WO2014193059A1 - Apparatus for measuring optical time domain - Google Patents
Apparatus for measuring optical time domain Download PDFInfo
- Publication number
- WO2014193059A1 WO2014193059A1 PCT/KR2013/010937 KR2013010937W WO2014193059A1 WO 2014193059 A1 WO2014193059 A1 WO 2014193059A1 KR 2013010937 W KR2013010937 W KR 2013010937W WO 2014193059 A1 WO2014193059 A1 WO 2014193059A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- waveform
- light
- loss amount
- optical
- loss
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 83
- 238000005259 measurement Methods 0.000 claims abstract description 39
- 238000012544 monitoring process Methods 0.000 claims abstract description 12
- 239000013307 optical fiber Substances 0.000 claims description 13
- 230000003321 amplification Effects 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 239000000835 fiber Substances 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/07—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
- H04B10/071—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using a reflected signal, e.g. using optical time domain reflectometers [OTDR]
Definitions
- the present invention relates to an optical fiber measuring apparatus.
- the high-speed information communication network using optical communication can be divided into a backbone network and a local network, and one example of the subscriber network is a fiber to the home (FTTH) subscriber network.
- FTTH fiber to the home
- the FTTH subscriber network is a network that connects from the telephone station to the subscriber's home network using optical fiber.
- Optical fibers are made of thin strands of glass or plastic, and service providers monitor the optical fiber installed in the FTTH subscriber network to ensure that there is no disruption to the optical communication service provided to the subscriber.
- an optical time domain reflectometer which is a device for measuring a failure state of an optical fiber (or an optical cable including the same), receives reflected light returned by injecting an optical pulse into the failure state measurement optical fiber. According to the distance distribution of the amount of reflected light, the loss of the optical fiber, the distance to the splice point, the splice loss, the amount of reflection from the splice point, and the broken distance when the fiber is broken are measured.
- Such a conventional optical path measuring device is a structure that analyzes the failure point by using the event occurrence point of the reflected light, the alarm is often generated for the optical loss event generated at the connector connection or the optical fusion point to measure the optical path There is a problem that causes a malfunction of the device.
- optical fiber monitoring method using the optical fiber measuring device monitors only the failure point of the optical fiber, it is difficult to grasp the total loss variation of the optical fiber.
- the technical problem to be achieved by the present invention is to detect the actual failure of the optical path using the reflected light of the optical path, and to detect the total amount of loss generated in the optical path.
- An optical path measuring apparatus receives a light pulse and generates a monitoring light that is a reference waveform, and receives a light generating unit for injecting the generated monitoring light into the optical path, and receives the measurement waveform which is reflected light reflected from the optical path.
- a light sensing unit and a pulse generating signal for generating the reference waveform are generated and transmitted to the light generating unit, the measurement waveform is received from the light sensing unit, and a loss graph is obtained using the reference waveform and the measurement waveform.
- a control unit to generate the loss graph.
- the loss amount graph may represent a difference between the loss amounts of the reference waveforms and the loss amounts of the measurement waveforms.
- the display device may further include a display unit configured to output at least one of the reference waveform, the measurement waveform, and the loss amount graph.
- the measurement waveform may have power loss or waveform deformation when a failure occurs in the optical path, and the loss amount graph may have different inclinations according to the waveform change generated in the measurement waveform.
- the controller generates a graph indicating the optical path loss using the measurement waveform and the reference waveform, and thus, the overall optical path loss of the measurement waveform can be monitored using the generated graph.
- FIG. 1 is a block diagram schematically illustrating an optical path measuring apparatus according to an exemplary embodiment of the present invention.
- FIG. 2 is a graph illustrating waveforms output from a controller of an optical fiber measuring apparatus according to an exemplary embodiment of the present invention.
- the optical path measuring apparatus 100 includes a light generating unit 30 and a light generating unit 30 that allow the monitoring light 1 to enter the optical path 200.
- a control unit 10 connected to the pulse generator 20, the pulse generator 20, and the optical amplifying unit 50, and the optical amplifying unit 50, respectively.
- the pulse generator 20 receives a pulse generation signal from the controller 10 to generate a pulse, and transmits the generated pulse to the light generator 30.
- the light generator 30 generates and outputs an optical signal according to the pulse received from the pulse generator 20.
- the light output from the light generating unit 30 is a monitoring light to be incident on the optical path 200 for monitoring the optical path 200, the reference waveform.
- the optical sensor 40 receives an optical signal from the outside and transmits the received optical signal to the optical amplifying unit 50.
- the optical signal transmitted to the light detector 40 is reflected light output from the optical path 200.
- the optical amplifier 50 amplifies the optical signal received from the optical sensor 40 and transmits the amplified optical signal to the controller 10.
- the optical signal transmitted from the light sensing unit 40 to the optical amplifying unit 50 is reflected light reflected from the optical path 200 and may be an optical signal having a weak intensity. Therefore, it is preferable that the optical amplifier 50 amplifies the optical signal transmitted to the optical detector 40 and outputs the signal as an identifiable signal.
- the controller 10 outputs a pulse generation signal to the pulse generator 20 to generate the monitoring light as the reference waveform, and receives the reflected light, which is the measurement waveform of the optical path 200, from the optical amplifier 50. .
- the controller 10 generates a loss amount graph using the reference waveform transmitted to the pulse generator 20 and the measurement waveform of the optical path 200 received from the optical amplifier 50.
- a loss amount graph generated by the controller 10 will be described in more detail with reference to FIG. 2.
- the reference waveform 1 transmitted from the controller 10 to the pulse generator 20 has a loss (dB) graph shape according to a distance t, and the controller
- the measurement waveform 2 of the optical path 200 received by the optical amplification unit 5 has a graph shape having a loss of first to fifth losses 1a to 1e relative to the reference waveform 1.
- the measurement waveform 2 causes a loss due to near-end Fresnel reflection at the first time point t1 and a loss due to connection loss at the second and third time points t2 and t3.
- the measurement waveform 2 has a loss from the reference waveform 1 by the first loss 1a.
- the measurement waveform 2 causes losses due to connector fusion at the fourth to sixth time points t4, t5, and t6, respectively. For this reason, the measurement waveform 2 has the 2nd loss 1b, the 3rd loss 1c, and the 4th loss 1d from the reference waveform 1, respectively.
- the measurement waveform 2 has a loss due to a failure at the seventh time point t7, and after the eighth time point t8, there is no Fresnel reflection and no longer has power. For this reason, the measurement waveform 2 has the fifth loss 1e from the reference waveform 1.
- the reference waveform 1 and the measurement waveform 2 appear in the controller 10, respectively, and the controller 10 includes the reference waveform 1 and the measurement waveform 2.
- the controller 10 includes the reference waveform 1 and the measurement waveform 2.
- the loss amount graph 3 is a graph showing loss (dB) according to a distance t. The difference between the amount of loss of the waveform and the measured waveform is shown.
- the loss amount graph 3 has a 'reference waveform-measurement waveform' value according to the distance t, which is the first to fifth losses 1a to 1e shown in FIG.
- the slope of the loss amount graph 3 is changed at the second time point t2, the third time point t3, the fourth time point t4, and the seventh time point t7. This is because the amount of loss in each time interval is different as shown in FIG.
- the loss amount graph 3 generated by the controller 10 represents a loss according to the distance t
- the loss amount of the optical path 200 may be detected. It becomes possible.
- the optical path measuring apparatus 100 including the pulse generator 20, the light generator 30, the light detector 40, the optical amplifier 50, and the controller 10 may have an OTDR (Optical Time Domain). Reflectometer).
- OTDR Optical Time Domain
- Reflectometer Optical Time Domain Reflectometer
- the optical path measuring apparatus 100 may include a display unit.
- the display unit outputs (a) graphs 1 and 2 of FIG. 2 and (b) graph 3 of FIG. 2 output from the controller 10. For this reason, the manager using the optical path measuring apparatus 100 may check the graphs 1 to 3 to monitor the state of the optical path 200.
- the controller 10 outputs a pulse generation signal for generating a reference waveform to the pulse generator 20, and the pulse generator 20 generates a pulse according to the pulse generation signal received from the controller 10. It generates and delivers the generated pulse to the light generator 30.
- the light generator 30 generates a reference waveform, which is monitoring light, according to the pulse received from the pulse generator 20, and enters the light path 200.
- the light detector 40 receives the measurement waveform which is the reflected light reflected from the optical path 200 from the optical path 200, and transmits the received optical path 200 measurement waveform to the optical amplification unit 50. do.
- the optical amplification unit 50 amplifies the measurement waveform received from the optical sensing unit 40 and transmits the amplified measurement waveform to the controller 10.
- the controller 10 outputs the reference waveform 1 transmitted to the pulse generator 20 and the measurement waveform 2 of the optical path 200 received from the optical amplifier 50, respectively, and the reference waveform ( 1) compares the measurement waveform (2) and outputs the loss graph (3) generated.
- the total amount of loss of the optical path 200 can be confirmed, and thus it can be used for failure prevention.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Testing Of Optical Devices Or Fibers (AREA)
Abstract
The present invention relates to an apparatus for measuring an optical time domain. The apparatus for measuring an optical time domain comprises: a light generating unit for generating a monitoring light, which is a reference waveform, by receiving an optical pulse, and introducing the generated monitoring light into the optical time domain; a light sensing unit for receiving a measurement waveform that is the light reflected from the optical time domain; and a control unit for generating and transmitting, to the light generating unit, a pulse generation signal for generating the reference waveform and receiving the measurement waveform from the light sensing unit, and generating a loss amount graph by using the reference waveform and the measurement waveform, wherein the loss amount graph shows, as a loss amount value according to a distance, a difference between the loss amount of the reference waveform and the loss amount of the measurement waveform. Thus, an administrator who monitors the optical time domain can check the total loss amount of the optical time domain, thereby increasing the management efficiency of the optical time domain.
Description
본 발명은 광선로 측정장치에 관한 것이다.The present invention relates to an optical fiber measuring apparatus.
광통신을 이용한 초고속 정보통신망은 백본망(backbone network)과 가입자망(local network)으로 구분할 수 있고, 가입자망의 한 예로는 FTTH(fiber to the home) 가입자망이 있다.The high-speed information communication network using optical communication can be divided into a backbone network and a local network, and one example of the subscriber network is a fiber to the home (FTTH) subscriber network.
FTTH 가입자망은, 광섬유를 이용하여 전화국으로부터 가입자의 댁내망까지 연결하는 망이다. 광섬유(optical fiber)는 가느다란 가닥의 유리나 플라스틱으로 형성되고, 서비스 제공업자는 FTTH 가입자망에 설치되는 광섬유를 모니터링하여 가입자에게 제공하는 광통신 서비스에 장애가 없도록 한다.The FTTH subscriber network is a network that connects from the telephone station to the subscriber's home network using optical fiber. Optical fibers are made of thin strands of glass or plastic, and service providers monitor the optical fiber installed in the FTTH subscriber network to ensure that there is no disruption to the optical communication service provided to the subscriber.
이때, 광섬유(또는 이를 포함하는 광케이블)의 장애 상태를 측정하기 위한 장치인 광선로 측정장치(OTDR, optical time domain reflectometer)는, 장애 상태 측정대상 광섬유에 광 펄스를 입사시켜 되돌아오는 반사광을 전달받고, 전달받은 반사광의 광량의 거리 분포에 따라 광섬유의 손실, 접속점까지의 거리, 접속 손실, 접속점으로부터 반사량, 그리고 섬유가 파손된 경우 파손된 거리를 측정한다. At this time, an optical time domain reflectometer (OTDR), which is a device for measuring a failure state of an optical fiber (or an optical cable including the same), receives reflected light returned by injecting an optical pulse into the failure state measurement optical fiber. According to the distance distribution of the amount of reflected light, the loss of the optical fiber, the distance to the splice point, the splice loss, the amount of reflection from the splice point, and the broken distance when the fiber is broken are measured.
그러나, 이러한 종래의 광선로 측정장치는 반사광의 이벤트 발생 지점을 이용하여 고장 발생 지점을 분석하는 구조로서, 커넥터 연결부위 또는 광 융착점에서 발생한 광손실 이벤트에 대해 알람이 수시로 발생하게 되어 광선로 측정장치의 오작동 원인이 된다는 문제점이 있다.However, such a conventional optical path measuring device is a structure that analyzes the failure point by using the event occurrence point of the reflected light, the alarm is often generated for the optical loss event generated at the connector connection or the optical fusion point to measure the optical path There is a problem that causes a malfunction of the device.
또한, 광선로 측정장치를 이용하는 이러한 광선로 모니터링 방법은 광선로의 고장 지점만 모니터링 하므로, 광선로의 전체적인 손실 변화량을 파악하기 어렵다는 문제점이 있다. In addition, since the optical fiber monitoring method using the optical fiber measuring device monitors only the failure point of the optical fiber, it is difficult to grasp the total loss variation of the optical fiber.
본 발명이 이루고자 하는 기술적 과제는 광선로의 반사광을 이용하여 광선로의 실질적인 고장여부를 감지하고, 광선로에서 발생하는 전체적인 손실량을 감지하기 위한 것이다.The technical problem to be achieved by the present invention is to detect the actual failure of the optical path using the reflected light of the optical path, and to detect the total amount of loss generated in the optical path.
본 발명의 한 특징에 따른 광선로 측정장치는 광펄스를 전달받아 기준파형인 감시광을 생성하여 생성된 감시광을 광선로에 입사시키는 광 발생부, 상기 광선로에서 반사된 반사광인 측정파형을 전달받는 광 감지부, 그리고 상기 기준파형을 생성하기 위한 펄스 발생신호를 생성하여 상기 광 발생부로 전달하고, 상기 광 감지부로부터 상기 측정파형을 전달받으며, 상기 기준파형과 상기 측정파형을 이용하여 손실량 그래프를 생성하는 제어부를 포함하고, 상기 손실량 그래프는 상기 기준파형의 손실량으로부터 상기 측정파형의 손실량의 차이를 거리에 따른 손실량 값으로 나타내는 것이 좋다.An optical path measuring apparatus according to an aspect of the present invention receives a light pulse and generates a monitoring light that is a reference waveform, and receives a light generating unit for injecting the generated monitoring light into the optical path, and receives the measurement waveform which is reflected light reflected from the optical path. A light sensing unit and a pulse generating signal for generating the reference waveform are generated and transmitted to the light generating unit, the measurement waveform is received from the light sensing unit, and a loss graph is obtained using the reference waveform and the measurement waveform. And a control unit to generate the loss graph. The loss amount graph may represent a difference between the loss amounts of the reference waveforms and the loss amounts of the measurement waveforms.
상기 기준파형, 상기 측정파형 및 상기 손실량 그래프 중 적어도 하나를 출력하는 표시부를 더 포함하는 것이 좋다.The display device may further include a display unit configured to output at least one of the reference waveform, the measurement waveform, and the loss amount graph.
상기 측정파형은 상기 광선로에서 고장이 발생했을 때 전력이 손실되거나 파형이 변형되고, 상기 손실량 그래프는 상기 측정파형에서 발생한 파형변화에 따라 각각 다른 기울기를 갖는 것이 좋다.The measurement waveform may have power loss or waveform deformation when a failure occurs in the optical path, and the loss amount graph may have different inclinations according to the waveform change generated in the measurement waveform.
이러한 특징에 따르면, 제어부가 측정파형 및 기준파형을 이용하여 광선로 손실량을 나타내는 그래프를 생성함으로써, 생성된 그래프를 이용하여 측정파형의 전체적인 광선로 손실량을 모니터링 할 수 있다는 효과가 있다. According to this feature, the controller generates a graph indicating the optical path loss using the measurement waveform and the reference waveform, and thus, the overall optical path loss of the measurement waveform can be monitored using the generated graph.
도 1은 본 발명의 한 실시예에 따른 광선로 측정장치를 개략적으로 나타낸 블록도이다.1 is a block diagram schematically illustrating an optical path measuring apparatus according to an exemplary embodiment of the present invention.
도 2는 본 발명의 한 실시예에 따른 광선로 측정장치의 제어부에서 출력하는 파형을 나타낸 그래프이다.2 is a graph illustrating waveforms output from a controller of an optical fiber measuring apparatus according to an exemplary embodiment of the present invention.
아래에서는 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. In the drawings, parts irrelevant to the description are omitted in order to clearly describe the present invention, and like reference numerals designate like parts throughout the specification.
그러면 첨부한 도면을 참고로 하여 본 발명의 한 실시예에 따른 광선로 측정장치에 대하여 설명한다. Next, an optical path measuring apparatus according to an exemplary embodiment of the present invention will be described with reference to the accompanying drawings.
먼저, 도 1을 참고로 하여, 본 발명의 한 실시예에 따른 광선로 측정장치에 대하여 상세하게 설명한다.First, the optical path measuring apparatus according to an embodiment of the present invention will be described in detail with reference to FIG. 1.
도 1을 참고로 하면, 본 발명의 한 실시예에 따른 광선로 측정장치(100)는 광선로(200)로 감시광(1)을 입사시키는 광 발생부(30), 광 발생부(30)에 연결된 펄스 발생부(20), 펄스 발생부(20) 및 광 증폭부(50)와 각각 연결된 제어부(10), 그리고 광 증폭부(50)에 연결되고 광선로(200)로부터 측정광(2)을 전달받는 광 감지부(40)를 구비한다.Referring to FIG. 1, the optical path measuring apparatus 100 according to an exemplary embodiment of the present invention includes a light generating unit 30 and a light generating unit 30 that allow the monitoring light 1 to enter the optical path 200. A control unit 10 connected to the pulse generator 20, the pulse generator 20, and the optical amplifying unit 50, and the optical amplifying unit 50, respectively. ) Is provided with a light detecting unit (40).
펄스 발생부(20)는 제어부(10)로부터 펄스 발생 신호를 전달받아 펄스를 발생하고, 발생된 펄스를 광 발생부(30)로 전달한다.The pulse generator 20 receives a pulse generation signal from the controller 10 to generate a pulse, and transmits the generated pulse to the light generator 30.
광 발생부(30)는 펄스 발생부(20)로부터 전달받은 펄스에 따라 광신호를 발생하여 출력한다.The light generator 30 generates and outputs an optical signal according to the pulse received from the pulse generator 20.
이때, 광 발생부(30)에서 출력되는 광은 광선로(200)의 모니터링을 위해서 광선로(200)에 입사시킬 감시광으로써, 기준파형이다. At this time, the light output from the light generating unit 30 is a monitoring light to be incident on the optical path 200 for monitoring the optical path 200, the reference waveform.
광 감지부(40)는 외부로부터 광신호를 전달받고, 전달받은 광신호를 광 증폭부(50)로 전달한다.The optical sensor 40 receives an optical signal from the outside and transmits the received optical signal to the optical amplifying unit 50.
광 감지부(40)에 전달되는 광신호는 광선로(200)로부터 출력된 반사광이다.The optical signal transmitted to the light detector 40 is reflected light output from the optical path 200.
그리고, 광 증폭부(50)는 광 감지부(40)로부터 전달받은 광신호를 증폭시켜 증폭된 광신호를 제어부(10)로 전달한다. The optical amplifier 50 amplifies the optical signal received from the optical sensor 40 and transmits the amplified optical signal to the controller 10.
광 감지부(40)로부터 광 증폭부(50)에 전달되는 광신호는 광선로(200)에서 반사된 반사광으로서, 미약한 세기의 광신호일 수 있다. 따라서, 광 증폭부(50)가 광 감지부(40)에 전달된 광신호를 증폭시켜 식별 가능한 신호로 출력하는 것이 좋다.The optical signal transmitted from the light sensing unit 40 to the optical amplifying unit 50 is reflected light reflected from the optical path 200 and may be an optical signal having a weak intensity. Therefore, it is preferable that the optical amplifier 50 amplifies the optical signal transmitted to the optical detector 40 and outputs the signal as an identifiable signal.
제어부(10)는 기준파형인 감시광을 생성하기 위해 펄스 발생 신호를 출력하여 펄스 발생부(20)로 전달하고, 광 증폭부(50)로부터 광선로(200)의 측정파형인 반사광을 전달받는다.The controller 10 outputs a pulse generation signal to the pulse generator 20 to generate the monitoring light as the reference waveform, and receives the reflected light, which is the measurement waveform of the optical path 200, from the optical amplifier 50. .
이때, 제어부(10)는 펄스 발생부(20)로 전달한 기준파형과 광 증폭부(50)로부터 전달받은 광선로(200)의 측정파형을 이용하여 손실량 그래프를 생성한다.At this time, the controller 10 generates a loss amount graph using the reference waveform transmitted to the pulse generator 20 and the measurement waveform of the optical path 200 received from the optical amplifier 50.
도 2를 참고로 하여 제어부(10)에서 생성하는 손실량 그래프에 대해서 좀더 자세하게 설명한다.A loss amount graph generated by the controller 10 will be described in more detail with reference to FIG. 2.
먼저, 도 2의 (a)에 도시된 것과 같이, 제어부(10)에서 펄스 발생부(20)로 전달하는 기준파형(1)은 거리(t)에 따른 손실(dB) 그래프 형상을 갖고, 제어부(10)가 광 증폭부(5)로부터 전달받은 광선로(200)의 측정파형(2)은 기준파형(1)에 비해 제1 내지 제5 손실(1a 내지 1e)만큼의 손실을 갖는 그래프 형상을 갖는다.First, as shown in FIG. 2A, the reference waveform 1 transmitted from the controller 10 to the pulse generator 20 has a loss (dB) graph shape according to a distance t, and the controller The measurement waveform 2 of the optical path 200 received by the optical amplification unit 5 has a graph shape having a loss of first to fifth losses 1a to 1e relative to the reference waveform 1. Has
이때, 측정파형(2)은 제1 시점(t1)에서 근단 프리넬 반사로 인한 손실이 발생하고, 제2 및 제3 시점(t2, t3)에서 접속 손실로 인한 손실이 발생한다.In this case, the measurement waveform 2 causes a loss due to near-end Fresnel reflection at the first time point t1 and a loss due to connection loss at the second and third time points t2 and t3.
이로 인해, 측정파형(2)은 기준파형(1)으로부터 제1 손실(1a)만큼의 손실을 갖는다.For this reason, the measurement waveform 2 has a loss from the reference waveform 1 by the first loss 1a.
그리고, 측정파형(2)은 제4 내지 제6 시점(t4, t5, t6)에서 커넥터 융착으로 인한 손실이 각각 발생한다. 이로 인해, 측정파형(2)은 기준파형(1)으로부터 제2 손실(1b), 제3 손실(1c), 그리고 제4 손실(1d)을 각각 갖는다.In addition, the measurement waveform 2 causes losses due to connector fusion at the fourth to sixth time points t4, t5, and t6, respectively. For this reason, the measurement waveform 2 has the 2nd loss 1b, the 3rd loss 1c, and the 4th loss 1d from the reference waveform 1, respectively.
또한, 측정파형(2)은 제7 시점(t7)에서 고장으로 인한 손실이 발생하고, 제8 시점(t8) 이후에는 프리넬 반사가 없어 더 이상 전력을 갖지 않게 된다. 이로 인해, 측정파형(2)은 기준파형(1)으로부터 제5 손실(1e)을 갖는다.In addition, the measurement waveform 2 has a loss due to a failure at the seventh time point t7, and after the eighth time point t8, there is no Fresnel reflection and no longer has power. For this reason, the measurement waveform 2 has the fifth loss 1e from the reference waveform 1.
도 2의 (a)를 참고로 하여 위에서 설명한 것과 같이, 제어부(10)에서 기준파형(1)과 측정파형(2)이 각각 나타나고, 제어부(10)는 기준파형(1) 및 측정파형(2)을 이용하여 도 2의 (b)와 같은 손실량 그래프(3)를 생성한다.As described above with reference to (a) of FIG. 2, the reference waveform 1 and the measurement waveform 2 appear in the controller 10, respectively, and the controller 10 includes the reference waveform 1 and the measurement waveform 2. ) To generate a loss amount graph (3) as shown in (b) of FIG.
도 2의 (b)를 참고로 하여 제어부(10)에서 생성하는 손실량 그래프(3)를 좀더 자세하게 설명하면, 손실량 그래프(3)는 거리(t)에 따른 손실(dB)을 나타내는 그래프로서, 기준파형과 측정파형의 손실량 차이를 나타낸다.Referring to FIG. 2 (b), the loss amount graph 3 generated by the controller 10 will be described in more detail. The loss amount graph 3 is a graph showing loss (dB) according to a distance t. The difference between the amount of loss of the waveform and the measured waveform is shown.
즉, 손실량 그래프(3)는 거리(t)에 따른 ‘기준파형-측정파형’ 값을 가지며, 이는 도 2의 (a)에 도시된 제1 내지 제5 손실(1a~1e) 값이다.That is, the loss amount graph 3 has a 'reference waveform-measurement waveform' value according to the distance t, which is the first to fifth losses 1a to 1e shown in FIG.
이때, 손실량 그래프(3)의 기울기는 제2 시점(t2), 제3 시점(t3), 제4 시점(t4), 그리고 제7 시점(t7)에서 바뀐다. 이는 도 2의 (a)에서 도시된 것과 같이 각 시간 구간에서의 손실량이 각각 다르기 때문이다.At this time, the slope of the loss amount graph 3 is changed at the second time point t2, the third time point t3, the fourth time point t4, and the seventh time point t7. This is because the amount of loss in each time interval is different as shown in FIG.
그리고, 도 2의 (b)를 참고로 하여 설명한 것과 같이, 제어부(10)에서 생성되는 손실량 그래프(3)는 거리(t)에 따른 손실을 나타내므로, 광선로(200)의 손실량을 감지할 수 있게 된다.As described with reference to FIG. 2B, since the loss amount graph 3 generated by the controller 10 represents a loss according to the distance t, the loss amount of the optical path 200 may be detected. It becomes possible.
또한, 도 2(b)의 그래프로부터 광선로(200)의 전체적인 손실량 변화를 확인하여 광선로(200)의 유지보수를 위한 자료로 사용할 수 있게 된다.In addition, it is possible to use the material for maintenance of the optical path 200 by confirming the change in the total loss amount of the optical path 200 from the graph of FIG.
이와 같이 펄스 발생부(20), 광 발생부(30), 광 감지부(40), 광 증폭부(50) 및 제어부(10)를 구비하는 광선로 측정장치(100)는 OTDR(Optical Time Domain Reflectometer)이다.As such, the optical path measuring apparatus 100 including the pulse generator 20, the light generator 30, the light detector 40, the optical amplifier 50, and the controller 10 may have an OTDR (Optical Time Domain). Reflectometer).
이러한 광선로 측정장치(100)는 표시부를 포함하는 것이 좋다.The optical path measuring apparatus 100 may include a display unit.
표시부는 제어부(10)에서 출력한 도 2의 (a) 그래프(1, 2)와 도 2의 (b) 그래프(3)를 출력한다. 이로 인해, 광선로 측정장치(100)를 이용하는 관리자가 그래프들(1 내지 3)을 확인하여 광선로(200)의 상태를 모니터링 할 수 있다.The display unit outputs (a) graphs 1 and 2 of FIG. 2 and (b) graph 3 of FIG. 2 output from the controller 10. For this reason, the manager using the optical path measuring apparatus 100 may check the graphs 1 to 3 to monitor the state of the optical path 200.
다음으로, 도 1 및 도 2를 참고로 하여 본 발명의 한 실시예에 따른 광선로 측정장치의 동작을 설명한다.Next, with reference to FIGS. 1 and 2 will be described the operation of the optical path measuring apparatus according to an embodiment of the present invention.
먼저, 제어부(10)는 기준파형을 생성하기 위한 펄스 발생 신호를 출력하여 펄스 발생부(20)로 전달하고, 펄스 발생부(20)는 제어부(10)로부터 전달받은 펄스 발생 신호에 따라 펄스를 발생하여, 발생된 펄스를 광 발생부(30)로 전달한다.First, the controller 10 outputs a pulse generation signal for generating a reference waveform to the pulse generator 20, and the pulse generator 20 generates a pulse according to the pulse generation signal received from the controller 10. It generates and delivers the generated pulse to the light generator 30.
광 발생부(30)는 펄스 발생부(20)로부터 전달받은 펄스에 따라 감시광인 기준파형을 생성하여 광선로(200)에 입사시킨다.The light generator 30 generates a reference waveform, which is monitoring light, according to the pulse received from the pulse generator 20, and enters the light path 200.
그런 다음, 광 감지부(40)는 광선로(200)에서 반사된 반사광인 측정파형을 광선로(200)로부터 수신하고, 수신된 광선로(200) 측정파형을 광 증폭부(50)로 전달한다. Then, the light detector 40 receives the measurement waveform which is the reflected light reflected from the optical path 200 from the optical path 200, and transmits the received optical path 200 measurement waveform to the optical amplification unit 50. do.
다음으로, 광 증폭부(50)는 광 감지부(40)로부터 전달받은 측정파형을 증폭하여 증폭된 측정파형을 제어부(10)로 전달한다.Next, the optical amplification unit 50 amplifies the measurement waveform received from the optical sensing unit 40 and transmits the amplified measurement waveform to the controller 10.
그리고, 제어부(10)는 펄스 발생부(20)로 전달했던 기준파형(1)과 광 증폭부(50)로부터 전달받은 광선로(200)의 측정파형(2)을 각각 출력하고, 기준파형(1)과 측정파형(2)을 비교하여 생성된 손실량 그래프(3)를 출력한다.The controller 10 outputs the reference waveform 1 transmitted to the pulse generator 20 and the measurement waveform 2 of the optical path 200 received from the optical amplifier 50, respectively, and the reference waveform ( 1) compares the measurement waveform (2) and outputs the loss graph (3) generated.
이로 인해, 광선로(200)의 전체적인 손실량을 확인할 수 있게 되어 고장 예방에 사용할 수 있게 된다.As a result, the total amount of loss of the optical path 200 can be confirmed, and thus it can be used for failure prevention.
이상에서 본 발명의 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.Although the embodiments of the present invention have been described in detail above, the scope of the present invention is not limited thereto, and various modifications and improvements of those skilled in the art using the basic concepts of the present invention defined in the following claims are also provided. It belongs to the scope of rights.
Claims (3)
- 광펄스를 전달받아 기준파형인 감시광을 생성하여 생성된 감시광을 광선로에 입사시키는 광 발생부,A light generating unit for receiving the light pulse to generate the monitoring light as a reference waveform and incident the generated monitoring light into the optical path;상기 광선로에서 반사된 반사광인 측정파형을 전달받는 광 감지부, 그리고An optical sensing unit receiving a measurement waveform which is reflected light reflected from the optical path;상기 기준파형을 생성하기 위한 펄스 발생신호를 생성하여 상기 광 발생부로 전달하고, 상기 광 감지부로부터 상기 측정파형을 전달받으며, 상기 기준파형과 상기 측정파형을 이용하여 손실량 그래프를 생성하는 제어부를 포함하고,And a controller configured to generate a pulse generation signal for generating the reference waveform and transmit the generated pulse signal to the light generator, receive the measurement waveform from the light detector, and generate a loss amount graph using the reference waveform and the measurement waveform. and,상기 손실량 그래프는 상기 기준파형의 손실량으로부터 상기 측정파형의 손실량의 차이를 거리에 따른 손실량 값으로 나타내는 광선로 측정장치.And the loss amount graph indicates a difference between the loss amount of the reference waveform and the loss amount of the measurement waveform as a loss amount value according to a distance.
- 제1항에서,In claim 1,상기 기준파형, 상기 측정파형 및 상기 손실량 그래프 중 적어도 하나를 출력하는 표시부를 더 포함하는 광선로 측정장치.And a display unit for outputting at least one of the reference waveform, the measurement waveform, and the loss amount graph.
- 제1항에서,In claim 1,상기 측정파형은 상기 광선로에서 고장이 발생했을 때 전력이 손실되거나 파형이 변형되고,The measurement waveform is a power loss or waveform is deformed when a failure occurs in the optical path,상기 손실량 그래프는 상기 측정파형에서 발생한 파형변화에 따라 각각 다른 기울기를 갖는 광선로 측정장치. The loss amount graph is an optical fiber measuring apparatus having a different slope in accordance with the waveform change generated in the measurement waveform.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20130063028 | 2013-05-31 | ||
KR10-2013-0063028 | 2013-05-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014193059A1 true WO2014193059A1 (en) | 2014-12-04 |
Family
ID=51989050
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2013/010937 WO2014193059A1 (en) | 2013-05-31 | 2013-11-28 | Apparatus for measuring optical time domain |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2014193059A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030210387A1 (en) * | 2000-12-04 | 2003-11-13 | Saunders Ross Alexander | Integrated optical time domain reflectometer and optical supervisory network |
KR20070104089A (en) * | 2006-04-21 | 2007-10-25 | 재단법인서울대학교산학협력재단 | Ray gauge and way of measuring ray |
KR20090100109A (en) * | 2008-03-19 | 2009-09-23 | 주식회사 케이티 | Optical subscriber network optical cable monitoring device using optical pulse type and method |
KR20100121947A (en) * | 2009-05-11 | 2010-11-19 | 정병직 | Optical fiber network system |
KR101125342B1 (en) * | 2011-05-17 | 2012-03-28 | (주) 유식스 | Fiber line monitoring method for ring type network and monitoring device |
-
2013
- 2013-11-28 WO PCT/KR2013/010937 patent/WO2014193059A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030210387A1 (en) * | 2000-12-04 | 2003-11-13 | Saunders Ross Alexander | Integrated optical time domain reflectometer and optical supervisory network |
KR20070104089A (en) * | 2006-04-21 | 2007-10-25 | 재단법인서울대학교산학협력재단 | Ray gauge and way of measuring ray |
KR20090100109A (en) * | 2008-03-19 | 2009-09-23 | 주식회사 케이티 | Optical subscriber network optical cable monitoring device using optical pulse type and method |
KR20100121947A (en) * | 2009-05-11 | 2010-11-19 | 정병직 | Optical fiber network system |
KR101125342B1 (en) * | 2011-05-17 | 2012-03-28 | (주) 유식스 | Fiber line monitoring method for ring type network and monitoring device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2529654C (en) | Multimode fiber optic intrusion detection system | |
CN106595776B (en) | A kind of more physical quantity sensor-based systems of distribution type fiber-optic and method | |
JP2007151086A (en) | Passive optical subscriber network | |
EP2034635A4 (en) | FIBER EVENT POINT RECORDING METHOD, AND OPTICAL NETWORK AND NETWORK EQUIPMENT THEREOF | |
CN101258379A (en) | Optical fiber sensor connected with optical communication line | |
CN103591971A (en) | Positioning method and system of fiber grating | |
CN102104421B (en) | Branched optical fiber failure detection method and device for optical network, and optical network | |
CN204087417U (en) | Temperature detected by optical fiber fire detector system | |
WO2015199266A1 (en) | Optical communication line monitoring apparatus and method | |
CN201369727Y (en) | Optical line terminal | |
WO2018216883A1 (en) | Repeater optical core monitoring system using otdr | |
CN101411098A (en) | Signal identifying apparatus for an optical fiber | |
US10270526B2 (en) | Apparatus and method for monitoring status of terminal | |
Urban et al. | OTM-and OTDR-based cost-efficient fiber fault identification and localization in passive optical network | |
CN209218092U (en) | A kind of quantum key generation system optical fiber link decaying monitoring device | |
CN104361707A (en) | Fiber-optic temperature-sensing fire detector system | |
CN107070544A (en) | Optical assembly, detecting devices and decision method using the optical assembly | |
CN201118599Y (en) | A kind of optical module equipment and motherboard | |
WO2014193059A1 (en) | Apparatus for measuring optical time domain | |
JP2006071602A (en) | Optical path abnormality diagnostic device and diagnostic method | |
JP3660043B2 (en) | Optical line monitoring method and monitoring system | |
WO2016204331A1 (en) | Monitoring system using optical line | |
KR101819446B1 (en) | Optical line detection system | |
KR20090124437A (en) | Fixed reflector for OTDR and light path monitoring device using the same | |
CN203587125U (en) | Positioning system of fiber grating |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13885921 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13885921 Country of ref document: EP Kind code of ref document: A1 |