[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014199979A1 - Lithium ion secondary cell and production method for same - Google Patents

Lithium ion secondary cell and production method for same Download PDF

Info

Publication number
WO2014199979A1
WO2014199979A1 PCT/JP2014/065332 JP2014065332W WO2014199979A1 WO 2014199979 A1 WO2014199979 A1 WO 2014199979A1 JP 2014065332 W JP2014065332 W JP 2014065332W WO 2014199979 A1 WO2014199979 A1 WO 2014199979A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
electrode
lithium ion
secondary battery
ion secondary
Prior art date
Application number
PCT/JP2014/065332
Other languages
French (fr)
Japanese (ja)
Inventor
志村 健一
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2015522785A priority Critical patent/JP6384477B2/en
Publication of WO2014199979A1 publication Critical patent/WO2014199979A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • H01M50/466U-shaped, bag-shaped or folded
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a lithium ion secondary battery having a structure in which a positive electrode or a negative electrode is accommodated in a bag-shaped separator and a method for manufacturing the same.
  • lithium ion secondary batteries have a higher energy density than nickel / cadmium batteries and nickel / hydrogen batteries.
  • lithium ion secondary batteries Since lithium ion secondary batteries have a high energy density that can be stored, they can be charged and discharged with a larger current than conventional batteries. If charging or discharging is performed with a large current, heat generation in the battery increases, so heat dissipation of the battery becomes a problem. If the heat generated inside cannot be released to the outside, the battery becomes hot, and there is a concern that the performance may be deteriorated or the life may be shortened.
  • a strip-shaped positive electrode and a negative electrode are overlapped through a strip-shaped separator and wound to form a roll; a strip-shaped positive electrode;
  • a laminated electrode body in which a negative electrode is laminated via a strip-like separator.
  • a metal such as tin or silicon or an alloy or oxide thereof as a negative electrode active material as a lithium ion secondary battery having a higher energy density than before.
  • the higher the energy density of the battery the greater the energy that can be released.
  • the separator plays a role of preventing a short circuit between the positive electrode and the negative electrode and effectively moving lithium ions.
  • polyolefin-based microporous separators such as polypropylene and polyethylene have been mainly used.
  • the fine holes which are lithium ion passages in the separator, are thermally contracted and shut down, and the battery operation is performed. It is for showing the effect
  • the separator melts before the temperature rises rapidly and the shutdown effect is obtained, and there is a possibility that a short circuit between the electrodes occurs over a wide area.
  • Patent Document 1 Japanese Patent No. 4042413 shows that a high-heat-resistant material, for example, a separator made of a polyester resin, is used in a lithium ion battery instead of a polyolefin-based microporous separator.
  • Patent Document 2 Japanese Patent No. 3661104 shows that a cellulose nonwoven fabric having no melting point is used for a lithium ion secondary battery. These materials cannot be expected to have the shutdown effect of the polyolefin-based microporous membrane, but may not be short-circuited between the electrodes over a large area even at a high temperature, and may have better safety than the polyolefin-based separator.
  • Lithium-ion battery exteriors include cylindrical and square cans and those made of laminated films of metal and resin films.
  • any of the exterior bodies by providing a safety valve mechanism that operates when the electrolyte solution that has reached a high temperature evaporates and the internal pressure of the battery increases, the evaporated electrolyte solution can be released to the outside.
  • a battery having a fixed exterior body such as a can, since the deformation of the electrode body is suppressed by the exterior body, the deformation of the electrode body is small even when the internal pressure of the battery increases.
  • the exterior body expands to a pressure at which the safety valve operates, and the electrode body is deformed. If the electrode body is deformed, the electrode and the separator may be displaced and the positive electrode and the negative electrode may be short-circuited. Therefore, not only the heat-resistant separator but also prevention of displacement between the electrode and the separator is required to improve safety at high temperatures.
  • the separator In order to prevent the electrode and the separator from being displaced when the electrode body is deformed, it is effective to form the separator in a bag shape and store at least one of the positive electrode and the negative electrode therein. Since at least one of the positive electrode and the negative electrode is housed in the bag-like separator, contact between the positive electrode and the negative electrode can be prevented even if the electrode body is deformed.
  • the positive electrode is often designed to be smaller than the negative electrode or the separator. Therefore, for example, even if the sides and vertices of the electrodes and separators are aligned at the same position, the stacking positions cannot be matched.
  • the misalignment of the electrode and separator stacking causes variations in battery capacity, deposition of metallic lithium at the end of the electrode after long-term use, and a short-circuit accident between the positive and negative electrodes.
  • a method of improving the alignment accuracy at the time of lamination using a bag-shaped separator the periphery of a microporous plastic film such as polyethylene having a low melting point is welded to Patent Document 3 (Patent No. 3380935) with heat. It is shown that it is processed into a bag shape, and the positive electrode is accommodated therein and laminated with the negative electrode.
  • the positive electrode is fixed in the separator bag, if the separator and the negative electrode have the same dimensions, the stacked positions of the negative electrode, the separator, and the positive electrode can be aligned by aligning two adjacent sides.
  • Patent Document 4 Japanese Patent Laid-Open No. 2006-059717
  • a separator film containing fibers of aramid and polyimide is thermally welded at 400 ° C. to 600 ° C.
  • a technique for processing into a bag-like separator is shown.
  • the welding temperature is as high as 400 ° C to 600 ° C. For this reason, there is a possibility that the electrode is altered.
  • the method of heat-welding at a high temperature cannot be applied to cellulose that carbonizes without melting when high heat is applied.
  • Patent Document 5 Japanese Patent Laid-Open No. 2012-33399 describes the use of an adhesive as a method other than thermal welding for processing a high heat-resistant separator into a bag shape.
  • the adhesive requires application and drying, the process is complicated, and the separator is designed to absorb the liquid well. There is a problem that the inner dimensional accuracy of the separator is lowered.
  • Patent Document 6 Japanese Patent Laid-Open No. 2007-201248
  • the width of the notch is required for the separator, and the overall area becomes large, and the process for processing is complicated. is there.
  • Patent Document 7 Utility Model Publication No. 3-22857
  • Patent Document 8 Utility Model Registration Publication No. 2523460
  • Concavities and convexities in the open portions at the left and right ends are formed through a pressurizing jig composed of a meshing gear.
  • the electrode plate is placed in a bag-shaped separator that is open on only one side, there is a need for extra space on the inner dimensions of the bag, and the positioning accuracy of the electrode is lowered.
  • the separator is folded in advance and then passed between the meshing gears, but a thin separator used in a lithium ion battery, for example, a separator having a thickness of 50 ⁇ m or less, rotates the gear when passing between the meshing gears. There is a risk of breaking with power. Since the teeth of the meshing gear are limited in height and width due to rotation, it is difficult to form appropriate irregularities on a thin separator.
  • the fixed portions of the two separators are continuous, so that unnecessary air is expelled due to penetration of the electrolyte solution into the electrode laminate in the manufacturing process, and the battery is charged. This hinders the movement of the gas generated in the electrode stack during discharge to the outside of the electrode stack.
  • Patent Document 1 Japanese Patent No. 4042413
  • Patent Document 2 Japanese Patent No. 3661104
  • Patent Document 3 Japanese Patent No. 3380935
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2006-059717
  • Patent Document 5 Japanese Patent Application Laid-Open No. 2012-33399
  • Patent Document 6 Japanese Patent Application Laid-Open No. 2007-201248
  • Patent Document 7 Utility Model Publication No. Hei 3-22857
  • Patent Document 8 Utility Model Registration Publication No. 2523460
  • An object of the present invention is to provide a lithium ion secondary battery excellent in safety and a method for producing the same, using a separator having heat resistance, preventing a deviation between the electrode and the separator when a high temperature is generated.
  • another object of the present invention is to enable good and easy alignment of the positive electrode and the negative electrode, and to suppress problems caused by misalignment between the positive electrode and the negative electrode.
  • a lithium ion secondary battery in which a positive electrode and a negative electrode that are electrodes are stacked via a separator,
  • the separator has a pair of rectangular separator sheets made of a material that does not melt even when heated to 180 ° C.
  • the stacked separator sheets are fixed to each other by meshing of a meshing structure including a concave portion and a convex portion formed in at least a part of at least two sides adjacent to each other in the outer peripheral portion of the separator sheet,
  • One of the positive electrode and the negative electrode is disposed between the two separator sheets, and a lithium ion secondary battery is provided.
  • a method of manufacturing a lithium ion secondary battery in which a positive electrode and a negative electrode, which are electrodes, are stacked via a separator Preparing at least one set of two rectangular separator sheets made of a material that does not melt even when heated to 180 ° C .; Either one of the positive electrode and the negative electrode is disposed between the two separator sheets that are overlapped with each other, and the two stacked separator sheets are adjacent to each other in the outer peripheral portion of the separator sheet.
  • an electrode assembly with a separator fixed by meshing of a meshing structure comprising a concave portion and a convex portion formed on at least a part of at least two sides that meet each other;
  • the manufacturing method of the lithium ion secondary battery characterized by including is provided.
  • the present invention even in the case of a separator made of a heat-resistant material that is difficult to heat-weld, a displacement between the electrode and the separator at the time of high temperature generation is prevented, and as a result, a lithium ion secondary battery excellent in safety and A manufacturing method thereof can be provided. Furthermore, by arranging the positive electrode between two separator sheets fixed to each other, the positive electrode and the negative electrode can be aligned well and easily, so that there is little variation in characteristics, and reliability and safety are improved. Can be improved.
  • FIG. 1 is an exploded perspective view of a lithium ion secondary battery according to an embodiment of the present invention. It is a disassembled perspective view of the electrode laminated body shown in FIG. It is a disassembled perspective view of the positive electrode pinched
  • a lithium ion secondary battery includes a positive electrode and a negative electrode, which are electrodes, and a separator disposed between the positive electrode and the negative electrode.
  • the separator is made of a material that does not melt even when heated up to 180 ° C., and has a pair of separator sheets that are superposed on each other. Either one of the positive electrode and the negative electrode is composed of these two separators. It is arranged between.
  • the superposed separator sheets are fixed to each other by meshing of a meshing structure formed on at least a part of the outer periphery of the separator sheet.
  • the separator has a pair of rectangular separator sheets that are stacked on each other. At least a part of the outer peripheral portion of each separator sheet is formed with recesses and projections alternately as a meshing structure for meshing two separator sheets. These concave portions and convex portions can be formed in at least a part of each of at least two adjacent sides of the separator sheet.
  • the two separator sheets are brought into close contact with each other by the engagement of the concave and convex portions, and the two separator sheets are fixed to each other by the frictional force acting by the engagement of the concave and convex portions.
  • a positive electrode is disposed between the two separator sheets, and the active material coating surface of the positive electrode is within the plane of the separator sheet.
  • the active material coating surface of the positive electrode is contained in the active material coating surface of the negative electrode facing with the separator sheet interposed therebetween.
  • the negative electrode may be disposed between the two separator sheets, but in the following description, the case where the positive electrode is disposed between the two separator sheets will be described as an example.
  • the concave portion and the convex portion that fix the two stacked separator sheets to each other are formed along the side of the separator sheet, but are not formed over the entire length of the side, and the concave portion and the convex portion are not formed. It is preferable to create a location.
  • the separator sheets are engaged with each other over the entire length of the sides of the stacked separator sheets, in the step of injecting the electrolyte solution during the battery manufacturing process, the electrolyte solution enters the electrode laminate body, or from the electrode laminate body. There is a risk of hindering the escape of air.
  • gas may be generated inside the battery along with charging / discharging, and the movement of this gas into the gap outside the electrode stack may also be hindered by the engagement of the concave and convex portions.
  • the “engagement height” is defined by the height of the convex portion and the depth H of the concave portion that are formed on the separator sheet 22 and do not include the thickness of the separator sheet 22 shown in FIG. Since the two separator sheets 22 are in close contact with each other by the engagement of the concave portions and the convex portions formed in each, the height of the convex portions is equal to the depth of the concave portions.
  • the fixing strength of the separator was evaluated by the following method.
  • a separator sheet prepared by cutting a cellulose nonwoven fabric having a thickness of 25 ⁇ m into a width of 70 mm and a length of 100 mm was prepared.
  • Two sheets of the prepared separator sheets were stacked with a weight interposed therebetween.
  • the central part of each of the four sides of the stacked separator sheets was pressed with two pressure plates having concave and convex parts that are meshed with each other on the surface.
  • an evaluation sample was obtained in which the two separator sheets were fixed to each other by meshing the unevenness formed on the two separator sheets.
  • the pressure plate for forming the concave-convex meshing structure on the separator sheet six types having different convex part heights (concave part depths) were used.
  • the shape of the unevenness formed on the separator sheet was such that there was no flat part between the concave part and the convex part.
  • the width of the concavo-convex part was from the edge of the separator sheet to 1.5 mm on the inside, and 8 concavo-convex periods were formed respectively.
  • Two types of evaluation samples were prepared: a sample with a 100 g weight and a sample with a 20 g weight. Regarding the obtained sample, when the upper separator sheet was lifted out of the two separator sheets, the separator sheet that was not released from the fixing state was indicated as “ ⁇ ”, and the removed sheet as “X”.
  • the weight of the weight of 100 g is a value determined by experimentally obtaining a fixing force sufficient to withstand the peeling force of the separator sheet. In the case where a weight of 100 g is sandwiched between the sheets evaluated as “ ⁇ ” in the above evaluation, it is considered that the separator sheets are not fixed even if the electrode laminate is deformed. Also, the 20 g weight is used as an index for knowing whether or not the separator sheet has a certain degree of fixing force or is hardly fixed even when the separator sheets are unfixed by the 100 g weight. It was.
  • the mesh height of the mesh structure formed on the separator is preferably 100 ⁇ m or more and 400 ⁇ m or less. If the meshing height is smaller than 100 ⁇ m, the frictional force acting between the two separator sheets becomes small, and the separator sheet may not be sufficiently fixed. On the other hand, if the mesh height exceeds 400 ⁇ m, the separator sheet may be torn when the mesh structure is formed, and the force for fixing the two separators to each other may be reduced.
  • Table 2 shows the relationship between the side wall angle of the meshing structure and the fixing strength of the separator.
  • the “side wall angle” is defined by the angle ⁇ of the side wall of the concave portion or convex portion with respect to the direction perpendicular to the bottom surface of the concave portion or the top surface of the convex portion shown in FIG.
  • the separator fixing strength was evaluated in the same manner as in Experiment 1 except that the pressure plate used to form the meshing structure with the separator was changed.
  • As the pressure plate four types having different side wall angles were used.
  • the side wall angle is preferably within 37 degrees. If the angle of the side wall is larger than 37 degrees, the two separator sheets may be unfixed when a force in the direction perpendicular to the surface of the separator sheet is applied.
  • the side wall angle of the evaluation sample was between 32 degrees and 37 degrees.
  • the meshing height of the evaluation sample was between 200 ⁇ m and 300 ⁇ m.
  • a concave portion and a convex portion are formed in each separator sheet as the meshing structure.
  • both the concave portion and the convex portion are formed on one separator sheet, and at least one convex portion is formed on one separator sheet, and at least one concave portion meshing with the other is formed on the other separator sheet.
  • the mesh structure formed in the separator sheet may be sufficient.
  • the thickness of the separator sheet is preferably 50 ⁇ m or less. If the separator is thicker than 50 ⁇ m, the amount of necessary electrolyte increases, and the decrease in energy density per unit weight and volume of the battery cannot be ignored. In addition, if the separator is thick, the movement distance of lithium ions between the positive electrode and the negative electrode separated by the separator becomes long, so that the input / output characteristics of the battery may be deteriorated.
  • the material constituting the separator sheet is preferably a material that does not melt even when heated to 180 ° C., such as polyethylene terephthalate, polyimide, polyamideimide, aramid, and cellulose. More specifically, the separator sheet is preferably formed of an organic material having a melting point exceeding 180 ° C., or not thermally melted, and starting thermal decomposition at a temperature exceeding 180 ° C. In particular, using a non-woven fabric using thin fibers of these materials as the separator sheet has a large number of holes through which lithium ions in the electrolytic solution pass and prevents the short circuit between the positive electrode and the negative electrode. preferable.
  • the fiber of the inorganic material glass fiber is widely used industrially and can be easily obtained.
  • the glass fiber may break, There is a case where the engagement is easily disengaged. In such a case, it is preferable to use the glass cloth in combination with the resin because the glass fiber is prevented from being broken and the frictional force between the glass cloths is increased.
  • FIG. 11 shows an example of a separator sheet made of glass cloth combined with resin.
  • the separator sheet 32 shown in FIG. 11 includes a glass cloth 32a that is a glass fiber fabric and a resin 32b attached to the glass cloth 32a.
  • a separator sheet 32 can be obtained, for example, by impregnating a molten resin 32b from above a glass cloth 32a placed on a mesh and solidifying the resin 32b. Since the resin 32b that could not be held by the glass cloth 32a is discharged under the mesh, as shown in FIG. 11, the resin 32b does not penetrate into the mesh of the glass cloth 32a, and the glass fiber is left in a state of leaving the mesh. to bound. Therefore, even if the glass cloth is combined with the resin, the ion conductivity required for the separator can be ensured.
  • the frictional force between the separator sheets can be increased by sandwiching a resin sheet having a thickness equal to or smaller than that of an electrode in a portion that forms a meshing structure of two separator sheets.
  • the two adjacent sides of the electrode (positive electrode or negative electrode) disposed between the separator sheets are formed into this meshing structure.
  • the electrode usually has an extended portion that is extended for current extraction, but the shape excluding this extended portion is rectangular like the separator sheet, so it is easy to abut the electrode on the meshing structure. is there.
  • the meshing structure is preferably formed on the four sides of the separator sheet.
  • the positions of the rectangular electrodes arranged between the separator sheets are regulated by the meshing structure on all four sides, so that the active material coating portion of the electrodes sandwiched between the separator sheets may protrude from the separator. Disappear.
  • To form the meshing structure on the four sides of the separator sheet first form the meshing structure on the two sides of the stacked separator sheet, fix the two separator sheets, and insert the electrode with the position between the separator sheets aligned To do. At this time, the shape of the electrode and the arrangement of the meshing structure are set so that the extension portion for extracting the current from the electrode protrudes out of the separator sheet.
  • a meshing structure is formed on the remaining two sides of the stacked separator sheets, and the separator sheets are fixed also on the remaining two sides. At this time, a meshing structure is not formed in a portion sandwiching the extended portion protruding outside the separator sheet.
  • an electrode is placed on one separator sheet, and another separator sheet is placed thereon, and then a meshing structure is formed on the four sides around the electrode to fix the separator sheets together.
  • a plurality of electrodes are placed on a sufficiently large separator sheet with a space between each other, and another separator sheet is placed thereon to form a meshing structure on the four sides around each electrode. May be. Thereafter, the separator sheet is cut into a predetermined size at a predetermined location, whereby the electrode accommodated in the bag-shaped separator can be efficiently produced.
  • the structure of the electrode body of the lithium ion secondary battery is roughly classified into a wound type and a laminated type, but the present invention is preferably applied to the laminated type.
  • a laminated laminate type in which an electrode laminate is housed in an exterior body made of a laminate film of a resin film and a metal film.
  • a laminated laminate type secondary battery will be described.
  • FIG. 1 is an exploded perspective view of a lithium ion secondary battery 1 according to an embodiment of the present invention.
  • the electrode laminate 10 is surrounded by the exterior materials 11 and 12 from both sides in the thickness direction. Further, the exterior body made of the exterior materials 11 and 12 also contains an electrolyte solution.
  • a negative electrode tab 13 and a positive electrode tab 14 are connected to the electrode laminate 10, and each part protrudes from the exterior body.
  • the electrode laminate 10 is configured by alternately laminating a plurality of negative electrodes 21 and a plurality of electrode assemblies 25 with separators.
  • the electrode assembly with a separator 25 includes two separator sheets 22 that are overlapped with each other, and a positive electrode 27 that is disposed therebetween.
  • the two separator sheets 22 are fixed to each other by a meshing structure 26 formed on the outer peripheral portion thereof.
  • the separator sheet 22 prevents the negative electrode 21 and the positive electrode 27 from coming into direct contact.
  • the active material coated surface of the negative electrode 21 has a larger area than the active material coated surface of the positive electrode 27, and the active material coated surface of the positive electrode 27 is laminated with the negative electrode 21 in the corresponding negative electrode. It is within the active material coating surface.
  • the negative electrode 21 and the positive electrode 27 have extensions 23a and 24a, respectively.
  • the extension part 24a of the positive electrode 27 protrudes from the separator sheet 22, and the positive electrode 21 and the negative electrode 27 are laminated so that the extension parts 23a and 24a extend outside the electrode laminate 10 without interfering with each other.
  • the extensions 23a of all the negative electrodes 21 are collected together and connected to the negative electrode tab 13 shown in FIG. 1 by welding.
  • the positive portions 27 of all the positive electrodes 27 are gathered together and connected to the positive electrode tab 14 shown in FIG. 1 by welding.
  • the lithium ion secondary battery of this embodiment includes a negative electrode having a negative electrode active material.
  • the negative electrode active material is bound on the negative electrode current collector by a negative electrode binder.
  • FIG. 4A is a schematic cross-sectional view of a negative electrode.
  • the negative electrode 21 includes a negative electrode current collector 23 formed of a metal foil, and a negative electrode active material 41 coated on both surfaces of the negative electrode current collector 23.
  • the negative electrode current collector 23 is formed having an extension 23a connected to the negative electrode tab 13 in FIG. 1, and the negative electrode active material 41 is not applied to the extension 23a.
  • the negative electrode active material in the present embodiment is not particularly limited.
  • the carbon material (a) that can occlude and release lithium ions, the metal (b) that can be alloyed with lithium, and the lithium ions are occluded and released.
  • the metal oxide (c) etc. which can be mentioned.
  • Examples of the carbon material (a) include carbon, amorphous carbon, diamond-like carbon, carbon nanotube, or a composite thereof.
  • carbon with high crystallinity has high electrical conductivity, and is excellent in adhesiveness and voltage flatness with a negative electrode current collector made of a metal such as copper.
  • amorphous carbon having low crystallinity has a relatively small volume expansion, it has a high effect of relaxing the volume expansion of the entire negative electrode, and deterioration due to non-uniformity such as crystal grain boundaries and defects hardly occurs.
  • metal (b) examples include Al, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn, La, or alloys of two or more thereof. It is done. Moreover, you may use these metals or alloys in mixture of 2 or more types. These metals or alloys may contain one or more non-metallic elements.
  • the metal oxide (c) examples include silicon oxide, aluminum oxide, tin oxide, indium oxide, zinc oxide, lithium oxide, and composites thereof.
  • tin oxide or silicon oxide is included as a negative electrode active material, and it is more preferable that silicon oxide is included. This is because silicon oxide is relatively stable and hardly causes a reaction with other compounds.
  • one or more elements selected from nitrogen, boron, and sulfur may be added to the metal oxide (c), for example, 0.1 to 5% by mass. By carrying out like this, the electrical conductivity of a metal oxide (c) can be improved.
  • the metal oxide (c) has an amorphous structure.
  • the metal oxide (c) having an amorphous structure can suppress volume expansion of the carbon material (a) and the metal (b) which are other negative electrode active materials. Although this mechanism is not clear, it is presumed that the formation of a film on the interface between the carbon material (a) and the electrolytic solution has some influence due to the amorphous structure of the metal oxide (c).
  • the amorphous structure is considered to have relatively few elements due to non-uniformity such as crystal grain boundaries and defects.
  • the metal oxide (c) does not have an amorphous structure, a peak specific to the metal oxide (c) is observed, but all or part of the metal oxide (c) is amorphous. In the case of having a structure, the intrinsic peak of the metal oxide (c) is broad and observed.
  • the metal (b) is preferably silicon, and the metal oxide (c) is preferably silicon oxide.
  • the negative electrode active material is preferably composed of a composite of silicon, silicon oxide, and carbon material. It is also possible to use a material in which the negative electrode active material is chemically and thermally doped with lithium in advance. For example, chemical dope can be obtained by a method in which lithium is forcibly doped into an active material using a solvent containing a lithium metal or a lithium compound and a reducing agent. In thermal doping, the negative electrode active material can be doped with lithium by bringing the negative electrode active material into contact with lithium metal and warming the whole.
  • the binder for the negative electrode is not particularly limited.
  • polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, styrene-butadiene copolymer Rubber, polytetrafluoroethylene, polypropylene, polyethylene, polyimide, polyamideimide, polyacrylic acid, or the like can be used.
  • polyimide or polyamideimide is preferred because of its high binding properties.
  • the amount of the binder for the negative electrode to be used is preferably 5 to 25 parts by mass with respect to 100 parts by mass of the negative electrode active material from the viewpoints of “sufficient binding force” and “high energy” which are in a trade-off relationship. .
  • the negative electrode current collector aluminum, nickel, stainless steel, chromium, copper, silver, and alloys thereof are preferable in view of electrochemical stability.
  • the shape include foil, flat plate, and mesh.
  • the lithium ion secondary battery of this embodiment includes a positive electrode having a positive electrode active material.
  • the positive electrode is formed by binding the positive electrode active material so as to cover the positive electrode current collector with the positive electrode binder.
  • FIG. 4B is a schematic cross-sectional view of the positive electrode.
  • the positive electrode 27 includes a positive electrode current collector 24 formed of a metal foil, and a positive electrode active material 42 coated on both surfaces of the positive electrode current collector 24.
  • the positive electrode current collector 24 is formed to have an extension part 24a connected to the positive electrode tab 14 of FIG. 1, and the positive electrode active material 42 is not applied to the extension part 24a.
  • the positive electrode active material has a layered structure such as LiMnO 2 , LixMn 2 O 4 (0 ⁇ x ⁇ 2), Li 2 MnO 3 , Li x Mn 1.5 Ni 0.5 O 4 (0 ⁇ x ⁇ 2).
  • Lithium transition metal oxides whose specific transition metals are less than half, those in which these lithium transition metal oxides have an excess of Li over the stoichiometric composition, those having an olivine structure such as LiFePO 4 , etc. It is done.
  • these metal oxides were partially substituted with Al, Fe, P, Ti, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn, La, etc. Materials can also be used.
  • a positive electrode active material can be used individually by 1 type or in combination of 2 or more types.
  • radical materials or the like can be used as the positive electrode active material.
  • the positive electrode binder the same as the negative electrode binder can be used.
  • the amount of the positive electrode binder to be used is preferably 2 to 15 parts by mass with respect to 100 parts by mass of the positive electrode active material from the viewpoints of “sufficient binding force” and “high energy” which are in a trade-off relationship. .
  • the positive electrode current collector 24 the same one as the negative electrode current collector can be used.
  • a conductive auxiliary material may be added to the positive electrode active material coating layer for the purpose of reducing impedance.
  • the conductive auxiliary material include carbonaceous fine particles such as graphite, carbon black, and acetylene black.
  • a nonaqueous electrolytic solution containing a lithium salt (supporting salt) and a nonaqueous solvent that dissolves the supporting salt can be used.
  • an aprotic organic solvent such as carbonate ester (chain or cyclic carbonate), carboxylic acid ester (chain or cyclic carboxylic acid ester), and phosphate ester can be used.
  • carbonate solvents examples include cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), and vinylene carbonate (VC); dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate. (EMC), chain carbonates such as dipropyl carbonate (DPC); and propylene carbonate derivatives.
  • PC propylene carbonate
  • EC ethylene carbonate
  • BC butylene carbonate
  • VVC vinylene carbonate
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • DPC dipropyl carbonate
  • propylene carbonate derivatives examples include cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), and vinylene carbonate (VC); dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate
  • carboxylic acid ester solvent examples include aliphatic carboxylic acid esters such as methyl formate, methyl acetate, and ethyl propionate; and lactones such as ⁇ -butyrolactone.
  • phosphate ester examples include trimethyl phosphate, triethyl phosphate, tripropyl phosphate, trioctyl phosphate, triphenyl phosphate, and the like.
  • solvents that can be contained in the non-aqueous electrolyte include, for example, ethylene sulfite (ES), propane sultone (PS), butane sultone (BS), dioxathilane-2,2-dioxide (DD), and sulfolene.
  • ES ethylene sulfite
  • PS propane sultone
  • BS butane sultone
  • DD dioxathilane-2,2-dioxide
  • sulfolene sulfolene
  • LiPF 6 LiAsF 6 , LiAlCl 4 , LiClO 4 , LiBF 4 , LiSbF 6 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiC (CF 3 SO 2 ) 3 , LiN ( CF 3 SO 2) 2 normal lithium salt which can be used in lithium ion batteries or the like can be used.
  • the supporting salt can be used alone or in combination of two or more.
  • Non-aqueous solvents can be used alone or in combination of two or more.
  • the exterior body can be appropriately selected as long as it is stable to the electrolytic solution and has a sufficient water vapor barrier property.
  • the exterior body may be comprised with a single member and may be comprised combining several members.
  • FIG. 5 is a schematic cross-sectional view for explaining an example of a method for forming a meshing structure composed of a concave portion and a convex portion on two stacked separator sheets 22.
  • the side portions of the two separator sheets 22 overlapped are sandwiched, and the convex portions 51a of the pressure plate 51 Pressurization is performed so that the concave portion 52b of the pressure plate 52, the concave portion 51b of the pressure plate 51, and the convex portion 52a of the pressure plate 52 are engaged with each other.
  • the meshing structure which consists of the recessed part 61 and the convex part 62 as shown in FIG.
  • the separator sheet 22 is broken even if the separator sheet 22 is thin, for example, having a thickness of less than 50 ⁇ m.
  • a meshing structure can be formed satisfactorily without any problems.
  • the number of concave portions 51b and 52b and convex portions 51a and 52a formed in the pressure plates 51 and 52 may be arbitrary. For example, even if the pressurizing plates 51 and 52 each have one concave portion 51b and 52b and the convex portions 51a and 52a, the separator sheet 22 is repeatedly pressed and moved as appropriate. A meshing structure having a desired number of concave portions and convex portions can be formed on the 22.
  • the planar shapes of the concave portions and the convex portions formed on the surfaces of the pressure plate 51 and the plate 52 are formed to have a bent portion, the concave portions 71 and the convex portions 72 formed in the separator sheet 22 as shown in FIG.
  • the outer peripheral length of the can be increased.
  • the fixing force between the separator sheets 22 can be increased.
  • the bending is only at one central portion, but the uneven portion may be zigzag at two or more locations.
  • FIG. 8 is a view for explaining a method for producing an electrode assembly with a separator having a structure in which a positive electrode 27 is sandwiched between two separators 22.
  • Step A1 First, two separator sheets 22 are stacked.
  • Step A2 Next, a meshing structure 26 is formed on two adjacent sides of the stacked separator sheets 22, and the two separator sheets 22 are fixed to each other.
  • Step A3 Next, the positive electrode 27 is inserted between the two separator sheets 22. At this time, the positional relationship between the positive electrode 27 and the separator sheet 22 is determined by abutting the two sides of the positive electrode 27 with the two sides fixed by the meshing structure 26 of the separator sheet 22.
  • Step A4 Next, in order to prevent the positive electrode 27 from shifting, a meshing structure is formed on the remaining two sides of the stacked separator sheets 22.
  • step A2 the engagement structure 26 is formed on the three sides excluding the upper side from which the extension for the positive electrode 27 current extraction projects, and the electrode 27 is inserted from the opening on the other side. May be.
  • the operation of the step A3 for inserting the positive electrode 27 between the separator sheets 22 may be difficult as compared with the case where the two adjacent sides are fixed.
  • Step B1 First, the positive electrode 27 is placed on one separator sheet 81. At this time, the number of the positive electrodes 27 may be one. However, as shown in FIG. 9, the size of the separator sheet 81 is set to a size that allows the plurality of positive electrodes 27 to be arranged at intervals. This is preferable because it is advantageous for shortening the production time.
  • Step B2 Next, another separator sheet 82 is overlaid on the separator sheet 81 on which one or more positive electrodes 27 are placed.
  • Step B3 Next, the meshing structure 26 is formed in portions of the two separator sheets 81 and 82 that are overlapped, corresponding to the four sides around the positive electrode 27.
  • Step B4 the separator sheets 81 and 82 are cut at predetermined positions to obtain the electrode assembly 25 with a separator including one positive electrode 27 and the meshing structure 26 around it.
  • the separator sheets 81 and 82 are cut at positions between the respective positive electrodes 27, whereby each positive electrode 27 and its surrounding meshing structure are cut. A plurality of electrode assemblies 25 with separators 27 are obtained.
  • a method for manufacturing the electrode laminate will be described with reference to FIG. As shown in FIG. 10, two positioning blocks 101 arranged orthogonally are used for manufacturing the electrode stack, in order to determine the positions of two adjacent sides of the stack.
  • An electrode stack is produced by alternately stacking the negative electrode 21 and the electrode assembly 25 with a separator containing the positive electrode on the positioning block 101 while abutting two adjacent sides.
  • the extension of the negative electrode 21 and the extension of the positive electrode housed in the assembly 25 with separator are not overlapped.
  • the negative electrode tab is connected to the negative electrode extension by welding
  • the positive electrode tab is connected to the positive electrode extension by welding.
  • a positive electrode active material a lithium manganese composite oxide (LiMn 2 O 4 ) material is mixed in an amount of 85% by mass, acetylene black as a conductive auxiliary agent is 7% by mass, and a binder is 8% by mass of polyvinylidene fluoride.
  • NMP methylpyrrolidone
  • the active material application portion had a width of 66 mm and a length of 96 mm.
  • the extension portion had a length of 15 mm and a width of 20 mm along the long side direction of the active material application portion. No active material is applied to the extension.
  • a negative electrode active material 90% by mass of a graphite material and 10% by mass of polyvinylidene fluoride as a binder were mixed and dispersed in N-methylpyrrolidone (NMP) to form a slurry, and then a negative electrode current collector having a thickness of 10 ⁇ m. It was applied to copper foil and dried. After the active material was applied to both sides of the current collector, the electrode was pressed to produce a thickness of 65 ⁇ m after the treatment. Further, this was punched into a shape with an extended portion protruding.
  • the active material application portion had a width of 70 mm and a length of 100 mm.
  • the extension part was formed with a length of 15 mm and a width of 20 mm along the long side direction of the active material application part. No active material is applied to the extension.
  • a separator sheet As a separator sheet, a cellulose nonwoven fabric having a thickness of 25 ⁇ m was cut into a strip shape having a width of 70 mm and a length of 100 mm. Two sheets of the obtained strip-shaped separator sheets were overlapped, and the two adjacent sides were pressed between two pressure plates having a concave portion and a convex portion having a rectangular planar shape on the surface. As a result, the two separator sheets were formed with a meshing structure in which the concave portions and the convex portions by the pressure plate were meshed with each other, and the two separator sheets were fixed by this meshing structure.
  • the meshing structure has no flat portion between the concave portion and the convex portion, the length of the bottom surface of the concave portion and the top surface of the convex portion in the direction along the side of the separator sheet is 0.4 mm, and the period of the concave and convex portions is 1.
  • the length was 4 mm, and the length was 8 periods at both ends of the side of the overlapping separator sheet.
  • the width of the meshing structure defined by the length of the meshing structure from the edge of the separator sheet in the direction perpendicular to the side of the separator sheet was 1.5 mm.
  • the meshing height of the concave and convex portions is 0.4 mm, and the angle of the side wall portion of the meshing structure calculated from the above dimensions is 37 degrees.
  • the positive electrode was sandwiched between the two separator sheets while the two sides of the positive electrode were brought into contact with the meshing structure formed on the two sides of the separator sheet and aligned.
  • the same meshing structure was formed on the two sides where the separator sheet was not fixed, and the separator sheet was fixed on the four outer peripheral sides of the positive electrode.
  • the electrode assembly with a separator which accommodated the positive electrode was produced.
  • the meshing structure was not formed in the part of the separator sheet from which the extension part of the positive electrode protruded.
  • Lamination of the electrodes that is, lamination of the negative electrode and the electrode assembly with a separator was performed using the same positioning block as in FIG. The stacking was performed in the order of the negative electrode, the electrode assembly with separator, and the negative electrode so that the four positive electrodes and the five negative electrodes were alternately overlapped.
  • the outermost surface is a negative electrode, but does not operate as a battery because there is no positive electrode surface facing it.
  • the positive electrode tab and the negative electrode tab were joined to the extension part of the positive electrode and the negative electrode extension part of the electrode laminate by ultrasonic welding, respectively.
  • the electrode laminated body to which the positive electrode tab and the negative electrode tab were joined was sealed in the exterior body with the positive electrode tab and the negative electrode tab protruding, thereby producing a battery.
  • the sealing of the electrode laminate was performed according to the following procedure.
  • the electrode laminate is. It arrange
  • the laminated laminate films were heat-welded on the three sides of the outer periphery of the electrode laminate.
  • an electrolyte solution was injected into the laminate film from the remaining one side not thermally welded as a liquid injection port. After injecting the electrolytic solution, the injection port was sealed by heat welding in a vacuum atmosphere, thereby completing the battery.
  • the electrolytic solution a solution in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 1: 2 was used as a solvent, and 1 mol of LiPF 6 was dissolved per liter of the solvent.
  • the number of internal short circuits of the battery before charging was 0, the number of internal precipitation after 100 cycles of the charge / discharge test was 0, and when heated to 180 ° C., the battery outer body swelled due to the evaporation of the electrolyte during the temperature rise. A part of the side of the welded outer package was opened, but there were no internal short circuits.
  • the separator covered the positive electrode, and there was no place where the positive electrode and the negative electrode contacted.
  • Example 2 ⁇ Production of battery> After the two sides of the positive electrode were sandwiched between the separator sheets while abutting the adjacent long and short sides fixed to the separator sheet and aligning the positions, no meshing structure was formed on the remaining two sides of the separator sheet. A battery was fabricated in the same manner as in Example 1 except for this. When the electrodes were stacked, the two sides fixed to the separator sheet were abutted against the positioning block shown in FIG. 10 for positioning.
  • Example 3 ⁇ Production of battery> A 30 ⁇ m thick nonwoven fabric formed from polyimide microfibers was used as a separator sheet. Two separator sheets were overlapped with one polypropylene sheet sandwiched between locations where the separator sheet meshing structure was formed. The thickness of the polypropylene sheet was 25 ⁇ m. The sandwiched polypropylene sheet was arranged so as not to be applied to the positive electrode. Otherwise, the battery was fabricated in the same manner as in Example 1.
  • the reason why the internal short circuit did not occur even when heated to a temperature exceeding the melting point of polypropylene is considered to be that the molten polypropylene stayed between the polyimide nonwoven fabrics even at a temperature higher than the melting temperature of polypropylene. It is presumed that the polypropylene stayed between the polyimide nonwoven fabrics strengthened the fixing force between the polyimide nonwoven fabrics due to the meshing structure formed on the polyimide nonwoven fabric, and prevented the polyimide sheet from shifting.
  • Example 4 ⁇ Production of battery> A glass cloth having a thickness of 25 ⁇ m in which E glass fibers were woven was used as a separator. The weaved glass cloth is easily misaligned. Therefore, the texture of the glass cloth was fixed by superimposing the polypropylene film on the glass cloth and heating it to 200 ° C. to melt and infiltrate and solidify it between the glass fibers. The amount of polypropylene was 20% by weight with respect to the entire separator sheet. Otherwise, the battery was fabricated in the same manner as in Example 1.
  • Example 5 ⁇ Production of battery>
  • the shape of the meshing structure formed on the separator sheet is such that there is no flat portion between the concave portion and the convex portion, and the length of the bottom surface of the concave portion and the top surface of the convex portion in the direction along the side of the separator sheet is 0.4 mm.
  • the period of the unevenness was 1.0 mm, and 8 periods were formed at both ends of the sides of the separator sheets that were superimposed.
  • the meshing height of the concave and convex portions is 0.1 mm, and the angle of the side wall portion of the meshing structure calculated from the above dimensions is 34 degrees. Otherwise, the battery was fabricated in the same manner as in Example 1.
  • a separator sheet As a separator sheet, a cellulose nonwoven fabric having a thickness of 25 ⁇ m was cut into a rectangular shape having a width of 140 mm and a length of 100 mm. Two positive electrodes were placed side by side on one separator sheet. At this time, the 100 mm side of the separator sheet and the 96 mm side of the positive electrode are parallel, the distance between the sides of the adjacent positive electrode is 4 mm, the other positive electrode side (excluding the extension) and the side of the separator sheet The distance was set to 2 mm. Next, another separator sheet was stacked thereon.
  • Example 1 a distance of 0.5 mm from the four sides of each of the two positive electrodes was taken, and an interlocking structure composed of concave portions and convex portions was formed on the overlapping separator sheets.
  • the meshing structure similar to that of Example 1 was formed except that the width of the meshing structure between adjacent positive electrodes (the length of the meshing structure in the direction perpendicular to the direction along the side of the positive electrode) was 3 mm.
  • the separator sheet was cut at the center of a 4 mm gap between adjacent positive electrodes. Thereby, two electrode assemblies with separators similar to those obtained in Example 1 were obtained at the same time.
  • a battery was produced in the same manner as in Example 1 using the separator-attached electrode assembly thus produced.
  • Example 7 ⁇ Production of battery>
  • a polypropylene sheet is not sandwiched between separator sheets made of a polyimide nonwoven fabric, and the planar shape of the meshing structure is changed from a rectangle to a shape bent at the center part, as in Example 3.
  • a battery was produced.
  • the bending angle in the planar shape of the meshing structure was 120 degrees.
  • Example 1 ⁇ Production of battery> A battery was produced in the same manner as in Example 1 except that a polypropylene microporous sheet having a thickness of 25 ⁇ m was used as the separator sheet and the separator sheets were fixed to each other by heat welding.
  • Example 2 ⁇ Production of battery> A battery was produced in the same manner as in Example 1 except that the meshing structure was not formed on the separator sheet, that is, the separator sheets were not fixed to each other.
  • the same positioning block as in Example 1 was used for alignment at the time of lamination, and the negative electrode and separator sheet were aligned by abutting against the positioning block, but the positive electrode was small in size and could be abutted against the positioning block. The position was adjusted visually.
  • Example 1 a cellulose nonwoven fabric having a thickness of 25 ⁇ m was used as a separator sheet.
  • the meshing structure has no flat portion between the concave portion and the convex portion, the length of the bottom surface of the concave portion and the top surface of the convex portion in the direction along the side of the separator sheet is 0.4 mm, and the period of the concave and convex portions is 1.3 mm. It was formed with a length of about 8 cycles (about 10 mm) at both ends of the sides of the stacked separator sheets.
  • the meshing height of the concave and convex portions is 0.2 mm, and the angle of the side wall portion of the meshing structure calculated from these dimensions is 45 degrees.
  • Example 2 As in Example 1, a cellulose nonwoven fabric having a thickness of 25 ⁇ m was used as a separator sheet.
  • the meshing structure has no flat portion between the concave portion and the convex portion, the length of the bottom surface of the concave portion and the top surface of the convex portion in the direction along the side of the separator sheet is 0.4 mm, and the period of the concave and convex portions is 1.0 mm. It was formed with a length of 8 cycles at both ends of the sides of the separator sheets that were overlapped.
  • the meshing height of the concave and convex portions is 0.08 mm, and the angle of the side wall portion of the meshing structure calculated from these dimensions is about 37 degrees.
  • the positive electrode was sandwiched between the separator sheets while abutting the two sides of the positive electrode against the fixing position of the separator sheet, and fixing the separator sheets to each other when a strong force was applied when the positive electrode was applied. There was something that came off.
  • Example 3 As in Example 1, a cellulose nonwoven fabric having a thickness of 25 ⁇ m was used as a separator sheet.
  • the meshing structure has no flat portion between the concave portion and the convex portion, the length of the bottom surface of the concave portion and the top surface of the convex portion in the direction along the side of the separator sheet is 0.4 mm, and the period of the concave and convex portions is 1.4 mm. It was formed with a length of 8 cycles at both ends of the sides of the separator sheets that were overlapped.
  • the meshing height of the concave and convex portions is 0.5 mm, and the angle of the side wall portion of the meshing structure calculated from these dimensions is about 29 degrees.
  • the positive electrode was sandwiched between the separator sheets while abutting the two sides of the positive electrode against the fixing position of the separator sheet, and fixing the separator sheets to each other when a strong force was applied when the positive electrode was applied. There was something that came off.
  • separator sheets made of a material having high heat resistance that does not melt even when heated up to 180 ° C. are superposed, and both are fixed to each other with a meshing structure of concave and convex portions, and the positive electrode is sandwiched therebetween. It was confirmed that, in the lithium ion battery having the laminated electrode body, the effect of eliminating the stacking deviation inside the laminated electrode body and suppressing the internal short circuit when exposed to high temperature can be obtained by arranging.
  • Example 3 a nonwoven fabric made of polyimide fibers is used as a separator sheet, and a polypropylene sheet is sandwiched between two separator sheets.
  • this polypropylene sheet is not an essential component.
  • polyamide fibers and aramid fibers which are one of the materials that do not melt even when heated up to 180 ° C, have a small variation in fiber diameter, so that the fixing force between separator sheets due to the meshing structure is lower than other fiber materials. There is a small tendency. Even in such a case, for example, the number of concave portions and convex portions is increased, the height of meshing is increased, the angle of the side walls of the concave portions and convex portions is decreased, or the meshing structure as in Example 7 is achieved.
  • the fixing force between the separator sheets can be further increased by devising the planar shape or by combining two or more of these.
  • the present invention can be used in all industrial fields that require a power source and industrial fields related to the transport, storage and supply of electrical energy.
  • power supplies for mobile devices such as mobile phones and laptop computers, electric vehicles such as electric cars, hybrid cars, electric bikes, electric assist bicycles, power supplies for mobile and transport media such as trains, satellites, and submarines, UPS It can be used for backup power sources such as, power storage facilities that store power generated by solar power generation, wind power generation, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

The purpose of the present invention is to prevent misalignment of the electrodes and the separator when high temperatures occur, while also employing a separator having heat resistance. This lithium ion secondary cell has an electrode laminate (10) in which negative electrodes (21) and electrode assemblies (25) with attached separators are laminated in alternating fashion. The electrode assemblies (25) with attached separators have two separator sheets (22) made from a material that does not melt even when heated to 180°C, and a positive electrode arranged therebetween. The juxtaposed separator sheets (22) are secured to one another by a meshing structure (26) comprising recessed portions and protruding portions, formed in at least portions of at least two neighboring sides among the peripheral edge portions thereof.

Description

リチウムイオン二次電池およびその製造方法Lithium ion secondary battery and manufacturing method thereof
 本発明は、正極または負極が、袋状に形成されたセパレータに収容された構造を有するリチウムイオン二次電池およびその製造方法に関する。 The present invention relates to a lithium ion secondary battery having a structure in which a positive electrode or a negative electrode is accommodated in a bag-shaped separator and a method for manufacturing the same.
 ノート型パソコン、携帯電話、ハイブリッド自動車などの急速な市場拡大に伴い、キャパシタやリチウムイオン二次電池などの蓄電デバイスが盛んに研究されている。中でもリチウムイオン二次電池は、ニッケル・カドミウム電池、ニッケル・水素電池などと比べて、高いエネルギー密度を持つ。 With the rapid market expansion of notebook computers, mobile phones, hybrid cars, etc., energy storage devices such as capacitors and lithium ion secondary batteries are being actively researched. In particular, lithium ion secondary batteries have a higher energy density than nickel / cadmium batteries and nickel / hydrogen batteries.
 リチウムイオン二次電池は、蓄えることのできるエネルギー密度が高いため、従来の電池とくらべて大きな電流で充電と放電をすることが可能である。大きな電流で充電や放電をすると、電池内部の発熱が増えるため、電池の放熱が問題となる。内部で発生した熱を外部に逃がすことができないと電池が熱くなり、性能が低下することや寿命が短くなることが懸念される。 Since lithium ion secondary batteries have a high energy density that can be stored, they can be charged and discharged with a larger current than conventional batteries. If charging or discharging is performed with a large current, heat generation in the battery increases, so heat dissipation of the battery becomes a problem. If the heat generated inside cannot be released to the outside, the battery becomes hot, and there is a concern that the performance may be deteriorated or the life may be shortened.
 リチウムイオン二次電池の電極体の構造には、帯状の正極と負極を同じく帯状のセパレータを介して重ねあわせ、これを巻き取ってロールを形成する捲回型電極体と、短冊状の正極と負極を、同じく短冊状のセパレータを介して積層した、積層型電極体がある。積層型電極体を用いると、同じ充放電容量の捲回型電極体と比べて、平坦で表面積の大きい電池となる。その平坦な形状のため、積層型電極体はリチウムイオン電池に必要な放熱性能を確保する上で有利である。 In the structure of the electrode body of the lithium ion secondary battery, a strip-shaped positive electrode and a negative electrode are overlapped through a strip-shaped separator and wound to form a roll; a strip-shaped positive electrode; There is a laminated electrode body in which a negative electrode is laminated via a strip-like separator. When a laminated electrode body is used, a battery having a flat surface area and a large surface area is obtained as compared with a wound electrode body having the same charge / discharge capacity. Due to the flat shape, the laminated electrode body is advantageous in securing the heat dissipation performance required for the lithium ion battery.
 現在、従来よりも高いエネルギー密度をもつリチウムイオン二次電池として、スズやシリコンなどの金属あるいはそれらの合金や酸化物を負極活物質として利用することが提案されている。しかし、高エネルギー密度の電池ほど、放出できるエネルギーが大きくなるため、安全性についての配慮が必要になる。 Currently, it has been proposed to use a metal such as tin or silicon or an alloy or oxide thereof as a negative electrode active material as a lithium ion secondary battery having a higher energy density than before. However, the higher the energy density of the battery, the greater the energy that can be released.
 リチウムイオン二次電池等の蓄電デバイスにおいて、セパレータは、正極と負極の短絡を防ぎ、かつリチウムイオンを効果的に移動させる役割を果たす。これまで、ポリプロピレンやポリエチレンなど、ポリオレフィン系の微多孔質セパレータが、主として用いられてきた。その理由の一つは、万一、電池が過大放電などで想定以上に発熱したとき、セパレータのリチウムイオンの通り道である微細な孔が熱収縮して塞がり、イオンの通り道をシャットダウンして電池動作を停止する作用を示すためである。しかし、高エネルギー密度の電池では、温度が急激に上がってシャットダウン効果が得られる前にセパレータが溶融してしまい、広い面積で電極間の短絡が発生する可能性がある。 In power storage devices such as lithium ion secondary batteries, the separator plays a role of preventing a short circuit between the positive electrode and the negative electrode and effectively moving lithium ions. So far, polyolefin-based microporous separators such as polypropylene and polyethylene have been mainly used. One of the reasons is that when the battery generates heat more than expected due to excessive discharge, etc., the fine holes, which are lithium ion passages in the separator, are thermally contracted and shut down, and the battery operation is performed. It is for showing the effect | action which stops. However, in a battery having a high energy density, the separator melts before the temperature rises rapidly and the shutdown effect is obtained, and there is a possibility that a short circuit between the electrodes occurs over a wide area.
 ポリオレフィン系の微多孔質セパレータに替えて、高耐熱性材料、たとえば、ポリエステル系樹脂からなるセパレータをリチウムイオン電池において使用することが、特許文献1(特許第4042413号公報)で示されている。また、融点を持たないセルロースの不織布をリチウムイオン二次電池に用いることが、特許文献2(特許第3661104号公報)で示されている。これらの材料は、ポリオレフィン系の微多孔膜のもつシャットダウン効果は期待できないが、高い温度でも、広い面積での電極間の短絡が起きないので、ポリオレフィン系セパレータよりも安全性に優れる場合がある。 Patent Document 1 (Japanese Patent No. 4042413) shows that a high-heat-resistant material, for example, a separator made of a polyester resin, is used in a lithium ion battery instead of a polyolefin-based microporous separator. Patent Document 2 (Japanese Patent No. 3661104) shows that a cellulose nonwoven fabric having no melting point is used for a lithium ion secondary battery. These materials cannot be expected to have the shutdown effect of the polyolefin-based microporous membrane, but may not be short-circuited between the electrodes over a large area even at a high temperature, and may have better safety than the polyolefin-based separator.
 高温に曝されたリチウムイオン電池の安全性には、電極体の変形も関わっていると考えられる。リチウムイオン電池の外装体には、円筒形や角型の缶によるものと、金属フィルムと樹脂フィルムを重ねあわせたラミネートフィルムで形成したものがある。いずれの外装体に於いても、高温になった電解液が気化して電池の内圧が上がった時に作動する安全弁機構を設けることで、気化した電解液を外部に逃がすことができる。缶のような決まった形の外装体をもつ電池では、電極体の変形が外装体によって押さえこまれるので、電池の内圧が上がっても電極体の変形は少ない。これに対して、ラミネートフィルムによる外装体をもつ電池の内部圧力が増加すると、安全弁が動作する圧力まで外装体が膨張するため、電極体が変形する。電極体が変形すると、電極とセパレータがずれて正極と負極が短絡する恐れがある。したがって、耐熱性のセパレータだけではなく、電極とセパレータのずれを防止することも、高温での安全性向上には求められる。 It is considered that the deformation of the electrode body is also related to the safety of lithium-ion batteries exposed to high temperatures. Lithium-ion battery exteriors include cylindrical and square cans and those made of laminated films of metal and resin films. In any of the exterior bodies, by providing a safety valve mechanism that operates when the electrolyte solution that has reached a high temperature evaporates and the internal pressure of the battery increases, the evaporated electrolyte solution can be released to the outside. In a battery having a fixed exterior body such as a can, since the deformation of the electrode body is suppressed by the exterior body, the deformation of the electrode body is small even when the internal pressure of the battery increases. On the other hand, when the internal pressure of a battery having an exterior body made of a laminate film increases, the exterior body expands to a pressure at which the safety valve operates, and the electrode body is deformed. If the electrode body is deformed, the electrode and the separator may be displaced and the positive electrode and the negative electrode may be short-circuited. Therefore, not only the heat-resistant separator but also prevention of displacement between the electrode and the separator is required to improve safety at high temperatures.
 電極体が変形したときの電極とセパレータのずれを防止するには、セパレータを袋状に形成し、そのなかに正極または負極の少なくとも一方を収めることが有効である。正極または負極の少なくとも一方が袋状のセパレータに収められていることにより、電極体が変形しても、正極と負極の接触を防止することができる。 In order to prevent the electrode and the separator from being displaced when the electrode body is deformed, it is effective to form the separator in a bag shape and store at least one of the positive electrode and the negative electrode therein. Since at least one of the positive electrode and the negative electrode is housed in the bag-like separator, contact between the positive electrode and the negative electrode can be prevented even if the electrode body is deformed.
袋状のセパレータに正極を収めて積層体を作製すると、以下に説明するように電極積層体を作製する際の積層ずれを、容易に低減できる利点もある。 When a positive electrode is housed in a bag-shaped separator to produce a laminated body, there is an advantage that the misalignment in producing the electrode laminated body can be easily reduced as described below.
 短冊状に切断した正極と負極を、セパレータを介して交互に積層した電極積層体では、正極、セパレータ、負極それぞれの積層位置を正しく合わせることが重要である。仮に、電極とセパレータが全て同じ寸法であれば、たとえば、隣り合う二辺をそろえることで互いの積層位置を合わせることができる。しかしこれらが同じ寸法である場合、電極端面で負極に収容しきれなかったリチウムイオンが析出したり、電極やセパレータの切断寸法誤差や積層位置のずれによって正極と負極が短絡したりすることがある。これを回避するために、正極が負極やセパレータよりも小さくなるように設計されることが多い。そのため、たとえば、電極やセパレータの辺や頂点を同じ位置に揃えても、積層する位置を合わせることはできない。 In an electrode laminate in which positive and negative electrodes cut into strips are alternately laminated via separators, it is important to properly align the lamination positions of the positive, separator, and negative electrodes. If the electrodes and the separator are all the same size, for example, the two stacked sides can be aligned by aligning two adjacent sides. However, if these are the same dimensions, lithium ions that could not be accommodated in the negative electrode at the electrode end face may precipitate, or the positive electrode and the negative electrode may be short-circuited due to cutting dimension errors of the electrode or separator or misalignment of the stacking position . In order to avoid this, the positive electrode is often designed to be smaller than the negative electrode or the separator. Therefore, for example, even if the sides and vertices of the electrodes and separators are aligned at the same position, the stacking positions cannot be matched.
 電極やセパレータの積層位置のずれは、電池容量のばらつきや長期間使用後の電極端部での金属リチウムの析出、正極と負極の短絡事故の原因となる。袋状のセパレータを用いて積層時の位置合わせ精度を改善する方法として、特許文献3(特許第3380935号公報)に、融点が低いポリエチレンなどの微孔性プラスチックフィルムの周囲を熱で溶着することで袋状に加工し、そのなかに正極を収めて負極と積層することが示されている。この方法では、正極がセパレータ袋の中に固定されているので、セパレータと負極を同寸法にすると、隣り合う二辺を揃えることで負極とセパレータ、正極の積層位置を合わせることができる。 The misalignment of the electrode and separator stacking causes variations in battery capacity, deposition of metallic lithium at the end of the electrode after long-term use, and a short-circuit accident between the positive and negative electrodes. As a method of improving the alignment accuracy at the time of lamination using a bag-shaped separator, the periphery of a microporous plastic film such as polyethylene having a low melting point is welded to Patent Document 3 (Patent No. 3380935) with heat. It is shown that it is processed into a bag shape, and the positive electrode is accommodated therein and laminated with the negative electrode. In this method, since the positive electrode is fixed in the separator bag, if the separator and the negative electrode have the same dimensions, the stacked positions of the negative electrode, the separator, and the positive electrode can be aligned by aligning two adjacent sides.
 しかし、特許文献3におけるセパレータは耐熱性が低いため、高温になると収縮や溶融を起こして、セパレータとしての機能を失う。したがって、高耐熱性材料によるセパレータが求められるが、高耐熱性であるために、熱溶着によって袋状に加工することは難しい。 However, since the separator in Patent Document 3 has low heat resistance, it contracts and melts at high temperatures and loses its function as a separator. Therefore, a separator made of a high heat resistant material is required, but since it is highly heat resistant, it is difficult to process into a bag shape by heat welding.
 高耐熱性のフィルムのセパレータを袋状にする技術として、特許文献4(特開2006-059717号公報)では、アラミドやポリイミドの繊維を含むセパレータフィルムを400℃~600℃で熱溶着して、袋状のセパレータに加工する技術が示されている。電極を収納し、袋の四辺で貼り合せた袋セパレータを作製するには、少なくとも一辺は電極をセパレータフィルムに挟んだ状態で溶着しなければならないが、溶着温度が400℃~600℃という高温のため、電極が変質する恐れがある。また、高温で熱溶着する方法は、高熱を加えると溶融せずに炭化するセルロースなどには適用できない。 As a technique for forming a high heat-resistant film separator into a bag shape, in Patent Document 4 (Japanese Patent Laid-Open No. 2006-059717), a separator film containing fibers of aramid and polyimide is thermally welded at 400 ° C. to 600 ° C., A technique for processing into a bag-like separator is shown. In order to produce a bag separator containing electrodes and bonded on the four sides of the bag, at least one side must be welded with the electrode sandwiched between separator films, but the welding temperature is as high as 400 ° C to 600 ° C. For this reason, there is a possibility that the electrode is altered. Moreover, the method of heat-welding at a high temperature cannot be applied to cellulose that carbonizes without melting when high heat is applied.
 高耐熱性のセパレータを袋状に加工する熱溶着以外の方法として、特許文献5(特開2012-33399号公報)には、接着剤の使用が記載されている。しかし、接着剤は、塗布と乾燥が必要なため工程が煩雑になることや、セパレータは液体を良く吸収するように設計されているので、塗布した接着材が不要な場所にまで広がって袋状セパレータの内側寸法精度が低くなる問題がある。 Patent Document 5 (Japanese Patent Laid-Open No. 2012-33399) describes the use of an adhesive as a method other than thermal welding for processing a high heat-resistant separator into a bag shape. However, since the adhesive requires application and drying, the process is complicated, and the separator is designed to absorb the liquid well. There is a problem that the inner dimensional accuracy of the separator is lowered.
 熱溶着や接着剤以外の、セパレータを袋状に加工する方法として、特許文献6(特開2007―201248号公報)に、重ね合わせたセパレータシートの周縁部を抜き曲げ加工して、袋を形成する技術が示されている、この方法では、切れ込みを入れて折り曲げるための幅がセパレータに必要となり、全体の面積が大きくなってしまうこと、また、加工するための工程が複雑なことが課題である。 As a method of processing a separator into a bag shape other than thermal welding or adhesive, the peripheral portion of the separator sheet superimposed on Patent Document 6 (Japanese Patent Laid-Open No. 2007-201248) is drawn and bent to form a bag. In this method, the width of the notch is required for the separator, and the overall area becomes large, and the process for processing is complicated. is there.
 その他に、鉛蓄電池用セパレータとして、特許文献7(実用新案公報平3-22857号)と、特許文献8(実用新案登録公報第2523460号)に、セパレータシートをU字状に二つ折りし、左右両端開放部に凹凸を形成して袋状に加工したセパレータが示されている。左右両端の開放部の凹凸は、かみ合いギアからなる加圧治具の間を通して形成される。 In addition, as separators for lead storage batteries, Patent Document 7 (Utility Model Publication No. 3-22857) and Patent Document 8 (Utility Model Registration Publication No. 2523460) fold the separator sheet into two U-shapes, The separator which processed the bag shape by forming an unevenness | corrugation in the both ends open part is shown. Concavities and convexities in the open portions at the left and right ends are formed through a pressurizing jig composed of a meshing gear.
 しかし、一辺のみ開口した袋状セパレータに電極板を入れるので、作業上、袋の内寸に余裕が必要で、電極の位置決め精度が低くなる。また、セパレータをあらかじめ二つ折りにしてから、かみ合いギアの間を通すが、リチウムイオン電池で用いられる薄いセパレータ、例えば厚さ50μm以下のセパレータは、かみ合いギアの間を通る際に、ギアの回転する力を受けて破けてしまう恐れがある。かみ合いギアの歯は、回転のために高さと幅に制限があるため、薄いセパレータに適切な凹凸を形成するのが難しい。また、かみ合いギアの間を通す方法では、2枚のセパレータの固定部分が連続したものとなるため、製造工程における電解液の電極積層体への浸透に伴う不要な空気の追い出しや、電池の充放電中に電極積層体中に発生したガスの、電極積層体外への移動の妨げとなる。 However, since the electrode plate is placed in a bag-shaped separator that is open on only one side, there is a need for extra space on the inner dimensions of the bag, and the positioning accuracy of the electrode is lowered. In addition, the separator is folded in advance and then passed between the meshing gears, but a thin separator used in a lithium ion battery, for example, a separator having a thickness of 50 μm or less, rotates the gear when passing between the meshing gears. There is a risk of breaking with power. Since the teeth of the meshing gear are limited in height and width due to rotation, it is difficult to form appropriate irregularities on a thin separator. Further, in the method of passing between the meshing gears, the fixed portions of the two separators are continuous, so that unnecessary air is expelled due to penetration of the electrolyte solution into the electrode laminate in the manufacturing process, and the battery is charged. This hinders the movement of the gas generated in the electrode stack during discharge to the outside of the electrode stack.
 特許文献1:特許第4042413号公報
 特許文献2:特許第3661104号公報
 特許文献3:特許第3380935号公報
 特許文献4:特開2006-059717号公報
 特許文献5:特開2012-33399号公報
 特許文献6:特開2007―201248号公報
 特許文献7:実用新案公報平3-22857号
 特許文献8:実用新案登録公報第2523460号
Patent Document 1: Japanese Patent No. 4042413 Patent Document 2: Japanese Patent No. 3661104 Patent Document 3: Japanese Patent No. 3380935 Patent Document 4: Japanese Patent Application Laid-Open No. 2006-059717 Patent Document 5: Japanese Patent Application Laid-Open No. 2012-33399 Patent Document 6: Japanese Patent Application Laid-Open No. 2007-201248 Patent Document 7: Utility Model Publication No. Hei 3-22857 Patent Document 8: Utility Model Registration Publication No. 2523460
 本発明の目的は、耐熱性を有するセパレータを用いつつ、高温発生時の電極とセパレータのずれを防止し、安全性に優れたリチウムイオン二次電池およびその製造方法を提供することである。本発明の他の目的は、上記目的に加え、正極と負極の位置合わせを良好かつ容易に行えるようにし、正極と負極との位置ずれに起因する不具合を抑制することである。 An object of the present invention is to provide a lithium ion secondary battery excellent in safety and a method for producing the same, using a separator having heat resistance, preventing a deviation between the electrode and the separator when a high temperature is generated. In addition to the above object, another object of the present invention is to enable good and easy alignment of the positive electrode and the negative electrode, and to suppress problems caused by misalignment between the positive electrode and the negative electrode.
 本発明の一態様によれば、電極である正極および負極がセパレータを介して積層されたリチウムイオン二次電池において、
 前記セパレータは、180℃まで加熱しても溶融しない材料から作られて互いに重ね合わせられた二枚で一組の矩形のセパレータシートを有し、
 重ね合わせられた前記セパレータシート同士は、前記セパレータシートの外周部のうち隣り合う少なくとも二辺の少なくとも一部に形成された凹部および凸部からなる噛み合い構造の噛み合いによって互いに固定され、
 前記正極および負極のいずれか一方の電極は、前記二枚のセパレータシートの間に配置されていることを特徴とするリチウムイオン二次電池が提供される。
According to one aspect of the present invention, in a lithium ion secondary battery in which a positive electrode and a negative electrode that are electrodes are stacked via a separator,
The separator has a pair of rectangular separator sheets made of a material that does not melt even when heated to 180 ° C.
The stacked separator sheets are fixed to each other by meshing of a meshing structure including a concave portion and a convex portion formed in at least a part of at least two sides adjacent to each other in the outer peripheral portion of the separator sheet,
One of the positive electrode and the negative electrode is disposed between the two separator sheets, and a lithium ion secondary battery is provided.
 本発明の他の態様によれば、電極である正極および負極がセパレータを介して積層されたリチウムイオン二次電池の製造方法において、
 180℃まで加熱しても溶融しない材料から作られた二枚の矩形のセパレータシートを少なくとも一組用意する工程と、
 前記正極および負極のいずれか一方の電極が、互いに重ね合わせられた二枚の前記セパレータシートの間に配置され、重ね合わせられた二枚の前記セパレータシートが、前記セパレータシートの外周部のうち隣り合う少なくとも二辺の少なくとも一部に形成された凹部および凸部からなる噛み合い構造の噛み合いによって固定されたセパレータ付き電極アセンブリを形成する工程と、
 前記セパレータ付き電極アセンブリと、二枚の前記セパレータシートの間に配置された電極と異なるもう一方の電極とを重ね合わせる工程と、
 重ね合わせられた前記セパレータ付き電極アセンブリおよび前記もう一方の電極を、電解液とともに外装体内に封入する工程と、
 を含むことを特徴とするリチウムイオン二次電池の製造方法が提供される。
According to another aspect of the present invention, in a method of manufacturing a lithium ion secondary battery in which a positive electrode and a negative electrode, which are electrodes, are stacked via a separator,
Preparing at least one set of two rectangular separator sheets made of a material that does not melt even when heated to 180 ° C .;
Either one of the positive electrode and the negative electrode is disposed between the two separator sheets that are overlapped with each other, and the two stacked separator sheets are adjacent to each other in the outer peripheral portion of the separator sheet. Forming an electrode assembly with a separator fixed by meshing of a meshing structure comprising a concave portion and a convex portion formed on at least a part of at least two sides that meet each other;
Superposing the electrode assembly with separator and another electrode different from the electrode disposed between the two separator sheets;
Encapsulating the separator-attached electrode assembly with the separator and the other electrode together with an electrolyte in an exterior body;
The manufacturing method of the lithium ion secondary battery characterized by including is provided.
 本発明によれば、熱溶着が困難な耐熱性材料によるセパレータであっても、高温発生時の電極とセパレータとの位置ずれが防止され、結果的に安全性に優れたリチウムイオン二次電池およびその製造方法を提供することができる。さらに、互いに固定された二枚のセパレータシートの間に正極を配置することで、正極と負極との位置合わせが良好かつ容易に行え、そのため、特性のばらつきが少なく、信頼性および安全性をより向上させることができる。 According to the present invention, even in the case of a separator made of a heat-resistant material that is difficult to heat-weld, a displacement between the electrode and the separator at the time of high temperature generation is prevented, and as a result, a lithium ion secondary battery excellent in safety and A manufacturing method thereof can be provided. Furthermore, by arranging the positive electrode between two separator sheets fixed to each other, the positive electrode and the negative electrode can be aligned well and easily, so that there is little variation in characteristics, and reliability and safety are improved. Can be improved.
本発明の一実施形態によるリチウムイオン二次電池の分解斜視図である。1 is an exploded perspective view of a lithium ion secondary battery according to an embodiment of the present invention. 図1に示す電極積層体の分解斜視図である。It is a disassembled perspective view of the electrode laminated body shown in FIG. 図2に示すセパレータシートに挟まれた正極の分解斜視図である。It is a disassembled perspective view of the positive electrode pinched | interposed into the separator sheet shown in FIG. 負極(A)および正極(B)の断面模式図である。It is a cross-sectional schematic diagram of a negative electrode (A) and a positive electrode (B). 重ね合わせたセパレータシートに噛み合い構造を形成するときの断面模式図である。It is a cross-sectional schematic diagram when forming a meshing structure in the separator sheet which piled up. 矩形の噛み合い構造を上から見た模式図である。It is the schematic diagram which looked at the rectangular meshing structure from the top. 中央に折れ曲がりを設けた噛み合い構造を上から見た模式図である。It is the schematic diagram which looked at the meshing structure which provided the bending in the center from the top. 重ねあわせたセパレータシートに正極を収めた構造の作製フローを示す模式図である。It is a schematic diagram which shows the preparation flow of the structure where the positive electrode was accommodated in the separator sheet piled up. 重ねあわせたセパレータシートに正極を収めた構造の、他の作製フローを示す模式図である。It is a schematic diagram which shows the other production flow of the structure which accommodated the positive electrode in the separator sheet piled up. 負極と、セパレータシートの間に収めた正極の積層の仕方を示す模式図である。It is a schematic diagram which shows the method of lamination | stacking of the positive electrode accommodated between the negative electrode and the separator sheet. 本発明においてセパレータシートとして用いることのできる、樹脂を含浸したガラスクロスの平面図である。It is a top view of the glass cloth impregnated with resin which can be used as a separator sheet in this invention. 本発明における凹部の深さおよび凸部の高さを説明する、噛み合い構造の模式的断面図である。It is typical sectional drawing of the meshing structure explaining the depth of the recessed part in this invention, and the height of a convex part.
 本発明の一実施形態によるリチウムイオン二次電池は、電極である正極および負極と、これら正極と負極との間に配置されたセパレータとを有する。セパレータは、180℃まで加熱しても溶融しない材料から作られて互いに重ね合わせられた二枚で一組のセパレータシートを有し、正極および負極のいずれか一方の電極は、これら二枚のセパレータの間に配置されている。重ね合わせられたセパレータシート同士は、セパレータシートの外周部の少なくとも一部に形成された噛み合い構造の噛み合いによって互いに固定されている。 A lithium ion secondary battery according to an embodiment of the present invention includes a positive electrode and a negative electrode, which are electrodes, and a separator disposed between the positive electrode and the negative electrode. The separator is made of a material that does not melt even when heated up to 180 ° C., and has a pair of separator sheets that are superposed on each other. Either one of the positive electrode and the negative electrode is composed of these two separators. It is arranged between. The superposed separator sheets are fixed to each other by meshing of a meshing structure formed on at least a part of the outer periphery of the separator sheet.
 以下、上述した各構成部材および構成材料について説明する。 Hereinafter, each of the above-described constituent members and constituent materials will be described.
 <セパレータ>
 セパレータは、互いに重ね合わせられた二枚で一組の矩形のセパレータシートを有する。各セパレータシートの外周部の少なくとも一部には、二枚のセパレータシートを噛み合わせる噛み合い構造として、凹部および凸部が交互に形成されている。これら凹部および凸部は、セパレータシートの隣り合う少なくとも二辺それぞれの少なくとも一部に形成することができる。この凹部と凸部の噛み合いで二枚のセパレータシートは密着し、二枚のセパレータシートは、この凹部と凸部の噛み合いで作用する摩擦力でお互いに固定されている。二枚のセパレータシートの間には正極が配置され、正極の活物質塗工面はセパレータシートの面内に収まっている。また、正極の活物質塗工面はセパレータシートを介して対向する負極の活物質塗工面内に収まっている。二枚のセパレータシートの間に配置されるのは負極であってもよいが、以下の説明では、正極が二枚のセパレータシートの間に配置されている場合を例にして説明する。
<Separator>
The separator has a pair of rectangular separator sheets that are stacked on each other. At least a part of the outer peripheral portion of each separator sheet is formed with recesses and projections alternately as a meshing structure for meshing two separator sheets. These concave portions and convex portions can be formed in at least a part of each of at least two adjacent sides of the separator sheet. The two separator sheets are brought into close contact with each other by the engagement of the concave and convex portions, and the two separator sheets are fixed to each other by the frictional force acting by the engagement of the concave and convex portions. A positive electrode is disposed between the two separator sheets, and the active material coating surface of the positive electrode is within the plane of the separator sheet. Moreover, the active material coating surface of the positive electrode is contained in the active material coating surface of the negative electrode facing with the separator sheet interposed therebetween. The negative electrode may be disposed between the two separator sheets, but in the following description, the case where the positive electrode is disposed between the two separator sheets will be described as an example.
 重ねあわせた二枚のセパレータシートを互いに固定する凹部と凸部は、セパレータシートの辺に沿って形成されるが、辺の長さ全体にわたって形成されるのではなく、凹部と凸部を形成しない箇所をつくることが好ましい。重ね合わせたセパレータシートの辺の長さ全体にわたってセパレータシート同士が噛み合っていると、電池の製造工程中の電解液を注入する工程で、電極積層体への電解液の進入や、電極積層体から空気が抜けることを阻害するおそれがある。また、充放電に伴って電池内部にガスが発生することがあるが、このガスが電極積層体外の隙間に移動することも、凹部と凸部の噛み合いによって阻害されるおそれがある。 The concave portion and the convex portion that fix the two stacked separator sheets to each other are formed along the side of the separator sheet, but are not formed over the entire length of the side, and the concave portion and the convex portion are not formed. It is preferable to create a location. When the separator sheets are engaged with each other over the entire length of the sides of the stacked separator sheets, in the step of injecting the electrolyte solution during the battery manufacturing process, the electrolyte solution enters the electrode laminate body, or from the electrode laminate body. There is a risk of hindering the escape of air. In addition, gas may be generated inside the battery along with charging / discharging, and the movement of this gas into the gap outside the electrode stack may also be hindered by the engagement of the concave and convex portions.
 セパレータに形成される噛み合い構造の好ましい形状を確認するために、以下に示す2つの実験を行った。 In order to confirm the preferable shape of the meshing structure formed in the separator, the following two experiments were conducted.
 まず、実験1として、噛み合い構造の高さとセパレータの固定強さとの関係を調べた。表1に、噛み合い高さとセパレータの固定強さとの関係を示す。 First, as Experiment 1, the relationship between the height of the meshing structure and the fixing strength of the separator was examined. Table 1 shows the relationship between the meshing height and the fixing strength of the separator.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1において、「噛み合い高さ」は、図12に示す、セパレータシート22に形成された、セパレータシート22の厚さを含まない凸部の高さおよび凹部の深さHで定義される。二枚のセパレータシート22は、それぞれに形成された凹部と凸部の噛み合いにより互いに密着しているので、凸部の高さは凹部の深さと等しい。 In Table 1, the “engagement height” is defined by the height of the convex portion and the depth H of the concave portion that are formed on the separator sheet 22 and do not include the thickness of the separator sheet 22 shown in FIG. Since the two separator sheets 22 are in close contact with each other by the engagement of the concave portions and the convex portions formed in each, the height of the convex portions is equal to the depth of the concave portions.
 セパレータの固定強さは、次の方法で評価した。セパレータシートとして、厚さ25μmのセルロース不織布を幅70mm、長さ100mmに切断したしたものを用意した。用意したセパレータシートを、間におもりを挟んだ状態で二枚重ねた。重ねたセパレータシートの四辺それぞれの中央部を、互いに噛み合う凹部および凸部が表面に形成された二枚の加圧板で加圧した。これによって、二枚のセパレータシートに形成された凹凸の噛み合いにより二枚のセパレータシート同士が固定された評価サンプルを得た。セパレータシートに凹凸の噛み合い構造を形成する加圧板としては、凸部の高さ(凹部の深さ)が異なる6種類のものを用いた。セパレータシートに形成した凹凸の形状は、凹部と凸部の間に平坦部が無いものとした。凹凸部の幅は、セパレータシートの縁から内側1.5mmまでとし、凹凸8周期分をそれぞれ形成した。 The fixing strength of the separator was evaluated by the following method. A separator sheet prepared by cutting a cellulose nonwoven fabric having a thickness of 25 μm into a width of 70 mm and a length of 100 mm was prepared. Two sheets of the prepared separator sheets were stacked with a weight interposed therebetween. The central part of each of the four sides of the stacked separator sheets was pressed with two pressure plates having concave and convex parts that are meshed with each other on the surface. As a result, an evaluation sample was obtained in which the two separator sheets were fixed to each other by meshing the unevenness formed on the two separator sheets. As the pressure plate for forming the concave-convex meshing structure on the separator sheet, six types having different convex part heights (concave part depths) were used. The shape of the unevenness formed on the separator sheet was such that there was no flat part between the concave part and the convex part. The width of the concavo-convex part was from the edge of the separator sheet to 1.5 mm on the inside, and 8 concavo-convex periods were formed respectively.
 評価サンプルとしては、100gの重りを挟んだものと、20gの重りを挟んだものの2種類を用意した。得られたサンプルについて、二枚のセパレータシートのうち上側のセパレータシートを持ち上げたとき、セパレータシート同士の固定が外れなかったものを「○」、外れたものを「×」とした。 Two types of evaluation samples were prepared: a sample with a 100 g weight and a sample with a 20 g weight. Regarding the obtained sample, when the upper separator sheet was lifted out of the two separator sheets, the separator sheet that was not released from the fixing state was indicated as “◯”, and the removed sheet as “X”.
 噛み合い構造によりセパレータシート同士を固定したセパレータを用いて作成された電池が加熱され、内部の電解液が気化して内圧が上昇し、電極積層体が変形するときに、セパレータシート同士を引き剥がす力が生じる。この実験は、このセパレータシート同士を引き剥がす力に耐えるだけの固定力でセパレータシート同士が固定されているかどうかを評価するために行ったものである。100gという重りの重さは、セパレータシートの引き剥がし力に耐えるのに十分な固定力を実験により求めて決定した値である。100gの重りを挟んだものにおいて上記の評価で「○」と判定されたものは、電極積層体が変形してもセパレータシート同士の固定は外れないと考えられる。また、20gの重りは、100gの重りによりセパレータシート同士の固定が外れた場合であっても、ある程度の固定力は有しているのか、それとも殆ど固定されていないのかを知るための指標として用いた。 When a battery made using a separator in which separator sheets are fixed to each other by a meshing structure is heated, the internal electrolyte is vaporized, the internal pressure rises, and the electrode laminate is deformed. Occurs. This experiment was carried out in order to evaluate whether the separator sheets are fixed with a fixing force sufficient to withstand the force of peeling the separator sheets. The weight of the weight of 100 g is a value determined by experimentally obtaining a fixing force sufficient to withstand the peeling force of the separator sheet. In the case where a weight of 100 g is sandwiched between the sheets evaluated as “◯” in the above evaluation, it is considered that the separator sheets are not fixed even if the electrode laminate is deformed. Also, the 20 g weight is used as an index for knowing whether or not the separator sheet has a certain degree of fixing force or is hardly fixed even when the separator sheets are unfixed by the 100 g weight. It was.
 表1の結果から、セパレータに形成する噛み合い構造の噛み合い高さは、100μm以上400μm以下とすることが好ましい。噛み合い高さが100μmよりも小さいと、二枚のセパレータシートの間に作用する摩擦力が小さくなり、セパレータシートの十分な固定ができないことがある。また、噛み合い高さが400μmを超えると、噛み合い構造を形成したときにセパレータシートが破れ、二枚のセパレータを互いに固定する力が低下することがある。 From the results shown in Table 1, the mesh height of the mesh structure formed on the separator is preferably 100 μm or more and 400 μm or less. If the meshing height is smaller than 100 μm, the frictional force acting between the two separator sheets becomes small, and the separator sheet may not be sufficiently fixed. On the other hand, if the mesh height exceeds 400 μm, the separator sheet may be torn when the mesh structure is formed, and the force for fixing the two separators to each other may be reduced.
 次に、実験2として、噛み合い構造の側壁の角度による、セパレータの固定強さの変化を調べた。表2に、噛み合い構造の側壁の角度とセパレータの固定強さとの関係を示す。 Next, as Experiment 2, the change in the fixing strength of the separator due to the angle of the side wall of the meshing structure was examined. Table 2 shows the relationship between the side wall angle of the meshing structure and the fixing strength of the separator.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2において、「側壁の角度」は、図12に示す、凹部の底面または凸部の上面に垂直な方向に対する、凹部または凸部の側壁の角度θで定義される。 In Table 2, the “side wall angle” is defined by the angle θ of the side wall of the concave portion or convex portion with respect to the direction perpendicular to the bottom surface of the concave portion or the top surface of the convex portion shown in FIG.
 セパレータ固定強さの評価は、セパレータに噛み合い構造を形成するのに用いた加圧板を変更した他は、上記の実験1と同様にして行った。加圧板としては、側壁の角度が異なる4種類のものを用いた。 The separator fixing strength was evaluated in the same manner as in Experiment 1 except that the pressure plate used to form the meshing structure with the separator was changed. As the pressure plate, four types having different side wall angles were used.
 表2の結果から、側壁の角度は37度以内であることが好ましい。側壁の角度が37度よりも大きいと、セパレータシートの表面に対して垂直方向の力が働いたときに二枚のセパレータシートの固定が外れることがある。 From the results in Table 2, the side wall angle is preferably within 37 degrees. If the angle of the side wall is larger than 37 degrees, the two separator sheets may be unfixed when a force in the direction perpendicular to the surface of the separator sheet is applied.
 なお、上記の実験1では、評価サンプルの側壁の角度は32度から37度の間であった。また、実験2では、評価サンプルの噛み合い高さは200μmから300μmの間であった。 In Experiment 1, the side wall angle of the evaluation sample was between 32 degrees and 37 degrees. Moreover, in Experiment 2, the meshing height of the evaluation sample was between 200 μm and 300 μm.
 上述の説明では、噛み合い構造として各セパレータシートに凹部及び凸部が形成されていることを示した。しかし、一枚のセパレータシートに凹部および凸部の両方が形成されている必要はなく、一方のセパレータシートに少なくとも一つの凸部が形成されるとともに、これと噛み合う少なくとも一つの凹部がもう一方のセパレータシートに形成された噛み合い構造であってもよい。 In the above description, it has been shown that a concave portion and a convex portion are formed in each separator sheet as the meshing structure. However, it is not necessary that both the concave portion and the convex portion are formed on one separator sheet, and at least one convex portion is formed on one separator sheet, and at least one concave portion meshing with the other is formed on the other separator sheet. The mesh structure formed in the separator sheet may be sufficient.
 セパレータシートの厚さは、50μm以下が好ましい。セパレータが50μmよりも厚いと必要な電解液の量も増え、電池の重量当たりおよび体積当たりのエネルギー密度の低下を無視できなくなる。また、セパレータが厚いと、セパレータで隔てた正極と負極の間のリチウムイオンの移動距離が長くなるので、電池の入出力特性が低下することもある。 The thickness of the separator sheet is preferably 50 μm or less. If the separator is thicker than 50 μm, the amount of necessary electrolyte increases, and the decrease in energy density per unit weight and volume of the battery cannot be ignored. In addition, if the separator is thick, the movement distance of lithium ions between the positive electrode and the negative electrode separated by the separator becomes long, so that the input / output characteristics of the battery may be deteriorated.
 セパレータシートを構成する材料はポリエチレンテレフタラート、ポリイミド、ポリアミドイミド、アラミド、セルロースなど、180℃まで加熱しても溶融しない材料であることが好ましい。より詳しくは、セパレータシートは、融点が180℃を超える、あるいは熱溶融せずに、180℃を超える温度で熱分解が始まる有機材料で形成することが好ましい。特に、セパレータシートとして、これらの材料の細い繊維を使った不織布を用いることが、電解液中のリチウムイオンが通過する孔を多数有し、かつ正極と負極の短絡を防止するセパレータ構成するうえで好ましい。 The material constituting the separator sheet is preferably a material that does not melt even when heated to 180 ° C., such as polyethylene terephthalate, polyimide, polyamideimide, aramid, and cellulose. More specifically, the separator sheet is preferably formed of an organic material having a melting point exceeding 180 ° C., or not thermally melted, and starting thermal decomposition at a temperature exceeding 180 ° C. In particular, using a non-woven fabric using thin fibers of these materials as the separator sheet has a large number of holes through which lithium ions in the electrolytic solution pass and prevents the short circuit between the positive electrode and the negative electrode. preferable.
 無機材料の繊維でセパレータシートを形成することもできる。無機材料の繊維としては、ガラス繊維が工業的に広く用いられ、容易に入手できる。ただし、ガラス繊維で形成したガラスクロスを二枚重ねて凹部と凸部の噛み合いにより固定しても、凹部の深さ(凸部の高さ)によっては、ガラス繊維が破断したりして、噛み合い構造の噛み合いが容易に外れてしまう場合がある。このような場合には、ガラスクロスを樹脂と複合化して用いると、ガラス繊維の破断が防止され、また、ガラスクロス同士の摩擦力が増えるので好ましい。 It is also possible to form a separator sheet with inorganic fibers. As the fiber of the inorganic material, glass fiber is widely used industrially and can be easily obtained. However, even if two glass cloths made of glass fiber are stacked and fixed by meshing the concave and convex portions, depending on the depth of the concave portion (height of the convex portion), the glass fiber may break, There is a case where the engagement is easily disengaged. In such a case, it is preferable to use the glass cloth in combination with the resin because the glass fiber is prevented from being broken and the frictional force between the glass cloths is increased.
 樹脂と複合化したガラスクロスからなるセパレータシートの一例を図11に示す。図11に示すセパレータシート32は、ガラス繊維の織物であるガラスクロス32aと、ガラスクロス32aに付着した樹脂32bとを有する。このようなセパレータシート32は、例えば、メッシュの上においたガラスクロス32aの上から溶融した樹脂32bを含浸させ、樹脂32bを固化することによって得ることができる。ガラスクロス32aが保持できなかった樹脂32bはメッシュの下に排出されるので、図11に示すように、樹脂32bは、ガラスクロス32aの網目には染み込まず、網目を残した状態でガラス繊維を拘束する。そのため、ガラスクロスは樹脂と複合されても、セパレータに必要なイオン伝導性を確保することができる。 FIG. 11 shows an example of a separator sheet made of glass cloth combined with resin. The separator sheet 32 shown in FIG. 11 includes a glass cloth 32a that is a glass fiber fabric and a resin 32b attached to the glass cloth 32a. Such a separator sheet 32 can be obtained, for example, by impregnating a molten resin 32b from above a glass cloth 32a placed on a mesh and solidifying the resin 32b. Since the resin 32b that could not be held by the glass cloth 32a is discharged under the mesh, as shown in FIG. 11, the resin 32b does not penetrate into the mesh of the glass cloth 32a, and the glass fiber is left in a state of leaving the mesh. to bound. Therefore, even if the glass cloth is combined with the resin, the ion conductivity required for the separator can be ensured.
 有機材料と無機材料のいずれの場合も、セパレータシートの表面が平滑な場合は凹部と凸部での摩擦が小さく、噛み合い構造の噛み合いが外れやすいことがある。その場合、厚さが電極以下の樹脂シートを二枚のセパレータシートの噛み合い構造を形成する部分に挟み込むことによって、セパレータシート間の摩擦力を増やすことができる。 In both cases of organic material and inorganic material, when the surface of the separator sheet is smooth, the friction between the concave portion and the convex portion is small, and the meshing structure may be easily disengaged. In that case, the frictional force between the separator sheets can be increased by sandwiching a resin sheet having a thickness equal to or smaller than that of an electrode in a portion that forms a meshing structure of two separator sheets.
 また、セパレータシート同士を固定する噛み合い構造を、セパレータシートの隣り合う少なくとも二辺に形成することで、セパレータシートの間に配置する電極(正極または負極)の隣り合う二辺を、この噛み合い構造に突き当てることで、セパレータと電極との位置合わせを容易に行うことができる。電極は、通常、電流取り出し用に延長した延長部を有しているが、この延長部を除いた形状が、セパレータシートと同様、矩形であるので、噛み合い構造への電極の突き当ては容易である。 Further, by forming a meshing structure for fixing the separator sheets to at least two sides adjacent to each other, the two adjacent sides of the electrode (positive electrode or negative electrode) disposed between the separator sheets are formed into this meshing structure. By abutting, it is possible to easily align the separator and the electrode. The electrode usually has an extended portion that is extended for current extraction, but the shape excluding this extended portion is rectangular like the separator sheet, so it is easy to abut the electrode on the meshing structure. is there.
 噛み合い構造は、セパレータシートの四辺に形成されることが好ましい。これにより、セパレータシートの間に配置された矩形の電極は、四辺すべてにおいて噛み合い構造によって位置が規制されるので、セパレータシートの間に挟んだ電極の、活物質塗工部がセパレータからはみ出すことが無くなる。噛み合い構造をセパレータシートの四辺に形成するには、まず、重ねたセパレータシートの二辺に噛み合い構造を形成して二枚のセパレータシートを固定し、電極をセパレータシートの間に位置を合わせて挿入する。このとき、電極の電流取り出し用の延長部がセパレータシートの外に突き出るように、電極の形状と噛み合い構造の配置を設定しておく。次に、重ねたセパレータシートの、残りの二辺に噛み合い構造を形成して、残りの二辺においてもセパレータシートを固定する。このとき、セパレータシートの外側に突き出した延長部を挟む部分には、噛み合い構造を形成しない。 The meshing structure is preferably formed on the four sides of the separator sheet. As a result, the positions of the rectangular electrodes arranged between the separator sheets are regulated by the meshing structure on all four sides, so that the active material coating portion of the electrodes sandwiched between the separator sheets may protrude from the separator. Disappear. To form the meshing structure on the four sides of the separator sheet, first form the meshing structure on the two sides of the stacked separator sheet, fix the two separator sheets, and insert the electrode with the position between the separator sheets aligned To do. At this time, the shape of the electrode and the arrangement of the meshing structure are set so that the extension portion for extracting the current from the electrode protrudes out of the separator sheet. Next, a meshing structure is formed on the remaining two sides of the stacked separator sheets, and the separator sheets are fixed also on the remaining two sides. At this time, a meshing structure is not formed in a portion sandwiching the extended portion protruding outside the separator sheet.
 あるいは、一枚のセパレータシートの上に電極を置き、その上にもう一枚のセパレータシートをかぶせてから、電極の周囲の四辺の部分に噛み合い構造を形成してセパレータシート同士を固定する。あるいは、十分に大きなセパレータシートの上に複数の電極を互いに間隔をあけて並べて置いてから、その上にもう一枚のセパレータシートをかぶせ、各電極の周囲の四辺の部分に噛み合い構造を形成してもよい。この後、セパレータシートを所定の箇所で所定の大きさに切断することで、袋状のセパレータに収納された電極を効率よく作製することができる。 Alternatively, an electrode is placed on one separator sheet, and another separator sheet is placed thereon, and then a meshing structure is formed on the four sides around the electrode to fix the separator sheets together. Alternatively, a plurality of electrodes are placed on a sufficiently large separator sheet with a space between each other, and another separator sheet is placed thereon to form a meshing structure on the four sides around each electrode. May be. Thereafter, the separator sheet is cut into a predetermined size at a predetermined location, whereby the electrode accommodated in the bag-shaped separator can be efficiently produced.
 <電極積層体およびリチウムイオン二次電池の構成>
 リチウムイオン2次電池の電極体の構造には、大別して、捲回型と積層型があるが、本発明は積層型に好適に適用される。本発明を適用できる二次電池の形態としては、電極積層体を樹脂フィルムと金属フィルムのラミネートフィルムによる外装体に収めた積層ラミネート型がある。以下、積層ラミネート型の二次電池について説明する。
<Configuration of electrode laminate and lithium ion secondary battery>
The structure of the electrode body of the lithium ion secondary battery is roughly classified into a wound type and a laminated type, but the present invention is preferably applied to the laminated type. As a form of a secondary battery to which the present invention can be applied, there is a laminated laminate type in which an electrode laminate is housed in an exterior body made of a laminate film of a resin film and a metal film. Hereinafter, a laminated laminate type secondary battery will be described.
 図1に、本発明の一実施形態によるリチウムイオン二次電池1の分解斜視図が示されている。外装材11、12によって電極積層体10は、その厚み方向両側から包囲される。また、外装材11、12による外装体には、電解液も内包される。電極積層体10には負極タブ13および正極タブ14が接続され、それぞれ一部を外装体から突出させている。 FIG. 1 is an exploded perspective view of a lithium ion secondary battery 1 according to an embodiment of the present invention. The electrode laminate 10 is surrounded by the exterior materials 11 and 12 from both sides in the thickness direction. Further, the exterior body made of the exterior materials 11 and 12 also contains an electrolyte solution. A negative electrode tab 13 and a positive electrode tab 14 are connected to the electrode laminate 10, and each part protrudes from the exterior body.
 図2に示すように、電極積層体10は、複数の負極21と、複数のセパレータ付き電極アセンブリ25とを交互に積層して構成されている。セパレータ付き電極アセンブリ25は、図3に示すように、重ね合わされた二枚のセパレータシート22と、その間に配置された正極27とを有する。二枚のセパレータシート22は、その外周部に形成された噛み合い構造26によって互いに固定されている。セパレータシート22は、負極21と正極27が直接接触することを防止している。正極27と負極21において、負極21の活物質塗工面は、正極27の活物質塗工面よりも面積が広く、正極27の活物質塗工面は、負極21と積層された状態で、対応する負極の活物質塗工面内に収まっている。負極21および正極27は、それぞれ延長部23a、24aを有している。正極27の延長部24aは、セパレータシート22から突き出ており、正極21および負極27は、その延長部23a、24aが互いに干渉せずに電極積層体10の外に延びるように積層されている。すべての負極21の延長部23aは一つに集められて、図1に示す負極タブ13に溶接により接続される。正極27も同様に、すべての正極27の延長部24aが一つに集められて、図1に示す正極タブ14に溶接によって接続される。 As shown in FIG. 2, the electrode laminate 10 is configured by alternately laminating a plurality of negative electrodes 21 and a plurality of electrode assemblies 25 with separators. As shown in FIG. 3, the electrode assembly with a separator 25 includes two separator sheets 22 that are overlapped with each other, and a positive electrode 27 that is disposed therebetween. The two separator sheets 22 are fixed to each other by a meshing structure 26 formed on the outer peripheral portion thereof. The separator sheet 22 prevents the negative electrode 21 and the positive electrode 27 from coming into direct contact. In the positive electrode 27 and the negative electrode 21, the active material coated surface of the negative electrode 21 has a larger area than the active material coated surface of the positive electrode 27, and the active material coated surface of the positive electrode 27 is laminated with the negative electrode 21 in the corresponding negative electrode. It is within the active material coating surface. The negative electrode 21 and the positive electrode 27 have extensions 23a and 24a, respectively. The extension part 24a of the positive electrode 27 protrudes from the separator sheet 22, and the positive electrode 21 and the negative electrode 27 are laminated so that the extension parts 23a and 24a extend outside the electrode laminate 10 without interfering with each other. The extensions 23a of all the negative electrodes 21 are collected together and connected to the negative electrode tab 13 shown in FIG. 1 by welding. Similarly, the positive portions 27 of all the positive electrodes 27 are gathered together and connected to the positive electrode tab 14 shown in FIG. 1 by welding.
 <負極>
 本実施形態のリチウムイオン二次電池は、負極活物質を有する負極を備える。負極活物質は負極用結着材によって負極集電体上に結着される。図4(A)は、負極の断面模式図である。負極21は金属箔で形成される負極集電体23と、負極集電体23の両面に塗工された負極活物質41とを有する。負極集電体23は、図1における負極タブ13と接続する延長部23aを有して形成され、この延長部23aには負極活物質41は塗工されない。
<Negative electrode>
The lithium ion secondary battery of this embodiment includes a negative electrode having a negative electrode active material. The negative electrode active material is bound on the negative electrode current collector by a negative electrode binder. FIG. 4A is a schematic cross-sectional view of a negative electrode. The negative electrode 21 includes a negative electrode current collector 23 formed of a metal foil, and a negative electrode active material 41 coated on both surfaces of the negative electrode current collector 23. The negative electrode current collector 23 is formed having an extension 23a connected to the negative electrode tab 13 in FIG. 1, and the negative electrode active material 41 is not applied to the extension 23a.
 本実施形態における負極活物質は、特に制限されるものではなく、例えば、リチウムイオンを吸蔵、放出し得る炭素材料(a)、リチウムと合金可能な金属(b)、およびリチウムイオンを吸蔵、放出し得る金属酸化物(c)等が挙げられる。 The negative electrode active material in the present embodiment is not particularly limited. For example, the carbon material (a) that can occlude and release lithium ions, the metal (b) that can be alloyed with lithium, and the lithium ions are occluded and released. The metal oxide (c) etc. which can be mentioned.
 炭素材料(a)としては、例えば、炭素、非晶質炭素、ダイヤモンド状炭素、カーボンナノチューブ、またはこれらの複合物等が挙げられる。ここで、結晶性の高い炭素は、電気伝導性が高く、銅などの金属からなる負極集電体との接着性および電圧平坦性が優れている。一方、結晶性の低い非晶質炭素は、体積膨張が比較的小さいため、負極全体の体積膨張を緩和する効果が高く、かつ結晶粒界や欠陥といった不均一性に起因する劣化が起きにくい。 Examples of the carbon material (a) include carbon, amorphous carbon, diamond-like carbon, carbon nanotube, or a composite thereof. Here, carbon with high crystallinity has high electrical conductivity, and is excellent in adhesiveness and voltage flatness with a negative electrode current collector made of a metal such as copper. On the other hand, since amorphous carbon having low crystallinity has a relatively small volume expansion, it has a high effect of relaxing the volume expansion of the entire negative electrode, and deterioration due to non-uniformity such as crystal grain boundaries and defects hardly occurs.
 金属(b)としては、例えば、Al、Si、Pb、Sn、In、Bi、Ag、Ba、Ca、Hg、Pd、Pt、Te、Zn、La、またはこれらの2種以上の合金等が挙げられる。また、これらの金属又は合金は2種以上混合して用いてもよい。また、これらの金属又は合金は1種以上の非金属元素を含んでもよい。 Examples of the metal (b) include Al, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn, La, or alloys of two or more thereof. It is done. Moreover, you may use these metals or alloys in mixture of 2 or more types. These metals or alloys may contain one or more non-metallic elements.
 金属酸化物(c)としては、例えば、酸化シリコン、酸化アルミニウム、酸化スズ、酸化インジウム、酸化亜鉛、酸化リチウム、またはこれらの複合物等が挙げられる。本実施形態では、負極活物質として酸化スズ若しくは酸化シリコンを含むことが好ましく、酸化シリコンを含むことがより好ましい。これは、酸化シリコンは、比較的安定で他の化合物との反応を引き起こしにくいからである。また、金属酸化物(c)に、窒素、ホウ素およびイオウの中から選ばれる一種または二種以上の元素を、例えば0.1~5質量%添加することもできる。こうすることで、金属酸化物(c)の電気伝導性を向上させることができる。 Examples of the metal oxide (c) include silicon oxide, aluminum oxide, tin oxide, indium oxide, zinc oxide, lithium oxide, and composites thereof. In this embodiment, it is preferable that tin oxide or silicon oxide is included as a negative electrode active material, and it is more preferable that silicon oxide is included. This is because silicon oxide is relatively stable and hardly causes a reaction with other compounds. In addition, one or more elements selected from nitrogen, boron, and sulfur may be added to the metal oxide (c), for example, 0.1 to 5% by mass. By carrying out like this, the electrical conductivity of a metal oxide (c) can be improved.
 金属酸化物(c)は、その全部または一部がアモルファス構造を有することが好ましい。アモルファス構造の金属酸化物(c)は、他の負極活物質である炭素材料(a)や金属(b)の体積膨張を抑制することができる。このメカニズムは明確ではないが、金属酸化物(c)がアモルファス構造であることにより、炭素材料(a)と電解液の界面への皮膜形成に何らかの影響があるものと推定される。また、アモルファス構造は、結晶粒界や欠陥といった不均一性に起因する要素が比較的少ないと考えられる。なお、金属酸化物(c)の全部または一部がアモルファス構造を有することは、エックス線回折測定(一般的なXRD測定)にて確認することができる。具体的には、金属酸化物(c)がアモルファス構造を有しない場合には、金属酸化物(c)に固有のピークが観測されるが、金属酸化物(c)の全部または一部がアモルファス構造を有する場合が、金属酸化物(c)に固有ピークがブロードとなって観測される。 It is preferable that all or part of the metal oxide (c) has an amorphous structure. The metal oxide (c) having an amorphous structure can suppress volume expansion of the carbon material (a) and the metal (b) which are other negative electrode active materials. Although this mechanism is not clear, it is presumed that the formation of a film on the interface between the carbon material (a) and the electrolytic solution has some influence due to the amorphous structure of the metal oxide (c). The amorphous structure is considered to have relatively few elements due to non-uniformity such as crystal grain boundaries and defects. In addition, it can be confirmed by X-ray diffraction measurement (general XRD measurement) that all or part of the metal oxide (c) has an amorphous structure. Specifically, when the metal oxide (c) does not have an amorphous structure, a peak specific to the metal oxide (c) is observed, but all or part of the metal oxide (c) is amorphous. In the case of having a structure, the intrinsic peak of the metal oxide (c) is broad and observed.
 また、金属(b)はシリコンであり、金属酸化物(c)は酸化シリコンであることが好ましい。つまり、負極活物質は、シリコン、酸化シリコン及び炭素材料の複合体からなることが好ましい。また、あらかじめ、負極活物質が、リチウムを化学的・熱的にドープした材料を用いることも可能である。例えば、化学的ドープは、リチウム金属あるいはリチウム化合物を含んだ溶媒と還元剤を用いて、活物質に強制的にリチウムをドープする方法で得られることが出来る。また、熱ドープは、負極活物質とリチウム金属を接触させ、全体を温めることによって、負極活物質にリチウムをドープさせることが出来る。 The metal (b) is preferably silicon, and the metal oxide (c) is preferably silicon oxide. That is, the negative electrode active material is preferably composed of a composite of silicon, silicon oxide, and carbon material. It is also possible to use a material in which the negative electrode active material is chemically and thermally doped with lithium in advance. For example, chemical dope can be obtained by a method in which lithium is forcibly doped into an active material using a solvent containing a lithium metal or a lithium compound and a reducing agent. In thermal doping, the negative electrode active material can be doped with lithium by bringing the negative electrode active material into contact with lithium metal and warming the whole.
 負極用結着剤としては、特に制限されるものではないが、例えば、ポリフッ化ビニリデン、ビニリデンフルオライド-ヘキサフルオロプロピレン共重合体、ビニリデンフルオライド-テトラフルオロエチレン共重合体、スチレン-ブタジエン共重合ゴム、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリイミド、ポリアミドイミド、ポリアクリル酸等を用いることができる。中でも、結着性が強いことから、ポリイミドまたはポリアミドイミドが好ましい。使用する負極用結着剤の量は、トレードオフの関係にある「十分な結着力」と「高エネルギー化」の観点から、負極活物質100質量部に対して、5~25質量部が好ましい。 The binder for the negative electrode is not particularly limited. For example, polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, styrene-butadiene copolymer Rubber, polytetrafluoroethylene, polypropylene, polyethylene, polyimide, polyamideimide, polyacrylic acid, or the like can be used. Of these, polyimide or polyamideimide is preferred because of its high binding properties. The amount of the binder for the negative electrode to be used is preferably 5 to 25 parts by mass with respect to 100 parts by mass of the negative electrode active material from the viewpoints of “sufficient binding force” and “high energy” which are in a trade-off relationship. .
 負極集電体としては、電気化学的な安定性から、アルミニウム、ニッケル、ステンレス、クロム、銅、銀、およびそれらの合金が好ましい。その形状としては、箔、平板状、メッシュ状が挙げられる。 As the negative electrode current collector, aluminum, nickel, stainless steel, chromium, copper, silver, and alloys thereof are preferable in view of electrochemical stability. Examples of the shape include foil, flat plate, and mesh.
 <正極>
 本実施形態のリチウムイオン二次電池は、正極活物質を有する正極を備える。正極は、正極活物質が正極用結着剤によって正極集電体を覆うように結着されてなる。図4(B)は正極の断面模式図である。正極27は、金属箔で形成される正極集電体24と、正極集電体24の両面に塗工された正極活物質42とを有する。正極集電体24は、図1の正極タブ14と接続する延長部24aを有して形成され、この延長部24aには正極活物質42は塗工されない。
<Positive electrode>
The lithium ion secondary battery of this embodiment includes a positive electrode having a positive electrode active material. The positive electrode is formed by binding the positive electrode active material so as to cover the positive electrode current collector with the positive electrode binder. FIG. 4B is a schematic cross-sectional view of the positive electrode. The positive electrode 27 includes a positive electrode current collector 24 formed of a metal foil, and a positive electrode active material 42 coated on both surfaces of the positive electrode current collector 24. The positive electrode current collector 24 is formed to have an extension part 24a connected to the positive electrode tab 14 of FIG. 1, and the positive electrode active material 42 is not applied to the extension part 24a.
 正極活物質としては、LiMnO、LixMn(0<x<2)、LiMnO、LiMn1.5Ni0.5(0<x<2)等の層状構造を持つマンガン酸リチウムまたはスピネル構造を有するマンガン酸リチウム、LiCoO、LiNiOまたはこれらの遷移金属の一部を他の金属で置き換えたもの、LiNi1/3Co1/3Mn1/3などの特定の遷移金属が半数を超えないリチウム遷移金属酸化物、これらのリチウム遷移金属酸化物において化学量論組成よりもLiを過剰にしたもの、LiFePOなどのオリビン構造を有するもの、等が挙げられる。また、これらの金属酸化物に、Al、Fe,P,Ti,Si、Pb、Sn、In、Bi、Ag、Ba、Ca、Hg、Pd、Pt、Te、Zn、La等により一部置換した材料も使用することができる。特に、LiαNiβCoγAlδ(1≦α≦2、β+γ+δ=1、β≧0.7、γ≦0.2)またはLiαNiβCoγMnδ(1≦α≦1.2、β+γ+δ=1、β≧0.6、γ≦0.2)が好ましい。正極活物質は、一種を単独で、または二種以上を組み合わせて使用することができる。 The positive electrode active material has a layered structure such as LiMnO 2 , LixMn 2 O 4 (0 <x <2), Li 2 MnO 3 , Li x Mn 1.5 Ni 0.5 O 4 (0 <x <2). Lithium manganate or lithium manganate having a spinel structure, LiCoO 2 , LiNiO 2 or a part of these transition metals replaced with other metals, LiNi 1/3 Co 1/3 Mn 1/3 O 2, etc. Lithium transition metal oxides whose specific transition metals are less than half, those in which these lithium transition metal oxides have an excess of Li over the stoichiometric composition, those having an olivine structure such as LiFePO 4 , etc. It is done. Further, these metal oxides were partially substituted with Al, Fe, P, Ti, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn, La, etc. Materials can also be used. In particular, Li α Ni β Co γ Al δ O 2 (1 ≦ α ≦ 2, β + γ + δ = 1, β ≧ 0.7, γ ≦ 0.2) or Li α Ni β Co γ Mn δ O 2 (1 ≦ α ≦ 1.2, β + γ + δ = 1, β ≧ 0.6, γ ≦ 0.2). A positive electrode active material can be used individually by 1 type or in combination of 2 or more types.
 また、ラジカル材料等を正極活物質として用いることも可能である。 Also, radical materials or the like can be used as the positive electrode active material.
 正極用結着剤としては、負極用結着剤と同様のものと用いることができる。使用する正極用結着剤の量は、トレードオフの関係にある「十分な結着力」と「高エネルギー化」の観点から、正極活物質100質量部に対して、2~15質量部が好ましい。 As the positive electrode binder, the same as the negative electrode binder can be used. The amount of the positive electrode binder to be used is preferably 2 to 15 parts by mass with respect to 100 parts by mass of the positive electrode active material from the viewpoints of “sufficient binding force” and “high energy” which are in a trade-off relationship. .
 正極集電体24としては、負極集電体と同様のものを用いることができる。 As the positive electrode current collector 24, the same one as the negative electrode current collector can be used.
 正極活物質の塗工層には、インピーダンスを低下させる目的で、導電補助材を添加してもよい。導電補助材としては、グラファイト、カーボンブラック、アセチレンブラック等の炭素質微粒子が挙げられる。 A conductive auxiliary material may be added to the positive electrode active material coating layer for the purpose of reducing impedance. Examples of the conductive auxiliary material include carbonaceous fine particles such as graphite, carbon black, and acetylene black.
 <電解液>
 本実施形態で用いる電解液は、リチウム塩(支持塩)と、この支持塩を溶解する非水溶媒を含む非水電解液を用いることができる。
<Electrolyte>
As the electrolytic solution used in the present embodiment, a nonaqueous electrolytic solution containing a lithium salt (supporting salt) and a nonaqueous solvent that dissolves the supporting salt can be used.
 非水溶媒としては、炭酸エステル(鎖状又は環状カーボネート)、カルボン酸エステル(鎖状又は環状カルボン酸エステル)、リン酸エステル等の非プロトン性有機溶媒を用いることができる。 As the non-aqueous solvent, an aprotic organic solvent such as carbonate ester (chain or cyclic carbonate), carboxylic acid ester (chain or cyclic carboxylic acid ester), and phosphate ester can be used.
 炭酸エステル溶媒としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)等の環状カーボネート類;ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)等の鎖状カーボネート類;プロピレンカーボネート誘導体が挙げられる。 Examples of carbonate solvents include cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), and vinylene carbonate (VC); dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate. (EMC), chain carbonates such as dipropyl carbonate (DPC); and propylene carbonate derivatives.
 カルボン酸エステル溶媒としては、ギ酸メチル、酢酸メチル、プロピオン酸エチル等の脂肪族カルボン酸エステル類;γ-ブチロラクトン等のラクトン類が挙げられる。 Examples of the carboxylic acid ester solvent include aliphatic carboxylic acid esters such as methyl formate, methyl acetate, and ethyl propionate; and lactones such as γ-butyrolactone.
 これらの中でも、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(MEC)、ジプロピルカーボネート(DPC)等の炭酸エステル(環状または鎖状カーボネート類)が好ましい。 Among these, ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylene carbonate (VC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (MEC), dipropyl carbonate Carbonic acid esters (cyclic or chain carbonates) such as (DPC) are preferred.
 リン酸エステルとしては、例えば、リン酸トリメチル、リン酸トリエチル、リン酸トリプロピル、リン酸トリオクチル、リン酸トリフェニル等が挙げられる。 Examples of the phosphate ester include trimethyl phosphate, triethyl phosphate, tripropyl phosphate, trioctyl phosphate, triphenyl phosphate, and the like.
 また、非水電解液に含有できる溶媒としては、その他にも、例えば、エチレンサルファイト(ES)、プロパンサルトン(PS)、ブタンスルトン(BS)、Dioxathiolane-2,2-dioxide(DD)、スルホレン、3-メチルスルホレン、スルホラン(SL)、無水コハク酸(SUCAH)、無水プロピオン酸、無水酢酸、無水マレイン酸、ジアリルカーボネート(DAC)、2,5-ジオキサヘキサンニ酸ジメチル、2,5-ジオキサヘキサンニ酸ジメチル、フラン、2,5-ジメチルフラン、ジフェニルジサルファイド(DPS)、ジメトキシエタン(DME)、ジメトキシメタン(DMM)、ジエトキシエタン(DEE)、エトキシメトキシエタン、クロロエチレンカーボネート、ジメチルエーテル、メチルエチルエーテル、メチルプロピルエーテル、エチルプロピルエーテル、ジプロピルエーテル、メチルブチルエーテル、ジエチルエーテル、フェニルメチルエーテル、テトラヒドロフラン(THF)、2-メチルテトラヒドロフラン(2-MeTHF)、テトラヒドロピラン(THP)、1,4-ジオキサン(DIOX)、1,3-ジオキソラン(DOL)、メチルアセテート、エチルアセテート、プロピルアセテート、イソプロピルアセテート、ブチルアセテート、メチルジフルオロアセテート、メチルプロピオネート、エチルプロピオネート、プロピルプロピオネート、メチルフォルメイト、エチルフォルメイト、エチルブチレート、イソプロピルブチレート、メチルイソブチレート、メチルシアノアセテート、ビニルアセテート、ジフェニルジスルフィド、ジメチルスルフィド、ジエチルスルフィド、アジポニトリル、バレロニトリル、グルタロニトリル、マロノニトリル、スクシノニトリル、ピメロニトリル、スベロニトリル、イソブチロニトリル、ビフェニル、チオフェン、メチルエチルケトン、フルオロベンゼン、ヘキサフルオロベンゼン、カーボネート電解液、グライム、エーテル、アセトニトリル、プロピオンニトリル、γ-ブチロラクトン、γ-バレロラクトン、ジメチルスルホキシド(DMSO)イオン液体、ホスファゼン、ギ酸メチル、酢酸メチル、プロピオン酸エチル等の脂肪族カルボン酸エステル類、又は、これらの化合物の一部の水素原子がフッ素原子で置換されたものが挙げられる。 Other solvents that can be contained in the non-aqueous electrolyte include, for example, ethylene sulfite (ES), propane sultone (PS), butane sultone (BS), dioxathilane-2,2-dioxide (DD), and sulfolene. 3-methylsulfolene, sulfolane (SL), succinic anhydride (SUCAH), propionic anhydride, acetic anhydride, maleic anhydride, diallyl carbonate (DAC), dimethyl 2,5-dioxahexanoate, 2,5 Dimethyl hexane hexanoate, furan, 2,5-dimethylfuran, diphenyl disulfide (DPS), dimethoxyethane (DME), dimethoxymethane (DMM), diethoxyethane (DEE), ethoxymethoxyethane, chloroethylene carbonate , Dimethyl ether, methyl Tyl ether, methyl propyl ether, ethyl propyl ether, dipropyl ether, methyl butyl ether, diethyl ether, phenyl methyl ether, tetrahydrofuran (THF), 2-methyltetrahydrofuran (2-MeTHF), tetrahydropyran (THP), 1,4-dioxane (DIOX), 1,3-dioxolane (DOL), methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate, butyl acetate, methyl difluoroacetate, methyl propionate, ethyl propionate, propyl propionate, methyl formate , Ethyl formate, ethyl butyrate, isopropyl butyrate, methyl isobutyrate, methyl cyanoacetate, vinyl acetate, diphe Rudisulfide, dimethylsulfide, diethylsulfide, adiponitrile, valeronitrile, glutaronitrile, malononitrile, succinonitrile, pimonitrile, suberonitrile, isobutyronitrile, biphenyl, thiophene, methyl ethyl ketone, fluorobenzene, hexafluorobenzene, carbonate electrolyte, Glyme, ether, acetonitrile, propiononitrile, γ-butyrolactone, γ-valerolactone, dimethyl sulfoxide (DMSO) ionic liquid, aliphatic carboxylic acid esters such as phosphazene, methyl formate, methyl acetate, ethyl propionate, or the like A compound in which a part of hydrogen atoms of a compound is substituted with a fluorine atom.
 本実施形態における支持塩としては、LiPF、LiAsF、LiAlCl、LiClO、LiBF、LiSbF、LiCFSO、LiCSO、LiC(CFSO、LiN(CFSO等の通常のリチウムイオン電池に使用可能なリチウム塩を用いることができる。支持塩は、一種を単独で、または二種以上を組み合わせて使用することができる。 As the supporting salt in the present embodiment, LiPF 6 , LiAsF 6 , LiAlCl 4 , LiClO 4 , LiBF 4 , LiSbF 6 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiC (CF 3 SO 2 ) 3 , LiN ( CF 3 SO 2) 2 normal lithium salt which can be used in lithium ion batteries or the like can be used. The supporting salt can be used alone or in combination of two or more.
 非水溶媒は、一種を単独で、または二種以上を組み合わせて使用することができる。  Non-aqueous solvents can be used alone or in combination of two or more.
 <外装体>
 外装体としては、電解液に安定で、かつ十分な水蒸気バリア性を持つものであれば、適宜選択することができる。例えば、積層ラミネート型の二次電池の場合、外装体としては、アルミニウムと樹脂のラミネートフィルムを用いることが好ましい。外装体は、単一の部材で構成してもよいし、複数の部材を組み合わせて構成してもよい。
<Exterior body>
The exterior body can be appropriately selected as long as it is stable to the electrolytic solution and has a sufficient water vapor barrier property. For example, in the case of a laminated laminate type secondary battery, it is preferable to use a laminate film of aluminum and resin as the outer package. An exterior body may be comprised with a single member and may be comprised combining several members.
 <製造方法>
 以下に、正極27が二枚のセパレータシート22に挟まれた構造を有するセパレータ付き電極アセンブリ25の作製方法と、電極積層体の作製方法を説明する。
<Manufacturing method>
Below, the manufacturing method of the electrode assembly 25 with a separator which has the structure where the positive electrode 27 was pinched | interposed between the two separator sheets 22, and the manufacturing method of an electrode laminated body are demonstrated.
 図5は、重ね合わせた二枚のセパレータシート22に、凹部と凸部からなる噛み合い構造を形成する方法の一例を説明する断面模式図である。表面に凹部51b、52bと凸部51a、52aを形成した一対の加圧板51、52の間に、重ねあわせた二枚のセパレータシート22の辺の部分を挟み、加圧板51の凸部51aと加圧板52の凹部52b、加圧板51の凹部51bと加圧板52の凸部52aが噛み合うように加圧する。これにより、二枚のセパレータシート22に図6に示すような凹部61と凸部62からなる噛み合い構造が形成される。このように、加圧板51、52でセパレータシート22を挟み込むことによってセパレータシート22に噛み合い構造を形成することで、例えば厚さが50μm未満の薄いセパレータシート22であっても、セパレータシート22が破れることなく良好に噛み合い構造を形成することができる。 FIG. 5 is a schematic cross-sectional view for explaining an example of a method for forming a meshing structure composed of a concave portion and a convex portion on two stacked separator sheets 22. Between the pair of pressure plates 51, 52 having the concave portions 51b, 52b and the convex portions 51a, 52a formed on the surface, the side portions of the two separator sheets 22 overlapped are sandwiched, and the convex portions 51a of the pressure plate 51 Pressurization is performed so that the concave portion 52b of the pressure plate 52, the concave portion 51b of the pressure plate 51, and the convex portion 52a of the pressure plate 52 are engaged with each other. Thereby, the meshing structure which consists of the recessed part 61 and the convex part 62 as shown in FIG. In this way, by forming the meshing structure with the separator sheet 22 by sandwiching the separator sheet 22 between the pressure plates 51 and 52, the separator sheet 22 is broken even if the separator sheet 22 is thin, for example, having a thickness of less than 50 μm. A meshing structure can be formed satisfactorily without any problems.
 加圧板51、52に形成される凹部51b、52bおよび凸部51a、52aの数は任意であってよい。例えば、加圧板51、52がそれぞれ一つの凹部51b、52bおよび凸部51a、52aを有するものあっても、セパレータシート22の加圧と加圧板51、52の移動を適宜繰り返すことで、セパレータシート22に所望の数の凹部および凸部を有する噛み合い構造を形成することができる。 The number of concave portions 51b and 52b and convex portions 51a and 52a formed in the pressure plates 51 and 52 may be arbitrary. For example, even if the pressurizing plates 51 and 52 each have one concave portion 51b and 52b and the convex portions 51a and 52a, the separator sheet 22 is repeatedly pressed and moved as appropriate. A meshing structure having a desired number of concave portions and convex portions can be formed on the 22.
 また、加圧板51、板52の表面に形成する凹部および凸部の平面形状を、折れ曲がり部を持つ形にすると、図7に示すように、セパレータシート22に形成される凹部71と凸部72の外周長を長くすることができる。それにより、セパレータシート22同士の固定力を大きくすることができる。図7に示す例では折れ曲がりが中央の1か所だけであるが、2か所以上にして凹凸部をジグザグにしても良い。 Further, when the planar shapes of the concave portions and the convex portions formed on the surfaces of the pressure plate 51 and the plate 52 are formed to have a bent portion, the concave portions 71 and the convex portions 72 formed in the separator sheet 22 as shown in FIG. The outer peripheral length of the can be increased. Thereby, the fixing force between the separator sheets 22 can be increased. In the example shown in FIG. 7, the bending is only at one central portion, but the uneven portion may be zigzag at two or more locations.
 図8は、二枚のセパレータ22に正極27が挟まれた構造を有するセパレータ付き電極アセンブリを作製する一方法を説明する図である。以下、図に従って説明する。
(工程A1)まず、セパレータシート22を二枚重ねる。
(工程A2)次に、重ねたセパレータシート22の隣り合う二辺に噛み合い構造26を形成して、二枚のセパレータシート22を互いに固定する。
(工程A3)次に、正極27を二枚のセパレータシート22の間に挿入する。このとき、セパレータシート22の噛み合い構造26によって固定された二辺に、正極27の二辺を突き合わせることで、正極27とセパレータシート22の位置関係を決める。
(工程A4)次に、正極27のずれを防止するために、重ねたセパレータシート22の残りの二辺に噛み合い構造を形成する。
FIG. 8 is a view for explaining a method for producing an electrode assembly with a separator having a structure in which a positive electrode 27 is sandwiched between two separators 22. Hereinafter, it demonstrates according to a figure.
(Step A1) First, two separator sheets 22 are stacked.
(Step A2) Next, a meshing structure 26 is formed on two adjacent sides of the stacked separator sheets 22, and the two separator sheets 22 are fixed to each other.
(Step A3) Next, the positive electrode 27 is inserted between the two separator sheets 22. At this time, the positional relationship between the positive electrode 27 and the separator sheet 22 is determined by abutting the two sides of the positive electrode 27 with the two sides fixed by the meshing structure 26 of the separator sheet 22.
(Step A4) Next, in order to prevent the positive electrode 27 from shifting, a meshing structure is formed on the remaining two sides of the stacked separator sheets 22.
 上述の一連の工程のうち、工程A2では、正極27電流取り出しのための延長部が突き出る上辺を除いた3辺に噛み合い構造26を形成し、残りの一辺の開口から電極27を挿入するようにしても良い。しかしこの場合、残りの一辺での開口のサイズによっては、正極27をセパレータシート22の間に挿入する工程A3の作業が、隣り合う二辺を固定した場合と比べて難しくなることがある。 Of the series of steps described above, in step A2, the engagement structure 26 is formed on the three sides excluding the upper side from which the extension for the positive electrode 27 current extraction projects, and the electrode 27 is inserted from the opening on the other side. May be. However, in this case, depending on the size of the opening on the remaining one side, the operation of the step A3 for inserting the positive electrode 27 between the separator sheets 22 may be difficult as compared with the case where the two adjacent sides are fixed.
 図8とは別の方法を、図9を用いて説明する。
(工程B1)まず、一枚のセパレータシート81の上に、正極27を置く。このとき、正極27は一枚でも構わないが、図9のように、セパレータシート81のサイズを、複数の正極27を互いに間隔をあけて並べて配置できるサイズとし、複数の正極27を同時に処理する方が、生産時間の短縮に有利なため好ましい。
(工程B2)次に、1つまたは複数の正極27を置いたセパレータシート81の上に、もう1枚のセパレータシート82を重ねる。
(工程B3)次に、重ねた二枚のセパレータシート81、82の、正極27の周囲四辺に対応する部分に噛み合い構造26を形成する。
(工程B4)最後に、セパレータシート81、82を、所定の箇所で裁断し、一つの正極27およびその周囲の噛み合い構造26を含むセパレータ付き電極アセンブリ25を得る。図9に示すように、複数の正極27を同時に処理する場合は、セパレータシート81、82を、各正極27の間の位置で裁断し、これによって、それぞれ一つの正極27およびその周囲の噛み合い構造27を有する複数のセパレータ付き電極アセンブリ25を得る。
A method different from FIG. 8 will be described with reference to FIG.
(Step B1) First, the positive electrode 27 is placed on one separator sheet 81. At this time, the number of the positive electrodes 27 may be one. However, as shown in FIG. 9, the size of the separator sheet 81 is set to a size that allows the plurality of positive electrodes 27 to be arranged at intervals. This is preferable because it is advantageous for shortening the production time.
(Step B2) Next, another separator sheet 82 is overlaid on the separator sheet 81 on which one or more positive electrodes 27 are placed.
(Step B3) Next, the meshing structure 26 is formed in portions of the two separator sheets 81 and 82 that are overlapped, corresponding to the four sides around the positive electrode 27.
(Step B4) Finally, the separator sheets 81 and 82 are cut at predetermined positions to obtain the electrode assembly 25 with a separator including one positive electrode 27 and the meshing structure 26 around it. As shown in FIG. 9, when simultaneously processing a plurality of positive electrodes 27, the separator sheets 81 and 82 are cut at positions between the respective positive electrodes 27, whereby each positive electrode 27 and its surrounding meshing structure are cut. A plurality of electrode assemblies 25 with separators 27 are obtained.
 電極積層体の作製方法を、図10を用いて説明する。電極積層体の作製には、図10に示すように、積層体の隣り合う二辺の位置を決めるために直交配置された二つの位置決めブロック101を用いる。この位置決めブロック101に、負極21と、正極を収納したセパレータ付き電極アセンブリ25とを、それぞれ隣り合う二辺を突き当てながら交互に重ねていくことで電極積層体が作製される。負極21とセパレータ付き電極アセンブリ25とを積層するとき、負極21の延長部と、セパレータ付きアセンブリ25に収納された正極の延長部とが重ならないようにする。所定の数だけ積層した後、負極の延長部に負極タブを溶接により接続し、正極の延長部に正極タブを溶接で接続する。 A method for manufacturing the electrode laminate will be described with reference to FIG. As shown in FIG. 10, two positioning blocks 101 arranged orthogonally are used for manufacturing the electrode stack, in order to determine the positions of two adjacent sides of the stack. An electrode stack is produced by alternately stacking the negative electrode 21 and the electrode assembly 25 with a separator containing the positive electrode on the positioning block 101 while abutting two adjacent sides. When the negative electrode 21 and the electrode assembly 25 with separator are stacked, the extension of the negative electrode 21 and the extension of the positive electrode housed in the assembly 25 with separator are not overlapped. After a predetermined number of layers are stacked, the negative electrode tab is connected to the negative electrode extension by welding, and the positive electrode tab is connected to the positive electrode extension by welding.
 次に、本発明を実施例により具体的に説明する。 Next, the present invention will be specifically described with reference to examples.
 <実施例1>
 <電池の作製>
 (正極の作製)
 正極活物質として、リチウムマンガン複合酸化物(LiMn)材料を85質量%、導電助剤としてアセチレンブラックを7質量%、バインダとしてポリフッ化ビニリデン8質量%とを混合し、これをN-メチルピロリドン(NMP)に分散させてスラリーとした後、正極集電体としてのアルミニウム箔(厚さ15μm)に塗布し、乾燥させた。集電体の両面に活物質を塗布した後、電極をプレス処理し、処理後の厚さが80μmになるように作製した。さらに、これを延長部が突き出た形状に打ち抜いた。活物質塗布部分は幅66mm、長さ96mmとした。延長部は、活物質塗布部の長辺方向に沿って長さ15mm、幅20mmとした。延長部に活物質は塗布されていない。
<Example 1>
<Production of battery>
(Preparation of positive electrode)
As a positive electrode active material, a lithium manganese composite oxide (LiMn 2 O 4 ) material is mixed in an amount of 85% by mass, acetylene black as a conductive auxiliary agent is 7% by mass, and a binder is 8% by mass of polyvinylidene fluoride. After being dispersed in methylpyrrolidone (NMP) to form a slurry, it was applied to an aluminum foil (thickness 15 μm) as a positive electrode current collector and dried. After applying the active material to both sides of the current collector, the electrode was pressed to produce a thickness of 80 μm after the treatment. Further, this was punched into a shape with an extended portion protruding. The active material application portion had a width of 66 mm and a length of 96 mm. The extension portion had a length of 15 mm and a width of 20 mm along the long side direction of the active material application portion. No active material is applied to the extension.
 (負極の作製)
 負極活物質として、黒鉛材料を90質量%、バインダとしてポリフッ化ビニリデン10質量%とを混合し、N-メチルピロリドン(NMP)に分散させてスラリーとした後、負極集電体として厚さ10μmの銅箔に塗布し、乾燥させた。集電体の両面に活物質を塗布した後、電極をプレス処理し、処理後の厚さが65μmになるように作製した。さらに、これを延長部が突き出た形状に打ち抜いた。活物質塗布部分は幅70mm、長さ100mmとした。延長部は、活物質塗布部の長辺方向に沿って長さ15mm、幅20mmで形成した。延長部に活物質は塗布されていない。
(Preparation of negative electrode)
As a negative electrode active material, 90% by mass of a graphite material and 10% by mass of polyvinylidene fluoride as a binder were mixed and dispersed in N-methylpyrrolidone (NMP) to form a slurry, and then a negative electrode current collector having a thickness of 10 μm. It was applied to copper foil and dried. After the active material was applied to both sides of the current collector, the electrode was pressed to produce a thickness of 65 μm after the treatment. Further, this was punched into a shape with an extended portion protruding. The active material application portion had a width of 70 mm and a length of 100 mm. The extension part was formed with a length of 15 mm and a width of 20 mm along the long side direction of the active material application part. No active material is applied to the extension.
 (セパレータ付き電極アセンブリの作製)
 セパレータシートとして、厚さ25μmのセルロース不織布を、幅70mm、長さ100mmの短冊状に裁断したものを用いた。得られた短冊状のセパレータシートを二枚重ね、隣り合う二辺を、平面形状が矩形の凹部と凸部を表面にもつ二枚の加圧板で挟んで加圧した。これにより、二枚のセパレータシートには、加圧板による凹部および凸部が噛み合った噛み合い構造が形成され、二枚のセパレータシート同士がこの噛み合い構造によって固定された。噛み合い構造は、凹部と凸部の間に平たん部が無く、セパレータシートの辺に沿った方向での凹部の底面および凸部の上面の長さはそれぞれ0.4mm、凹凸の周期は1.4mmであり、重ね合わせセパレータシートの辺の両端部に8周期分の長さで形成した。セパレータシートの辺に垂直な方向での、セパレータシートの縁からの噛み合い構造の長さで規定される噛み合い構造の幅は、1.5mmとした。凹部および凸部の噛み合い高さは0.4mmであり、上記の各寸法から算出した噛み合い構造の側壁部の角度は37度となる。
(Preparation of electrode assembly with separator)
As a separator sheet, a cellulose nonwoven fabric having a thickness of 25 μm was cut into a strip shape having a width of 70 mm and a length of 100 mm. Two sheets of the obtained strip-shaped separator sheets were overlapped, and the two adjacent sides were pressed between two pressure plates having a concave portion and a convex portion having a rectangular planar shape on the surface. As a result, the two separator sheets were formed with a meshing structure in which the concave portions and the convex portions by the pressure plate were meshed with each other, and the two separator sheets were fixed by this meshing structure. The meshing structure has no flat portion between the concave portion and the convex portion, the length of the bottom surface of the concave portion and the top surface of the convex portion in the direction along the side of the separator sheet is 0.4 mm, and the period of the concave and convex portions is 1. The length was 4 mm, and the length was 8 periods at both ends of the side of the overlapping separator sheet. The width of the meshing structure defined by the length of the meshing structure from the edge of the separator sheet in the direction perpendicular to the side of the separator sheet was 1.5 mm. The meshing height of the concave and convex portions is 0.4 mm, and the angle of the side wall portion of the meshing structure calculated from the above dimensions is 37 degrees.
 次に、正極の二辺をセパレータシートの二辺に形成された噛み合い構造に突き当てて位置を合わせながら、正極を二枚のセパレータシートの間に挟んだ。次に、セパレータシートの固定されていない二辺に、同様の噛み合い構造を形成して、正極の外周四辺においてセパレータシートを固定した。これにより、正極を収納したセパレータ付き電極アセンブリを作製した。なお、正極の延長部が突き出ているセパレータシートの部分には、噛み合い構造は形成しなかった。 Next, the positive electrode was sandwiched between the two separator sheets while the two sides of the positive electrode were brought into contact with the meshing structure formed on the two sides of the separator sheet and aligned. Next, the same meshing structure was formed on the two sides where the separator sheet was not fixed, and the separator sheet was fixed on the four outer peripheral sides of the positive electrode. Thereby, the electrode assembly with a separator which accommodated the positive electrode was produced. In addition, the meshing structure was not formed in the part of the separator sheet from which the extension part of the positive electrode protruded.
 (電極積層体の作製)
 電極の積層、すなわち負極とセパレータ付き電極アセンブリとの積層は、図10と同様の位置決めブロックを用いて行った。積層は、負極、セパレータ付き電極アセンブリ、負極、の順に、4枚の正極と5枚の負極が交互に重なるように行った。最も外側の面は負極となるが、対向する正極面が無いため、電池として動作しない。
(Production of electrode laminate)
Lamination of the electrodes, that is, lamination of the negative electrode and the electrode assembly with a separator was performed using the same positioning block as in FIG. The stacking was performed in the order of the negative electrode, the electrode assembly with separator, and the negative electrode so that the four positive electrodes and the five negative electrodes were alternately overlapped. The outermost surface is a negative electrode, but does not operate as a battery because there is no positive electrode surface facing it.
 (電池の作製)
 電極積層体の正極の延長部と負極の延長部に、それぞれ正極タブと負極タブを超音波溶接により接合した。次に、正極タブおよび負極タブが接合された電極積層体を、正極タブおよび負極タブを突出させて外装体内に封入し、これによって電池を作製した。電極積層体の封入は、以下の手順で行った。
(Production of battery)
The positive electrode tab and the negative electrode tab were joined to the extension part of the positive electrode and the negative electrode extension part of the electrode laminate by ultrasonic welding, respectively. Next, the electrode laminated body to which the positive electrode tab and the negative electrode tab were joined was sealed in the exterior body with the positive electrode tab and the negative electrode tab protruding, thereby producing a battery. The sealing of the electrode laminate was performed according to the following procedure.
 まず、外装材として、アルミニウムと樹脂のラミネートフィルムを二枚用意した。これら二枚のラミネートフィルムを、電極積層体を間に挟んで重ね合わせた。このとき、電極積層体は。正極タブおよび負極タブがラミネートフィルムから突出するように配置する。重ね合わせたラミネートフィルム同士を、電極積層体の外周部の三辺で熱溶着した。ラミネートフィルムの熱溶着後、熱溶着していない残りの一辺を注液口としてそこからラミネートフィルム内に電解液を注入した。電解液の注入後、真空雰囲気中で注液口を熱溶着により封止し、これにより電池を完成した。電解液としては、エチレンカーボネートとジエチルカーボネートを体積比1:2で混合したものを溶媒とし、溶媒1リットルあたりLiPFを1モル溶解したものを用いた。 First, two laminate films of aluminum and resin were prepared as exterior materials. These two laminate films were overlapped with the electrode laminate interposed therebetween. At this time, the electrode laminate is. It arrange | positions so that a positive electrode tab and a negative electrode tab may protrude from a laminate film. The laminated laminate films were heat-welded on the three sides of the outer periphery of the electrode laminate. After the laminate film was thermally welded, an electrolyte solution was injected into the laminate film from the remaining one side not thermally welded as a liquid injection port. After injecting the electrolytic solution, the injection port was sealed by heat welding in a vacuum atmosphere, thereby completing the battery. As the electrolytic solution, a solution in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 1: 2 was used as a solvent, and 1 mol of LiPF 6 was dissolved per liter of the solvent.
 <電池の評価>
 以上の手順で電池(セル)を10個作製し、初回の充電前に、電池の内部短絡の有無を電池10個で調べた。次に、そのうち5個の電池について、下限電圧2.5V、上限電圧4.2Vの充放電を100サイクル行った後の内部析出の有無を調べ、残りの5個の電池で、180℃まで恒温槽内で加熱したときの内部短絡の有無を調べた。その結果、充電前の電池の内部短絡は0個、100サイクルの充放電試験後の内部析出は0個、180℃まで加熱すると昇温中に電解液の気化で電池の外装体が膨らみ、熱溶着した外装体の辺の一部が開封したが、内部短絡は0個であった。180℃まで加熱した電池を冷却後に分解したところ、セパレータは正極を覆っており、正極と負極が接触した箇所は無かった。
<Battery evaluation>
Ten batteries (cells) were produced according to the above procedure, and the presence or absence of an internal short circuit of the battery was examined with ten batteries before the first charge. Next, for five of the batteries, the presence or absence of internal deposition after 100 cycles of charging / discharging with a lower limit voltage of 2.5 V and an upper limit voltage of 4.2 V was examined, and the remaining five batteries were kept at a constant temperature up to 180 ° C. The presence or absence of an internal short circuit when heated in the bath was examined. As a result, the number of internal short circuits of the battery before charging was 0, the number of internal precipitation after 100 cycles of the charge / discharge test was 0, and when heated to 180 ° C., the battery outer body swelled due to the evaporation of the electrolyte during the temperature rise. A part of the side of the welded outer package was opened, but there were no internal short circuits. When the battery heated to 180 ° C. was disassembled after cooling, the separator covered the positive electrode, and there was no place where the positive electrode and the negative electrode contacted.
 <実施例2>
 <電池の作製>
 正極の二辺をセパレータシートの固定した隣り合う長辺と短辺に突き当てて位置を合わせながらセパレータシートの間に挟んだ後、セパレータシートの残りの二辺に噛み合い構造を形成しなかった。このこと以外は、実施例1と同様にして電池を作製した。電極の積層時には、セパレータシートの固定した二辺を、図10に示す位置決めブロックに突き当てて位置決めをした。
<Example 2>
<Production of battery>
After the two sides of the positive electrode were sandwiched between the separator sheets while abutting the adjacent long and short sides fixed to the separator sheet and aligning the positions, no meshing structure was formed on the remaining two sides of the separator sheet. A battery was fabricated in the same manner as in Example 1 except for this. When the electrodes were stacked, the two sides fixed to the separator sheet were abutted against the positioning block shown in FIG. 10 for positioning.
 <電池の評価>
 実施例1と同様に10個の電池を作製して評価を行った。その結果、充電前の電池の内部短絡は0個、100サイクルの充放電試験後の内部析出は0個、180℃まで加熱したときの内部短絡は0個であった。
<Battery evaluation>
Ten batteries were produced and evaluated in the same manner as in Example 1. As a result, the number of internal short circuits of the battery before charging was 0, the number of internal deposits after 100 cycles of charge / discharge test was 0, and the number of internal short circuits when heated to 180 ° C. was 0.
 <実施例3>
 <電池の作製>
 ポリイミドのマイクロ繊維から形成した厚さ30μmの不織布をセパレータシートとしてとして用いた。セパレータシートの噛み合い構造を形成する箇所に一枚のポリプロピレンシートを挟んで、二枚のセパレータシートを重ね合わせた。ポリプロピレンシートの厚さは25μmであった。挟んだポリプロピレンシートは、正極にかからないように配置した。その他は、実施例1と同様にして電池を作製した。
<Example 3>
<Production of battery>
A 30 μm thick nonwoven fabric formed from polyimide microfibers was used as a separator sheet. Two separator sheets were overlapped with one polypropylene sheet sandwiched between locations where the separator sheet meshing structure was formed. The thickness of the polypropylene sheet was 25 μm. The sandwiched polypropylene sheet was arranged so as not to be applied to the positive electrode. Otherwise, the battery was fabricated in the same manner as in Example 1.
 <電池の評価>
 実施例1と同様に10個の電池を作製して評価を行った。その結果、充電前の電池の内部短絡は0個、100サイクルの充放電試験後の内部析出は0個、180℃まで加熱したときの内部短絡は0個であった。
<Battery evaluation>
Ten batteries were produced and evaluated in the same manner as in Example 1. As a result, the number of internal short circuits of the battery before charging was 0, the number of internal deposits after 100 cycles of charge / discharge test was 0, and the number of internal short circuits when heated to 180 ° C. was 0.
 ポリプロピレンの融点を超えた温度まで加熱しても内部短絡が発生しなかった理由として、ポリプロピレンの溶融温度以上においても、溶融したポリプロピレンがポリイミド不織布の間に留まったためと考えられる。ポリイミド不織布の間に留まったポリプロピレンが、ポリイミド不織布に形成した噛み合い構造によるポリイミド不織布同士の固定力をより強固にし、ポリイミドシートのずれを防いだものと推測している。 The reason why the internal short circuit did not occur even when heated to a temperature exceeding the melting point of polypropylene is considered to be that the molten polypropylene stayed between the polyimide nonwoven fabrics even at a temperature higher than the melting temperature of polypropylene. It is presumed that the polypropylene stayed between the polyimide nonwoven fabrics strengthened the fixing force between the polyimide nonwoven fabrics due to the meshing structure formed on the polyimide nonwoven fabric, and prevented the polyimide sheet from shifting.
 <実施例4>
 <電池の作製>
 セパレータとしてEガラスのファイバーを製織した厚さ25μmのガラスクロスを用いた。製織したままのガラスクロスは織り目がずれやすい。そこで、ポリプロピレンフィルムをガラスクロスに重ねて200℃まで加熱して溶融し、ガラス繊維の間に浸透、固化させることで、ガラスクロスの織り目を固定した。ポリプロピレンの量は、セパレータシート全体に対して20重量%とした。その他は、実施例1と同様にして電池を作製した。
<Example 4>
<Production of battery>
A glass cloth having a thickness of 25 μm in which E glass fibers were woven was used as a separator. The weaved glass cloth is easily misaligned. Therefore, the texture of the glass cloth was fixed by superimposing the polypropylene film on the glass cloth and heating it to 200 ° C. to melt and infiltrate and solidify it between the glass fibers. The amount of polypropylene was 20% by weight with respect to the entire separator sheet. Otherwise, the battery was fabricated in the same manner as in Example 1.
 <電池の評価>
 実施例1と同様に10個の電池を作製して評価を行った。その結果、充電前の電池の内部短絡は0個、100サイクルの充放電試験後の内部析出は0個、180℃まで加熱したときの内部短絡は0個であった。ポリプロピレンの融点を超えた温度まで加熱しても内部短絡が発生しなかった理由として、ポリプロピレンの溶融温度以上においても、溶融したポリプロピレンがガラス繊維の間に留まって、ガラスクロスの変形を防いでいたためと推測している。
<Battery evaluation>
Ten batteries were produced and evaluated in the same manner as in Example 1. As a result, the number of internal short circuits of the battery before charging was 0, the number of internal deposits after 100 cycles of charge / discharge test was 0, and the number of internal short circuits when heated to 180 ° C. was 0. The reason why the internal short circuit did not occur even when heated to a temperature exceeding the melting point of polypropylene was that the molten polypropylene stayed between the glass fibers even above the melting temperature of the polypropylene, preventing the glass cloth from being deformed. I guess because.
 <実施例5>
 <電池の作製>
 セパレータシートに形成する噛み合い構造の形状を、凹部と凸部の間に平たん部が無く、セパレータシートの辺に沿った方向での凹部の底面および凸部の上面の長さはそれぞれ0.4mm、凹凸の周期1.0mmとし、重ねあわせたセパレータシートの辺の両端に8周期分を形成した。凹部および凸部の噛み合い高さは0.1mmで、上記の各寸法から算出した噛み合い構造の側壁部の角度は34度となる。その他は、実施例1と同様にして電池を作製した。
<Example 5>
<Production of battery>
The shape of the meshing structure formed on the separator sheet is such that there is no flat portion between the concave portion and the convex portion, and the length of the bottom surface of the concave portion and the top surface of the convex portion in the direction along the side of the separator sheet is 0.4 mm. The period of the unevenness was 1.0 mm, and 8 periods were formed at both ends of the sides of the separator sheets that were superimposed. The meshing height of the concave and convex portions is 0.1 mm, and the angle of the side wall portion of the meshing structure calculated from the above dimensions is 34 degrees. Otherwise, the battery was fabricated in the same manner as in Example 1.
 <電池の評価>
 実施例1と同様に10個の電池を作製して評価を行った。その結果、充電前の電池の内部短絡は0個、100サイクルの充放電試験後の内部析出は0個、180℃まで加熱したときの内部短絡は0個であった。
<Battery evaluation>
Ten batteries were produced and evaluated in the same manner as in Example 1. As a result, the number of internal short circuits of the battery before charging was 0, the number of internal deposits after 100 cycles of charge / discharge test was 0, and the number of internal short circuits when heated to 180 ° C. was 0.
 <実施例6>
 <電池の作製>
 セパレータシートとして、厚さ25μmのセルロース不織布を、幅140mm、長さ100mmの矩形状に裁断したものを用いた。一枚のセパレータシートの上に、正極を二枚並べて置いた。このとき、セパレータシートの長さ100mmの辺と正極の96mmの辺を平行とし、隣り合う正極の辺と辺の距離を4mm、そのほかの正極の辺(延長部を除く)とセパレータシートの辺の距離を2mmとなるようにした。次に、この上に、もう一枚のセパレータシートを重ねた。次に、二枚の正極それぞれの四辺から0.5mmの距離をとって、重なり合ったセパレータシートに凹部および凸部からなる噛み合い構造を形成した。隣り合う正極の間での噛み合い構造の幅(正極の辺に沿った方向に垂直な方向での噛み合い構造の長さ)を3mmとした他は、実施例1と同様の噛み合い構造を形成した。次に、隣り合う正極の間の4mmの隙間の中央で、セパレータシートを切断した。これにより、実施例1により得られたのと同様のセパレータ付き電極アセンブリが同時に二枚得られた。このようにして作製したセパレータ付き電極アセンブリを用いて、実施例1と同様にして電池を作製した。
<Example 6>
<Production of battery>
As a separator sheet, a cellulose nonwoven fabric having a thickness of 25 μm was cut into a rectangular shape having a width of 140 mm and a length of 100 mm. Two positive electrodes were placed side by side on one separator sheet. At this time, the 100 mm side of the separator sheet and the 96 mm side of the positive electrode are parallel, the distance between the sides of the adjacent positive electrode is 4 mm, the other positive electrode side (excluding the extension) and the side of the separator sheet The distance was set to 2 mm. Next, another separator sheet was stacked thereon. Next, a distance of 0.5 mm from the four sides of each of the two positive electrodes was taken, and an interlocking structure composed of concave portions and convex portions was formed on the overlapping separator sheets. The meshing structure similar to that of Example 1 was formed except that the width of the meshing structure between adjacent positive electrodes (the length of the meshing structure in the direction perpendicular to the direction along the side of the positive electrode) was 3 mm. Next, the separator sheet was cut at the center of a 4 mm gap between adjacent positive electrodes. Thereby, two electrode assemblies with separators similar to those obtained in Example 1 were obtained at the same time. A battery was produced in the same manner as in Example 1 using the separator-attached electrode assembly thus produced.
 <電池評価>
 実施例1と同じく10個の電池を作製して評価を行った。その結果、充電前の電池の内部短絡は0個、100サイクルの充放電試験後の内部析出は0個、180℃まで加熱したときの内部短絡は0個であった。
<Battery evaluation>
Ten batteries were fabricated and evaluated in the same manner as in Example 1. As a result, the number of internal short circuits of the battery before charging was 0, the number of internal deposits after 100 cycles of charge / discharge test was 0, and the number of internal short circuits when heated to 180 ° C. was 0.
 <実施例7>
 <電池の作製>
 実施例3において、ポリイミド不織布からなるセパレータシートの間にポリプロピレンシートを挟まず、さらに、噛み合い構造の平面形状を、矩形から、中央部において折れ曲がった形状としたこと以外は実施例3と同様にして電池を作製した。噛み合い構造の平面形状における折れ曲がり角度は120度とした。
<Example 7>
<Production of battery>
In Example 3, a polypropylene sheet is not sandwiched between separator sheets made of a polyimide nonwoven fabric, and the planar shape of the meshing structure is changed from a rectangle to a shape bent at the center part, as in Example 3. A battery was produced. The bending angle in the planar shape of the meshing structure was 120 degrees.
 <電池評価>
 実施例1と同じく10個の電池を作製して評価を行った。その結果、充電前の電池の内部短絡は0個、100サイクルの充放電試験後の内部析出は0個、180℃まで加熱したときの内部短絡は0個であった。
<Battery evaluation>
Ten batteries were fabricated and evaluated in the same manner as in Example 1. As a result, the number of internal short circuits of the battery before charging was 0, the number of internal deposits after 100 cycles of charge / discharge test was 0, and the number of internal short circuits when heated to 180 ° C. was 0.
 <比較例1>
 <電池の作製>
 セパレータシートとして厚さ25μmのポリプロピレン製微多孔質シートを用い、セパレータシート同士の固定を熱溶着で行ったこと以外は実施例1と同様にして電池を作製した。
<Comparative Example 1>
<Production of battery>
A battery was produced in the same manner as in Example 1 except that a polypropylene microporous sheet having a thickness of 25 μm was used as the separator sheet and the separator sheets were fixed to each other by heat welding.
 <電池の評価>
 実施例1と同じく10個の電池を作製して評価を行った。その結果、充電前の電池の内部短絡は0個、100サイクルの充放電試験後の内部析出は0個であったが、180℃まで加熱したときには、試験した5個の電池すべてで内部短絡が発生した。電池の外装体は、気化した電解液で膨らんで、熱溶着した辺の一部が開封していた。180℃まで加熱した電池を冷却後に分解したところ、セパレータが収縮し、正極面と負極面が接触していた。
<Battery evaluation>
Ten batteries were fabricated and evaluated in the same manner as in Example 1. As a result, the internal short circuit of the battery before charging was 0, and the internal deposition after the 100-cycle charge / discharge test was 0, but when heated to 180 ° C., the internal short circuit occurred in all 5 batteries tested. Occurred. The battery outer body was swollen with the vaporized electrolyte, and a part of the thermally welded side was opened. When the battery heated to 180 ° C. was decomposed after cooling, the separator contracted, and the positive electrode surface and the negative electrode surface were in contact with each other.
 <比較例2>
 <電池の作製>
 セパレータシートに噛み合い構造を形成しなかったこと、つまりセパレータシート同士を固定しなかったこと以外は実施例1と同様に電池を作製した。積層時の位置合わせは、実施例1と同じ位置決めブロックを用い、負極とセパレータシートとは位置決めブロックへの突き当てで位置を揃えたが、正極は寸法が小さいため位置決めブロックへの突き当てができず、目視で位置を合わせた。
<Comparative example 2>
<Production of battery>
A battery was produced in the same manner as in Example 1 except that the meshing structure was not formed on the separator sheet, that is, the separator sheets were not fixed to each other. The same positioning block as in Example 1 was used for alignment at the time of lamination, and the negative electrode and separator sheet were aligned by abutting against the positioning block, but the positive electrode was small in size and could be abutted against the positioning block. The position was adjusted visually.
 <電池の評価>
 実施例1と同じく10個の電池を作製して評価を行った。その結果、充電前の電池の内部短絡は0個であったが、100サイクルの充放電試験後の5個中1個で析出が負極の端部でみられた。これは組み立て中に電極積層体の中で正極がずれて、セパレータからは、はみ出さなかったものの、負極対向面からは、はみ出したことが原因と思われる。180℃まで加熱したときには、試験した5個のうち2個で内部短絡が発生した。電池の外装体は気化した電解液のために膨らんで、熱溶着した辺の一部が開封していた。内部短絡を起こした電池を冷却後に分解したところ、セパレータは収縮していなかったが、正極と負極が接触した箇所があった。電解液が気化して電池が膨らんだときに電極積層体が変形し、セパレータが動いたことが原因と考えられる。
<Battery evaluation>
Ten batteries were fabricated and evaluated in the same manner as in Example 1. As a result, although the number of internal short circuits of the battery before charging was zero, precipitation was observed at the end of the negative electrode in one out of five after the 100-cycle charge / discharge test. This is probably because the positive electrode was displaced in the electrode laminate during assembly and did not protrude from the separator, but protruded from the negative electrode facing surface. When heated to 180 ° C., internal short circuit occurred in 2 out of 5 tested. The outer package of the battery swelled due to the evaporated electrolyte, and a part of the thermally welded side was opened. When the battery which caused the internal short circuit was disassembled after cooling, the separator was not contracted, but there was a portion where the positive electrode and the negative electrode contacted. This is probably because the electrode stack was deformed when the electrolyte was vaporized and the battery expanded, and the separator moved.
 <参考例1>
 <電池の作製>
 実施例1と同様、セパレータシートとして厚さ25μmのセルロース不織布を用いた。噛み合い構造は、凹部と凸部の間に平たん部は無く、セパレータシートの辺に沿った方向での凹部の底面および凸部の上面の長さがそれぞれ0.4mm、凹凸の周期1.3mmであり、重ねあわせたセパレータシートの辺の両端に8周期分の長さ(約10mm)で形成した。凹部および凸部の噛み合い高さは0.2mmであり、これらの各寸法から算出した噛み合い構造の側壁部の角度は45度となる。次に、正極の二辺をセパレータシートの固定箇所に突き当てて位置を合わせながら、正極をセパレータシートの間に挟んだが、正極を突き当てる際に強い力を加えすぎるとセパレータシート同士の固定が外れるものがあった。
<Reference Example 1>
<Production of battery>
As in Example 1, a cellulose nonwoven fabric having a thickness of 25 μm was used as a separator sheet. The meshing structure has no flat portion between the concave portion and the convex portion, the length of the bottom surface of the concave portion and the top surface of the convex portion in the direction along the side of the separator sheet is 0.4 mm, and the period of the concave and convex portions is 1.3 mm. It was formed with a length of about 8 cycles (about 10 mm) at both ends of the sides of the stacked separator sheets. The meshing height of the concave and convex portions is 0.2 mm, and the angle of the side wall portion of the meshing structure calculated from these dimensions is 45 degrees. Next, the positive electrode was sandwiched between the separator sheets while abutting the two sides of the positive electrode against the fixing position of the separator sheet, and fixing the separator sheets to each other when a strong force was applied when the positive electrode was applied. There was something that came off.
 <参考例2>
 実施例1と同様、セパレータシートとして厚さ25μmのセルロース不織布を用いた。噛み合い構造は、凹部と凸部の間に平たん部は無く、セパレータシートの辺に沿った方向での凹部の底面および凸部の上面の長さがそれぞれ0.4mm、凹凸の周期1.0mmであり、重ねあわせたセパレータシートの辺の両端に8周期分の長さで形成した。凹部および凸部の噛み合い高さは0.08mmであり、これらの各寸法から算出した噛み合い構造の側壁部の角度は約37度となる。次に、正極の二辺をセパレータシートの固定箇所に突き当てて位置を合わせながら、正極をセパレータシートの間に挟んだが、正極を突き当てる際に強い力を加えすぎるとセパレータシート同士の固定が外れるものがあった。
<Reference Example 2>
As in Example 1, a cellulose nonwoven fabric having a thickness of 25 μm was used as a separator sheet. The meshing structure has no flat portion between the concave portion and the convex portion, the length of the bottom surface of the concave portion and the top surface of the convex portion in the direction along the side of the separator sheet is 0.4 mm, and the period of the concave and convex portions is 1.0 mm. It was formed with a length of 8 cycles at both ends of the sides of the separator sheets that were overlapped. The meshing height of the concave and convex portions is 0.08 mm, and the angle of the side wall portion of the meshing structure calculated from these dimensions is about 37 degrees. Next, the positive electrode was sandwiched between the separator sheets while abutting the two sides of the positive electrode against the fixing position of the separator sheet, and fixing the separator sheets to each other when a strong force was applied when the positive electrode was applied. There was something that came off.
 <参考例3>
 実施例1と同様、セパレータシートとして厚さ25μmのセルロース不織布を用いた。噛み合い構造は、凹部と凸部の間に平たん部は無く、セパレータシートの辺に沿った方向での凹部の底面および凸部の上面の長さがそれぞれ0.4mm、凹凸の周期1.4mmであり、重ねあわせたセパレータシートの辺の両端に8周期分の長さで形成した。凹部および凸部の噛み合い高さは0.5mmであり、これらの各寸法から算出した噛み合い構造の側壁部の角度は約29度となる。次に、正極の二辺をセパレータシートの固定箇所に突き当てて位置を合わせながら、正極をセパレータシートの間に挟んだが、正極を突き当てる際に強い力を加えすぎるとセパレータシート同士の固定が外れるものがあった。
<Reference Example 3>
As in Example 1, a cellulose nonwoven fabric having a thickness of 25 μm was used as a separator sheet. The meshing structure has no flat portion between the concave portion and the convex portion, the length of the bottom surface of the concave portion and the top surface of the convex portion in the direction along the side of the separator sheet is 0.4 mm, and the period of the concave and convex portions is 1.4 mm. It was formed with a length of 8 cycles at both ends of the sides of the separator sheets that were overlapped. The meshing height of the concave and convex portions is 0.5 mm, and the angle of the side wall portion of the meshing structure calculated from these dimensions is about 29 degrees. Next, the positive electrode was sandwiched between the separator sheets while abutting the two sides of the positive electrode against the fixing position of the separator sheet, and fixing the separator sheets to each other when a strong force was applied when the positive electrode was applied. There was something that came off.
 以上、実施例1~7の結果から、180℃まで加熱しても溶融しない耐熱性の高い材料によるセパレータシートを重ね合わせ、両者を凹部および凸部による噛み合い構造で互いに固定し、その間に正極を配置することで、積層電極体をもつリチウムイオン電池において、積層電極体内部での積層ずれを無くし、また、高温にさらした時の内部短絡を抑制する効果が得られることが認められた。なお、本発明の効果は、セパレータに用いる材料の性質と、重ねあわせたセパレータシートの構造によって発現するので、正極や負極の仕様やセパレータシートを変質させない限り電解液の種類には依存しない。 As described above, from the results of Examples 1 to 7, separator sheets made of a material having high heat resistance that does not melt even when heated up to 180 ° C. are superposed, and both are fixed to each other with a meshing structure of concave and convex portions, and the positive electrode is sandwiched therebetween. It was confirmed that, in the lithium ion battery having the laminated electrode body, the effect of eliminating the stacking deviation inside the laminated electrode body and suppressing the internal short circuit when exposed to high temperature can be obtained by arranging. In addition, since the effect of this invention expresses with the property of the material used for a separator, and the structure of the laminated separator sheet, it does not depend on the kind of electrolyte solution, unless the specification of a positive electrode and a negative electrode, or a separator sheet is changed.
 また、実施例3ではセパレータシートとしてポリイミド繊維から作られた不織布を用い、二枚のセパレータシートの間にポリプロピレンシートを挟み込んでいるが、このポリプロピレンシートは必須の構成ではない。ただし、180℃まで加熱しても溶融しない材料の一つであるポリアミド繊維やアラミド繊維などは繊維径のばらつきが小さいため、他の繊維材料と比べて、噛み合い構造によるセパレータシート同士の固定力が小さい傾向がある。このような場合であっても、例えば、凹部および凸部の数を増やしたり、噛み合い高さを高くしたり、凹部および凸部の側壁の角度を小さくしたり、実施例7のように噛み合い構造の平面形状を工夫したり、これら二つ以上組み合わせたりすることで、セパレータシート同士の固定力をより高くすることができる。 In Example 3, a nonwoven fabric made of polyimide fibers is used as a separator sheet, and a polypropylene sheet is sandwiched between two separator sheets. However, this polypropylene sheet is not an essential component. However, polyamide fibers and aramid fibers, which are one of the materials that do not melt even when heated up to 180 ° C, have a small variation in fiber diameter, so that the fixing force between separator sheets due to the meshing structure is lower than other fiber materials. There is a small tendency. Even in such a case, for example, the number of concave portions and convex portions is increased, the height of meshing is increased, the angle of the side walls of the concave portions and convex portions is decreased, or the meshing structure as in Example 7 is achieved. The fixing force between the separator sheets can be further increased by devising the planar shape or by combining two or more of these.
 本発明は、電源を必要とするあらゆる産業分野、ならびに電気的エネルギーの輸送、貯蔵および供給に関する産業分野にて利用することができる。具体的には、携帯電話、ノートパソコンなどのモバイル機器の電源、電気自動車、ハイブリッドカー、電動バイク、電動アシスト自転車などの電動車両、電車や衛星や潜水艦などの移動・輸送用媒体の電源、UPSなどのバックアップ電源、太陽光発電、風力発電などで発電した電力を貯める蓄電設備、などに利用することができる。 The present invention can be used in all industrial fields that require a power source and industrial fields related to the transport, storage and supply of electrical energy. Specifically, power supplies for mobile devices such as mobile phones and laptop computers, electric vehicles such as electric cars, hybrid cars, electric bikes, electric assist bicycles, power supplies for mobile and transport media such as trains, satellites, and submarines, UPS It can be used for backup power sources such as, power storage facilities that store power generated by solar power generation, wind power generation, etc.
 1 リチウムイオン二次電池
 10 電極積層体
 11 外装材
 12 外装材
 13 負極タブ
 14 正極タブ
 21 負極
 22、81、82 セパレートシート
 23 負極集電体
 24 正極集電体
 25 セパレータ付き電極アセンブリ
 26 噛み合い構造
 27 正極
 41 負極活物質
 42 正極活物質
 51、52 加圧板
 61、71 凹部
 62、72 凸部
 101 位置決めブロック
DESCRIPTION OF SYMBOLS 1 Lithium ion secondary battery 10 Electrode laminated body 11 Exterior material 12 Exterior material 13 Negative electrode tab 14 Positive electrode tab 21 Negative electrode 22, 81, 82 Separate sheet 23 Negative electrode current collector 24 Positive electrode current collector 25 Separator electrode assembly 26 Engagement structure 27 Positive electrode 41 Negative electrode active material 42 Positive electrode active material 51, 52 Pressure plate 61, 71 Concave portion 62, 72 Convex portion 101 Positioning block

Claims (19)

  1. 電極である正極および負極がセパレータを介して積層されたリチウムイオン二次電池において、
     前記セパレータは、180℃まで加熱しても溶融しない材料から作られて互いに重ね合わせられた二枚で一組の矩形のセパレータシートを有し、
     重ね合わせられた前記セパレータシート同士は、前記セパレータシートの外周部のうち隣り合う少なくとも二辺の少なくとも一部に形成された凹部および凸部からなる噛み合い構造の噛み合いによって互いに固定され、
     前記正極および負極のいずれか一方の電極は、前記二枚のセパレータシートの間に配置されていることを特徴とするリチウムイオン二次電池。
    In a lithium ion secondary battery in which a positive electrode and a negative electrode, which are electrodes, are stacked via a separator,
    The separator has a pair of rectangular separator sheets made of a material that does not melt even when heated to 180 ° C.
    The stacked separator sheets are fixed to each other by meshing of a meshing structure including a concave portion and a convex portion formed in at least a part of at least two sides adjacent to each other in the outer peripheral portion of the separator sheet,
    One of the positive electrode and the negative electrode is disposed between the two separator sheets, and is a lithium ion secondary battery.
  2. 前記セパレータシートの間に配置された電極は、前記負極よりもサイズが小さい正極である請求項1に記載のリチウムイオン二次電池。 The lithium ion secondary battery according to claim 1, wherein the electrode disposed between the separator sheets is a positive electrode having a size smaller than that of the negative electrode.
  3. 前記セパレータシートの間に配置された電極は、その一辺から延びて前記セパレータの外部に突出する延長部が形成された集電体を有し、前記噛み合い構造は、前記延長部が形成された部分を除いて、前記セパレータシートの4辺に形成されていることを特徴とする請求項1または2に記載のリチウムイオン二次電池。 The electrode disposed between the separator sheets has a current collector formed with an extension extending from one side thereof and protruding to the outside of the separator, and the meshing structure is a portion where the extension is formed. The lithium ion secondary battery according to claim 1, wherein the lithium ion secondary battery is formed on four sides of the separator sheet.
  4. 前記セパレータシートの厚さが、一枚当たり50μm以下であることを特徴とする請求項1から3のいずれか一項に記載のリチウムイオイン二次電池。 4. The lithium ion secondary battery according to claim 1, wherein the separator sheet has a thickness of 50 μm or less per sheet. 5.
  5. 前記凹部の深さおよび凸部の高さの、前記セパレータシートの厚さを含まない値が100μm以上400μm以下であることを特徴とする請求項1から4のいずれか一項に記載のリチウムイオン二次電池。 5. The lithium ion according to claim 1, wherein a value of the depth of the concave portion and the height of the convex portion not including the thickness of the separator sheet is 100 μm or more and 400 μm or less. Secondary battery.
  6. 前記凹部の底面または前記凸部の上面に垂直な方向に対する前記凹部および凸部の側壁の角度は37度以下であることを特徴とする請求項1から5のいずれか一項に記載のリチウムイオン二次電池。 6. The lithium ion according to claim 1, wherein an angle of a side wall of the concave portion and the convex portion with respect to a direction perpendicular to a bottom surface of the concave portion or an upper surface of the convex portion is 37 degrees or less. Secondary battery.
  7. 前記噛み合い構造は、折れ曲がった平面形状を有することを特徴とする請求項1から6のいずれか一項に記載のリチウムイオン二次電池。 The lithium ion secondary battery according to claim 1, wherein the meshing structure has a bent planar shape.
  8. 前記セパレータは、少なくとも前記噛み合い構造が形成された部分で前記二枚のセパレータシートの間に挟み込まれた、伸縮性を有する絶縁性シートをさらに有することを特徴とする請求項1から7のいずれか一項に記載のリチウムイオン二次電池。 8. The separator according to claim 1, further comprising a stretchable insulating sheet sandwiched between the two separator sheets at least at a portion where the meshing structure is formed. 9. The lithium ion secondary battery according to one item.
  9. 前記絶縁性シートは、前記二枚のセパレータシートの間に配置された電極の厚さ以下の厚さを有することを特徴とする請求項8に機才のリチウムイオン二次電池。 9. The lithium ion secondary battery according to claim 8, wherein the insulating sheet has a thickness equal to or less than a thickness of an electrode disposed between the two separator sheets.
  10. 前記正極、負極およびセパレータを電解液とともに収納している外装体をさらに有していることを特徴とする、請求項1から9のいずれか一項に記載のリチウムイオン二次電池。 The lithium ion secondary battery according to any one of claims 1 to 9, further comprising an exterior body that houses the positive electrode, the negative electrode, and the separator together with an electrolyte solution.
  11. 電極である正極および負極がセパレータを介して積層されたリチウムイオン二次電池において、
     前記セパレータは、ポリイミド繊維から作られて互いに重ね合わせられた二枚で一組の矩形のセパレータシートを有し、前記セパレータシートの外周部のうち隣り合う少なくとも二辺の少なくとも一部に形成された凹部および凸部からなる噛み合い構造の噛み合いによって二枚の前記セパレータシートを互いに固定することで構成され、
     前記正極および負極のいずれか一方の電極は、前記二枚のセパレータシートの間に配置されていることを特徴とするリチウムイオン二次電池。
    In a lithium ion secondary battery in which a positive electrode and a negative electrode, which are electrodes, are stacked via a separator,
    The separator has a pair of rectangular separator sheets made of polyimide fibers and superposed on each other, and is formed on at least a part of at least two adjacent sides of the outer periphery of the separator sheet. It is constituted by fixing the two separator sheets to each other by meshing of a meshing structure consisting of a concave part and a convex part,
    One of the positive electrode and the negative electrode is disposed between the two separator sheets, and is a lithium ion secondary battery.
  12. 前記セパレータシートは不織布であることを特徴とする請求項11に記載のリチウムイオン二次電池。 The lithium ion secondary battery according to claim 11, wherein the separator sheet is a non-woven fabric.
  13. 前記噛み合い構造は、折れ曲がった平面形状を有することを特徴とする請求項11または12に記載のリチウムイオン二次電池。 The lithium ion secondary battery according to claim 11, wherein the meshing structure has a bent planar shape.
  14. 前記セパレータは、少なくとも前記噛み合い構造が形成された部分で前記二枚のセパレータシートの間に挟み込まれたポリプロピレンシートをさらに有することを特徴とする請求項11から13のいずれか一項に記載のリチウムイオン二次電池。 14. The lithium according to claim 11, wherein the separator further includes a polypropylene sheet sandwiched between the two separator sheets at least at a portion where the meshing structure is formed. Ion secondary battery.
  15. 電極である正極および負極がセパレータを介して積層されたリチウムイオン二次電池の製造方法において、
     180℃まで加熱しても溶融しない材料から作られた二枚の矩形のセパレータシートを少なくとも一組用意する工程と、
     前記正極および負極のいずれか一方の電極が、互いに重ね合わせられた二枚の前記セパレータシートの間に配置され、重ね合わせられた二枚の前記セパレータシートが、前記セパレータシートの外周部のうち隣り合う少なくとも二辺の少なくとも一部に形成された凹部および凸部からなる噛み合い構造の噛み合いによって固定されたセパレータ付き電極アセンブリを形成する工程と、
     前記セパレータ付き電極アセンブリと、二枚の前記セパレータシートの間に配置された電極と異なるもう一方の電極とを重ね合わせる工程と、
     重ね合わせられた前記セパレータ付き電極アセンブリおよび前記もう一方の電極を、電解液とともに外装体内に封入する工程と、
     を含むことを特徴とするリチウムイオン二次電池の製造方法。
    In the method for producing a lithium ion secondary battery in which a positive electrode and a negative electrode, which are electrodes, are laminated via a separator,
    Preparing at least one set of two rectangular separator sheets made of a material that does not melt even when heated to 180 ° C .;
    Either one of the positive electrode and the negative electrode is disposed between the two separator sheets that are overlapped with each other, and the two stacked separator sheets are adjacent to each other in the outer peripheral portion of the separator sheet. Forming an electrode assembly with a separator fixed by meshing of a meshing structure comprising a concave portion and a convex portion formed on at least a part of at least two sides that meet each other;
    Superposing the electrode assembly with separator and another electrode different from the electrode disposed between the two separator sheets;
    Encapsulating the separator-attached electrode assembly with the separator and the other electrode together with an electrolyte in an exterior body;
    The manufacturing method of the lithium ion secondary battery characterized by including.
  16.  前記セパレータ付き電極アセンブリを形成する工程は、
     二枚の前記セパレータシートを重ね合わせた状態で、前記重ね合わせられたセパレータシートの外周部のうち隣り合う二辺の少なくとも一部に前記噛み合い構造を形成することによって二枚の前記セパレータシートを互いに固定する工程と、
     互いに固定された二枚の前記セパレータシートの間に前記正極および負極のいずれか一方の電極を挿入する工程と、
     を含む請求項15に記載のリチウムイオン二次電池の製造方法。
    Forming the separator-attached electrode assembly comprises:
    In a state where the two separator sheets are overlapped, the two separator sheets are joined to each other by forming the meshing structure on at least a part of two adjacent sides of the outer periphery of the overlapped separator sheets. Fixing, and
    Inserting one of the positive electrode and the negative electrode between the two separator sheets fixed to each other;
    The manufacturing method of the lithium ion secondary battery of Claim 15 containing.
  17.  前記セパレータ付き電極センブリを形成する工程は、
     前記正極および負極のいずれか一方の電極が間に挿入された二枚の前記セパレータシートの、前記噛み合い構造が形成されていない残りの少なくとも一辺に前記噛み合い構造をさらに形成する工程をさらに含む請求項16に記載のリチウムイオン二次電池の製造方法。
    The step of forming the separator-attached electrode assembly includes:
    The method further includes the step of further forming the meshing structure on at least one side of the two separator sheets having either one of the positive electrode and the negative electrode inserted therebetween, where the meshing structure is not formed. 16. A method for producing a lithium ion secondary battery according to 16.
  18.  前記セパレータ付き電極センブリを形成する工程は、
     一枚の前記セパレータシートの上に少なくとも一つの前記正極および負極のいずれか一方の電極を置く工程と、
     前記電極が置かれた前記セパレータシートの上に、もう一枚の前記セパレータシートを重ね合わせる工程と、
     前記電極の周囲の少なくとも一部において、重ね合わせられた二枚の前記セパレータシートに前記噛み合い構造を形成することによって、二枚の前記セパレータシートを互いに固定する工程と、
     を含む請求項15に記載のリチウムイオン二次電池の製造方法。
    The step of forming the separator-attached electrode assembly includes:
    Placing at least one of the positive electrode and the negative electrode on one separator sheet;
    Superimposing another separator sheet on the separator sheet on which the electrodes are placed; and
    Fixing the two separator sheets to each other by forming the meshing structure on the two separator sheets superimposed on at least a part of the periphery of the electrodes;
    The manufacturing method of the lithium ion secondary battery of Claim 15 containing.
  19.  前記電極を置く工程は、一枚の前記セパレータシートの上に、互いに間隔をあけて複数の前記正極を置くことを含み、前記二枚のセパレータシートを互いに固定する工程の後に、前記二枚のセパレータシートを、それらの間に配置された一つの前記電極および該電極の周囲の少なくとも一部に形成された前記噛み合い構造を含むように裁断する工程をさらに有する請求項18に記載のリチウムイオン二次電池の製造方法。 The step of placing the electrodes includes placing a plurality of the positive electrodes on one separator sheet at intervals, and after the step of fixing the two separator sheets to each other, 19. The lithium ion secondary battery according to claim 18, further comprising a step of cutting the separator sheet so as to include one of the electrodes disposed therebetween and the meshing structure formed in at least a part of the periphery of the electrode. A method for manufacturing a secondary battery.
PCT/JP2014/065332 2013-06-14 2014-06-10 Lithium ion secondary cell and production method for same WO2014199979A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015522785A JP6384477B2 (en) 2013-06-14 2014-06-10 Lithium ion secondary battery and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013125957 2013-06-14
JP2013-125957 2013-06-14

Publications (1)

Publication Number Publication Date
WO2014199979A1 true WO2014199979A1 (en) 2014-12-18

Family

ID=52022271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/065332 WO2014199979A1 (en) 2013-06-14 2014-06-10 Lithium ion secondary cell and production method for same

Country Status (2)

Country Link
JP (1) JP6384477B2 (en)
WO (1) WO2014199979A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016164865A (en) * 2015-02-27 2016-09-08 株式会社豊田自動織機 Manufacturing device and manufacturing method for electrode with separator
WO2016152876A1 (en) * 2015-03-24 2016-09-29 日本電気株式会社 Lithium-ion secondary cell and method for manufacturing same
WO2017110842A1 (en) * 2015-12-25 2017-06-29 日立マクセル株式会社 Nonaqueous secondary battery and method for manufacturing same
JP2018073679A (en) * 2016-10-31 2018-05-10 株式会社豊田自動織機 Electrode assembly and method of manufacturing electrode assembly
JP2019075302A (en) * 2017-10-17 2019-05-16 株式会社豊田自動織機 Method of manufacturing lithium ion secondary battery, and short circuit inspection method
JP2019106314A (en) * 2017-12-13 2019-06-27 ハイメカ株式会社 Separator bonding device for secondary battery, secondary battery, separator bonding method for secondary battery
JP2020077480A (en) * 2018-11-06 2020-05-21 旭化成株式会社 Separator having fine pattern, wound body, and nonaqueous electrolyte secondary battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07302616A (en) * 1994-04-28 1995-11-14 Sony Corp Square type lithium ion secondary battery
JP2006059717A (en) * 2004-08-20 2006-03-02 Nissan Motor Co Ltd Separator for battery
WO2008090824A1 (en) * 2007-01-25 2008-07-31 Nec Corporation Bag-like separator, electrode separator assembly, and method of producing electrode separator assembly
JP2008269819A (en) * 2007-04-17 2008-11-06 Sony Corp Nonaqueous electrolytic solution secondary battery
JP2011165481A (en) * 2010-02-10 2011-08-25 Nec Energy Devices Ltd Stacked secondary battery
JP2012227117A (en) * 2011-04-07 2012-11-15 Nissan Motor Co Ltd Battery, manufacturing method of the battery, and bagged electrode

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07302616A (en) * 1994-04-28 1995-11-14 Sony Corp Square type lithium ion secondary battery
JP2006059717A (en) * 2004-08-20 2006-03-02 Nissan Motor Co Ltd Separator for battery
WO2008090824A1 (en) * 2007-01-25 2008-07-31 Nec Corporation Bag-like separator, electrode separator assembly, and method of producing electrode separator assembly
JP2008269819A (en) * 2007-04-17 2008-11-06 Sony Corp Nonaqueous electrolytic solution secondary battery
JP2011165481A (en) * 2010-02-10 2011-08-25 Nec Energy Devices Ltd Stacked secondary battery
JP2012227117A (en) * 2011-04-07 2012-11-15 Nissan Motor Co Ltd Battery, manufacturing method of the battery, and bagged electrode

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016164865A (en) * 2015-02-27 2016-09-08 株式会社豊田自動織機 Manufacturing device and manufacturing method for electrode with separator
WO2016152876A1 (en) * 2015-03-24 2016-09-29 日本電気株式会社 Lithium-ion secondary cell and method for manufacturing same
WO2017110842A1 (en) * 2015-12-25 2017-06-29 日立マクセル株式会社 Nonaqueous secondary battery and method for manufacturing same
JP2018073679A (en) * 2016-10-31 2018-05-10 株式会社豊田自動織機 Electrode assembly and method of manufacturing electrode assembly
JP2019075302A (en) * 2017-10-17 2019-05-16 株式会社豊田自動織機 Method of manufacturing lithium ion secondary battery, and short circuit inspection method
JP7000791B2 (en) 2017-10-17 2022-01-19 株式会社豊田自動織機 Lithium-ion secondary battery manufacturing method and short-circuit inspection method
JP2019106314A (en) * 2017-12-13 2019-06-27 ハイメカ株式会社 Separator bonding device for secondary battery, secondary battery, separator bonding method for secondary battery
JP2020077480A (en) * 2018-11-06 2020-05-21 旭化成株式会社 Separator having fine pattern, wound body, and nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JPWO2014199979A1 (en) 2017-02-23
JP6384477B2 (en) 2018-09-05

Similar Documents

Publication Publication Date Title
JP6384477B2 (en) Lithium ion secondary battery and manufacturing method thereof
JP6337777B2 (en) Separator, electrode element, power storage device, and method for manufacturing the separator
CN107431233B (en) Secondary battery, method for manufacturing secondary battery, electric vehicle, and power storage system
JP6750619B2 (en) Film exterior battery
JP4649502B2 (en) Lithium ion secondary battery
US20110129722A1 (en) Flat secondary battery and method of manufacturing the same
US20140170451A1 (en) Electrode
WO2015046537A1 (en) Lithium ion secondary battery and method for manufacturing same
JP5168850B2 (en) Non-aqueous electrolyte secondary battery and method for producing non-aqueous electrolyte secondary battery
JP6547295B2 (en) Battery and method of manufacturing the same
WO2017110684A1 (en) Secondary cell and method for manufacturing same
WO2014091856A1 (en) Separator, electrode element, storage device, and method for manufacturing separator
JP2007335352A (en) Nonaqueous electrolyte secondary battery and battery control system
JP6634671B2 (en) Secondary battery, electric vehicle, power storage system, and manufacturing method
JP5103822B2 (en) Nonaqueous electrolyte secondary battery
JP2013164977A (en) Battery
JP6531491B2 (en) Secondary battery
JP6601410B2 (en) Film exterior battery and battery module including the same
JP6390344B2 (en) Battery and manufacturing method thereof
JP2021022421A (en) Nonaqueous electrolyte secondary battery
JP2016024898A (en) Positive electrode, secondary battery using the same and method of manufacturing them
JP2008226555A (en) Nonaqueous electrolyte battery
JP6550732B2 (en) Secondary battery
JP6634676B2 (en) Battery and manufacturing method thereof
JP2014116271A (en) Separator, electrode element, electricity storage device, and method for manufacturing the separator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14810145

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015522785

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14810145

Country of ref document: EP

Kind code of ref document: A1