側支持部150に関する説明は、主として図3、図7、図10、および図13を参照する。引込側支持部150は、可動方向DXにおいて、引込方向DXR側の固定用結合部110と引込側連結部品90との間に配置されている。引込側支持部150は、引込側変形部151および引込側連結部152を有する。 The structure of the drawing-inside support part 150 will be described.
The description regarding the drawing-inside support part 150 will mainly refer to FIGS. 3, 7, 10, and 13. The drawing-side support part 150 is arranged between the fixing coupling part 110 on the drawing direction DXR side and the drawing-side connecting component 90 in the movable direction DX. The pull-in side support part 150 includes a pull-in side deformation part 151 and a pull-in side connection part 152.
引込側支持部150に関する説明は、主として図3、図7、図10、および図13を参照する。引込側支持部150は、可動方向DXにおいて、引込方向DXR側の固定用結合部110と引込側連結部品90との間に配置されている。引込側支持部150は、引込側変形部151および引込側連結部152を有する。 The structure of the drawing-in
The description regarding the drawing-in
正面方向DZF側の引込側支持部150は、高さ方向DYにおいて、出力引込側連結部124の底面方向DYB側の箇所に配置されている。正面方向DZF側の引込側支持部150は、幅方向DZにおいて、ブロック結合部品100の幅方向DZの中心線よりも正面方向DZF側の箇所に配置されている。
The front-side DZF-side drawing-side support 150 is arranged at a location on the bottom side DYB side of the output drawing-side connecting portion 124 in the height direction DY. The lead-in side support part 150 on the front direction DZF side is arranged at a position on the front direction DZF side with respect to the center line in the width direction DZ of the block coupling component 100 in the width direction DZ.
背面方向DZR側の引込側支持部150は、高さ方向DYにおいて、対偶引込側連結部134の底面方向DYB側の箇所に配置されている。背面方向DZR側の引込側支持部150は、幅方向DZにおいて、ブロック結合部品100の幅方向DZの中心線よりも背面方向DZR側の箇所に配置されている。
The pull-in side support part 150 on the back surface direction DZR side is disposed at a position on the bottom surface direction DYB side of the pair pull-in side connecting part 134 in the height direction DY. The drawing-side support 150 on the back side DZR side is arranged in the back side DZR side of the block connecting component 100 with respect to the center line in the width direction DZ in the width direction DZ.
引込側変形部151は、薄板形状を有する。引込側変形部151は、高さ方向DYにおいて長手部分を有する。引込側変形部151は、幅方向DZにおいて短手部分を有する。引込側変形部151は、長手方向の変形量が可動方向DXの変形量よりも小さい構造を有する。引込側変形部151は、互いに独立して可動方向DXに変形する。
The pull-in side deformed portion 151 has a thin plate shape. The drawing-side deformable portion 151 has a longitudinal portion in the height direction DY. The pull-in side deformed portion 151 has a short portion in the width direction DZ. The pull-in side deformation portion 151 has a structure in which the deformation amount in the longitudinal direction is smaller than the deformation amount in the movable direction DX. The pull-in side deformation portions 151 are deformed independently of each other in the movable direction DX.
正面方向DZF側の引込側変形部151は、出力引込側連結部124と結合されている。正面方向DZF側の引込側変形部151は、高さ方向DYにおいて、固定用結合部110に対する出力可動用結合部120の引込方向DXR側の部分の位置を規定している。正面方向DZF側の引込側変形部151は、可動方向DXにおける固定ブロック50に対する出力可動ブロック60の並進を許容する。
The pull-in side deformation portion 151 on the front direction DZF side is coupled to the output pull-in side connection portion 124. The front-side DZF-side pull-in side deformation portion 151 defines the position of the portion on the pull-in direction DXR side of the output movable coupling portion 120 with respect to the fixing coupling portion 110 in the height direction DY. The pull-in side deformation portion 151 on the front direction DZF side allows translation of the output movable block 60 with respect to the fixed block 50 in the movable direction DX.
背面方向DZR側の引込側変形部151は、対偶引込側連結部134と結合されている。背面方向DZR側の引込側変形部151は、高さ方向DYにおいて、固定用結合部110に対する対偶可動用結合部130の引込方向DXR側の部分の位置を規定している。背面方向DZR側の引込側変形部151は、可動方向DXにおける固定ブロック50に対する対偶可動ブロック70の並進を許容する。
The pull-in side deformed portion 151 on the back side direction DZR side is coupled to the pair pull-in side connecting portion 134. The drawing-side deforming portion 151 on the back side DZR side defines the position of the portion on the drawing direction DXR side of the pair of movable coupling portions 130 with respect to the fixing coupling portion 110 in the height direction DY. The retracting side deforming portion 151 on the back side direction DZR side allows translation of the even-numbered movable block 70 relative to the fixed block 50 in the movable direction DX.
引込側連結部152は、長方形状を有する。正面方向DZF側の引込側連結部152は、引込方向DXR側の固定用結合部110と正面方向DZF側の引込側変形部151とを互いに連結している。背面方向DZR側の引込側連結部152は、引込方向DXR側の固定用結合部110と背面方向DZR側の引込側変形部151とを互いに連結している。
The lead-in side connection part 152 has a rectangular shape. The front-side DZF-side pull-in side connecting part 152 connects the fixing coupling part 110 on the front-side direction DXR side and the front-side DZF-side pull-in side deforming part 151 to each other. The drawing-side connecting portion 152 on the back side DZR side connects the fixing coupling portion 110 on the drawing direction DXR side and the drawing side deforming portion 151 on the back side DZR side.
突出側支持部140および引込側支持部150は、以下の機能を有する。
正面方向DZF側の突出側支持部140、および正面方向DZF側の引込側支持部150は、固定ブロック50に対する出力可動ブロック60の高さ方向DYの位置を規定している。正面方向DZF側の突出側支持部140および引込側支持部150は、出力可動ブロック60の高さ方向DYの位置を規定することにより、出力側ギャップ63を形成している。 The protrusionside support part 140 and the drawing side support part 150 have the following functions.
The protrusion-side support part 140 on the front direction DZF side and the pull-in side support part 150 on the front direction DZF side define the position of the output movable block 60 in the height direction DY with respect to the fixed block 50. The protrusion-side support part 140 and the retracting-side support part 150 on the front direction DZF side define the position of the output movable block 60 in the height direction DY, thereby forming an output-side gap 63.
正面方向DZF側の突出側支持部140、および正面方向DZF側の引込側支持部150は、固定ブロック50に対する出力可動ブロック60の高さ方向DYの位置を規定している。正面方向DZF側の突出側支持部140および引込側支持部150は、出力可動ブロック60の高さ方向DYの位置を規定することにより、出力側ギャップ63を形成している。 The protrusion
The protrusion-
背面方向DZR側の突出側支持部140、および背面方向DZR側の引込側支持部150は、固定ブロック50に対する対偶可動ブロック70の高さ方向DYの位置を規定している。背面方向DZR側の突出側支持部140および引込側支持部150は、対偶可動ブロック70の高さ方向DYの位置を規定することにより、対偶側ギャップ73を形成している。
The rear side support part 140 on the rear side DZR side and the rear side support part 150 on the rear side DZR side define the position of the pair movable block 70 in the height direction DY with respect to the fixed block 50. The protrusion-side support part 140 and the retracting-side support part 150 on the back side direction DZR side define the position of the pair movable block 70 in the height direction DY, thereby forming the pair side gap 73.
正面方向DZF側の突出側変形部141および正面方向DZF側の引込側変形部151は、固定ブロック50に対する出力可動ブロック60の運動方向を可動方向DXに規制している。このため、出力可動ブロック60は、固定ブロック50との間に作用する電磁気力により可動方向DXに並進する。
The front-side direction DZF-side protruding side deformable portion 141 and the front-side direction DZF-side retracting-side deformable portion 151 restrict the movement direction of the output movable block 60 relative to the fixed block 50 to the movable direction DX. For this reason, the output movable block 60 translates in the movable direction DX by the electromagnetic force acting between the fixed block 50.
背面方向DZR側の突出側変形部141および背面方向DZR側の引込側変形部151は、固定ブロック50に対する対偶可動ブロック70の運動方向を可動方向DXに規制している。このため、対偶可動ブロック70は、固定ブロック50との間に作用する電磁気力により可動方向DXに並進する。
The rear-surface-direction DZR-side projecting-side deformable portion 141 and the back-surface-direction DZR-side retracting-side deformable portion 151 restrict the movement direction of the even-numbered movable block 70 relative to the fixed block 50 to the movable direction DX. For this reason, the pair movable block 70 is translated in the movable direction DX by the electromagnetic force acting between the fixed block 50.
出力用機能部品200の構成について説明する。
出力用機能部品200に関する説明は、主として図3~図5、図7、および図8を参照する。出力用機能部品200は、可動方向DXにおいて、対偶用機能部品300よりも突出方向DXL側の箇所に配置されている。出力用機能部品200は、高さ方向DYにおいて、ブロック結合部品100よりも頂面方向DYT側の箇所に配置されている。出力用機能部品200は、幅方向DZにおいて、ブロック結合部品100の正面方向DZF側の箇所から背面方向DZR側の箇所にわたり配置されている。 The configuration of the outputfunctional component 200 will be described.
For the description of the outputfunctional component 200, reference is mainly made to FIGS. 3 to 5, FIG. 7, and FIG. The output functional component 200 is disposed at a position closer to the protruding direction DXL than the counter-functional component 300 in the movable direction DX. The output functional component 200 is disposed at a position closer to the top surface direction DYT than the block coupling component 100 in the height direction DY. The functional component 200 for output is arrange | positioned in the width direction DZ from the location by the side of the front direction DZF of the block coupling component 100 to the location by the side of the back direction DZR.
出力用機能部品200に関する説明は、主として図3~図5、図7、および図8を参照する。出力用機能部品200は、可動方向DXにおいて、対偶用機能部品300よりも突出方向DXL側の箇所に配置されている。出力用機能部品200は、高さ方向DYにおいて、ブロック結合部品100よりも頂面方向DYT側の箇所に配置されている。出力用機能部品200は、幅方向DZにおいて、ブロック結合部品100の正面方向DZF側の箇所から背面方向DZR側の箇所にわたり配置されている。 The configuration of the output
For the description of the output
出力用機能部品200は、樹脂材料により形成されている。出力用機能部品200は、可動方向DXにおいて長手部分を有する。出力用機能部品200は、幅方向DZにおいて短手部分を有する。出力用機能部品200は、複数の締結部品41により出力可動用結合部120と結合されている。出力用機能部品200および出力可動用結合部120は、一体化された関係を有する。出力用機能部品200は、複数の部品構成部分が同一の樹脂材料により一体的に形成された構造を有する。出力用機能部品200の複数の部品構成部分は、出力部品本体部210、出力軸用結合部220、出力部品補強部230、内部構造保護部240、負荷受部250、および部品受部260を含む。
The output functional component 200 is made of a resin material. The output functional component 200 has a longitudinal portion in the movable direction DX. The output functional component 200 has a short portion in the width direction DZ. The output functional component 200 is coupled to the output movable coupling portion 120 by a plurality of fastening components 41. The output functional component 200 and the output movable coupling portion 120 have an integrated relationship. The output functional component 200 has a structure in which a plurality of component components are integrally formed of the same resin material. The plurality of component components of the output functional component 200 include an output component main body 210, an output shaft coupling unit 220, an output component reinforcing unit 230, an internal structure protection unit 240, a load receiving unit 250, and a component receiving unit 260. .
出力部品本体部210は、平板形状を有する。出力部品本体部210は、出力可動用結合部120および対偶可動用結合部130の頂面上に配置されている。出力部品本体部210は、複数の締結部品41により出力可動用結合部120と結合されている。出力部品本体部210は、出力用機能部品200の基礎部分を形成している。
The output component main body 210 has a flat plate shape. The output component main body part 210 is disposed on the top surfaces of the output movable coupling part 120 and the pair movable coupling part 130. The output part main body 210 is coupled to the output movable coupling part 120 by a plurality of fastening parts 41. The output component main body 210 forms a basic portion of the output functional component 200.
出力軸用結合部220は、可動方向DXにおいて、突出側連結部品80よりも突出方向DXL側の箇所に配置されている。出力軸用結合部220は、出力部品本体部210および出力部品補強部230と連続している。出力軸用結合部220は、結合部基礎部221、結合部基礎面222、結合部周壁部223、および結合部内空間224を有する。
The output shaft coupling portion 220 is disposed at a position closer to the projecting direction DXL than the projecting side connecting component 80 in the movable direction DX. The output shaft coupling portion 220 is continuous with the output component main body portion 210 and the output component reinforcing portion 230. The output shaft coupling portion 220 includes a coupling portion base portion 221, a coupling portion base surface 222, a coupling portion peripheral wall portion 223, and a coupling portion inner space 224.
結合部基礎部221は、平板形状を有する。結合部基礎部221は、出力部品本体部210の突出方向DXL側の端部、および出力部品補強部230の突出方向DXL側の端部と連続している。結合部基礎部221は、突出側連結部品80との間に隙間を形成している。結合部基礎部221は、可動方向DXにおいて、連結部品空間83を介して突出側支持部140と対向している。
The joint base portion 221 has a flat plate shape. The coupling portion base 221 is continuous with the end portion on the protruding direction DXL side of the output component main body portion 210 and the end portion on the protruding direction DXL side of the output component reinforcing portion 230. The coupling portion base portion 221 forms a gap with the protruding side connecting component 80. The coupling portion base portion 221 faces the protruding side support portion 140 via the connecting part space 83 in the movable direction DX.
結合部基礎面222は、平面形状を有する。結合部基礎面222は、結合部基礎部221のうちの突出方向DXL側の部分に形成されている。結合部基礎面222は、平面方向に平行している。
The joint base surface 222 has a planar shape. The coupling portion base surface 222 is formed in a portion of the coupling portion base portion 221 on the protruding direction DXL side. The joint base surface 222 is parallel to the planar direction.
結合部周壁部223は、柱形状を有する。結合部周壁部223は、結合部基礎部221と連続している。結合部周壁部223は、結合部基礎面222から突出方向DXLに向けて突出している。結合部周壁部223は、結合部内空間224(図7参照)を形成している。結合部周壁部223は、結合部内空間224において軸基礎部21を収容している。結合部周壁部223は、軸基礎部21と結合している。結合部周壁部223は、軸基礎部21の外周を取り囲む構造を有する。
The connecting portion peripheral wall portion 223 has a column shape. The connecting portion peripheral wall portion 223 is continuous with the connecting portion base portion 221. The connecting portion peripheral wall portion 223 protrudes from the connecting portion base surface 222 in the protruding direction DXL. The coupling portion peripheral wall portion 223 forms a coupling portion inner space 224 (see FIG. 7). The coupling portion peripheral wall portion 223 accommodates the shaft base portion 21 in the coupling portion inner space 224. The coupling portion peripheral wall portion 223 is coupled to the shaft base portion 21. The coupling portion peripheral wall portion 223 has a structure surrounding the outer periphery of the shaft base portion 21.
出力部品補強部230は、出力部品本体部210と連続している。出力部品補強部230は、出力側補強部231および対偶側補強部232を有する。出力部品補強部230は、出力部品本体部210を補強する構造、出力軸用結合部220を補強する構造、および出力部品本体部210と出力軸用結合部220との接続部分を補強する構造を有する。出力部品補強部230は、ギャップ確認構造および補強部接触抑制構造を有する。
The output part reinforcing part 230 is continuous with the output part main body part 210. The output component reinforcing portion 230 includes an output side reinforcing portion 231 and an even number side reinforcing portion 232. The output component reinforcing portion 230 has a structure for reinforcing the output component main body portion 210, a structure for reinforcing the output shaft coupling portion 220, and a structure for reinforcing the connection portion between the output component main body portion 210 and the output shaft coupling portion 220. Have. The output part reinforcement part 230 has a gap confirmation structure and a reinforcement part contact suppression structure.
出力側補強部231は、可動方向DXにおいて、出力部品本体部210の引込方向DXR側の端部から突出方向DXL側の端部にわたり配置されている。出力側補強部231は、幅方向DZにおいて、ブロック結合部品100よりも正面方向DZF側の箇所に配置されている。出力側補強部231は、出力部品本体部210の正面方向DZF側の部分と連続している。
The output side reinforcing portion 231 is arranged from the end portion on the pulling direction DXR side to the end portion on the protruding direction DXL side of the output component main body portion 210 in the movable direction DX. The output-side reinforcing portion 231 is disposed at a position closer to the front direction DZF than the block coupling component 100 in the width direction DZ. The output-side reinforcing portion 231 is continuous with the portion on the front direction DZF side of the output component main body portion 210.
対偶側補強部232は、可動方向DXにおいて、出力部品本体部210の突出方向DXL側の箇所に配置されている。対偶側補強部232は、幅方向DZにおいて、ブロック結合部品100の背面方向DZR側の箇所に配置されている。対偶側補強部232は、出力部品本体部210の背面方向DZR側の部分と連続している。
The pair-side reinforcing portion 232 is disposed at a position on the projecting direction DXL side of the output component main body 210 in the movable direction DX. The pair-side reinforcing portion 232 is disposed at a position on the back surface direction DZR side of the block coupling component 100 in the width direction DZ. The pair-side reinforcing portion 232 is continuous with the portion of the output component main body portion 210 on the back direction DZR side.
ギャップ確認構造について説明する。
ギャップ確認構造に関する説明は、主として図5および図6を参照する。ギャップ確認構造は、出力側ギャップ63(図5)を確認するための出力側ギャップ確認構造、および対偶側ギャップ73(図6)を確認するための対偶側ギャップ確認構造を有する。出力側ギャップ確認構造が存在していない場合、製造過程において、出力用機能部品200がブロック結合部品100と結合された後に出力側ギャップ63の大きさおよび形状を確認することが難しくなる。対偶側ギャップ確認構造が存在していない場合、製造過程において、対偶用機能部品300がブロック結合部品100と結合された後に対偶側ギャップ73の大きさおよび形状を確認することが難しくなる。 The gap confirmation structure will be described.
Refer mainly to FIG. 5 and FIG. 6 for the description regarding the gap confirmation structure. The gap confirmation structure has an output-side gap confirmation structure for confirming the output-side gap 63 (FIG. 5) and an even-side gap confirmation structure for confirming the even-side gap 73 (FIG. 6). If the output-side gap confirmation structure does not exist, it is difficult to confirm the size and shape of the output-side gap 63 after the output functional component 200 is coupled to the block coupling component 100 in the manufacturing process. In the manufacturing process, it is difficult to confirm the size and shape of the even-side gap 73 after the paired functional component 300 is coupled to the block coupling component 100 when the opposed-side gap confirmation structure does not exist.
ギャップ確認構造に関する説明は、主として図5および図6を参照する。ギャップ確認構造は、出力側ギャップ63(図5)を確認するための出力側ギャップ確認構造、および対偶側ギャップ73(図6)を確認するための対偶側ギャップ確認構造を有する。出力側ギャップ確認構造が存在していない場合、製造過程において、出力用機能部品200がブロック結合部品100と結合された後に出力側ギャップ63の大きさおよび形状を確認することが難しくなる。対偶側ギャップ確認構造が存在していない場合、製造過程において、対偶用機能部品300がブロック結合部品100と結合された後に対偶側ギャップ73の大きさおよび形状を確認することが難しくなる。 The gap confirmation structure will be described.
Refer mainly to FIG. 5 and FIG. 6 for the description regarding the gap confirmation structure. The gap confirmation structure has an output-side gap confirmation structure for confirming the output-side gap 63 (FIG. 5) and an even-side gap confirmation structure for confirming the even-side gap 73 (FIG. 6). If the output-side gap confirmation structure does not exist, it is difficult to confirm the size and shape of the output-
出力側ギャップ確認構造は、電動リニアアクチュエーター40の正面視において、出力側ギャップ63を電動リニアアクチュエーター40の外部に露出させる構造を有する。出力側ギャップ確認構造は、一例として、出力可動ブロック60と隣り合う出力側補強部231の縁を、出力側ギャップ63よりも頂面方向DYT側の箇所に形成する構造を有する。このため、出力側ギャップ確認構造は、出力用機能部品200がブロック結合部品100と結合された後における出力側ギャップ63の確認に関する作業性を向上させる。
The output side gap confirmation structure has a structure in which the output side gap 63 is exposed to the outside of the electric linear actuator 40 when the electric linear actuator 40 is viewed from the front. As an example, the output-side gap confirmation structure has a structure in which the edge of the output-side reinforcing portion 231 adjacent to the output movable block 60 is formed at a position closer to the top surface direction DYT than the output-side gap 63. For this reason, the output side gap confirmation structure improves the workability regarding the confirmation of the output side gap 63 after the output functional component 200 is coupled to the block coupling component 100.
対偶側ギャップ確認構造は、電動リニアアクチュエーター40の背面視において、対偶側ギャップ73を電動リニアアクチュエーター40の外部に露出させる構造を有する。対偶側ギャップ確認構造は、一例として、対偶可動ブロック70と隣り合う箇所に対偶側補強部232を配置しない構造を有する。このため、対偶側ギャップ確認構造は、対偶用機能部品300がブロック結合部品100と結合された後における対偶側ギャップ73の確認に関する作業性を向上させる。
The even-side gap confirmation structure has a structure in which the opposite-side gap 73 is exposed to the outside of the electric linear actuator 40 in the rear view of the electric linear actuator 40. As an example, the pair-side gap confirmation structure has a structure in which the pair-side reinforcing portion 232 is not disposed at a location adjacent to the pair movable block 70. For this reason, the pair-side gap confirmation structure improves workability regarding confirmation of the pair-side gap 73 after the pair-side functional component 300 is coupled to the block coupling component 100.
補強部接触抑制構造について説明する。
補強部接触抑制構造に関する説明は、主として図4~図6を参照する。電動リニアアクチュエーター40は、補強部接触抑制構造が存在していないと仮定した場合、対偶側補強部232が対偶可動ブロック70および対偶可動用結合部130の少なくとも一方と接触するおそれを有する。その理由は、以下のとおり記述することができる。 The reinforcing portion contact suppression structure will be described.
Refer to FIGS. 4 to 6 mainly for the description of the reinforcing portion contact suppression structure. When it is assumed that the reinforcing portion contact suppression structure does not exist, the electriclinear actuator 40 has a possibility that the pair-side reinforcing portion 232 comes into contact with at least one of the pair movable block 70 and the pair movable pair 130. The reason can be described as follows.
補強部接触抑制構造に関する説明は、主として図4~図6を参照する。電動リニアアクチュエーター40は、補強部接触抑制構造が存在していないと仮定した場合、対偶側補強部232が対偶可動ブロック70および対偶可動用結合部130の少なくとも一方と接触するおそれを有する。その理由は、以下のとおり記述することができる。 The reinforcing portion contact suppression structure will be described.
Refer to FIGS. 4 to 6 mainly for the description of the reinforcing portion contact suppression structure. When it is assumed that the reinforcing portion contact suppression structure does not exist, the electric
対偶側補強部232は、出力可動ブロック60および出力可動用結合部120と一体化された関係を有する。このため、対偶側補強部232は、出力可動ブロック60および出力可動用結合部120と同じ位相により運動する。一方、対偶側補強部232は、対偶可動ブロック70および対偶可動用結合部130と反対の位相により運動する。このため、対偶側補強部232は、可動方向DXに運動するとき、対偶可動ブロック70および対偶可動用結合部130の少なくとも一方と接触するおそれを有する。
The even-side reinforcing portion 232 has an integrated relationship with the output movable block 60 and the output movable coupling portion 120. For this reason, the pair-side reinforcing portion 232 moves in the same phase as the output movable block 60 and the output movable coupling portion 120. On the other hand, the pair-side reinforcing portion 232 moves in a phase opposite to that of the pair-movable block 70 and the pair-moving coupling portion 130. For this reason, when the pair-side reinforcing portion 232 moves in the movable direction DX, the pair-side reinforcing portion 232 may come into contact with at least one of the pair movable block 70 and the pair movable pair 130.
補強部接触抑制構造は、対偶側補強部232と対偶可動ブロック70および対偶可動用結合部130との接触を抑制する構造を有する。補強部接触抑制構造は、一例として、適正長さ範囲に含まれる対偶側補強部232の長さを有する。対偶側補強部232の長さは、一例として、可動方向DXにおける対偶側補強部232の突出方向DXL側の端部から対偶側補強部232の引込方向DXR側の端部までの距離により規定することができる。
The reinforcement part contact suppression structure has a structure that suppresses contact between the pair-side reinforcing part 232, the pair-movable block 70, and the pair-moving coupling part 130. The reinforcement part contact suppression structure has the length of the pair side reinforcement part 232 included in an appropriate length range as an example. As an example, the length of the pair-side reinforcing portion 232 is defined by the distance from the end portion on the protruding direction DXL side of the pair-side reinforcing portion 232 in the movable direction DX to the end portion on the pull-in direction DXR side of the pair-side reinforcing portion 232. be able to.
補強部接触抑制構造は、適正長さ範囲に含まれる長さの一例として、出力側補強部231の長さよりも短い対偶側補強部232の長さを有する。補強部接触抑制構造は、この長さの一例として、結合部基礎部221から対偶可動ブロック70よりも突出方向DXL側の箇所までの長さを有する。補強部接触抑制構造は、この長さの一例として、結合部基礎部221から突出側連結部品80と隣り合う箇所までの長さを有する。
The reinforcement part contact suppression structure has the length of the pair side reinforcement part 232 shorter than the length of the output side reinforcement part 231 as an example of the length included in the appropriate length range. As an example of this length, the reinforcing portion contact suppression structure has a length from the coupling portion base portion 221 to a location closer to the protruding direction DXL than the pair movable block 70. As an example of this length, the reinforcing portion contact suppression structure has a length from the coupling portion base portion 221 to a location adjacent to the protruding side connecting component 80.
補強部接触抑制構造は、次の効果を奏する。対偶側補強部232は、適正長さ範囲に含まれる長さを有するため、対偶可動ブロック70および対偶可動用結合部130との間に空間(以下、「接触抑制空間」)を形成する。対偶側補強部232は、出力側補強部231の長さよりも短い対偶側補強部232の長さを有するため、より大きな接触抑制空間を形成する。対偶側補強部232は、結合部基礎部221から対偶可動ブロック70よりも突出方向DXL側の箇所までの長さを有するため、より大きな接触抑制空間を形成する。対偶側補強部232は、結合部基礎部221から突出側連結部品80と隣り合う箇所までの長さを有するため、より大きな接触抑制空間を形成する。このため、対偶側補強部232は、可動方向DXに往復運動するとき、対偶可動ブロック70および対偶可動用結合部130と接触しにくい。
Reinforcing part contact suppression structure has the following effects. Since the pair-side reinforcing portion 232 has a length included in the appropriate length range, a space (hereinafter referred to as “contact suppression space”) is formed between the pair-movable block 70 and the pair-moving coupling portion 130. Since the pair-side reinforcing portion 232 has the length of the pair-side reinforcing portion 232 that is shorter than the length of the output-side reinforcing portion 231, a larger contact suppression space is formed. Since the pair-side reinforcing portion 232 has a length from the coupling portion base portion 221 to a portion on the protruding direction DXL side with respect to the pair movable block 70, a larger contact suppression space is formed. Since the pair-side reinforcing portion 232 has a length from the coupling portion base portion 221 to a portion adjacent to the protruding-side connecting component 80, a larger contact suppression space is formed. For this reason, the pair-side reinforcing portion 232 is unlikely to come into contact with the pair-movable block 70 and the pair-moving coupling portion 130 when reciprocating in the movable direction DX.
内部構造保護部240の構成について説明する。
内部構造保護部240に関する説明は、主として図17~図19を参照する。内部構造保護部240は、出力軸20に作用する力に起因して、電動リニアアクチュエーター40の内部構造が損傷することを抑制する構造を有する。内部構造保護部240は、出力軸20に作用する力を、本体ケース30の本体側保護部32と協働して受けることにより、内部構造の損傷を抑制する。電動リニアアクチュエーター40の内部構造は、ブロック結合部品100、ブロック結合部品100と一体的に形成された部品、およびブロック結合部品100の内部においてブロック結合部品100に結合された部品を含む。 The configuration of the internalstructure protection unit 240 will be described.
For a description of the internalstructure protection unit 240, refer mainly to FIGS. The internal structure protection unit 240 has a structure that suppresses damage to the internal structure of the electric linear actuator 40 due to the force acting on the output shaft 20. The internal structure protection unit 240 receives the force acting on the output shaft 20 in cooperation with the main body side protection unit 32 of the main body case 30, thereby suppressing damage to the internal structure. The internal structure of the electric linear actuator 40 includes a block coupling component 100, a component formed integrally with the block coupling component 100, and a component coupled to the block coupling component 100 inside the block coupling component 100.
内部構造保護部240に関する説明は、主として図17~図19を参照する。内部構造保護部240は、出力軸20に作用する力に起因して、電動リニアアクチュエーター40の内部構造が損傷することを抑制する構造を有する。内部構造保護部240は、出力軸20に作用する力を、本体ケース30の本体側保護部32と協働して受けることにより、内部構造の損傷を抑制する。電動リニアアクチュエーター40の内部構造は、ブロック結合部品100、ブロック結合部品100と一体的に形成された部品、およびブロック結合部品100の内部においてブロック結合部品100に結合された部品を含む。 The configuration of the internal
For a description of the internal
内部構造保護部240は、一例として、出力用機能部品200と一体化された構造を有する。内部構造保護部240は、押込移動規制部241、引抜移動規制部242、第1回転規制部243、および第2回転規制部244を有する。
The internal structure protection unit 240 has a structure integrated with the output functional component 200 as an example. The internal structure protection unit 240 includes a push movement restriction part 241, a pulling movement restriction part 242, a first rotation restriction part 243, and a second rotation restriction part 244.
本体側保護部32は、本体ケース30の一部を形成している。本体側保護部32は、ケース周壁部31と同一の材料により一体的に形成されている。本体側保護部32は、本体側押込規制部33、本体側引抜規制部34、および本体側回転規制部35を有する。本体側回転規制部35は、本体側第1規制部35Aおよび本体側第2規制部35B(図18参照)を有する。
The main body side protection part 32 forms a part of the main body case 30. The main body side protection part 32 is integrally formed of the same material as the case peripheral wall part 31. The main body side protection unit 32 includes a main body side push restricting portion 33, a main body side pulling restricting portion 34, and a main body side rotation restricting portion 35. The main body side rotation restricting portion 35 includes a main body side first restricting portion 35A and a main body side second restricting portion 35B (see FIG. 18).
押込移動規制部241は、一例として、図17に示される構造を有する。押込移動規制部241は、出力側補強部231の底面方向DYB側の端部と連続している。押込移動規制部241は、出力側補強部231と結合されている。押込移動規制部241は、可動方向DXにおいて、本体側押込規制部33よりも突出方向DXL側の箇所に配置されている。押込移動規制部241は、可動方向DXにおいて、本体側押込規制部33と対向している。押込移動規制部241は、本体側押込規制部33との間に隙間を形成している。
The push movement restricting portion 241 has a structure shown in FIG. 17 as an example. The push movement restricting portion 241 is continuous with the end portion on the bottom surface direction DYB side of the output side reinforcing portion 231. The push movement restricting portion 241 is coupled to the output side reinforcing portion 231. The push movement restricting portion 241 is disposed at a position closer to the protruding direction DXL than the main body push restricting portion 33 in the movable direction DX. The push movement restricting portion 241 faces the main body push restricting portion 33 in the movable direction DX. The push movement restricting portion 241 forms a gap with the main body side push restricting portion 33.
押込移動規制部241は、出力軸20を引込方向DXR側に移動させる荷重が出力軸20に作用したとき、本体側押込規制部33と接触することにより、出力軸20に作用する荷重を受ける。換言すれば、押込移動規制部241は、本体ケース30(ここでは本体側押込規制部33)に接触することにより出力軸20からブロック結合部品100への押込方向の荷重を受ける。このため、出力軸20に作用する引込方向DXR(押込方向)の荷重に起因して、電動リニアアクチュエーター40の内部構造が損傷することが抑制される。押込移動規制部241および本体側押込規制部33の間の隙間は、引込方向DXRの荷重に起因して内部構造の損傷が生じる前に押込移動規制部241および本体側押込規制部33が互いに接触する範囲内の大きさを有する。
When the load that moves the output shaft 20 in the pull-in direction DXR acts on the output shaft 20, the push movement restricting portion 241 receives the load acting on the output shaft 20 by contacting with the main body side push restricting portion 33. In other words, the push movement restricting portion 241 receives a load in the push direction from the output shaft 20 to the block coupling component 100 by contacting the main body case 30 (here, the main body side push restricting portion 33). For this reason, damage to the internal structure of the electric linear actuator 40 due to the load in the pull-in direction DXR (push-in direction) acting on the output shaft 20 is suppressed. The gap between the push movement restricting portion 241 and the main body side push restricting portion 33 is such that the push movement restricting portion 241 and the main body side push restricting portion 33 come into contact with each other before the internal structure is damaged due to the load in the pull-in direction DXR. It has a size within the range.
引抜移動規制部242は、一例として、図17に示される構造を有する。引抜移動規制部242は、出力側補強部231の底面方向DYB側の端部と連続している。引抜移動規制部242は、出力側補強部231と結合されている。引抜移動規制部242は、可動方向DXにおいて、本体側引抜規制部34よりも引込方向DXR側の箇所に配置されている。引抜移動規制部242は、可動方向DXにおいて、引抜移動規制部242と対向している。引抜移動規制部242は、本体側引抜規制部34との間に隙間を形成している。
The pulling movement restricting unit 242 has a structure shown in FIG. 17 as an example. The drawing movement restricting portion 242 is continuous with the end portion on the bottom surface direction DYB side of the output side reinforcing portion 231. The drawing movement restricting portion 242 is coupled to the output side reinforcing portion 231. The pulling movement restricting portion 242 is disposed at a position closer to the pulling direction DXR than the main body pulling restricting portion 34 in the movable direction DX. The pulling movement restricting portion 242 faces the pulling movement restricting portion 242 in the movable direction DX. The pulling movement restricting portion 242 forms a gap with the main body side pulling restricting portion 34.
引抜移動規制部242は、出力軸20を突出方向DXL側に移動させる荷重が出力軸20に作用したとき、本体側引抜規制部34と接触することにより、出力軸20に作用する荷重を受ける。換言すれば、引抜移動規制部242は、本体ケース30(ここでは本体側引抜規制部34)に接触することによりブロック結合部品100から出力軸20への引抜方向の荷重を受ける。このため、出力軸20に作用する突出方向DXL(引抜方向)の荷重に起因して、電動リニアアクチュエーター40の内部構造が損傷することが抑制される。引抜移動規制部242および本体側引抜規制部34の間の隙間は、突出方向DXLの荷重に起因して内部構造の損傷が生じる前に引抜移動規制部242および本体側引抜規制部34が互いに接触する範囲内の大きさを有する。
When the load that moves the output shaft 20 in the protruding direction DXL acts on the output shaft 20, the pulling movement restricting portion 242 receives the load acting on the output shaft 20 by contacting with the body-side pulling restricting portion 34. In other words, the pulling movement restricting portion 242 receives a load in the pulling direction from the block coupling component 100 to the output shaft 20 by contacting the main body case 30 (here, the main body side pulling restricting portion 34). For this reason, it is suppressed that the internal structure of the electric linear actuator 40 is damaged due to the load in the protruding direction DXL (pulling direction) acting on the output shaft 20. The clearance between the pulling movement restricting portion 242 and the main body side pulling restricting portion 34 is such that the pulling movement restricting portion 242 and the main body side pulling restricting portion 34 come into contact with each other before the internal structure is damaged due to the load in the protruding direction DXL. It has a size within the range.
第1回転規制部243は、一例として、図18に示される構造を有する。第1回転規制部243は、部品受部260の外周部分に形成されている。第1回転規制部243は、平面形状の外面を有する。第1回転規制部243は、平面方向において、本体側第1規制部35Aと対向している。第1回転規制部243は、本体側第1規制部35Aとの間に隙間を形成している。
The first rotation restricting portion 243 has a structure shown in FIG. 18 as an example. The first rotation restricting portion 243 is formed on the outer peripheral portion of the component receiving portion 260. The first rotation restricting portion 243 has a planar outer surface. The first rotation restricting portion 243 faces the main body side first restricting portion 35A in the planar direction. The first rotation restricting portion 243 forms a gap with the main body side first restricting portion 35A.
第1回転規制部243は、出力軸20を中心線まわりにおいて回転させる力が出力軸20に作用したとき、本体側第1規制部35Aと接触することにより、出力軸20に作用する回転力を受ける。このため、出力軸20に作用する回転力に起因して、電動リニアアクチュエーター40の内部構造が損傷することが抑制される。第1回転規制部243および本体側第1規制部35Aの間の隙間は、出力軸20の回転力に起因して内部構造の損傷が生じる前に第1回転規制部243および本体側第1規制部35Aが互いに接触する範囲内の大きさを有する。
When the force that rotates the output shaft 20 around the center line is applied to the output shaft 20, the first rotation restricting portion 243 makes contact with the main body side first restricting portion 35 </ b> A, thereby generating the rotational force that acts on the output shaft 20. receive. For this reason, it is suppressed that the internal structure of the electric linear actuator 40 is damaged due to the rotational force acting on the output shaft 20. The clearance between the first rotation restricting portion 243 and the main body side first restricting portion 35 </ b> A causes the first rotation restricting portion 243 and the main body side first restriction before the internal structure is damaged due to the rotational force of the output shaft 20. The portions 35A have a size within a range where they are in contact with each other.
第2回転規制部244は、一例として、図18に示される構造を有する。第2回転規制部244は、結合部周壁部223の外周部分に形成されている。第2回転規制部244は、平面形状の外面を有する。第2回転規制部244は、平面方向において、本体側第2規制部35Bと対向している。第2回転規制部244は、本体側第2規制部35Bとの間に隙間を形成している。
The second rotation restricting portion 244 has a structure shown in FIG. 18 as an example. The second rotation restricting portion 244 is formed on the outer peripheral portion of the coupling portion peripheral wall portion 223. The second rotation restricting portion 244 has a planar outer surface. The second rotation restricting portion 244 faces the main body side second restricting portion 35B in the plane direction. The second rotation restricting portion 244 forms a gap with the main body side second restricting portion 35B.
第2回転規制部244は、出力軸20を中心線まわりにおいて回転させる力が出力軸20に作用したとき、本体側第2規制部35Bと接触することにより、出力軸20に作用する回転力を受ける。このため、出力軸20に作用する回転力に起因して、電動リニアアクチュエーター40の内部構造が損傷することが抑制される。第2回転規制部244および本体側第2規制部35Bの間の隙間は、出力軸20の回転力に起因して内部構造の損傷が生じる前に第2回転規制部244および本体側第2規制部35Bが互いに接触する範囲内の大きさを有する。第2回転規制部244および本体側第2規制部35Bの間の隙間は、一例として、第1回転規制部243および本体側第1規制部35Aの間の隙間と対応する大きさを有する。対応する関係を有する各隙間は、第1回転規制部243および本体側第1規制部35Aが互いに接触するまでの回転量と、第2回転規制部244および本体側第2規制部35Bが互いに接触するまでの回転量とを実質的に等しくする。
When the force that rotates the output shaft 20 around the center line is applied to the output shaft 20, the second rotation restricting portion 244 comes into contact with the main body-side second restricting portion 35 </ b> B, thereby generating the rotational force that acts on the output shaft 20. receive. For this reason, it is suppressed that the internal structure of the electric linear actuator 40 is damaged due to the rotational force acting on the output shaft 20. The gap between the second rotation restricting portion 244 and the main body side second restricting portion 35B causes the second rotation restricting portion 244 and the main body side second restricting portion before the internal structure is damaged due to the rotational force of the output shaft 20. The portions 35B have a size within a range where they contact each other. As an example, the gap between the second rotation restricting portion 244 and the main body side second restricting portion 35B has a size corresponding to the gap between the first rotation restricting portion 243 and the main body side first restricting portion 35A. The gaps having a corresponding relationship include the amount of rotation until the first rotation restricting portion 243 and the main body side first restricting portion 35A come into contact with each other, and the second rotation restricting portion 244 and the main body side second restricting portion 35B in contact with each other. The amount of rotation until it is made substantially equal.
引抜移動規制部242は、出力軸20の回転力を受ける回転規制部としての機能も有する。引抜移動規制部242は、一例として、図19に示される構造を有する。引抜移動規制部242は、平面形状の外面を有する。引抜移動規制部242は、平面方向において、本体側回転規制部35と対向している。引抜移動規制部242は、本体側回転規制部35との間に隙間を形成している。
The extraction movement restricting portion 242 also has a function as a rotation restricting portion that receives the rotational force of the output shaft 20. The pulling movement restricting portion 242 has a structure shown in FIG. 19 as an example. The drawing movement restricting portion 242 has a planar outer surface. The drawing movement restricting portion 242 faces the main body side rotation restricting portion 35 in the plane direction. The pull-out movement restricting portion 242 forms a gap with the main body side rotation restricting portion 35.
引抜移動規制部242は、出力軸20を中心線まわりにおいて回転させる力が出力軸20に作用したとき、本体側回転規制部35と接触することにより、出力軸20に作用する回転力を受ける。このため、出力軸20に作用する回転力に起因して、電動リニアアクチュエーター40の内部構造が損傷することが抑制される。引抜移動規制部242および本体側回転規制部35の間の隙間は、出力軸20の回転力に起因して内部構造の損傷が生じる前に引抜移動規制部242および本体側回転規制部35が互いに接触する範囲内の大きさを有する。引抜移動規制部242および本体側回転規制部35の間の隙間は、一例として、第1回転規制部243および本体側第1規制部35Aの間の隙間と対応する大きさを有する。対応する関係を有する各隙間は、第1回転規制部243および本体側第1規制部35Aが互いに接触するまでの回転量と、引抜移動規制部242および本体側回転規制部35が互いに接触するまでの回転量とを実質的に等しくする。
When the force that rotates the output shaft 20 around the center line is applied to the output shaft 20, the pulling movement restricting portion 242 receives the rotational force that acts on the output shaft 20 by contacting the main body side rotation restricting portion 35. For this reason, it is suppressed that the internal structure of the electric linear actuator 40 is damaged due to the rotational force acting on the output shaft 20. The clearance between the pulling movement restricting portion 242 and the main body side rotation restricting portion 35 is such that the pulling movement restricting portion 242 and the main body side rotation restricting portion 35 are mutually connected before the internal structure is damaged due to the rotational force of the output shaft 20. It has a size within the contact area. As an example, the gap between the extraction movement restricting portion 242 and the main body side rotation restricting portion 35 has a size corresponding to the gap between the first rotation restricting portion 243 and the main body side first restricting portion 35A. The gaps having a corresponding relationship are the amount of rotation until the first rotation restricting portion 243 and the main body side first restricting portion 35A come into contact with each other, and until the extraction movement restricting portion 242 and the main body side rotation restricting portion 35 come into contact with each other. Is substantially equal to the rotation amount.
負荷受部250の構成について説明する。
負荷受部250に関する説明は、主として図4~図6および図16を参照する。負荷受部250は、円環形状を有する。負荷受部250の外周面は、球面に類似する湾曲面を有する。球面に類似する湾曲面は、球体の最大径部分を含む帯状部分の1周が形成する外周面に類似している。負荷受部250は、結合部周壁部223と結合されている。負荷受部250は、結合部周壁部223の外周上に形成されている。負荷受部250は、結合部周壁部223から平面方向に突出している。負荷受部250は、出力軸20に作用する荷重を受ける構造を有する。負荷受部250は、出力軸20を本体ケース30の中心線に対して傾ける荷重が作用したとき、本体ケース30のケース負荷受部37と接触することによりこの荷重を受ける。負荷受部250は、球面に類似する湾曲面を有するため、ケース負荷受部37に不均一な面圧分布を形成しにくい。 The configuration of theload receiving unit 250 will be described.
Refer to FIGS. 4 to 6 and FIG. 16 mainly for the description of theload receiving unit 250. The load receiving portion 250 has an annular shape. The outer peripheral surface of the load receiving portion 250 has a curved surface similar to a spherical surface. A curved surface similar to a spherical surface is similar to an outer peripheral surface formed by one round of a band-shaped portion including a maximum diameter portion of a sphere. The load receiving portion 250 is coupled to the coupling portion peripheral wall portion 223. The load receiving portion 250 is formed on the outer periphery of the coupling portion peripheral wall portion 223. The load receiving portion 250 protrudes from the coupling portion peripheral wall portion 223 in the planar direction. The load receiving portion 250 has a structure that receives a load acting on the output shaft 20. When receiving a load that tilts the output shaft 20 with respect to the center line of the main body case 30, the load receiving portion 250 receives this load by contacting the case load receiving portion 37 of the main body case 30. Since the load receiving portion 250 has a curved surface similar to a spherical surface, it is difficult to form a nonuniform surface pressure distribution on the case load receiving portion 37.
負荷受部250に関する説明は、主として図4~図6および図16を参照する。負荷受部250は、円環形状を有する。負荷受部250の外周面は、球面に類似する湾曲面を有する。球面に類似する湾曲面は、球体の最大径部分を含む帯状部分の1周が形成する外周面に類似している。負荷受部250は、結合部周壁部223と結合されている。負荷受部250は、結合部周壁部223の外周上に形成されている。負荷受部250は、結合部周壁部223から平面方向に突出している。負荷受部250は、出力軸20に作用する荷重を受ける構造を有する。負荷受部250は、出力軸20を本体ケース30の中心線に対して傾ける荷重が作用したとき、本体ケース30のケース負荷受部37と接触することによりこの荷重を受ける。負荷受部250は、球面に類似する湾曲面を有するため、ケース負荷受部37に不均一な面圧分布を形成しにくい。 The configuration of the
Refer to FIGS. 4 to 6 and FIG. 16 mainly for the description of the
部品受部260の構成について説明する。
部品受部260に関する説明は、主として図4~図6および図16を参照する。部品受部260は、円環形状に類似する形状を有する。部品受部260は、結合部周壁部223と結合されている。部品受部260は、結合部周壁部223の外周上に形成されている。部品受部260は、結合部周壁部223から平面方向に突出している。部品受部260は、負荷受部250よりも可動方向DXの突出方向DXL側の箇所に形成されている。部品受部260は、可動方向DXにおいて、電動リニアアクチュエーター40のうちの最も突出方向DXL側の箇所に形成されている。部品受部260は、部品受面261を有する。部品受部260は、部品受面261により電動装置本体11の弾性部品16を支持する構造を有する。 The structure of thecomponent receiving part 260 is demonstrated.
Refer to FIGS. 4 to 6 and FIG. 16 mainly for the description of thecomponent receiving portion 260. The component receiving part 260 has a shape similar to an annular shape. The component receiving part 260 is coupled to the coupling part peripheral wall part 223. The component receiving portion 260 is formed on the outer periphery of the coupling portion peripheral wall portion 223. The component receiving portion 260 protrudes from the coupling portion peripheral wall portion 223 in the planar direction. The component receiving part 260 is formed at a location closer to the protruding direction DXL in the movable direction DX than the load receiving part 250. The component receiving portion 260 is formed at a position on the most protruding direction DXL side of the electric linear actuator 40 in the movable direction DX. The component receiving unit 260 has a component receiving surface 261. The component receiving portion 260 has a structure that supports the elastic component 16 of the electric device main body 11 by the component receiving surface 261.
部品受部260に関する説明は、主として図4~図6および図16を参照する。部品受部260は、円環形状に類似する形状を有する。部品受部260は、結合部周壁部223と結合されている。部品受部260は、結合部周壁部223の外周上に形成されている。部品受部260は、結合部周壁部223から平面方向に突出している。部品受部260は、負荷受部250よりも可動方向DXの突出方向DXL側の箇所に形成されている。部品受部260は、可動方向DXにおいて、電動リニアアクチュエーター40のうちの最も突出方向DXL側の箇所に形成されている。部品受部260は、部品受面261を有する。部品受部260は、部品受面261により電動装置本体11の弾性部品16を支持する構造を有する。 The structure of the
Refer to FIGS. 4 to 6 and FIG. 16 mainly for the description of the
弾性部品16は、弾性材料により形成されている。弾性部品16は、円筒形状に類似する形状を有する。弾性部品16は、出力軸20の嵌合溝23に嵌め込まれている。弾性部品16は、本体ケース30の開口部分と出力軸20との間の部分をシールする構造を有する。
The elastic component 16 is made of an elastic material. The elastic part 16 has a shape similar to a cylindrical shape. The elastic component 16 is fitted in the fitting groove 23 of the output shaft 20. The elastic component 16 has a structure that seals a portion between the opening portion of the main body case 30 and the output shaft 20.
部品受面261は、平面形状を有する。部品受面261は、平面方向と平行している。部品受面261は、部品受部260における突出方向DXL側の部分の表面を形成している。部品受面261は、弾性部品16と接触している。部品受面261は、引込方向DXR側から弾性部品16を支持することにより、弾性部品16が出力軸20に対して引込方向DXR側に移動することを規制している。
The component receiving surface 261 has a planar shape. The component receiving surface 261 is parallel to the planar direction. The component receiving surface 261 forms a surface of a portion on the protruding direction DXL side in the component receiving portion 260. The component receiving surface 261 is in contact with the elastic component 16. The component receiving surface 261 supports the elastic component 16 from the drawing direction DXR side, thereby restricting the elastic component 16 from moving to the drawing direction DXR side with respect to the output shaft 20.
部品受部260は、次の効果を奏する。部品受部260は、弾性部品16を支持している。このため、出力軸20に対する弾性部品16の位置が変化することに起因して、本体ケース30のシール性が低下することが抑制される。部品受部260は、弾性部品16を支持する比較例の構造と比較して、有利な効果を奏する。
The parts receiver 260 has the following effects. The component receiver 260 supports the elastic component 16. For this reason, it is suppressed that the sealing performance of the main body case 30 falls because the position of the elastic component 16 with respect to the output shaft 20 changes. The component receiving portion 260 has an advantageous effect as compared with the structure of the comparative example that supports the elastic component 16.
比較例の構造は、止め輪により弾性部品16を支持する。比較例の構造は、止め輪が嵌合される止め輪嵌合溝を出力軸20に有する。止め輪嵌合溝は、嵌合溝23よりも引込方向DXR側に形成される。止め輪は、止め輪嵌合溝に嵌合される。止め輪は、弾性部品16を引込方向DXR側から支持する。比較例の構造は、止め輪および止め輪嵌合溝を必要とする。
The structure of the comparative example supports the elastic component 16 with a retaining ring. The structure of the comparative example has a retaining ring fitting groove on the output shaft 20 into which a retaining ring is fitted. The retaining ring fitting groove is formed closer to the drawing direction DXR than the fitting groove 23. The retaining ring is fitted into the retaining ring fitting groove. The retaining ring supports the elastic component 16 from the drawing direction DXR side. The structure of the comparative example requires a retaining ring and a retaining ring fitting groove.
部品受部260は、止め輪および止め輪嵌合溝を省略することを可能にする。出力軸振動型電動装置10は、部品受部260を有することにより、止め輪および止め輪嵌合溝を省略している。このため、出力軸20に対する加工の工数が削減される。また、止め輪を止め輪嵌合溝に勘合する工程が削減される。このため、部品受部260は、出力軸振動型電動装置10の製造効率の向上に貢献する。
The component receiving part 260 makes it possible to omit the retaining ring and the retaining ring fitting groove. Since the output shaft vibration type electric device 10 has the component receiving portion 260, the retaining ring and the retaining ring fitting groove are omitted. For this reason, the man-hour of the process with respect to the output shaft 20 is reduced. Moreover, the process of fitting the retaining ring with the retaining ring fitting groove is reduced. For this reason, the component receiving part 260 contributes to the improvement of the manufacturing efficiency of the output shaft vibration type electric apparatus 10.
対偶用機能部品300の構成について説明する。
対偶用機能部品300に関する説明は、主として図3、図4、図6、図7および図9を参照する。対偶用機能部品300は、可動方向DXにおいて、出力用機能部品200よりも引込方向DXR側の箇所に配置されている。対偶用機能部品300は、高さ方向DYにおいて、ブロック結合部品100の頂面方向DYT側の箇所に配置されている。対偶用機能部品300は、幅方向DZにおいて、ブロック結合部品100の正面方向DZF側の箇所から背面方向DZR側の箇所にわたり配置されている。 The configuration of thekinematic function component 300 will be described.
For the description of thefunctional component 300 for pairs, mainly refer to FIGS. 3, 4, 6, 7, and 9. The kinematic function component 300 is arranged at a position closer to the drawing direction DXR than the output function component 200 in the movable direction DX. The paired functional component 300 is arranged at a location on the top surface direction DYT side of the block coupling component 100 in the height direction DY. The functional component 300 for pairs is arranged in the width direction DZ from a location on the front direction DZF side to a location on the back direction DZR side of the block coupling component 100.
対偶用機能部品300に関する説明は、主として図3、図4、図6、図7および図9を参照する。対偶用機能部品300は、可動方向DXにおいて、出力用機能部品200よりも引込方向DXR側の箇所に配置されている。対偶用機能部品300は、高さ方向DYにおいて、ブロック結合部品100の頂面方向DYT側の箇所に配置されている。対偶用機能部品300は、幅方向DZにおいて、ブロック結合部品100の正面方向DZF側の箇所から背面方向DZR側の箇所にわたり配置されている。 The configuration of the
For the description of the
対偶用機能部品300は、金属材料により形成されている。対偶用機能部品300は、可動方向DXにおいて長手部分を有する。対偶用機能部品300は、幅方向DZにおいて短手部分を有する。対偶用機能部品300は、複数の締結部品41により対偶可動用結合部130と結合されている。対偶用機能部品300および対偶可動用結合部130は、一体化された関係を有する。対偶用機能部品300は、複数の部品構成部分が同一の金属材料により一体的に形成された構造を有する。対偶用機能部品300の複数の部品構成部分は、対偶部品本体部310および対偶部品調整部320を含む。対偶用機能部品300は、対偶部品本体部310および対偶部品調整部320に区分された構造を有する。対偶用機能部品300は、一例として、板材料の曲げ加工により形成される。好ましくは、対偶用機能部品300は、付加調整部品400と併せて振動低減構造を形成している。
The functional component 300 for a pair is made of a metal material. The paired functional component 300 has a longitudinal portion in the movable direction DX. The even-numbered functional component 300 has a short portion in the width direction DZ. The paired functional component 300 is coupled to the pair movable coupling portion 130 by a plurality of fastening components 41. The paired functional component 300 and the pair movable joint 130 have an integrated relationship. The kinematic function component 300 has a structure in which a plurality of component components are integrally formed of the same metal material. The plurality of component component parts of the kinematic function component 300 includes a kinematic component main body 310 and a kinematic component adjusting unit 320. The paired functional component 300 has a structure divided into a paired component main body 310 and a paired component adjusting unit 320. As an example, the functional component 300 for pairs is formed by bending a plate material. Preferably, the kinematic pair functional component 300 forms a vibration reduction structure together with the additional adjustment component 400.
対偶部品本体部310は、平板形状を有する。対偶部品本体部310は、出力可動用結合部120および対偶可動用結合部130の頂面上に配置されている。出力部品本体部210は、複数の締結部品41により対偶可動用結合部130と結合されている。対偶部品本体部310は、対偶用機能部品300の基礎部分を形成している。
The kinematic part main body 310 has a flat plate shape. The paired component main body 310 is disposed on the top surfaces of the output movable coupling portion 120 and the pair movable coupling portion 130. The output component main body 210 is coupled to the pair movable coupling unit 130 by a plurality of fastening components 41. The kinematic part main body 310 forms the basic part of the kinematic function component 300.
対偶部品調整部320は、平板形状を有する。対偶部品調整部320は、可動方向DXにおいて、引込側連結部品90よりも引込方向DXR側の箇所に配置されている。すなわち、対偶部品調整部320は、対偶可動ブロック70よりも引込方向DXR側に配置されている。対偶部品調整部320は、可動方向DXにおいて、隙間を介して引込側連結部品90と対向している。対偶部品調整部320は、付加調整部品400と結合している。対偶部品調整部320は、出力可動ブロック60を含む機能結合部の重量と、対偶可動ブロック70を含む機能結合部の重量とのバランスを取るための構造を有する。
The kinematic part adjustment unit 320 has a flat plate shape. The kinematic part adjustment unit 320 is arranged at a position closer to the drawing direction DXR than the drawing side connecting part 90 in the movable direction DX. That is, the even-part adjusting unit 320 is arranged on the drawing direction DXR side with respect to the pair movable block 70. The even-part adjusting unit 320 faces the drawing-side connecting component 90 through a gap in the movable direction DX. The even-part adjusting unit 320 is coupled to the additional adjusting part 400. The even-part adjusting unit 320 has a structure for balancing the weight of the function coupling unit including the output movable block 60 and the weight of the functional coupling unit including the pair movable block 70.
付加調整部品400の構成について説明する。
付加調整部品400に関する説明は、主として図3および図15を参照する。付加調整部品400は、金属材料により形成されている。付加調整部品400は、円柱形状を有する。好ましくは、付加調整部品400は、対偶用機能部品300とは個別に形成されている。付加調整部品400は、接着により対偶部品調整部320と結合されている。付加調整部品400は、可動方向DXにおいて、対偶部品調整部320よりも突出方向DXL側の箇所に配置されている。付加調整部品400の一部は、連結部品空間93に配置されている。付加調整部品400は、出力可動ブロック60を含む機能結合部の重量と、対偶可動ブロック70を含む機能結合部の重量とのバランスを取るための構造を有する。 The configuration of theadditional adjustment component 400 will be described.
3 and 15 will be mainly referred to for the explanation regarding theadditional adjustment component 400. The additional adjustment component 400 is made of a metal material. The additional adjustment component 400 has a cylindrical shape. Preferably, the additional adjustment component 400 is formed separately from the pair function component 300. The additional adjustment component 400 is coupled to the counter component adjustment unit 320 by bonding. The additional adjustment component 400 is disposed at a position closer to the projecting direction DXL than the counter component adjustment unit 320 in the movable direction DX. A part of the additional adjustment component 400 is disposed in the connection component space 93. The additional adjustment component 400 has a structure for balancing the weight of the function coupling portion including the output movable block 60 and the weight of the function coupling portion including the even-number movable block 70.
付加調整部品400に関する説明は、主として図3および図15を参照する。付加調整部品400は、金属材料により形成されている。付加調整部品400は、円柱形状を有する。好ましくは、付加調整部品400は、対偶用機能部品300とは個別に形成されている。付加調整部品400は、接着により対偶部品調整部320と結合されている。付加調整部品400は、可動方向DXにおいて、対偶部品調整部320よりも突出方向DXL側の箇所に配置されている。付加調整部品400の一部は、連結部品空間93に配置されている。付加調整部品400は、出力可動ブロック60を含む機能結合部の重量と、対偶可動ブロック70を含む機能結合部の重量とのバランスを取るための構造を有する。 The configuration of the
3 and 15 will be mainly referred to for the explanation regarding the
振動低減構造について説明する。
振動低減構造に関する説明は、主として図3~図7を参照する。振動低減構造は、第1振動低減構造および第2振動低減構造を有する。振動低減構造がない場合、電動リニアアクチュエーター40において、好ましくない振動が発生することがある。その理由を以下に記述する。 The vibration reducing structure will be described.
For the description of the vibration reducing structure, mainly refer to FIGS. The vibration reduction structure has a first vibration reduction structure and a second vibration reduction structure. When there is no vibration reduction structure, undesirable vibrations may occur in the electriclinear actuator 40. The reason is described below.
振動低減構造に関する説明は、主として図3~図7を参照する。振動低減構造は、第1振動低減構造および第2振動低減構造を有する。振動低減構造がない場合、電動リニアアクチュエーター40において、好ましくない振動が発生することがある。その理由を以下に記述する。 The vibration reducing structure will be described.
For the description of the vibration reducing structure, mainly refer to FIGS. The vibration reduction structure has a first vibration reduction structure and a second vibration reduction structure. When there is no vibration reduction structure, undesirable vibrations may occur in the electric
出力可動ブロック60は、出力用機能部品200と結合される。出力用機能部品200は、出力軸20と結合される。このため、出力可動ブロック60は、出力用機能部品200および出力軸20から荷重を受ける。第1振動低減構造は、出力可動ブロック60および対偶可動ブロック70にかかる荷重をバランスさせる。換言すれば、第1振動低減構造がない場合、出力可動ブロック60および対偶可動ブロック70にかかる荷重がアンバランスになることがある。出力可動ブロック60および対偶可動ブロック70にかかる荷重がアンバランスである場合、出力可動ブロック60の慣性力に起因して好ましくない振動が電動リニアアクチュエーター40に発生するおそれがある。
The output movable block 60 is coupled to the output functional component 200. The output functional component 200 is coupled to the output shaft 20. For this reason, the output movable block 60 receives a load from the output functional component 200 and the output shaft 20. The first vibration reducing structure balances the load applied to the output movable block 60 and the pair movable block 70. In other words, when there is no first vibration reduction structure, the load applied to the output movable block 60 and the pair movable block 70 may become unbalanced. When the load applied to the output movable block 60 and the pair movable block 70 is unbalanced, an undesirable vibration may occur in the electric linear actuator 40 due to the inertial force of the output movable block 60.
本例では、第1振動低減構造は、出力可動ブロック60を含む機能結合部にかかる荷重と、対偶可動ブロック70を含む機能結合部にかかる荷重とのバランスを取ることにより、電動リニアアクチュエーター40における好ましくない振動の発生を抑制する。第1振動低減構造は、一例として、対偶用機能部品300および付加調整部品400により形成される。
In this example, the first vibration reduction structure balances the load applied to the functional coupling unit including the output movable block 60 and the load applied to the functional coupling unit including the even-moving movable block 70, so that the electric linear actuator 40 Suppresses undesirable vibrations. As an example, the first vibration reduction structure is formed by an even-numbered functional component 300 and an additional adjustment component 400.
第1振動低減構造は、対偶用機能部品300を対偶可動ブロック70に結合することにより、出力可動ブロック60を含む機能結合部にかかる荷重と、対偶可動ブロック70を含む機能結合部にかかる荷重とをバランスさせる。本例では、第1振動低減構造は、出力可動ブロック60を含む機能結合部の重量と、対偶可動ブロック70を含む機能結合部の重量とをバランスさせることにより、両機能結合部にかかる荷重をバランスさせる。第1振動低減構造は、主として対偶部品調整部320および付加調整部品400により、出力軸20の重量に起因する重量アンバランスを解消する。
In the first vibration reduction structure, the functional component 300 for the pair is coupled to the pair movable block 70, whereby the load applied to the functional coupling portion including the output movable block 60 and the load applied to the functional coupling portion including the pair movable block 70 are To balance. In this example, the first vibration reduction structure balances the weight of the functional coupling portion including the output movable block 60 and the weight of the functional coupling portion including the even-moving movable block 70, thereby reducing the load applied to both functional coupling portions. Balance. The first vibration reduction structure eliminates the weight imbalance caused by the weight of the output shaft 20 mainly by the counter-part adjustment unit 320 and the additional adjustment component 400.
出力可動ブロック60、出力可動用結合部120、出力用機能部品200、および出力軸20は、1つの機能結合部を形成している。対偶可動ブロック70、対偶可動用結合部130、対偶用機能部品300、および付加調整部品400は、1つの機能結合部を形成している。
The output movable block 60, the output movable coupling portion 120, the output functional component 200, and the output shaft 20 form one functional coupling portion. The pair movable block 70, the pair movable coupling portion 130, the pair functional component 300, and the additional adjustment component 400 form one functional coupling portion.
出力可動ブロック60を含む機能結合部、および対偶可動ブロック70を含む機能結合部は、第1振動低減構造の存在により、それぞれの機能結合部に作用する荷重のバランスが取れている。このため、電動リニアアクチュエーター40は、出力可動ブロック60および対偶可動ブロック70が往復運動するとき、好ましくない振動を発生しにくい。
The functional coupling portion including the output movable block 60 and the functional coupling portion including the pair movable block 70 are balanced in the load acting on each functional coupling portion due to the presence of the first vibration reduction structure. For this reason, when the output movable block 60 and the pair movable block 70 reciprocate, the electric linear actuator 40 hardly generates undesirable vibrations.
電動リニアアクチュエーター40は、出力可動ブロック60の往復運動によりモーメント(以下、「出力側モーメント」)を発生し得る。この出力側モーメントは、好ましくない振動の大きさに影響を及ぼす。また、電動リニアアクチュエーター40は、対偶可動ブロック70の往復運動によりモーメント(以下、「対偶側モーメント」)を発生し得る。この対偶側モーメントは、好ましくない振動の大きさに影響を及ぼす。第2振動低減構造は、出力側モーメントおよび対偶側モーメントに起因して発生し得る好ましくない振動を抑制する。換言すれば、第2振動低減構造がない場合、出力側モーメントおよび対偶側モーメントに起因して好ましくない振動が電動リニアアクチュエーター40に発生するおそれがある。
The electric linear actuator 40 can generate a moment (hereinafter, “output side moment”) by the reciprocating motion of the output movable block 60. This output side moment affects the magnitude of the unwanted vibration. Further, the electric linear actuator 40 can generate a moment (hereinafter referred to as “an even-side moment”) by the reciprocating motion of the even-movable movable block 70. This counter-moment affects the magnitude of unwanted vibration. The second vibration reduction structure suppresses undesired vibration that may occur due to the output side moment and the even side moment. In other words, when there is no second vibration reducing structure, there is a possibility that undesirable vibrations may occur in the electric linear actuator 40 due to the output side moment and the even side moment.
第2振動低減構造は、出力可動ブロック60を含む機能結合部の重心と、対偶可動ブロック70を含む機能結合部の重心との距離を近づけることにより、各モーメントに起因する好ましくない振動の発生を低減する。本例では、第2振動低減構造は、対偶部品調整部320の重量および付加調整部品400の重量を合わせた重量を、対偶部品本体部310の重量よりも大きくすることにより、上記距離をオフセットしている。つまり、第2振動低減構造は、出力側モーメントおよび対偶側モーメントが相殺し合う度合を大きくしている。このため、電動リニアアクチュエーター40は、出力可動ブロック60および対偶可動ブロック70が往復運動するとき、好ましくない振動を発生しにくい。
The second vibration reduction structure reduces unwanted vibration caused by each moment by reducing the distance between the center of gravity of the function coupling unit including the output movable block 60 and the center of gravity of the function coupling unit including the even-numbered movable block 70. To reduce. In this example, the second vibration reduction structure offsets the distance by making the total weight of the pair adjustment component 320 and the additional adjustment component 400 larger than the weight of the pair main body 310. ing. In other words, the second vibration reduction structure increases the degree to which the output side moment and the even side moment cancel each other. For this reason, when the output movable block 60 and the pair movable block 70 reciprocate, the electric linear actuator 40 hardly generates undesirable vibrations.
上記各機能結合部の重心は、一例として以下の関係を有する。
電動リニアアクチュエーター40は、電動リニアアクチュエーター40の正面視(図5参照)または背面視(図6参照)において、出力軸20の軸方向に延びる出力軸用結合部220の結合部中心線に沿って区分される第1区分領域および第2区分領域を含む。図6において、第1区分領域は、高さ方向DYにおいて、結合部中心線よりも頂面方向DYT側に位置する。第2区分領域は、高さ方向DYにおいて、結合部中心線よりも底面方向DYB側に位置する。 The center of gravity of each of the function coupling portions has the following relationship as an example.
The electriclinear actuator 40 is along the center line of the coupling portion of the output shaft coupling portion 220 extending in the axial direction of the output shaft 20 in the front view (see FIG. 5) or the rear view (see FIG. 6) of the electric linear actuator 40. It includes a first segmented region and a second segmented region that are segmented. In FIG. 6, the first segment region is located on the top surface direction DYT side with respect to the coupling portion center line in the height direction DY. The second segmented region is located on the bottom surface direction DYB side with respect to the coupling portion center line in the height direction DY.
電動リニアアクチュエーター40は、電動リニアアクチュエーター40の正面視(図5参照)または背面視(図6参照)において、出力軸20の軸方向に延びる出力軸用結合部220の結合部中心線に沿って区分される第1区分領域および第2区分領域を含む。図6において、第1区分領域は、高さ方向DYにおいて、結合部中心線よりも頂面方向DYT側に位置する。第2区分領域は、高さ方向DYにおいて、結合部中心線よりも底面方向DYB側に位置する。 The center of gravity of each of the function coupling portions has the following relationship as an example.
The electric
第1区分領域には少なくとも対偶可動ブロック70が配置される。本例では、出力可動ブロック60および対偶可動ブロック70が、第1区分領域に配置されている。好ましくは、出力可動ブロック60を含む機能結合部の重心、および対偶可動ブロック70を含む機能結合部の重心が、第1区分領域内に位置する。すなわち、両機能結合部の重心が第1区分領域内において互いに接近していることが好ましい。
At least the even-numbered movable block 70 is arranged in the first section area. In this example, the output movable block 60 and the even movable block 70 are arranged in the first segment area. Preferably, the center of gravity of the function coupling unit including the output movable block 60 and the center of gravity of the function coupling unit including the pair movable block 70 are located in the first segment area. That is, it is preferable that the centers of gravity of both functional coupling portions are close to each other in the first segmented region.
電動リニアアクチュエーター40の固定構造について説明する。
固定構造に関する説明は、主として図16を参照する。本体ケース30は、複数のケース側結合部36および複数の締結部品17を有する。ケース側結合部36は、平面形状の外面を有する。ケース側結合部36の外面は、固定用結合部110の結合部支持面111(図4参照)と平行する形状を有する。ケース側結合部36の外面は、結合部支持面111と面接触している。 A fixing structure of the electriclinear actuator 40 will be described.
Refer mainly to FIG. 16 for the description regarding a fixing structure. The main body case 30 includes a plurality of caseside coupling portions 36 and a plurality of fastening parts 17. The case side coupling portion 36 has a planar outer surface. The outer surface of the case side coupling portion 36 has a shape parallel to the coupling portion support surface 111 (see FIG. 4) of the fixing coupling portion 110. The outer surface of the case side coupling portion 36 is in surface contact with the coupling portion support surface 111.
固定構造に関する説明は、主として図16を参照する。本体ケース30は、複数のケース側結合部36および複数の締結部品17を有する。ケース側結合部36は、平面形状の外面を有する。ケース側結合部36の外面は、固定用結合部110の結合部支持面111(図4参照)と平行する形状を有する。ケース側結合部36の外面は、結合部支持面111と面接触している。 A fixing structure of the electric
Refer mainly to FIG. 16 for the description regarding a fixing structure. The main body case 30 includes a plurality of case
突出方向DXL側の固定用結合部110は、締結部品17により一方のケース側結合部36と結合されている。引込方向DXR側の固定用結合部110は、締結部品17により他方のケース側結合部36と結合されている。固定用結合部110およびケース側結合部36は、一体化された関係を有する。固定用結合部110および固定ブロック50は、一体化された関係を有する。このため、固定ブロック50、固定用結合部110、およびケース側結合部36は、一体化された関係を有する。
The fixing coupling portion 110 on the protruding direction DXL side is coupled to one case side coupling portion 36 by the fastening component 17. The fixing coupling portion 110 on the drawing direction DXR side is coupled to the other case side coupling portion 36 by the fastening component 17. The fixing coupling part 110 and the case side coupling part 36 have an integrated relationship. The fixing coupling part 110 and the fixing block 50 have an integrated relationship. For this reason, the fixing block 50, the fixing coupling portion 110, and the case side coupling portion 36 have an integrated relationship.
固定用結合部110およびケース側結合部36の関係は、出力軸20に荷重が作用したとき、電動リニアアクチュエーター40が本体ケース30から離れることを規制する。出力軸20は、一例として、平面方向の成分を含む荷重を受ける。出力軸20が受けた荷重は、電動リニアアクチュエーター40の構成部品に伝達される。電動リニアアクチュエーター40の構成部品が受けた荷重は、電動リニアアクチュエーター40を本体ケース30の中心線に対して傾ける方向に作用する。固定用結合部110およびケース側結合部36の結合関係は、電動リニアアクチュエーター40の構成部品に作用する荷重を受ける。このため、電動リニアアクチュエーター40が本体ケース30に対して傾くことが抑制される。このように、固定用結合部110およびケース側結合部36の結合関係は、出力軸20に作用する荷重に対する電動リニアアクチュエーター40の剛性を高めることに貢献する。
The relationship between the fixing coupling portion 110 and the case side coupling portion 36 restricts the electric linear actuator 40 from being separated from the main body case 30 when a load is applied to the output shaft 20. As an example, the output shaft 20 receives a load including a component in a planar direction. The load received by the output shaft 20 is transmitted to the components of the electric linear actuator 40. The load received by the components of the electric linear actuator 40 acts in a direction in which the electric linear actuator 40 is tilted with respect to the center line of the main body case 30. The coupling relationship between the coupling part 110 for fixing and the case side coupling part 36 receives a load acting on the components of the electric linear actuator 40. For this reason, it is suppressed that the electric linear actuator 40 inclines with respect to the main body case 30. FIG. As described above, the coupling relationship between the fixing coupling portion 110 and the case side coupling portion 36 contributes to increasing the rigidity of the electric linear actuator 40 with respect to the load acting on the output shaft 20.
電動リニアアクチュエーター40の動作について説明する。
動作に関する説明は、主として図1~図3を参照する。固定ブロック50は、制御部14からコイル52に電流が供給されることにより磁界を形成する。出力可動ブロック60は、固定ブロック50との間において作用する電磁気力により可動方向DXに往復運動する。対偶可動ブロック70は、固定ブロック50との間において作用する電磁気力により可動方向DXに往復運動する。出力可動ブロック60および対偶可動ブロック70は、互いに反対の位相により往復運動する。出力用機能部品200は、出力可動ブロック60と一体的に往復運動する。出力軸20は、出力用機能部品200と一体的に往復運動する。このように、電動リニアアクチュエーター40は、出力可動ブロック60の往復運動を出力することにより、出力軸20を往復運動させる。 The operation of the electriclinear actuator 40 will be described.
For the description of the operation, reference is mainly made to FIGS. The fixedblock 50 forms a magnetic field when current is supplied from the control unit 14 to the coil 52. The output movable block 60 reciprocates in the movable direction DX by an electromagnetic force acting between the fixed block 50. The pair movable block 70 reciprocates in the movable direction DX by an electromagnetic force acting between the fixed block 50. The output movable block 60 and the pair movable block 70 reciprocate in opposite phases. The output functional component 200 reciprocates integrally with the output movable block 60. The output shaft 20 reciprocates integrally with the output functional component 200. Thus, the electric linear actuator 40 reciprocates the output shaft 20 by outputting the reciprocating motion of the output movable block 60.
動作に関する説明は、主として図1~図3を参照する。固定ブロック50は、制御部14からコイル52に電流が供給されることにより磁界を形成する。出力可動ブロック60は、固定ブロック50との間において作用する電磁気力により可動方向DXに往復運動する。対偶可動ブロック70は、固定ブロック50との間において作用する電磁気力により可動方向DXに往復運動する。出力可動ブロック60および対偶可動ブロック70は、互いに反対の位相により往復運動する。出力用機能部品200は、出力可動ブロック60と一体的に往復運動する。出力軸20は、出力用機能部品200と一体的に往復運動する。このように、電動リニアアクチュエーター40は、出力可動ブロック60の往復運動を出力することにより、出力軸20を往復運動させる。 The operation of the electric
For the description of the operation, reference is mainly made to FIGS. The fixed
電動リニアアクチュエーター40は、以下の効果を奏する。
(1)電動リニアアクチュエーター40は、突出側連結部品80および引込側連結部品90を有する。突出側連結部品80および引込側連結部品90は、互いに異なる形状を有する。この構成によれば、各連結部品80,90の構造に関する自由度が高められる。このため、共振駆動の好ましい形態を形成すること、および各連結部品80,90の構造に起因する電動リニアアクチュエーター40の大型化を抑制することが両立される。 The electriclinear actuator 40 has the following effects.
(1) The electriclinear actuator 40 has a protruding side connecting part 80 and a drawing side connecting part 90. The protruding side connecting part 80 and the drawing side connecting part 90 have different shapes. According to this structure, the freedom degree regarding the structure of each connection component 80 and 90 is raised. For this reason, it is compatible to form a preferable form of resonance driving and to prevent the electric linear actuator 40 from being enlarged due to the structure of the connecting parts 80 and 90.
(1)電動リニアアクチュエーター40は、突出側連結部品80および引込側連結部品90を有する。突出側連結部品80および引込側連結部品90は、互いに異なる形状を有する。この構成によれば、各連結部品80,90の構造に関する自由度が高められる。このため、共振駆動の好ましい形態を形成すること、および各連結部品80,90の構造に起因する電動リニアアクチュエーター40の大型化を抑制することが両立される。 The electric
(1) The electric
(2)突出側連結部品80の厚さは、引込側連結部品90の厚さよりも薄い。この構成によれば、突出側連結部品80が出力用機能部品200と接触しにくい。このため、突出側連結部品80が損傷しにくい。
(2) The thickness of the protruding side connecting part 80 is thinner than the thickness of the drawing side connecting part 90. According to this configuration, the protruding side connecting component 80 is unlikely to contact the output functional component 200. For this reason, the protrusion side connection component 80 is hard to be damaged.
(3)突出側連結部品80は、電動リニアアクチュエーター40の突出方向DXL側の側面視において、幅方向DZの中心線に対して非対称の形状を有する。この構成によれば、突出側連結部品80の構造に関する自由度が高められる。このため、突出側連結部品80の好ましい強度を確保すること、および突出側連結部品80の構造に起因する電動リニアアクチュエーター40の大型化を抑制することが両立される。
(3) The protruding side connecting component 80 has an asymmetric shape with respect to the center line in the width direction DZ in a side view of the electric linear actuator 40 on the protruding direction DXL side. According to this structure, the freedom degree regarding the structure of the protrusion side connection component 80 is raised. For this reason, ensuring the preferable intensity | strength of the protrusion side connection component 80 and suppressing the enlargement of the electric linear actuator 40 resulting from the structure of the protrusion side connection component 80 are compatible.
(4)電動リニアアクチュエーター40は、対偶用機能部品300を有する。この構成によれば、出力可動ブロック60および対偶可動ブロック70の荷重のバランスが取れる。このため、電動リニアアクチュエーター40の好ましくない振動の発生が抑制される。
(4) The electric linear actuator 40 has an even-numbered functional component 300. According to this configuration, the load of the output movable block 60 and the pair movable block 70 can be balanced. For this reason, generation | occurrence | production of the undesirable vibration of the electric linear actuator 40 is suppressed.
(5)電動リニアアクチュエーター40は、ブロック結合部品100を有する。ブロック結合部品100は、複数の構成部分が樹脂材料により一体的に形成された構造を有する。突出側連結部品80および引込側連結部品90は、樹脂材料によりブロック結合部品100と一体的に形成されている。この構成によれば、ブロック結合部品100、突出側連結部品80、および引込側連結部品90の生産性が向上する。
(5) The electric linear actuator 40 has a block coupling component 100. The block coupling component 100 has a structure in which a plurality of constituent parts are integrally formed of a resin material. The protruding side connecting part 80 and the drawing side connecting part 90 are integrally formed with the block connecting part 100 by a resin material. According to this configuration, the productivity of the block coupling component 100, the protruding side coupling component 80, and the drawing side coupling component 90 is improved.
(6)ブロック結合部品100は、結合部支持面111を有する。結合部支持面111は、本体ケース30のケース側結合部36と結合される。結合部支持面111は、ケース側結合部36と協働して出力軸20の荷重を受ける。この構成によれば、外部から出力軸20に作用する荷重が結合部支持面111およびケース側結合部36により受けられる。このため、出力軸20に作用する荷重に起因して、本体ケース30の中心線に対して電動リニアアクチュエーター40が傾くことが抑制される。
(6) The block coupling component 100 has a coupling portion support surface 111. The coupling portion support surface 111 is coupled to the case side coupling portion 36 of the main body case 30. The joint support surface 111 receives the load of the output shaft 20 in cooperation with the case side joint 36. According to this configuration, a load acting on the output shaft 20 from the outside is received by the coupling portion support surface 111 and the case side coupling portion 36. For this reason, it is suppressed that the electric linear actuator 40 inclines with respect to the centerline of the main body case 30 resulting from the load which acts on the output shaft 20. FIG.
(7)出力用機能部品200は、出力軸用結合部220を有する。この構成によれば、出力軸20が出力軸用結合部220により結合される。このため、出力軸20が適切に保持される。
(7) The output functional component 200 includes an output shaft coupling portion 220. According to this configuration, the output shaft 20 is coupled by the output shaft coupling portion 220. For this reason, the output shaft 20 is appropriately held.
(8)出力軸用結合部220は、結合部周壁部223を有する。結合部周壁部223は、出力軸20の外周部分を支持する構造を有する。この構成によれば、出力軸20を保持する部分の面積が大きくなる。このため、出力軸20が適切に保持される旨の効果がより高められる。
(8) The output shaft coupling portion 220 has a coupling portion peripheral wall portion 223. The coupling portion peripheral wall portion 223 has a structure that supports the outer peripheral portion of the output shaft 20. According to this configuration, the area of the portion that holds the output shaft 20 is increased. For this reason, the effect that the output shaft 20 is appropriately held is further enhanced.
(9)結合部周壁部223は、結合部基礎面222から突出方向DXL側に向けて突出している。この構成によれば、可動方向DXにおける結合部周壁部223の長さに関する調整の幅が大きくなる。このため、出力軸20を適切に保持する効果をより高めることが可能になる。
(9) The connecting portion peripheral wall portion 223 protrudes from the connecting portion base surface 222 toward the protruding direction DXL. According to this configuration, the range of adjustment related to the length of the coupling portion peripheral wall portion 223 in the movable direction DX is increased. For this reason, it is possible to further enhance the effect of appropriately holding the output shaft 20.
(10)出力用機能部品200は、負荷受部250を有する。この構成によれば、外部から出力軸20に作用する荷重が負荷受部250およびケース負荷受部37により受けられる。このため、出力軸20に作用する荷重に起因して、本体ケース30の中心線に対して電動リニアアクチュエーター40が傾くことが抑制される。
(10) The output functional component 200 has a load receiving portion 250. According to this configuration, the load acting on the output shaft 20 from the outside is received by the load receiving portion 250 and the case load receiving portion 37. For this reason, it is suppressed that the electric linear actuator 40 inclines with respect to the centerline of the main body case 30 resulting from the load which acts on the output shaft 20. FIG.
(11)負荷受部250は、球面に類似する湾曲面を有する。この構成によれば、負荷受部250がケース負荷受部37に不均一な面圧の分布を形成しにくい。このため、出力軸20に作用する荷重が負荷受部250により安定して受けられる。
(11) The load receiving portion 250 has a curved surface similar to a spherical surface. According to this configuration, it is difficult for the load receiving portion 250 to form a nonuniform surface pressure distribution on the case load receiving portion 37. For this reason, the load acting on the output shaft 20 is stably received by the load receiving portion 250.
(12)出力用機能部品200は、部品受部260を有する。この構成によれば、電動装置本体11の弾性部品16が出力軸20に対して移動することが規制される。このため、弾性部品16によるシール性の低下が抑制される。
(12) The output functional component 200 has a component receiving portion 260. According to this configuration, the elastic component 16 of the electric device main body 11 is restricted from moving with respect to the output shaft 20. For this reason, the fall of the sealing performance by the elastic component 16 is suppressed.
(13)出力用機能部品200は、出力部品補強部230を有する。出力部品補強部230は、出力部品本体部210および出力軸用結合部220を補強する構造を有する。この構成によれば、出力軸20に作用する荷重に起因して、出力用機能部品200が損傷することが抑制される。
(13) The output functional component 200 has an output component reinforcing portion 230. The output component reinforcing portion 230 has a structure that reinforces the output component main body portion 210 and the output shaft coupling portion 220. According to this configuration, the output functional component 200 is prevented from being damaged due to the load acting on the output shaft 20.
(14)出力用機能部品200は、出力部品補強部230としての出力側補強部231を有する。出力側補強部231は、出力可動ブロック60と隣り合う。出力側補強部231は、出力可動ブロック60と一体的に運動する。このため、出力側補強部231は、出力可動ブロック60と接触するおそれが小さい。このため、出力側補強部231の体格を大きくすることができる。このため、出力側補強部231は、出力用機能部品200の強度を高めることに貢献する。
(14) The output functional component 200 includes an output side reinforcing portion 231 as the output component reinforcing portion 230. The output side reinforcing portion 231 is adjacent to the output movable block 60. The output side reinforcement portion 231 moves integrally with the output movable block 60. For this reason, there is little possibility that the output side reinforcement part 231 contacts the output movable block 60. For this reason, the physique of the output side reinforcement part 231 can be enlarged. For this reason, the output-side reinforcing portion 231 contributes to increasing the strength of the output functional component 200.
(15)出力用機能部品200は、出力部品補強部230としての対偶側補強部232を有する。対偶側補強部232は、対偶可動ブロック70と隣り合う。この構成によれば、出力用機能部品200の強度が高められる。
(15) The output functional component 200 includes a pair-side reinforcing portion 232 as the output component reinforcing portion 230. The pair-side reinforcing portion 232 is adjacent to the pair movable block 70. According to this configuration, the strength of the output functional component 200 is increased.
(16)出力用機能部品200は、内部構造保護部240としての押込移動規制部241を有する。押込移動規制部241は、本体ケース30の本体側押込規制部33に接触することにより、出力軸20からブロック結合部品100への押込方向の荷重を受ける。この構成によれば、出力軸20に作用する上記荷重に起因して、電動リニアアクチュエーター40の内部構造が損傷することが抑制される。
(16) The output functional component 200 has a push movement restricting portion 241 as the internal structure protecting portion 240. The push movement restricting portion 241 receives a load in the push direction from the output shaft 20 to the block coupling component 100 by contacting the main body side push restricting portion 33 of the main body case 30. According to this configuration, damage to the internal structure of the electric linear actuator 40 due to the load acting on the output shaft 20 is suppressed.
(17)出力用機能部品200は、内部構造保護部240としての引抜移動規制部242を有する。引抜移動規制部242は、本体ケース30の本体側引抜規制部34に接触することにより、ブロック結合部品100から出力軸20への引抜方向の荷重を受ける。この構成によれば、出力軸20に作用する上記荷重に起因して、電動リニアアクチュエーター40の内部構造が損傷することが抑制される。
(17) The output functional component 200 has a drawing movement restricting portion 242 as the internal structure protecting portion 240. The pulling movement restricting portion 242 receives a load in the pulling direction from the block coupling component 100 to the output shaft 20 by contacting the main body side pulling restricting portion 34 of the main body case 30. According to this configuration, damage to the internal structure of the electric linear actuator 40 due to the load acting on the output shaft 20 is suppressed.
(18)出力用機能部品200は、内部構造保護部240としての第1回転規制部243を有する。第1回転規制部243は、本体ケース30の本体側第1規制部35Aに接触することにより、出力軸20に作用する回転力を受ける。この構成によれば、出力軸20に作用する上記回転力に起因して、電動リニアアクチュエーター40の内部構造が損傷することが抑制される。
(18) The output functional component 200 has a first rotation restricting portion 243 as the internal structure protecting portion 240. The first rotation restricting portion 243 receives a rotational force acting on the output shaft 20 by contacting the main body side first restricting portion 35 </ b> A of the main body case 30. According to this configuration, damage to the internal structure of the electric linear actuator 40 due to the rotational force acting on the output shaft 20 is suppressed.
(19)対偶用機能部品300は、対偶部品本体部310および対偶部品調整部320を有する。対偶部品本体部310および対偶部品調整部320は同一の材料により一体的に形成されている。この構成によれば、対偶部品本体部310および対偶部品調整部320が個別に形成された場合と比較して、製造時の工数が削減される。
(19) The even-numbered functional component 300 includes an even-numbered component main body 310 and an even-numbered component adjusting unit 320. The kinematic component main part 310 and the kinematic component adjusting unit 320 are integrally formed of the same material. According to this structure, the man-hour at the time of manufacture is reduced compared with the case where the kinematic component main-body part 310 and the kinematic component adjustment part 320 are formed separately.
(20)電動リニアアクチュエーター40は、付加調整部品400を有する。付加調整部品400は、対偶部品調整部320に結合されている。この構成によれば、対偶可動ブロック70の重心の位置を付加調整部品400の重量の変更により調整することができる。このため、重心位置を調整することに関する自由度が高められる。
(20) The electric linear actuator 40 has an additional adjustment component 400. The additional adjustment component 400 is coupled to the even component adjustment unit 320. According to this configuration, the position of the center of gravity of the kinematic movable block 70 can be adjusted by changing the weight of the additional adjustment component 400. For this reason, the freedom degree regarding adjusting a gravity center position is raised.
(21)付加調整部品400は、可動方向DXにおいて、対偶部品調整部320よりも対偶可動ブロック70側の箇所に配置されている。この構成によれば、付加調整部品400が対偶部品調整部320よりも引込方向DXR側の箇所に配置された場合と比較して、電動リニアアクチュエーター40の長手方向の体格が小さくなる。
(21) The additional adjustment component 400 is arranged at a position closer to the pair movable block 70 than the pair adjustment component 320 in the movable direction DX. According to this configuration, the physique in the longitudinal direction of the electric linear actuator 40 becomes smaller as compared with the case where the additional adjustment component 400 is disposed at a position closer to the drawing direction DXR than the counter component adjustment unit 320.
(22)付加調整部品400の重量は、対偶部品本体部310の重量よりも大きい。この構成によれば、出力可動ブロック60を含む機能結合部の重心と、対偶可動ブロック70を含む機能結合の重心との距離が近づけられる。このため、電動リニアアクチュエーター40の好ましくない振動の発生が抑制される。
(22) The weight of the additional adjustment component 400 is larger than the weight of the even component main body 310. According to this configuration, the distance between the center of gravity of the function coupling unit including the output movable block 60 and the center of gravity of the function coupling including the even-numbered movable block 70 can be reduced. For this reason, generation | occurrence | production of the undesirable vibration of the electric linear actuator 40 is suppressed.
(第2実施形態)
第2実施形態の電動リニアアクチュエーター40は、次の点において第1実施形態の電動リニアアクチュエーター40と相違し、その他の点において第1実施形態の電動リニアアクチュエーター40と同じ構成を有する。第1実施形態の電動リニアアクチュエーター40は、図14に示される構成を有する。一方、第2実施形態の電動リニアアクチュエーター40は、図20に示される構成を有する。なお、第2実施形態の電動リニアアクチュエーター40の説明は、第1実施形態の電動リニアアクチュエーター40と共通する構成に同一の符号を付し、共通する構成の説明の一部または全部を省略する。 (Second Embodiment)
The electriclinear actuator 40 of the second embodiment differs from the electric linear actuator 40 of the first embodiment in the following points, and has the same configuration as the electric linear actuator 40 of the first embodiment in other points. The electric linear actuator 40 of the first embodiment has a configuration shown in FIG. On the other hand, the electric linear actuator 40 of 2nd Embodiment has the structure shown by FIG. In the description of the electric linear actuator 40 of the second embodiment, the same reference numerals are given to the same components as those of the electric linear actuator 40 of the first embodiment, and a part or all of the description of the common components is omitted.
第2実施形態の電動リニアアクチュエーター40は、次の点において第1実施形態の電動リニアアクチュエーター40と相違し、その他の点において第1実施形態の電動リニアアクチュエーター40と同じ構成を有する。第1実施形態の電動リニアアクチュエーター40は、図14に示される構成を有する。一方、第2実施形態の電動リニアアクチュエーター40は、図20に示される構成を有する。なお、第2実施形態の電動リニアアクチュエーター40の説明は、第1実施形態の電動リニアアクチュエーター40と共通する構成に同一の符号を付し、共通する構成の説明の一部または全部を省略する。 (Second Embodiment)
The electric
第2実施形態の電動リニアアクチュエーター40に関する説明は、主として図20を参照する。この電動リニアアクチュエーター40の出力軸用結合部220は、結合部延長部225を有する。
For the description of the electric linear actuator 40 of the second embodiment, refer mainly to FIG. The output shaft coupling portion 220 of the electric linear actuator 40 has a coupling portion extension 225.
結合部延長部225は、柱形状を有する。結合部延長部225は、結合部基礎部221と連続している。結合部延長部225は、結合部基礎部221の結合部基礎面222とは反対側の面から引込方向DXRに向けて突出している。結合部延長部225は、突出側連結部品80の内周側に形成された連結部品空間83内に位置している。すなわち、出力軸用結合部220の一部が連結部品空間83内に配置されている。結合部延長部225は、結合部内空間224の一部を形成している。結合部内空間224は、結合部周壁部223、結合部基礎部221、および結合部延長部225にわたり形成されている。
The connecting portion extension 225 has a column shape. The joint extension 225 is continuous with the joint base 221. The connecting portion extension 225 protrudes from the surface of the connecting portion base portion 221 opposite to the connecting portion base surface 222 toward the pull-in direction DXR. The connecting portion extension 225 is located in a connecting part space 83 formed on the inner peripheral side of the protruding side connecting part 80. That is, a part of the output shaft coupling portion 220 is disposed in the connecting part space 83. The joint extension 225 forms a part of the joint inner space 224. The coupling portion inner space 224 is formed across the coupling portion peripheral wall portion 223, the coupling portion base portion 221, and the coupling portion extension 225.
結合部周壁部223、結合部基礎部221、および結合部延長部225は、結合部内空間224において軸基礎部21を収容している。結合部周壁部223、結合部基礎部221、および結合部延長部225は、軸基礎部21と結合している。結合部周壁部223、結合部基礎部221、および結合部延長部225は、軸基礎部21の外周を取り囲む構造を有する。
The connecting portion peripheral wall portion 223, the connecting portion base portion 221 and the connecting portion extension portion 225 accommodate the shaft base portion 21 in the connecting portion inner space 224. The connecting part peripheral wall part 223, the connecting part base part 221, and the connecting part extension part 225 are connected to the shaft base part 21. The connecting part peripheral wall part 223, the connecting part base part 221, and the connecting part extension part 225 have a structure surrounding the outer periphery of the shaft base part 21.
第2実施形態の電動リニアアクチュエーター40は、第1実施形態の電動リニアアクチュエーター40が奏する(1)~(22)の効果と同様の効果を奏する。また、第2実施形態の電動リニアアクチュエーター40は、以下の効果を奏する。
The electric linear actuator 40 of the second embodiment has the same effects as the effects (1) to (22) of the electric linear actuator 40 of the first embodiment. Moreover, the electric linear actuator 40 of 2nd Embodiment has the following effects.
(23)出力用機能部品200は、結合部延長部225を有する。この構成によれば、出力軸用結合部220において出力軸20を保持する部分の面積がより大きくなる。このため、出力軸20が適切に保持される旨の効果がより高められる。
(23) The output functional component 200 includes a coupling portion extension 225. According to this configuration, the area of the portion that holds the output shaft 20 in the output shaft coupling portion 220 becomes larger. For this reason, the effect that the output shaft 20 is appropriately held is further enhanced.
(第3実施形態)
第3実施形態の電動リニアアクチュエーター40は、次の点において第1実施形態の電動リニアアクチュエーター40と相違し、その他の点において第1実施形態の電動リニアアクチュエーター40と同じ構成を有する。第1実施形態の電動リニアアクチュエーター40は、図15に示される構成を有する。第1実施形態の振動低減構造は、対偶部品調整部320および付加調整部品400を有する。一方、第3実施形態の電動リニアアクチュエーター40は、図21に示される構成を有する。第3実施形態の振動低減構造は、付加調整部品400を省略し、第1変形調整部330を有する。なお、第3実施形態の電動リニアアクチュエーター40の説明は、第1実施形態の電動リニアアクチュエーター40と共通する構成に同一の符号を付し、共通する構成の説明の一部または全部を省略する。 (Third embodiment)
The electriclinear actuator 40 of the third embodiment is different from the electric linear actuator 40 of the first embodiment in the following points, and has the same configuration as the electric linear actuator 40 of the first embodiment in other points. The electric linear actuator 40 of the first embodiment has a configuration shown in FIG. The vibration reduction structure according to the first embodiment includes an even-part adjusting unit 320 and an additional adjusting component 400. On the other hand, the electric linear actuator 40 of 3rd Embodiment has the structure shown by FIG. In the vibration reduction structure of the third embodiment, the additional adjustment component 400 is omitted, and the first deformation adjustment unit 330 is provided. In the description of the electric linear actuator 40 of the third embodiment, the same reference numerals are given to the same components as those of the electric linear actuator 40 of the first embodiment, and a part or all of the description of the common components is omitted.
第3実施形態の電動リニアアクチュエーター40は、次の点において第1実施形態の電動リニアアクチュエーター40と相違し、その他の点において第1実施形態の電動リニアアクチュエーター40と同じ構成を有する。第1実施形態の電動リニアアクチュエーター40は、図15に示される構成を有する。第1実施形態の振動低減構造は、対偶部品調整部320および付加調整部品400を有する。一方、第3実施形態の電動リニアアクチュエーター40は、図21に示される構成を有する。第3実施形態の振動低減構造は、付加調整部品400を省略し、第1変形調整部330を有する。なお、第3実施形態の電動リニアアクチュエーター40の説明は、第1実施形態の電動リニアアクチュエーター40と共通する構成に同一の符号を付し、共通する構成の説明の一部または全部を省略する。 (Third embodiment)
The electric
第3実施形態の電動リニアアクチュエーター40に関する説明は、主として図21を参照する。この電動リニアアクチュエーター40は、第1実施形態の付加調整部品400を省略している。対偶用機能部品300は、対偶部品調整部320に代えて、第1変形調整部330を有する。この第1変形調整部330も、対偶部品調整部として機能する。第1変形調整部330は、第1実施形態の対偶部品調整部320の厚さよりも厚い厚さを有する。第1変形調整部330は、対偶部品本体部310よりも大きい重量を有する。第1変形調整部330は、第1実施形態の対偶部品調整部320の重量よりも大きい重量を有する。第1変形調整部330は、第1実施形態の対偶部品調整部320の重量、および第1実施形態の付加調整部品400の重量を併せた重量と同じ重量を有する。
21. The description of the electric linear actuator 40 according to the third embodiment will mainly refer to FIG. This electric linear actuator 40 omits the additional adjustment component 400 of the first embodiment. The kinematic component 300 has a first deformation adjustment unit 330 instead of the kinematic component adjustment unit 320. The first deformation adjustment unit 330 also functions as an even component adjustment unit. The 1st deformation | transformation adjustment part 330 has thickness thicker than the thickness of the pair component adjustment part 320 of 1st Embodiment. The first deformation adjusting unit 330 has a weight larger than that of the paired component main body 310. The 1st deformation | transformation adjustment part 330 has a weight larger than the weight of the pair component adjustment part 320 of 1st Embodiment. The first deformation adjustment unit 330 has the same weight as the combined weight of the counter component adjustment unit 320 of the first embodiment and the weight of the additional adjustment component 400 of the first embodiment.
第3実施形態の対偶用機能部品300は、第1実施形態の第1振動低減構造および第2振動低減構造と同様の第1振動低減構造および第2振動低減構造を形成している。このことは、第1振動低減構造および第2振動低減構造を形成するために付加調整部品400を用いることが必須ではないことを示している。第1振動低減構造は、出力可動ブロック60を含む機能結合部の重量と、対偶可動ブロック70を含む機能結合部の重量とのバランスを取る種々の構造により形成することができる。第2振動低減構造は、出力可動ブロック60を含む機能結合部の重心と、対偶可動ブロック70を含む機能結合部の重心との距離を近づける種々の構造により形成することができる。
The functional component 300 for pairs of the third embodiment forms a first vibration reduction structure and a second vibration reduction structure similar to the first vibration reduction structure and the second vibration reduction structure of the first embodiment. This indicates that it is not essential to use the additional adjustment component 400 to form the first vibration reduction structure and the second vibration reduction structure. The first vibration reduction structure can be formed by various structures that balance the weight of the functional coupling portion including the output movable block 60 and the weight of the functional coupling portion including the pair movable block 70. The second vibration reduction structure can be formed by various structures that reduce the distance between the center of gravity of the function coupling unit including the output movable block 60 and the center of gravity of the function coupling unit including the pair movable block 70.
第3実施形態の電動リニアアクチュエーター40は、第1実施形態の電動リニアアクチュエーター40が奏する(1)~(22)の効果と同様の効果を奏する。また、第3実施形態の電動リニアアクチュエーター40は、以下の効果を奏する。
The electric linear actuator 40 of the third embodiment has the same effects as the effects (1) to (22) produced by the electric linear actuator 40 of the first embodiment. Moreover, the electric linear actuator 40 of 3rd Embodiment has the following effects.
(24)電動リニアアクチュエーター40は、第1実施形態の付加調整部品400を省略している。この構成によれば、製造時の工数が削減される。このため、振動低減構造を形成すること、および製造効率を高めることが両立される。
(24) The electric linear actuator 40 omits the additional adjustment component 400 of the first embodiment. According to this structure, the man-hour at the time of manufacture is reduced. For this reason, it is compatible to form a vibration reducing structure and to improve manufacturing efficiency.
(第4実施形態)
第4実施形態の電動リニアアクチュエーター40は、次の点において第1実施形態の電動リニアアクチュエーター40と相違し、その他の点において第1実施形態の電動リニアアクチュエーター40と同じ構成を有する。第1実施形態の電動リニアアクチュエーター40は、図15に示される構成を有する。第1実施形態の電動リニアアクチュエーター40は、第1振動低減構造および第2振動低減構造を有する。一方、第4実施形態の電動リニアアクチュエーター40は、図21に示される構成を有する。第4実施形態の電動リニアアクチュエーター40は、第1振動低減構造および第3振動低減構造を有する。なお、第4実施形態の電動リニアアクチュエーター40の説明は、第1実施形態の電動リニアアクチュエーター40と共通する構成に同一の符号を付し、共通する構成の説明の一部または全部を省略する。 (Fourth embodiment)
The electriclinear actuator 40 of the fourth embodiment is different from the electric linear actuator 40 of the first embodiment in the following points, and has the same configuration as the electric linear actuator 40 of the first embodiment in other points. The electric linear actuator 40 of the first embodiment has a configuration shown in FIG. The electric linear actuator 40 of the first embodiment has a first vibration reduction structure and a second vibration reduction structure. On the other hand, the electric linear actuator 40 of 4th Embodiment has the structure shown by FIG. The electric linear actuator 40 of the fourth embodiment has a first vibration reduction structure and a third vibration reduction structure. In the description of the electric linear actuator 40 of the fourth embodiment, the same reference numerals are given to the same components as those of the electric linear actuator 40 of the first embodiment, and a part or all of the description of the common components is omitted.
第4実施形態の電動リニアアクチュエーター40は、次の点において第1実施形態の電動リニアアクチュエーター40と相違し、その他の点において第1実施形態の電動リニアアクチュエーター40と同じ構成を有する。第1実施形態の電動リニアアクチュエーター40は、図15に示される構成を有する。第1実施形態の電動リニアアクチュエーター40は、第1振動低減構造および第2振動低減構造を有する。一方、第4実施形態の電動リニアアクチュエーター40は、図21に示される構成を有する。第4実施形態の電動リニアアクチュエーター40は、第1振動低減構造および第3振動低減構造を有する。なお、第4実施形態の電動リニアアクチュエーター40の説明は、第1実施形態の電動リニアアクチュエーター40と共通する構成に同一の符号を付し、共通する構成の説明の一部または全部を省略する。 (Fourth embodiment)
The electric
第4実施形態の電動リニアアクチュエーター40に関する説明は、主として図21を参照する。この電動リニアアクチュエーター40は、第1実施形態の付加調整部品400を省略している。対偶用機能部品300は、対偶部品調整部320に代えて、第2変形調整部340を有する。この第2変形調整部340も、対偶部品調整部として機能する。
21. For the description of the electric linear actuator 40 of the fourth embodiment, mainly refer to FIG. This electric linear actuator 40 omits the additional adjustment component 400 of the first embodiment. The kinematic function component 300 includes a second deformation adjustment unit 340 instead of the kinematic component adjustment unit 320. The second deformation adjusting unit 340 also functions as an even component adjusting unit.
第2変形調整部340は、第3振動低減構造を形成している。第2変形調整部340の構造は、第1実施形態の付加調整部品400が結合される対偶部品調整部320の挿入孔(図7参照)が埋められた構造に相当する。第2変形調整部340は、対偶部品調整部320と同じ厚さを有する。第2変形調整部340は、対偶部品本体部310よりも小さい重量を有する。
The second deformation adjusting unit 340 forms a third vibration reducing structure. The structure of the second deformation adjustment unit 340 corresponds to a structure in which the insertion hole (see FIG. 7) of the paired component adjustment unit 320 to which the additional adjustment component 400 of the first embodiment is coupled is filled. The second deformation adjustment unit 340 has the same thickness as the kinematic component adjustment unit 320. The second deformation adjusting unit 340 has a weight smaller than that of the paired component main body 310.
第3振動低減構造は、対偶可動ブロック70を含む機能結合部の重心(以下、対偶側重心という)と、対偶側モーメントの中心点との距離を近づけることにより、対偶側モーメントに起因する好ましくない振動の発生を低減する。対偶側モーメントの中心点は、対偶引込側連結部134(図10参照)が配置される範囲内に含まれる。第3振動低減構造は、対偶部品本体部310の重量を第2変形調整部340の重量よりも大きくすることにより、上記距離をオフセットして対偶側モーメントを小さくする。この構成では、出力可動ブロック60および対偶可動ブロック70が往復運動するとき、好ましくない振動が電動リニアアクチュエーター40に発生しにくい。
The third vibration reducing structure is not preferable due to the moment of the kinematic side by reducing the distance between the center of gravity of the function coupling unit including the kinematic movable block 70 (hereinafter referred to as the barycenter of the even side) and the center point of the kinematic side moment. Reduce the occurrence of vibration. The center point of the even-numbered moment is included in the range where the even-number pulling-in side coupling portion 134 (see FIG. 10) is arranged. The third vibration reducing structure offsets the distance to reduce the counter-side moment by making the weight of the paired component main body 310 larger than the weight of the second deformation adjusting unit 340. In this configuration, when the output movable block 60 and the pair movable block 70 reciprocate, undesirable vibrations are unlikely to occur in the electric linear actuator 40.
対偶側重心および対偶側モーメントの中心点は、一例として以下の関係を有する。
対偶可動ブロック70は、第1区分領域に配置されている。対偶可動ブロック70を含む機能結合部の重心(対偶側重心)は、第1区分領域内に位置している。対偶側重心が第1区分領域内に位置していることにより、対偶側重心と対偶側モーメントの中心点との距離が近づけられている。 The even-point centroid and the center point of the even-side moment have the following relationship as an example.
The even-movingblock 70 is disposed in the first segment area. The center of gravity of the function coupling portion including the kinematic movable block 70 (the even-side centroid) is located in the first segmented region. Since the even-side gravity center is located in the first segmented region, the distance between the even-side gravity center and the center point of the even-side moment is reduced.
対偶可動ブロック70は、第1区分領域に配置されている。対偶可動ブロック70を含む機能結合部の重心(対偶側重心)は、第1区分領域内に位置している。対偶側重心が第1区分領域内に位置していることにより、対偶側重心と対偶側モーメントの中心点との距離が近づけられている。 The even-point centroid and the center point of the even-side moment have the following relationship as an example.
The even-moving
第4実施形態の電動リニアアクチュエーター40は、第1実施形態の電動リニアアクチュエーター40が奏する(1)~(21)の効果と同様の効果を奏する。また、第4実施形態の電動リニアアクチュエーター40は、以下の効果を奏する。
The electric linear actuator 40 of the fourth embodiment has the same effects as the effects (1) to (21) of the electric linear actuator 40 of the first embodiment. Moreover, the electric linear actuator 40 of 4th Embodiment has the following effects.
(25)対偶用機能部品300は、第2変形調整部340を有する。第2変形調整部340は、第3振動低減構造を形成する。第3振動低減構造は、電動リニアアクチュエーター40の往復運動時における対偶側モーメントを小さくして、好ましくない振動の発生を抑制する。
(25) The even-numbered functional component 300 includes a second deformation adjustment unit 340. The second deformation adjustment unit 340 forms a third vibration reduction structure. The third vibration reduction structure reduces the counter-moment at the time of the reciprocating motion of the electric linear actuator 40 and suppresses the generation of undesirable vibrations.
(その他の実施形態)
本出力軸振動型電動装置は、第1実施形態~第4実施形態とは異なるその他の実施形態を含む。その他の実施形態は、一例として、以下に示される第1実施形態~第X実施形態の変形例としての形態を有する。なお、以下の各変形例は、技術的に矛盾しない範囲において互いに組み合わせることができる。 (Other embodiments)
The output shaft vibration type electric device includes other embodiments different from the first to fourth embodiments. Other embodiments have, as an example, forms as modifications of the first to Xth embodiments shown below. Note that the following modifications can be combined with each other within a technically consistent range.
本出力軸振動型電動装置は、第1実施形態~第4実施形態とは異なるその他の実施形態を含む。その他の実施形態は、一例として、以下に示される第1実施形態~第X実施形態の変形例としての形態を有する。なお、以下の各変形例は、技術的に矛盾しない範囲において互いに組み合わせることができる。 (Other embodiments)
The output shaft vibration type electric device includes other embodiments different from the first to fourth embodiments. Other embodiments have, as an example, forms as modifications of the first to Xth embodiments shown below. Note that the following modifications can be combined with each other within a technically consistent range.
第1実施形態~第4実施形態の電動リニアアクチュエーター40は、突出側連結部品80の厚さおよび引込側連結部品90の厚さを調整することにより、共振駆動の好ましい形態を形成している。ただし、共振駆動の好ましい形態を形成するための構造は、各実施形態に例示された内容に限られない。変形例の電動リニアアクチュエーターは、一例として、連結部品出力側端部81および連結部品対偶側端部82の経路長さと、連結部品出力側端部91および連結部品対偶側端部92の経路長さとを調整する。この変形例の突出側連結部品および引込側連結部品は、互いに異なる経路長さを有することにより、共振駆動の好ましい形態を形成する。すなわち、突出側連結部品および引込側連結部品は、互いに異なる形状を有することにより、共振駆動の好ましい形態を形成する。
The electric linear actuator 40 of the first to fourth embodiments forms a preferable form of resonance driving by adjusting the thickness of the protruding side connecting part 80 and the thickness of the drawing side connecting part 90. However, the structure for forming a preferable form of resonance driving is not limited to the contents exemplified in each embodiment. As an example, the electric linear actuator according to the modification includes a path length of the connection component output side end 81 and the connection component pair side end 82, and a path length of the connection component output side end 91 and the connection component pair side end 92. Adjust. The projecting side connecting component and the drawing side connecting component of this modification form a preferable form of resonance driving by having different path lengths. That is, the projecting side connecting component and the drawing side connecting component have different shapes, thereby forming a preferable form of resonance driving.
第1実施形態~第4実施形態の電動リニアアクチュエーター40は、突出側連結部品80を有する。ただし、電動リニアアクチュエーター40の構造は、各実施形態に例示された内容に限られない。変形例の電動リニアアクチュエーター40は、一例として、突出側連結部品80に代えて変形突出側連結部品を有する。変形突出側連結部品は、突出側連結部品80の機能に準じた機能を有し、突出側連結部品80と異なる構造を有する。
The electric linear actuator 40 of the first embodiment to the fourth embodiment has a protruding side connecting component 80. However, the structure of the electric linear actuator 40 is not limited to the content exemplified in each embodiment. The electric linear actuator 40 of a modification has a deformation | transformation protrusion side connection component instead of the protrusion side connection component 80 as an example. The deformed protruding side connecting component has a function according to the function of the protruding side connecting component 80 and has a structure different from that of the protruding side connecting component 80.
第1実施形態~第4実施形態の電動リニアアクチュエーター40は、引込側連結部品90を有する。ただし、電動リニアアクチュエーター40の構造は、各実施形態に例示された内容に限られない。変形例の電動リニアアクチュエーター40は、一例として、引込側連結部品90に代えて変形引込側連結部品を有する。変形引込側連結部品は、引込側連結部品90の機能に準じた機能を有し、引込側連結部品90と異なる構造を有する。
The electric linear actuator 40 of the first to fourth embodiments has a pull-in side connecting component 90. However, the structure of the electric linear actuator 40 is not limited to the content exemplified in each embodiment. The electric linear actuator 40 of a modification has a deformation | transformation drawing side connection component instead of the drawing side connection component 90 as an example. The deformation drawing side connecting component has a function according to the function of the drawing side connecting component 90 and has a structure different from that of the drawing side connecting component 90.
第1実施形態~第4実施形態の突出側連結部品80は、同一の樹脂材料によりブロック結合部品100と一体的に形成されている。ただし、突出側連結部品80の構造は、各実施形態に例示された内容に限られない。変形例の突出側連結部品80は、一例として、ブロック結合部品100と個別に形成された後、ブロック結合部品100と結合される。この変形例の突出側連結部品80は、ブロック結合部品100と同一の材料または異なる材料により形成される。
In the first to fourth embodiments, the protruding-side connecting component 80 is integrally formed with the block coupling component 100 using the same resin material. However, the structure of the protrusion side connection component 80 is not restricted to the content illustrated by each embodiment. As an example, the protrusion-side connecting component 80 of the modification is formed separately from the block coupling component 100 and then coupled to the block coupling component 100. The projecting side connecting component 80 of this modification is formed of the same material as the block coupling component 100 or a different material.
第1実施形態~第4実施形態の引込側連結部品90は、同一の樹脂材料によりブロック結合部品100と一体的に形成されている。ただし、引込側連結部品90の構造は、各実施形態に例示された内容に限られない。変形例の引込側連結部品90は、一例として、ブロック結合部品100と個別に形成された後、ブロック結合部品100と結合される。この変形例の引込側連結部品90は、ブロック結合部品100と同一または異なる樹脂材料により形成される。
In the first embodiment to the fourth embodiment, the lead-in side connecting component 90 is integrally formed with the block coupling component 100 using the same resin material. However, the structure of the drawing-in side connection component 90 is not limited to the content exemplified in each embodiment. As an example, the lead-in side coupling component 90 of the modification is formed separately from the block coupling component 100 and then coupled to the block coupling component 100. The lead-in side coupling component 90 of this modification is formed of the same or different resin material as the block coupling component 100.
第1実施形態~第4実施形態のブロック結合部品100は、固定用結合部110を有する。ただし、ブロック結合部品100の構造は、各実施形態に例示された内容に限られない。変形例のブロック結合部品100は、一例として、固定用結合部110に代えて変形固定用結合部を有する。変形固定用結合部は、固定用結合部110の機能に準じた機能を有し、固定用結合部110と異なる構造を有する。
The block coupling component 100 according to the first to fourth embodiments includes a coupling unit 110 for fixing. However, the structure of the block coupling component 100 is not limited to the content exemplified in each embodiment. As an example, the block coupling component 100 according to the modification includes a deformation fixing coupling portion instead of the fixing coupling portion 110. The deformation fixing coupling part has a function according to the function of the fixing coupling part 110 and has a structure different from that of the fixing coupling part 110.
第1実施形態~第4実施形態のブロック結合部品100は、出力可動用結合部120を有する。ただし、ブロック結合部品100の構造は、各実施形態に例示された内容に限られない。変形例のブロック結合部品100は、一例として、出力可動用結合部120に代えて変形出力可動用結合部を有する。変形出力可動用結合部は、出力可動用結合部120の機能に準じた機能を有し、出力可動用結合部120と異なる構造を有する。
The block coupling component 100 of the first to fourth embodiments has a movable output coupling portion 120. However, the structure of the block coupling component 100 is not limited to the content exemplified in each embodiment. As an example, the block coupling component 100 according to the modification has a modified output movable coupling portion instead of the output movable coupling portion 120. The deformable output movable coupling portion has a function according to the function of the output movable coupling portion 120 and has a structure different from that of the output movable coupling portion 120.
第1実施形態~第4実施形態のブロック結合部品100は、対偶可動用結合部130を有する。ただし、ブロック結合部品100の構造は、各実施形態に例示された内容に限られない。変形例のブロック結合部品100は、一例として、対偶可動用結合部130に代えて変形対偶可動用結合部を有する。変形対偶可動用結合部は、対偶可動用結合部130の機能に準じた機能を有し、対偶可動用結合部130と異なる構造を有する。
The block coupling component 100 of the first embodiment to the fourth embodiment has a pair 130 for coupling with movable pairs. However, the structure of the block coupling component 100 is not limited to the content exemplified in each embodiment. As an example, the block coupling component 100 of the modified example has a modified pair movable coupling part instead of the pair movable coupling part 130. The deformation pair movable coupling part has a function according to the function of the pair movable coupling part 130, and has a structure different from that of the pair movable coupling part 130.
第1実施形態~第4実施形態のブロック結合部品100は、突出側支持部140を有する。ただし、ブロック結合部品100の構造は、各実施形態に例示された内容に限られない。変形例のブロック結合部品100は、一例として、突出側支持部140に代えて変形突出側支持部を有する。変形突出側支持部は、突出側支持部140の機能に準じた機能を有し、突出側支持部140と異なる構造を有する。
The block coupling component 100 according to the first to fourth embodiments has a protruding side support portion 140. However, the structure of the block coupling component 100 is not limited to the content exemplified in each embodiment. As an example, the block coupling component 100 according to the modification includes a modified protrusion-side support portion instead of the protrusion-side support portion 140. The deformation protrusion side support portion has a function according to the function of the protrusion side support portion 140 and has a structure different from that of the protrusion side support portion 140.
第1実施形態~第4実施形態のブロック結合部品100は、引込側支持部150を有する。ただし、ブロック結合部品100の構造は、各実施形態に例示された内容に限られない。変形例のブロック結合部品100は、一例として、引込側支持部150に代えて変形引込側支持部を有する。変形引込側支持部は、引込側支持部150の機能に準じた機能を有し、引込側支持部150と異なる構造を有する。
The block coupling component 100 of the first to fourth embodiments has a pull-in side support part 150. However, the structure of the block coupling component 100 is not limited to the content exemplified in each embodiment. As an example, the block coupling component 100 according to the modified example includes a modified retracting side support portion instead of the retracting side support portion 150. The deformation pull-in side support portion has a function according to the function of the pull-in side support portion 150 and has a structure different from that of the pull-in side support portion 150.
第1実施形態~第4実施形態のブロック結合部品100は、2つの出力側樹脂入口部121を有する。ただし、ブロック結合部品100の構造は、各実施形態に例示された内容に限られない。変形例のブロック結合部品100は、2つの出力側樹脂入口部121の少なくとも一方を省略している。また、別の変形例のブロック結合部品100は、一例として、出力側樹脂入口部121に代えて変形出力側樹脂入口部を有する。変形出力側樹脂入口部は、出力側樹脂入口部121の機能に準じた機能を有し、出力側樹脂入口部121と異なる構造を有する。
The block coupling component 100 of the first to fourth embodiments has two output side resin inlet portions 121. However, the structure of the block coupling component 100 is not limited to the content exemplified in each embodiment. In the block coupling component 100 of the modified example, at least one of the two output side resin inlet portions 121 is omitted. Moreover, the block coupling component 100 of another modification has a deformation | transformation output side resin inlet part instead of the output side resin inlet part 121 as an example. The deformed output side resin inlet portion has a function according to the function of the output side resin inlet portion 121 and has a structure different from that of the output side resin inlet portion 121.
第1実施形態~第4実施形態のブロック結合部品100は、出力側樹脂流路部122を有する。ただし、ブロック結合部品100の構造は、各実施形態に例示された内容に限られない。変形例のブロック結合部品100は、出力側樹脂流路部122を省略している。また、別の変形例のブロック結合部品100は、一例として、出力側樹脂流路部122に代えて変形出力側樹脂流路部を有する。変形出力側樹脂流路部は、出力側樹脂流路部122の機能に準じた機能を有し、出力側樹脂流路部122と異なる構造を有する。
The block coupling component 100 of the first embodiment to the fourth embodiment has an output side resin flow path portion 122. However, the structure of the block coupling component 100 is not limited to the content exemplified in each embodiment. In the block connecting component 100 of the modified example, the output side resin flow path part 122 is omitted. Moreover, the block coupling component 100 of another modification has a deformation | transformation output side resin flow path part instead of the output side resin flow path part 122 as an example. The deformation output side resin flow path part has a function according to the function of the output side resin flow path part 122, and has a structure different from that of the output side resin flow path part 122.
第1実施形態~第4実施形態のブロック結合部品100は、出力突出側連結部123を有する。ただし、ブロック結合部品100の構造は、各実施形態に例示された内容に限られない。変形例のブロック結合部品100は、出力突出側連結部123を省略している。また、別の変形例のブロック結合部品100は、一例として、出力突出側連結部123に代えて変形出力突出側連結部を有する。変形出力突出側連結部は、出力突出側連結部123の機能に準じた機能を有し、出力突出側連結部123と異なる構造を有する。
The block coupling component 100 of the first embodiment to the fourth embodiment has an output protruding side connecting portion 123. However, the structure of the block coupling component 100 is not limited to the content exemplified in each embodiment. In the block coupling component 100 of the modified example, the output protruding side connecting portion 123 is omitted. Moreover, the block coupling component 100 of another modification has a deformation | transformation output protrusion side connection part instead of the output protrusion side connection part 123 as an example. The modified output protruding side connecting portion has a function according to the function of the output protruding side connecting portion 123 and has a structure different from that of the output protruding side connecting portion 123.
第1実施形態~第4実施形態のブロック結合部品100は、出力引込側連結部124を有する。ただし、ブロック結合部品100の構造は、各実施形態に例示された内容に限られない。変形例のブロック結合部品100は、出力引込側連結部124を省略している。また、別の変形例のブロック結合部品100は、一例として、出力引込側連結部124に代えて変形出力引込側連結部を有する。変形出力引込側連結部は、出力引込側連結部124の機能に準じた機能を有し、出力引込側連結部124と異なる構造を有する。
The block coupling component 100 of the first embodiment to the fourth embodiment has an output drawing side connecting portion 124. However, the structure of the block coupling component 100 is not limited to the content exemplified in each embodiment. In the block coupling component 100 of the modified example, the output lead-in side connecting portion 124 is omitted. Moreover, the block coupling component 100 of another modification has a deformation | transformation output drawing side connection part instead of the output drawing side connection part 124 as an example. The modified output lead-in side connecting portion has a function according to the function of the output lead-in side connecting portion 124 and has a structure different from that of the output lead-in side connecting portion 124.
第1実施形態~第4実施形態のブロック結合部品100は、2つの対偶側樹脂入口部131を有する。ただし、ブロック結合部品100の構造は、各実施形態に例示された内容に限られない。変形例のブロック結合部品100は、2つの対偶側樹脂入口部131の少なくとも一方を省略している。また、別の変形例のブロック結合部品100は、一例として、対偶側樹脂入口部131に代えて変形対偶側樹脂入口部を有する。変形対偶側樹脂入口部は、対偶側樹脂入口部131の機能に準じた機能を有し、対偶側樹脂入口部131と異なる構造を有する。
The block coupling component 100 of the first embodiment to the fourth embodiment has two even-side resin inlet portions 131. However, the structure of the block coupling component 100 is not limited to the content exemplified in each embodiment. In the block coupling component 100 of the modification, at least one of the two counter-side resin inlet portions 131 is omitted. Moreover, the block coupling component 100 of another modification has a deformation | transformation pair side resin inlet part instead of the pair side resin inlet part 131 as an example. The deformed even-side resin inlet portion has a function according to the function of the even-side resin inlet portion 131 and has a structure different from that of the even-numbered resin inlet portion 131.
第1実施形態~第4実施形態のブロック結合部品100は、対偶側樹脂流路部132を有する。ただし、ブロック結合部品100の構造は、各実施形態に例示された内容に限られない。変形例のブロック結合部品100は、対偶側樹脂流路部132を省略している。また、別の変形例のブロック結合部品100は、一例として、対偶側樹脂流路部132に代えて変形対偶側樹脂流路部を有する。変形対偶側樹脂流路部は、対偶側樹脂流路部132の機能に準じた機能を有し、対偶側樹脂流路部132と異なる構造を有する。
The block coupling component 100 of the first embodiment to the fourth embodiment has an even-side resin flow path portion 132. However, the structure of the block coupling component 100 is not limited to the content exemplified in each embodiment. In the block coupling component 100 of the modified example, the even-side resin flow path portion 132 is omitted. Moreover, the block coupling component 100 of another modification has a deformation | transformation pair side resin flow path part instead of the pair connection resin flow path part 132 as an example. The deformed pair-side resin flow path portion has a function according to the function of the pair-side resin flow path portion 132 and has a structure different from that of the pair-side resin flow path portion 132.
第1実施形態~第4実施形態のブロック結合部品100は、対偶突出側連結部133を有する。ただし、ブロック結合部品100の構造は、各実施形態に例示された内容に限られない。変形例のブロック結合部品100は、対偶突出側連結部133を省略している。また、別の変形例のブロック結合部品100は、一例として、対偶突出側連結部133に代えて変形対偶突出側連結部を有する。変形対偶突出側連結部は、対偶突出側連結部133の機能に準じた機能を有し、対偶突出側連結部133と異なる構造を有する。
The block coupling component 100 of the first embodiment to the fourth embodiment has an even-projecting-side coupling portion 133. However, the structure of the block coupling component 100 is not limited to the content exemplified in each embodiment. In the block coupling component 100 of the modified example, the even-projecting side coupling portion 133 is omitted. Moreover, the block coupling component 100 of another modification has a deformation | transformation pair protrusion side connection part instead of the pair protrusion side connection part 133 as an example. The deformed pair projecting side connecting portion has a function according to the function of the pair projecting side connecting portion 133 and has a structure different from that of the pair projecting side connecting portion 133.
第1実施形態~第4実施形態のブロック結合部品100は、対偶引込側連結部134を有する。ただし、ブロック結合部品100の構造は、各実施形態に例示された内容に限られない。変形例のブロック結合部品100は、対偶引込側連結部134を省略している。また、別の変形例のブロック結合部品100は、一例として、対偶引込側連結部134に代えて変形対偶引込側連結部を有する。変形対偶引込側連結部は、対偶引込側連結部134の機能に準じた機能を有し、対偶引込側連結部134と異なる構造を有する。
The block coupling component 100 of the first embodiment to the fourth embodiment has a pair pull-in side connecting portion 134. However, the structure of the block coupling component 100 is not limited to the content exemplified in each embodiment. In the block coupling component 100 of the modified example, the pair pull-in side connecting portion 134 is omitted. Moreover, the block coupling component 100 of another modification has a deformation | transformation pair drawing side connection part instead of the pair drawing side connection part 134 as an example. The modified pair pull-in side connecting portion has a function according to the function of the pair pull-in side connecting portion 134 and has a structure different from that of the pair pull-in side connecting portion 134.
第1実施形態~第4実施形態の出力用機能部品200は、樹脂材料により形成されている。ただし、出力用機能部品200の材料は、各実施形態に例示された内容に限られない。変形例の出力用機能部品200は、一例として、金属材料により形成される。
The output functional component 200 of the first to fourth embodiments is made of a resin material. However, the material of the output functional component 200 is not limited to the content exemplified in each embodiment. The output functional component 200 of the modified example is formed of a metal material as an example.
第1実施形態~第4実施形態の出力用機能部品200は、出力可動用結合部120を介して出力可動ブロック60と結合されている。ただし、出力用機能部品200の結合形態は、各実施形態に例示された内容に限られない。変形例の出力用機能部品200は、一例として、出力可動ブロック60に直接的に結合される。すなわち、出力用機能部品200は、出力可動ブロック60に動作可能に結合されればよい。
The output functional component 200 according to the first to fourth embodiments is coupled to the output movable block 60 via the output movable coupling portion 120. However, the combination form of the output functional component 200 is not limited to the contents exemplified in each embodiment. As an example, the output functional component 200 of the modification is directly coupled to the output movable block 60. That is, the output functional component 200 may be operably coupled to the output movable block 60.
第1実施形態~第4実施形態の出力用機能部品200は、出力部品本体部210を有する。ただし、出力用機能部品200の構造は、各実施形態に例示された内容に限られない。変形例の出力用機能部品200は、一例として、出力部品本体部210に代えて変形出力部品本体部を有する。変形出力部品本体部は、出力部品本体部210の機能に準じた機能を有し、出力部品本体部210と異なる構造を有する。
The output functional component 200 of the first to fourth embodiments has an output component main body 210. However, the structure of the output functional component 200 is not limited to the content exemplified in each embodiment. The output functional component 200 according to the modified example has a modified output component main body instead of the output component main body 210 as an example. The modified output component main body has a function according to the function of the output component main body 210 and has a structure different from that of the output component main body 210.
第1実施形態~第4実施形態の出力用機能部品200は、出力軸用結合部220を有する。ただし、出力用機能部品200の構造は、各実施形態に例示された内容に限られない。変形例の出力用機能部品200は、出力軸用結合部220を省略している。また、別の変形例の出力用機能部品200は、一例として、出力軸用結合部220に代えて変形出力軸用結合部を有する。変形出力軸用結合部は、出力軸用結合部220の機能に準じた機能を有し、出力軸用結合部220と異なる構造を有する。
The output functional component 200 of the first to fourth embodiments has an output shaft coupling portion 220. However, the structure of the output functional component 200 is not limited to the content exemplified in each embodiment. The output functional component 200 of the modified example omits the output shaft coupling portion 220. Moreover, the output functional component 200 of another modification has a deformation | transformation output shaft coupling | bond part instead of the output shaft coupling | bond part 220 as an example. The modified output shaft coupling portion has a function according to the function of the output shaft coupling portion 220 and has a structure different from that of the output shaft coupling portion 220.
第1実施形態~第4実施形態の出力用機能部品200は、出力部品補強部230として出力側補強部231を有する。ただし、出力用機能部品200の構造は、各実施形態に例示された内容に限られない。変形例の出力用機能部品200は、出力側補強部231を省略している。また、別の変形例の出力用機能部品200は、一例として、出力側補強部231に代えて変形出力側補強部を有する。変形出力側補強部は、出力側補強部231の機能に準じた機能を有し、出力側補強部231と異なる構造を有する。例えば、変形出力側補強部は、出力部品本体部210のみ、または出力軸用結合部220のみを補強するように構成される。このように、出力側補強部231が、出力部品本体部210および出力軸用結合部220の少なくとも一方を補強するように構成されてもよい。
The output functional component 200 according to the first to fourth embodiments includes an output side reinforcing portion 231 as the output component reinforcing portion 230. However, the structure of the output functional component 200 is not limited to the content exemplified in each embodiment. The output functional component 200 of the modified example omits the output side reinforcing portion 231. Moreover, the output functional component 200 of another modification has a deformation | transformation output side reinforcement part instead of the output side reinforcement part 231 as an example. The deformed output side reinforcing portion has a function according to the function of the output side reinforcing portion 231 and has a structure different from that of the output side reinforcing portion 231. For example, the deformation output side reinforcing portion is configured to reinforce only the output component main body portion 210 or only the output shaft coupling portion 220. As described above, the output side reinforcing portion 231 may be configured to reinforce at least one of the output component main body portion 210 and the output shaft coupling portion 220.
第1実施形態~第4実施形態の出力用機能部品200は、出力部品補強部230として対偶側補強部232を有する。ただし、出力用機能部品200の構造は、各実施形態に例示された内容に限られない。変形例の出力用機能部品200は、対偶側補強部232を省略している。また、別の変形例の出力用機能部品200は、一例として、対偶側補強部232に代えて変形対偶側補強部を有する。変形対偶側補強部は、対偶側補強部232の機能に準じた機能を有し、対偶側補強部232と異なる構造を有する。
The output functional component 200 according to the first to fourth embodiments includes a counter-side reinforcing portion 232 as the output component reinforcing portion 230. However, the structure of the output functional component 200 is not limited to the content exemplified in each embodiment. In the output functional component 200 according to the modified example, the counter-side reinforcing portion 232 is omitted. Moreover, the output functional component 200 of another modified example has a modified pair-side reinforcing portion instead of the pair-side reinforcing portion 232 as an example. The deformed pair-side reinforcing portion has a function according to the function of the pair-side reinforcing portion 232 and has a structure different from that of the pair-side reinforcing portion 232.
第1実施形態~第4実施形態の出力用機能部品200は、内部構造保護部240として押込移動規制部241を有する。ただし、出力用機能部品200の構造は、各実施形態に例示された内容に限られない。変形例の出力用機能部品200は、押込移動規制部241を省略している。また、別の変形例の出力用機能部品200は、一例として、押込移動規制部241に代えて変形押込移動規制部を有する。変形押込移動規制部は、押込移動規制部241の機能に準じた機能を有し、押込移動規制部241と異なる構造を有する。
The output functional component 200 according to the first to fourth embodiments includes a push movement restricting portion 241 as the internal structure protecting portion 240. However, the structure of the output functional component 200 is not limited to the content exemplified in each embodiment. In the output functional component 200 of the modified example, the push movement restricting portion 241 is omitted. Moreover, the output functional component 200 of another modification has a deformation | transformation pushing movement control part instead of the pushing movement restriction part 241 as an example. The deformation push movement restricting portion has a function according to the function of the push movement restricting portion 241 and has a structure different from that of the push movement restricting portion 241.
第1実施形態~第4実施形態の出力用機能部品200は、内部構造保護部240として引抜移動規制部242を有する。ただし、出力用機能部品200の構造は、各実施形態に例示された内容に限られない。変形例の出力用機能部品200は、引抜移動規制部242を省略している。また、別の変形例の出力用機能部品200は、一例として、引抜移動規制部242に代えて変形引抜移動規制部を有する。変形引抜移動規制部は、引抜移動規制部242の機能に準じた機能を有し、引抜移動規制部242と異なる構造を有する。
The output functional component 200 according to the first embodiment to the fourth embodiment has a pulling movement restricting portion 242 as the internal structure protecting portion 240. However, the structure of the output functional component 200 is not limited to the content exemplified in each embodiment. In the output functional component 200 of the modified example, the extraction movement restricting portion 242 is omitted. Moreover, the output functional component 200 of another modification has a deformation | transformation extraction movement control part instead of the extraction movement control part 242 as an example. The deformation pulling movement restricting portion has a function according to the function of the pulling movement restricting portion 242, and has a structure different from that of the pulling movement restricting portion 242.
第1実施形態~第4実施形態の出力用機能部品200は、内部構造保護部240として第1回転規制部243を有する。ただし、出力用機能部品200の構造は、各実施形態に例示された内容に限られない。変形例の出力用機能部品200は、第1回転規制部243を省略している。また、別の変形例の出力用機能部品200は、一例として、第1回転規制部243に代えて変形第1回転規制部を有する。変形第1回転規制部は、第1回転規制部243の機能に準じた機能を有し、第1回転規制部243と異なる構造を有する。
The output functional component 200 of the first to fourth embodiments has a first rotation restricting portion 243 as the internal structure protecting portion 240. However, the structure of the output functional component 200 is not limited to the content exemplified in each embodiment. In the output functional component 200 of the modified example, the first rotation restricting portion 243 is omitted. Moreover, the output functional component 200 of another modified example has a modified first rotation restricting portion instead of the first rotation restricting portion 243 as an example. The modified first rotation restricting portion has a function according to the function of the first rotation restricting portion 243 and has a structure different from that of the first rotation restricting portion 243.
第1実施形態~第4実施形態の出力用機能部品200は、内部構造保護部240として第2回転規制部244を有する。ただし、出力用機能部品200の構造は、各実施形態に例示された内容に限られない。変形例の出力用機能部品200は、第2回転規制部244を省略している。また、別の変形例の出力用機能部品200は、一例として、第2回転規制部244に代えて変形第2回転規制部を有する。変形第2回転規制部は、第2回転規制部244の機能に準じた機能を有し、第2回転規制部244と異なる構造を有する。
The output functional component 200 according to the first to fourth embodiments includes the second rotation restricting portion 244 as the internal structure protecting portion 240. However, the structure of the output functional component 200 is not limited to the content exemplified in each embodiment. In the output functional component 200 of the modification, the second rotation restricting portion 244 is omitted. Moreover, the output functional component 200 of another modified example has a modified second rotation restricting portion instead of the second rotation restricting portion 244 as an example. The modified second rotation restricting portion has a function according to the function of the second rotation restricting portion 244 and has a structure different from that of the second rotation restricting portion 244.
第1実施形態~第4実施形態の出力用機能部品200は、負荷受部250を有する。ただし、出力用機能部品200の構造は、各実施形態に例示された内容に限られない。変形例の出力用機能部品200は、負荷受部250を省略している。また、別の変形例の出力用機能部品200は、一例として、負荷受部250に代えて変形負荷受部を有する。変形負荷受部は、負荷受部250の機能に準じた機能を有し、負荷受部250と異なる構造を有する。
The output functional component 200 of the first to fourth embodiments has a load receiving portion 250. However, the structure of the output functional component 200 is not limited to the content exemplified in each embodiment. In the output functional component 200 of the modification, the load receiving unit 250 is omitted. Moreover, the output functional component 200 of another modification has a deformation | transformation load receiving part instead of the load receiving part 250 as an example. The deformed load receiving unit has a function according to the function of the load receiving unit 250 and has a structure different from that of the load receiving unit 250.
第1実施形態~第4実施形態の出力用機能部品200は、部品受部260を有する。ただし、出力用機能部品200の構造は、各実施形態に例示された内容に限られない。変形例の出力用機能部品200は、部品受部260を省略している。また、別の変形例の出力用機能部品200は、一例として、部品受部260に代えて変形部品受部を有する。変形部品受部は、部品受部260の機能に準じた機能を有し、部品受部260と異なる構造を有する。
The output functional component 200 of the first to fourth embodiments has a component receiving portion 260. However, the structure of the output functional component 200 is not limited to the content exemplified in each embodiment. In the modified output functional component 200, the component receiving portion 260 is omitted. Moreover, the output functional component 200 of another modified example has a modified component receiving part instead of the component receiving part 260 as an example. The deformed component receiving unit has a function according to the function of the component receiving unit 260 and has a structure different from that of the component receiving unit 260.
第1実施形態~第4実施形態の押込移動規制部241は、本体側押込規制部33との間に隙間を形成している。ただし、押込移動規制部241の構造は、各実施形態に例示された内容に限られない。変形例の押込移動規制部241は、本体側押込規制部33との間に隙間を形成しない。
In the first to fourth embodiments, the push movement restricting portion 241 forms a gap with the main body side push restricting portion 33. However, the structure of the push movement restricting unit 241 is not limited to the content exemplified in each embodiment. The push movement restricting portion 241 of the modified example does not form a gap with the main body side push restricting portion 33.
第1実施形態~第4実施形態の引抜移動規制部242は、本体側引抜規制部34との間に隙間を形成している。ただし、引抜移動規制部242の構造は、各実施形態に例示された内容に限られない。変形例の引抜移動規制部242は、本体側引抜規制部34との間に隙間を形成しない。
In the first to fourth embodiments, the pulling movement restricting portion 242 forms a gap with the main body pulling restricting portion 34. However, the structure of the extraction movement restricting unit 242 is not limited to the content exemplified in each embodiment. The pulling movement restricting portion 242 of the modified example does not form a gap with the main body side pulling restricting portion 34.
第1実施形態~第4実施形態の引抜移動規制部242は、本体側回転規制部35との間に隙間を形成している。ただし、引抜移動規制部242の構造は、各実施形態に例示された内容に限られない。変形例の引抜移動規制部242は、本体側回転規制部35との間に隙間を形成しない。
The pulling movement restricting portion 242 of the first to fourth embodiments forms a gap with the main body side rotation restricting portion 35. However, the structure of the extraction movement restricting unit 242 is not limited to the content exemplified in each embodiment. The pulling movement restricting portion 242 of the modified example does not form a gap with the main body side rotation restricting portion 35.
第1実施形態~第4実施形態の第1回転規制部243は、本体側第1規制部35Aとの間に隙間を形成している。ただし、第1回転規制部243の構造は、各実施形態に例示された内容に限られない。変形例の第1回転規制部243は、本体側第1規制部35Aとの間に隙間を形成しない。
In the first to fourth embodiments, the first rotation restricting portion 243 forms a gap with the main body side first restricting portion 35A. However, the structure of the 1st rotation control part 243 is not restricted to the content illustrated by each embodiment. The first rotation restricting portion 243 of the modified example does not form a gap with the main body side first restricting portion 35A.
第1実施形態~第4実施形態の第2回転規制部244は、本体側第2規制部35Bとの間に隙間を形成している。ただし、第2回転規制部244の構造は、各実施形態に例示された内容に限られない。変形例の第2回転規制部244は、本体側第2規制部35Bとの間に隙間を形成しない。
In the first to fourth embodiments, the second rotation restricting portion 244 forms a gap with the main body side second restricting portion 35B. However, the structure of the 2nd rotation control part 244 is not restricted to the content illustrated by each embodiment. The modified second rotation restricting portion 244 does not form a gap with the main body side second restricting portion 35B.
第1実施形態~第4実施形態の引抜移動規制部242および本体側回転規制部35の間の隙間は、第1回転規制部243および本体側第1規制部35Aの間の隙間と対応する大きさを有する。ただし、各規制部242,35が形成する隙間の大きさは、各実施形態に例示された内容に限られない。変形例の各規制部242,35が形成する隙間は、各規制部243,35Aの隙間と対応しない大きさを有する。非対応の関係を有する各隙間は、引抜移動規制部242および本体側回転規制部35が互いに接触するまでの回転量を、第1回転規制部243および本体側第1規制部35Aが互いに接触するまでの回転量よりも大きくする、または小さくする。
The gap between the pulling movement restricting portion 242 and the main body side rotation restricting portion 35 in the first to fourth embodiments corresponds to the gap between the first rotation restricting portion 243 and the main body side first restricting portion 35A. Have However, the size of the gap formed by each restricting portion 242, 35 is not limited to the content exemplified in each embodiment. The gap formed by the restricting portions 242 and 35 of the modification has a size that does not correspond to the gap between the restricting portions 243 and 35A. The gaps having a non-corresponding relationship are the amounts of rotation until the extraction movement restricting portion 242 and the main body side rotation restricting portion 35 come into contact with each other, and the first rotation restricting portion 243 and the main body side first restricting portion 35A are in contact with each other. Increase or decrease the amount of rotation up to
第1実施形態~第4実施形態の第2回転規制部244および本体側第2規制部35Bの間の隙間は、第1回転規制部243および本体側第1規制部35Aの間の隙間と対応する大きさを有する。ただし、各規制部244,35Bが形成する隙間の大きさは、各実施形態に例示された内容に限られない。変形例の各規制部244,35Bが形成する隙間は、各規制部243,35Aの隙間と対応しない大きさを有する。非対応の関係を有する各隙間は、第2回転規制部244および本体側第2規制部35Bが互いに接触するまでの回転量を、第1回転規制部243および本体側第1規制部35Aが互いに接触するまでの回転量よりも大きくする、または小さくする。
The gap between the second rotation restricting portion 244 and the main body side second restricting portion 35B in the first to fourth embodiments corresponds to the gap between the first rotation restricting portion 243 and the main body side first restricting portion 35A. Have a size to However, the size of the gap formed by each restricting portion 244, 35B is not limited to the content exemplified in each embodiment. The gap formed by the restricting portions 244 and 35B of the modification has a size that does not correspond to the gap between the restricting portions 243 and 35A. Each gap having a non-corresponding relationship indicates the amount of rotation until the second rotation restricting portion 244 and the main body side second restricting portion 35B contact each other, and the first rotation restricting portion 243 and the main body side first restricting portion 35A are mutually connected. Make it larger or smaller than the amount of rotation until contact.
第1実施形態~第4実施形態の対偶用機能部品300は、金属材料により形成されている。ただし、対偶用機能部品300の材料は、各実施形態に例示された内容に限られない。変形例の対偶用機能部品300は、一例として、樹脂材料により形成される。
The functional component 300 for a pair according to the first to fourth embodiments is made of a metal material. However, the material of the functional component 300 for pairs is not limited to the content illustrated in each embodiment. The paired functional component 300 of the modification is formed of a resin material as an example.
第1実施形態~第4実施形態の対偶用機能部品300は、対偶可動用結合部130を介して対偶可動ブロック70と結合されている。ただし、対偶用機能部品300の結合形態は、各実施形態に例示された内容に限られない。変形例の対偶用機能部品300は、一例として、対偶可動ブロック70に直接的に結合される。
The functional component 300 for a pair according to the first to fourth embodiments is coupled to the pair movable block 70 via the pair movable coupling portion 130. However, the combination form of the functional component 300 for pairs is not restricted to the content illustrated by each embodiment. As an example, the functional component 300 for a pair of modifications is directly coupled to the pair movable block 70.
第1実施形態~第4実施形態の対偶用機能部品300は、対偶部品本体部310を有する。ただし、対偶用機能部品300の構造は、各実施形態に例示された内容に限られない。変形例の対偶用機能部品300は、一例として、対偶部品本体部310に代えて変形対偶部品本体部を有する。変形対偶部品本体部は、対偶部品本体部310の機能に準じた機能を有し、対偶部品本体部310と異なる構造を有する。
The functional component 300 for a pair according to the first to fourth embodiments includes a paired component main body 310. However, the structure of the kinematic function component 300 is not limited to the content exemplified in each embodiment. As an example, the functional component 300 for a pair of modifications includes a modified body part for a pair of parts instead of the body part 310 for a pair. The deformed pair component body has a function according to the function of the pair component body 310 and has a structure different from that of the pair component body 310.
第1実施形態~第4実施形態の対偶用機能部品300は、対偶部品調整部320を有する。ただし、対偶用機能部品300の構造は、各実施形態に例示された内容に限られない。変形例の対偶用機能部品300は、一例として、対偶部品調整部320に代えて変形対偶部品調整部を有する。変形対偶部品調整部は、対偶部品調整部320の機能に準じた機能を有し、対偶部品調整部320と異なる構造を有する。
The functional component 300 for a pair according to the first to fourth embodiments includes a pair component adjusting unit 320. However, the structure of the kinematic function component 300 is not limited to the content exemplified in each embodiment. As an example, the functional component 300 for a pair of modifications has a modified pair adjustment part instead of the pair adjustment part 320. The modified kinematic part adjustment unit has a function according to the function of the kinematic part adjustment unit 320 and has a structure different from that of the kinematic part adjustment unit 320.
第1実施形態~第3実施形態の付加調整部品400は、金属材料により形成されている。ただし、付加調整部品400の材料は、各実施形態に例示された内容に限られない。変形例の付加調整部品400は、一例として、樹脂材料により形成される。
The additional adjustment component 400 of the first to third embodiments is made of a metal material. However, the material of the additional adjustment component 400 is not limited to the content exemplified in each embodiment. For example, the additional adjustment component 400 of the modification is formed of a resin material.
第1実施形態~第3実施形態の付加調整部品400は、接着により対偶部品調整部320と結合されている。ただし、付加調整部品400の結合方法は、各実施形態に例示された内容に限られない。変形例の付加調整部品400は、一例として、圧入または締結部品により対偶部品調整部320と結合される。
The additional adjustment component 400 of the first to third embodiments is coupled to the counter component adjustment unit 320 by bonding. However, the method of coupling the additional adjustment component 400 is not limited to the content exemplified in each embodiment. As an example, the additional adjustment component 400 according to the modification is coupled to the mating component adjustment unit 320 by press-fitting or fastening components.
第1実施形態~第3実施形態の付加調整部品400は、可動方向DXにおいて、対偶部品調整部320に対して突出方向DXL側の箇所に配置されている。ただし、付加調整部品400の配置形態は、各実施形態に例示された内容に限られない。変形例の付加調整部品400は、一例として、対偶部品調整部320に対して引込方向DXR側の箇所、または、対偶部品調整部320に対して突出方向DXL側および引込方向DXR側の両方の箇所に配置される。
In the movable direction DX, the additional adjustment component 400 of the first to third embodiments is arranged at a position on the protruding direction DXL side with respect to the paired component adjustment unit 320. However, the arrangement form of the additional adjustment component 400 is not limited to the content exemplified in each embodiment. As an example, the additional adjustment component 400 of the modification is a portion on the pulling direction DXR side with respect to the even component adjusting portion 320, or a portion on both the protruding direction DXL side and the pulling direction DXR side with respect to the even component adjusting portion 320. Placed in.
第1実施形態~第4実施形態の電動リニアアクチュエーター40は、固定ブロック50のコイル52に電流を供給することにより、出力可動ブロック60および対偶可動ブロック70を往復運動させる。ただし、出力可動ブロック60および対偶可動ブロック70を往復運動させるための構成は、各実施形態に例示された内容に限られない。変形例の電動リニアアクチュエーターは、一例として、以下の(a)~(c)のいずれかの形態を有する。
The electric linear actuator 40 of the first to fourth embodiments causes the output movable block 60 and the pair movable block 70 to reciprocate by supplying current to the coil 52 of the fixed block 50. However, the configuration for reciprocating the output movable block 60 and the pair movable block 70 is not limited to the contents exemplified in each embodiment. The electric linear actuator according to the modification has one of the following forms (a) to (c) as an example.
(a)第1変形リニアアクチュエーターは、固定ブロック50、出力可動ブロック60、および対偶可動ブロック70に代えて、第1変形固定ブロック、第1変形出力可動ブロック、および第1変形対偶ブロックを有する。
(A) The first deformation linear actuator has a first deformation fixed block, a first deformation output movable block, and a first deformation pair block instead of the fixed block 50, the output movable block 60, and the pair movable block 70.
第1変形固定ブロックは、永久磁石およびバックヨークを有する。第1変形固定ブロックは、本体ケース30に固定される点において出力可動ブロック60または対偶可動ブロック70と相違し、その他の点において出力可動ブロック60または対偶可動ブロック70に類似する構造を有する。
The first deformation fixed block has a permanent magnet and a back yoke. The first deformation fixed block is different from the output movable block 60 or the pair movable block 70 in that it is fixed to the main body case 30, and has a structure similar to the output movable block 60 or the pair movable block 70 in other points.
第1変形出力可動ブロックは、コイルおよびコアを有する。第1変形出力可動ブロックは、本体ケース30に対して可動方向DXに往復運動する点において固定ブロック50と相違し、その他の点において固定ブロック50に類似する構成を有する。
The first deformation output movable block has a coil and a core. The first deformable output movable block is different from the fixed block 50 in that it reciprocates in the movable direction DX with respect to the main body case 30, and has a configuration similar to the fixed block 50 in other points.
第1変形対偶可動ブロックは、コイルおよびコアを有する。第1変形対偶可動ブロックは、本体ケース30に対して可動方向DXに往復運動する点において固定ブロック50と相違し、その他の点において固定ブロック50に類似する構成を有する。
The first deformation pair movable block has a coil and a core. The first deformable pair movable block differs from the fixed block 50 in that it reciprocates in the movable direction DX with respect to the main body case 30, and has a configuration similar to the fixed block 50 in other points.
第1変形リニアアクチュエーターは、往復運動を出力するとき、第1変形出力可動ブロックおよび第1変形対偶可動ブロックに電流を供給する。各可動ブロックは、第1変形固定ブロックとの間において作用する電磁気力により、第1変形固定ブロックに対して可動方向DXに往復運動する。第1変形出力可動ブロックおよび第1変形対偶可動ブロックは、互いに反対の位相により可動方向DXに往復運動する。
The first deformation linear actuator supplies current to the first deformation output movable block and the first deformation pair movable block when outputting the reciprocating motion. Each movable block reciprocates in the movable direction DX with respect to the first deformation fixed block by an electromagnetic force acting between the first deformation fixed block and the first deformation fixed block. The first deformation output movable block and the first deformation pair movable block reciprocate in the movable direction DX with opposite phases.
(b)第2変形リニアアクチュエーターは、出力可動ブロック60に代えて、第2変形出力可動ブロックを有する。第2変形リニアアクチュエーターは、固定ブロック50を省略している。
(B) The second deformation linear actuator has a second deformation output movable block instead of the output movable block 60. In the second modified linear actuator, the fixed block 50 is omitted.
第2変形出力可動ブロックは、コイルおよびコアを有する。第2変形出力可動ブロックは、本体ケース30に対して可動方向DXに往復運動する点において固定ブロック50と相違し、その他の点において固定ブロック50に類似する構成を有する。
The second deformation output movable block has a coil and a core. The second deformation output movable block differs from the fixed block 50 in that it reciprocates in the movable direction DX with respect to the main body case 30, and has a configuration similar to the fixed block 50 in other points.
第2変形リニアアクチュエーターは、往復運動を出力するとき、第2変形出力可動ブロックに電流を供給する。第2変形出力可動ブロックおよび対偶可動ブロック70は、各可動ブロックの間において作用する電磁気力により、可動方向DXに往復運動する。第2変形出力可動ブロックおよび対偶可動ブロック70は、互いに反対の位相により可動方向DXに往復運動する。
The second deformation linear actuator supplies a current to the second deformation output movable block when outputting the reciprocating motion. The second deformation output movable block and the pair movable block 70 reciprocate in the movable direction DX by an electromagnetic force acting between the movable blocks. The second deformable output movable block and the pair movable block 70 reciprocate in the movable direction DX with opposite phases.
(c)第3変形リニアアクチュエーターは、対偶可動ブロック70に代えて、第3変形対偶可動ブロックを有する。第3変形リニアアクチュエーターは、固定ブロック50を省略している。
(C) The third deformation linear actuator has a third deformation pair movable block instead of the pair movement block 70. In the third modified linear actuator, the fixed block 50 is omitted.
第3変形対偶可動ブロックは、コイルおよびコアを有する。第3変形対偶可動ブロックは、本体ケース30に対して可動方向DXに往復運動する点において固定ブロック50と相違し、その他の点において固定ブロック50に類似する構成を有する。
The third deformable pair movable block has a coil and a core. The third deformable pair movable block differs from the fixed block 50 in that it reciprocates in the movable direction DX with respect to the main body case 30, and has a configuration similar to the fixed block 50 in other points.
第3変形リニアアクチュエーターは、往復運動を出力するとき、第3変形対偶可動ブロックに電流を供給する。出力可動ブロック60および第3変形対偶可動ブロックは、各可動ブロックの間において作用する電磁気力により、可動方向DXに往復運動する。出力可動ブロック60および第3変形対偶可動ブロックは、互いに反対の位相により可動方向DXに往復運動する。
When the third deformation linear actuator outputs a reciprocating motion, it supplies a current to the third deformation pair movable block. The output movable block 60 and the third deformation pair movable block reciprocate in the movable direction DX by an electromagnetic force acting between the movable blocks. The output movable block 60 and the third deformable pair movable block reciprocate in the movable direction DX with phases opposite to each other.
第1実施形態~第4実施形態の出力軸振動型電動装置10は、単一の部品としての弾性部品16を有する。ただし、弾性部品16の構成は、各実施形態に例示された内容に限られない。変形例の弾性部品は、少なくとも2つの部品により形成される。変形例の弾性部品は、一例として、第1弾性部品および第2弾性部品を有する。第1弾性部品は、弾性部品16における内側円筒部分の下方部分と実質的に同じ構造を有する。第2弾性部品は、弾性部品16における内側円筒部分の下方部分以外の残りの部分と実質的に同じ構造を有する。なお、弾性部品16の内側円筒部分は、出力軸20と接触する円筒部分を示す。
The output shaft vibration type electric device 10 of the first to fourth embodiments has an elastic component 16 as a single component. However, the configuration of the elastic component 16 is not limited to the content exemplified in each embodiment. The elastic part of the modified example is formed by at least two parts. The elastic part of a modification has a 1st elastic part and a 2nd elastic part as an example. The first elastic part has substantially the same structure as the lower part of the inner cylindrical part in the elastic part 16. The second elastic part has substantially the same structure as the remaining part other than the lower part of the inner cylindrical part in the elastic part 16. The inner cylindrical portion of the elastic component 16 indicates a cylindrical portion that contacts the output shaft 20.
第1実施形態~第4実施形態の出力軸振動型電動装置10は、電動口腔衛生装置としての電動歯ブラシの形態を有する。ただし、出力軸振動型電動装置10における電動口腔衛生装置としての形態は、各実施形態に例示された内容に限られない。変形例の出力軸振動型電動装置は、一例として、電動歯間ブラシ、電動ステイン除去装置、または電動舌ブラシの形態を有する。
The output shaft vibration type electric device 10 of the first to fourth embodiments has a form of an electric toothbrush as an electric oral hygiene device. However, the form as the electric oral hygiene apparatus in the output shaft vibration type electric apparatus 10 is not limited to the contents exemplified in each embodiment. As an example, the output shaft vibration type electric device of the modification has a form of an electric interdental brush, an electric stain removing device, or an electric tongue brush.
第1実施形態~第4実施形態の出力軸振動型電動装置10は、電動口腔衛生装置の形態を有する。ただし、出力軸振動型電動装置10の形態は、各実施形態に例示された内容に限られない。変形例の出力軸振動型電動装置は、一例として、電気かみそりまたは電動マッサージ装置の形態を有する。
The output shaft vibration type electric device 10 of the first to fourth embodiments has the form of an electric oral hygiene device. However, the form of the output shaft vibration type electric apparatus 10 is not limited to the content exemplified in each embodiment. As an example, the output shaft vibration type electric device of the modification has a form of an electric razor or an electric massage device.
Claims (8)
- 出力軸振動型電動装置の出力軸を駆動する電動リニアアクチュエーターであって、
前記電動リニアアクチュエーターは、固定ブロック、出力可動ブロック、対偶可動ブロック、ブロック結合部品、出力用機能部品、および対偶用機能部品を備えるとともに、可動方向として規定される突出方向および引込方向に往復運動を行うように構成され、
前記可動方向と直交する方向に沿って前記出力可動ブロックおよび前記対偶可動ブロックが並列的に配置され、
前記ブロック結合部品は、前記固定ブロック、前記出力可動ブロック、および前記対偶可動ブロックと結合され、
前記出力可動ブロックおよび前記対偶可動ブロックは、前記固定ブロックとの間において作用する電磁気力により、互いに反対の位相で前記可動方向に往復運動し、
前記出力用機能部品は、前記出力可動ブロックおよび前記出力軸と結合され、
前記対偶用機能部品は、
前記対偶可動ブロックと結合された対偶部品本体部と、
前記対偶部品本体部と同一材料により前記対偶部品本体部と一体的に形成された対偶部品調整部とを含み、
前記対偶部品調整部は、前記対偶可動ブロックよりも前記引込方向側に配置されている、
電動リニアアクチュエーター。 An electric linear actuator that drives the output shaft of the output shaft vibration type electric device,
The electric linear actuator includes a fixed block, an output movable block, an even movable block, a block coupling component, an output functional component, and an even functional component, and reciprocates in a protruding direction and a retracting direction defined as a movable direction. Configured to do and
The output movable block and the even movable block are arranged in parallel along a direction orthogonal to the movable direction,
The block coupling component is coupled to the fixed block, the output movable block, and the even movable block,
The output movable block and the even movable block reciprocate in the movable direction in opposite phases by an electromagnetic force acting between the fixed block and
The output functional component is coupled to the output movable block and the output shaft,
The kinematic function component is
An even-part main body coupled to the even-movable block;
An even-part adjusting unit formed integrally with the even-part main body by the same material as the even-part main body,
The kinematic part adjustment unit is disposed on the drawing direction side of the kinematic movable block,
Electric linear actuator. - 出力軸振動型電動装置の出力軸を駆動する電動リニアアクチュエーターであって、
前記電動リニアアクチュエーターは、出力可動ブロック、対偶可動ブロック、ブロック結合部品、出力用機能部品、および対偶用機能部品を備えるとともに、可動方向として規定される突出方向および引込方向に往復運動を行うように構成され、
前記可動方向と直交する方向に沿って前記出力可動ブロックおよび前記対偶可動ブロックが並列的に配置され、
前記ブロック結合部品は、前記出力可動ブロックおよび前記対偶可動ブロックと結合され、
前記出力可動ブロックおよび前記対偶可動ブロックは、前記出力可動ブロックおよび前記対偶可動ブロックの間において作用する電磁気力により、互いに反対の位相で前記可動方向に往復運動し、
前記出力用機能部品は、前記出力可動ブロックおよび前記出力軸と結合され、
前記対偶用機能部品は、
前記対偶可動ブロックと結合された対偶部品本体部と、
前記対偶部品本体部と同一材料により前記対偶部品本体部と一体的に形成された対偶部品調整部とを含み、
前記対偶部品調整部は、前記対偶可動ブロックよりも前記引込方向側に配置されている、
電動リニアアクチュエーター。 An electric linear actuator that drives the output shaft of the output shaft vibration type electric device,
The electric linear actuator includes an output movable block, a pair movable block, a block coupling component, an output functional component, and a pair functional component, and reciprocates in a projecting direction and a retracting direction defined as a movable direction. Configured,
The output movable block and the even movable block are arranged in parallel along a direction orthogonal to the movable direction,
The block coupling component is coupled with the output movable block and the even movable block,
The output movable block and the pair movable block reciprocate in the movable direction in opposite phases by an electromagnetic force acting between the output movable block and the pair movable block,
The output functional component is coupled to the output movable block and the output shaft,
The kinematic function component is
A paired component main body coupled to the pair movable block;
An even-part adjusting unit formed integrally with the even-part main body by the same material as the even-part main body,
The kinematic part adjustment unit is disposed on the drawing direction side of the kinematic movable block,
Electric linear actuator. - 前記電動リニアアクチュエーターは更に、前記対偶部品調整部と結合された付加調整部品を備える、
請求項1または2に記載の電動リニアアクチュエーター。 The electric linear actuator further includes an additional adjustment component coupled to the kinematic component adjustment unit.
The electric linear actuator according to claim 1 or 2. - 前記付加調整部品は、前記可動方向において前記対偶部品調整部よりも前記対偶可動ブロック側に配置されている、
請求項3に記載の電動リニアアクチュエーター。 The additional adjustment component is disposed closer to the pair movable block than the pair adjustment unit in the movable direction.
The electric linear actuator according to claim 3. - 前記対偶部品本体部の重量は、前記対偶部品調整部の重量よりも大きい、
請求項1~4のいずれか一項に記載の電動リニアアクチュエーター。 The weight of the kinematic part main body is larger than the weight of the kinematic part adjusting part,
The electric linear actuator according to any one of claims 1 to 4. - 前記出力用機能部品は、
前記出力可動ブロックと結合された出力部品本体部と、
前記出力部品本体部および前記出力軸と結合された出力軸用結合部とを含み、
前記電動リニアアクチュエーターは、前記電動リニアアクチュエーターの正面視において前記出力軸の軸方向に延びる前記出力軸用結合部の結合部中心線に沿って区分される第1区分領域および第2区分領域を含み、
前記第1区分領域に、少なくとも前記対偶可動ブロックが配置され、
前記対偶可動ブロックと前記対偶用機能部品とを含む機能結合部の重心が前記第1区分領域内に位置している、
請求項5に記載の電動リニアアクチュエーター。 The output functional component is:
An output component main body coupled to the output movable block;
An output shaft coupling portion coupled to the output component main body portion and the output shaft;
The electric linear actuator includes a first segmented region and a second segmented region that are segmented along a coupling portion center line of the output shaft coupling portion extending in the axial direction of the output shaft in a front view of the electric linear actuator. ,
At least the kinematic movable block is disposed in the first section area,
The center of gravity of the function coupling portion including the kinematic movable block and the functional component for the kinematic pair is located in the first segment area,
The electric linear actuator according to claim 5. - 出力軸振動型電動装置であって、
前記出力軸振動型電動装置は、請求項1~6のいずれか一項に記載の電動リニアアクチュエーターと、前記出力軸とを備え、
前記出力軸は、前記出力用機能部品と結合されている、
出力軸振動型電動装置。 An output shaft vibration type electric device,
The output shaft vibration type electric device includes the electric linear actuator according to any one of claims 1 to 6, and the output shaft.
The output shaft is coupled to the output functional component;
Output shaft vibration type electric device. - 前記出力軸振動型電動装置は、電動口腔衛生装置の形態を有する、
請求項7に記載の出力軸振動型電動装置。 The output shaft vibration type electric device has a form of an electric oral hygiene device,
The output shaft vibration type electric device according to claim 7.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012286272A JP6152968B2 (en) | 2012-12-27 | 2012-12-27 | Electric linear actuator and output shaft vibration type electric apparatus having the electric linear actuator |
JP2012-286272 | 2012-12-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014103225A1 true WO2014103225A1 (en) | 2014-07-03 |
Family
ID=51020349
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/007325 WO2014103225A1 (en) | 2012-12-27 | 2013-12-12 | Electric linear actuator and output shaft vibration-type electric device with said electric linear actuator |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6152968B2 (en) |
WO (1) | WO2014103225A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106175960A (en) * | 2015-03-18 | 2016-12-07 | 拉尼尔有限责任公司 | Spring mechanism for power set |
US9929621B2 (en) | 2015-03-18 | 2018-03-27 | Ranir, Llc | Spring mechanism for power device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09252843A (en) * | 1996-03-26 | 1997-09-30 | Matsushita Electric Works Ltd | Electric toothbrush |
JP2005185067A (en) * | 2003-12-22 | 2005-07-07 | Matsushita Electric Works Ltd | Vibration-type linear actuator and hair cutter provided with the same |
JP2009240046A (en) * | 2008-03-26 | 2009-10-15 | Panasonic Electric Works Co Ltd | Electromagnetic actuator |
JP4487650B2 (en) * | 2004-06-14 | 2010-06-23 | パナソニック電工株式会社 | Vibrating linear actuator and reciprocating electric shaver using the same |
-
2012
- 2012-12-27 JP JP2012286272A patent/JP6152968B2/en active Active
-
2013
- 2013-12-12 WO PCT/JP2013/007325 patent/WO2014103225A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09252843A (en) * | 1996-03-26 | 1997-09-30 | Matsushita Electric Works Ltd | Electric toothbrush |
JP2005185067A (en) * | 2003-12-22 | 2005-07-07 | Matsushita Electric Works Ltd | Vibration-type linear actuator and hair cutter provided with the same |
JP4487650B2 (en) * | 2004-06-14 | 2010-06-23 | パナソニック電工株式会社 | Vibrating linear actuator and reciprocating electric shaver using the same |
JP2009240046A (en) * | 2008-03-26 | 2009-10-15 | Panasonic Electric Works Co Ltd | Electromagnetic actuator |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106175960A (en) * | 2015-03-18 | 2016-12-07 | 拉尼尔有限责任公司 | Spring mechanism for power set |
EP3078348A3 (en) * | 2015-03-18 | 2017-01-04 | Ranir, LLC | Spring mechanism for power device |
US9929621B2 (en) | 2015-03-18 | 2018-03-27 | Ranir, Llc | Spring mechanism for power device |
US9999486B2 (en) | 2015-03-18 | 2018-06-19 | Ranir, Llc | Spring mechanism for power device |
CN106175960B (en) * | 2015-03-18 | 2018-09-07 | 拉尼尔有限责任公司 | Spring mechanism for power plant |
Also Published As
Publication number | Publication date |
---|---|
JP6152968B2 (en) | 2017-06-28 |
JP2014128189A (en) | 2014-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014103226A1 (en) | Electric linear actuator and output shaft vibration-type electric device with said electric linear actuator | |
KR101969438B1 (en) | Linear vibration motor | |
TWI289442B (en) | Electromotive toothbrush | |
KR100539693B1 (en) | Linear oscillator | |
KR102049343B1 (en) | Horizontal linear vibrating motor | |
CN105207440A (en) | Magnetic balance guiding linear vibration motor | |
JP2022066523A (en) | Vibration actuator and electronic equipment | |
KR102234342B1 (en) | Haptic actuator | |
WO2019029048A1 (en) | Linear vibration motor | |
JP6152968B2 (en) | Electric linear actuator and output shaft vibration type electric apparatus having the electric linear actuator | |
WO2014103227A1 (en) | Electric linear actuator, and output shaft vibrating-type electric equipment having electric linear actuator | |
JP5963052B2 (en) | Electric linear actuator and output shaft vibration type electric apparatus having the electric linear actuator | |
JP5260927B2 (en) | Vibration type linear actuator | |
CN107534376B (en) | Linear vibration motor | |
WO2019013085A1 (en) | Vibration generating device | |
JP6500106B2 (en) | motor | |
JP2013123305A (en) | Linear actuator and mouth sanitary apparatus | |
JP5742860B2 (en) | Vibration generator | |
EP3738683B1 (en) | Vibration generator with a magnet between upper and lower yoke | |
JP7240948B2 (en) | vibration generator | |
WO2023013761A1 (en) | Vibration actuator | |
KR102280172B1 (en) | vibration generating device | |
KR20240157816A (en) | Vibration motor | |
KR20180076784A (en) | Linear vibration motor. | |
KR101820745B1 (en) | Vibration actuator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13869076 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13869076 Country of ref document: EP Kind code of ref document: A1 |