[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014199892A1 - Solar cell sealant composition and production method for same, solar cell sealant layer employing same, and solar cell module - Google Patents

Solar cell sealant composition and production method for same, solar cell sealant layer employing same, and solar cell module Download PDF

Info

Publication number
WO2014199892A1
WO2014199892A1 PCT/JP2014/064943 JP2014064943W WO2014199892A1 WO 2014199892 A1 WO2014199892 A1 WO 2014199892A1 JP 2014064943 W JP2014064943 W JP 2014064943W WO 2014199892 A1 WO2014199892 A1 WO 2014199892A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
ethylene
ethylene copolymer
copolymer
cell encapsulant
Prior art date
Application number
PCT/JP2014/064943
Other languages
French (fr)
Japanese (ja)
Inventor
洋毅 千田
久成 尾之内
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN201480033780.8A priority Critical patent/CN105308113B/en
Priority to KR1020167000063A priority patent/KR20160019921A/en
Publication of WO2014199892A1 publication Critical patent/WO2014199892A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D123/00Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers
    • C09D123/02Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D123/04Homopolymers or copolymers of ethene
    • C09D123/08Copolymers of ethene
    • C09D123/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C09D123/0853Vinylacetate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/204Applications use in electrical or conductive gadgets use in solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell encapsulant composition and a method for producing the same, and a solar cell encapsulant layer and a solar cell module using the same.
  • a solar cell module generally has a structure in which a glass substrate, a solar cell encapsulant, a power generation element, a solar cell encapsulant, and a back sheet are sequentially laminated.
  • the said solar cell sealing material uses the resin sheet which uses an ethylene-type copolymer as a matrix from viewpoints, such as low cost and high transmittance
  • the ethylene copolymer contains an organic peroxide, a crosslinking aid and the like in order to improve durability.
  • a silane coupling agent is generally blended in order to ensure the adhesiveness of organic substances, glass, and solar cell elements having an absorption region in the ultraviolet region such as an ultraviolet absorber. ing.
  • the sheet-shaped solar cell encapsulant is molded by a T-die extrusion film forming machine or a calendar molding machine.
  • the above-mentioned additives are pre-dry blended into an ethylene copolymer, then supplied from a hopper of a T-die extruder, and extruded into a sheet at a molding temperature at which the organic peroxide is not substantially decomposed.
  • a method see, for example, Patent Document 1).
  • a masterbatch is prepared by kneading only an organic substance having a high melting point above its melting point into the ethylene copolymer in advance using a melt kneader such as a twin-screw extruder, and the masterbatch is obtained as an ethylene copolymer. And a method of melting and kneading together with an organic peroxide at a low temperature to form a sheet.
  • a melt kneader such as a twin-screw extruder
  • the present invention is a solar in which an organic compound additive having a melting point higher than the molding temperature is uniformly dispersed in an ethylene copolymer at a molding temperature at which the organic peroxide is not substantially decomposed. It aims at providing the composition for batteries, and its manufacturing method.
  • the present invention also provides a solar cell encapsulant layer in which an organic compound additive having a melting point higher than the molding temperature is uniformly dispersed in an ethylene copolymer, and a solar cell module using the same. For the purpose.
  • the present inventors have found the following solar cell encapsulant composition and method for producing the same, and solar cell encapsulant layer and solar cell module using the same.
  • the inventors have found that the above object can be achieved, and have completed the present invention.
  • the manufacturing method of the sealing material composition for solar cells of this invention is a manufacturing method of the sealing material composition for solar cells containing an ethylene-type copolymer (A) and an organic compound additive (B),
  • the ethylene copolymer (A) and the organic polymer are within a temperature range from the Vicat softening point of the ethylene copolymer (A) to 10 ° C. below the melting point of the ethylene copolymer (A).
  • a blending step of mixing the compound additive (B) is included.
  • an organic compound additive having a melting point higher than the molding temperature at an molding temperature at which the organic peroxide is not substantially decomposed is ethylene-based. It becomes possible to disperse uniformly in the coalescence. Further, even when a liquid additive is contained, a resin composition that does not block and that does not block the liquid component does not remain on the resin surface due to impregnation or dispersion inside the resin.
  • the dispersion state of the organic compound having a high melting point is improved by stirring and mixing in the above temperature range.
  • the temperature is below the Vicat softening point
  • the high melting point compound is difficult to adhere to the resin (particularly in the case of pellets)
  • the temperature is not lower than 10 ° C. below the melting point
  • the resins block each other. End up. More specifically, when blending for a long time without controlling the temperature during the blending step (pre-blending) as in the past, the internal temperature increases due to friction between the pellets and rotating blades, friction between the pellets, and the like. Therefore, the resins may be blocked.
  • pre-blending within the above temperature range in the present invention, the above problem can be effectively avoided.
  • the ethylene copolymer (A) is preferably in the form of pellets.
  • an ethylene-based resin that is a matrix resin for a solar cell encapsulant layer even if it is a pellet-shaped ethylene copolymer that is generally less likely to mix and disperse additives than powder. It becomes possible to disperse uniformly in the copolymer. Moreover, it becomes possible to use a pellet and the production workability of the solar cell sealing material composition is improved.
  • the pellet shape means a particle shape having a diameter or length of about 1 to 10 mm mainly for improving workability, for example, a substantially cylindrical shape, a substantially spherical shape, a substantially disk shape, Examples thereof include grains having a substantially triangular prism shape, a substantially quadrangular prism shape, a substantially polyhedral shape, an elliptical spherical shape, and the like.
  • the organic peroxide (C) is further included, and melting
  • the temperature is preferably 10 ° C. or more lower than the one-hour half-life temperature of the peroxide (C).
  • the organic compound additive (B) having a melting point near or higher than the one-hour half-life temperature of the organic peroxide (C), which is usually difficult to disperse uniformly.
  • the organic compound additive (B) can be uniformly dispersed in the ethylene copolymer without substantially decomposing the organic peroxide.
  • the method for producing a solar cell encapsulant composition of the present invention it is preferable that no solvent is used in the blending step.
  • a separate solvent other than the components of the solar cell encapsulant composition such as a liquid additive (dry process)
  • An organic compound additive having a melting point higher than the molding temperature can be uniformly dispersed in the ethylene-based copolymer.
  • a liquid additive may be further included in the blending step.
  • a liquid additive such as a silane coupling agent or a liquid crosslinking aid
  • liquid components do not remain on the resin surface due to impregnation or dispersion inside the resin, and blocking is also possible. Can be obtained.
  • a master batch can also be easily produced.
  • the said liquid additive means the additive which is liquid at the time of a blending process, and the compound whose melting
  • a melt-kneading step after the blending step.
  • a composition for a solar cell in which an organic compound additive having a melting point higher than the molding temperature after the melt-kneading step is uniformly dispersed in the ethylene copolymer can be easily obtained, rather than going through the blending step first.
  • a sheet having a high dispersibility of the organic compound having a high melting point can be formed even in a melt-kneading process at a temperature lower than usual.
  • the melt kneading step is preferably performed by a single screw extruder, a twin screw extruder, a Banbury mixer, a kneader, or a mixing roll.
  • distributed to the ethylene-type copolymer can be obtained more effectively.
  • the sheet is formed (formation of the sealing material layer) by calendar extrusion, T-die, or melt extrusion by inflation.
  • the said organic compound additive (B) is a ultraviolet absorber, antioxidant, light stabilizer, anti-aging agent, or solid bridge
  • An auxiliary is preferred.
  • the ethylene copolymer contains an ethylene-vinyl acetate copolymer as a main component.
  • an ethylene-vinyl acetate copolymer as a main component as the ethylene-based copolymer, a solar cell encapsulant layer having more excellent light transmittance and durability can be obtained more reliably.
  • the said main component shall mean the case where 50 weight% or more is contained by weight ratio, when the matrix resin of the said solar cell sealing material composition is a mixture of several resin.
  • the weight ratio is more preferably 70% by weight or more, and still more preferably 90% by weight or more.
  • the solar cell encapsulant layer of the present invention is characterized by being formed using the solar cell encapsulant composition.
  • the sealing material layer for solar cells in which the organic compound additive which has melting
  • the solar cell module of the present invention is characterized by including a solar cell encapsulant layer formed using the solar cell encapsulant composition. Since the said solar cell module has the said solar cell sealing material layer, it becomes a solar cell module by which the organic compound additive which has melting
  • the solar cell is a crystalline silicon solar cell, a cadmium sulfide / cadmium telluride solar cell, a copper indium gallium diselenide solar cell, an amorphous silicon solar cell, or a microcrystalline silicon.
  • a solar cell is preferred.
  • the said solar cell module can improve photoelectric conversion efficiency more effectively by using it for the solar cell module which laminates
  • the example of the solar cell module using the sealing material layer for solar cells of this invention is shown.
  • the example of the solar cell module using the sealing material layer for solar cells of this invention is shown.
  • the manufacturing method of the sealing material composition for solar cells of this invention is a manufacturing method of the sealing material composition for solar cells containing an ethylene-type copolymer (A) and an organic compound additive (B),
  • the ethylene copolymer (A) and the organic polymer are within a temperature range from the Vicat softening point of the ethylene copolymer (A) to 10 ° C. below the melting point of the ethylene copolymer (A).
  • a blending step of mixing the compound additive (B) is included.
  • the solar cell encapsulant composition of the present invention is characterized by containing at least an ethylene copolymer (A) and an organic compound additive (B).
  • the solar cell encapsulant composition includes, for example, at least an organic compound additive (B) dispersed in an optically transparent matrix resin containing an ethylene copolymer (A) as a main component. Or the like.
  • Examples of the ethylene copolymer (A) include a copolymer of ethylene and a polar monomer, and a copolymer of ethylene and an ⁇ -olefin having 3 or more carbon atoms.
  • the ethylene unit content is preferably 50 to 90% by weight, more preferably 60 to 80% by weight, and even more preferably 65 to 75% by weight. .
  • flexibility, transparency, a moldability, blocking resistance, and a solar cell element protective property can be obtained more reliably.
  • Examples of the polar monomer include vinyl esters such as vinyl acetate and vinyl propionate, methyl acrylate, ethyl acrylate, isopropyl acrylate, isobutyl acrylate, n-butyl acrylate, isooctyl acrylate, methyl methacrylate, methacrylic acid
  • Unsaturated carboxylic acid esters such as isobutyl acid, dimethyl maleate, acrylic acid, methacrylic acid, fumaric acid, itaconic acid, monomethyl maleate, monoethyl maleate, maleic anhydride, itaconic anhydride, and the like, and Examples of these salts include carboxylates.
  • Examples of the carboxylic acid salt include monovalent metals such as lithium, sodium and potassium, and salts of polyvalent metals such as magnesium, calcium and zinc. These may be used singly or in combination of two or more.
  • Examples of the ⁇ -olefin having 3 or more carbon atoms include propylene, 1-butene, 2-butene, 1-hexene, 1-octene, 4-methyl-1-pentene and the like. These may be used singly or in combination of two or more.
  • Examples of the ethylene copolymer (A) include ethylene-vinyl ester copolymers such as ethylene-vinyl acetate copolymers, ethylene-methyl acrylate copolymers, ethylene-ethyl acrylate copolymers, ethylene -Methyl methacrylate copolymer, ethylene-isobutyl acrylate copolymer, ethylene-unsaturated carboxylic acid ester copolymer such as ethylene / n-butyl acrylate copolymer, ethylene-acrylic acid copolymer, ethylene -Methacrylic acid copolymer, ethylene-unsaturated carboxylic acid copolymer such as ethylene / isobutyl acrylate-methacrylic acid copolymer and its ionomer. These may be used singly or in combination of two or more.
  • the ethylene-based copolymer (A) preferably contains an ethylene-vinyl acetate copolymer as a main component.
  • an ethylene-vinyl acetate copolymer as a main component as the ethylene-based copolymer, a solar cell encapsulant layer having more excellent light transmittance and durability can be obtained more reliably.
  • the ethylene-vinyl acetate copolymer (A) preferably has a vinyl acetate monomer unit content of 20 to 40 parts by weight with respect to 100 parts by weight of the ethylene-vinyl acetate copolymer, The content is more preferably 35 parts by weight, and the above content is preferable from the viewpoint of uniform dispersibility in a matrix resin such as a rare earth complex.
  • ethylene-vinyl acetate copolymer (A) When using the ethylene-vinyl acetate copolymer (A), commercially available products can be used as appropriate.
  • examples of commercially available ethylene-vinyl acetate copolymers include Ultrasen (manufactured by Tosoh Corporation), Everflex (manufactured by Mitsui DuPont Polychemical Co., Ltd.), Suntec EVA (manufactured by Asahi Kasei Chemicals Corporation), UBE EVA copolymer ( Ube Maruzen Polyethylene Co., Ltd.), Evertate (Sumitomo Chemical Co., Ltd.), Novatec EVA (Nihon Polyethylene Co., Ltd.), Smitate (Sumitomo Chemical Co., Ltd.), Nipoflex (Tosoh Corp.), and the like. These may be used singly or in combination of two or more.
  • the refractive index of the ethylene-vinyl acetate copolymer (A) is, for example, in the range of 1.4 to 1.7, in the range of 1.45 to 1.65, or in the range of 1.45 to 1.55. is there. In some embodiments, the ethylene-vinyl acetate copolymer (A) has a refractive index of 1.5.
  • an optically transparent matrix resin as the solar cell encapsulant composition.
  • said matrix resin you may use suitably other matrix resin with the said ethylene-type copolymer (A), unless the characteristic of the said ethylene-type copolymer (A) is impaired.
  • other matrix resins include polyolefins such as polyethylene terephthalate, poly (meth) acrylate, polyethylene tetrafluoroethylene, polyimide, amorphous polycarbonate, siloxane sol-gel, polyurethane, polystyrene, polyethersulfone, polyarylate And epoxy resins and silicone resins. These matrix resins may be used alone or in admixture of two or more.
  • a crosslinkable monomer may be added to obtain a resin having a crosslinked structure.
  • crosslinkable monomer examples include compounds obtained by reacting ⁇ , ⁇ -unsaturated carboxylic acid with dicyclopentenyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, benzyl (meth) acrylate, and polyhydric alcohol (for example, polyethylene glycol di (meth) acrylate (having 2 to 14 ethylene groups), trimethylolpropane di (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolpropane ethoxytri (meth) acrylate, Trimethylolpropane propoxy tri (meth) acrylate, tetramethylol methane tri (meth) acrylate, tetramethylol methane tetra (meth) acrylate, polypropylene glycol di (meth) acrylate (pro Having 2 to 14 pyrene groups), dipentaerythritol penta (
  • crosslinkable monomers may be used alone or in admixture of two or more.
  • trimethylolpropane tri (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, and bisphenol A polyoxyethylene dimethacrylate are preferred as the crosslinkable monomer.
  • a thermal polymerization initiator or a photopolymerization initiator can be added to the crosslinkable monomer, and polymerized and crosslinked by heating or light irradiation to form a crosslinked structure.
  • thermoplastic resin polymerization initiator examples include 2,5-dimethylhexane-2,5-dihydroperoxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane-3, Di-t-butyl peroxide, dicumyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, dicumyl peroxide, ⁇ , ⁇ '-bis (t-butylperoxy) Isopropyl) benzene, n-butyl-4,4-bis (t-butylperoxy) butane, 2,2-bis (t-butylperoxy) butane, 1,1-bis (t-butylperoxy) cyclohexane, 1,1-bis (t-butylperoxy) 3,3,5-trimethylcyclohexane, t-butyl
  • the blending amount of the thermal polymerization initiator can be, for example, 0.1 to 2 parts by weight with respect to 100 parts by weight of the matrix resin.
  • the photopolymerization initiator a known photoinitiator that generates a free radical by ultraviolet light or visible light can be appropriately used.
  • the photopolymerization initiator include benzoin ethers such as benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, benzoin isobutyl ether, and benzoin phenyl ether, benzophenone, N, N′-tetramethyl-4,4′-diamino Benzophenones (Michler's ketone), benzophenones such as N, N′-tetraethyl-4,4′-diaminobenzophenone, benzyl ketals such as benzyldimethyl ketal (manufactured by Ciba Japan Chemicals, Irgacure 651), benzyl diethyl ketal, Acetophenones such as 2,2-dimethoxy-2-phenylacetophenone,
  • photopolymerization initiator examples include a combination of 2,4,5-triallylimidazole dimer and 2-mercaptobenzoxazole, leucocrystal violet, tris (4-diethylamino-2-methylphenyl) methane, and the like. Etc. Further, for example, known additives may be used as appropriate, such as tertiary amines such as triethanolamine for benzophenone.
  • the blending amount of the photopolymerization initiator is usually 0.1 to 5 parts by weight with respect to 100 parts by weight of the matrix resin, for example.
  • the organic compound additive (B) is preferably an organic compound having a melting point higher than the melting point of the ethylene copolymer (A).
  • an organic compound additive having a melting point higher than the molding temperature can be uniformly dispersed in the ethylene copolymer.
  • the organic compound additive (B) is preferably, for example, an ultraviolet absorber, an antioxidant, a light stabilizer, an anti-aging agent, or a solid crosslinking aid. These may be used singly or in combination of two or more.
  • the melting point is preferably 100 to 250 ° C., more preferably 150 to 200 ° C., and further preferably 160 to 180 ° C.
  • the above melting point is measured by observing the temperature at which the crystalline state changes to the liquid state in the temperature raising process (10 ° C./min).
  • the content of the organic compound additive (B) is preferably 0.01 to 10 parts by weight, more preferably 0.05 to 5 parts by weight, based on 100 parts by weight of the matrix resin. More preferably, it is 1 to 1 part by weight.
  • the ultraviolet absorbing compound known compounds can be appropriately used.
  • the ultraviolet absorbing compound include benzophenone, benzotriazole, triazine, salicylic acid, and cyanoacrylate. These compounds may be used alone or in combination of two or more.
  • benzophenone-based ultraviolet absorbing compound examples include 2,2′-dihydroxy-4,4′-di (hydroxymethyl) benzophenone and 2,2′-dihydroxy-4,4′-di (2-hydroxyethyl) benzophenone.
  • benzotriazole ultraviolet absorbing compound examples include 2- [2′-hydroxy-5 ′-(hydroxymethyl) phenyl] -2H-benzotriazole, 2- [2′-hydroxy-5 ′-(2-hydroxy). Ethyl) phenyl] -2H-benzotriazole, 2- [2'-hydroxy-5 '-(3-hydroxypropyl) phenyl] -2H-benzotriazole, 2- [2'-hydroxy-3'-methyl-5' -(Hydroxymethyl) phenyl] -2H-benzotriazole, 2- [2'-hydroxy-3'-methyl-5 '-(2-hydroxyethyl) phenyl] -2H-benzotriazole, 2- [2'-hydroxy -3'-methyl-5 '-(3-hydroxypropyl) phenyl] -2H-benzotriazole, 2- [2'-hydroxy -3'-methyl-5 '-(3-hydroxypropyl) phenyl] -2H-benzotri
  • Examples of the triazine-based ultraviolet absorbing compound include 2- (2-hydroxy-4-hydroxymethylphenyl) -4,6-diphenyl-s-triazine and 2- (2-hydroxy-4-hydroxymethylphenyl) -4. , 6-bis (2,4-dimethylphenyl) -s-triazine, 2- [2-hydroxy-4- (2-hydroxyethyl) phenyl] -4,6-diphenyl-s-triazine, 2- [2- Hydroxy-4- (2-hydroxyethyl) phenyl] -4,6-bis (2,4-dimethylphenyl) -s-triazine, 2- [2-hydroxy-4- (2-hydroxyethoxy) phenyl] -4 , 6-Diphenyl-s-triazine, 2- [2-hydroxy-4- (2-hydroxyethoxy) phenyl] -4,6-bis (2,4-dimethyl) Phenyl) -s-triazine, 2- [2-hydroxy-4- (3-
  • salicylic acid-based ultraviolet absorbing compound examples include phenyl salicylate, p-tert-butylphenyl salicylate, p-octylphenyl salicylate, and the like.
  • Examples of the cyanoacrylate-based ultraviolet absorbing compound include 2-ethylhexyl-2-cyano-3,3′-diphenyl acrylate, ethyl-2-cyano-3,3′-diphenyl acrylate, and the like.
  • examples of the ultraviolet absorbing compound include fluorescent compounds that absorb light in a wavelength region of 350 to 400 nm more than light in a wavelength region exceeding 400 nm. be able to.
  • examples of the fluorescent compound include organic fluorescent compounds and inorganic fluorescent compounds.
  • organic fluorescent compound known organic pigment compounds (such as organic fluorescent dyes) can be used.
  • organic fluorescent compound include naphthalimide, perylene, anthraquinone, coumarin, benzocoumarin, xanthene, phenoxazine, benzo [a] phenoxazine, benzo [b] phenoxazine, benzo [c] phenoxazine, and naphthalimide.
  • inorganic fluorescent compound examples include complex compounds having europium or samarium as the emission center. These compounds may be used alone or in combination of two or more.
  • the absorbance of the fluorescent compound is, for example, preferably from 0.1 to 6, more preferably from 0.5 to 4, and further preferably from 0.8 to 3.
  • the ultraviolet absorbing compound preferably has a maximum absorption wavelength in the range of 200 to 400 nm, particularly 280 to 380 nm.
  • a maximum absorption wavelength of the said ultraviolet absorption compound can be measured using a commercially available ultraviolet ray measuring apparatus etc. using a well-known method.
  • a benzophenone ultraviolet absorbing compound from the viewpoint of preventing photodegradation of the ethylene-vinyl acetate copolymer, and the benzophenone ultraviolet absorbing containing two or less hydroxyl groups in one molecule. It is particularly preferred to use a compound.
  • the ultraviolet absorbing compound include 2-hydroxy-4-methoxybenzophenone, 2,4-dihydroxybenzophenone, and 2-hydroxy-4-n-octoxy-benzophenone.
  • the above compound has a maximum absorption wavelength in the range of 320 to 350 nm, and can more effectively suppress the photodegradation of the ethylene-based copolymer (A) such as an ethylene-vinyl acetate copolymer.
  • the antioxidant known ones can be used as appropriate.
  • the photo-antioxidant include phenol-based antioxidants, phosphorus-based antioxidants, sulfur-based antioxidants, amine-based antioxidants, lactone-based antioxidants, vitamin E-based antioxidants, and the like. it can. These compounds may be used alone or in combination of two or more.
  • 2,6-di-t-butyl-4-methylphenol which is a phenolic antioxidant
  • pentaerythritol tetrakis (3- (3,5 -Di-t-butyl-4-hydroxyphenyl) propionate) and the like are preferred.
  • the light stabilizer known ones can be used as appropriate.
  • the light stabilizer include compounds having a function of capturing radical species harmful to the polymer and preventing generation of new radicals.
  • examples of the light stabilizer include hindered amine light stabilizers. These compounds may be used alone or in combination of two or more. By including the light stabilizer, it is possible to suppress degradation of the matrix resin due to the influence of irradiated light and the like, and yellowing of the solar cell sealing film.
  • low molecular weight hindered amine light stabilizer examples include, for example, decanedioic acid bis (2,2,6,6-tetramethyl-1 (octyloxy) -4-piperidinyl) ester, 1,1-dimethylethyl hydroper 70% by weight of a reaction product of oxide and octane (molecular weight 737) and 30% by weight of polypropylene; bis (1,2,2,6,6-pentamethyl-4-piperidyl) [[3,5-bis (1 , 1-dimethylethyl) -4-hydroxyphenyl] methyl] butyl malonate (molecular weight 685); bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate and methyl-1,2,2, 6,6-pentamethyl-4-piperidyl sebacate mixture (molecular weight 509); bis (2,2,6,6-tetramethyl-4-piperi ) Sebacate (molecular weight 481); t
  • hindered amine light stabilizers examples include LA-52, LA-57, LA-62, LA-63LA-63p, LA-67, LA-68 (all manufactured by ADEKA), Tinuvin 744, Tinuvin 770, Tinuvin 765, Tinuvin 123, Tinuvin 144, Tinuvin 622LD, CHIMASORB 944LD (all manufactured by BASF), UV-3034 (manufactured by BF Goodrich), and the like can be mentioned.
  • crosslinking aid known ones can be used as appropriate.
  • the crosslinking aid include compounds having a radical polymerizable group as a functional group.
  • the crosslinking aid include trifunctional crosslinking aids such as triallyl cyanurate and triallyl isocyanurate, and monofunctional or bifunctional crosslinking aids such as (meth) acrylic esters (NK esters, etc.). It can. These may be used singly or in combination of two or more.
  • NK esters, etc. monofunctional or bifunctional crosslinking aids
  • the crosslinking aid is more preferably used as the liquid additive, but a solid crosslinking aid may be used alone or in combination with a liquid crosslinking aid.
  • antioxidants such as N, N′-hexane-1,6-diylbis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionamide].
  • Phosphorus heat stabilizers lactone heat stabilizers, vitamin E heat stabilizers, sulfur heat stabilizers, and the like. These compounds may be used alone or in combination of two or more.
  • the components are mixed and dispersed in the matrix resin.
  • the solar cell encapsulant composition may contain a known additive as long as the desired performance is not impaired.
  • the additive include a thermoplastic polymer, a filler, a plasticizer, a silane coupling agent, an acid acceptor, and clay. These may be used singly or in combination of two or more. Moreover, as long as it is an organic compound among these other additives, you may use as said organic compound additive (B).
  • an organic peroxide (C) is further included, and the melting point of the organic compound additive (B) is 10 ° C. or more lower than the one-hour half-life temperature of the organic peroxide (C). It is preferable that
  • the thermal polymerization initiator can be appropriately used.
  • the one-hour half-life temperature is preferably 90 to 180 ° C, more preferably 100 to 160 ° C, and more preferably 110 to 140 ° C. More preferably.
  • polymerization initiator examples include tertiary butyl peroxyisopropyl carbonate, tertiary butyl peroxyacetate, tertiary butyl peroxybenzoate, dicumyl peroxide, 2,5-dimethyl-2,5-bis (tertiary butyl Peroxy) hexane, di-tert-butyl peroxide, 2,5-dimethyl-2,5-bis (tert-butylperoxy) hexyne-3, 1,1-bis (tert-butylperoxy) -3,3 , 5-trimethylcyclohexane, 1,1-bis (tert-butylperoxy) cyclohexane, methyl ethyl ketone peroxide, 2,5-dimethylhexyl-2,5-bisperoxybenzoate, tert-butyl hydroperoxide, p-menthane Hydroperoxide, benzoyl peroxide, p-chloro
  • the melting point of the organic compound additive (B) is preferably at least 10 ° C lower than the one-hour half-life temperature of the organic peroxide (C), and may be at least 20 ° C lower than the temperature.
  • the temperature may be 30 ° C. or lower, or 40 ° C. or lower.
  • the manufacturing method of the sealing material composition for solar cells of this invention is a manufacturing method of the sealing material composition for solar cells containing an ethylene-type copolymer (A) and an organic compound additive (B),
  • the ethylene copolymer (A) and the organic polymer are within a temperature range from the Vicat softening point of the ethylene copolymer (A) to 10 ° C. below the melting point of the ethylene copolymer (A).
  • a blending step of mixing the compound additive (B) is included.
  • the Vicat Softening Temperature (VST) of the ethylene copolymer (A) is JIS K7206 (test load is method A (10N), heating rate of heat transfer medium is 50 ° C / hour) Means the value measured by The temperature at the time when the end surface having a cross-sectional area of 1 mm 2 bites in by 1 mm is defined as the Vicat softening point temperature.
  • the blending step is carried out within a temperature range from the Vicat softening point of the ethylene copolymer (A) to 10 ° C lower than the melting point of the ethylene copolymer (A).
  • A) and the organic compound additive (B) are mixed.
  • the temperature range in which the blending process is performed is X ° C. Above (Y-10) ° C.
  • the upper limit of the temperature range may be a temperature lower by 13 ° C., a temperature lower by 15 ° C., a temperature lower by 20 ° C., a temperature lower by 25 ° C., etc.
  • the mixing time of the blending step can be, for example, 1 minute to 60 minutes, 3 minutes to 40 minutes, 5 minutes to 30 minutes, 10 minutes to 15 minutes. be able to.
  • each material (compound) can be mixed (stirred and mixed) using a known method as appropriate.
  • a method of adding the organic compound additive (B) to the ethylene copolymer (A) a method of adding the ethylene copolymer (A) to the organic compound additive (B)
  • Examples include a method of simultaneously or sequentially charging in a kneading apparatus and mixing in the apparatus, a method of simultaneously or sequentially charging the ethylene copolymer (A), the organic compound additive (B), and the liquid additive. be able to.
  • the ethylene copolymer (A) when the ethylene copolymer (A) is in the form of pellets, it is preferable to use a method in which the organic compound additive (B) is mixed and stirred to adhere to the pellet surface. Furthermore, when the ethylene-based copolymer (A) is in the form of pellets and a liquid additive is used, it is preferable to use a method in which the liquid additive is mixed and stirred and impregnated inside the pellet. Moreover, the said blending process has the preferable method (it performs by a dry process) which does not use a solvent separately except the structural component of solar cell sealing material compositions, such as a liquid additive.
  • the ethylene copolymer (A) is preferably in the form of pellets.
  • the pellet form refers to, for example, a particle having a diameter or length of about 1 to 10 mm, for example, 2 to 7 mm, or 3 to 5 mm.
  • examples of the pellet shape include particles in the form of a substantially columnar shape, a substantially spherical shape, a substantially disc shape, a substantially triangular prism shape, a substantially quadrangular prism shape, a substantially polyhedral shape, an elliptical sphere, and the like.
  • the blending step it is preferable to control the temperature of the blended mixture (matrix resin or the like) using, for example, a jacket or a cooler.
  • Preferred examples of the equipment used in the blending process include a single screw extruder, a twin screw extruder, a Banbury mixer, a kneader, and a mixing roll.
  • a melt kneading step is included after the blending step.
  • melt-kneading step a known method can be used as appropriate.
  • the melt kneading step can be performed by, for example, heat kneading, a roll mill, a plast mill, a melt extruder, a Banbury mixer, a kneader, or the like.
  • the mixing temperature in the melt-kneading step can be, for example, 40 to 150 ° C., 80 to 140 ° C., 90 to 120 ° C., or 100 to 110 ° C. . In order to prevent gelation due to peroxide, it is preferably performed at 110 ° C. or lower.
  • the mixing time in the melt kneading step can be, for example, 1 to 20 minutes, 3 to 10 minutes, 3 to 7 minutes, 3 to 5 minutes. It can be carried out.
  • the solar cell encapsulant layer of the present invention is formed using the solar cell encapsulant composition obtained by the above-described production method.
  • a known method can be used as appropriate.
  • a composition obtained by heating and mixing the above-described solar cell encapsulant composition (or each material thereof) with a known method using heat kneading, a roll mill, a plast mill, etc. is subjected to ordinary extrusion molding, calendar molding (calendering). ), And can be appropriately produced by a method of forming a sheet-like material by vacuum hot pressing or the like.
  • after forming the said layer on PET film etc. it can manufacture by the method of transcribe
  • a method is preferred in which the blending step and the melt-kneading step are performed in a kneading apparatus such as a melt extruder, and the molding is continuously performed as a sealing material layer such as a sheet or film.
  • the solar cell encapsulant composition obtained by the production method may be applied and formed as it is on a surface protective layer or a separator, or the material may be mixed with other materials. You may apply
  • the melting point of the matrix resin of the solar cell encapsulant composition is 50 to 120 ° C.
  • the kneading and melting and application temperature of the composition are: It is preferable to carry out at a temperature obtained by adding 30 to 100 ° C. to the above melting point.
  • a method is preferred in which the blending step and the melt-kneading step are performed in a kneading apparatus such as a melt extruder, and the molding is continuously performed as a sheet-like or film-like sealing material layer.
  • a solar cell encapsulant layer is produced into a thin film structure by the following steps: (i) polymer (matrix resin) powder is a solvent (eg, A step of preparing a polymer solution dissolved in tetrachloroethylene (TCE), cyclopentanone, dioxane, etc.), (ii) a luminescent dye (fluorescent compound) containing the polymer mixture, and the polymer solution with a luminescent dye at a predetermined weight ratio Mixing to obtain a dye-containing polymer solution, (iii) pouring the dye / polymer thin film directly onto the glass substrate, after which the substrate is allowed to warm up from room temperature in 2 hours Formed by heat treatment to 100 ° C and complete removal of residual solvent by further vacuum heating overnight at 130 ° C And (iv) peeling the dye / polymer thin film in water before use and then completely drying the free-standing polymer film; (v) the thickness of the film, the concentration of the dye /
  • the thickness of the solar cell encapsulant layer is preferably 20 to 2000 ⁇ m, more preferably 50 to 1000 ⁇ m, and even more preferably 100 to 800 ⁇ m.
  • the thickness is less than 20 ⁇ m, the sealing material function is hardly exhibited.
  • the thickness of a solar cell module will become large and it will be disadvantageous also in cost.
  • the solar cell encapsulant layer is usually used for encapsulating solar cells, but is laminated so as to appropriately seal interconnector materials, electrodes, and the like as necessary. As long as the function of the solar cell encapsulant layer is not impaired, other layers such as each layer may be interposed as required.
  • the solar cell module 1 of the present invention includes a surface protective layer 10, the solar cell sealing material layer 20, and solar cells 30. 1 and 2 show simple schematic diagrams as an example, but the present invention is not limited to these. Moreover, the sealing material layer 40 and the back sheet
  • the solar cell for example, a cadmium sulfide / cadmium telluride solar cell, a copper indium gallium diselenide solar cell, an amorphous silicon solar cell, a microcrystalline silicon solar cell, or a crystalline silicon solar cell can be used.
  • the solar battery cell is preferably a crystalline silicon solar battery.
  • the solar cell encapsulant layer may be transferred to the solar cell or the like, or may be directly coated on the solar cell. Moreover, you may form the said sealing material layer for solar cells, and another layer simultaneously.
  • each sealing material layer was produced by the following method based on the compounds shown in Table 1.
  • each material (compound) was mixed and stirred using a small pulverizer (manufactured by ASONE Co., Ltd.) while controlling the temperature in the system with a cooler so that each temperature range was reached Pre-blending (5 minutes) was performed. Thereafter, the pre-blended resin composition was put into a Laboplast Mill 4C150 type (roller shape: Sigma type, manufactured by Toyo Seiki Co., Ltd.) and kneaded at 80 ° C. and 10 rpm for 5 minutes. The obtained kneaded product was pressed at 100 ° C. and 20 kN for 5 minutes using a vacuum heat press VS20-3430 (manufactured by Mikado Technos) to form a 400 ⁇ m-thick sealing material sheet.
  • a small pulverizer manufactured by ASONE Co., Ltd.
  • Tables 1 and 2 below show the respective measurement results when each compounding (part by weight) and the obtained sealing material layer resin sheet were used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Photovoltaic Devices (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Crystallography & Structural Chemistry (AREA)

Abstract

The present invention relates to providing a solar cell sealant composition in which, at a molding temperature at which there is substantially no decomposition of organic peroxides, an organic compound additive having a melting point higher than the molding temperature has been uniformly dispersed in an ethylene copolymer, and to a production method for the same. The present invention also relates to a solar cell sealant layer in which an organic compound additive having a melting point higher than the molding temperature is uniformly dispersed in an ethylene copolymer, and to a solar cell module employing the same. Also provided is a production method for a solar cell sealant composition containing an ethylene copolymer (A) and an organic compound additive (B), wherein the production method for a solar cell sealant composition is characterized by including a step in which the ethylene copolymer (A) and the organic compound additive (B) are mixed, within a temperature range at or above the Vicat softening point of the ethylene copolymer, and at or below a temperature 10°C below the softening point of the ethylene copolymer (A).

Description

太陽電池用封止材組成物およびその製造方法、ならびに、それを用いた太陽電池用封止材層および太陽電池モジュールSOLAR CELL SEALING MATERIAL COMPOSITION, PROCESS FOR PRODUCING THE SAME, SOLAR CELL SEALING MATERIAL LAYER USING THE SAME, AND SOLAR CELL MODULE
 本発明は、太陽電池用封止材組成物およびその製造方法、ならびに、それを用いた太陽電池用封止材層および太陽電池モジュールに関する。 The present invention relates to a solar cell encapsulant composition and a method for producing the same, and a solar cell encapsulant layer and a solar cell module using the same.
 太陽電池モジュールは、一般に、ガラス基板、太陽電池封止材、発電素子、太陽電池封止材、およびバックシートを順次積層した構造を有する。そして上記太陽電池封止材には、低コストや高透過率等の観点から、エチレン系共重合体をマトリックスとする樹脂シートが用いられている。 A solar cell module generally has a structure in which a glass substrate, a solar cell encapsulant, a power generation element, a solar cell encapsulant, and a back sheet are sequentially laminated. And the said solar cell sealing material uses the resin sheet which uses an ethylene-type copolymer as a matrix from viewpoints, such as low cost and high transmittance | permeability.
 上記エチレン系共重合体には、耐久性を向上させるために有機過酸化物や架橋助剤などが含有されている。また、耐候性を付与するために、紫外線吸収剤のような紫外光領域に吸収領域を有する有機物やガラス、太陽電池素子の接着性を確保するために、シランカップリング剤が一般的に配合されている。 The ethylene copolymer contains an organic peroxide, a crosslinking aid and the like in order to improve durability. In addition, in order to provide weather resistance, a silane coupling agent is generally blended in order to ensure the adhesiveness of organic substances, glass, and solar cell elements having an absorption region in the ultraviolet region such as an ultraviolet absorber. ing.
 シート状太陽電池封止材の成形は、Tダイ押出成膜機やカレンダー成形機などによって行われる。たとえば、エチレン系共重合体に、上述のような添加剤をあらかじめドライブレンドした後に、Tダイ押出機のホッパーから供給し、有機過酸化物が実質的に分解しない成形温度でシート状に押出成形する方法がある(たとえば、特許文献1参照)。 The sheet-shaped solar cell encapsulant is molded by a T-die extrusion film forming machine or a calendar molding machine. For example, the above-mentioned additives are pre-dry blended into an ethylene copolymer, then supplied from a hopper of a T-die extruder, and extruded into a sheet at a molding temperature at which the organic peroxide is not substantially decomposed. There is a method (see, for example, Patent Document 1).
 しかしながら、上記添加剤の中で、その融点が成形温度より高いものは溶融しないため、エチレン系共重合体に均一に分散しにくい問題があった。そのため、融点以上の温度で一度有機物を融解させる必要がある。しかし、高融点の有機物を、有機過酸化物が分解する温度以上の温度で融解させた場合、有機過酸化物の分解に伴う架橋反応が開始・進行し、シート表面にブツ等の不具合が発生したり、最終的な物性にも影響を及ぼすおそれがある。また、スクリュー回転数を上げて分散性を向上させる方法もあるが、せん断発熱の影響で樹脂温度が高くなり、結果的に過酸化物が分解する恐れがある。このため、高融点の有機物を、有機過酸化物が分解しない温度以下で分散させる方法が必要である。 However, among the above additives, those having a melting point higher than the molding temperature do not melt, so that there is a problem that they are difficult to disperse uniformly in the ethylene-based copolymer. Therefore, it is necessary to melt the organic substance once at a temperature equal to or higher than the melting point. However, if a high melting point organic substance is melted at a temperature higher than the temperature at which the organic peroxide decomposes, the cross-linking reaction accompanying the decomposition of the organic peroxide starts and proceeds, causing defects such as bumps on the sheet surface. And may affect the final physical properties. There is also a method of improving dispersibility by increasing the screw rotation speed, but the resin temperature becomes high due to the effect of shearing heat generation, which may result in decomposition of the peroxide. For this reason, a method of dispersing a high-melting-point organic substance at a temperature or lower at which the organic peroxide is not decomposed is necessary.
 一つの手段として、二軸押出機のような溶融混練機でエチレン系共重合体にあらかじめ高融点の有機物のみをその融点以上で練りこんだマスターバッチを作製し、マスターバッチをエチレン系共重合体と有機過酸化物と一緒に低温で溶融混練しシート化する方法があげられる。しかしながら、上記手法でも、マスターバッチの工程が増えてしまうことで、材料のロスによるコスト増加や、熱履歴が増えることによるエチレン系共重合体自体の劣化が生じる問題がある。 As one means, a masterbatch is prepared by kneading only an organic substance having a high melting point above its melting point into the ethylene copolymer in advance using a melt kneader such as a twin-screw extruder, and the masterbatch is obtained as an ethylene copolymer. And a method of melting and kneading together with an organic peroxide at a low temperature to form a sheet. However, even with the above-described method, there are problems in that the number of master batch steps increases, resulting in an increase in cost due to material loss and deterioration of the ethylene-based copolymer itself due to an increase in thermal history.
特開2006-186233号公報JP 2006-186233 A
 本発明は、このような事情に照らし、有機過酸化物が実質的に分解しない成形温度で、成形温度よりも高い融点を有する有機化合物添加剤をエチレン系共重合体に均一に分散された太陽電池用組成物およびその製造方法を提供することを目的とする。 In light of such circumstances, the present invention is a solar in which an organic compound additive having a melting point higher than the molding temperature is uniformly dispersed in an ethylene copolymer at a molding temperature at which the organic peroxide is not substantially decomposed. It aims at providing the composition for batteries, and its manufacturing method.
 また、本発明は、成形温度よりも高い融点を有する有機化合物添加剤がエチレン系共重合体に均一に分散された太陽電池用封止材層、および、それを用いた太陽電池モジュールを提供することを目的とする。 The present invention also provides a solar cell encapsulant layer in which an organic compound additive having a melting point higher than the molding temperature is uniformly dispersed in an ethylene copolymer, and a solar cell module using the same. For the purpose.
 本発明者らは、上記課題を解決するため鋭意検討した結果、以下に示す太陽電池用封止材組成物およびその製造方法、ならびに、それを用いた太陽電池用封止材層および太陽電池モジュールにより上記目的を達成できることを見出して、本発明を完成するに至った。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have found the following solar cell encapsulant composition and method for producing the same, and solar cell encapsulant layer and solar cell module using the same. Thus, the inventors have found that the above object can be achieved, and have completed the present invention.
 本発明の太陽電池用封止材組成物の製造方法は、エチレン系共重合体(A)および有機化合物添加剤(B)を含む太陽電池用封止材組成物の製造方法であって、
 上記エチレン系共重合体(A)のビカット軟化点以上、上記エチレン系共重合体(A)の融点より10℃低い温度以下の温度範囲内で、上記エチレン系共重合体(A)および上記有機化合物添加剤(B)を混合するブレンド工程を含むことを特徴とする。
The manufacturing method of the sealing material composition for solar cells of this invention is a manufacturing method of the sealing material composition for solar cells containing an ethylene-type copolymer (A) and an organic compound additive (B),
The ethylene copolymer (A) and the organic polymer are within a temperature range from the Vicat softening point of the ethylene copolymer (A) to 10 ° C. below the melting point of the ethylene copolymer (A). A blending step of mixing the compound additive (B) is included.
 本発明の太陽電池用封止材組成物の製造方法を用いることにより、有機過酸化物が実質的に分解しない成形温度で、成形温度よりも高い融点を有する有機化合物添加剤をエチレン系共重合体に均一に分散させることが可能となる。また、液状添加剤を含む場合であっても、樹脂内部に含浸や分散する等により樹脂表面に液体成分が残ることなく、またブロッキングしない樹脂組成物を容易に得ることができる。 By using the method for producing a solar cell encapsulant composition of the present invention, an organic compound additive having a melting point higher than the molding temperature at an molding temperature at which the organic peroxide is not substantially decomposed is ethylene-based. It becomes possible to disperse uniformly in the coalescence. Further, even when a liquid additive is contained, a resin composition that does not block and that does not block the liquid component does not remain on the resin surface due to impregnation or dispersion inside the resin.
 本発明では、上記温度範囲で撹拌混合することで、高融点の有機化合物の分散状態が良くなる。一方、上記ビカット軟化点以下で行うと、高融点化合物が(特にペレット状の場合に)樹脂に付着しにくくなり、また上記融点より10℃低い温度以下ではない場合には、樹脂同士がブロッキングしてしまう。より詳細には、従来のように上記ブレンド工程(プレブレンド)時に温度制御を行わずに長時間ブレンドを行うと、ペレットと回転羽との摩擦やペレット同士の摩擦等により内部温度が上昇してしまい、樹脂同士がブロッキングしてしまう恐れがある。一方、本願発明における上記温度範囲内でプレブレンドを行うことにより、上記問題を効果的に回避することができる。 In the present invention, the dispersion state of the organic compound having a high melting point is improved by stirring and mixing in the above temperature range. On the other hand, when the temperature is below the Vicat softening point, the high melting point compound is difficult to adhere to the resin (particularly in the case of pellets), and when the temperature is not lower than 10 ° C. below the melting point, the resins block each other. End up. More specifically, when blending for a long time without controlling the temperature during the blending step (pre-blending) as in the past, the internal temperature increases due to friction between the pellets and rotating blades, friction between the pellets, and the like. Therefore, the resins may be blocked. On the other hand, by performing pre-blending within the above temperature range in the present invention, the above problem can be effectively avoided.
 本発明の太陽電池用封止材組成物の製造方法において、上記エチレン系共重合体(A)がペレット状であることが好ましい。上記製造方法を用いることにより、一般に粉状よりも添加剤を混合・分散しにくいペレット状のエチレン系共重合体であっても、得られる太陽電池用封止材層のマトリックス樹脂であるエチレン系共重合体に均一に分散させることが可能となる。また、ペレットを用いることが可能となり、太陽電池用封止材組成物の生産加工性が向上する。 In the method for producing a solar cell encapsulant composition of the present invention, the ethylene copolymer (A) is preferably in the form of pellets. By using the above-described production method, an ethylene-based resin that is a matrix resin for a solar cell encapsulant layer, even if it is a pellet-shaped ethylene copolymer that is generally less likely to mix and disperse additives than powder. It becomes possible to disperse uniformly in the copolymer. Moreover, it becomes possible to use a pellet and the production workability of the solar cell sealing material composition is improved.
 なお、上記ペレット状とは、主に加工性向上のために、たとえば、直径または長さが1~10mm程度の粒子状にしたものをいい、たとえば、略円柱状、略球状、略円盤状、略三角柱状、略四角柱状、略多面体状、楕円球状などの形態の粒体などをあげることができる。 Note that the pellet shape means a particle shape having a diameter or length of about 1 to 10 mm mainly for improving workability, for example, a substantially cylindrical shape, a substantially spherical shape, a substantially disk shape, Examples thereof include grains having a substantially triangular prism shape, a substantially quadrangular prism shape, a substantially polyhedral shape, an elliptical spherical shape, and the like.
 また、本発明の太陽電池用封止材組成物の製造方法において、上記ブレンド工程において、さらに有機過酸化物(C)を含み、かつ、上記有機化合物添加剤(B)の融点が、上記有機過酸化物(C)の一時間半減期温度より10℃低い温度以上であることが好ましい。本発明の製造方法を用いることにより、通常均一な分散が困難である、上記有機過酸化物(C)の一時間半減期温度付近またはより高い融点を持つ上記有機化合物添加剤(B)であっても、有機過酸化物が実質的に分解させずに、上記有機化合物添加剤(B)をエチレン系共重合体に均一に分散させることが可能となる。 Moreover, in the manufacturing method of the sealing material composition for solar cells of this invention, in the said blending process, the organic peroxide (C) is further included, and melting | fusing point of the said organic compound additive (B) is said organic The temperature is preferably 10 ° C. or more lower than the one-hour half-life temperature of the peroxide (C). By using the production method of the present invention, the organic compound additive (B) having a melting point near or higher than the one-hour half-life temperature of the organic peroxide (C), which is usually difficult to disperse uniformly. However, the organic compound additive (B) can be uniformly dispersed in the ethylene copolymer without substantially decomposing the organic peroxide.
 また、本発明の太陽電池用封止材組成物の製造方法において、上記ブレンド工程において、溶剤を用いないことが好ましい。上記製造方法においては、液状添加剤などの太陽電池用封止材組成物の構成成分以外には別途溶剤を用いることなく(ドライプロセス)、有機過酸化物が実質的に分解しない成形温度で、成形温度よりも高い融点を有する有機化合物添加剤をエチレン系共重合体に均一に分散させることが可能となる。 In the method for producing a solar cell encapsulant composition of the present invention, it is preferable that no solvent is used in the blending step. In the above production method, without using a separate solvent other than the components of the solar cell encapsulant composition such as a liquid additive (dry process), at a molding temperature at which the organic peroxide is not substantially decomposed, An organic compound additive having a melting point higher than the molding temperature can be uniformly dispersed in the ethylene-based copolymer.
 また、本発明の太陽電池用封止材組成物の製造方法において、上記ブレンド工程において、さらに液状添加剤を含むことができる。上記製造方法においては、シランカップリング剤や液状の架橋助剤などの液状添加剤を含む場合であっても、樹脂内部に含浸や分散する等により樹脂表面に液体成分が残ることなく、またブロッキングしない樹脂組成物を得ることができる。簡易にマスターバッチを作製することもできる。なお、上記液状添加剤とは、ブレンド工程時に液状である添加剤をいい、ブレンド工程時の温度よりも融点が低い化合物が該当する。 Moreover, in the method for producing a solar cell encapsulant composition of the present invention, a liquid additive may be further included in the blending step. In the above production method, even when a liquid additive such as a silane coupling agent or a liquid crosslinking aid is contained, liquid components do not remain on the resin surface due to impregnation or dispersion inside the resin, and blocking is also possible. Can be obtained. A master batch can also be easily produced. In addition, the said liquid additive means the additive which is liquid at the time of a blending process, and the compound whose melting | fusing point is lower than the temperature at the time of a blending process corresponds.
 また、本発明の太陽電池用封止材組成物の製造方法において、上記ブレンド工程に次いで、溶融混練工程を含むことが好ましい。上記ブレンド工程を先に経由するより、溶融混練工程後に成形温度よりも高い融点を有する有機化合物添加剤をエチレン系共重合体に均一に分散された太陽電池用組成物を容易に得ることができる。さらには、上記ブレンド工程を先に経由することで、通常より低温の溶融混練工程であっても、高融点の有機化合物の分散性が良いシートを形成することができる。 Moreover, in the method for producing a solar cell encapsulant composition of the present invention, it is preferable to include a melt-kneading step after the blending step. A composition for a solar cell in which an organic compound additive having a melting point higher than the molding temperature after the melt-kneading step is uniformly dispersed in the ethylene copolymer can be easily obtained, rather than going through the blending step first. . Furthermore, by passing through the blending process first, a sheet having a high dispersibility of the organic compound having a high melting point can be formed even in a melt-kneading process at a temperature lower than usual.
 また、本発明の太陽電池用封止材組成物の製造方法において、上記溶融混練工程が、一軸押出機、二軸押出機、バンバリーミキサー、ニーダー、またはミキシングロールによりなされることが好ましい。上記構成を用いることにより、より効果的に、有機化合物添加剤をエチレン系共重合体に均一に分散された上記太陽電池用組成物を得ることができる。また、シートの成形は(封止材層の形成)は、カレンダー成形、Tダイ、またはインフレーション等による溶融押出成形によりなされることが好ましい。 Moreover, in the method for producing a solar cell encapsulant composition of the present invention, the melt kneading step is preferably performed by a single screw extruder, a twin screw extruder, a Banbury mixer, a kneader, or a mixing roll. By using the said structure, the said composition for solar cells in which the organic compound additive was uniformly disperse | distributed to the ethylene-type copolymer can be obtained more effectively. Moreover, it is preferable that the sheet is formed (formation of the sealing material layer) by calendar extrusion, T-die, or melt extrusion by inflation.
 また、本発明の太陽電池用封止材組成物の製造方法において、上記有機化合物添加剤(B)が、紫外線吸収剤、酸化防止剤、光安定化剤、老化防止剤、または、固形の架橋助剤であることが好ましい。上記化合物を用いることにより、上記組成物により形成される太陽電池用封止材層をより多機能にすることができる。 Moreover, in the manufacturing method of the sealing material composition for solar cells of this invention, the said organic compound additive (B) is a ultraviolet absorber, antioxidant, light stabilizer, anti-aging agent, or solid bridge | crosslinking. An auxiliary is preferred. By using the said compound, the sealing material layer for solar cells formed with the said composition can be made more multifunctional.
 また、本発明の太陽電池用封止材組成物において、上記エチレン系共重合体が、エチレン-酢酸ビニル共重合体を主成分とすることが好ましい。上記エチレン系共重合体としてエチレン-酢酸ビニル共重合体を主成分とすることにより、より確実に光透過性や耐久性に優れた太陽電池用封止材層を得ることができる。 In the solar cell encapsulant composition of the present invention, it is preferable that the ethylene copolymer contains an ethylene-vinyl acetate copolymer as a main component. By using an ethylene-vinyl acetate copolymer as a main component as the ethylene-based copolymer, a solar cell encapsulant layer having more excellent light transmittance and durability can be obtained more reliably.
 なお、上記主成分とするとは、上記太陽電池用封止材組成物のマトリックス樹脂が複数の樹脂の混合物である場合、重量比で50重量%以上含む場合をいうものとする。上記重量比は、70重量%以上であることがより好ましく、90重量%以上であることがさらに好ましい。 In addition, the said main component shall mean the case where 50 weight% or more is contained by weight ratio, when the matrix resin of the said solar cell sealing material composition is a mixture of several resin. The weight ratio is more preferably 70% by weight or more, and still more preferably 90% by weight or more.
 一方、本発明の太陽電池用封止材層は、上記太陽電池用封止材組成物を用いて形成されたことを特徴とする。上記組成物を用いて形成されることにより、成形温度よりも高い融点を有する有機化合物添加剤がエチレン系共重合体に均一に分散された太陽電池用封止材層となる。 On the other hand, the solar cell encapsulant layer of the present invention is characterized by being formed using the solar cell encapsulant composition. By forming using the said composition, it becomes the sealing material layer for solar cells in which the organic compound additive which has melting | fusing point higher than molding temperature was disperse | distributed uniformly in the ethylene-type copolymer.
 また、本発明の太陽電池モジュールは、上記太陽電池用封止材組成物を用いて形成された太陽電池用封止材層を含むことを特徴とする。上記太陽電池モジュールは、上記太陽電池用封止材層を有するため、成形温度よりも高い融点を有する有機化合物添加剤がエチレン系共重合体に均一に分散された太陽電池モジュールとなる。 Moreover, the solar cell module of the present invention is characterized by including a solar cell encapsulant layer formed using the solar cell encapsulant composition. Since the said solar cell module has the said solar cell sealing material layer, it becomes a solar cell module by which the organic compound additive which has melting | fusing point higher than molding temperature was uniformly disperse | distributed to the ethylene-type copolymer.
 また、本発明の太陽電池モジュールにおいて、上記太陽電池セルが、結晶シリコン太陽電池、硫化カドミウム/テルル化カドミウム太陽電池、銅インジウムガリウム二セレン化物太陽電池、非晶質シリコン太陽電池、または微結晶シリコン太陽電池であることが好ましい。上記太陽電池モジュールは、上記太陽電池セルを積層する太陽電池モジュールに用いることでより効果的に光電変換効率をより向上させることができる。 Further, in the solar cell module of the present invention, the solar cell is a crystalline silicon solar cell, a cadmium sulfide / cadmium telluride solar cell, a copper indium gallium diselenide solar cell, an amorphous silicon solar cell, or a microcrystalline silicon. A solar cell is preferred. The said solar cell module can improve photoelectric conversion efficiency more effectively by using it for the solar cell module which laminates | stacks the said photovoltaic cell.
本発明の太陽電池用封止材層を用いた太陽電池モジュールの例を示す。The example of the solar cell module using the sealing material layer for solar cells of this invention is shown. 本発明の太陽電池用封止材層を用いた太陽電池モジュールの例を示す。The example of the solar cell module using the sealing material layer for solar cells of this invention is shown.
 以下、本発明の実施の形態について説明する。 Hereinafter, embodiments of the present invention will be described.
 本発明の太陽電池用封止材組成物の製造方法は、エチレン系共重合体(A)および有機化合物添加剤(B)を含む太陽電池用封止材組成物の製造方法であって、
 上記エチレン系共重合体(A)のビカット軟化点以上、上記エチレン系共重合体(A)の融点より10℃低い温度以下の温度範囲内で、上記エチレン系共重合体(A)および上記有機化合物添加剤(B)を混合するブレンド工程を含むことを特徴とする。
The manufacturing method of the sealing material composition for solar cells of this invention is a manufacturing method of the sealing material composition for solar cells containing an ethylene-type copolymer (A) and an organic compound additive (B),
The ethylene copolymer (A) and the organic polymer are within a temperature range from the Vicat softening point of the ethylene copolymer (A) to 10 ° C. below the melting point of the ethylene copolymer (A). A blending step of mixing the compound additive (B) is included.
 (太陽電池用封止材組成物)
 本発明の太陽電池用封止材組成物は、少なくともエチレン系共重合体(A)および有機化合物添加剤(B)を含むことを特徴とする。上記太陽電池用封止材組成物は、たとえば、エチレン系共重合体(A)を主成分として含む、光学的に透明なマトリックス樹脂の中に、少なくとも有機化合物添加剤(B)を分散させること等により形成することができる。
(Encapsulant composition for solar cell)
The solar cell encapsulant composition of the present invention is characterized by containing at least an ethylene copolymer (A) and an organic compound additive (B). The solar cell encapsulant composition includes, for example, at least an organic compound additive (B) dispersed in an optically transparent matrix resin containing an ethylene copolymer (A) as a main component. Or the like.
 上記エチレン系共重合体(A)として、たとえば、エチレンと極性モノマーの共重合体、エチレンと炭素数3以上のα-オレフィンの共重合体などをあげることができる。 Examples of the ethylene copolymer (A) include a copolymer of ethylene and a polar monomer, and a copolymer of ethylene and an α-olefin having 3 or more carbon atoms.
 上記エチレン系共重合体(A)において、エチレン単位含有量が50~90重量%であることが好ましく、60~80重量%であることがより好ましく、65~75重量%であることがさらに好ましい。上記含有量とすることにより、より確実に、柔軟性、透明性、成形性、耐ブロッキング性、太陽電池素子保護性に優れた太陽電池用封止材を得ることができる。 In the ethylene copolymer (A), the ethylene unit content is preferably 50 to 90% by weight, more preferably 60 to 80% by weight, and even more preferably 65 to 75% by weight. . By setting it as the said content, the sealing material for solar cells excellent in the softness | flexibility, transparency, a moldability, blocking resistance, and a solar cell element protective property can be obtained more reliably.
 上記極性モノマーとして、たとえば、酢酸ビニル、プロピオン酸ビニルのようなビニルエステル、アクリル酸メチル、アクリル酸エチル、アクリル酸イソプロピル、アクリル酸イソブチル、アクリル酸n-ブチル、アクリル酸イソオクチル、メタクリル酸メチル、メタクリル酸イソブチル、マレイン酸ジメチル等の不飽和カルボン酸エステル、アクリル酸、メタクリル酸、フマル酸、イタコン酸、マレイン酸モノメチル、マレイン酸モノエチル、無水マレイン酸、無水イタコン酸等の不飽和カルボン酸、および、これらのカルボン酸塩などの塩などをあげることができる。上記カルボン酸の塩として、たとえば、リチウム、ナトリウム、カリウムなどの1価金属、マグネシウム、カルシウム、亜鉛などの多価金属の塩などをあげることができる。これらは単独で使用してもよく、また2種以上を混合して使用してもよい。 Examples of the polar monomer include vinyl esters such as vinyl acetate and vinyl propionate, methyl acrylate, ethyl acrylate, isopropyl acrylate, isobutyl acrylate, n-butyl acrylate, isooctyl acrylate, methyl methacrylate, methacrylic acid Unsaturated carboxylic acid esters such as isobutyl acid, dimethyl maleate, acrylic acid, methacrylic acid, fumaric acid, itaconic acid, monomethyl maleate, monoethyl maleate, maleic anhydride, itaconic anhydride, and the like, and Examples of these salts include carboxylates. Examples of the carboxylic acid salt include monovalent metals such as lithium, sodium and potassium, and salts of polyvalent metals such as magnesium, calcium and zinc. These may be used singly or in combination of two or more.
 上記炭素数3以上のα-オレフィンとして、たとえば、プロピレン、1-ブテン、2-ブテン、1-ヘキセン、1-オクテン、4-メチル-1-ペンテンなどをあげることができる。これらは単独で使用してもよく、また2種以上を混合して使用してもよい。 Examples of the α-olefin having 3 or more carbon atoms include propylene, 1-butene, 2-butene, 1-hexene, 1-octene, 4-methyl-1-pentene and the like. These may be used singly or in combination of two or more.
 上記エチレン系共重合体(A)として、たとえば、エチレン-酢酸ビニル共重合体のようなエチレン-ビニルエステル共重合体、エチレン-アクリル酸メチル共重合体、エチレン-アクリル酸エチル共重合体、エチレン-メタクリル酸メチル共重合体、エチレン-アクリル酸イソブチル共重合体、エチレン・アクリル酸n-ブチル共重合体のようなエチレン-不飽和カルボン酸エステル共重合体、エチレン-アクリル酸共重合体、エチレン-メタクリル酸共重合体、エチレン・アクリル酸イソブチル-メタクリル酸共重合体のようなエチレン-不飽和カルボン酸共重合体およびそのアイオノマーなどをあげることができる。これらは単独で使用してもよく、また2種以上を混合して使用してもよい。 Examples of the ethylene copolymer (A) include ethylene-vinyl ester copolymers such as ethylene-vinyl acetate copolymers, ethylene-methyl acrylate copolymers, ethylene-ethyl acrylate copolymers, ethylene -Methyl methacrylate copolymer, ethylene-isobutyl acrylate copolymer, ethylene-unsaturated carboxylic acid ester copolymer such as ethylene / n-butyl acrylate copolymer, ethylene-acrylic acid copolymer, ethylene -Methacrylic acid copolymer, ethylene-unsaturated carboxylic acid copolymer such as ethylene / isobutyl acrylate-methacrylic acid copolymer and its ionomer. These may be used singly or in combination of two or more.
 上記エチレン系共重合体(A)として、エチレン-酢酸ビニル共重合体を主成分とすることが好ましい。上記エチレン系共重合体としてエチレン-酢酸ビニル共重合体を主成分とすることにより、より確実に光透過性や耐久性に優れた太陽電池用封止材層を得ることができる。 The ethylene-based copolymer (A) preferably contains an ethylene-vinyl acetate copolymer as a main component. By using an ethylene-vinyl acetate copolymer as a main component as the ethylene-based copolymer, a solar cell encapsulant layer having more excellent light transmittance and durability can be obtained more reliably.
 上記エチレン-酢酸ビニル共重合体(A)として、エチレン-酢酸ビニル共重合体100重量部に対して、酢酸ビニル単量体単位の含有率が20~40重量部であることが好ましく、25~35重量部であることがより好ましく、上記含有率の場合には希土類錯体などのマトリックス樹脂中への均一分散性の観点から好ましい。 The ethylene-vinyl acetate copolymer (A) preferably has a vinyl acetate monomer unit content of 20 to 40 parts by weight with respect to 100 parts by weight of the ethylene-vinyl acetate copolymer, The content is more preferably 35 parts by weight, and the above content is preferable from the viewpoint of uniform dispersibility in a matrix resin such as a rare earth complex.
 上記エチレン-酢酸ビニル共重合体(A)を用いる場合には、市販品を適宜使用することができる。上記エチレン-酢酸ビニル共重合体の市販品として、たとえば、ウルトラセン(東ソー株式会社製)、エバフレックス(三井・デュポンポリケミカル株式会社製)、サンテックEVA(旭化成ケミカルズ社製)、UBE EVAコポリマー(宇部丸善ポリエチレン社製)、エバテート(住友化学社製)、ノバテックEVA(日本ポリエチレン社製)、スミテート(住友化学社製)、ニポフレックス(東ソー社製)などをあげることができる。これらは単独で使用してもよく、また2種以上を混合して使用してもよい。 When using the ethylene-vinyl acetate copolymer (A), commercially available products can be used as appropriate. Examples of commercially available ethylene-vinyl acetate copolymers include Ultrasen (manufactured by Tosoh Corporation), Everflex (manufactured by Mitsui DuPont Polychemical Co., Ltd.), Suntec EVA (manufactured by Asahi Kasei Chemicals Corporation), UBE EVA copolymer ( Ube Maruzen Polyethylene Co., Ltd.), Evertate (Sumitomo Chemical Co., Ltd.), Novatec EVA (Nihon Polyethylene Co., Ltd.), Smitate (Sumitomo Chemical Co., Ltd.), Nipoflex (Tosoh Corp.), and the like. These may be used singly or in combination of two or more.
 上記エチレン-酢酸ビニル共重合体(A)の屈折率として、たとえば、1.4~1.7の範囲、1.45~1.65の範囲、または、1.45~1.55の範囲である。いくつかの実施形態において、エチレン-酢酸ビニル共重合体(A)の屈折率が1.5である。 The refractive index of the ethylene-vinyl acetate copolymer (A) is, for example, in the range of 1.4 to 1.7, in the range of 1.45 to 1.65, or in the range of 1.45 to 1.55. is there. In some embodiments, the ethylene-vinyl acetate copolymer (A) has a refractive index of 1.5.
 上記太陽電池用封止材組成物として、光学的に透明なマトリックス樹脂を用いることが好ましい。上記マトリックス樹脂として、上記エチレン系共重合体(A)とともに、上記エチレン系共重合体(A)の特性を損なわない限り、他のマトリックス樹脂を適宜用いてもよい。上記他のマトリックス樹脂として、たとえば、ポリエチレンテレフタレート、ポリ(メタ)アクリレート、ポリエチレンテトラフルオロエチレンなどのポリオレフィン類、ポリイミド、非晶質ポリカーボネート、シロキサンゾル-ゲル、ポリウレタン、ポリスチレン、ポリエーテルサルフォン、ポリアリレート、エポキシ樹脂、および、シリコーン樹脂などをあげることができる。これらのマトリックス樹脂は単独で使用してもよく、また2種以上を混合して使用してもよい。 It is preferable to use an optically transparent matrix resin as the solar cell encapsulant composition. As said matrix resin, you may use suitably other matrix resin with the said ethylene-type copolymer (A), unless the characteristic of the said ethylene-type copolymer (A) is impaired. Examples of other matrix resins include polyolefins such as polyethylene terephthalate, poly (meth) acrylate, polyethylene tetrafluoroethylene, polyimide, amorphous polycarbonate, siloxane sol-gel, polyurethane, polystyrene, polyethersulfone, polyarylate And epoxy resins and silicone resins. These matrix resins may be used alone or in admixture of two or more.
 上記マトリックス樹脂(上記エチレン系共重合体(A)のみ、または他のマトリックス樹脂との併用)において、架橋性モノマーを加えて、架橋構造を有する樹脂としてもよい。 In the matrix resin (the ethylene copolymer (A) alone or in combination with another matrix resin), a crosslinkable monomer may be added to obtain a resin having a crosslinked structure.
 上記架橋性モノマーとして、たとえば、ジシクロペンテニル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、ベンジル(メタ)アクリレート、多価アルコールにα,β-不飽和カルボン酸を反応させて得られる化合物(たとえば、ポリエチレングリコールジ(メタ)アクリレート(エチレン基の数が2~14のもの)、トリメチロールプロパンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンエトキシトリ(メタ)アクリレート、トリメチロールプロパンプロポキシトリ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート(プロピレン基の数が2~14のもの)、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ビスフェノールAポリオキシエチレンジ(メタ)アクリレート、ビスフェノールAジオキシエチレンジ(メタ)アクリレート、ビスフェノールAトリオキシエチレンジ(メタ)アクリレート、ビスフェノールAデカオキシエチレンジ(メタ)アクリレート等)、グリシジル基含有化合物にα,β-不飽和カルボン酸を付加して得られる化合物(たとえば、トリメチロールプロパントリグリシジルエーテルトリアクリレート、ビスフェノールAジグリシジルエーテルジアクリレート等)、多価カルボン酸(たとえば、無水フタル酸)と水酸基およびエチレン性不飽和基を有する物質(たとえば、β-ヒドロキシエチル(メタ)アクリレート)とのエステル化物、アクリル酸若しくはメタクリル酸のアルキルエステル(たとえば、(メタ)アクリル酸メチルエステル、(メタ)アクリル酸エチルエステル、(メタ)アクリル酸ブチルエステル、(メタ)アクリル酸2-エチルヘキシルエステル)、ウレタン(メタ)アクリレート(たとえば、トリレンジイソシアネートと2-ヒドロキシエチル(メタ)アクリル酸エステルとの反応物、トリメチルヘキサメチレンジイソシアネートとシクロヘキサンジメタノールと2-ヒドロキシエチル(メタ)アクリル酸エステルとの反応物等)、などをあげることができる。これらの架橋性モノマーは単独で使用してもよく、また2種以上を混合して使用してもよい。なかでも、上記架橋性モノマーにおいて、トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ビスフェノールAポリオキシエチレンジメタクリレートが好ましいものとしてあげられる。 Examples of the crosslinkable monomer include compounds obtained by reacting α, β-unsaturated carboxylic acid with dicyclopentenyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, benzyl (meth) acrylate, and polyhydric alcohol ( For example, polyethylene glycol di (meth) acrylate (having 2 to 14 ethylene groups), trimethylolpropane di (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolpropane ethoxytri (meth) acrylate, Trimethylolpropane propoxy tri (meth) acrylate, tetramethylol methane tri (meth) acrylate, tetramethylol methane tetra (meth) acrylate, polypropylene glycol di (meth) acrylate (pro Having 2 to 14 pyrene groups), dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, bisphenol A polyoxyethylene di (meth) acrylate, bisphenol A dioxyethylene di (meth) Acrylate, bisphenol A trioxyethylene di (meth) acrylate, bisphenol A decaoxyethylene di (meth) acrylate, etc.), a compound obtained by adding an α, β-unsaturated carboxylic acid to a glycidyl group-containing compound (for example, tri Methylolpropane triglycidyl ether triacrylate, bisphenol A diglycidyl ether diacrylate, etc.), polycarboxylic acid (for example, phthalic anhydride), a substance having a hydroxyl group and an ethylenically unsaturated group (for example, β- Esterified product with droxyethyl (meth) acrylate), alkyl ester of acrylic acid or methacrylic acid (for example, (meth) acrylic acid methyl ester, (meth) acrylic acid ethyl ester, (meth) acrylic acid butyl ester, (meth) acrylic Acid 2-ethylhexyl ester), urethane (meth) acrylate (for example, reaction product of tolylene diisocyanate and 2-hydroxyethyl (meth) acrylic acid ester, trimethylhexamethylene diisocyanate, cyclohexanedimethanol and 2-hydroxyethyl (meth) A reaction product with an acrylate ester, etc.). These crosslinkable monomers may be used alone or in admixture of two or more. Of these, trimethylolpropane tri (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, and bisphenol A polyoxyethylene dimethacrylate are preferred as the crosslinkable monomer.
 上記架橋性モノマーを含むマトリックス樹脂を用いる場合、たとえば、上記架橋モノマーに熱重合開始剤または光重合開始剤を加えて、加熱または光照射によって重合・架橋させ架橋構造を形成することができる。 When a matrix resin containing the crosslinkable monomer is used, for example, a thermal polymerization initiator or a photopolymerization initiator can be added to the crosslinkable monomer, and polymerized and crosslinked by heating or light irradiation to form a crosslinked structure.
 上記熱重合開始剤として、公知の過酸化物を適宜用いることができる。上記熱可塑性樹脂重合開始剤としては、たとえば、2,5-ジメチルヘキサン-2,5-ジハイドロパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン-3、ジ-t-ブチルパーオキサイド、ジクミルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、ジクミルパーオキサイド、α,α’-ビス(t-ブチルパーオキシイソプロピル)ベンゼン、n-ブチル-4,4-ビス(t-ブチルパーオキシ)ブタン、2,2-ビス(t-ブチルパーオキシ)ブタン、1,1-ビス(t-ブチルパーオキシ)シクロヘキサン、1,1-ビス(t-ブチルパーオキシ)3,3,5-トリメチルシクロヘキサン、t-ブチルパーオキシベンズエート、ベンゾイルパーオキサイドなどをあげることができる。これらの化合物は単独で使用してもよく、また2種以上を混合して使用してもよい。 A known peroxide can be appropriately used as the thermal polymerization initiator. Examples of the thermoplastic resin polymerization initiator include 2,5-dimethylhexane-2,5-dihydroperoxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane-3, Di-t-butyl peroxide, dicumyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, dicumyl peroxide, α, α'-bis (t-butylperoxy) Isopropyl) benzene, n-butyl-4,4-bis (t-butylperoxy) butane, 2,2-bis (t-butylperoxy) butane, 1,1-bis (t-butylperoxy) cyclohexane, 1,1-bis (t-butylperoxy) 3,3,5-trimethylcyclohexane, t-butylperoxybenzate, benzoyl peroxide, etc. be able to. These compounds may be used alone or in combination of two or more.
 上記熱重合開始剤の配合量は、たとえば、上記マトリックス樹脂100重量部に対して、0.1~2重量部用いることができる。 The blending amount of the thermal polymerization initiator can be, for example, 0.1 to 2 parts by weight with respect to 100 parts by weight of the matrix resin.
 上記光重合開始剤としては、紫外線または可視光線により遊離ラジカルを生成する公知の光開始剤を適宜用いることができる。上記光重合開始剤として、たとえば、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインプロピルエーテル、ベンゾインイソブチルエーテル、ベンゾインフェニルエーテルなどのベンゾインエーテル類、ベンゾフェノン、N,N’-テトラメチル-4,4’-ジアミノベンゾフェノン(ミヒラーケトン)、N,N’-テトラエチル-4,4’-ジアミノベンゾフェノンなどのベンゾフェノン類、ベンジルジメチルケタール(チバ・ジャパン・ケミカルズ社製、イルガキュア651)、ベンジルジエチルケタールなどのベンジルケタール類、2,2-ジメトキシ-2-フェニルアセトフェノン、p-tert-ブチルジクロロアセトフェノン、p-ジメチルアミノアセトフェノンなどのアセトフェノン類、2,4-ジメチルチオキサントン、2,4-ジイソプロピルチオキサントンなどのキサントン類、あるいはヒドロキシシクロヘキシルフェニルケトン(チバ・スペシャルティ・ケミカルズ社製、イルガキュア184)、1-(4-イソプロピルフェニル)-2-ビトロキシ-2-メチルプロパン-1-オン(チバ・ジャパン・ケミカルズ社製、ダロキュア1116)、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン(メルク社製、ダロキュア1173)などをあげることができる。これらは単独で使用してもよく、また2種以上を混合して使用してもよい。 As the photopolymerization initiator, a known photoinitiator that generates a free radical by ultraviolet light or visible light can be appropriately used. Examples of the photopolymerization initiator include benzoin ethers such as benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, benzoin isobutyl ether, and benzoin phenyl ether, benzophenone, N, N′-tetramethyl-4,4′-diamino Benzophenones (Michler's ketone), benzophenones such as N, N′-tetraethyl-4,4′-diaminobenzophenone, benzyl ketals such as benzyldimethyl ketal (manufactured by Ciba Japan Chemicals, Irgacure 651), benzyl diethyl ketal, Acetophenones such as 2,2-dimethoxy-2-phenylacetophenone, p-tert-butyldichloroacetophenone, p-dimethylaminoacetophenone, 2,4-dimethylthio Xanthones such as xanthone and 2,4-diisopropylthioxanthone, or hydroxycyclohexyl phenyl ketone (Ciba Specialty Chemicals, Irgacure 184), 1- (4-isopropylphenyl) -2-vitoxy-2-methylpropane-1 -On (Ciba Japan Chemicals, Darocur 1116), 2-hydroxy-2-methyl-1-phenylpropan-1-one (Merck, Darocur 1173), and the like. These may be used singly or in combination of two or more.
 また、上記光重合開始剤として、たとえば、2,4,5-トリアリルイミダゾール二量体と2-メルカプトベンゾオキサゾール、ロイコクリスタルバイオレット、トリス(4-ジエチルアミノ-2-メチルフェニル)メタン等との組み合わせなどをあげることができる。また、たとえば、ベンゾフェノンに対するトリエタノールアミン等の三級アミンのように、適宜公知の添加剤を用いてもよい。 Examples of the photopolymerization initiator include a combination of 2,4,5-triallylimidazole dimer and 2-mercaptobenzoxazole, leucocrystal violet, tris (4-diethylamino-2-methylphenyl) methane, and the like. Etc. Further, for example, known additives may be used as appropriate, such as tertiary amines such as triethanolamine for benzophenone.
 上記光重合開始剤の配合量は、たとえば、上記マトリックス樹脂100重量部に対して、通常、0.1~5重量部用いることができる。 The blending amount of the photopolymerization initiator is usually 0.1 to 5 parts by weight with respect to 100 parts by weight of the matrix resin, for example.
 上記有機化合物添加剤(B)として、上記エチレン系共重合体(A)の融点よりも高い融点をもつ有機化合物であることが好ましい。本願発明の製造方法を用いることにより、特に、成形温度よりも高い融点を有する有機化合物添加剤をエチレン系共重合体に均一に分散させることが可能になる。 The organic compound additive (B) is preferably an organic compound having a melting point higher than the melting point of the ethylene copolymer (A). By using the production method of the present invention, in particular, an organic compound additive having a melting point higher than the molding temperature can be uniformly dispersed in the ethylene copolymer.
 上記有機化合物添加剤(B)として、たとえば、紫外線吸収剤、酸化防止剤、光安定剤、老化防止剤、または、固形の架橋助剤であることが好ましい。これらは単独で使用してもよく、また2種以上を混合して使用してもよい。 The organic compound additive (B) is preferably, for example, an ultraviolet absorber, an antioxidant, a light stabilizer, an anti-aging agent, or a solid crosslinking aid. These may be used singly or in combination of two or more.
 有機化合物添加剤(B)として、たとえば、融点が100~250℃であることが好ましく、150~200℃であることがより好ましく、160~180℃であることがさらに好ましい。なお、上記融点の測定は、昇温過程(10℃/分)における結晶状態から液体状態に転移する温度を観察しておこなうものとする。 As the organic compound additive (B), for example, the melting point is preferably 100 to 250 ° C., more preferably 150 to 200 ° C., and further preferably 160 to 180 ° C. The above melting point is measured by observing the temperature at which the crystalline state changes to the liquid state in the temperature raising process (10 ° C./min).
 上記有機化合物添加剤(B)の含有量は、上記マトリックス樹脂100重量部に対して0.01~10重量部含有することが好ましく、0.05~5重量部であることがより好ましく、0.1~1重量部であることがさらに好ましい。 The content of the organic compound additive (B) is preferably 0.01 to 10 parts by weight, more preferably 0.05 to 5 parts by weight, based on 100 parts by weight of the matrix resin. More preferably, it is 1 to 1 part by weight.
 上記紫外線吸収化合物として、公知のものを適宜用いることができる。上記紫外線吸収化合物として、たとえば、ベンゾフェノン系、ベンゾトリアゾール系、トリアジン系、サリチル酸系、シアノアクリレート系などをあげることができる。これらの化合物は単独で使用してもよく、また2種以上を混合して使用してもよい。 As the ultraviolet absorbing compound, known compounds can be appropriately used. Examples of the ultraviolet absorbing compound include benzophenone, benzotriazole, triazine, salicylic acid, and cyanoacrylate. These compounds may be used alone or in combination of two or more.
 上記ベンゾフェノン系紫外線吸収化合物としては、たとえば、2,2’-ジヒドロキシ-4,4’-ジ(ヒドロキシメチル)ベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジ(2-ヒドロキシエチル)ベンゾフェノン、2,2’-ジヒドロキシ-3,3’-ジメトキシ-5,5’-ジ(ヒドロキシメチル)ベンゾフェノン、2,2’-ジヒドロキシ-3,3’-ジメトキシ-5,5’-ジ(2-ヒドロキシエチル)ベンゾフェノン、2,2’-ジヒドロキシ-3,3’-ジ(ヒドロキシメチル)-5,5’-ジメトキシベンゾフェノン、2,2’-ジヒドロキシ-3,3’-ジ(2-ヒドロキシエチル)-5,5’-ジメトキシベンゾフェノン、2,2-ジヒドロキシ-4,4-ジメトキシベンゾフェノンなどをあげることができる。 Examples of the benzophenone-based ultraviolet absorbing compound include 2,2′-dihydroxy-4,4′-di (hydroxymethyl) benzophenone and 2,2′-dihydroxy-4,4′-di (2-hydroxyethyl) benzophenone. 2,2′-dihydroxy-3,3′-dimethoxy-5,5′-di (hydroxymethyl) benzophenone, 2,2′-dihydroxy-3,3′-dimethoxy-5,5′-di (2- Hydroxyethyl) benzophenone, 2,2′-dihydroxy-3,3′-di (hydroxymethyl) -5,5′-dimethoxybenzophenone, 2,2′-dihydroxy-3,3′-di (2-hydroxyethyl) -5,5'-dimethoxybenzophenone, 2,2-dihydroxy-4,4-dimethoxybenzophenone, etc. .
 上記ベンゾトリアゾール系紫外線吸収化合物としては、たとえば、2-〔2’-ヒドロキシ-5’-(ヒドロキシメチル)フェニル〕-2H-ベンゾトリアゾール、2-〔2’-ヒドロキシ-5’-(2-ヒドロキシエチル)フェニル〕-2H-ベンゾトリアゾール、2-〔2’-ヒドロキシ-5’-(3-ヒドロキシプロピル)フェニル〕-2H-ベンゾトリアゾール、2-〔2’-ヒドロキシ-3’-メチル-5’-(ヒドロキシメチル)フェニル〕-2H-ベンゾトリアゾール、2-〔2’-ヒドロキシ-3’-メチル-5’-(2-ヒドロキシエチル)フェニル〕-2H-ベンゾトリアゾール、2-〔2’-ヒドロキシ-3’-メチル-5’-(3-ヒドロキシプロピル)フェニル〕-2H-ベンゾトリアゾール、2-〔2’-ヒドロキシ-3’-t-ブチル-5’-(ヒドロキシメチル)フェニル〕-2H-ベンゾトリアゾール、2-〔2’-ヒドロキシ-3’-t-ブチル-5’-(2-ヒドロキシエチル)フェニル〕-2H-ベンゾトリアゾール、2-〔2’-ヒドロキシ-3’-t-ブチル-5’-(2-ヒドロキシエチル)フェニル〕-5-クロロ-2H-ベンゾトリアゾール、2-〔2’-ヒドロキシ-3’-t-ブチル-5’-(3-ヒドロキシプロピル)フェニル〕-2H-ベンゾトリアゾール、2-〔2’-ヒドロキシ-3’-t-オクチル-5’-(ヒドロキシメチル)フェニル〕-2H-ベンゾトリアゾール、2-〔2’-ヒドロキシ-3’-t-オクチル-5’-(2-ヒドロキシエチル)フェニル〕-2H-ベンゾトリアゾール、2-〔2’-ヒドロキシ-3’-t-オクチル-5’-(3-ヒドロキシプロピル)フェニル〕-2H-ベンゾトリアゾール等、あるいは2,2’-メチレンビス〔6-(2H-ベンゾトリアゾリ-2-イル)-4-(ヒドロキシメチル)フェノール〕、2,2’-メチレンビス〔6-(2H-ベンゾトリアゾリ-2-イル)-4-(2-ヒドロキシエチル)フェノール〕、2,2’-メチレンビス〔6-(5-クロロ-2H-ベンゾトリアゾリ-2-イル)-4-(2-ヒドロキシエチル)フェノール〕、2,2’-メチレンビス〔6-(5-ブロモ-2H-ベンゾトリアゾリ-2-イル)-4-(2-ヒドロキシエチル)フェノール〕、2,2’-メチレンビス〔6-(2H-ベンゾトリアゾリ-2-イル)-4-(3-ヒドロキシプロピル)フェノール〕、2,2’-メチレンビス〔6-(5-クロロ-2H-ベンゾトリアゾリ-2-イル)-4-(3-ヒドロキシプロピル)フェノール〕、2,2’-メチレンビス〔6-(5-ブロモ-2H-ベンゾトリアゾリ-2-イル)-4-(3-ヒドロキシプロピル)フェノール〕、2,2’-メチレンビス〔6-(2H-ベンゾトリアゾリ-2-イル)-4-(4-ヒドロキシブチル)フェノール〕、2,2’-メチレンビス〔6-(5-クロロ-2H-ベンゾトリアゾリ-2-イル)-4-(4-ヒドロキシブチル)フェノール〕、2,2’-メチレンビス〔6-(5-ブロモ-2H-ベンゾトリアゾリ-2-イル)-4-(4-ヒドロキシブチル)フェノール〕、3,3-{2,2’-ビス〔6-(2H-ベンゾトリアゾリ-2-イル)-1-ヒドロキシ-4-(2-ヒドロキシエチル)フェニル〕}プロパン、2,2-{2,2’-ビス〔6-(2H-ベンゾトリアゾリ-2-イル)-1-ヒドロキシ-4-(2-ヒドロキシエチル)フェニル〕}ブタン、2,2’-オキシビス〔6-(2H-ベンゾトリアゾリ-2-イル)-4-(2-ヒドロキシエチル)フェノール〕、2,2’-ビス〔6-(2H-ベンゾトリアゾリ-2-イル)-4-(2-ヒドロキシエチル)フェノール〕スルフィド、2,2’-ビス〔6-(2H-ベンゾトリアゾリ-2-イル)-4-(2-ヒドロキシエチル)フェノール〕スルホキシド、2,2’-ビス〔6-(2H-ベンゾトリアゾリ-2-イル)-4-(2-ヒドロキシエチル)フェノール〕スルホン、2,2’-ビス〔6-(2H-ベンゾトリアゾリ-2-イル)-4-(2-ヒドロキシエチル)フェノール〕アミンなどをあげることができる。 Examples of the benzotriazole ultraviolet absorbing compound include 2- [2′-hydroxy-5 ′-(hydroxymethyl) phenyl] -2H-benzotriazole, 2- [2′-hydroxy-5 ′-(2-hydroxy). Ethyl) phenyl] -2H-benzotriazole, 2- [2'-hydroxy-5 '-(3-hydroxypropyl) phenyl] -2H-benzotriazole, 2- [2'-hydroxy-3'-methyl-5' -(Hydroxymethyl) phenyl] -2H-benzotriazole, 2- [2'-hydroxy-3'-methyl-5 '-(2-hydroxyethyl) phenyl] -2H-benzotriazole, 2- [2'-hydroxy -3'-methyl-5 '-(3-hydroxypropyl) phenyl] -2H-benzotriazole, 2- [2'- Roxy-3'-t-butyl-5 '-(hydroxymethyl) phenyl] -2H-benzotriazole, 2- [2'-hydroxy-3'-t-butyl-5'-(2-hydroxyethyl) phenyl] -2H-benzotriazole, 2- [2'-hydroxy-3'-t-butyl-5 '-(2-hydroxyethyl) phenyl] -5-chloro-2H-benzotriazole, 2- [2'-hydroxy- 3′-t-butyl-5 ′-(3-hydroxypropyl) phenyl] -2H-benzotriazole, 2- [2′-hydroxy-3′-t-octyl-5 ′-(hydroxymethyl) phenyl] -2H -Benzotriazole, 2- [2'-hydroxy-3'-t-octyl-5 '-(2-hydroxyethyl) phenyl] -2H-benzotriazole, 2- [2' Hydroxy-3′-t-octyl-5 ′-(3-hydroxypropyl) phenyl] -2H-benzotriazole or the like, or 2,2′-methylenebis [6- (2H-benzotriazoly-2-yl) -4- ( Hydroxymethyl) phenol], 2,2'-methylenebis [6- (2H-benzotriazoly-2-yl) -4- (2-hydroxyethyl) phenol], 2,2'-methylenebis [6- (5-chloro- 2H-benzotriazoly-2-yl) -4- (2-hydroxyethyl) phenol], 2,2'-methylenebis [6- (5-bromo-2H-benzotriazoly-2-yl) -4- (2-hydroxyethyl) ) Phenol], 2,2'-methylenebis [6- (2H-benzotriazoly-2-yl) -4- (3-hydroxypropyl) pheno 2,2′-methylenebis [6- (5-chloro-2H-benzotriazoly-2-yl) -4- (3-hydroxypropyl) phenol], 2,2′-methylenebis [6- (5- Bromo-2H-benzotriazoly-2-yl) -4- (3-hydroxypropyl) phenol], 2,2'-methylenebis [6- (2H-benzotriazoly-2-yl) -4- (4-hydroxybutyl) phenol ], 2,2'-methylenebis [6- (5-chloro-2H-benzotriazoly-2-yl) -4- (4-hydroxybutyl) phenol], 2,2'-methylenebis [6- (5-bromo- 2H-benzotriazoly-2-yl) -4- (4-hydroxybutyl) phenol], 3,3- {2,2′-bis [6- (2H-benzotriazoly-2-yl) 1-hydroxy-4- (2-hydroxyethyl) phenyl]} propane, 2,2- {2,2′-bis [6- (2H-benzotriazoly-2-yl) -1-hydroxy-4- (2- Hydroxyethyl) phenyl]} butane, 2,2′-oxybis [6- (2H-benzotriazoly-2-yl) -4- (2-hydroxyethyl) phenol], 2,2′-bis [6- (2H— Benzotriazoly-2-yl) -4- (2-hydroxyethyl) phenol] sulfide, 2,2′-bis [6- (2H-benzotriazoly-2-yl) -4- (2-hydroxyethyl) phenol] sulfoxide, 2,2′-bis [6- (2H-benzotriazoly-2-yl) -4- (2-hydroxyethyl) phenol] sulfone, 2,2′-bis [6- (2H-benzo Zotoriazori 2-yl), etc. -4- (2-hydroxyethyl) phenol] amine can be exemplified.
 上記トリアジン系紫外線吸収化合物としては、たとえば、2-(2-ヒドロキシ-4-ヒドロキシメチルフェニル)-4,6-ジフェニル-s-トリアジン、2-(2-ヒドロキシ-4-ヒドロキシメチルフェニル)-4,6-ビス(2,4-ジメチルフェニル)-s-トリアジン、2-〔2-ヒドロキシ-4-(2-ヒドロキシエチル)フェニル〕-4,6-ジフェニル-s-トリアジン、2-〔2-ヒドロキシ-4-(2-ヒドロキシエチル)フェニル〕-4,6-ビス(2,4-ジメチルフェニル)-s-トリアジン、2-〔2-ヒドロキシ-4-(2-ヒドロキシエトキシ)フェニル〕-4,6-ジフェニル-s-トリアジン、2-〔2-ヒドロキシ-4-(2-ヒドロキシエトキシ)フェニル〕-4,6-ビス(2,4-ジメチルフェニル)-s-トリアジン、2-〔2-ヒドロキシ-4-(3-ヒドロキシプロピル)フェニル〕-4,6-ジフェニル-s-トリアジン、2-〔2-ヒドロキシ-4-(3-ヒドロキシプロピル)フェニル〕-4,6-ビス(2,4-ジメチルフェニル)-s-トリアジン、2-〔2-ヒドロキシ-4-(3-ヒドロキシプロポキシ)フェニル〕-4,6-ジフェニル-s-トリアジン、2-〔2-ヒドロキシ-4-(3-ヒドロキシプロポキシ)フェニル〕-4,6-ビス(2,4-ジメチルフェニル)-s-トリアジン、2-〔2-ヒドロキシ-4-(4-ヒドロキシブチル)フェニル〕-4,6-ジフェニル-s-トリアジン、2-〔2-ヒドロキシ-4-(4-ヒドロキシブチル)フェニル〕-4,6-ビス(2,4-ジメチルフェニル)-s-トリアジン、2-〔2-ヒドロキシ-4-(4-ヒドロキシブトキシ)フェニル〕-4,6-ジフェニル-s-トリアジン、2-〔2-ヒドロキシ-4-(4-ヒドロキシブトキシ)フェニル〕-4,6-ビス(2,4-ジメチルフェニル)-s-トリアジン、2-(2-ヒドロキシ-4-ヒドロキシメチルフェニル)-4,6-ビス(2-ヒドロキシ-4-メチルフェニル)-s-トリアジン、2-〔2-ヒドロキシ-4-(2-ヒドロキシエチル)フェニル〕-4,6-ビス(2-ヒドロキシ-4-メチルフェニル)-s-トリアジン、2-〔2-ヒドロキシ-4-(2-ヒドロキシエトキシ)フェニル〕-4,6-ビス(2-ヒドロキシ-4-メチルフェニル)-s-トリアジン、2-〔2-ヒドロキシ-4-(3-ヒドロキシプロピル)フェニル〕-4,6-ビス(2-ヒドロキシ-4-メチルフェニル)-s-トリアジン、2-〔2-ヒドロキシ-4-(3-ヒドロキシプロポキシ)フェニル〕-4,6-ビス(2-ヒドロキシ-4-メチルフェニル)-s-トリアジン、2-[4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン-2-イル]-5-(オクチロキシ)フェノール、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-[(ヘキシル)オキシ]-フェノールなどをあげることができる。 Examples of the triazine-based ultraviolet absorbing compound include 2- (2-hydroxy-4-hydroxymethylphenyl) -4,6-diphenyl-s-triazine and 2- (2-hydroxy-4-hydroxymethylphenyl) -4. , 6-bis (2,4-dimethylphenyl) -s-triazine, 2- [2-hydroxy-4- (2-hydroxyethyl) phenyl] -4,6-diphenyl-s-triazine, 2- [2- Hydroxy-4- (2-hydroxyethyl) phenyl] -4,6-bis (2,4-dimethylphenyl) -s-triazine, 2- [2-hydroxy-4- (2-hydroxyethoxy) phenyl] -4 , 6-Diphenyl-s-triazine, 2- [2-hydroxy-4- (2-hydroxyethoxy) phenyl] -4,6-bis (2,4-dimethyl) Phenyl) -s-triazine, 2- [2-hydroxy-4- (3-hydroxypropyl) phenyl] -4,6-diphenyl-s-triazine, 2- [2-hydroxy-4- (3-hydroxypropyl) Phenyl] -4,6-bis (2,4-dimethylphenyl) -s-triazine, 2- [2-hydroxy-4- (3-hydroxypropoxy) phenyl] -4,6-diphenyl-s-triazine, 2 -[2-hydroxy-4- (3-hydroxypropoxy) phenyl] -4,6-bis (2,4-dimethylphenyl) -s-triazine, 2- [2-hydroxy-4- (4-hydroxybutyl) Phenyl] -4,6-diphenyl-s-triazine, 2- [2-hydroxy-4- (4-hydroxybutyl) phenyl] -4,6-bis (2,4-dimethyl) Phenyl) -s-triazine, 2- [2-hydroxy-4- (4-hydroxybutoxy) phenyl] -4,6-diphenyl-s-triazine, 2- [2-hydroxy-4- (4-hydroxybutoxy) Phenyl] -4,6-bis (2,4-dimethylphenyl) -s-triazine, 2- (2-hydroxy-4-hydroxymethylphenyl) -4,6-bis (2-hydroxy-4-methylphenyl) -S-triazine, 2- [2-hydroxy-4- (2-hydroxyethyl) phenyl] -4,6-bis (2-hydroxy-4-methylphenyl) -s-triazine, 2- [2-hydroxy- 4- (2-hydroxyethoxy) phenyl] -4,6-bis (2-hydroxy-4-methylphenyl) -s-triazine, 2- [2-hydroxy-4- (3- Hydroxypropyl) phenyl] -4,6-bis (2-hydroxy-4-methylphenyl) -s-triazine, 2- [2-hydroxy-4- (3-hydroxypropoxy) phenyl] -4,6-bis ( 2-hydroxy-4-methylphenyl) -s-triazine, 2- [4,6-bis (2,4-dimethylphenyl) -1,3,5-triazin-2-yl] -5- (octyloxy) phenol 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5-[(hexyl) oxy] -phenol and the like.
 上記サリチル酸系紫外線吸収化合物としては、たとえば、フェニルサリシレート、p-tert-ブチルフェニルサリシレート、p-オクチルフェニルサリシレートなどをあげることができる。 Examples of the salicylic acid-based ultraviolet absorbing compound include phenyl salicylate, p-tert-butylphenyl salicylate, p-octylphenyl salicylate, and the like.
 上記シアノアクリレート系紫外線吸収化合物としては、たとえば、2-エチルヘキシル-2-シアノ-3,3’-ジフェニルアクリレート、エチル-2-シアノ-3,3’-ジフェニルアクリレートなどをあげることができる。 Examples of the cyanoacrylate-based ultraviolet absorbing compound include 2-ethylhexyl-2-cyano-3,3′-diphenyl acrylate, ethyl-2-cyano-3,3′-diphenyl acrylate, and the like.
 また、上記紫外線吸収化合物に波長変換機能を有するものを用いる場合、上記紫外線吸収化合物として、たとえば、波長域350~400nmの光を、400nmを超える波長域の光よりも多く吸収する蛍光化合物をあげることができる。上記蛍光化合物として、有機蛍光化合物、および、無機蛍光化合物などをあげることができる。 Further, when a compound having a wavelength conversion function is used as the ultraviolet absorbing compound, examples of the ultraviolet absorbing compound include fluorescent compounds that absorb light in a wavelength region of 350 to 400 nm more than light in a wavelength region exceeding 400 nm. be able to. Examples of the fluorescent compound include organic fluorescent compounds and inorganic fluorescent compounds.
 上記有機蛍光化合物として、公知の有機色素化合物(有機蛍光染料など)を用いることができる。上記有機蛍光化合物として、たとえば、ナフタルイミド、ペリレン、アントラキンノン、クマリン、ベンゾクマリン、キサンテン、フェノキサジン、ベンゾ[a]フェノキサジン、ベンゾ[b]フェノキサジン、ベンゾ[c]フェノキサジン、ナフタルイミド、ナフトラクタム、アズラクトン、メチン、オキサジン、チアジン、ジケトピロロピロール、キナクリドン、ベンゾキサンテン、チオーエピンドリン、ラクタムイミド、ジフェニルマレイミド、アセトアセトアミド、イミダゾチアジン、ベンズアントロン、ペリレンモノイミド、フタルイミド、ベンゾトリアゾール、ベンゾチアジアゾール、ベンゾオキサゾール、ピリミジン、ピラジン、トリアゾール、ジベンゾフラン、トリアジン、および、ハルビツール酸誘導体などをあげることができる。これらの化合物は単独で使用してもよく、また2種以上を混合して使用してもよい。 As the organic fluorescent compound, known organic pigment compounds (such as organic fluorescent dyes) can be used. Examples of the organic fluorescent compound include naphthalimide, perylene, anthraquinone, coumarin, benzocoumarin, xanthene, phenoxazine, benzo [a] phenoxazine, benzo [b] phenoxazine, benzo [c] phenoxazine, and naphthalimide. , Naphtholactam, azlactone, methine, oxazine, thiazine, diketopyrrolopyrrole, quinacridone, benzoxanthene, thioepiindrin, lactamimide, diphenylmaleimide, acetoacetamide, imidazothiazine, benzanthrone, perylenemonoimide, phthalimide, benzotriazole Benzothiadiazole, benzoxazole, pyrimidine, pyrazine, triazole, dibenzofuran, triazine, harbituric acid derivatives, etc. It can be. These compounds may be used alone or in combination of two or more.
 上記無機蛍光化合物として、たとえば、発光中心としてユーロピウムやサマリウムを有する錯体化合物などをあげることができる。これらの化合物は単独で使用してもよく、また2種以上を混合して使用してもよい。 Examples of the inorganic fluorescent compound include complex compounds having europium or samarium as the emission center. These compounds may be used alone or in combination of two or more.
 上記蛍光化合物の吸光度として、たとえば、0.1~6であることが好ましく、0.5~4であることがより好ましく、0.8~3であることがさらに好ましい。 The absorbance of the fluorescent compound is, for example, preferably from 0.1 to 6, more preferably from 0.5 to 4, and further preferably from 0.8 to 3.
 また、上記紫外線吸収化合物は、200~400nm、特に280~380nmの範囲内に最大吸収波長を有するものが好ましい。上記紫外線吸収化合物を用いることにより、照射光に含まれる紫外線のうち、特にエチレン-酢酸ビニル共重合体などのエチレン系共重合体の光劣化を招く恐れのある紫外線をより効果的に吸収できる。なお、上記紫外線吸収化合物の最大吸収波長は、公知の手法を用いて市販の紫外線測定装置等を用いて測定することができる。 The ultraviolet absorbing compound preferably has a maximum absorption wavelength in the range of 200 to 400 nm, particularly 280 to 380 nm. By using the ultraviolet absorbing compound, it is possible to more effectively absorb ultraviolet rays that may cause photodegradation of an ethylene copolymer such as an ethylene-vinyl acetate copolymer, among ultraviolet rays contained in irradiation light. In addition, the maximum absorption wavelength of the said ultraviolet absorption compound can be measured using a commercially available ultraviolet ray measuring apparatus etc. using a well-known method.
 上記紫外線吸収化合物のうち、特にエチレン-酢酸ビニル共重合体の光劣化の防止の観点からはベンゾフェノン系紫外線吸収化合物を用いるのが好ましく、一分子中にヒドロキシル基を2個以下含むベンゾフェノン系紫外線吸収化合物を用いるのが特に好ましい。上記紫外線吸収化合物として、たとえば、2-ヒドロキシ-4-メトキシベンゾフェノン、2,4-ジヒドロキシベンゾフェノン、および2-ヒドロキシ-4-n-オクトキシ-ベンゾフェノンなどをあげることができる。上記化合物は、320~350nmの範囲内に最大吸収波長を有し、エチレン-酢酸ビニル共重合体等のエチレン系共重合体(A)の光劣化をより効果的に抑制することができる。 Of the above ultraviolet absorbing compounds, it is preferable to use a benzophenone ultraviolet absorbing compound from the viewpoint of preventing photodegradation of the ethylene-vinyl acetate copolymer, and the benzophenone ultraviolet absorbing containing two or less hydroxyl groups in one molecule. It is particularly preferred to use a compound. Examples of the ultraviolet absorbing compound include 2-hydroxy-4-methoxybenzophenone, 2,4-dihydroxybenzophenone, and 2-hydroxy-4-n-octoxy-benzophenone. The above compound has a maximum absorption wavelength in the range of 320 to 350 nm, and can more effectively suppress the photodegradation of the ethylene-based copolymer (A) such as an ethylene-vinyl acetate copolymer.
 上記酸化防止剤として、公知のものを適宜用いることができる。上記光酸化防止剤として、たとえば、フェノール系酸化防止剤、リン系酸化防止剤、イオウ系酸化防止剤、アミン系酸化防止剤、ラクトン系酸化防止剤、ビタミンE系酸化防止剤などをあげることができる。これらの化合物は単独で使用してもよく、また2種以上を混合して使用してもよい。 As the antioxidant, known ones can be used as appropriate. Examples of the photo-antioxidant include phenol-based antioxidants, phosphorus-based antioxidants, sulfur-based antioxidants, amine-based antioxidants, lactone-based antioxidants, vitamin E-based antioxidants, and the like. it can. These compounds may be used alone or in combination of two or more.
 上記酸化防止剤のなかでも、着色を抑制する効果が大きいことから、フェノール系酸化防止剤である2,6-ジ-t-ブチル-4-メチルフェノール、ペンタエリスリトールテトラキス(3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート)などが好ましい。 Among the above antioxidants, since the effect of suppressing coloring is large, 2,6-di-t-butyl-4-methylphenol, which is a phenolic antioxidant, pentaerythritol tetrakis (3- (3,5 -Di-t-butyl-4-hydroxyphenyl) propionate) and the like are preferred.
 上記光安定剤として、公知のものを適宜用いることができる。上記光安定剤として、ポリマーに対して有害なラジカル種を補足し、新たなラジカルを発生しないようにする機能を有する化合物があげられる。上記光安定剤として、たとえば、ヒンダードアミン系光安定剤などをあげることができる。これらの化合物は単独で使用してもよく、また2種以上を混合して使用してもよい。上記光安定剤を含むことによって、照射された光などの影響によってマトリックス樹脂の劣化し、太陽電池用封止膜が黄変するのを抑制することができる。 As the light stabilizer, known ones can be used as appropriate. Examples of the light stabilizer include compounds having a function of capturing radical species harmful to the polymer and preventing generation of new radicals. Examples of the light stabilizer include hindered amine light stabilizers. These compounds may be used alone or in combination of two or more. By including the light stabilizer, it is possible to suppress degradation of the matrix resin due to the influence of irradiated light and the like, and yellowing of the solar cell sealing film.
 低分子量の上記ヒンダードアミン系光安定剤としては、たとえば、デカン二酸ビス(2,2,6,6-テトラメチル-1(オクチルオキシ)-4-ピペリジニル)エステル、1,1-ジメチルエチルヒドロパーオキサイドおよびオクタンの反応生成物(分子量737)70重量%とポリプロピレン30重量%からなるもの;ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)[[3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシフェニル]メチル]ブチルマロネート(分子量685);ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケートおよびメチル-1,2,2,6,6-ペンタメチル-4-ピペリジルセバケート混合物(分子量509);ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート(分子量481);テトラキス(2,2,6,6-テトラメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシレート(分子量791);テトラキス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシレート(分子量847);2,2,6,6-テトラメチル-4-ピペリジル-1,2,3,4-ブタンテトラカルボキシレートとトリデシル-1,2,3,4-ブタンテトラカルボキシレートの混合物(分子量900);1,2,2,6,6-ペンタメチル-4-ピペリジル-1,2,3,4-ブタンテトラカルボキシレートとトリデシル-1,2,3,4-ブタンテトラカルボキシレートの混合物(分子量900)などをあげることができる。 Examples of the low molecular weight hindered amine light stabilizer include, for example, decanedioic acid bis (2,2,6,6-tetramethyl-1 (octyloxy) -4-piperidinyl) ester, 1,1-dimethylethyl hydroper 70% by weight of a reaction product of oxide and octane (molecular weight 737) and 30% by weight of polypropylene; bis (1,2,2,6,6-pentamethyl-4-piperidyl) [[3,5-bis (1 , 1-dimethylethyl) -4-hydroxyphenyl] methyl] butyl malonate (molecular weight 685); bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate and methyl-1,2,2, 6,6-pentamethyl-4-piperidyl sebacate mixture (molecular weight 509); bis (2,2,6,6-tetramethyl-4-piperi ) Sebacate (molecular weight 481); tetrakis (2,2,6,6-tetramethyl-4-piperidyl) -1,2,3,4-butanetetracarboxylate (molecular weight 791); tetrakis (1,2,2) , 6,6-pentamethyl-4-piperidyl) -1,2,3,4-butanetetracarboxylate (molecular weight 847); 2,2,6,6-tetramethyl-4-piperidyl-1,2,3 Mixture of 4-butanetetracarboxylate and tridecyl-1,2,3,4-butanetetracarboxylate (molecular weight 900); 1,2,2,6,6-pentamethyl-4-piperidyl-1,2,3 Examples thereof include a mixture of 4-butanetetracarboxylate and tridecyl-1,2,3,4-butanetetracarboxylate (molecular weight: 900).
 高分子量の上記ヒンダードアミン系光安定剤としては、ポリ[{6-(1,1,3,3-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル}{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}ヘキサメチレン{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}](分子量2,000~3,100);コハク酸ジメチルと4-ヒドロキシ-2,2,6,6-テトラメチル-1-ピペリジンエタノールの重合物(分子量3,100~4,000);N,N’,N”,N”’-テトラキス-(4,6-ビス-(ブチル-(N-メチル-2,2,6,6-テトラメチルピペリジン-4-イル)アミノ)-トリアジン-2-イル)-4,7-ジアザデカン-1,10-ジアミン(分子量2,286)と上記コハク酸ジメチルと4-ヒドロキシ-2,2,6,6-テトラメチル-1-ピペリジンエタノールの重合物の混合物;ジブチルアミン・1,3,5-トリアジン・N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル-1,6-ヘキサメチレンジアミンとN-(2,2,6,6-テトラメチル-4-ピペリジル)ブチルアミンの重縮合物(分子量2,600~3,400)などをあげることができる。 As the hindered amine light stabilizer having a high molecular weight, poly [{6- (1,1,3,3-tetramethylbutyl) amino-1,3,5-triazine-2,4-diyl} {(2, 2,6,6-tetramethyl-4-piperidyl) imino} hexamethylene {(2,2,6,6-tetramethyl-4-piperidyl) imino}] (molecular weight 2,000-3,100); succinic acid Polymer of dimethyl and 4-hydroxy-2,2,6,6-tetramethyl-1-piperidineethanol (molecular weight 3,100 to 4,000); N, N ′, N ″, N ″ ′-tetrakis- ( 4,6-bis- (butyl- (N-methyl-2,2,6,6-tetramethylpiperidin-4-yl) amino) -triazin-2-yl) -4,7-diazadecane-1,10- Diamine (Molecular weight 2,286) A mixture of the above dimethyl succinate and 4-hydroxy-2,2,6,6-tetramethyl-1-piperidineethanol; dibutylamine, 1,3,5-triazine, N, N′-bis (2, Polycondensate of 2,6,6-tetramethyl-4-piperidyl-1,6-hexamethylenediamine and N- (2,2,6,6-tetramethyl-4-piperidyl) butylamine (molecular weight 2,600- 3,400).
 また、上記ヒンダードアミン系光安定剤の市販品として、たとえば、LA-52、LA-57、LA-62、LA-63LA-63p、LA-67、LA-68(いずれもADEKA社製)、Tinuvin744、Tinuvin770、Tinuvin 765、Tinuvin123、Tinuvin144、Tinuvin622LD、CHIMASSORB 944LD(いずれもBASF社製)、UV-3034(B.F.グッドリッチ社製)などをあげることができる。 Examples of commercially available hindered amine light stabilizers include LA-52, LA-57, LA-62, LA-63LA-63p, LA-67, LA-68 (all manufactured by ADEKA), Tinuvin 744, Tinuvin 770, Tinuvin 765, Tinuvin 123, Tinuvin 144, Tinuvin 622LD, CHIMASORB 944LD (all manufactured by BASF), UV-3034 (manufactured by BF Goodrich), and the like can be mentioned.
 上記架橋助剤として、公知のものを適宜用いることができる。上記架橋助剤として、官能基としてラジカル重合性基を有する化合物があげられる。上記架橋助剤として、たとえば、トリアリルシアヌレート、トリアリルイソシアヌレート等の3官能架橋助剤、(メタ)アクリルエステル(NKエステルなど)の単官能または2官能の架橋助剤などをあげることができる。これらは単独で使用してもよく、また2種以上を混合して使用してもよい。上記架橋助剤を用いることにより、より確実にマトリックス樹脂のゲル分率を向上させ、封止材層の接着性および耐久性を向上させることができる。また、上記架橋助剤は、上記液状添加剤として用いることがより好ましいが、固形の架橋助剤も単独使用または液状の架橋助剤と併用してもよい。 As the crosslinking aid, known ones can be used as appropriate. Examples of the crosslinking aid include compounds having a radical polymerizable group as a functional group. Examples of the crosslinking aid include trifunctional crosslinking aids such as triallyl cyanurate and triallyl isocyanurate, and monofunctional or bifunctional crosslinking aids such as (meth) acrylic esters (NK esters, etc.). it can. These may be used singly or in combination of two or more. By using the said crosslinking adjuvant, the gel fraction of matrix resin can be improved more reliably and the adhesiveness and durability of a sealing material layer can be improved. The crosslinking aid is more preferably used as the liquid additive, but a solid crosslinking aid may be used alone or in combination with a liquid crosslinking aid.
 上記老化防止剤として、公知のものを適宜用いることができる。上記老化防止剤として、たとえば、N,N’-ヘキサン-1,6-ジイルビス〔3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオナミド〕等のヒンダードフェノール系酸化防止剤、リン系熱安定剤、ラクトン系熱安定剤、ビタミンE系熱安定剤、イオウ系熱安定剤などをあげることができる。これらの化合物は単独で使用してもよく、また2種以上を混合して使用してもよい。 As the anti-aging agent, known ones can be used as appropriate. Examples of the antioxidant include hindered phenol antioxidants such as N, N′-hexane-1,6-diylbis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionamide]. , Phosphorus heat stabilizers, lactone heat stabilizers, vitamin E heat stabilizers, sulfur heat stabilizers, and the like. These compounds may be used alone or in combination of two or more.
 上記太陽電池用封止材組成物においては、上記マトリックス樹脂に上記各成分(化合物)が混合・分散されている。上記太陽電池用封止材組成物において、所望の性能を損なわない範囲で、適宜公知の添加剤を含むことができる。上記添加剤として、たとえば、熱可塑性ポリマー、充填剤、可塑剤、シランカップリング剤、受酸剤、クレイ等があげられる。これらは単独で使用してもよく、また2種以上を混合して使用してもよい。また、これらの他の添加剤のうち有機化合物であれば、上記有機化合物添加剤(B)として用いてもよい。 In the solar cell encapsulant composition, the components (compounds) are mixed and dispersed in the matrix resin. The solar cell encapsulant composition may contain a known additive as long as the desired performance is not impaired. Examples of the additive include a thermoplastic polymer, a filler, a plasticizer, a silane coupling agent, an acid acceptor, and clay. These may be used singly or in combination of two or more. Moreover, as long as it is an organic compound among these other additives, you may use as said organic compound additive (B).
 上記ブレンド工程において、さらに有機過酸化物(C)を含み、かつ、上記有機化合物添加剤(B)の融点が、上記有機過酸化物(C)の一時間半減期温度より10℃低い温度以上であることが好ましい。 In the blending step, an organic peroxide (C) is further included, and the melting point of the organic compound additive (B) is 10 ° C. or more lower than the one-hour half-life temperature of the organic peroxide (C). It is preferable that
 上記有機過酸化物(C)として、上記熱重合開始剤を適宜用いることができる。上記重合開始剤において、なかでも、一時間半減期温度(半減期が一時間となる温度)が90~180℃であることが好ましく、100~160℃であることがより好ましく、110~140℃であることがさらに好ましい。上記重合開始剤として、たとえば、第3ブチルパーオキシイソプロピルカーボネート、第3ブチルパーオキシアセテート、第3ブチルパーオキシベンゾエート、ジクミルパーオキサイド、2,5-ジメチル-2,5-ビス(第3ブチルパーオキシ)ヘキサン、ジ第3ブチルパーオキサイド、2,5-ジメチル-2,5-ビス(第3ブチルパーオキシ)ヘキシン-3、1,1-ビス(第3ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(第3ブチルパーオキシ)シクロヘキサン、メチルエチルケトンパーオキサイド、2,5-ジメチルヘキシル-2,5-ビスパーオキシベンゾエート、第3ブチルハイドロパーオキサイド、p-メンタンハイドロパーオキサイド、ベンゾイルパーオキサイド、p-クロルベンゾイルパーオキサイド、第3ブチルパーオキシイソブチレート、ヒドロキシヘプチルパーオキサイド、ジクロヘキサノンパーオキサイドなどをあげることができる。これらは単独で使用してもよく、また2種以上を混合して使用してもよい。 As the organic peroxide (C), the thermal polymerization initiator can be appropriately used. Among the above polymerization initiators, the one-hour half-life temperature (temperature at which the half-life is one hour) is preferably 90 to 180 ° C, more preferably 100 to 160 ° C, and more preferably 110 to 140 ° C. More preferably. Examples of the polymerization initiator include tertiary butyl peroxyisopropyl carbonate, tertiary butyl peroxyacetate, tertiary butyl peroxybenzoate, dicumyl peroxide, 2,5-dimethyl-2,5-bis (tertiary butyl Peroxy) hexane, di-tert-butyl peroxide, 2,5-dimethyl-2,5-bis (tert-butylperoxy) hexyne-3, 1,1-bis (tert-butylperoxy) -3,3 , 5-trimethylcyclohexane, 1,1-bis (tert-butylperoxy) cyclohexane, methyl ethyl ketone peroxide, 2,5-dimethylhexyl-2,5-bisperoxybenzoate, tert-butyl hydroperoxide, p-menthane Hydroperoxide, benzoyl peroxide, p-chlorobenzoy Peroxide, tert-butylperoxy isobutyrate, hydroxyheptyl peroxide, and the like di cyclohexanone peroxide. These may be used singly or in combination of two or more.
 上記有機化合物添加剤(B)の融点が、上記有機過酸化物(C)の一時間半減期温度より10℃低い温度以上であることが好ましく、その他、20℃低い温度以上であるとしてもよく、30℃低い温度以上であるとしてもよく、40℃低い温度以上であるとしてもよい。本発明の製造方法を用いることにより、通常困難である上記有機過酸化物(C)の一時間半減期温度付近またはより高い融点を持つ上記有機化合物添加剤(B)であっても、有機過酸化物が実質的に分解させずに、成形温度よりも高い融点を有する有機化合物添加剤をエチレン系共重合体に均一に分散させることが可能となる。 The melting point of the organic compound additive (B) is preferably at least 10 ° C lower than the one-hour half-life temperature of the organic peroxide (C), and may be at least 20 ° C lower than the temperature. The temperature may be 30 ° C. or lower, or 40 ° C. or lower. By using the production method of the present invention, even if the organic compound additive (B) has a melting point of about 1 hour half-life or higher, which is usually difficult, the organic peroxide (C) It is possible to uniformly disperse the organic compound additive having a melting point higher than the molding temperature in the ethylene-based copolymer without substantially decomposing the oxide.
 (太陽電池用封止材層の製造方法)
 本発明の太陽電池用封止材組成物の製造方法は、エチレン系共重合体(A)および有機化合物添加剤(B)を含む太陽電池用封止材組成物の製造方法であって、
 上記エチレン系共重合体(A)のビカット軟化点以上、上記エチレン系共重合体(A)の融点より10℃低い温度以下の温度範囲内で、上記エチレン系共重合体(A)および上記有機化合物添加剤(B)を混合するブレンド工程を含むことを特徴とする。
(Method for producing solar cell encapsulant layer)
The manufacturing method of the sealing material composition for solar cells of this invention is a manufacturing method of the sealing material composition for solar cells containing an ethylene-type copolymer (A) and an organic compound additive (B),
The ethylene copolymer (A) and the organic polymer are within a temperature range from the Vicat softening point of the ethylene copolymer (A) to 10 ° C. below the melting point of the ethylene copolymer (A). A blending step of mixing the compound additive (B) is included.
 上記エチレン系共重合体(A)のビカット軟化点(Vicat Softening Temperature、VST)とは、JIS K7206(試験荷重はA法(10N)、伝熱媒体の昇温速度は50℃/時の条件)によって測定された値を意味する。なお、断面積1mmの端面が1mm食い込んだ時点の温度を上記ビカット軟化点温度とする。 The Vicat Softening Temperature (VST) of the ethylene copolymer (A) is JIS K7206 (test load is method A (10N), heating rate of heat transfer medium is 50 ° C / hour) Means the value measured by The temperature at the time when the end surface having a cross-sectional area of 1 mm 2 bites in by 1 mm is defined as the Vicat softening point temperature.
 上記ブレンド工程は、上記エチレン系共重合体(A)のビカット軟化点以上、上記エチレン系共重合体(A)の融点より10℃低い温度以下の温度範囲内で、上記エチレン系共重合体(A)および上記有機化合物添加剤(B)を混合することを特徴とする。 The blending step is carried out within a temperature range from the Vicat softening point of the ethylene copolymer (A) to 10 ° C lower than the melting point of the ethylene copolymer (A). A) and the organic compound additive (B) are mixed.
 たとえば、上記エチレン系共重合体(A)のビカット軟化点がX℃、上記エチレン系共重合体(A)の融点がY℃であった場合、上記ブレンド工程が行われる温度範囲は、X℃以上(Y-10)℃以下となる。 For example, when the Vicat softening point of the ethylene copolymer (A) is X ° C. and the melting point of the ethylene copolymer (A) is Y ° C., the temperature range in which the blending process is performed is X ° C. Above (Y-10) ° C.
 上記温度範囲の下限として、上記エチレン系共重合体(A)のビカット軟化点より3℃高い温度、5℃高い温度、10℃高い温度、15℃高い温度、20℃高い温度等とすることができる。 As a lower limit of the temperature range, a temperature 3 ° C. higher than the Vicat softening point of the ethylene copolymer (A), 5 ° C. higher temperature, 10 ° C. higher temperature, 15 ° C. higher temperature, 20 ° C. higher temperature, etc. it can.
 上記温度範囲の上限として、上記エチレン系共重合体(A)の融点より13℃低い温度、15℃低い温度、20℃低い温度、25℃低い温度等とすることができる。 The upper limit of the temperature range may be a temperature lower by 13 ° C., a temperature lower by 15 ° C., a temperature lower by 20 ° C., a temperature lower by 25 ° C., etc.
 上記ブレンド工程の混合時間は、たとえば、1分~60分で行うことができ、3分~40分で行うことができ、5分~30分で行うことができ、10分~15分で行うことができる。 The mixing time of the blending step can be, for example, 1 minute to 60 minutes, 3 minutes to 40 minutes, 5 minutes to 30 minutes, 10 minutes to 15 minutes. be able to.
 上記ブレンド工程において、適宜公知の方法を用いて各材料(化合物)を混合(撹拌混合)することができる。たとえば、上記エチレン系共重合体(A)に上記有機化合物添加剤(B)を添加する方法、上記有機化合物添加剤(B)に上記エチレン系共重合体(A)を添加する方法、両者を同時または順次混練機器内に投入して機内で混合する方法、上記エチレン系共重合体(A)と上記有機化合物添加剤(B)と上記液体添加剤とを同時または順次投入する方法などをあげることができる。特に、上記エチレン系共重合体(A)がペレット状である場合、ペレット表面に上記有機化合物添加剤(B)を混合撹拌して付着させる方法を用いることが好ましい。さらに、上記エチレン系共重合体(A)がペレット状であって、かつ液状添加剤を用いる場合には、上記液状添加剤を混合撹拌してペレット内部に含浸させる方法を用いることが好ましい。また、上記ブレンド工程は、液状添加剤などの太陽電池用封止材組成物の構成成分以外には別途溶剤を用いない方法(ドライプロセスで行うこと)が好ましい。 In the blending step, each material (compound) can be mixed (stirred and mixed) using a known method as appropriate. For example, a method of adding the organic compound additive (B) to the ethylene copolymer (A), a method of adding the ethylene copolymer (A) to the organic compound additive (B), Examples include a method of simultaneously or sequentially charging in a kneading apparatus and mixing in the apparatus, a method of simultaneously or sequentially charging the ethylene copolymer (A), the organic compound additive (B), and the liquid additive. be able to. In particular, when the ethylene copolymer (A) is in the form of pellets, it is preferable to use a method in which the organic compound additive (B) is mixed and stirred to adhere to the pellet surface. Furthermore, when the ethylene-based copolymer (A) is in the form of pellets and a liquid additive is used, it is preferable to use a method in which the liquid additive is mixed and stirred and impregnated inside the pellet. Moreover, the said blending process has the preferable method (it performs by a dry process) which does not use a solvent separately except the structural component of solar cell sealing material compositions, such as a liquid additive.
 上記製造方法において、上記エチレン系共重合体(A)がペレット状であることが好ましい。 In the above production method, the ethylene copolymer (A) is preferably in the form of pellets.
 なお、上記ペレット状とは、たとえば、直径または長さが1~10mm程度の粒子状にしたものをいい、たとえば、2~7mmとすることができ、3~5mmとすることができる。また、上記ペレット状とは、たとえば、略円柱状、略球状、略円盤状、略三角柱状、略四角柱状、略多面体状、楕円球状などの形態の粒体などをあげることができる。 In addition, the pellet form refers to, for example, a particle having a diameter or length of about 1 to 10 mm, for example, 2 to 7 mm, or 3 to 5 mm. Further, examples of the pellet shape include particles in the form of a substantially columnar shape, a substantially spherical shape, a substantially disc shape, a substantially triangular prism shape, a substantially quadrangular prism shape, a substantially polyhedral shape, an elliptical sphere, and the like.
 上記ブレンド工程において、ブレンド混合物(マトリックス樹脂等)の温度制御は、たとえば、ジャケットや冷却器などを用いて行うことが好ましい。 In the blending step, it is preferable to control the temperature of the blended mixture (matrix resin or the like) using, for example, a jacket or a cooler.
 上記ブレンド工程に使用する機器として、たとえば、一軸押出機、二軸押出機、バンバリーミキサー、ニーダー、ミキシングロールなどを好ましいものとしてあげることができる。 Preferred examples of the equipment used in the blending process include a single screw extruder, a twin screw extruder, a Banbury mixer, a kneader, and a mixing roll.
 上記製造方法において、上記ブレンド工程に次いで、溶融混練工程を含むことが好ましい。 In the above production method, it is preferable that a melt kneading step is included after the blending step.
 上記溶融混練工程として、適宜公知の方法を用いることができる。上記溶融混練工程として、たとえば、加熱混練、ロールミル、プラストミル、溶融押出機、バンバリーミキサー、ニーダーなどにより行うことができる。また、上記溶融混練工程を経由して直接太陽電池用封止材層として成形してもよい。 As the melt-kneading step, a known method can be used as appropriate. The melt kneading step can be performed by, for example, heat kneading, a roll mill, a plast mill, a melt extruder, a Banbury mixer, a kneader, or the like. Moreover, you may shape | mold directly as a sealing material layer for solar cells through the said melt-kneading process.
 上記溶融混練工程の混合温度は、たとえば、40~150℃で行うことができ、80~140℃で行うことができ、90~120℃で行うことができ、100~110℃で行うことができる。過酸化物によるゲル化を防ぐために、110℃以下で行うことが好ましい。 The mixing temperature in the melt-kneading step can be, for example, 40 to 150 ° C., 80 to 140 ° C., 90 to 120 ° C., or 100 to 110 ° C. . In order to prevent gelation due to peroxide, it is preferably performed at 110 ° C. or lower.
 上記溶融混練工程の混合時間は、たとえば、1分~20分で行うことができ、3分~10分で行うことができ、3分~7分で行うことができ、3分~5分で行うことができる。 The mixing time in the melt kneading step can be, for example, 1 to 20 minutes, 3 to 10 minutes, 3 to 7 minutes, 3 to 5 minutes. It can be carried out.
 (太陽電池用封止材層)
 一方、本発明の太陽電池用封止材層は、上記製造方法で得られた太陽電池用封止材組成物を用いて形成されたことを特徴とする。
(Sealant layer for solar cells)
On the other hand, the solar cell encapsulant layer of the present invention is formed using the solar cell encapsulant composition obtained by the above-described production method.
 上記太陽電池用封止材層を製造するには、適宜公知の方法を用いることができる。たとえば、上記の太陽電池用封止材組成物(またはその各材料)を加熱混練、ロールミル、プラストミル等を用いて公知の方法で加熱混合した組成物を、通常の押出成形、カレンダー成形(カレンダリング)、真空熱加圧等により成形してシート状物を得る方法により適宜製造することができる。また、PETフィルム等の上に上記層を形成した後、表面保護層に転写する方法により製造することができる。また、ホットメルトアプリケーターにより、混練溶融と塗布を同時に行う方法を用いることができる。特に、本発明では上記ブレンド工程および上記溶融混練工程を溶融押出機等の混練機器内で行い、シート状、フィルム状等の封止材層としての成形まで連続して行う方法が好ましい。 In order to produce the solar cell encapsulant layer, a known method can be used as appropriate. For example, a composition obtained by heating and mixing the above-described solar cell encapsulant composition (or each material thereof) with a known method using heat kneading, a roll mill, a plast mill, etc., is subjected to ordinary extrusion molding, calendar molding (calendering). ), And can be appropriately produced by a method of forming a sheet-like material by vacuum hot pressing or the like. Moreover, after forming the said layer on PET film etc., it can manufacture by the method of transcribe | transferring to a surface protective layer. Further, a method of simultaneously kneading and melting and applying with a hot melt applicator can be used. In particular, in the present invention, a method is preferred in which the blending step and the melt-kneading step are performed in a kneading apparatus such as a melt extruder, and the molding is continuously performed as a sealing material layer such as a sheet or film.
 より具体的には、たとえば、上記製造方法で得られた上記太陽電池用封止材組成物を、表面保護層またはセパレーターなどにそのまま塗布・形成してもよし、上記材料を他の材料と混合組成物として塗布・形成してもよい。 More specifically, for example, the solar cell encapsulant composition obtained by the production method may be applied and formed as it is on a surface protective layer or a separator, or the material may be mixed with other materials. You may apply | coat and form as a composition.
 上記太陽電池用封止材組成物を塗布する場合、たとえば、上記太陽電池用封止材組成物のマトリックス樹脂の融点が50~120℃であれば、上記組成物の混練溶融および塗布温度は、上記融点に30~100℃加えた温度で行うことが好ましい。 When applying the solar cell encapsulant composition, for example, if the melting point of the matrix resin of the solar cell encapsulant composition is 50 to 120 ° C., the kneading and melting and application temperature of the composition are: It is preferable to carry out at a temperature obtained by adding 30 to 100 ° C. to the above melting point.
 特に、本発明では上記ブレンド工程および上記溶融混練工程を溶融押出機等の混練機器内で行い、シート状、フィルム状等の封止材層としての成形まで連続して行う方法が好ましい。その他の方法として、いくつかの実施形態において、太陽電池用封止材層が下記の工程によって薄膜構造体に製造される:(i)ポリマー(マトリックス樹脂)粉末が所定の比率で溶媒(たとえば、テトラクロロエチレン(TCE)、シクロペンタノン、ジオキサンなど)に溶解されたポリマー溶液を調製する工程、(ii)ポリマー混合物を含有する発光色素(蛍光化合物)を、ポリマー溶液を所定の重量比で発光色素と混合して、色素含有ポリマー溶液を得ることによって調製する工程、(iii)色素/ポリマー薄膜を、色素含有ポリマー溶液をガラス基板の上に直接に流し込み、その後、基板を2時間で室温から最高で100℃まで熱処理し、残留溶媒を130℃での一晩のさらなる真空加熱によって完全に除くことによって形成する工程、および、(iv)使用前に、色素/ポリマー薄膜を水の中で剥がし、その後、自立型ポリマーフィルムを完全に乾燥する工程;(v)フィルムの厚さを、色素/ポリマー溶液の濃度および蒸発速度を変化させることによって制御することができる。 In particular, in the present invention, a method is preferred in which the blending step and the melt-kneading step are performed in a kneading apparatus such as a melt extruder, and the molding is continuously performed as a sheet-like or film-like sealing material layer. Alternatively, in some embodiments, a solar cell encapsulant layer is produced into a thin film structure by the following steps: (i) polymer (matrix resin) powder is a solvent (eg, A step of preparing a polymer solution dissolved in tetrachloroethylene (TCE), cyclopentanone, dioxane, etc.), (ii) a luminescent dye (fluorescent compound) containing the polymer mixture, and the polymer solution with a luminescent dye at a predetermined weight ratio Mixing to obtain a dye-containing polymer solution, (iii) pouring the dye / polymer thin film directly onto the glass substrate, after which the substrate is allowed to warm up from room temperature in 2 hours Formed by heat treatment to 100 ° C and complete removal of residual solvent by further vacuum heating overnight at 130 ° C And (iv) peeling the dye / polymer thin film in water before use and then completely drying the free-standing polymer film; (v) the thickness of the film, the concentration of the dye / polymer solution And can be controlled by changing the evaporation rate.
 上記太陽電池用封止材層の厚みは、20~2000μmであることが好ましく、50~1000μmであることがより好ましく、100~800μmであることがさらに好ましい。20μmよりも薄くなると、封止材機能が発現しにくくなってしまう。一方、2000μmより厚くなると、太陽電池モジュールの厚みが大きくなり、コスト的にも不利益である。 The thickness of the solar cell encapsulant layer is preferably 20 to 2000 μm, more preferably 50 to 1000 μm, and even more preferably 100 to 800 μm. When the thickness is less than 20 μm, the sealing material function is hardly exhibited. On the other hand, when it becomes thicker than 2000 micrometers, the thickness of a solar cell module will become large and it will be disadvantageous also in cost.
 上記太陽電池用封止材層は、通常、太陽電池セルの封止に用いられるが、必要に応じて、インターコネクタ材、電極なども適宜封止するように積層される。上記太陽電池用封止材層の上記機能を損なわない限り、各層間などの適宜必要に応じて、他の層を介在してもよい。 The solar cell encapsulant layer is usually used for encapsulating solar cells, but is laminated so as to appropriately seal interconnector materials, electrodes, and the like as necessary. As long as the function of the solar cell encapsulant layer is not impaired, other layers such as each layer may be interposed as required.
 (太陽電池モジュール)
 本発明の太陽電池モジュール1は、表面保護層10、上記太陽電池用封止材層20および太陽電池セル30を含むことを特徴とする。一例として図1、2に簡易な模式図を示すが、本発明がこれらに限定されるものではない。また、太陽電池セルの背面側にさらに封止材層40、バックシート50を適宜備えることもできる。また、これらの各層間に、上記太陽電池用封止材層の上記機能を損なわない限り、接着材層、粘着剤層などの他の層を適宜介在してもよい。また、上記背面用の封止材層として、適宜、本発明の太陽電池用封止材層を用いてもよい。
(Solar cell module)
The solar cell module 1 of the present invention includes a surface protective layer 10, the solar cell sealing material layer 20, and solar cells 30. 1 and 2 show simple schematic diagrams as an example, but the present invention is not limited to these. Moreover, the sealing material layer 40 and the back sheet | seat 50 can also be further suitably provided in the back side of a photovoltaic cell. Moreover, as long as the said function of the said solar cell sealing material layer is not impaired between these each layers, you may interpose other layers, such as an adhesive material layer and an adhesive layer, suitably. Moreover, you may use the sealing material layer for solar cells of this invention suitably as said sealing material layer for back surfaces.
 上記太陽電池セルとして、たとえば、硫化カドミウム/テルル化カドミウム太陽電池、銅インジウムガリウム二セレン化物太陽電池、非晶質シリコン太陽電池、微結晶シリコン太陽電池または結晶シリコン太陽電池を用いることができる。上記太陽電池セルとして、結晶シリコン太陽電池であることが好ましい。 As the solar cell, for example, a cadmium sulfide / cadmium telluride solar cell, a copper indium gallium diselenide solar cell, an amorphous silicon solar cell, a microcrystalline silicon solar cell, or a crystalline silicon solar cell can be used. The solar battery cell is preferably a crystalline silicon solar battery.
 上記太陽電池モジュールの製造において、上記太陽電池用封止材層を上記太陽電池セル等に転写してもよく、直接上記太陽電池セル上に塗布形成してもよい。また、上記太陽電池用封止材層と他の層を同時に形成してもよい。 In the production of the solar cell module, the solar cell encapsulant layer may be transferred to the solar cell or the like, or may be directly coated on the solar cell. Moreover, you may form the said sealing material layer for solar cells, and another layer simultaneously.
 以下、本発明の構成と効果を具体的に示す実施例等について説明する。 Hereinafter, examples and the like specifically showing the configuration and effects of the present invention will be described.
 (表中の化合物)
 実施例・比較例では、以下の化合物を用いた。
 [エチレン系共重合体(A)]
・スミテートKA30:マトリックス樹脂、エチレンビニルアセテート樹脂(EVA)(住友化学社製、融点74℃、ビカット軟化点39℃)
・ウルトラセン710:マトリックス樹脂、エチレンビニルアセテート樹脂(EVA)(東ソー社製、融点71℃、ビカット軟化点40℃)
・スミテートMA10:マトリックス樹脂、エチレンビニルアセテート樹脂(EVA)(住友化学社製、融点57℃、ビカット軟化点33℃)
 [有機化合物添加剤(B)]
・化合物B1:4,7-ビス(4-メトキシフェニル)-2,1,3-ベンゾチアジアゾール(融点201℃)
・化合物B2:4,7-ビス(4-イソブチルオキシフェニル)-2-イソブチル-2H-ベンゾトリアゾール(融点167℃)
・Tinuvin900:2-(2H-ベンゾチアジアゾール-2-イル)-4,6-(1-メチル-1-フェニルエチル)フェノール(BASF社製、融点138℃)
 [有機過酸化物(C)]
・Perbutyl E:t-ブチルパーオキシ-2-エチルヘキシルモノカルボネート(日油社製、一時間半減期温度119℃)
 [シランカップリング剤]
・KBM503:3-メタクリロキシプロピルトリメトキシシラン(信越シリコーン社製)
 [架橋助剤]
・TAIC:架橋助剤、トリアリルイソシアヌレート(日本化成社製)
(Compounds in the table)
In the examples and comparative examples, the following compounds were used.
[Ethylene copolymer (A)]
・ Smitate KA30: matrix resin, ethylene vinyl acetate resin (EVA) (manufactured by Sumitomo Chemical Co., Ltd., melting point 74 ° C., Vicat softening point 39 ° C.)
Ultrasen 710: Matrix resin, ethylene vinyl acetate resin (EVA) (manufactured by Tosoh Corporation, melting point 71 ° C., Vicat softening point 40 ° C.)
・ Smitate MA10: Matrix resin, ethylene vinyl acetate resin (EVA) (manufactured by Sumitomo Chemical Co., Ltd., melting point 57 ° C., Vicat softening point 33 ° C.)
[Organic compound additive (B)]
Compound B1: 4,7-bis (4-methoxyphenyl) -2,1,3-benzothiadiazole (melting point: 201 ° C.)
Compound B2: 4,7-bis (4-isobutyloxyphenyl) -2-isobutyl-2H-benzotriazole (melting point: 167 ° C.)
Tinuvin 900: 2- (2H-benzothiadiazol-2-yl) -4,6- (1-methyl-1-phenylethyl) phenol (BASF, melting point 138 ° C.)
[Organic peroxide (C)]
Perbutyl E: t-butylperoxy-2-ethylhexyl monocarbonate (manufactured by NOF Corporation, one hour half-life temperature 119 ° C.)
[Silane coupling agent]
KBM503: 3-methacryloxypropyltrimethoxysilane (manufactured by Shin-Etsu Silicone)
[Crosslinking aid]
-TAIC: Crosslinking aid, triallyl isocyanurate (manufactured by Nippon Kasei Co., Ltd.)
 (樹脂シートの作製)
 実施例・比較例において、各化合物を表1の配合に基づき、各封止材層(封止材シート)を下記方法により製造した。
(Production of resin sheet)
In Examples and Comparative Examples, each sealing material layer (sealing material sheet) was produced by the following method based on the compounds shown in Table 1.
 各実施例・比較例において、小型粉砕機(アズワン社製)を用いて、各所定の温度範囲になるように冷却器で系中の温度制御しながら、各材料(化合物)を混合撹拌してプレブレンド(5分)を行った。その後、プレブレンドした樹脂組成物をラボプラストミル4C150型(ローラ形状:シグマ型、東洋精機社製)に投入し、80℃、10rpmで5分間混練した。得られた混練物を真空熱加圧装置VS20-3430(ミカドテクノス社製)を用いて100℃、20kNで5分間プレスを行い、厚み400μmの封止材シートを成型した。 In each Example / Comparative Example, each material (compound) was mixed and stirred using a small pulverizer (manufactured by ASONE Co., Ltd.) while controlling the temperature in the system with a cooler so that each temperature range was reached Pre-blending (5 minutes) was performed. Thereafter, the pre-blended resin composition was put into a Laboplast Mill 4C150 type (roller shape: Sigma type, manufactured by Toyo Seiki Co., Ltd.) and kneaded at 80 ° C. and 10 rpm for 5 minutes. The obtained kneaded product was pressed at 100 ° C. and 20 kN for 5 minutes using a vacuum heat press VS20-3430 (manufactured by Mikado Technos) to form a 400 μm-thick sealing material sheet.
 (プレブレンド後の樹脂の評価)
 プレブレンド後の樹脂組成物に対し、肉眼での外観形状の評価を実施した。評価基準は以下のように行った。
・ブロッキングの発生がなかった場合、液体成分が表面に残っていなかった場合:○
・樹脂同士のブロッキングが生じていた場合、液体成分が樹脂表面に残っていた場合:×
(Evaluation of resin after pre-blending)
The appearance of the naked eye was evaluated on the resin composition after pre-blending. The evaluation criteria were as follows.
・ When there was no blocking, or when no liquid component remained on the surface: ○
・ When blocking between resins occurs, or when liquid components remain on the resin surface: ×
 (シート分散性の評価)
 まず、得られた封止材シートに対し、肉眼での外観形状の評価を行い、上記有機化合物添加剤(B)が残っていた場合は不合格とした。一方、肉眼では上記化合物の残存が判別できないものに対して、以下の評価を続けた。
(Evaluation of sheet dispersibility)
First, the appearance shape with the naked eye was evaluated with respect to the obtained sealing material sheet, and when the said organic compound additive (B) remained, it was set as the rejection. On the other hand, the following evaluation was continued for those in which the remaining of the above compound could not be discerned with the naked eye.
 成型した封止材シートを2cm角で切り出し、有機化合物添加剤の吸光度をMCPD-9800(大塚電子社製)で測定し、吸光度/厚みをn=5の標準偏差を求め、分散性の評価を実施した。評価基準は以下のように行った。
・標準偏差が0.1未満であった場合:○
・標準偏差が0.1以上であった場合:×
The molded encapsulant sheet was cut out at 2 cm square, and the absorbance of the organic compound additive was measured with MCPD-9800 (manufactured by Otsuka Electronics Co., Ltd.). The absorbance / thickness was determined as the standard deviation of n = 5, and the dispersibility was evaluated. Carried out. The evaluation criteria were as follows.
・ When the standard deviation is less than 0.1: ○
・ When the standard deviation is 0.1 or more: ×
 下記表1、表2に、各配合(重量部単位)および得られた封止材層樹脂シートを用いたときの各測定結果を示す。
Figure JPOXMLDOC01-appb-T000001
Tables 1 and 2 below show the respective measurement results when each compounding (part by weight) and the obtained sealing material layer resin sheet were used.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 測定・評価の結果、いずれの実施例においても、プレブレンド後の樹脂の評価およびシート分散性の評価はともに良好であった。一方、比較例1では、分散性が悪かった。また、比較例2では、分散性が悪く、液体成分が樹脂表面に残ってしまった。また、比較例3~5では、プレブレンド時の温度が本願発明よりも高く、ブロッキングしてしまった。 As a result of measurement / evaluation, the evaluation of the resin after pre-blending and the evaluation of the sheet dispersibility were both good in any of the examples. On the other hand, in Comparative Example 1, the dispersibility was poor. Moreover, in the comparative example 2, the dispersibility was bad and the liquid component remained on the resin surface. Further, in Comparative Examples 3 to 5, the temperature at the time of pre-blending was higher than that of the present invention and blocked.
  1 太陽電池モジュール
 10 表面保護層
 20 太陽電池用封止材層
 30 太陽電池セル
 40 裏面用封止材層
 50 バックシート
DESCRIPTION OF SYMBOLS 1 Solar cell module 10 Surface protective layer 20 Solar cell sealing material layer 30 Solar cell 40 Back surface sealing material layer 50 Back sheet

Claims (13)

  1.  エチレン系共重合体(A)および有機化合物添加剤(B)を含む太陽電池用封止材組成物の製造方法であって、
     前記エチレン系共重合体(A)のビカット軟化点以上、前記エチレン系共重合体(A)の融点より10℃低い温度以下の温度範囲内で、前記エチレン系共重合体(A)および前記有機化合物添加剤(B)を混合するブレンド工程を含むことを特徴とする、太陽電池用封止材組成物の製造方法。
    A method for producing a solar cell encapsulant composition comprising an ethylene copolymer (A) and an organic compound additive (B),
    The ethylene copolymer (A) and the organic polymer are within a temperature range from the Vicat softening point of the ethylene copolymer (A) to 10 ° C. below the melting point of the ethylene copolymer (A). The manufacturing method of the sealing material composition for solar cells characterized by including the blending process which mixes a compound additive (B).
  2.  前記エチレン系共重合体(A)がペレット状である、請求項1に記載の太陽電池用封止材組成物の製造方法。 The manufacturing method of the sealing material composition for solar cells of Claim 1 whose said ethylene-type copolymer (A) is a pellet form.
  3.  前記ブレンド工程において、さらに有機過酸化物(C)を含み、かつ、前記有機化合物添加剤(B)の融点が、前記有機過酸化物(C)の一時間半減期温度より10℃低い温度以上である、請求項1または2に記載の太陽電池用封止材組成物の製造方法。 In the blending step, an organic peroxide (C) is further included, and the melting point of the organic compound additive (B) is 10 ° C. or more lower than the one-hour half-life temperature of the organic peroxide (C). The manufacturing method of the sealing material composition for solar cells of Claim 1 or 2 which is.
  4.  前記ブレンド工程において、溶剤を用いない、請求項1~3のいずれかに記載の太陽電池用封止材組成物の製造方法。 The method for producing a solar cell encapsulant composition according to any one of claims 1 to 3, wherein no solvent is used in the blending step.
  5.  前記ブレンド工程において、さらに液状添加剤を含む、請求項1~4のいずれかに記載の太陽電池用封止材組成物の製造方法。 The method for producing a solar cell encapsulant composition according to any one of claims 1 to 4, further comprising a liquid additive in the blending step.
  6.  前記ブレンド工程に次いで、溶融混練工程を含む、請求項1~5のいずれかに記載の太陽電池用封止材組成物の製造方法。 The method for producing a sealing material composition for a solar cell according to any one of claims 1 to 5, further comprising a melt-kneading step subsequent to the blending step.
  7.  前記溶融混練工程が一軸押出機、二軸押出機、バンバリーミキサー、ニーダー、またはミキシングロールによりなされる、請求項1~6のいずれかに記載の太陽電池用封止材組成物の製造方法。 The method for producing a solar cell encapsulant composition according to any one of claims 1 to 6, wherein the melt-kneading step is performed by a single-screw extruder, a twin-screw extruder, a Banbury mixer, a kneader, or a mixing roll.
  8.  前記有機化合物添加剤(B)が、紫外線吸収剤、酸化防止剤、光安定剤、老化防止剤、または、架橋助剤である、請求項1~7のいずれかに記載の太陽電池用封止材組成物の製造方法。 The sealing for solar cell according to any one of claims 1 to 7, wherein the organic compound additive (B) is an ultraviolet absorber, an antioxidant, a light stabilizer, an anti-aging agent, or a crosslinking aid. Manufacturing method of material composition.
  9.  前記エチレン系共重合体(A)が、エチレン-酢酸ビニル共重合体を主成分とする、請求項1~8のいずれかに記載の太陽電池用封止材組成物の製造方法。 The method for producing a solar cell encapsulant composition according to any one of claims 1 to 8, wherein the ethylene copolymer (A) comprises an ethylene-vinyl acetate copolymer as a main component.
  10.  請求項1~9のいずれかに記載の製造方法により得られた太陽電池用封止材組成物。 A solar cell encapsulant composition obtained by the production method according to any one of claims 1 to 9.
  11.  請求項1~9のいずれかに記載の太陽電池用封止材組成物を用いて形成された太陽電池用封止材層。 A solar cell encapsulant layer formed using the solar cell encapsulant composition according to any one of claims 1 to 9.
  12.  請求項1~9のいずれかに記載の太陽電池用封止材組成物を用いて形成された太陽電池用封止材層を含む太陽電池モジュール。 A solar cell module comprising a solar cell encapsulant layer formed using the solar cell encapsulant composition according to any one of claims 1 to 9.
  13.  前記太陽電池セルが、結晶シリコン太陽電池、硫化カドミウム/テルル化カドミウム太陽電池、銅インジウムガリウム二セレン化物太陽電池、非晶質シリコン太陽電池、または微結晶シリコン太陽電池である、請求項12に記載の太陽電池モジュール。 The solar cell is a crystalline silicon solar cell, a cadmium sulfide / cadmium telluride solar cell, a copper indium gallium diselenide solar cell, an amorphous silicon solar cell, or a microcrystalline silicon solar cell. Solar cell module.
PCT/JP2014/064943 2013-06-14 2014-06-05 Solar cell sealant composition and production method for same, solar cell sealant layer employing same, and solar cell module WO2014199892A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480033780.8A CN105308113B (en) 2013-06-14 2014-06-05 Encapulant composition used for solar batteries and its manufacture method and use its sealing material layer and solar cell module used for solar batteries
KR1020167000063A KR20160019921A (en) 2013-06-14 2014-06-05 Solar cell sealant composition and production method for same, solar cell sealant layer employing same, and solar cell module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-125401 2013-06-14
JP2013125401A JP6178126B2 (en) 2013-06-14 2013-06-14 SOLAR CELL SEALING MATERIAL COMPOSITION, PROCESS FOR PRODUCING THE SAME, SOLAR CELL SEALING MATERIAL LAYER USING THE SAME, AND SOLAR CELL MODULE

Publications (1)

Publication Number Publication Date
WO2014199892A1 true WO2014199892A1 (en) 2014-12-18

Family

ID=52022188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064943 WO2014199892A1 (en) 2013-06-14 2014-06-05 Solar cell sealant composition and production method for same, solar cell sealant layer employing same, and solar cell module

Country Status (4)

Country Link
JP (1) JP6178126B2 (en)
KR (1) KR20160019921A (en)
CN (1) CN105308113B (en)
WO (1) WO2014199892A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106336816A (en) * 2016-08-10 2017-01-18 佛山市三水永恒达粘合剂有限公司 Adhesive for encapsulation of photovoltaic assembly

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003104976A (en) * 2001-07-24 2003-04-09 Mitsubishi Chemicals Corp Benzothiadiazole derivative, liquid crystal composition, wavelength-converting element, electroluminescent element, electric charge transportation material and photoelectric transfer element
JP2003171421A (en) * 2001-12-05 2003-06-20 Tosoh Corp Slightly cross-linked ethylene-vinyl acetate copolymer and method for producing the same
WO2011016537A1 (en) * 2009-08-06 2011-02-10 国立大学法人千葉大学 Photoelectric conversion device
JP2011216829A (en) * 2010-04-02 2011-10-27 Toppan Printing Co Ltd Composition, sheet, and solar cell module
JP2012119455A (en) * 2010-11-30 2012-06-21 C I Kasei Co Ltd Sealing film for solar cell module and solar cell module using the same
WO2012104298A1 (en) * 2011-01-31 2012-08-09 United Initiators Gmbh & Co. Kg Peroxide blends for cross-linking ethylene vinyl acetate in an accelerated manner
JP2013118302A (en) * 2011-12-05 2013-06-13 Bridgestone Corp Pair of solar battery sealing film

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006186233A (en) 2004-12-28 2006-07-13 Du Pont Mitsui Polychem Co Ltd Solar cell sealing material
US20120024376A1 (en) * 2009-08-07 2012-02-02 Toyochem Co., Ltd. Method for producing resin composition for solar cell sealing material, resin composition for solar cell sealing material, solar cell sealing material, and solar cell module

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003104976A (en) * 2001-07-24 2003-04-09 Mitsubishi Chemicals Corp Benzothiadiazole derivative, liquid crystal composition, wavelength-converting element, electroluminescent element, electric charge transportation material and photoelectric transfer element
JP2003171421A (en) * 2001-12-05 2003-06-20 Tosoh Corp Slightly cross-linked ethylene-vinyl acetate copolymer and method for producing the same
WO2011016537A1 (en) * 2009-08-06 2011-02-10 国立大学法人千葉大学 Photoelectric conversion device
JP2011216829A (en) * 2010-04-02 2011-10-27 Toppan Printing Co Ltd Composition, sheet, and solar cell module
JP2012119455A (en) * 2010-11-30 2012-06-21 C I Kasei Co Ltd Sealing film for solar cell module and solar cell module using the same
WO2012104298A1 (en) * 2011-01-31 2012-08-09 United Initiators Gmbh & Co. Kg Peroxide blends for cross-linking ethylene vinyl acetate in an accelerated manner
JP2013118302A (en) * 2011-12-05 2013-06-13 Bridgestone Corp Pair of solar battery sealing film

Also Published As

Publication number Publication date
JP6178126B2 (en) 2017-08-09
CN105308113A (en) 2016-02-03
JP2015000902A (en) 2015-01-05
CN105308113B (en) 2018-03-16
KR20160019921A (en) 2016-02-22

Similar Documents

Publication Publication Date Title
JP5866857B2 (en) Solar cell module sealing material composition, solar cell module sealing material sheet
WO2013084849A1 (en) Solar cell module
JP5891745B2 (en) Solar cell module sealing material sheet and solar cell module using the same
JP2016023286A (en) Fluorescent dye compound and polymer fluorescent dye compound having benzotriazole structure, and wavelength converting sealing material composition using same
WO2016031421A1 (en) Luminescent ethylene-based copolymer, sealing material composition for solar cell, and solar cell module obtained using same
JP5967115B2 (en) Combination set of encapsulant composition for solar cell module, encapsulant sheet, and method for producing encapsulant sheet
JP2016021433A (en) Seal-material sheet for solar battery module use and manufacturing method thereof
JP2013115212A (en) Method for manufacturing sealing material sheet for solar cell module and solar cell module using the same
JP6476967B2 (en) Sealant sheet for solar cell module
WO2016039013A1 (en) Sealing material composition for solar cells, sealing material layer for solar cells using same, and solar cell module
JP6178126B2 (en) SOLAR CELL SEALING MATERIAL COMPOSITION, PROCESS FOR PRODUCING THE SAME, SOLAR CELL SEALING MATERIAL LAYER USING THE SAME, AND SOLAR CELL MODULE
JP2014232792A (en) Wavelength conversion type sealing material layer and method for manufacturing the same
JP2014150246A (en) Sealing sheet for solar cell
JP6413411B2 (en) Manufacturing method of sealing material sheet for solar cell module
JP6155680B2 (en) Manufacturing method of solar cell module and solar cell module manufactured by the manufacturing method
JP6287006B2 (en) Manufacturing method of sealing material sheet for solar cell module
JP6173789B2 (en) Solar cell encapsulant composition, solar cell encapsulant layer, and solar cell module using the same
JP2017025334A (en) Sealing material composition for solar cell, sealing material layer for solar cell using the same, and solar cell module
JP6026683B2 (en) Solar cell encapsulant composition, solar cell encapsulant layer and solar cell module using the same
JP2018035353A (en) Master batch for solar cell sealing sheet, and method for producing solar cell sealing sheet
JP6446868B2 (en) SEALING MATERIAL SHEET FOR SOLAR CELL MODULE AND METHOD FOR PRODUCING THE SAME
JP2010258436A (en) Method of manufacturing sealing sheet for solar cell
WO2015064688A1 (en) Wavelength-conversion encapsulant composition, wavelength-conversion encapsulant layer, and solar cell module using same
TWI672334B (en) Encapsulant for solar cells and solar cell module comprising the same
JP6369144B2 (en) Manufacturing method of resin composition, resin composition for solar cell encapsulant, solar cell encapsulant, and solar cell module

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480033780.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14811572

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167000063

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14811572

Country of ref document: EP

Kind code of ref document: A1