[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014101104A1 - 氧化锡膜及其制造方法 - Google Patents

氧化锡膜及其制造方法 Download PDF

Info

Publication number
WO2014101104A1
WO2014101104A1 PCT/CN2012/087835 CN2012087835W WO2014101104A1 WO 2014101104 A1 WO2014101104 A1 WO 2014101104A1 CN 2012087835 W CN2012087835 W CN 2012087835W WO 2014101104 A1 WO2014101104 A1 WO 2014101104A1
Authority
WO
WIPO (PCT)
Prior art keywords
tin oxide
oxide film
tin
substrate
mixed solution
Prior art date
Application number
PCT/CN2012/087835
Other languages
English (en)
French (fr)
Inventor
陈俞君
林晋庆
王恩光
江美静
陈怡真
廖泓洲
Original Assignee
财团法人工业技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 财团法人工业技术研究院 filed Critical 财团法人工业技术研究院
Priority to CN201610485940.3A priority Critical patent/CN105951061B/zh
Priority to US14/655,112 priority patent/US20150328659A1/en
Priority to CN201280076521.4A priority patent/CN104736740B/zh
Priority to PCT/CN2012/087835 priority patent/WO2014101104A1/zh
Publication of WO2014101104A1 publication Critical patent/WO2014101104A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/34Applying different liquids or other fluent materials simultaneously
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/002Pretreatement
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/25Oxides by deposition from the liquid phase
    • C03C17/253Coating containing SnO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]

Definitions

  • Tin oxide film Tin oxide film and method of manufacturing the same
  • the present disclosure relates to a tin oxide film and a method of producing the same, and more particularly to a tin oxide film having a low haze and a method of producing the same. Background technique
  • the tin oxide film is an infrared blocking material commonly used for energy-saving glass.
  • the tin oxide film has a function of blocking infrared rays, there is still a problem that the haze is too high to be solved. Therefore, how to provide a tin oxide film with good infrared resistance and low haze is still one of the subjects of the industry. Summary of the invention
  • the disclosure relates to a tin oxide film and a method of manufacturing the same.
  • a mixed solution of a tin raw material and an oxidizing agent on the substrate, the chance of tin oxide nucleation on the surface of the substrate can be increased, and the ratio of the reaction between the tin raw material and the oxidizing agent can be more precisely controlled, thereby forming a low haze.
  • Tin oxide film By applying a mixed solution of a tin raw material and an oxidizing agent on the substrate, the chance of tin oxide nucleation on the surface of the substrate can be increased, and the ratio of the reaction between the tin raw material and the oxidizing agent can be more precisely controlled, thereby forming a low haze. Tin oxide film.
  • a method of manufacturing a tin oxide film includes: providing a mixed solution including a tin source; an oxidizing agent and a solvent; heating the substrate; and applying a mixed solution on the substrate to A tin oxide film is formed on the substrate.
  • a tin oxide film is provided. Visible light of tin oxide film The haze is less than 3%, and the tin oxide film has a film thickness and a surface roughness, and the surface roughness is a root mean square surface roughness (RMS surface roughness), and the surface roughness is relative to the film.
  • the thickness ratio is greater than 0.05.
  • a tin oxide film is provided.
  • the visible light haze of the tin oxide film is less than 3%, and the X-ray diffiaction spectrum of the tin oxide film has a tin oxide (200) diffraction peak and a tin oxide (110) diffraction peak, and tin oxide (200) diffraction.
  • the ratio of the integrated area of the peak to the integrated area of the tin oxide (110) diffraction peak is greater than 1.5.
  • FIG. 1 is a schematic view of a tin oxide film according to an embodiment of the present disclosure.
  • Fig. 2 is an X-ray diffraction spectrum of a tin oxide film according to an embodiment of the present disclosure.
  • T 1 Surface roughness (Root Mean Square Roughness)
  • applying a mixed solution of a tin raw material and an oxidizing agent to a heated substrate can more precisely control the ratio of the tin raw material and the oxidizing agent in the reaction, and increase the nucleation of the tin oxide film on the surface of the substrate ( The opportunity of nucleation, which in turn forms a low-yield tin oxide film.
  • a mixed solution and a substrate are provided.
  • the mixed solution includes a tin source, an oxidizing agent, and a solvent, and the tin raw material and the oxidizing agent are dissolved in the solvent.
  • the tin raw material includes, for example, tin dichloride (SnCl 2 ), tin tetrachloride (SnCl 4 ), butyl trichloro tin, dimethyl dichloro tin. ) or tetrakilyl tin
  • One or a combination of two or more of the oxidizing agents for example, one or a combination of two of hydrogen peroxide or hypochlorous acid
  • the solvent includes, for example, at least one of water or ethanol.
  • the tin raw material, the oxidizing agent and the solvent are also appropriately selected depending on the application, and are not limited to the above materials.
  • the molar ratio of the tin raw material to the oxidizing agent is, for example, about 1:0.3 to 1:1.5.
  • the substrate is heated, and the mixed solution is applied onto the substrate.
  • the substrate is heated at a temperature of about 250 to 700 ° C, for example, a heater is provided to heat the substrate on the other surface of the substrate with respect to the tin oxide film.
  • the step of applying the mixed solution on the substrate and heating the substrate may be performed simultaneously.
  • the substrate is first heated and then the mixed solution is applied to the substrate.
  • the mixed solution is applied to the substrate after the substrate is heated.
  • the substrate is, for example, a glass substrate, a ceramic substrate or a metal substrate.
  • the substrate is also appropriately selected depending on the application conditions, and is not limited to the foregoing materials.
  • the mixed solution is sprayed onto the substrate by a spraying process, and the spraying solution atomizes the mixed solution to form a spray, and the spray is sprayed toward the substrate along with the carrier gas, and the spray is sprayed.
  • the heat is decomposed and deposited on the substrate.
  • the atomization method of the mixed solution is, for example, ultrasonic atomization, and the mixed solution is sprayed onto the substrate in the form of mist droplets by an ultrasonic nozzle, which helps to control the size and distribution of the droplets.
  • the atomization of the mixed solution is, for example, by a two-fluid nozzle.
  • tin raw material and oxygen are respectively supplied to the reaction chamber for reaction to form a tin oxide film on the substrate, for example, by chemical vapor deposition (CVD), it is difficult to regulate the tin raw material and The proportional relationship between the concentrations of oxygen when reacting on the substrate. Also, since oxygen is introduced into the entire reaction chamber, it is difficult to ensure that oxygen has a sufficiently high concentration on the substrate surface at the initial stage of the reaction.
  • CVD chemical vapor deposition
  • the mixed solution includes both the tin raw material and the oxidizing agent dissolved in the solvent, and the tin raw material and the oxidizing agent mixed together are simultaneously applied to the surface of the substrate, so that it is easier to precisely control the tin raw material and the oxidizing agent.
  • the ratio at the time of the reaction in turn, more effectively controls the conditions of the reaction.
  • the chance of nucleation of the tin oxide film on the surface of the substrate can be increased, Helps control the grain size and has a preferred orientation on the tin oxide crystal (200) surface to achieve a low haze tin oxide film.
  • the surface of the substrate may form a plurality of nucleation sites, and the grain growth is simultaneously performed through the plurality of nucleation sites ( Grain growth) allows the crystal grains to have a relatively small size, and the tin oxide film 10 can have an effect of low haze (haze, for example, less than 3%).
  • haze haze, for example, less than 3%
  • an additive that inhibits grain growth may be added as appropriate, or the tin oxide film may be additionally surface treated.
  • a tin oxide film is formed by using a separate feeding method of oxygen and tin raw materials, oxygen is likely to diffuse toward the substrate away from the rising gas flow on the surface of the heating substrate, and it is difficult to collect on the surface of the substrate, thereby causing a decrease in the oxygen concentration on the surface of the substrate, which is disadvantageous for subsequent The nucleation reaction and the formation of a low haze tin oxide film.
  • the mixed solution may further include a dopant.
  • the dopant is, for example, ammonium fluoride (N3 ⁇ 4F)
  • the tin material is, for example, a tin-containing compound
  • the tin oxide film formed is, for example, a fluorine-doped tin oxide (FTO).
  • the dopant is, for example, ammonium fluoride and lithium chloride (LiCl)
  • the tin oxide film formed is, for example, a lithium-fluorine-doped tin oxide (LFTO).
  • a method of increasing the resistance of a tin oxide film includes: providing a mixed solution and a substrate, wherein the mixed solution includes a tin source, an oxidizing agent and a solvent; heating the substrate; and applying a mixed solution on the substrate to form a tin oxide film on the substrate
  • the molar ratio of the tin raw material to the oxidizing agent is 1:0.3 to 1:1.5.
  • a method of improving the resistance stability of a tin oxide film after heat treatment comprises: providing a mixed solution and a substrate, wherein the mixed solution includes a tin source, an oxidizing agent, and a solvent; heating the substrate; and applying a mixed solution on the substrate A tin oxide film is formed on the substrate, wherein a molar ratio of the tin raw material to the oxidizing agent is 1:0.3 to 1:1.5, and a resistance variability of the tin oxide film after heat treatment is less than 10%.
  • a mixed solution with a concentration of 1 M.
  • air is used as a carrier gas, and the flow rate of the carrier gas is 20 L/min (in some embodiments, a suitable flow rate is about 5 L/min to 25 L/min), and the substrate at 450 ° C
  • the prepared mixed solution is sprayed on the heating substrate at a rate of 7.5 M/min (in some embodiments, a suitable sputtering rate is about 0.5 M / min to 15 M / min) to form Tin oxide (TO) film.
  • Comparative Examples 3 to 4 The operation steps of Comparative Examples 3 to 4 are as follows: Dissolving tin dichloride in ethanol to prepare a solution of tin dichloride in a molar concentration of 1 M, and then using oxygen as an oxidant and a carrier gas, the carrier gas The flow rate was 20 L/min, and a tin oxide film was formed on the heated substrate by reacting a tin dichloride ethanol solution with oxygen at a different sputtering rate (see Table 2) on a substrate of 450 °C.
  • Example 3 to 5 and Comparative Examples 5 to 6 are as follows: Dissolving tin dichloride and ammonium fluoride in water, and the molar ratio of tin dichloride to ammonium fluoride is 1:0.3, after that, Hydrogen peroxide in different molar ratios (see Table 3) was added to prepare a mixed solution of tin dichloride having a molar concentration of 1 M. Next, using air as a carrier gas, the flow rate of the carrier gas was 20 L/min, and the prepared mixed solution was sprayed on the heating substrate at a rate of 2.5 M/min on a substrate of 500 ° C. On top, a fluorine-doped tin oxide film is formed.
  • the molar ratio of tin dichloride to hydrogen peroxide in the mixed solution was between 1:0 and 1:0.25.
  • the formed tin oxide film had a haze of 3.51% or more.
  • the molar ratio of tin dichloride to hydrogen peroxide in the mixed solution is between 1:0.3 and 1:1.5, and the haze of the formed tin oxide film is 2.36. %the following.
  • FIG. 1 is a schematic view of a tin oxide film according to an embodiment of the present disclosure.
  • the tin oxide film 10 has a film thickness T2 and a surface roughness T1, and the surface roughness T1 is a root mean square surface roughness (RMS surface roughness), and is shown in Tables 1 to 4.
  • RMS surface roughness root mean square surface roughness
  • the ratio of the surface roughness T1 to the film thickness T2 is, for example, more than 0.05
  • the haze of the tin oxide film 10 is, for example, less than 3%.
  • the ratio of the surface roughness T1 to the film thickness ⁇ 2 is about 0.05 to 0.12.
  • the surface of the tin oxide film 10 can have a good characteristic of low haze (visible haze of less than 3%) even when it has a relatively large roughness.
  • 2 is an X-ray diffraction spectrum of a tin oxide film according to an embodiment of the present disclosure.
  • the optical terms S1, S2, S3, S4, and S5 are X-ray diffraction spectra of the tin oxide films of Comparative Example 9, Comparative Example 8, Comparative Example 7, Example 6, and Example 7, respectively, and spectra.
  • Each of S1 to S5 has a tin oxide (200) diffraction peak P1 and a tin oxide (110) diffraction peak P2.
  • the integrated area of the tin oxide (200) diffraction peak P1 is larger than the integrated area of the tin oxide (110) diffraction peak P2.
  • the ratio of the integrated area of the tin oxide (200) diffraction peak P1 to the integrated area of the tin oxide (110) diffraction peak P2 is, for example, greater than 1.5 (see Table 5). That is, in the examples, the crystal grains of the tin oxide film have the characteristics of the preferred orientation of the crystal face (200).
  • Table 6 lists the sheet resistance of the tin oxide films of Examples 9 to 11 and Comparative Examples 10 to 12.
  • Examples 9 to 11 and Comparative Examples 10 to 12 were as follows: Dissolving the tin raw material in ethanol, and then adding hydrogen peroxide in different molar ratios (see Table 6) to prepare a mixed solution having a molar concentration of 0.1 M. . Next, using air as a carrier gas, the flow rate of the carrier gas was 20 L/min, and the prepared mixed solution was sprayed on the heating substrate at a rate of 0.6 M/min on a substrate of 450 ° C. On, a tin oxide (TO) film is formed.
  • TO tin oxide
  • Tin material sheet resistance value (: ⁇ / port;) Tin material: hydrogen peroxide (molar ratio)
  • Tin dichloride 5.42E+05 1
  • the sheet resistance values of the tin oxide films of Examples 9 to 11 were higher than those of the tin oxide films of Comparative Examples 10 to 12, respectively, under respective different tin materials.
  • the tin oxide film formed by the mixed solution of the tin raw material and the hydrogen peroxide water has a characteristic of improving the sheet resistance value, which can be used for a gas detector, a transparent conductive film, and the like. Transparent and semi-conductive film properties.
  • Table 7 lists the resistance variation rates of the tin oxide films of Examples 10 to 14 and Comparative Example 11 before and after heat treatment.
  • Examples 12 to 14 were as follows: Dissolving tin tetrachloride in ethanol, and then adding hydrogen peroxide in different molar ratios (see Table 7) to prepare a mixed solution having a molar concentration of 0.1 M. Next, using air as a carrier gas, the flow rate of the carrier gas was 20 L/min, and the prepared mixed solution was sprayed on the heating substrate at a rate of 0.6 M/min on a substrate of 450 ° C. On, a tin oxide (TO) film is formed.
  • TO tin oxide
  • the above-mentioned tin oxide film is subjected to heat treatment at 500 ° C for 10 minutes to measure the resistance value before and after the heat treatment, wherein the variation rate is the ratio of the difference between the resistance value before and after the heat treatment and the original resistance value.
  • the sheet resistance value variation rate of the formed tin oxide film after heat treatment was smaller than that of the tin oxide film in Comparative Example 11. That is, in the examples 10 to 14 of the present invention, the molar ratio of the tin raw material to the oxidizing agent is 1:0.3 to 1:1.5, and the variation rate of the sheet resistance of the tin oxide film after heat treatment can be controlled to less than 10%. Further, when the molar ratio of tin tetrachloride (tin raw material) to hydrogen peroxide (oxidizing agent) is smaller, the sheet resistance value variation rate is smaller.
  • Example 14 when the molar ratio of tin tetrachloride to hydrogen peroxide is 1:1.5, The sheet resistance value variation rate was 1.13%. This low-chip resistance value variation rate is advantageous for temperature resistance in the manufacturing process of electronic components.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Laminated Bodies (AREA)
  • Chemically Coating (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

本揭露内容提供一种低雾度的氧化锡膜及其制造方法,包括将一混合溶液施加在一基板上并加热基板以形成氧化锡膜,其中混合溶液包含一锡原料、一氧化剂及一溶剂。

Description

氧化锡膜及其制造方法 技术领域
本揭露内容是有关于一种氧化锡膜及其制造方法, 且特别是有关于一种 具有低雾度的氧化锡膜及其制造方法。 背景技术
现今全球暖化效应造成世界各地的气候产生极大改变, 寒冬与酷署的频 率越来越频繁, 使得再生能源与节能技术的开发越来越重要。 在建筑物的设 计上, 建筑师们除了导入更多环保建材与再生能源之外, 也积极运用更多高 科技的节能建材与绿色建筑空间设计, 让人们能更加轻松的居住在严苛环境 之中, 其中最广泛应用的高科技建材之一是节能玻璃。 由于一般窗户无法阻 挡阳光进入建筑物内而使得室内温度上升, 因此开发出能阻挡阳光中的热能 穿过窗户进入室内的节能玻璃, 进而降低屋内空调的使用率以达到节能的效 果。
氧化锡膜是常用于节能玻璃的红外线阻绝材料, 然而, 氧化锡膜在具备 阻绝红外线的功能时, 仍有雾度过高的问题待解决。 因此, 如何提供一种具 有良好红外线阻绝功能且能保持低雾度的氧化锡膜, 仍为相关业者努力的课 题之一。 发明内容
本揭露内容是有关于一种氧化锡膜及其制造方法。 通过施加混合有锡原 料和氧化剂的混合溶液于基板上,可以增加氧化锡在基板表面成核 (nucleation) 的机会, 可更精准地控制锡原料和氧化剂反应时的比例, 进而形成低雾度的 氧化锡膜。
根据本揭露内容的一实施例, 提供一种氧化锡膜的制造方法。 氧化锡膜 的制造方法包括: 提供混合溶液以及基板, 混合溶液包括锡原料 (tin source;)、 氧化剂(oxidizing agent)及溶剂; 加热基板; 以及施力 p(applying)混合溶液于基 板上, 以形成氧化锡膜于基板上。
根据本揭露内容的另一实施例, 提供一种氧化锡膜。 氧化锡膜的可见光 雾度小于 3%, 且氧化锡膜具有膜厚 (film thickness)及表面粗糙度, 表面粗糙 度为均方根表面粗糙度 (root mean square surface roughness , RMS surface roughness), 表面粗糙度相对于膜厚的比例为大于 0.05。
根据本揭露内容的再一实施例, 提供一种氧化锡膜。 氧化锡膜的可见光 雾度小于 3%, 且氧化锡膜的 X射线衍射光谱 (X-ray diffiaction spectrum)具有 氧化锡 (200)衍射峰及氧化锡 (110)衍射峰,氧化锡 (200)衍射峰的积分面积相对 于氧化锡 (110)衍射峰的积分面积的比例为大于 1.5。 附图说明
为了对本揭露内容的上述及其它方面有更佳的了解, 下文特举较佳实施 例, 并配合附图, 作详细说明 ¾口下:
图 1为本揭露内容的一实施例的氧化锡膜的示意图。
图 2为本揭露内容的一实施例的氧化锡膜的 X射线衍射光谱 (X-ray diffraction spectrum)。
主要组件符号说明
10: 氧化锡膜
T 1: 表面粗糙度 (Root Mean Square Roughness)
T2: 膜厚 (film thickness)
S1-S5: X射线衍射光谱 (X-ray diffraction spectrum)
PI : 氧化锡 (200)衍射峰
P2: 氧化锡 (110)衍射峰 具体实施方式
本揭露内容的实施例中, 施加混合有锡原料和氧化剂的混合溶液于加热 的基板上, 可更精准地控制锡原料和氧化剂在反应时的比例, 并增加氧化锡 膜在基板表面成核 (nucleation)的机会, 进而形成低雾度的氧化锡膜。
以下提供本揭露内容的实施例的一种氧化锡膜的制造方法, 然而这些步 骤仅为举例说明之用, 并非用以限制本发明。 需注意的是, 附图已简化以有 利于清楚说明实施例的内容, 实施例所提供的详细结构仅为举例说明之用, 并非对本揭露内容欲保护的范围做限制。 具有通常知识者当可依据实际实施 方式的需要对这些结构及步骤加以修饰或变化。 首先, 提供一混合溶液及一基板。 实施例中, 混合溶液包括锡原料 (tin source)、 氧化剂(oxidizing agent)及溶剂, 锡原料及氧化剂溶解于溶剂中。 实 施例中, 锡原料例如包括二氯化锡 (SnCl2)、 四氯化锡 (SnCl4)、 单丁基三氯化 锡 (butyl trichloro tin)、 二曱基二氯化锡 (dimethyl dichloro tin)或四曱基锡
(tetramethyl tin)中的一种或者两种以上的组合,氧化剂例如包括双氧水或次氯 酸中的一种或者两种的组合, 溶剂例如包括水或乙醇中的至少一种。 实施例 中,锡原料、 氧化剂及溶剂亦视应用状况作适当选择, 并不以前述材料为限。
实施例中, 锡原料与氧化剂的摩尔比例例如是约 1 :0.3至 1 :1.5。
接着, 加热基板, 以及施加 (applying)混合溶液于基板上。
实施例中, 例如是以约 250~700°C的温度加热基板, 例如是设置加热器 于基板相对于氧化锡膜的另一表面对基板加热。 实施例中, 施加混合溶液于 基板上与加热基板的步骤可以同时进行。 另一实施例中, 先对基板加热再施 加混合溶液于基板。 又一实施例中, 待基板加热完成后再施加混合溶液于基 板。 实施例中, 基板例如是玻璃基板、 陶瓷基板或金属基板。 然而实际应用 时, 基板亦视应用状况作适当选择, 并不以前述材料为限。
实施例中,例如是以喷镀法 (spraying process)喷洒混合溶液于基板上,喷 镀法是将混合溶液雾化形成喷雾, 喷雾随着载气 (carrier gas)对着基板喷出, 喷雾靠着热量分解后沉积在基板上。 实施例中, 混合溶液的雾化方式例如是 超声波雾化,以超声波喷嘴 (ultrasonic nozzle)将混合溶液以雾状液滴的形态喷 洒到基板上, 有助于控制液滴的尺寸大小及分布。 在其它实施例中, 混合溶 液的雾化方式例如是通过二流体喷嘴。
若是分别提供锡原料及氧气 (分开进料)至反应腔室中进行反应以形成氧 化锡膜于基板上, 例如是以化学汽相沉积 (chemical vapor deposition , CVD) 方式, 则不易调控锡原料及氧气于基板上进行反应时彼此之间的浓度比例关 系。 并且, 由于氧气被导入整个反应腔室, 因此不易确保氧气在反应初始时 在基板表面具有足够高的浓度。
相对地, 本揭露内容的实施例中, 混合溶液同时包括锡原料和氧化剂溶 解于溶剂中, 混合在一起的锡原料和氧化剂同时被施加到基板的表面, 因此 较容易精准地控制锡原料和氧化剂反应时的比例, 进而更有效地控制反应的 条件。
如此一来, 可以增加氧化锡膜在基板的表面成核 (nucleation)的机会, 有 助于控制晶粒尺寸 (grain size)及在氧化锡晶体 (200)面具有优选方向 (preferred orientation) , 进而达到形成低雾度的氧化锡膜。
并且, 本揭露内容的实施例中, 由于氧化剂在反应初始时在基板的表面 具有高浓度,基板的表面可形成许多成核位置 (nucleation site), 经由多个成核 位置同时进行晶粒成长 (grain growth), 使得晶粒具有相对小的尺寸, 而可以 达到氧化锡膜 10具有低雾度 (雾度例如是小于 3%)的效果。 在一实施例中, 可以不需在反应中另外添加抑制晶粒成长的添加物, 或者另外对氧化锡膜作 表面处理, 就能够快速形成低雾度的氧化锡膜。 在另一实施例中, 可以视情 况添加抑制晶粒成长的添加物, 或者另外对氧化锡膜作表面处理。
若是使用氧气与锡原料的分开进料方式形成氧化锡膜, 氧气很可能因为 加热基板表面的上升气流朝向远离基板的方向扩散, 不易聚集至基板表面, 造成基板表面的氧气浓度降低, 不利于后续的成核反应及形成低雾度的氧化 锡膜。
实施例中, 混合溶液可还包括掺杂物。 一实施例中, 掺杂物例如是氟化 铵 (N¾F), 锡原料例如是含锡化合物, 形成的氧化锡膜例如是氟掺杂氧化锡 膜 (fluorine-doped tin oxide, FTO)。 一实施例中, 掺杂物例如是氟化铵和氯化 锂 (LiCl) , 形成的氧化锡膜例如是锂氟掺杂氧化锡膜 (lithium-fluorine-doped tin oxide, LFTO)。
根据本揭露内容的又一实施例, 提供一种提升氧化锡膜电阻的方法。 控 制氧化锡膜电阻的方法包括: 提供混合溶液以及基板, 其中混合溶液包括锡 原料 (tin source), 氧化剂及溶剂; 加热基板; 以及施加 (applying)混合溶液于 基板上以形成氧化锡膜于基板上, 其中锡原料与氧化剂的摩尔比例为 1 :0.3 至 1 :1.5。
根据本揭露内容的更一实施例, 提供一种提升氧化锡膜经热处理后的电 阻稳定度的方法。 提升氧化锡膜经热处理后的电阻稳定度的方法包括: 提供 混合溶液以及基板, 其中混合溶液包括锡原料 (tin source)、 氧化剂及溶剂; 加热基板; 以及施加 (applying)混合溶液于基板上以形成氧化锡膜于基板上, 其中锡原料与氧化剂的摩尔比例为 1 :0.3至 1 :1.5 , 氧化锡膜经热处理后的电 阻变异率小于 10%。 以下就实施例作进一步说明。 然而以下的实施例仅为例 示说明之用, 而不应被解释为对本揭露内容实施的限制。
(1) 实施例 1~2及比较例 1~2的操作步骤如下:将二氯化锡溶解于水中, , , 、
之后, 加入不同摩尔比例 (请参见表 1)的双氧水, 配制冗成厚尔浓度为 1M的 混合溶液。 接着, 以空气作为载气 (carrier gas), 该载气的流速为 20L/min (在 一些实施例中, 适用的流速为约 5 L/min~25 L/min), 在 450°C的基板上, 将 该配制完成的混合溶液以 7.5M/min的速度喷镀于该加热基板上 (在一些实施 例中, 适用的喷镀速度为约 0.5 M /min~15 M /min) , 而形成氧化锡 (tin oxide , TO)膜。
(2) 比较例 3~4的操作步骤如下: 将二氯化锡溶解于乙醇中, 配制成摩 尔浓度为 1M的二氯化锡乙醇溶液, 接着, 以氧气为氧化剂及载气, 该载气 的流速为 20L/min, 在 450°C的基板上, 使二氯化锡乙醇溶液与氧气以不同 喷镀速度 (请参见表 2)反应而于该加热基板上形成氧化锡膜。
表 1
表面粗糙度 T1 膜厚 T2 T1/T2 雾度 二氯化锡:双氧水
(nm) (nm) (%) (摩尔比)
实施例 1 15.1 297.6 0.051 0.41 1 : 1
实施例 2 15.8 293.7 0.054 1.31 1 :0.3
比较例 1 10.15 195.2 0.052 5.03 1 :0.15
比较例 2 16.70 192.7 0.087 18.75 1 :0
表 2
表面粗糙度 T1 膜厚 T2 T1/T2 雾度 喷镀速度
(nm) (nm) (%) (M/min) 比较例 3 13.2 98.75 0.13 5.50 7.5
比较例 4 30.1 395.68 0.076 8.65 1.6
(3) 实施例 3~5及比较例 5~6的操作步骤如下: 将二氯化锡与氟化铵溶 解于水中, 二氯化锡与氟化铵的摩尔比例为 1 :0.3 , 之后, 加入不同摩尔比例 (请参见表 3)的双氧水, 配制成二氯化锡摩尔浓度为 1M的混合溶液。 接着, 以空气作为载气 (carrier gas), 该载气的流速为 20L/min, 在 500°C的基板上, 将该配制完成的混合溶液以 2.5M/min的速度喷镀于该加热基板上,而形成氟 掺杂氧化锡膜。
3
表面粗糙度 ~~ - T1/T2 ~~ ¾ ~~二氯化锡:双氧水 T1 (匪) T2(匪) (%) (摩尔比)
实施例 3 ~~ ΪΫ 325.2 0.053 236 i
实施例 4 15.4 273.7 0.056 2.27 1 : 1.2
实施例 5 15.1 296.2 0.051 1.47 1 : 1.5
t匕较 ^列 5 17.9 334.6 0.053 3.51 1 :0.2 比较例 6 19.2 230.3 0.083 4.18 1 :0.15
(4) 实施例 6~8及比较例 7~9的操作步骤如下: 将二氯化锡、 氟化铵与 氯化锂溶解于水中, 二氯化锡、 氟化铵与氯化锂的摩尔比例为 1 :0.5:0.03 , 之 后, 加入不同摩尔比例 (请参见表 4)的双氧水, 配制完成摩尔浓度为 1M的混 合溶液。 接着, 以空气作为载气 (carrier gas), 该载气的流速为 20L/min, 在 430°C的基板上,将该配制完成的混合溶液以 5M/min的速度喷镀于该加热基 板上, 而形成氟锂掺杂氧化锡膜。
表 4
表面粗糙度 膜厚 T1/T2 雾度 二氯化锡:双氧水
Tl(nm) T2(nm) (%) 尔比)
实施例 6 15.1 297.6 0.051 0.42 1 0.6
实施例 7 11.6 133.2 0.087 0.23 1 1.2
实施例 8 11.6 141.0 0.082 0.28 1 1
比较例 7 21.7 383.3 0.054 10.68 1 0.25
比较例 8 40.5 327.8 0.124 5.54 1 0.1
比较例 9 30.2 319.2 0.095 21.55 1 0
从表 2中可看出, 比较例 3~4中, 提供氧气与二氯化锡乙醇溶液反应而 形成的氧化锡膜, 其雾度均在 5.5%以上。 相较之下, 本揭露内容的实施例 1~2中, 利用喷镀配制好的混合溶液于基板上而形成的氧化锡膜, 其雾度均 在 1.31%以下。
再者, 从表 1-4中可看出, 比较例 1~2和比较例 5~9中, 混合溶液中的 二氯化锡与双氧水的摩尔比例为 1 :0~1 :0.25之间, 形成的氧化锡膜的雾度均 在 3.51%以上。 相较之下, 本揭露内容的实施例 1~8中, 混合溶液中二氯化 锡与双氧水的摩尔比例为 1 :0.3~1 :1.5之间, 形成的氧化锡膜的雾度均在 2.36%以下。
图 1为本揭露内容的一实施例的氧化锡膜的示意图。 如图 1所示, 氧化 锡膜 10具有膜厚 T2及表面粗糙度 T1 , 表面粗糙度 T1为均方根表面粗糙度 (root mean square surface roughness , RMS surface roughness) ,且如表 1~4所示, 实施例中, 表面粗糙度 Tl相对于膜厚 T2的比例例如是大于 0.05 , 氧化锡膜 10的雾度例如是小于 3%。 在上述实施例中, 表面粗糙度 T1相对于膜厚 Τ2 的比例为约 0.05~0.12。 换句话说, 本揭露内容的实施例中, 氧化锡膜 10的 表面即使具有相对大的粗糙度时,仍能具有低雾度 (可见光雾度小于 3%)的良 好特性。 图 2为本揭露内容一实施例的氧化锡膜的 X射线衍射光谱 (X-ray diffraction spectrum)。 如图 2所示, 光语 Sl、 S2、 S3、 S4及 S5分别为比较 例 9、 比较例 8、 比较例 7、 实施例 6、 实施例 7中的氧化锡膜的 X射线衍射 光谱, 光谱 S1~S5均具有氧化锡 (200)衍射峰 P1及氧化锡 (110)衍射峰 P2。 实 施例中,氧化锡 (200)衍射峰 P1的积分面积大于氧化锡 (110)衍射峰 P2的积分 面积。 实施例中, 氧化锡 (200)衍射峰 P1的积分面积相对于氧化锡 (110)衍射 峰 P2的积分面积的比例例如是大于 1.5(请参见表 5)。 也就是说, 实施例中, 氧化锡膜的晶粒具有晶面 (200)的优 方向 (preferred orientation)的特性。
Figure imgf000008_0001
ί汙射峰积分面积比 P1/P2 雾度 (%)
S1 (比较例 9) 0.25 21.55
S2(比较例 7) 0.75 10.68
S3(比较例 8) 1.11 5.54
S4(实施例 6) 1.53 0.42
S5(实施例 7) 3.42 0.23
请参照表 6 ,表 6列出了实施例 9~11及比较例 10~12的氧化锡膜的片电 阻值 (sheet resistance)。
实施例 9~11及比较例 10〜: 12的操作步骤如下: 将锡原料溶解于乙醇中, 之后, 加入不同摩尔比例 (请参见表 6)的双氧水, 配制完成摩尔浓度为 0.1M 的混合溶液。 接着, 以空气作为载气 (carrier gas), 该载气的流速为 20L/min, 在 450°C的基板上 ,将该配制完成的混合溶液以 0.6M/min的速度喷镀于该加 热基板上, 而形成氧化锡 (tin oxide, TO)膜。
表 6
锡原料 片电阻值 (: Ω/口;) 锡原料:双氧水 (摩尔比) 实施例 9 二氯化锡 5.42E+05 1 0.5
实施例 10 四氯化锡 4.59E+06 1 1
实施例 11 四曱基锡 5.36E+04 1 0.3
比较例 10 二氯化锡 8.32E+03 1 0
比较例 11 四氯化锡 1.32E+04 1 0
比较例 12 四曱基锡 5.65E+03 1 0
从表 6中可看出, 于各不同锡原料下, 实施例 9~11中的氧化锡膜的片 电阻值分别高于比较例 10~12中的氧化锡膜的片电阻值。 换句话说, 本揭露 内容的实施例中, 以同时包括锡原料与双氧水的混合溶液形成的氧化锡膜尚 具有提高片电阻值的特性, 此特性可用于气体检测器和透明导电膜及其它需 透明且具半导性膜特性的应用。
请参照表 7 ,表 7列出了实施例 10~14及比较例 11的氧化锡膜的热处理 前后电阻变异率。
实施例 12~14的操作步骤如下: 将四氯化锡溶解于乙醇中, 之后, 加入 不同摩尔比例 (请参见表 7)的双氧水,配制完成摩尔浓度为 0.1M的混合溶液。 接着, 以空气作为载气 (carrier gas), 该载气的流速为 20L/min, 在 450°C的基 板上,将该配制完成的混合溶液以 0.6M/min的速度喷镀于该加热基板上, 而 形成氧化锡 (tin oxide, TO)膜。接着再将上述的氧化锡膜经 500°C、 10分钟的 热处理, 量测热处理前后的电阻值, 其中变异率为热处理前后电阻的差异值 与原本电阻值的比值。
表 7
片电阻值 (: Ω/口;) 变异率(%) 锡原料:双氧水 (摩尔比) 实施例 10 4.59E+06 1.56 1 :1
实施例 12 3.25E+06 6.94 1 :0.3
实施例 13 4.37E+06 2.92 1 :0.5
实施例 14 4.81E+06 1.13 1 :1.5
比较例 11 1.32E+04 10 1 :0
表 7的实施例 10~14中, 形成的氧化锡膜经热处理后的片电阻值变异率 皆小于比较例 11中的氧化锡膜的片电阻值变异率。也就是说,本发明实施例 10~14中, 锡原料与氧化剂的摩尔比例为 1 :0.3至 1 :1.5 , 氧化锡膜经热处理 后的片电阻值变异率皆可控制在小于 10%。 并且, 当四氯化锡 (锡原料)与双 氧水 (氧化剂)摩尔比例越小, 其片电阻值变异率越小, 例如实施例 14中, 四 氯化锡与双氧水摩尔比例是 1 :1.5时, 其片电阻值变异率为 1.13%。 此低片电 阻值变异率的特性有利于应用在电子组件制造过程中的耐温性。
综上所述, 虽然本揭露内容已以实施例揭露如上, 然而其并非用以限制 本揭露内容的保护范围。 本揭露内容所属技术领域中具有通常知识者, 在不 脱离本揭露内容的精神和范围内, 当可作各种的更动与修饰。 因此, 本揭露 内容的保护范围当视所附权利要求书所界定的范围为准。

Claims

权利要求书
1. 一种氧化锡膜的制造方法, 包括:
提供混合溶液以及基板, 其中该混合溶液包括锡原料、 氧化剂及溶剂; 加热该基板; 以及
施加该混合溶液于该基板上以形成该氧化锡膜于该基板上。
2. 如权利要求 1所述的氧化锡膜的制造方法,其中该锡原料包括二氯化 锡、 四氯化锡、单丁基三氯化锡、二曱基二氯化锡或四曱基锡中的至少一种。
3. 如权利要求 1所述的氧化锡膜的制造方法,其中该氧化剂包括双氧水 或次氯酸中的至少一种。
4. 如权利要求 1所述的氧化锡膜的制造方法,其中该锡原料与该氧化剂 的摩尔比例为 1 :0.3至 1 :1.5。
5. 如权利要求 1所述的氧化锡膜的制造方法,其中该混合溶液还包括氟 化铵。
6. 如权利要求 1所述的氧化锡膜的制造方法,其中该混合溶液还包括氯 化锂。
7. 如权利要求 1所述的氧化锡膜的制造方法, 其中形成的该氧化锡膜, 包括氧化锡、 氟掺杂氧化锡及氟锂掺杂氧化锡中的至少一种。
8. 如权利要求 4所述的氧化锡膜的制造方法,其中该制造方法可用于提 升氧化锡膜的电阻。
9. 如权利要求 4所述的氧化锡膜的制造方法,其中该制造方法可用于提 升氧化锡膜经热处理后的电阻稳定度, 其中该氧化锡膜经热处理后的电阻变 异率小于 10%。
10. 一种氧化锡膜,该氧化锡膜的可见光雾度为小于 3%,具有膜厚及表 面粗糙度, 表面粗糙度为均方根表面粗糙度, 该表面粗糙度相对于该膜厚的 比例大于 0.05。
11. 如权利要求 10所述的氧化锡膜,其中该氧化锡膜的晶粒具有在氧化 锡晶体 (200)面的优选成长方向。
12. 如权利要求 10所述的氧化锡膜, 包括氧化锡、 氟掺杂氧化锡及氟锂 掺杂氧化锡中的至少一种。
13. 一种氧化锡膜,该氧化锡膜的可见光雾度小于 3%,且该氧化锡膜的 X射线衍射光谱具有氧化锡 (200)衍射峰及氧化锡 (110)衍射峰,该氧化锡 (200) 衍射峰的积分面积相对于该氧化锡 (110)衍射峰的积分面积的比例大于 1.5。
14. 如权利要求 13所述的氧化锡膜, 包括氧化锡、 氟掺杂氧化锡及氟锂 掺杂氧化锡中的至少一种。
PCT/CN2012/087835 2012-12-28 2012-12-28 氧化锡膜及其制造方法 WO2014101104A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201610485940.3A CN105951061B (zh) 2012-12-28 2012-12-28 氧化锡膜及其制造方法
US14/655,112 US20150328659A1 (en) 2012-12-28 2012-12-28 Tin oxide film and manufacturing method of the same
CN201280076521.4A CN104736740B (zh) 2012-12-28 2012-12-28 氧化锡膜及其制造方法
PCT/CN2012/087835 WO2014101104A1 (zh) 2012-12-28 2012-12-28 氧化锡膜及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/087835 WO2014101104A1 (zh) 2012-12-28 2012-12-28 氧化锡膜及其制造方法

Publications (1)

Publication Number Publication Date
WO2014101104A1 true WO2014101104A1 (zh) 2014-07-03

Family

ID=51019736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/087835 WO2014101104A1 (zh) 2012-12-28 2012-12-28 氧化锡膜及其制造方法

Country Status (3)

Country Link
US (1) US20150328659A1 (zh)
CN (2) CN104736740B (zh)
WO (1) WO2014101104A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106793195B (zh) * 2017-02-24 2020-01-07 江苏一森电采暖科技有限公司 长寿命电热元件及其制备方法
CN116119939A (zh) * 2022-11-09 2023-05-16 江苏奥蓝工程玻璃有限公司 一种透明导电玻璃的制备工艺
CN119153485A (zh) * 2023-06-16 2024-12-17 湖北大学 晶体层叠结构体及半导体元件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002265236A (ja) * 2001-03-05 2002-09-18 Sumitomo Metal Mining Co Ltd 日射遮蔽膜形成用微粒子の製造方法とこの製造方法により得られた微粒子を用いた日射遮蔽膜形成用塗布液
CN101372395A (zh) * 2007-08-22 2009-02-25 现代自动车株式会社 氟掺杂氧化锡透明导电薄膜玻璃及其制造方法
US20110094577A1 (en) * 2009-10-28 2011-04-28 Dilip Kumar Chatterjee Conductive metal oxide films and photovoltaic devices
CN102839348A (zh) * 2012-09-27 2012-12-26 攀枝花学院 掺氟氧化锡薄膜的制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5876633A (en) * 1995-12-26 1999-03-02 Monsanto Company Electrochromic metal oxides
US6521295B1 (en) * 2001-04-17 2003-02-18 Pilkington North America, Inc. Chemical vapor deposition of antimony-doped metal oxide and the coated article made thereby
US8796483B2 (en) * 2010-04-01 2014-08-05 President And Fellows Of Harvard College Cyclic metal amides and vapor deposition using them

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002265236A (ja) * 2001-03-05 2002-09-18 Sumitomo Metal Mining Co Ltd 日射遮蔽膜形成用微粒子の製造方法とこの製造方法により得られた微粒子を用いた日射遮蔽膜形成用塗布液
CN101372395A (zh) * 2007-08-22 2009-02-25 现代自动车株式会社 氟掺杂氧化锡透明导电薄膜玻璃及其制造方法
US20110094577A1 (en) * 2009-10-28 2011-04-28 Dilip Kumar Chatterjee Conductive metal oxide films and photovoltaic devices
CN102839348A (zh) * 2012-09-27 2012-12-26 攀枝花学院 掺氟氧化锡薄膜的制备方法

Also Published As

Publication number Publication date
CN105951061A (zh) 2016-09-21
CN105951061B (zh) 2018-07-13
CN104736740B (zh) 2016-10-19
CN104736740A (zh) 2015-06-24
US20150328659A1 (en) 2015-11-19

Similar Documents

Publication Publication Date Title
JP5960221B2 (ja) 薄膜光起電性適用向けの透明導電性酸化膜、及びその製造方法
WO2015045405A1 (ja) ガラス板の製造方法
JP5469107B2 (ja) 金属ナノ粒子を含むアルミニウム添加亜鉛酸化物透明導電膜の製造方法
WO2015093029A1 (ja) ガラス板の製造方法及びガラス板
JP2008078113A (ja) 透明導電性基板の製造装置
CN106158997B (zh) 一种掺杂氧化锡透明导电薄膜的制备方法
WO2014101104A1 (zh) 氧化锡膜及其制造方法
JP6293679B2 (ja) 酸化亜鉛コーティングを蒸着させるための化学蒸着過程、導電性ガラス物品を形成するための方法、およびそれによって生成されるコーティングされたガラス物品
WO2017119279A1 (ja) ガラス部材
CN102603207B (zh) 在玻璃基板上生长微纳结构氧化锡掺氟薄膜的方法
Karslıoğlu et al. The effect of substrate temperature on the electrical and optic properties of nanocrystalline tin oxide coatings produced by APCVD
KR20110025385A (ko) 불소가 도핑된 저저항 고투과율의 산화주석 박막 및 그 제조방법
TWI579240B (zh) 氧化錫膜及其製造方法
JPH06187832A (ja) 透明導電膜の製造方法
WO2003010104A1 (fr) Verre a faible emissivite et procede de production de celui-ci
CN106830076A (zh) 一种玻璃用纳米热反射复合功能材料的制备方法
WO2022114038A1 (ja) 断熱ガラス
WO2022255199A1 (ja) 積層膜付き基材
KR101573902B1 (ko) 불소가 도핑된 고투과율의 산화 주석 박막 제조 방법
TWI480953B (zh) 複合透明氧化物薄膜及其製造方法
CN113689992B (zh) 一种透明导电薄膜制备方法
TW201429908A (zh) 線上低輻射鍍膜玻璃的製造裝置及其製造方法
TWM483955U (zh) 線上低輻射鍍膜玻璃的製造裝置
CN104894520A (zh) 金属镁基uvc波段透明导电结构及其制备方法
KR20130134584A (ko) 폴리이미드 기재의 가시광선 투과율 향상 방법, 폴리이미드­세라믹 기재, 폴리이미드­세라믹­fto 투명전도막 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12890846

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14655112

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12890846

Country of ref document: EP

Kind code of ref document: A1